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NOT EVEN KHOVANOV HOMOLOGY

PEDRO VAZ

We construct a supercategory that can be seen as a skew version of (thick-
ened) KLR algebras for the type A quiver. We use our supercategory to
construct homological invariants of tangles and show that for every link
our invariant gives a link homology theory supercategorifying the Jones
polynomial. Our homology is distinct from even Khovanov homology and
we present evidence supporting the conjecture that it is isomorphic to odd
Khovanov homology. We also show that cyclotomic quotients of our super-
category give supercategorifications of irreducible finite-dimensional repre-
sentations of gln of level 2.

1. Introduction

After the appearance of odd Khovanov homology in [Ozsváth et al. 2013] there has
been a certain interest in odd categorified structures and supercategorification (see,
for example, [Lauda and Egilmez 2018; Ellis et al. 2014; Ellis and Lauda 2016;
Ellis and Qi 2016; Kang et al. 2013; 2014; Lauda and Russell 2014; Naisse and
Vaz 2018]). In contrast to (even) Khovanov homology, odd Khovanov homology
has an anticommutative feature. Both theories categorify the Jones polynomial and
both agree modulo 2, but they are intrinsically distinct (see [Shumakovitch 2011]
for a study of the properties of odd Khovanov homology and a comparison with
even Khovanov homology).

A construction of odd Khovanov homology using higher representation theory is
still missing. In the case of even Khovanov homology this question was solved in
[Webster 2017] using categorification of tensor products and the WRT invariant
and in [Lauda et al. 2015] using categorical Howe duality.

In this paper we construct a supercategorification of the Jones invariant for tangles
using higher representation theory. In particular, we define a supercategory in the
spirit of Khovanov and Lauda’s diagrammatics that can be seen as a superalgebra
version of KLR algebras [Khovanov and Lauda 2009; Rouquier 2008] of level 2
for the An quiver. We present our supercategory in the form of a graphical calculus
reminiscent of the thick calculus for categorified sl2 [Khovanov et al. 2012] and sln
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[Stošić 2019] (see also [Ellis et al. 2014] for a thick calculus for the odd nilHecke
algebra). Our supercategory admits cyclotomic quotients that supercategorify
irreducibles of Uq(glk) of level 2.

We use cyclotomic quotients of our supercategories as input to Tubbenhauer’s
approach [2014] to Khovanov–Rozansky homologies. It is based on q-Howe duality
and uses only the lower half of the quantum group Uq(glk) to produce an invariant
of tangles. In our case we obtain an invariant that shares several similarities with
odd Khovanov homology when restricted to links. For example, it decomposes as
a direct sum of two copies of a reduced homology and it produces chronological
Frobenius algebras, analogous to the ones that can be extracted from [Ozsváth et al.
2013] (see [Putyra 2014a] for explanations). Both theories coincide over Z/2Z. We
also give computational evidence that our invariant is distinct from even Khovanov
homology and that support the conjecture that for every link L it coincides with the
odd Khovanov homology of L .

2. The supercategory R

2A. The supercategory R(ν). We follow [Brundan and Ellis 2017] regarding
supercategories. For objects X, Y in a supercategory C we write Hom0

C(X, Y ) (resp.
Hom1

C(X, Y )) for its space of even (resp. odd) morphisms and we write p( f ) for
the parity of f ∈Homi

C(X, Y ). If C has additionally a Z-grading we denote by qs X
a grading shift up of X by s units and we consider only morphisms that preserve the
Z-grading. In this case we write HomC(X, Y )=

⊕
s∈Z HomC(X, qsY ). We follow

the grading conventions in [Lauda et al. 2015], which are aligned with the tradition
in link homology. This means that a map of degree s from X to Y yields a degree
zero map from X to qsY .

Fix a unital ring k. Let α1, . . . , αn denote the simple roots of sln and 〈−, −〉
their inner product: 〈αi , αi 〉 = 2, 〈αi , αi±1〉 = −1, and 〈αi , α j 〉 = 0 otherwise. Fix
also a choice of scalars Q consisting of ri , ti j ∈k× for all i, j ∈ I := {1, . . . , n}, such
that ti i = 1 and ti j = t j i when |i− j | 6= 1. Let also pi j be defined by pi i = pi+1,i = 1
and otherwise pi j = 0.

For each ν =
∑

i∈I νi .i ∈N0[I ], we consider the set of (colored) sequences of ν,

CSeq(ν) :=
{
i (ε1)
1 · · · i (εr )

r | εs ∈ {1, 2},
∑
s
εsis = ν

}
.

By convention we write simply is for i (1)s . Two sequences i ∈ CSeq(ν) and j ∈
CSeq(ν ′) can be concatenated into a sequence i j in CSeq(ν+ ν ′).

Definition 2.1. The supercategory R(ν) is defined by the following data:

(a) The objects of R(ν) are finite formal sums of grading shifts of elements of
CSeq(ν).
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(b) The morphism space HomR(ν)(i, j) from i to j is the Z-graded k-supervector
space generated by vertical juxtaposition and horizontal juxtaposition of the
diagrams below. Composition consists of vertical concatenation of diagrams.
By convention we read diagrams from bottom to top and so, ab consists of
stacking the diagram for a atop the one for b. Diagrams are equipped with a
Morse function that keeps trace of the relative height of the generators. We
consider isotopy classes of such diagrams that do not change the relative height
of generators.

Generators.

• Simple and double identities

i

∈ Hom0
R(ν)(i, i),

i

∈ Hom0
R(ν)(i

(2), i (2)),

• dots

i

∈ Hom1
R(ν)(i, q2i),

• splitters

i

∈ Hom1
R(ν)(i

(2), q−1i i),
i

∈ Hom0
R(ν)(i i, q−1i (2)),

• and crossings

i j

∈ Hom
pi j
R(ν)(i j, q−〈αi ,α j 〉 j i),

i j

∈ Hom0
R(ν)(i

(2) j, q−2〈αi ,α j 〉 j i (2)),

i j

∈ Hom0
R(ν)(i j (2), q−2〈αi ,α j 〉j (2)i),

i j

∈ Hom0
R(ν)

(
i (2)j (2), q−4〈αi ,α j 〉j (2)i (2)

)
.

