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1 Introduction

This notes intended to supplement a talk given by the author at the Institut de Mathématiques
de Jussieu - Université Paris 7 in January 2010 when he was postdoc at the aforementioned
institution1. The purpose of the talk was to give an explanation of the use of Kapustin-Li formula
in the evaluation of the closed foams used in the construction of the sl(N)-link homology. This
notes contains material from my thesis [17] as well as the explanation and the proof of some
facts about the Kapustin-Li formula that were omitted from [11].

In the context of categorification foams first appeared in Khovanov’s construction of a
topological theory categorifying the sl(3)-link polynomial [6]. His construction uses cobordisms
with singularities, called foams, modulo a finite set of relations. In [9] Khovanov and Rozansky
(KR) categorified the sl(N)-link polynomial for arbitrary N, the 1-variable specializations of the
2-variable HOMFLY-PT polynomial. Their construction uses the theory of matrix factorizations,
a mathematical tool introduced by Eisenbud in [3] (see also [2, 10, 18]) in the study of maximal
Cohen-Macaulay modules over isolated hypersurface singularities and used by Kapustin and Li
as boundary conditions for strings in Landau-Ginzburg models [5].

The goal of [11] was to construct a combinatorial topological definition of KR link homology,
extending to all N > 3 the work of Khovanov [6] for N = 3 (see also [12]). Khovanov had to
modify considerably his original setting for the construction of sl(2) link homology in order
to produce his sl(3) link homology. It required the introduction of singular cobordisms with
a particular type of singularity, which he called foams. The jump from sl(3) to sl(N), for
N > 3, requires the introduction of a new type of singularity. The latter is needed for proving
invariance under the third Reidemeister move. The introduction of the new singularities makes
it much harder to evaluate closed foams and we do not know how to do it combinatorially.
Instead we use the Kapustin-Li formula [5], which was introduced by A. Kapustin and Y. Li
in [5] in the context of topological Landau-Ginzburg models with boundaries and adapted to
foams by Khovanov and Rozansky [7]. The downside is that our construction does not yet
allow us to deduce a (fast) algorithm for computing sl(N) link homology. A positive side-effect
is that it allows us to show that for any link the homology using foams is isomorphic to KR
homology. Furthermore the combinatorics involved in establishing certain identities among
foams gets much harder for arbitrary N. The theory of symmetric polynomials, in particular
Schur polynomials, is used to handle that problem.

2 Matrix factorizations
This section contains a brief review of matrix factorizations and the properties that will be used
throughout this notes. All the matrix factorizations in this notes are Z/2Z×Z-graded. Let
R be a polynomial ring over Q in a finite number of variables. We take the Z-degree of each
polynomial to be twice its total degree. This way R is Z-graded. Let W be a homogeneous
element of R of degree 2m. A matrix factorization of W over R is given by a Z/2Z-graded free

1The author thanks Christian Blanchet and the IMJ for the opportunity of giving this talk and their hospitality during
the period from March 2009 to February 1010.
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R-module M = M0⊕M1 with two R-homomorphisms of degree m

M0
d0−→M1

d1−→M0

such that d1d0 = W IdM0 and d0d1 = W IdM1 . We call W the potential. The Z-grading of R
induces a Z-grading on M. The shift functor {k} acts on M as

M{k}= M0{k}
d0−→M1{k}

d1−→M0{k},

where its action on the modules M0, M1 means an upward shift by k units on the Z-grading.
A homomorphism f : M→M′ of matrix factorizations of W is a pair of maps of the same

degree fi : Mi→M′i (i = 0,1) such that the diagram

M0
d0 //

f0
��

M1
d1 //

f1
��

M0

f0
��

M′0
d′0 // M′1

d′1 // M′0

commutes. It is an isomorphism of matrix factorizations if f0 and f1 are isomorphisms of the
underlying modules. Denote the set of homomorphisms of matrix factorizations from M to M′

by
HomMF(M,M′).

It has an R-module structure with the action of R given by r( f0, f1) = (r f0,r f1) for r ∈ R.
Matrix factorizations over R with homogeneous potential W and homomorphisms of matrix
factorizations form a graded additive category, which we denote by MFR(W ). If W = 0 we
simply write MFR.

Another description of matrix factorizations is obtained by assembling the differentials d0
and d1 into an endomorphism D of the Z/2Z-graded free R-module M = M0⊕M1 such that

D =

(
0 d1
d0 0

)
degZ/2Z D = 1 D2 =W IdM .

In this case we call D the twisted differential.
The free R-module HomR(M,M′) of graded R-module homomorphisms from M to M′ is a

2-complex

Hom0
R(M,M′) d // Hom1

R(M,M′) d // Hom0
R(M,M′)

where

Hom0
R(M,M′) = HomR(M0,M′0)⊕HomR(M1,M′1)

Hom1
R(M,M′) = HomR(M0,M′1)⊕HomR(M1,M′0)

and for f in Homi
R(M,M′) the differential acts as

d f = dM′ f − (−1)i f dM.

We define
Ext(M,M′) = Ext0(M,M′)⊕Ext1(M,M′) = Kerd/ Imd,
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and write Ext(m)(M,M′) for the elements of Ext(M,M′) with Z-degree m. Note that for f ∈
HomMF(M,M′) we have d f = 0. We say that two homomorphisms f , g ∈ HomMF(M,M′) are
homotopic if there is an element h ∈ Hom1

R(M,M′) such that f −g = dh.
Denote by HomHMF(M,M′) the R-module of homotopy classes of homomorphisms of

matrix factorizations from M to M′ and by HMFR(W ) the homotopy category of MFR(W ).
We denote by M〈1〉 and M• the factorizations

M1
−d1−−→M0

−d0−−→M1

and
(M0)

∗ −(d1)
∗

−−−−→ (M1)
∗ (d0)

∗

−−−→ (M0)
∗

respectively. Factorization M〈1〉 has potential W while factorization M• has potential −W . We
call M• the dual factorization of M.

We have

Ext0(M,M′)∼= HomHMF(M,M′)

Ext1(M,M′)∼= HomHMF(M,M′〈1〉)

The tensor product M⊗R M• has potential zero and is therefore a 2-complex. Denoting by
HMF the homology of matrix factorizations with potential zero we have

Ext(M,M′)∼= HMF(M′⊗R M•)

and, if M is a matrix factorization with W = 0,

Ext(R,M)∼= HMF(M).

Let R =Q[x1, . . . ,xk] and W ∈ R. The Jacobi algebra of W is defined as

(1) JW = R/(∂1W, . . . ,∂kW ),

where ∂i means the partial derivative with respect to xi. Writing the differential as a matrix and
differentiating both sides of the equation D2 =W with respect to xi we get D(∂iD)+(∂iD)D =
∂iW . We thus see that multiplication by ∂iW is homotopic to the zero endomorphism and that
the homomorphism

R→ EndHMF(M), r 7→ m(r)

factors through the Jacobi algebra of W .
Let f ,g ∈ End(M). We define the supercommutator of f and g as

[ f ,g]s = f g− (−1)degZ/2Z( f )degZ/2Z(g)g f .

The supertrace of f is defined as

STr( f ) = Tr
(
(−1)gr f

)
where the grading operator (−1)gr ∈ End(M0⊕M1) is given by

(m0,m1) 7→ (m0,−m1), m0 ∈M0, m1 ∈M1.
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If f and g are homogeneous with respect to the Z/2Z-grading we have that

STr( f g) = (−1)degZ/2Z( f )degZ/2Z(g) STr(g f ),

and
STr
(
[ f ,g]s

)
= 0.

There is a canonical isomorphism of Z/2Z-graded R-modules

End(M)∼= M⊗R M•.

Choose a basis {| i〉} of M and define a dual basis {〈 j |} of M• by 〈 j|i〉= δi, j, where δ is the
Kronecker symbol. There is a natural pairing map M⊗M•→ R called the super-contraction
that is given on basis elements | i〉〈 j | by

| i〉〈 j | 7→ (−1)degZ/2Z(| i〉)degZ/2Z(〈 j |)〈 j|i〉= δi, j.

