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SCHUR–WEYL DUALITY, VERMA MODULES, AND
ROW QUOTIENTS OF ARIKI–KOIKE ALGEBRAS

ABEL LACABANNE AND PEDRO VAZ

We prove a Schur–Weyl duality between the quantum enveloping algebra
of glm and certain quotient algebras of Ariki–Koike algebras, which we
describe explicitly. This duality involves several algebraically independent
parameters and the module underlying it is a tensor product of a parabolic
universal Verma module and a tensor power of the standard representation
of glm. We also give a new presentation by generators and relations of the
generalized blob algebras of Martin and Woodcock as well as an interpreta-
tion in terms of Schur–Weyl duality by showing they occur as a special case
of our algebras.

1. Introduction

Schur–Weyl duality is a celebrated theorem connecting the finite-dimensional
modules over the general linear and the symmetric groups. It states that, over a field k
that is algebraically closed, the actions of GLm(k) and Sn on V = (km)⊗n commute
and form double centralizers. Several variants of (quantum) Schur–Weyl duality are
known; see for example [Ariki et al. 1995; Bao et al. 2018; Balagović et al. 2020;
Chari and Pressley 1996; Jimbo 1986; Sakamoto and Shoji 1999] for such variants
related to our paper. One particular family of generalizations of interest for us uses
a module akin to the one appearing in Schur–Weyl duality, but with an infinite-
dimensional module instead of V. For example, [Iohara et al. 2018] establishes a
Schur–Weyl duality between Uq(sl2) and the blob algebra of Martin and Saleur
[1994] with the underlying module being a tensor product of a projective Verma
module with several copies of the standard representation of Uq(sl2). We should
warn the reader that in [Iohara et al. 2018] the blob algebra was called the Temperley–
Lieb algebra of type B (see [Lacabanne et al. 2020] for further explanations).

1A. In this paper. We consider the tensor product of a parabolic universal Verma
module with the m-folded tensor product of the standard representation for Uq(glm)

to establish a Schur–Weyl duality with a quotient of Ariki–Koike algebras. Ariki–
Koike algebras were first considered by Cherednik [1987] as a cyclotomic quotient
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of the affine Hecke algebra of type A. These algebras were later rediscovered and
studied by Ariki and Koike [1994] from a representation theoretic point of view.
Independently, Broué and Malle [1993] attached a Hecke algebra to certain complex
reflection groups, and Ariki–Koike algebras turn out to be the Hecke algebras
associated to the complex reflection groups G(d, 1, n).

Recall that the Ariki–Koike algebra H(d, n) with parameters q ∈ k∗ and u =
(u1, . . . , ud) ∈ kd is the k-algebra with generators T0, T1, . . . Tn−1, where T0

satisfies T0T1T0T1 = T1T0T1T0, T0Ti = Ti T0 for i > 1, and
∏d

i=1(T0 − ui ) = 0,
and T1, . . . , Tn−1 generate a finite-dimensional Hecke algebra of type A.

We consider the semisimple case, where the simple modules Vµ of H(d, n) are
indexed by d-partitions of n.

Let m = (m1, . . . ,md) be a d-tuple of positive integers and Pn
m be the set of all

d-partitions µ= (µ(1), . . . , µ(d)) of n such that l(µ(i))≤ mi for all 1≤ i ≤ d.
In this paper we introduce the row-quotient algebra Hm(d, n), that depends on m

as the quotient of H(d, n) by the kernel of the surjection

H(d, n)�
∏
µ∈Pn

m

Endk(Vµ).

Let Mp(3) be a parabolic Verma module and V the standard representation for
Uq(glm). In our conventions, p is standard and has Levi factor l= glm1

×· · ·×glmd
,

with mi ≥ 1 and m1 + m2 + · · · + md = m and 3 depends on d algebraically
independent parameters λ1, . . . , λd (see Section 3B for more details). Thanks to the
braided structure on the category of integrable modules over Uq(glm), we define a
left action of H(d, n) on Mp(3)⊗ V⊗n in Section 4. Our main result is:

Theorem A (Theorem 4.2 and Lemma 4.1).