Relations. Morphisms are subject to the local relations (1) to (14) below.
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• For all f, g:

(1)
f

i1

· · ·
ik

· · ·

g

i1

· · ·
ik

· · ·

= f

i1

· · ·

ik

· · ·

g

i1

· · ·

ik

· · ·

= (−1)p( f )p(g)

f

i1

· · ·
ik

· · ·

g

i1

· · ·
ik

· · ·

• For all i, j, k ∈ I :

(2)

i

= 0.

(3)

i j

=



0 if i = j,

ti j

i j

if |i − j |> 1,

ti j

i j

+ t j i

i j

if |i − j | = 1,

i j

= (−1)pi j

i j i j

= (−1)pi j

i j

for i 6= j ,(4)

ti,i+1

i + 1 i

+ ti+1,i

i + 1 i

= 0(5)

i i

+

i i

= ri

i i

=

i i

+

i i

(6)
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(7)

i kj

= (−1)p jk pik+p jk pi j+pik pi j

i kj

unless i = k and |i − j | = 1,

(8)

i ij

+

i ij

= ri ti j

i j i

if |i− j |=1,

(9)

j j

=

j j

(10)

j

=

j

=

j j

= 0

(11)

j

= 0=

jj

kj

=

kj kj

=

kj

(12)

k j

=

k j k j

=

k j

(13)
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kj

=

kj kj

=

kj

(14)

This ends the definition of R(ν).

In Section 2E below we show that R(ν) acts on a supercommutative ring.

Definition 2.2. We define the monoidal supercategory

R=
⊕

ν∈N0[I ]

R(ν),

the monoidal structure given by horizontal composition of diagrams.

2B. Further relations in R(ν). We have several consequences of the defining
relations.

Lemma 2.3. For all i ∈ I ,

i i

−

i i

= 0,(15)

i i i

= 0,(16)

ii

=

i i

=

ii

= 0.(17)

Proof. By (2) and (6),

r−1
i

i i

− r−1
i

i i

=

i i

−

i i

= 0,

which proves (15).
Also,

i i i

=

i i i

+

i i i

=

i i i

+

i i i
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=

i i i

+

i i i

= 0,

and this proves (16). Relations (17) are an easy consequence of (10) together
with (16). �

Lemma 2.4. For all i, j ∈ I with |i − j | = 1,

ii j

=

ii j

Proof. Start from the equality

ji i

=

ji i

Sliding up the dot on the left-hand side using (4) and (1), followed by (8) to pass
the i i-crossing to the left, and simplifying using (3) and (10) gives

−ri ti j t j i

ii j

Proceeding similarly on the right-hand side, but sliding the i i-crossing to the right
gives

−ri ti j t j i

ii j

and the claim follows. �

Lemma 2.5. For all i, j ∈ I with |i − j | = 1,

i j

= 0.
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Proof. We compute:

i j

(10)
=

i j

(14)
=

i j

(13)
=

i j

which is zero if i = j ± 1 by (4), (5) and (2). �

The following are easy consequences of the defining relations of R(ν).

Lemma 2.6. For all i , j ∈ I ,

i j

=

i j i j

=

i j

Lemma 2.7. For all i , j ∈ I ,

i j

=


t2
i j

i j

if |i − j |> 1,

0 otherwise,

i j

=


t2
i j

i j

if |i − j |> 1,

0 otherwise,

i j

=


t4
i j

i j

if |i − j |> 1,

0 otherwise.
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Lemma 2.8. If |i − j | = 1 and i = k,

i kj

−

i kj

= ri t2
i j

i j k

− ri t2
i j

i j k

If i 6= j 6= k and at least one of the strands is double, then the right hand side is
zero.

Let

Seq(ν) :=
{
i (ε1)
1 · · · i (εr )

r ∈ CSeq(ν) | εs = 1
}
⊂ CSeq(ν).

The superalgebra

R(ν)=
⊕

i, j∈Seq(ν)

HomR(ν)(i, j),

is the subsuperalgebra of the Hom-superalgebra of R(ν) consisting of all diagrams
having only simple strands. If we interpret R(ν) as a superalgebra version of a
level 2 cyclotomic KLR algebra for sln then R(ν) can be seen as version of the
thick calculus [Khovanov et al. 2012; Stošić 2019] for this superalgebra. It is not
hard to see that both the center and the supercenter of R(ν) are zero.

2C. Cyclotomic quotients. Fix a sln-weight 3 and denote by R3(ν), R3(ν) and
R3(ν) the cyclotomic quotients of R(ν), R(ν) and R(ν). The following is imme-
diate.

Lemma 2.9. If 3 is of level 2 then the algebras

R3(ν)⊗Z (Z/2Z) and R3(ν)⊗Z (Z/2Z)

are isomorphic (after collapsing the Z/2Z grading of R3(ν)).

We depict a morphism of Rλ(ν) by decorating the rightmost region of each
diagram D with the weight 3. This defines weights for all regions of D.

The supercategory R3
:=
⊕

ν∈N0[I ]R
3(ν) is not monoidal anymore, but it is a

(left) module category over R, where R acts by adding diagrams of R to the left of
diagrams from R3. This is expressed by a bifunctor

(18) 8 : R×Rλ
→Rλ.
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2D. A super 2-category. There is a super 2-category around R(ν), paralleling the
case of Khovanov–Lauda and Rouquier. An element i = i (ε1)

1 · · · i (εr )
r in CSeq(ν)

corresponds to a root αi :=
∑

s εsαs . Let

3(n, d) :=
{
µ ∈ {0, 1, 2}n | µ1+ · · ·+µn = d

}
.

Define R(n, d) as the super 2-category with objects the elements of 3(n, d)
and with morphism supercategories HOMR(n,d)(µ,µ

′) the various R(ν). In other
words, a 1-morphisms µ→ µ′ is a sequence i such that µ′ − µ = αi and the
2-morphism space i→ j is HomR(ν)(i, j).