The super-contraction induces a map End(M)→ R which coincides with the supertrace. When
M and M• are factors in a tensor product (M⊗R N)⊗R (M•⊗R N•) the super-contraction of M
with M• induces a map STrM : End(M⊗R N)→ End(N) called the partial super-trace (w.r.t.
M).

2.1 Koszul Factorizations
For a, b homogeneous elements of R, an elementary Koszul factorization {a,b} over R with
potential ab is a factorization of the form

R a−→ R
{

1
2

(
degZ b−degZ a

)} b−→ R.

When we need to emphasize the ring R we write this factorization as {a,b}R. The tensor product
of matrix factorizations Mi with potentials Wi is a matrix factorization with potential ∑iWi. We
restrict to the case where all the Wi are homogeneous of the same degree. Throughout this
notes we use tensor products of elementary Koszul factorizations {a j,b j} to build bigger matrix
factorizations, which we write in the form of a Koszul matrix as

a1 , b1
...

...
ak , bk


We denote by {a,b} the Koszul matrix which has columns (a1, . . . ,ak) and (b1, . . . ,bk). If

k
∑

i=1
aibi = 0 then {a,b} is a 2-complex whose homology is an R/(a1, . . . ,ak,b1, . . . ,bk)-module,

since multiplication by ai and bi are null-homotopic endomorphisms of {a,b}.
Note that the action of the shift 〈1〉 on {a,b} is equivalent to switching terms in one line of

{a,b}:

{a,b}〈1〉 ∼=



...
...

ai−1 , bi−1
−bi , −ai

ai+1 , bi+1
...

...


{

1
2

(
degZ bi−degZ ai

)}
.
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If we choose a different row to switch terms we get a factorization which is isomorphic to this
one. We also have that

{a,b}• ∼= {a,−b}〈k〉{sk},

where

sk =
k

∑
i=1

degZ ai−
k
2

degZW.

Let R =Q[x1, . . . ,xk] and R′ =Q[x2, . . . ,xk]. Suppose that W = ∑i aibi ∈ R′ and x1−bi ∈ R′,
for a certain 1≤ i≤ k. Let c = x1−bi and {âi, b̂i} be the matrix factorization obtained from
{a,b} by deleting the i-th row and substituting x1 by c.

Lemma 2.1 (excluding variables). The matrix factorizations {a,b} and {âi, b̂i} are homotopy
equivalent.

In [9] one can find the proof of this lemma and its generalization with several variables.
The following lemma contains three particular cases of Proposition 3 in [9]:

Lemma 2.2 (Row operations). We have the following isomorphisms of matrix factorizations{
ai , bi

a j , b j

}
[i, j]λ∼=

{
ai−λa j , bi

a j , b j +λbi

}
,

{
ai , bi

a j , b j

}
[i, j]′

λ∼=
{

ai +λb j , bi

a j−λbi , b j

}
for λ ∈ R. If λ is invertible in R, we also have

{
ai , b j

} [i]λ∼=
{

λai , λ
−1bi

}
.

Proof. It is straightforward to check that the pairs of matrices

[i, j]
λ
=

((
1 0
0 1

)
,

(
1 −λ

0 1

))
, [i, j]′

λ
=

((
1 0
−λ 1

)
,

(
1 0
0 1

))
and [i]

λ
= (1, λ )

define isomorphisms of matrix factorizations.

Recall that a sequence (a1,a2, . . . ,ak) is called regular in R if a j is not a zero divisor in
R/(a1,a2, . . . ,a j−1), for j = 1, . . . ,k. The proof of the following lemma can be found in [8].

Lemma 2.3. Let b = (b1,b2, . . . ,bk), a = (a1,a2, . . . ,ak) and a′ = (a′1,a
′
2, . . . ,a

′
k) be sequences

in R. If b is regular and ∑i aibi = ∑i a′ibi then the factorizations

{a ,b} and {a′ ,b}

are isomorphic.

A factorization M with potential W is said to be contractible if it is isomorphic to a direct
sum of factorizations of the form

R 1−→ R{ 1
2 degZW} W−→ R and R W−→ R{− 1

2 degZW} 1−→ R.
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3 Schur polynomials and the cohomology of partial flag
varieties
In this section we recall some basic facts about Schur polynomials and the cohomology of
partial flag varieties.

3.1 Schur polynomials
A nice basis for homogeneous symmetric polynomials is given by the Schur polynomials.
If λ = (λ1, . . . ,λk) is a partition such that λ1 ≥ . . . ≥ λk ≥ 0, then the Schur polynomial
πλ (x1, . . . ,xk) is given by the following expression:

(2) πλ (x1, . . . ,xk) =
det
(
xλ j+k− j

i

)
∆

,

where ∆ = ∏i< j(xi− x j), and by det(xλ j+k− j
i ), we have denoted the determinant of the k× k

matrix whose (i, j) entry is equal to xλ j+k− j
i . Note that the elementary symmetric polynomials

are given by π1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1. There are multiplication rules for the Schur
polynomials which show that any πλ1,λ2,...,λk can be expressed in terms of the elementary
symmetric polynomials.

If we do not specify the variables of the Schur polynomial πλ , we will assume that these are
exactly x1, . . . ,xk, with k being the length of λ , i.e.

πλ1,...,λk := πλ1,...,λk(x1, . . . ,xk).

In this notes we only use Schur polynomials of two and three variables. In the case of two
variables, the Schur polynomials are indexed by pairs of nonnegative integers (i, j), such that
i≥ j, and (2) becomes

πi, j =
i

∑
`= j

x`1xi+ j−`
2 .

Directly from Pieri’s formula we obtain the following multiplication rule for the Schur polyno-
mials in two variables:

(3) πi, jπa,b = ∑πx,y,

where the sum on the r.h.s. is over all indices x and y such that x+ y = i+ j + a+ b and
a+ i ≥ x ≥ max(a+ j,b+ i). Note that this implies min(a+ j,b+ i) ≥ y ≥ b+ j. Also, we
shall write πx,y ∈ πi, jπa,b if πx,y belongs to the sum on the r.h.s. of (3). Hence, we have that
πx,x ∈ πi, jπa,b iff a+ j = b+ i = x and πx+1,x ∈ πi, jπa,b iff a+ j = x+1, b+ i = x or a+ j = x,
b+ i = x+1.

We shall need the following combinatorial result which expresses the Schur polynomial in
three variables as a combination of Schur polynomials of two variables. For i≥ j ≥ k ≥ 0, and
the triple (a,b,c) of nonnegative integers, we define

(a,b,c)@ (i, j,k),

if a+b+ c = i+ j+ k, i≥ a≥ j and j ≥ b≥ k. We note that this implies that i≥ c≥ k, and
hence max{a,b,c} ≤ i.
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Lemma 3.1.
πi, j,k(x1,x2,x3) = ∑

(a,b,c)@(i, j,k)
πa,b(x1,x2)xc

3.

Proof. From the definition of the Schur polynomial, we have

πi, j,k(x1,x2,x3) =
(x1x2x3)

k

(x1− x2)(x1− x3)(x2− x3)
det

xi−k+2
1 x j−k+1

1 1
xi−k+2

2 x j−k+1
2 1

xi−k+2
3 x j−k+1

3 1

 .

After subtracting the last row from the first and the second one of the last determinant, we obtain

πi, j,k =
(x1x2x3)

k

(x1− x2)(x1− x3)(x2− x3)
det

(
xi−k+2

1 − xi−k+2
3 x j−k+1

1 − x j−k+1
3

xi−k+2
2 − xi−k+2

3 x j−k+1
2 − x j−k+1

3

)
,

and so

πi, j,k =
(x1x2x3)

k

x1− x2
det

(
∑

i−k+1
m=0 xm

1 xi−k+1−m
3 ∑

j−k
n=0 xn

1x j−k−n
3

∑
i−k+1
m=0 xm

2 xi−k+1−m
3 ∑

j−k
n=0 xn

2x j−k+n
3

)
.