• The actions of Uq(glm) and H(d,n) on Mp(3)⊗V⊗n commute with each other,
which endow Mp(3)⊗ V⊗n with a structure of H(d, n)⊗Uq(glm)-module.

• The algebra morphism H(d, n)→EndUq (glm)(M
p(3)⊗V⊗n) is surjective and

factors through an isomorphism

(1) Hm(d, n) '−→ EndUq (glm)(M
p(3)⊗ V⊗n).

• There is an isomorphism of H(d, n)⊗Uq(glm)-modules

Mp(3)⊗ V⊗n
'

⊕
µ∈Pn

m

Vµ⊗Mp(3,µ),

where Mp(3,µ) is a simple module (see Section 3B).
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The isomorphism in equation (1) has several particular specializations (Corol-
laries 4.3–4.7), some of them recovering well-known algebras:

• If p = glm and m ≥ n, then EndUq (glm)(M
p(3)⊗ V⊗n) is isomorphic to the

Hecke algebra of type A.

• If p = glm and m = 2, then EndUq (glm)(M
p(3)⊗ V⊗n) is isomorphic to the

Temperley–Lieb algebra of type A.

• If p is such that m≥nd , mi ≥n for all 1≤ i≤d , then EndUq (glm)(M
p(3)⊗V⊗n)

is isomorphic to the Ariki–Koike algebra H(d, n).

• If p is such that d = 2 and m1,m2 ≥ n, then EndUq (glm)(M
p(3)⊗ V⊗n) is

isomorphic to the Hecke algebra of type B with unequal and algebraically
independent parameters (see [Geck and Jacon 2011, Example 5.2.2(c)]).

• If the parabolic subalgebra p coincides with the standard Borel subalgebra
of Uq(glm) then EndUq (glm)(M

p(3) ⊗ V⊗n) is isomorphic to Martin and
Woodcock’s [2003] generalized blob algebra B(d, n). This generalizes the
case of Uq(sl2) covered in [Iohara et al. 2018].

In the last case, this gives a new interpretation of the generalized blob algebras
B(d, n) in terms of Schur–Weyl duality. We also give a new presentation of B(d, n)
as a quotient of Ariki–Koike algebras:

Theorem B (Theorem 2.15). Suppose that H(d, n) is semisimple and that for every
i, j, k we have (1+q−2)uk 6= ui +u j . The generalized blob algebra B(d, n) is iso-
morphic to the quotient of H(d, n) by the two-sided ideal generated by the element

τ =
∏

1≤i< j≤d

[
(T1− q)

(
T0− q

ui + u j

q + q−1

)
(T1− q)

]
.

1B. Connection to other works. The idea of writing this note originated when
we started thinking of possible extensions of our work in [Lacabanne et al. 2020]
to more general Kac–Moody algebras and were not able to find the appropriate
generalizations of [Iohara et al. 2018] in the literature. When we were finishing
writing this note Peng Shan informed us about [Rouquier et al. 2016], whose results
are far beyond the ambitions of this article. Nevertheless, we expect our results to
be connected to [Rouquier et al. 2016, §8] using a braided equivalence of categories
between a category of modules for the quantum group Uq(glm) and a category
of modules over the affine Lie algebra ĝlm , which is due to Kazhdan and Lusztig
[1993; 1994]. However, the explicit description of the endomorphism algebra of
Mp(3)⊗ V⊗n, which was our first motivation towards categorification later on,
does not seem to appear anywhere in [Rouquier et al. 2016] except in the particular
case of our Corollary 4.5.
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Another motivation for the results presented here resides in the potential applica-
tions to low-dimensional topology, as indicated in [Rose and Tubbenhauer 2019].
We find that it would be also interesting to investigate the use of several Verma
modules in a tensor product as suggested in [Daugherty and Ram 2018].