Similarly we define the super 2-category R3(n, d) by using the cyclotomic
quotient with respect with the integral dominant weight 3. Both super 2-categories
R3(n, d) have diagrammatic presentations with regions labeled by objects 3. The
2-morphisms in Rλ(n, d) are presented as a collection of 2-morphisms in R(n, d)
with rightmost region decorated with 3, subjected to the same relations together
with the cyclotomic condition. This defines a label for every region of a diagram of
R3(n, d).

For later use, we denote

Fiλ := F
i
(ε1)
1 ···i (εr )r

λ := F (ε1)
i1
· · · F (εr )

ir
λ

the 1-morphisms of R3(n, d) and, by abuse of notation, the objects of R3.

2E. Action on a supercommutative ring. We now construct an action of R(ν) on
exterior spaces.

2E1. Demazure operators on an exterior algebra. Let V =
∧
(y1, . . . , yd) be the

exterior algebra in d variables. This algebra is naturally graded by word length.
Denote by |z| the degree of the homogeneous element z.

The symmetric group Sd acts on V by the permutation action,

wyi = yw(i)
for all w ∈Sd .

Define operators ∂i for i = 1, . . . , d − 1 on V by the following rules:

∂i (yk)=

{
1 i = k, k+ 1,
0 otherwise,

and ∂i ( f g)= ∂i ( f )g+ (−1)| f | f ∂i (g),

for all f , g ∈ V such that f g 6= 0.
The following can be checked through a simple computation.

Lemma 2.10. The operators ∂i satisfy the relations ∂2
i = 0, ∂i∂ j + ∂ j∂i = 0 if

|i − j |> 1, and ∂i∂i+1∂i = ∂i+1∂i∂i+1.
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2E2. An action of R(ν) on supercommutative rings. For i ∈ CSeq(ν) let

P i =
∧(

x1,1, x1,ε1, . . . , xd,1, xd,εd

)
i,

be an exterior algebra in
∑

i νi generators, and set

P(ν)=
⊕

i∈CSeq(ν)

P i .

We extend the action of Sd from V to P(ν) by declaring that

wxr,1 = xw(r),1, wxr,εr = xw(r),εr+1,

or w ∈Sd .
Below we denote by ∂u,z the Demazure operator with respect to the variables u

and z.

To the object i ∈ R(ν) we associate the idempotent i ∈ P i . The defining
generators of R(ν) act on P as follows. A diagram D acts as zero on P i unless
the sequence of labels in the bottom of D is i .
• Dots

ir

: pi 7→ xr,1 pi,

• Splitters

(19)
ir

: pi 7→ ∂xr,1,xr,2(p)i,
ir

: pi 7→ xr,1∂xr,1,xr,2(p)i,

• Crossings

ir ir+1

: pi 7→


rir ∂xr,1,xr+1,1(p)i if ir = ir+1,

(tir+1ir xr,1+ tir ir+1 xr+1,1)sr (pi) if ir = ir+1+ 1,

sr (pi) else,

ir ir+1

: pi 7→

{
0 if ir = ir+1, or is = is+1+ 1,

sr (pi) else,
(20)

ir ir+1

: pi 7→


0 if ir = ir+1,

f2,1(xr,1, xr,2, xr+1,1)sr (pi) if is = is+1+ 1,

sr (pi) else,

(21)
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ir ir+1

: pi 7→


0 if ir = ir+1,

f1,2(xr,1, xr+1,1, xr+1,2)sr (pi) if is = is+1+ 1,

sr (pi) else,

(22)

where

f2,1(xr,1, xr,2, xr+1,1)

= tir ir+1 tir+1ir xr,1xr+1,1+ tir ir+1 tir+1ir xr,1xr,2+ t2
ir+1ir

xr,2xr+1,1.

f1,2(xr,1, xr+1,1, xr+1,2)

=−t2
ir ir+1

xr,1xr,2+ tir ir+1 tir+1ir xr,2xr+1,1− tir+1ir tir+1ir xr,1xr+1,1.

Proposition 2.11. The assignment above defines an action of R(ν) on P(ν).

Proof. By a long and rather tedious computation one can check that the operators
above satisfy the defining relations of R(ν).

The relations involving the action of the generators of R(ν) are easy to check by
direct computation. For example, for ν = 2i + j , with j = i + 1 we have

i ij

( f )= (ti j x1+ t j i x2)s1ri∂2s1( f ),

and

i ij

( f )= s2ri∂1(ti j x2+t j i x3)s2( f )=ri ti j f−(ti j x1+t j i x2)s1ri∂2s1( f ),

and so, for any f (x1, x2, x3) ∈ Pi ji ,

i ij

( f ) +

i ij

( f ) = ri ti j

i j i

( f ).
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Setting as in [Khovanov et al. 2012],

i

:=

i i i

:=

i i i i

:=

i i

and

i j

:=

i j ji

:=

ji ji

:=

i j

then it follows that the action of the generators of R(ν) on P(ν) is given by the
operators (19), (20), (21) and (22) and satisfy the defining relations of R(ν). �

3. A topological invariant

In [Tubbenhauer 2014] q-skew Howe duality is used to show how to write as a web
in a form that uses only the lower part of Uq(glk). In this language, the formula
for the sl2-commutator becomes one of Lusztig’s higher quantum Serre relations
[1993, §7]. It is also proved in [Tubbenhauer 2014] that this results in a well
defined evaluation of closed webs allowing to write any link diagram as a linear
combination of words in the various Fi in U− :=U−q (glk).

This allows a categorification of webs using only (cyclotomic) KLR algebras
[Khovanov and Lauda 2009; Rouquier 2008] instead of the whole 2-quantum group
U(glk) [Khovanov and Lauda 2010; Rouquier 2008]. In this context, the unit and
counit maps of the several adjunctions in U(glk) that are used as differentials in the
Khovanov–Rozansky chain complex can be written as composition with elements
of the KLR algebra. Taking cyclotomic KLR algebras of level 2 gives Khovanov
homology. The approach in [Tubbenhauer 2014] is easily adapted to tangles, which
we do in this section for level 2 in the context of the supercategories introduced in
Section 2.