Finally, after expanding the last determinant we obtain

(4) πi, j,k =
(x1x2x3)

k

x1− x2

i−k+1

∑
m=0

j−k

∑
n=0

(xm
1 xn

2− xn
1xm

2 )x
i+ j−2k+1−m−n
3 .

We split the last double sum into two: the first one when m goes from 0 to j− k, denoted by S1,
and the other one when m goes from j− k+1 to i− k+1, denoted by S2. To show that S1 = 0,
we split the double sum further into three parts: when m < n, m = n and m > n. Obviously,
each summand with m = n is equal to 0, while the summands of the sum for m < n are exactly
the opposite of the summands of the sum for m > n. Thus, by replacing only S2 instead of the
double sum in (4) and after rescaling the indices a = m+ k−1, b = n+ k, we get

πi, j,k =
(x1x2x3)

k

x1− x2

i−k+1

∑
m= j−k+1

j−k

∑
n=0

(xm
1 xn

2− xn
1xm

2 )x
i+ j−2k+1−m−n
3

=
i

∑
a= j

j

∑
b=k

πa,bxi+ j+k−a−b
3 = ∑

(a,b,c)@(i, j,k)
πa,bxc

3,

as wanted.

Of course there is a multiplication rule for three-variable Schur polynomials which is
compatible with (3) and the lemma above, but we do not want to discuss it here. For details
see [4].

3.2 The cohomology of partial flag varieties
In this notes the rational cohomology rings of partial flag varieties play an essential role. The
partial flag variety Fld1,d2,...,dl , for 1≤ d1 < d2 < .. . < dl = N, is defined by

Fld1,d2,...,dl = {Vd1 ⊂Vd2 ⊂ . . .⊂Vdl = CN |dim(Vi) = i}.
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A special case is Flk,N , the Grassmannian variety of all k-planes in CN , also denoted Gk,N . The
dimension of the partial flag variety is given by

dimFld1,d2,...,dl = N2−
l−1

∑
i=1

(di+1−di)
2−d2

1 .

The rational cohomology rings of the partial flag varieties are well known and we only recall
those facts that we need in this notes.

Lemma 3.2. H(Gk,N) is isomorphic to the vector space generated by all πi1,i2,...,ik modulo the
relations

(5) πN−k+1,0,...,0 = 0, πN−k+2,0,...,0 = 0, . . . , πN,0,...,0 = 0,

where there are exactly k−1 zeros in the multi-indices of the Schur polynomials.

A consequence of the multiplication rules for Schur polynomials is that

Corollary 3.3. The Schur polynomials πi1,i2,...,ik , for N− k ≥ i1 ≥ i2 ≥ . . . ≥ ik ≥ 0, form a
basis of H(Gk,N)

Thus, the dimension of H(Gk,N) is
(N

k

)
, and up to a degree shift, its graded dimension is

[N
k

]
.

Another consequence of the multiplication rules is that

Corollary 3.4. The Schur polynomials π1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1 (the elementary sym-
metric polynomials) generate H(Gk,N) as a ring.

Furthermore, we can introduce a non-degenerate trace form on H(Gk,N) by giving its values
on the basis elements

(6) ε(πλ ) =

{
(−1)b

k
2 c, λ = (N− k, . . . ,N− k)

0, else
.

This makes H(Gk,N) into a commutative Frobenius algebra. One can compute the basis dual to
{πλ} in H(Gk,N), with respect to ε . It is given by

(7) π̂λ1,...,λk = (−1)b
k
2 cπN−k−λk,...,N−k−λ1 .

We can also express the cohomology rings of the partial flag varieties Fl1,2,N and Fl2,3,N in
terms of Schur polynomials. Indeed, we have

H(Fl1,2,N) =Q[x1,x2]/(πN−1,0,πN,0),

H(Fl2,3,N) =Q[x1 + x2,x1x2,x3]/(πN−2,0,0,πN−1,0,0,πN,0,0).
(8)

The natural projection map p1 : Fl1,2,N → G2,N induces

(9) p∗1 : H(G2,N)→ H(Fl1,2,N),

which is just the inclusion of the polynomial rings. Analogously, the natural projection map
p2 : Fl2,3,N → G3,N , induces

(10) p∗2 : H(G3,N)→ H(Fl2,3,N),

which is also given by the inclusion of the polynomial rings.
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4 Foams
In this section we begin to define the foams we will work with (foams were called pre-foams
in [11] and in [17]. This distinction is irrelevant for the purposes of this notes). The philosophy
behind these foams will be explained in Section 5. The basic examples of foams are given
in Figure 1. These foams are composed of three types of facets: simple, double and triple
facets. The double facets are coloured and the triple facets are marked to show the difference.
Intersecting such a foam with a plane results in a web, as long as the plane avoids the singularities

* *

Figure 1: Some elementary foams

where six facets meet, such as on the right in Figure 1. Recall that a web is a planar trivalent
graph with three types of edges: simple, double and triple which contain closed loops (simple,
double, triple) and that only the simple edges are equipped with an orientation.

We adapt the definition of a world-sheet foam given in [15] to our setting.

Definition 4.1. Let sγ be a finite closed oriented 4-valent graph, which may contain disjoint
circles. We assume that all edges of sγ are oriented. A cycle in sγ is defined to be a circle or a
closed sequence of edges which form a piece-wise linear circle. Let Σ be a compact orientable
possibly disconnected surface, whose connected components are white, coloured or marked,
also denoted by simple, double or triple. Each component can have a boundary consisting of
several disjoint circles and can have additional decorations which we discuss below. A closed
foam u is the identification space Σ/sγ obtained by glueing boundary circles of Σ to cycles in sγ

such that every edge and circle in sγ is glued to exactly three boundary circles of Σ and such
that for any point p ∈ sγ :

1. if p is an interior point of an edge, then p has a neighborhood homeomorphic to the letter
Y times an interval with exactly one of the facets being double, and at most one of them
being triple. For an example see Figure 1;

2. if p is a vertex of sγ , then it has a neighborhood as shown on the r.h.s. in Figure 1.

We call sγ the singular graph, its edges and vertices singular arcs and singular vertices, and the
connected components of u− sγ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black dots
(]), a double facet can also have white dots (^), and a triple facet besides black and white dots
can have double dots (_). Dots can move freely on a facet but are not allowed to cross singular
arcs. See Figure 2 for examples of foams.
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*

**

a) b)

Figure 2: a) A foam. b) An open foam

Note that the cycles to which the boundaries of the simple and the triple facets are glued are
always oriented, whereas the ones to which the boundaries of the double facets are glued are
not. Note also that there are two types of singular vertices. Given a singular vertex v, there are
precisely two singular edges which meet at v and bound a triple facet: one oriented toward v,
denoted e1, and one oriented away from v, denoted e2. If we use the “left hand rule”, then the
cyclic ordering of the facets incident to e1 and e2 is either (3,2,1) and (3,1,2) respectively, or
the other way around. We say that v is of type I in the first case and of type II in the second case
(see Figure 3). When we go around a triple facet we see that there have to be as many singular

e1

e2

e3

e4

∗
e1 e3

e2

e4

∗

Figure 3: Singular vertices of type I and type II

vertices of type I as there are of type II for the cyclic orderings of the facets to match up. This
shows that for a closed foam the number of singular vertices of type I is equal to the number of
singular vertices of type II.

We can intersect a foam u generically by a plane W in order to get a web, as long as the
plane avoids the vertices of sγ . The orientation of sγ determines the orientation of the simple
edges of the web according to the convention in Figure 4.

Suppose that for all but a finite number of values i ∈]0,1[, the plane W × i intersects u
generically. Suppose also that W ×0 and W ×1 intersect u generically and outside the vertices
of sγ . We call W × I ∩u an open foam. Interpreted as morphisms we read open foams from
bottom to top, and their composition consists of placing one foam on top of the other, as long as
their boundaries are isotopic and the orientations of the simple edges coincide.