2. Ariki–Koike algebras, row quotients and generalized blob algebras

We recall the definition of Ariki–Koike algebras and define some quotients which
will appear as endomorphism algebras of modules over a quantum group. As a
particular case we recover the generalized blob algebras of Martin and Woodcock
[2003] and we obtain a presentation of these blob algebras that seems to be new.

2A. Reminders on Ariki–Koike algebras. Fix once and for all a field k and two
positive integers d and n and choose elements q ∈ k∗ and u1, . . . , ud ∈ k. We recall
the definition of the Ariki–Koike algebra introduced in [Ariki and Koike 1994],
which we view as a quotient of the group algebra of the Artin–Tits braid group of
type B.

Definition 2.1. The Ariki–Koike algebra H(d, n) with parameters q ∈ k∗ and
u = (u1, . . . , ud) ∈ kd is the k-algebra with generators T0, T1, . . . Tn−1, the relation

(Ti − q)(Ti + q−1)= 0,

the cyclotomic relation
d∏

i=1

(T0− ui )= 0,

and the braid relations

Ti T j = Ti T j if |i − j |> 1,

Ti Ti+1Ti = Ti+1Ti Ti+1 for 1≤ i ≤ n− 2,

T0T1T0T1 = T1T0T1T0.

Remark 2.2. We use different conventions than [Ariki and Koike 1994]. In order
to recover their definition, one should replace q by q2, T0 by a1, and qTi−1 by ai .

As in the type A Hecke algebra, for anyw∈Sn we can define unambiguously Tw
by choosing any reduced expression of w.

It is shown in [Ariki and Koike 1994] that the algebra H(d, n) is of dimension
dnn! and a basis is given in terms of Jucys–Murphy elements, which are recursively
defined by X1 = T0 and X i+1 = Ti X i Ti .

Theorem 2.3 [Ariki and Koike 1994, Theorems 3.10, 3.20]. A basis of H(d, n) is
given by the set {

X r1
1 . . . X rd

d Tw | 0≤ ri < d, w ∈Sn
}
.
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Moreover, the center of H(d, n) is generated by the symmetric polynomials in
X1, . . . , Xd .

We end this section with a semisimplicity criterion due to Ariki [1994], which
in our conventions takes the following form.

Theorem 2.4 [Ariki 1994, Main Theorem]. The algebra H(d, n) is semisimple if
and only if( ∏

−n<l<n
1≤i< j≤d

(q2lui − u j )

)( ∏
1≤i≤n

(1+ q2
+ q4
+ . . .+ q2(i−1))

)
6= 0.

2B. Modules over Ariki–Koike algebras. In this section, we suppose that the al-
gebra H(d, n) is semisimple. Ariki and Koike [1994] gave a construction of the
simple H(d, n)-modules, using the combinatorics of multipartitions.

2B1. d-partitions and the Young lattice. A partition µ of n of length l(µ) = k
is a nonincreasing sequence µ1 ≥ µ2 ≥ · · · ≥ µk > 0 of integers summing to
|µ| = n. A d-partition of n is a d-tuple of partitions µ= (µ(1), . . . , µ(d)) such that∑d

i=1|µ
(i)
| = n. Given a d-partition µ its Young diagram is the set

[µ] =
{
(a, b, c) ∈ N×N×{1, . . . , d} | 1≤ a ≤ l(µ), 1≤ b ≤ µ(c)a

}
,

whose elements are called boxes. We usually represent a Young diagram as a
d-tuple of sequences of left-aligned boxes, with µ(c)a boxes in the a-th row of the
c-th component.

Example 2.5. The Young diagram of the 3-partition ((2, 1),∅, (3)) of 6 is(
,∅,

)
.

A box γ of [µ] is said to be removable if [µ] \ {γ } is the Young diagram of a
d-partition ν, and in this case the box γ is said to be addable to ν.