3A. Supercategorification of gl2-webs and flat tangles. Our webs have strands
labeled from {0, 1, 2} which we depict as “invisible,” “simple,” and “double,” as in
the example below. All the strands point either up or to the right and sometimes we
omit the orientations in the pictures.

1

0

2

1

0

2
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For λ = (λ1, . . . , λk) ∈ {0, 1, 2}k and ε ∈ {0, 1} with |λ| = 2` + ε, we put
3= (2)`ε = (2, . . . , 2, ε, 0, . . . , 0) and we define

W(λ)= HOMR3(k,|λ|)(3, λ).

Let W be a gl2-web with all ladders pointing to the right. Suppose that W has the
bottom boundary labeled λ and the top boundary labeled µ, with λ,µ ∈ {0, 1, 2}k

and |λ| = |µ|. We write W as a word in the Fi in U−q (glk) applied to a vector vλ of
glk-weight λ.

W

λ1

· · ·

λk

µ1

· · ·

µk

= Fi1 · · · Fir (vλ).

This gives a 1-morphism F(W ) in R(k, |λ|). Composition of 1-morphisms in
R(k, |λ|) defines a superfunctor

F(W ) : W(λ)→W(µ).

If λ is dominant and µ is antidominant then F(W ) is a superfunctor from k-smod
to k-smod that is, a direct sum of grading shifts of the identity superfunctor. In this
case, there is a canonical 1-morphism Fcan(W ) in HomR3(k,|λ|)(λ, µ)

(23) Fcan = F(k−`−1)(2)···(1)(2) · · · F(k−3)(2)···(`−1)(2) F(k−2)(2)···`(2) F(k−1)(ε)···(`+1)(ε)(2)
`ε,

which in terms of webs takes the form of the following example:

· · ·

2 2 1 0 0 0

· · ·

We have that F(W )=HomRλ(k,|λ|)(λ, µ) is isomorphic to the graded k-supervector
space HomR3(Fcan(W ), F(W )).

3B. The chain complex. As explained in [Tubbenhauer 2014] any oriented tangle
diagram T can be written in the form of a web WT with all horizontal strands
pointing to the right. In this case we say that T is in F-form.
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Example 3.1. For the Hopf link we have the following web diagram.

2 2 0 0

Suppose the bottom boundary of WT is (λ1, . . . , λk) and the top boundary is
(µ1, . . . , µk). Let Kom(λ, µ) be the category of complexes of

HOMR(k,|λ|)(W(λ),W(µ))

generated monoidally by tensor products of complexes of length 2, and Kom/h(λ, µ)

its homotopy category (these are not supercategories). The usual constructions with
chain complexes (homomorphisms, homotopies, cones, etc.) work in the same way
as with nonsupercategories. Since we are in a supercategory, some signs have to
be introduced (further details will appear in a follow-up paper). To each tangle in
F-form as above we associate an object in Kom/h(λ, µ) as follows.

We first chop the diagram vertically in such way that each slice contains either
a web without crossings, or a single crossing together with vertical pieces (as
in Example 3.1). Each slice then gives either a superfunctor or a complex of
superfunctors, as explained below. By composition we get a complex F(WT ) of
superfunctors from W(λ) to W(µ).

3B1. Basic tangles.

• If T is a flat tangle, then we’re done by Section 3A.

• To the positive crossing we associate the chain complex

(24) 7→ q−1F


1

0

1

1

0

1


1 2
−−−−−−−→ F


1

0

1

1

0

1


with the leftmost term in homological degree zero. Algebraically this can be
written

β+ 7→ q−1 F1 F2(1, 1, 0)
τ1
−−→ F2 F1(1, 1, 0),

where τ is the diagram above.
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• To the negative crossing we associate the chain complex

(25) 7→ F


1

0

1

1

0

1


2 1
−−−−−−−→ qF


1

0

1

1

0

1


with the rightmost term in homological degree zero. Algebraically

β− 7→ F2 F1(1, 1, 0)
τ1
−−→ q F1 F2(1, 1, 0).

Remark 3.2. Caution should be taken when applying (24) and (25): when passing
from a tangle diagram to it’s F-form some crossings may change from positive to
negative and vice versa. To have an invariant of all tangles some grading shifts have
to be introduced locally whenever this occurs. We shift (25) by −1 in the q-grading
and 1 in the homological grading when it comes from a positive crossing and the
opposite whenever (25) comes from a positive crossing.

3B2. The normalized complex. Let n± be the number of positive/negative crossings
in WT and let w= n+−n− be the writhe of WT . We define the normalized complex

(26) F(WT ) := q2wF(WT ).

3C. Topological invariance.

Theorem 3.3. For every tangle diagram T the homotopy type of F(WT ) is invariant
under the Reidemeister moves.

Theorem 3.4. For every link L the homology of F(L) is a Z-graded supermodule
over Z whose graded Euler characteristic equals the Jones polynomial.

Proof of Theorem 3.3. The following is immediate.

Lemma 3.5. For β± a positive/negative crossing let Wt and Wb be the following
tangles in F-form:

Wt =

β±

1 1 0

0 1 1

0

0

and Wb =

β±

110

011

0

0
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Then the complexes F(Wt) and F(Wb) are isomorphic.

Lemma 3.6 (Reidemeister I). Consider diagrams D+1 and D0 that differ as below.

D+1 =

1 2 0

D0 =

1 2 0

Then F(D+1 ) and F(D0) are isomorphic in Kom/h
(
(1, 2, 0), (0, 1, 2)

)
.

Proof. We have

F(D+1 )= q−1 F1 F2 F2(1, 2, 0) F1 F1 F2(1, 2, 0).
1 2 2

The first term is isomorphic to F1 F (2)2 (1, 2, 0)⊕q−2 F1 F (2)2 (1, 2, 0) via the map

F1 F (2)
2 (1,2,0)⊕q−2 F1 F (2)

2 (1,2,0) q−1 F1 F2
2 (1,2,0),

'

(
1 2

,

1 2

)

while for the second term there is an isomorphism

F2 F1 F2(1, 2, 0) F1 F (2)2 (1, 2, 0),
'

12 2

so that F(D+1 ) is isomorphic to the complex

 F1 F (2)2 (1, 2, 0)

q−2 F1 F (2)2 (1, 2, 0)

 F1 F (2)2 (1, 2, 0).