We now define the q-degree of a foam. Let u be a foam, u1, u2 and u3 the disjoint union of
its simple and double and marked facets respectively and sγ(u) its singular graph. Define the
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W W

*

W
*

W W

*

W
*

Figure 4: Orientations near a singular arc

partial q-gradings of u as

qi(u) = χ(ui)−
1
2

χ(∂ui∩∂u), i = 1,2,3

qsγ
(u) = χ(sγ(u))−

1
2

χ(∂ sγ(u)).

where χ is the Euler characteristic and ∂ denotes the boundary.

Definition 4.2. Let u be a foam with d
]

dots of type ], d
^

dots of type ^ and d
_

dots of type
_. The q-grading of u is given by

q(u) =−
3

∑
i=1

i(N− i)qi(u)−2(N−2)qsγ
(u)+2d

]
+4d

^
+6d

_
.

The following result is a direct consequence of the definitions.

Lemma 4.3. q(u) is additive under the glueing of foams.

5 The KL formula and the evaluation of closed foams
Let us briefly recall the philosophy behind the foams. Losely speaking, to each closed foam
should correspond an element in the cohomology ring of a configuration space of planes in
some big CM . The singular graph imposes certain conditions on those planes. The evaluation of
a foam should correspond to the evaluation of the corresponding element in the cohomology
ring. Of course one would need to find a consistent way of choosing the volume forms on all
of those configuration spaces for this to work. However, one encounters a difficult technical
problem when working out the details of this philosophy. Without explaining all the details, we
can say that the problem can only be solved by figuring out what to associate to the singular
vertices. Ideally we would like to find a combinatorial solution to this problem, but so far it has
eluded us. That is the reason why we are forced to use the KL formula.

We denote a simple facet with i dots by

i .
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Recall that πk,m can be expressed in terms of π1,0 and π1,1. In the philosophy explained above,
the latter should correspond to ] and ^ on a double facet respectively. We can then define

(k,m)

as being the linear combination of dotted double facets corresponding to the expression of πk,m
in terms of π1,0 and π1,1. Analogously we expressed πp,q,r in terms of π1,0,0, π1,1,0 and π1,1,1
(see Section 3). The latter correspond to ], ^ and _ on a triple facet respectively, so we can
make sense of

*
(p,q,r) .

In the sequel, we shall give a definition of the KL formula for the evaluation of foams
and state some of its basic properties. The KL formula was introduced by A. Kapustin and
Y. Li [5] to generalize Vafa’s work [16] in the context of the evaluation of 2-dimensional TQFTs
to the case of smooth surfaces with boundary. It was later extended to the case of foams by
M. Khovanov and L. Rozansky in [7], who interpreted singular arcs as boundary conditions as
in [5]. Khovanov and Rozansky adapted the KL formula to a general sort of foam. In this notes
we have to specify the input data which allows us to use it for the evaluation of our foams. The
normalization is ours and is used to obtain integral relations.

5.1 The general framework
Let u = Σ/sγ be a closed foam with singular graph sγ and without any dots on it. Let F denote
an arbitrary i-facet, i ∈ {1,2,3}, with a 1-facet being a simple facet, a 2-facet being a double
facet and a 3-facet being a triple facet.

Each i-facet can be decorated with dots, which correspond to generators of the rational
cohomology ring of the Grassmannian Gi,N , i.e. H(Gi,N ,Q). Alternatively, we can associate to
every i-facet F , i variables xF

1 . . . ,x
F
i , with degxF

i = 2i, and the potential W (xF
1 , . . . ,x

F
i ), which

is the polynomial defined such that

W (σ1, . . . ,σi) = yN+1
1 + . . .+ yN+1

i ,

where σ j is the j-th elementary symmetric polynomial in the variables y1, . . . ,yi. The Jacobi
algebra JW

JW =Q[xF
1 , . . . ,x

F
i ]/(∂iW ),

where ∂iW denote the ideal generated by the partial derivatives of W , is isomorphic to the
rational cohomology ring of the Grassmannian Gi,N . Note that up to a multiple the top degree
nonvanishing element in this Jacobi algebra is πN−i,...,N−i (multiindex of length i), i.e. the
polynomial in variables xF

1 , . . . ,x
F
i which gives πN−i,...,N−i after replacing the variable xF

j by
π1,...,1,0,...,0 with exactly j 1’s, 1≤ j ≤ i (see also Subsection 3.1). We define the trace (volume)
form ε on H(Gi,N ,Q) by giving it on the basis of the Schur polynomials:

ε(π j1,..., ji) =

{
(−1)b

i
2 c if ( j1, . . . , ji) = (N− i, . . . ,N− i)

0 else
.

The KL formula associates to u an element in the product of the cohomology rings of the
Jacobi algebras J, over all the facets in the foam. Alternatively, we can see this element as a
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polynomial, KLu ∈ J, in all the variables associated to the facets. Now, let us put some dots on u.
Recall that a dot corresponds to an elementary symmetric polynomial. So a linear combination
of dots on u is equivalent to a polynomial, f , in the variables of the dotted facets. Let ε denote
the product of the trace forms εJi over all facets of u. The value of this dotted foam we define to
be

(11) 〈u〉KL := ε

(
∏
F

det(∂i∂ jWF)
g(F)

(N +1)g′(F)
KLu f

)
.

The product is over all facets F and WF is the potential associated to F . For any i-facet F ,
i = 1,2,3, the symbol g(F) denotes the genus of F and g′(F) = ig(F). If u is a closed surface
without singularities we define KLu = 1 and 〈 〉KL reduces to an extension to colored closed
surfaces of the formula introduced by Vafa in [16]. The Vafa factor

∏
F

det(∂i∂ jWF)
g(F)

(N +1)g′(F)

computes the contribution of the handles in the facets of u.
Having explained the general idea, we are left with defining the element KLu for a dotless

foam. For that we have to explain Khovanov and Rozansky’s extension of the KL formula to
foams [7], which uses the theory of matrix factorizations.

5.2 Decoration of foams
As we said, to each facet we associate certain variables (depending on the type of facet), a
potential and the corresponding Jacobi algebra. If the variables associated to a facet F are
x1, . . . ,xi, then we define RF =Q[x1, . . . ,xi]. It is immediate that the KL formula gives zero if
the argument of ε in Equation 11 contains an element of ∂iWF : for any Q ∈

⊗
F

RF we have that

(12) ε(Q∂iWF) = 0.

Now we consider the edges. To each edge we associate a matrix factorization whose
potential is equal to the signed sum of the potentials of the facets that are glued along this
edge. We define it to be a certain tensor product of Koszul factorizations. In the cases we are
interested in there are always three facets glued along an edge, with two possibilities: either
two simple facets and one double facet, or one simple, one double and one triple facet. In the
first case, we denote the variables of the two simple facets by x and y and take the potentials to
be xN+1 and yN+1 respectively, according to the convention in Figure 5. To the double facet we
associate the variables s and t and the potential W (s, t). To the edge we associate the matrix
factorization which is the tensor product of Koszul factorizations given by

(13) MF1 =

{
A′, x+ y− s
B′, xy− t

}
,

where A′ and B′ are given by

A′ =
W (x+ y,xy)−W (s,xy)

x+ y− s
,

B′ =
W (s,xy)−W (s, t)

xy− t
.

14



W(s,t)

xN+1

yN+1

W (s, t)

Figure 5: Singular edge of type (1,1,2)

Note that (x+ y− s)A′+(xy− t)B′ = xN+1 + yN+1−W (s, t).
In the second case, the variable of the simple facet is x and the potential is xN+1, the variables

of the double facet are s and t and the potential is W (s, t), and the variables of the triple face are
p, q and r and the potential is W (p,q,r).