Example 2.6. The removable boxes of the 3-partition ((2, 1),∅, (3)) below are
depicted with a cross (

×

×
,∅, ×

)
.

With respect to the above definitions, we will also use the evident notions of
adding a box to a Young diagram or removing a box from a Young diagram.

We consider the Young lattice for d-partitions and some sublattices. It is a graph
with vertices consisting of d-partitions of any integers, and there is an edge between
two d-partitions if and only if one can be obtained from the other by adding or
removing a box.
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Example 2.7. The beginning of the Young lattice for 2-partitions is the following:

(∅,∅)

(
,∅
) (

∅,
)

(
,∅
) (

,∅
) (

,
) (

,∅
) (

,∅
)

If we fix m = (m1, . . . ,md) ∈Nd, we then define Pn
m as the set of d-partitions µ

such that l(µ(i)) ≤ mi . We will also consider the corresponding sublattice of the
Young lattice.

Example 2.8. For m1 = 1 and m2 = 2, the beginning of the Young lattice for
2-partitions µ with l(µ(1))≤ 1 and l(µ(2))≤ 2 is the following:

(∅,∅)

(
,∅
) (

∅,
)

(
,∅
) (

,
) (

,∅
) (

,∅
)

We end this subsection with the notion of a standard tableau of shape µ where µ
is a d-partition of n. Such a standard tableau is a bijection t : [µ]→ {1, . . . , n} such
that for all boxes γ = (a, b, c) and γ ′ = (a′, b′, c) we have t(γ ) < t(γ ′) if a = a′

and b < b′ or a < a′ and b = b′. Giving a standard tableau of shape µ is equivalent
to giving a path in the Young lattice from the empty d-partition to the d-partition µ.

Example 2.9. The standard tableau(
1

4
,∅, 2 3

)

of shape ((1, 1),∅, (2)) correspond to the path

(∅,∅,∅)→
(
,∅,∅

)
→
(
,∅,

)
→
(
,∅,

)
→

(
,∅,

)
.
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2B2. Constructing the simple modules. We present the construction of simple
modules of the Ariki–Koike algebra following [Ariki and Koike 1994, Section 3].
This construction is similar to the classical construction of simple modules of the
symmetric group, the Hecke algebra of type A or of the complex reflection group
G(d, 1, n). This construction describes explicitly the action of the Ariki–Koike
algebra on a vector space. For µ= (µ(1), . . . , µ(d)) a d-multipartition of n, we set

Vµ =
⊕
t

kvt,

where the sum is over all the standard tableaux of shape µ. Ariki and Koike gave an
explicit action of the generators on the basis of Vµ given by the standard tableaux.
The action of T0 is diagonal with respect to this basis:

T0vt = ucvt,

where c is such that t(1, 1, c)= 1. The action of Ti is more involved and depends
on the relative positions of the numbers i and i + 1 in the tableau t:

(1) if i and i + 1 are in the same row of the standard tableau t, then Tivt = qvt,

(2) if i and i+1 are in the same column of the standard tableau t, then Tivt=−q−1vt,

(3) if i and i + 1 neither appear in the same row nor the same column of the
standard tableau t, then Ti will act on the two-dimensional subspace generated
by vt and vs, where s is the standard tableau obtained from t by permuting the
entries i and i + 1. The explicit matrix is given in [Ariki and Koike 1994] and
we will not need it.

Proposition 2.10 [Ariki and Koike 1994, Theorem 3.7]. If µ is any d-multipartition
of n, the space Vµ is a well-defined H(d, n)-module and it is absolutely simple. A
set of isomorphism classes of simple H(d, n)-modules is moreover given by {Vµ}µ,
for µ running over the set of d-partitions of n.