(
t2,1

1 2

, t1,2
1 2

)
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By Gaussian elimination one gets that the complex F(D+1 ) is homotopy equivalent
to the one term complex q−2 F1 F (2)2 (1, 2, 0) concentrated in homological degree
zero, which after normalization is F(D0). �

The other types of Reidemeister I move can be verified similarly. For example,
replacing the positive crossing by a negative crossing in Lemma 3.6 and using
the inverses of the various isomorphisms above results in a complex isomorphic
to F(D−1 ) that is homotopy equivalent to the 1-term complex q2 F1 F (2)2 (1, 2, 0)
concentrated in homological degree zero.

Lemma 3.7 (Reidemeister IIa). Consider diagrams D1 and D0 that differ as below.

D1 =

1 1 0 0

D0 =

1 1 0 0

Then F(D1) and F(D0) are isomorphic in Kom/h
(
(1, 1, 0, 0), (0, 0, 1, 1)

)
.

Proof. In the following we write µ instead of (1, 1, 0, 0). The complex F(D1) is

q−1 F3 F2 F1 F2µ

F3 F2 F2 F1µ

F2 F3 F1 F2µ

q F2 F3 F2 F1µ,
⊕

3 2 1 2

−

3 2 2 1

3 2 1 2 2 3 1 2

From the isomorphisms

F3 F2 F1 F2µ F3 F (2)2 F1µ F3 F2 F1 F2µ,
' '

1 223 123
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F2 F3 F2 F1µ F3 F (2)2 F1µ F2 F3 F2 F1µ,
' '

32 2 1 3 2 1

and

F3 F2 F2 F1µ

q F3 F (2)2 F1µ

q−1 F3 F (2)2 F1µ

F3 F2 F2 F1µ,
⊕

1 2 2 3

1 2 2 3

1 2 3

1 2 3

and simplifying the maps using the relations in R(ν) one gets that F(D1) is isomor-
phic to the complex

q−1 F3 F (2)2 F1µ

q F3 F (2)2 F1µ⊕
q−1 F3 F (2)2 F1µ⊕

F3 F (2)2 F1µ

q F3 F (2)2 F1µ,

t12

13 2

13 2

t21 Id

−t32

13 2

−t23 Id

132 2

By Gaussian elimination of the acyclic two-term complexes

q−1 F3 F (2)2 F1µ
t21 Id
−−→ q−1 F3 F (2)2 F1µ and q F3 F (2)2 F1µ

−t23 Id
−−−→ q F3 F (2)2 F1µ

one obtains that F(D1) is homotopy equivalent to the complex

0 F3 F (2)2 F1µ 0,

with the middle-term in homological degree zero. �
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Lemma 3.8 (Reidemeister III). Consider diagrams DL and DR that differ as below.

DL =

1 1 1 0 0 0

DR =

1 1 1 0 0 0

Then F(DL) and F(DR) are isomorphic in Kom/h
(
(1,1,1,0,0,0),(0,0,0,1,1,1)

)
.

Proof. The proof is inspired by [Putyra 2014a, Lemma 7.9] (see also [Putyra 2014b,
§4.3.3] for further details). The complex associated to DL is the mapping cone of
the map

q−1F


1 1 1 0 0 0


···

3 4
···

−−−−−−−−→ F


1 1 1 0 0 0


An easy exercise shows that the second complex is isomorphic to the complex

F


1 1 1 0 0 0


In [Putyra 2014b, §4.3.3] it is explained in detail how to use an isomorphism like
this together with the maps associated to two Reidemeister 2 moves on the first
complex to prove that F(DL) is homotopy equivalent to F(DR). �

This finishes the proof of Theorem 3.3. �

3D. Not even Khovanov homology. We now show that for links the invariant H(L)
is distinct from even Khovanov homology and shares common properties with odd
Khovanov homology.
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3D1. Reduced homology.

Theorem 3.9. For every link L there is an invariant Hreduced(L) with the property

H(L)' q Hreduced(L)⊕ q−1 Hreduced(L).

The proof of Theorem 3.9 follows a reasoning analogous to the proof of Theo-
rem 3.2.A. in [Shumakovitch 2014], for the analogous decomposition for Khovanov
homology over Z/2Z in terms of reduced Khovanov homology.

Before proving the theorem we do some preparation. Recall that for D a
diagram of L the chain groups of F(D) are the various k-supervector spaces
HomR3(Fcan, F(W )), where W runs over all the resolutions of D.

If we write Fcan = Fi (2)1 i (2)2 ···i
(2)
k

then HomR3(Fcan, Fi1i1i2i2···ik ik ) is spanned by{
i1

δ1

i2

δ2 · · ·

ik

δk
, δ1, . . . , δk ∈ {0, 1}

}
.

Introduce linear maps X and 1 on HomR3(Fcan, Fi1i1i2i2···ik ik ) as follows. Map 1
is defined on the factors as

1

(
· · · · · ·

)
= 0, 1

(
· · · · · ·

)
= · · · · · · ,

and extended to HomR3(Fcan, Fi1i1i2i2···ik ik ) using the Leibniz rule. The map X is
defined by

X

(
i1

δ1

i2

δ2 · · ·

ik

δk

)
=

 i1 i2

δ2 · · ·

ik

δk
if δ1 = 1,

0 otherwise.

Since

HomR3(Fcan, F(W ))'HomR3(Fcan, Fi1i1i2i2···ik ik )×HomR3(Fi1i1i2i2···ik ik , F(W ))

the maps 1 and X induce maps on HomR3(Fcan, F(W )), denoted by the same
symbols.

Lemma 3.10. Both maps X and 1 commute with the differential of F(D), 12
= 0,

and moreover X1+1X = IdF(D).