W(s,t)

xN+1

W (s, t)

W (p,q,r)∗

Figure 6: Singular edge of type (1,2,3)

Define the polynomials

A =
W (x+ s,xs+ t,xt)−W (p,xs+ t,xt)

x+ s− p
,(14)

B =
W (p,xs+ t,xt)−W (p,q,xt)

xs+ t−q
,(15)

C =
W (p,q,xt)−W (p,q,r)

xt− r
,(16)

so that
(x+ s− p)A+(xs+ t−q)B+(xt− r)C = xN+1 +W (s, t)−W (p,q,r).

To such an edge we associate the matrix factorization given by the following tensor product of
Koszul factorizations:

(17) MF2 =


A, x+ s− p
B, xs+ t−q
C, xt− r

 .

In both cases, if the edges have the opposite orientation we associate the matrix factorizations
(MF1)• and (MF2)• respectively.
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Next we explain what we associate to a singular vertex. First of all, for each vertex v, we
define its local graph γv to be the intersection of a small sphere centered at v with the foam. Then
the vertices of γv correspond to the edges of u that are incident to v, to which we had associated
matrix factorizations. In this notes all local graphs γv are in fact tetrahedrons. However, recall
that there are two types of vertices (see the remarks below Definition 4.1). Label the six facets
that are incident to a vertex v by the numbers 1,2,3,4,5 and 6. Furthermore, denote the edge
along which are glued the facets i, j and k by (i jk). Denote the matrix factorization associated
to the edge (i jk) by Mi jk, if the edge points toward v, and by (Mi jk)•, if the edge points away
from v. Note that Mi jk and (Mi jk)• are both defined over Ri⊗R j⊗Rk.

Now we can take the tensor product of these four matrix factorizations, over the polynomial
rings of the facets of the foam, that correspond to the vertices of γv. This way we obtain the
matrix factorization Mv, whose potential is equal to 0, and so it is a 2-complex and we can take
its homology.

To each vertex v we associate an element Ov ∈ HMF(Mv). More precisely, if v is of type I,
then

HMF(Mv)∼= Ext(MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r) ,

MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r)) .
(18)

If v is of type II, then

HMF(Mv)∼= Ext(MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r) ,

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)) .
(19)

Both isomorphisms hold up to a global shift in q. Note that

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)'MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r),

because both tensor products are homotopy equivalent to the factorization
∗, x+ y+ z− p
∗, xy+ xz+ yz−q
∗, xyz− r

 .

We have not specified the l.h.s. of the latter Koszul matrix, because of Lemma 2.3. If v is of
type I, we take Ov to be the cohomology class of a fixed degree 0 homotopy equivalence

wv : MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)→MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r).

The choice of Ov is unique up to a scalar, because the graded dimension of the Ext-group in
(18) is equal to

q3N−6 qdim(H(Mv)) = q3N−6[N][N−1][N−2] = 1+q(. . .),

where (. . .) is a polynomial in q. Note that Mv is homotopy equivalent to the matrix factorization
which corresponds to the closure of ϒ in [9], which allows one to compute the graded dimension
above using the results in the latter paper. If v is of type II, we take Ov to be the cohomology
class of the homotopy inverse of wv. Note that a particular choice of wv fixes Ov for both types
of vertices and that the value of the KL formula for a closed foam does not depend on that
choice because there are as many singular vertices of type I as there are of type II (see the
remarks below Definition 4.1). We do not know an explicit formula for Ov. Although such a
formula would be very interesting to have, we do not need it for the purposes of this notes.
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5.3 The KL derivative and the evaluation of closed foams
From the definition, every boundary component of each facet F is either a circle or a cyclicly
ordered finite sequence of edges, such that the beginning of the next edge corresponds to the
end of the previous edge. For every boundary component choose an edge e and denote the
differential of the matrix factorization associated to this edge by De. Let RF = Q[x1, . . . ,xk].
The KL derivative of De in the variables x1, . . . ,xk associated to the facet F , is an element from
End(M)∼= M⊗M•, given by:

(20) OF,e = ∂Dê =
1
k! ∑

σ∈Sk

(sgnσ)∂σ(1)De∂σ(2)De . . .∂σ(k)De,

where Sk is the symmetric group on k letters, and ∂iD is the partial derivative of D with respect
to the variable xi. For all the other edges e′ in the boundary of F we take OF,e′ to be the identity.
Denote the set of facets whose boundary contains e by F(e). For every edge define Oe ∈ End(M)
as the composite

Oe = ∏
F∈F(e)

OF,e.

The order of the factors in Oe is irrelevant as we will prove it in Lemma 5.2.
Let V and E be the sets of all vertices and all edges of the singular graph sγ of a foam u.

Denote the matrix factorization associated to an edge e by Me (Me = MF1 if e is of type (1,1,2)
and Me = MF2 if e is of type (1,2,3)). Recall that the factorization Mv associated to a singular
vertex is the tensor product of the matrix factorizations associated to the edges that are incident
to v. Consider the factorization Msγ

given by the tensor product

(21) Msγ
=

(⊗
v∈V

Mv

)
⊗
(⊗

e∈E
Me⊗ (Me)•

)
.

From the definition of Mv we see that we can group all the factorizations involved in pairs of
mutually dual factorizations: for every edge e we can pair Me coming from Me⊗ (Me)• with
(Me)• coming from Mv and (Me)• from Me⊗ (Me)• can be paired with Me coming from Mv.
Using super-contraction on each pair we get a map

φγ : Msγ
→Q[xu],

where xu is the set of variables associated to all the facets of u.

Definition 5.1. KLu = φγ

((⊗
v∈V

Ov
)
⊗
(⊗

e∈E
Oe
))

.

Note that the Oe and Ov can be seen as tensors with indices associated to the facets that
meet at e and v respectively. So we can super-contract all the tensor factors Oe and Ov, with
respect to a particular facet F , along a cycle that bounds F . From Definition 5.1 we see that if
we do this for all boundary components of all facets we also get KLu.

Lemma 5.2. KLu does not depend on the order of the factors in Oe.
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Proof. Let e be an edge in the boundary of facets F and F ′. Since the potential We is a sum of
the individual potentials associated to the facets that are glued along e, each depending on its
own set of variables, we have ∂i∂

′
jWe = 0. Therefore, applying ∂i∂

′
j to both sides of the relation

D2
e =We gives

[∂iDe,∂
′
jDe]s =−[De,∂i∂

′
jDe]s,

and the term on the r.h.s. is annihilated after the super-contraction because it is a coboundary.
This means that the KL derivatives of D w.r.t. different facets super-commute.

Lemma 5.3. KLu does not depend on the choice of the preferred edges.

Proof. It suffices to prove the claim for only one facet F with one boundary component. Label
the edges that bound F by e1, . . . , ek and take e1 as the preferred edge of F . Suppose first that
F is a simple or a triple facet, so that its boundary consists of an oriented cycle of sγ . Suppose
also that ei is oriented from vi to vi+1. Since [OF,e,OF ′,e]s = 0 for every F ′ 6= F we can assume
that Oe1 = OF,e1 without loss of generality. The contribution to KLu of the facet F is given by

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
,

where STrWF is the partial supertrace w.r.t. the indices associated to F .
The relevant part of a small neighborhood of the vertex v1 is depicted in Figure 7, where only

the facet F is shown. From Equation (18) it follows that Ov can be seen as a homomorphism from

e1

e2e′2

e′1

v1 F

Figure 7: Singular vertex

Me(e1)⊗Me(e′1) to Me(e2)⊗Me(e′2), where (ei) denotes the variables associated to the facets
that are glued along e. Therefore we have that [D,Ov]s = 0, where D = De1 +De′1

+De2 +De′2
and we are using the convention that the composite of two non-composable homomorphisms is
zero. Note that ∂iD = ∂iDe1 +∂iDe2 since e′1 and e′2 are not variables associated to F . Therefore
[D,Ov]s = 0 implies

(22) [∂iD,Ov]s =−[D,∂iOv]s

by partial differentiation w.r.t. a variable of F . This implies

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
= STrWF

(
Ov1∂Dê2Ov2 . . .Ovk

)
,

since terms involving the r.h.s. of Equation (22) get killed by STr.
Now suppose that F is a double facet. The boundary of F is not an oriented cycle in sγ .