The action of the Jucys–Murphy elements is also diagonal in the basis of standard
tableaux:

(2) X ivt = ucq2(b−a)vt,

where t(a, b, c)= i . A useful consequence of Proposition 2.10 is the following: if V
is a simple H(d, n)-module and v ∈ V is a common eigenvector for X1, . . . , Xd

with eigenvalues as in (2) for some standard tableau t of shape µ, then V is
isomorphic to Vµ.



120 ABEL LACABANNE AND PEDRO VAZ

From the explicit description of the modules Vµ, using the standard inclusion
H(n, d) ↪→H(n+ 1, d), it is easy to see that for any d-partition of n+ 1 we have

ResH(n+1,d)
H(n,d) (Vµ)'

⊕
ν

Vν,

where the sum is over all d-partition ν of n whose Young diagram is obtained by
deleting one removable box from the Young diagram of µ. The branching rule
of the inclusions H(1, d)⊂H(2, d)⊂ · · · ⊂H(n, d) is therefore governed by the
Young lattice of d-partitions.

2C. Row quotients of H(d, n) and generalized blob algebras. We now define the
row quotients of H(d, n) which will appear later as endomorphism algebras of a
tensor product of modules for Uq(glm).

Definition 2.11. Let m = (m1, . . . ,md) ∈Nd and recall that the algebra H(d, n) is
assumed to be semisimple, which implies that H(d, n)'

∏
µ Endk(Vµ), the product

being over all d-partitions of n. Recall also that Pn
m is the set of d-partitions of n

with i-th component of length at most mi .
The m-row quotient of H(d, n), denoted Hm(d, n), is the quotient of H(d, n) by

the kernel of the surjection

H(d, n)�
∏
µ∈Pn

m

Endk(Vµ).

Remark 2.12. If mi ≥ n for all 1≤ i ≤ d then Hm(d, n)'H(d, n).

Similar to the case of H(d, n), we have inclusions Hm(1, d)⊂Hm(2, d)⊂ · · · ⊂
Hm(n, d) and the branching rule is governed by the corresponding truncation of
the Young lattice of d-partitions.

2C1. Generalized blob algebras. In the particular case where mi = 1 for all 1≤ i ≤
d , we recover the definition of the generalized blob algebras [Martin and Woodcock
2003, Equation (14)], which we denote by B(d, n). Under a mild hypothesis on
the parameters, we give a presentation of B(d, n).

We consider the following element of H(d, n):

τ =
∏

1≤i< j≤d

[
(T1− q)

(
T0− q

ui + u j

q + q−1

)
(T1− q)

]
.

This element may look cumbersome, but can be better understood thanks to the
following lemma:
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Lemma 2.13. The two-sided ideal of H(d, n) generated by τ is equal to the two-
sided ideal generated by

(T1− q)
∏

1≤i< j≤d

(
X1+ X2− (ui + u j )

)
.

Proof. A simple computation in H(d, n) shows that

(T1− q)
(

T0− q
ui + u j

q + q−1

)
(T1− q)= q

(
X1+ X2− (ui + u j )

)
(T1− q).

We therefore conclude using the fact that (T1− q)2 =−(q + q−1)(T1− q) and
that T1 commutes with X1+ X2. �

We now investigate which H(d, n)-modules Vµ factor through the quotient by
the two-sided ideal generated by τ .

Proposition 2.14. The element τ acts by zero on Vµ if and only if l(µ(k)) ≤ 1 for
every k such that (1+ q−2)uk 6= ui + u j for all i, j.

Proof. Suppose that µ and k are such that l(µ(k))≥ 2 with (1+q−2)uk 6= ui+u j for
all i, j. Then there exists a tableau t of shape µ such that 1 and 2 are in the first two
columns of the k-th component of the Young diagram of µ. By definition of Vµ, the
generator T1 acts on vt by multiplication by −q−1. The Jucys–Murphy element X1

acts on vt by multiplication by uk whereas the Jucys–Murphy element X2 acts on vt
by multiplication by q−2uk . Therefore, thanks to Lemma 2.13, τ does not act by
zero on Vµ.