Proof. Straightforward. �

Proof of Theorem 3.9. We have that 1 is acyclic and therefore

F(D)' ker(1)⊕ q2 ker(1),
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and so the claim follows by setting Freduced(D)= q ker(1). �

3D2. A chronological Frobenius algebra. We now examine the behavior of the
functor F under merge and splitting of circles. First define maps ı and ε,

F


2 0


ε

ı
F


2 0


as

ı : F (2)1 (2, 0)
1

−−−−−→ F2
1 (2, 0) ε : F2

1 (2, 0)

1

−−−−−→ F (2)1 (2, 0).

Note that, contrary to [Ozsváth et al. 2013], p(ı)= 1 and p(ε)= 0.
We now consider the following two cases (a) and (b) below.

(a) F


2 2 0


µ

δ

F


2 2 0


The maps µ and δ are given by

µ : F2
1 F2

2 (2, 2, 0)
21 1 2

−−−−−−−−−−−−−→ F1 F2 F1 F2(2, 2, 0),

and

δ : F1 F2 F1 F2(2, 2, 0)
21 2 1

−−−−−−−−−−−−−→ F2
1 F2

2 (2, 2, 0).

We have p(µ)=0 and p(δ)=1. Decomposing F2
1 F2

2 (2,2,0) and F1 F2 F1 F2(2,2,0)
into a direct sum of several copies of F (2)1 F (2)2 (2, 2, 0) with the appropriate grading
shifts we fix bases〈

1 2

p = 0

,

1 2

p = 1

,

1 2

p = 1

,

1 2

p = 0

〉
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of F2
1 F2

2 (2, 2, 0), and 〈
1 2

p = 0

,

1 2

p = 1

〉

of F1 F2 F1 F2(2, 2, 0). Then we compute

δ

(
1 2

)
=−t12

1 2

+ t21

1 2

δ

(
1 2

)
= t21

1 2

and

µ

(
1 2

)
=

1 2

µ

(
1 2

)
= 0

µ

(
1 2

)
=

1 2

µ

(
1 2

)
= t12t−1

21

1 2

Using this one sees that easily that µδ = 0, as in the case of the odd Khovanov
homology of [Ozsváth et al. 2013].

Setting to 1 all ti j and renaming 〈1,a1,a2,a1∧a2〉 the basis vectors of F2
1 F2

2 (2,0,0)
and 〈1, a1 = a2〉 the basis vectors of F1 F2 F1 F2(2, 0, 0) one can give the maps
δ, µ, ı and ε a form that coincides with the corresponding maps in [Ozsváth et al.
2013, §1.1]. Note though, that while the parities of δ and µ coincide with the
corresponding maps in [Ozsváth et al. 2013], the parities of ı and ε are reversed
with respect to [Ozsváth et al. 2013].

(b) F


2 0 0


µ′

δ′

F


2 0 0


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The maps µ′ and δ′ are given by

µ′ : F2
2 F2

1 (2, 0, 0)
12 2 1

−−−−−−−−−−−−−→ F2 F1 F2 F1(2, 0, 0),

and

δ′ : F2 F1 F2 F1(2, 0, 0)
12 1 2

−−−−−−−−−−−−−→ F2
2 F2

1 (2, 0, 0).

Proceeding as above we fix a basis〈
2 1

p = 1

,

2 1

p = 0

〉

of F2 F1 F2 F1(2, 0, 0) and〈
2 1

p = 0

,

2 1

p = 1

,

2 1

p = 1

,

2 1

p = 0

〉

of F2
2 F2

1 (2, 2, 0), to get

δ′

(
2 1

)
=−t21

2 1

+ t12

2 1

δ′

(
2 1

)
= t12

2 1

and

µ′

(
2 1

)
=

2 1

µ′

(
2 1

)
= 0

µ′
(

2 1

)
=

2 1

µ′

(
2 1

)
= t21t−1

12

2 1

In this case we also have µ′δ′ = 0.
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Contrary to the previous case, we have p(µ′) = 1 and p(δ′) = 0. The maps
µ′ and δ′ can also be made to agree with [Ozsváth et al. 2013], but the parity is
reversed (as with ı and ε above).

3D3. A sample computation. We now compute the homology of the left-handed
trefoil T in its lowest and highest homological degrees. Consider the following
presentation of T ,

2 2 0 0 0

The computation of H0(T ) is fairly simple: up to an overall degree shift it is the
homology in degree 1 of the complex

(27) q3 Ft F342312 Fbµ

q2 Ft F432312 Fbµ⊕
q2 Ft F343212 Fbµ⊕
q2 Ft F342321 Fbµ

4 3 2 3 1 2

3 4 3 2 1 2

3 4 2 3 2 1

The three terms in homological degree zero are isomorphic to F43(2)2(2)1. Com-
posing the isomorphisms from F43(2)2(2)1 to F432312, F343212 and to F342321 with the
corresponding maps above gives three maps that differ by a sign.

By inspection, one sees that up to a sign, these three maps are equal to the map δ
from the case (a) in the previous subsection. The cokernel map in (27) is therefore
two-dimensional. Adding the degree shifts one obtains

H0(T )= q−1k⊕ q−3k.
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We now compute H−3(H). Up to an overall degree shift it is computed as the
homology in degree zero of the complex

F321 F433221 F432µ

q F321 F343221 F432µ⊕
q F321 F432321 F432µ⊕
q F321 F433212 F432µ

· · ·

4 3 3 2 2 1

· · ·

· · ·

4 3 3 2 2 1

· · ·

· · ·

4 3 3 2 2 1

· · ·

Here µ = (2, 2, 0, 0, 0) and the factors F321 and F432 are the upper and lower
closures of the diagram. We write Ft for F321 and Fb for F432 and sometimes
we write Ft F433221 Fbµ instead of F321 F433221 F432µ, etc., and we only depict the
pertinent part of the morphisms.

In the following we will use the identities

(28) · · ·

4 3 2 1 4 3 2

µ = · · ·

4 3 2 1 4 3 2

µ

=−
t12
t21

t23
t32

t34
t43
· · ·

4 3 2 1 4 3 2

µ

The first equality follows from Lemma 2.4 after using (3) on the second strand
labeled 4 to pull it to the left. The second equality can be checked by a applying
(3) three times.