Suppose a small neighborhood of v has a part as depicted in Figure 8. In this case Ov can
be seen as a homomorphism from Me(e1)⊗Me(e′1)• to Me(e2)⊗Me(e′2)•, so that D and Ov
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e1

e2e′2

e′1

v1 F

Figure 8: Double facet near a singular vertex

super-commute, where D = De1 +(De′1
)•+(De2)•+De′2

. Taking a partial derivative of both
sides of the relation [D,Ov]s relative to a variable associated to F we obtain that

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
= STrWF

(
Ov1∂ (Dê2)•Ov2 . . .Ovk

)
,

which proves the claim.

5.4 Some computations
In this subsection we compute the KL evaluation of some closed foams.

Spheres

The values of dotted spheres are easy to compute. Note that for any sphere with dots f the KL
formula gives

ε( f ).

Therefore for a simple sphere we get 1 if f = xN−1, for a double sphere we get −1 if f =
πN−2,N−2 and for a triple sphere we get −1 if f = πN−3,N−3,N−3.

Note that the evaluation of spheres corresponds to the trace on the cohomology of the
Grassmannian H(Gi,N) for i = 1,2,3 in Equation (7).

Dot conversion and dot migration

Since KLu takes values in the tensor product of the Jacobi algebras of the potentials associated
to the facets of u, we see that for a simple facet we have xN = 0, for a double facet πi, j = 0
if i ≥ N− 1, and for a triple facet πp,q,r = 0 if p ≥ N− 2. We call these the dot conversion
relations:

i = 0 if i≥ N

(k,m) = 0 if k ≥ N−1

*
(p,q,r) = 0 if p≥ N−2

The dot conversion relations are related to the relations defining the cohomology ring of the
Grassmannian Gk,N for k = 1,2,3 in Equation (5).

19



To each edge along which two simple facets with variables x and y and one double facet
with the variables s and t are glued, we associated the matrix factorization MF1 with entries
x+ y− s and xy− t. Therefore Ext(MF1,MF1) is a module over R/(x+ y− s,xy− t). Hence,
we obtain the dot migration relations along this edge. Analogously, to the other type of singular
edge along which are glued a simple facet with variable x, a double facet with variable s and t,
and a triple facet with variables p, q and r, we associated the matrix factorization MF2. Note
that Ext(MF2,MF2) is a module over R/(x+ s− p,xs+ t− q,xt− r), which gives us the dot
migration relations along this edge:

= +

=

* = * + *

* = * + *

* = *

The dot migration relations are related to the relations in the cohomology ring of the partial flag
varieties Fl1,2,N and Fl2,3,N in Equation (8) under the projection maps in Equations (9) and (10).

The (1,1,2)-theta foam

Recall that W (s, t) is the polynomial such that W (x+ y,xy) = xN+1 + yN+1. More precisely, we
have

W (s, t) = ∑
i+2 j=N+1

ai jsit j,

with aN+1,0 = 1, aN+1−2 j, j =
(−1) j

j (N +1)
(N− j

j−1

)
, for 2≤ 2 j ≤ N +1, and ai j = 0 otherwise. In

particular aN−1,1 =−(N +1). We have

W ′1(s, t) = ∑
i+2 j=N+1

iai jsi−1t j,

W ′2(s, t) = ∑
i+2 j=N+1

jai jsit j−1.

By W ′1(s, t) and W ′2(s, t), we denote the partial derivatives of W (s, t) with respect to the first
and the second variable, respectively.
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Figure 9: A dotless (1,1,2)-theta foam

Consider the (1,1,2)-theta foam of Figure 9. According to the conventions of Subsection 5.2
we have variables x and y on the lower and upper simple facets respectively, and the variables s
and t on the double facet. To the singular circle we assign the matrix factorization

MF1 =

{
A′, x+ y− s
B′, xy− t

}
.

Recall that

A′ =
W (x+ y,xy)−W (s,xy)

x+ y− s
,(23)

B′ =
W (s,xy)−W (s, t)

xy− t
.(24)

Hence, the differential of this matrix factorization is given by the following 4 by 4 matrix:

D =

(
0 D1

D0 0

)
,

where

D0 =

(
A′, xy− t
B′, s− x− y

)
, D1 =

(
x+ y− s, xy− t

B′, −A′

)
.

Note that we are using a convention for tensor products of matrix factorizations that is different
from the one in [11]. The KL formula assigns the polynomial, KLΘ1(x,y,s, t), which is given
by the supertrace of the twisted differential of D

KLΘ1 = STr
(

∂xD∂yD
1
2
(∂sD∂tD−∂tD∂sD)

)
.

Straightforward computation gives

(25) KLΘ1 =−B′s(A
′
x−A′y)− (A′x +A′s)(B

′
y + xB′t)+(A′y +A′s)(B

′
x + yB′t),

where by A′i and B′i we have denoted the partial derivatives with respect to the variable i. From
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the definitions (23) and (24) we have

A′x−A′y = (y− x)
W ′2(x+ y,xy)−W ′2(s,xy)

x+ y− s
,

A′x +A′s =
W ′1(x+ y,xy)−W ′1(s,xy)+ y(W ′2(x+ y,xy)−W ′2(s,xy))

x+ y− s
,

A′y +A′s =
W ′1(x+ y,xy)−W ′1(s,xy)+ x(W ′2(x+ y,xy)−W ′2(s,xy))

x+ y− s
,

B′s =
W ′1(s,xy)−W ′1(s, t)

xy− t
,

B′x + yB′t = y
W ′2(s,xy)−W ′2(s, t)

xy− t
,

B′y + xB′t = x
W ′2(s,xy)−W ′2(s, t)

xy− t
.

After substituting this back into (25), we obtain

(26) KLΘ1 = (x− y)det
(

α β

γ δ

)
,

where

α =
W ′1(x+ y,xy)−W ′1(s,xy)

x+ y− s
,

β =
W ′2(x+ y,xy)−W ′2(s,xy)

x+ y− s
,

γ =
W ′1(s,xy)−W ′1(s, t)

xy− t
,

δ =
W ′2(s,xy)−W ′2(s, t)

xy− t
.

From this formula we see that KLΘ1 is homogeneous of degree 4N−6 (remember that degx =
degy = degs = 2 and deg t = 4).

Since the evaluation is in the product of the Grassmannians corresponding to the three disks,
i.e. in the ring Q[x]/(xN)×Q[y]/(yN)×Q[s, t]/(W ′1(s, t),W

′
2(s, t)), we have xN = yN = 0 =

W ′1(s, t) =W ′2(s, t). Also, we can express the monomials in s and t as linear combinations of
the Schur polynomials πk,l (writing s = π1,0 and t = π1,1)), and we have W ′1(s, t) = (N +1)πN,0
and W ′2(s, t) =−(N +1)πN−1,0. Hence, we can write KLΘ1 as

KLΘ1 = (x− y) ∑
N−2≥k≥l≥0

πk,l pkl(x,y),

with pkl being a polynomial in x and y. We want to determine which combinations of dots on
the simple facets give rise to non-zero evaluations, so our aim is to compute the coefficient of
πN−2,N−2 in the sum on the r.h.s. of the above equation (i.e. in the determinant in (26)). For
degree reasons, this coefficient is of degree zero, and so we shall only compute the parts of α ,
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β , γ and δ which do not contain x and y. We shall denote these parts by putting a bar over the
Greek letters. Thus we have

ᾱ = (N +1)sN−1,

β̄ =−(N +1)sN−2,

γ̄ = ∑
i+2 j=N+1, j≥1

iai jsi−1t j−1,

δ̄ = ∑
i+2 j=N+1, j≥2

jai jsit j−2.