Coming back to H−3(T ) we apply the isomorphisms

F433221 ' q F4332(2)1⊕ q−1 F4332(2)1,

F343221 ' q F3432(2)1⊕ q−1 F3432(2)1,

F433212 ' F4332(2)1,
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to obtain the isomorphic complex

(
q Ft F4332(2)1 Fbµ

q−1 Ft F4332(2)1 Fbµ

)



4 3 3 2 1

0

0 −

4 3 3 2 1

4 3 3 2 1 4 3 3 2 1

t21

4 3 3 2 1

t12

4 3 3 2 1


−−−−−−−−−−−−−−−−−−−−−−→


q2 Ft F3432(2)1 Fbµ

Ft F3432(2)1 Fbµ

q Ft F432321 Fbµ

q Ft F4332(2)1 Fbµ

 .
By Gaussian elimination of the acyclic complex

q Ft F4332(2)1 Fbµ

t21

4 3 3 2 1
−−−−−−−−−→ q Ft F4332(2)1 Fbµ.

we obtain the homotopy equivalent complex

q−1 Ft F4332(2)1 Fbµ



−
t12
t21

4 3 3 2 1

−

4 3 3 2 1

4 3 3 2 1

−
t12
t21

4 3 3 2 1


−−−−−−−−−−−−−−−−−−−−−−−→


q2 Ft F3432(2)1 Fbµ

Ft F3432(2)1 Fbµ

q Ft F432321 Fbµ

 .
Applying the isomorphisms

(29) F4332(2)1 ' q F43(2)2(2)1⊕ q−1 F43(2)2(2)1

and F3432(2)1 ' F43(2)2(2)1 gives the isomorphic complex

(
Ft F43(2)2(2)1 Fbµ

q−2 Ft F43(2)2(2)1 Fbµ

)



t12t34
t21

4 3 2 1

0

−t34

4 3 2 1

−t43

4 3 2 1

f g


−−−−−−−−−−−−−−−−−−−−−→


q2 Ft F43(2)2(2)1 Fbµ

Ft F43(2)2(2)1 Fbµ

q Ft F432321 Fbµ

 ,
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or

(
Ft F43(2)2(2)1 Fbµ

q−2 Ft F43(2)2(2)1 Fbµ

)



t12t34
t21

4 3 2 1

0

−t34

4 3 2 1

t34
t12
t21

t23
t32

4 3 2 1

f g


−−−−−−−−−−−−−−−−−−−−−−−→


q2 Ft F43(2)2(2)1 Fbµ

Ft F43(2)2(2)1 Fbµ

q Ft F432321 Fbµ

 ,
where f (resp. g) is the composite of the map from F43(2)2(2)1 (resp. q−2 F43(2)2(2)1)
to q−1 F4332(2)1 in (29) and

4 3 3 2 1

−
t12
t21

4 3 3 2 1

Gaussian elimination of the acyclic complex

Ft F43(2)2(2)1 Fbµ

−t34

4 3 2 1
−−−−−−−−→ Ft F43(2)2(2)1 Fbµ,

yields the homotopy equivalent complex

q−2 Ft F43(2)2(2)1 Fbµ

(0
h

)
−−−→

(
q2 Ft F43(2)2(2)1 Fbµ

q Ft F432321 Fbµ

)
,

where

h =

3 24 1

−
t12
t21

3 24 1

+
t12
t21

t23
t32

3 24 1

Since we are only interested in the lowest homological degree we restrict to consid-
ering the complex

q−2 Ft F43(2)2(2)1 Fbµ
h
−−→ q Ft F432321 Fbµ.

Finally, applying the isomorphism Ft F432321 Fb ' Ft F4332(2)1 Fb results in the iso-
morphic complex

q−2 Ft F43(2)2(2)1 Fbµ
0
−−→ q Ft F432321 Fbµ.
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Adding the shift corresponding to the normalization (26), and using the fact that
Ft F43(2)2(2)1 Fbµ is a k-supervector space of graded dimension q + q−1, yields

H−3(T )= q−7k⊕ q−9k,

which agrees with the odd Khovanov homology of T .

4. Further properties of R

In this section we sketch several of its higher representation theory properties of R,
some of them we have used in the previous section.

4A. Supercategorical action on R3(k, d). Given a gln-weight3= (31, . . . , 3n)

we write 3= (31−32, . . . , 3n−1−3n) for the corresponding sln-weight. The
superalgebra R3(ν) for glk is defined to be the same as the superalgebra R3(ν)

for slk .
We now explain how the bifunctor 8 : R×R3

→R3 in (18). gives rise to an
action of glk on R3(k, d) for 3 a dominant integrable glk-weight of level 2 with
31+· · ·3n = d . A diagram D in R3(k, d) with leftmost region labeled µ defines
a web WD with bottom boundary labeled 3 and with top boundary labeled µ. We
denote fi , ei ∈Uq(glk) the Chevalley generators.

Behind Tubbenhauer’s construction in [Tubbenhauer 2014] there is the observa-
tion that the transformation

(30)

bab

a+ 1

b

b− 1

bab

0

b

a+ 1

0

b− 1

turns any web into a web with all horizontal edges pointing to the right. This goes
through the obvious embedding of glk into glk+1.

• The generator fi acts by stacking the web

(31) · · ·

µi µi+1

· · ·

on the top of WD . This means that fi acts on R3(n, d) as the functor that adds a
strand labeled i to the left of D.
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• To define the action of ei we stack the web

· · ·

µi µi+1

· · ·

on the top of WD , then we use Tubbenhauer’s trick (30) to put in a form that uses
only F’s. The transformation in (30) is not local and in order to be well defined one
needs to keep trace of the indices before and after acting with an ei . Tubbenhauer’s
trick gives

· · ·

µi−1

0

µi µi+1 µi+2

µi + 1 µi+1 − 1

0

· · ·

Every time we act with an ei we embed Uq(glk) ↪→Uq(glk+1) and set

ei (WD)= f1(µ1)···i−1(µi−1) f (µi )
i f (µi+1−1)

i+1 fi+2(µi+2)···k(µk )(µ, 0)(WD).

After being acted with an e j , fi acts on WD through the web corresponding to
fi+1(µ, 0).

We define the action of ei on R3(k, d) as the superfunctor that adds

1

(µ1)

· · ·

i

(µi )

i + 1

(µi+1 − 1)
· · ·

k

(µk )

to the left of D (here (µ1), etc., are the thicknesses) that is, we act with the identity
2-morphism of F1(µ1)···i−1(µi−1) F

(µi )
i F (µi+1−1)

i+1 Fi+2(µi+2)···k(µk )(µ, 0).
Denote 8(ei ) and 8( fi ) the morphisms in R3 that act as endofunctors of

R3(n, d) through the action above. It is clear that 8(uv) = 8(u)8(v) for u,
v ∈ Uq(glk). Note that 8(1)(µ) is a canonical element Fcan(µ) as introduced
in (23).
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Lemma 4.1. We have natural isomorphisms

8(ei )8( fi )(λ)'8( fi )8(ei )(λ)⊕8(1)
⊕
[λi ](λ) if λi ≥ 0,

8( fi )8(ei )(λ)'8(ei )8( fi )(λ)⊕8(1)
⊕
[−λi ](λ) if λi ≤ 0.

Proof. These are instances of the categorified higher Serre relations. Denote
Fu = F1(λ1)···i−1(λi−1) and Fd = Fi+2(λi+2)···k(λk ) . We have

8(ei )8( fi )(λ)= Fu F (λi−1)
i F (λi+1)

i+1 Fd Fi (λ, 0)

' Fu F (λi−1)
i F (λi+1)

i+1 Fi (. . . , λi , λi+1, 0, λi+2, . . . )Fd , (λ, 0),

and 8( fi )8(ei )(λ)= Ft Fi+1 F (λi )
i F (λi+1−1)

i+1 Fb(λ, 0),

and therefore, it is enough to check that the relations above are satisfied by the su-
perfunctors F (λi−1)

i F (λi+1)

i+1 Fi (λi , λi+1, 0) and Fi+1 F (λi )
i F (λi+1−1)

i+1 (λi , λi+1, 0). Sup-
pose λi ≥ λi+1. Then we have λi ∈ {1, 2} and λi+1 ∈ {0, 1}. The computations
involved are rather simple and we can check the four cases separately.

(1) (λi , λi+1)= (1, 0):

8(ei )8( fi )(λ)= F (λi−1)
i F (λi+1)

i+1 Fi (λi , λi+1)= Fi (1, 0)= 0⊕ Fcan(1, 0),

=8( fi )8(ei )(λ)⊕8(1)(λ).

(2) (λi , λi+1)= (1, 1):

8(ei )8( fi )(λ)= Fi Fi+1(1, 1, 0)=8( fi )8(ei )(λ).

(3) (λi , λi+1)= (2, 0):

8(ei )8( fi )(λ)= Fi Fi (2, 0, 0)

' q F (2)i (2, 0, 0)+ q−1 F (2)i (2, 0, 0)=8(1)⊕[2](λ).

(4) (λi , λi+1)= (2, 1):

8(ei )8( fi )(λ)= Fi Fi+1 Fi (2, 1, 0)

' 0⊕ F (2)i Fi+1(2, 1, 0)=8( fi )8(ei )(λ)⊕8(1)(λ).

An this proves the first isomorphism in the statement. The second isomorphism can
be checked using the same method. �

The proof of Lemma 4.1 uses several supernatural transformations between the
various compositions of 8( fi )(λ) and 8(ei )(λ) and 8(1)(λ) that can be given
a presentation in terms of the diagrams from R. We act with such diagrams by
stacking them on the top of the diagrams for the image of 8. On the weight space
(1, 1) these maps coincide with the maps used to define the chain complex for a
tangle diagram in the previous section. In the general case these maps are units and
counits of adjunctions in the following.
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Lemma 4.2. Up to degree shifts, the functor8(ei ) is left and right adjoint to8( fi ).

Lemma 4.3. We have the following natural isomorphisms:

8(e j )8( fi )(λ)'8( fi )8(e j )(λ) for i 6= j,

8( fi )8( fi±1)8( fi )(λ)'8( f (2)i )8( fi±1)(λ)⊕8( fi±1)8( f (2)i )(λ),

8(ei )8(ei±1)(λ)8(ei )'8(e
(2)
i )8(ei±1)(λ)⊕8(ei±1)8(e

(2)
i )(λ).

Proof. The proof consists of a case-by-case computation. We illustrate the proof
with the case of 8(ei )8( fi+1)(λ) ' 8( fi+1)8(ei )(λ) and leave the rest to the
reader. We have

8(ei )8( fi+1)(λ)= F (λi )
i F (λi+1−2)

i+1 F (λi+2+1)
i+2 Fi+1(λ),

and 8( fi+1)8(ei )(λ)= F (λi )
i Fi+2 F (λi+1−1)

i+1 F (λi+2)

i+2 (λ),

which are zero unless λi+1 = 2 and λi+2 ∈ {0, 1}. If λi+1 = 2 these can be written

8(ei )8( fi+1)(λ)= F (λi )
i F (λi+2+1)

i+2 Fi+1(λ),

and 8( fi+1)8(ei )(λ)= F (λi )
i Fi+2 Fi+1 F (λi+2)

i+2 (λ).

The case λi+2 = 0 is immmediate and the case λi+2 = 1 follows from the Serre
relation (8)–(9). �

As explained in [Brundan and Ellis 2017, Sections 1.5 and 6] the Grothendieck
group of a (Z-graded) monoidal supercategory is a Z[q±1,π ]/(π2

−1)-algebra.
Nontrivial parity shifts will occur when applying Tubbenhauer’s trick. All the above
can be used to prove the following.

Theorem 4.4. The assignment above defines an action of Uq(glk) on R3(k, d).
With this action we have an isomorphism of K0(R3(k, d)) with the irreducible,
finite-dimensional, Uq(glk)-representation of highest weight 3 at π = 1.
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