Note that we have
t γ̄ +(N +1)sN =W ′1(s, t),

and
tδ̄ − (N +1)sN−1 =W ′2(s, t),

and so in the cohomology ring of the Grassmannian G2,N , we have t γ̄ = −(N + 1)sN and
tδ̄ = (N + 1)sN−1. On the other hand, by using s = π1,0 and t = π1,1, we obtain that in
H(G2,N)∼=Q[s, t]/(πN−1,0,πN,0), the following holds:

sN−2 = πN−2,0 + tq(s, t),

for some polynomial q, and so

sN−1 = sN−2s = πN−1,0 +πN−2,1 + stq(s, t) = t(πN−3,0 + sq(s, t)).

Thus, we have

det
(

ᾱ β̄

γ̄ δ̄

)
= (N +1)(πN−3,0 + sq(s, t))tδ̄ +(N +1)πN−2,0γ̄ +(N +1)q(s, t)t γ̄

= (N +1)2(πN−3,0 + sq(s, t))sN−1 +(N +1)πN−2,0γ̄− (N +1)2q(s, t)sN

= (N +1)2
πN−3,0sN−1 +(N +1)πN−2,0γ̄.(27)

Since
γ̄ = (N−1)aN−1,1sN−2 + tr(s, t)

holds in the cohomology ring of the Grassmannian G2,N for some polynomial r(s, t), we have

πN−2,0γ̄ = πN−2,0(N−1)aN−1,1sN−2 =−πN−2,0(N−1)(N +1)sN−2.

Also, we have that for every k ≥ 2,

sk = πk,0 +(k−1)πk−1,1 + t2w(s, t),

for some polynomial w. Replacing this in (27) and bearing in mind that πi, j = 0, for i≥ N−1,
we get

det
(

ᾱ β̄

γ̄ δ̄

)
= (N +1)2sN−2(πN−2,0 +πN−3,1− (N−1)πN−2,0)

= (N +1)2(πN−2,0 +(N−3)πN−3,1 +π2,2w(s, t))(πN−3,1− (N−2)πN−2,0)

=−(N +1)2
πN−2,N−2.
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Hence, we have

KLΘ1 = (N +1)2(y− x)πN−2,N−2 + ∑
N−2≥k≥l≥0

N−2>l

ci, j,k,lπk,lxiy j.

Recall that in the product of the Grassmannians corresponding to the three disks, i.e. in the ring
Q[x]/(xN)×Q[y]/(yN)×Q[s, t]/(πN−1,0,πN,0), we have

ε(xN−1yN−1
πN−2,N−2) =−1.

Therefore the only monomials f in x and y such that 〈KLΘ1 f 〉KL 6= 0 are f1 = xN−1yN−2 and
f2 = xN−2yN−1, and 〈KLΘ1 f1〉KL =−(N+1)2 and 〈KLΘ1 f2〉KL = (N+1)2. Thus, we have that
the value of the theta foam with unlabelled 2-facet is nonzero only when the upper 1-facet has
N−2 dots and the lower one has N−1 dots (and has the value (N +1)2) and when the upper
1-facet has N−1 dots and the lower one has N−2 dots (and has the value −(N +1)2). The
evaluation of this theta foam with other labellings can be obtained from the result above by dot
migration.

Up to normalization the KL evaluation of the (1,1,2)-theta foam corresponds to the trace on
the cohomology ring of the partial flag variety Fl1,2,N in Equation (8) given by ε(xN−2

1 xN−1
2 ) = 1,

and where x1 and x2 correspond to the dots in the upper and lower facet respectively.

The (1,2,3)-theta foam

For the theta foam in Figure 10 the method is the same as in the previous case, just the
computations are more complicated. In this case, we have one 1-facet, to which we associate the

∗

Figure 10: A dotless (1,2,3)-theta foam

variable x, one 2-facet, with variables s and t and the 3-facet with variables p, q and r. Recall that
the polynomial W (p,q,r) is such that W (a+b+ c,ab+bc+ac,abc) = aN+1 +bN+1 + cN+1.
We denote by W ′i (p,q,r), i = 1,2,3, the partial derivative of W with respect to i-th variable.
Also, let A, B and C be the polynomials given by

A =
W (x+ s,xs+ t,xt)−W (p,xs+ t,xt)

x+ s− p
,(28)

B =
W (p,xs+ t,xt)−W (p,q,xt)

xs+ t−q
,(29)

C =
W (p,q,xt)−W (p,q,r)

xt− r
.(30)

To the singular circle of this theta foam, we associated the matrix factorization (see Equa-
tions (14)-(17)):

MF2 =


A, x+ s− p
B, xs+ t−q
C, xt− r

 .
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The differential of this matrix factorization is the 8 by 8 matrix

D =

(
0 D1

D0 0

)
,

where

D0 =

(
d0 (xt− r) Id2

C Id2 −d1

)
, D1 =

(
d1 (xt− r) Id2

C Id2 −d0

)
.

Here d0 and d1 are the differentials of the matrix factorization{
A, x+ s− p
B, xs+ t−q

}
,

i.e.

d0 =

(
A xs+ t−q
B p− x− s

)
, d1 =

(
x+ s− p xs+ t−q

B −A

)
.

The KL formula assigns to this theta foam the polynomial KLΘ2(x,s, t, p,q,r) given as the
supertrace of the twisted differential of D, i.e.

KLΘ2 = STr
(

∂xD
1
2
(∂sD∂tD−∂tD∂sD)∂3Dˆ

)
,

where

∂3Dˆ=
1
3!

(∂pD∂qD∂rD−∂pD∂rD∂qD+∂qD∂rD∂pD

−∂qD∂pD∂rD+∂rD∂pD∂qD−∂rD∂qD∂pD) .

After straightforward computations and some grouping, we obtain

KLΘ2 = (Ap +As)
[
(Bt +Bq)(Cx + tCr)− (Bx + sBq)(Ct + xCr)− (Bx− sBt)Cq

]
+ (Ap +Ax)

[
(Bs + xBq)(Ct + xCr)+(Bs− xBt)Cq

]
+ (Ax−As)

[
Bp(Ct + xCr)− (Bt +Bq)Cp +BpCq

]
− At

[
((Bs + xBq)+Bp)(Cx + tCr)+((Bs + xBq)

− (Bx + sBq))Cp +((sBs− xBx)+(s− x)Bp)Cq
]
.

In order to simplify this expression, we introduce the following polynomials

a1i =
W ′i (x+ s,xs+ t,xt)−W ′i (p,xs+ t,xt)

x+ s− p
, i = 1,2,3,

a2i =
W ′i (p,xs+ t,xt)−W ′i (p,q,xt)

xs+ t−q
, i = 1,2,3,

a3i =
W ′i (p,q,xt)−W ′i (p,q,r)

xt− r
, i = 1,2,3.

Then from (28)-(30), we have

Ax +Ap = a11 + sa12 + ta13, Ap +As = a11 + xa12,

Ax−As = (s− x)a12 + ta13, At = a12 + xa13,

Bp = a21, Bs− xBt =−x2a23,
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sBs− xBx = xta23, Bx− sBt = (t− sx)a23,

Bt +Bq = a22 + xa23, Bx + sBq = sa22 + ta23,Bs + xBq = xa22,

Cp = a31, Cq = a32,

Cx + tCr = ta33, Ct + xCr = xa33.

Using this KLΘ2 becomes

(31) KLΘ2 = (t− sx+ x2)det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Now the last part follows analogously as in the case of the (1,1,2)-theta foam. For degree
reasons the coefficient of πN−3,N−3,N−3 in the latter determinant is of degree zero, and one
can obtain that it is equal to (N + 1)3. Thus, the coefficient of πN−3,N−3,N−3 in KLΘ2 is
(N + 1)3(t− sx+ x2) from which we obtain the value of the theta foam when the 3-facet is
undotted. For example, we see that

ε
(
KLΘ2π1,1(s, t)N−3xN−1)= (N +1)3.

It is then easy to obtain the values when the 3-facet is labelled by πN−3,N−3,N−3(p,q,r) using
dot migration. The example above implies that

ε
(
KLΘ2πN−3,N−3,N−3(p,q,r)x2)= (N +1)3.

Up to normalization the KL evaluation of the (1,2,3)-theta foam corresponds to the
trace on the cohomology ring of the partial flag variety Fl2,3,N in Equation (8) given by
ε(x2πN−3,N−3,N−3) = 1, where πN−3,N−3,N−3 correspond to a linear combination of dots in the
triple facet and x corresponds to a dot in the upper simple facet (see Section 3).

For N = 3, using the explicit formula for W (p,q,r) we see that the determinant (31) is zero,
which means that the (1,2,3)-theta foams would evaluate to zero, independently of the dots
they may have. That is why we restrict the construction in this notes to the case of N ≥ 4.

5.5 Normalization
It will be convenient to normalize the KL evaluation. Let u be a closed foam with graph Γ.
Note that Γ has two types of edges: the ones incident to two simple facets and one double facet
and the ones incident to one simple, one double and one triple facet. Edges of the same type
form cycles in Γ. Let e112(u) be the total number of cycles in Γ with edges of the first type and
e123(u) the total number of cycles with edges of the second type. We normalize the KL formula
by dividing KLu by

(N +1)2e112+3e123 .

In the sequel we only use this normalized KL evaluation keeping the same notation 〈u〉KL. Note
that with this normalization the KL-evaluation in the examples above always gives 0,−1 or 1.
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5.6 The glueing property
We now consider the glueing property of the KL formula, which is an important property of
TQFT’s.

Suppose that u is a foam with boundary Γ. We decorate the facets, singular arcs and singular
vertices of u as in Subsection 5.2. Recall that the orientations of the singular arcs of u induce
an orientation of Γ (see Figure 4). To each vertex ν of Γ we associate the matrix factorization
which is the matrix factorization associated to the singular arc of u that is bounded by ν . To
each circle in Γ we associate the Jacobi algebra of the corresponding facet in Z/2Z-degree i
(mod 2), where i = 1,2,3. Then define the matrix factorization MΓ as the tensor product of all
the matrix factorizations of its vertices as given above and Jacobi algebras Ji in Z/2Z-degree i
(mod 2) for all (if any) circles in Γ. The tensor product is taken over suitable rings so that MΓ is
a free module over R of finite rank, where R is the polynomial ring with rational coefficients in
the variables of the facets of u that are bounded by Γ. The factorization MΓ has potential zero,
since for every edge e of Γ the individual potential We appears twice in WΓ (one for each vertex
bounding e) with opposite signs. The homology

(32) HMF(MΓ)∼= Ext(R,MΓ)

is finite-dimensional and coincides with the one in [9] after using Lemma 2.1 to exclude the
variables associated to all double and triple edges of Γ.

Let u be an open foam whose boundary consists of two parts Γ1 and Γ2, and denote by
M1 and M2 the matrix factorizations associated to Γ1 and Γ2 respectively. We say that F is an
interior facet of u if ∂F ∩∂u = /0. Restricting KLu to the interior facets of u and doing the same
to ε in Equation (11) we see that the KL formula associates to u an element of Ext(M1,M2).

If u′ is another foam whose boundary consists of Γ2 and Γ3, then it corresponds to an
element of Ext(M2,M3), while the element associated to the foam uu′, which is obtained by
glueing the foams u and u′ along Γ2, is equal to the composite of the elements associated to u
and u′.

On the other hand, we can also see u as a morphism from the empty web to its boundary
Γ = Γ2tΓ∗1, where Γ∗1 is equal to Γ1 but with the opposite orientation. In that case, the KL
formula associates to it an element from

Ext
(
R,MΓ2⊗

(
MΓ1

)
•
)∼= HMF(Γ).

Both ways of applying the KL formula are equivalent up to a global q-shift by corollary 6 in [9].
In the case of a foam u with corners, i.e. a foam with two horizontal boundary components

Γ1 and Γ2 which are connected by vertical edges, one has to “pinch” the vertical edges. This
way one can consider u to be a morphism from the empty set to Γ2 ∪ν Γ∗1, where ∪ν means
that the webs are glued at their vertices. The same observations as above hold, except that
MΓ2⊗

(
MΓ1

)
• is now the tensor product over the polynomial ring in the variables associated to

the horizontal edges with corners.
The KL formula also has a general property that will be useful later. The KL formula defines

a duality pairing between HomFoamN ( /0,Γ) and HomFoamN (Γ, /0) as

(33) (a,a′) = 〈a′a〉KL,
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for a ∈ HomFoamN ( /0,Γ) and a′ ∈ HomFoamN (Γ, /0). From the duality pairing it follows that

HomFoamN ( /0,Γ∗) = HomFoamN (Γ, /0).

The duality pairing also defines a canonical element

ψΓ,Γ∗ ∈ HomFoamN ( /0,Γ∗)⊗HomFoamN ( /0,Γ)

by
(ψΓ,Γ∗ ,a⊗a′) = (a,a′)

Introducing a basis {ai} of HomFoamN ( /0,Γ) and its dual basis {a∗j} of HomFoamN (Γ, /0) we have

ψΓ,Γ∗ = ∑
j

a j⊗a∗j .

Suppose that a closed foam u contains two points p1 and p2 such that intersecting u with
disjoint spheres centered in p1 and p2 result in two webs Γ1 and Γ2 and that Γ2 = Γ∗1. If we
remove the parts inside those spheres from u and glue the boundary components Γ1 and Γ2 onto
each other we obtain a new closed foam u′ and the KL evaluations of u and u′ are related by
(see [7])

(34) 〈u′〉KL = 〈ψΓ1,Γ
∗
1
u〉KL = ∑

j
〈a∗jua j〉KL.

6 Odds and ends

6.1 Size of the kernel of the KL evaluation
The set of relations between foams given in [17] and [11] is clearly smaller that the kernel of
the KL evaluation. Characterizing the kernel of the KL evaluation is interesting for several
reasons. Having a finite set of relations generating the kernel would establish that the link
homology of [11, 17] is purely combinatorial. This problem is related to the problem of finding
a presentation by generators and relations of the category of tensor products of exterior powers
of the fundamental representation of quantum sl(N) and intertwiner maps. (a complete set of
relations is conjectured in [14]). A solution of one of these problems could help solving the
other.

6.2 Integrality of the KL evaluation
In all the examples above the Kapustin-Li evaluation always returns an integer. This motivates
the following conjecture.

Conjecture 1. For a closed foam u we have ε
(
〈u〉KL

)
∈ Z.

Being true, this conjecture would imply that the link homology using foams is integral
that is, all the sl(N)-homology groups would be modules over Z instead of Q-vector spaces.
Integrality of the sl(N)-link homology was conjectured in [17] where is was shown that being
integral it would have torsion of order of at least N.
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6.3 Representation theoretic interpretation
In [13] V. Mazorchuk and C. Stroppel gave a construction of the sl(N)-link homology using
representation theory. In their interpretation a web corresponds to a composite of certain
projective functors between parabolic singular blocks of category O and a foam to a natural
transformation between projective functors. A closed foam u yields an endomorphism of the
functor associated to the empty web and therefore an element of the ground field. Up to a
normalization we expect these evaluations to be equal.

More recently C. Blanchet [1] informed me of another method to evaluate closed foams.
His method consists of realizing the singular vertex as a certain 4-step partial flag manifold and
the evaluation of a closed foam is obtained by taking a Frobenius trace in some configuration
space, in the same spirit as the ε we used in the Kapustin-Li evaluation. This evaluation is
defined over the integers. We also expect this evaluation to equal ε

(
〈u〉KL

)
.

Conjecture 2. The Mazorchuk-Stroppel and the Blanchet evaluations of a closed foam u are
both equal to ε

(
〈u〉KL

)
.
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