It remains to check that τ acts by zero on Vµ with l(µ(k)) ≤ 1 whenever
(1+q−2)uk 6= ui +u j for all i, j. Let t be a standard tableau of shape µ. If 1 and 2
are in the same component of the tableau t, then either 1 and 2 are in the same row
and T1 acts on vt by multiplication by q , either 1 and 2 are in the same column and
X1+ X2 acts on t by multiplication by (1+ q−2)uk . The second case is possible
only if there exists i, j such that (1+ q−2)uk = ui + u j and then τ acts by zero.
If 1 and 2 are in two different Young diagrams and X1+ X2 acts on t by uk + ul ,
where k (resp. l) is such that t(1, 1, k) = 1 (resp. t(1, 1, l) = 2). In both cases, τ
acts by zero. �

Theorem 2.15. Suppose that H(d, n) is semisimple and that for every i, j, k we
have (1+ q−2)uk 6= ui + u j . The generalized blob algebra B(d, n) is isomorphic
to the quotient of H(d, n) by the two-sided ideal generated by τ .

Proof. Recall that we suppose that m1 = · · · =md = 1. Thanks to Proposition 2.14,
the element τ is in the kernel of the surjection

H(d, n)�
∏
µ∈Pn

m

Endk(Vµ).
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Therefore, we have a surjection H(d, n)/H(d, n)τH(d, n)� B(d, n). Once again,
thanks to Proposition 2.14, the simple modules of H(d, n)/H(d, n)τH(d, n) are
exactly the Vµ withµ∈Pn

m which shows that the above surjection is an isomorphism.
�

3. Quantum glm, parabolic Verma modules and tensor products

We recall the definition of the quantum enveloping algebra of glm , and we also recall
some basic properties of its modules, e.g., concerning parabolic Verma modules.

3A. The quantum enveloping algebra of glm. Let q be an indeterminate. The
following definition of Uq(glm) is over the field Q(q), but, via scalar extension, we
will also consider it over a field containing Q(q) without further notice.

Definition 3.1. The quantum enveloping algebra Uq(glm) is the Q(q)-algebra with
generators L±1

i , E j and F j , for 1≤ i ≤ m and 1≤ j ≤ m− 1 with the relations

L±1
i L∓1

i = 1, L i L j = L j L i , L i E j = qδi, j−δi, j+1 E j L i ,

L i F j = q−δi, j+δi, j+1 F j L i , [Ei , F j ] = δi, j
L i L−1

i+1−L−1
i L i+1

q−q−1 ,

and the quantum Serre relations

Ei E j = E j Ei if |i − j |> 1, E2
i Ei±1− (q + q−1)Ei Ei±1 Ei + Ei±1 E2

i = 0,

Fi F j = F j Fi if |i − j |> 1, F2
i Fi±1− (q + q−1)Fi Fi±1 Fi + Fi±1 F2

i = 0.

We endow it with a structure of a Hopf algebra, with comultiplication1, counit ε
and antipode S given on generators by the following:

1(L i )= L i ⊗ L i , ε(L i )= 1, S(L i )= L−1
i ,

1(Ei )= Ei ⊗ 1+ L i L−1
i+1⊗ Ei , ε(Ei )= 0, S(Ei )= − L−1

i L i+1 Ei ,

1(Fi )= Fi ⊗ L−1
i L i+1+ 1⊗ Fi , ε(Fi )= 0, S(Fi )= − Fi L i L−1

i+1.

Set Uq(glm)
0 as the subalgebra generated by (L i )1≤i≤m , and Uq(glm)

≥0 as the
subalgebra generated by (L i , E j )1≤i≤m,1≤ j≤m−1.

We denote by P =
⊕m

i=1 Zεi the weight lattice of glm with Z-basis given by the
fundamental weights ($i )1≤i≤m where $i = ε1 + · · · + εi . We denote by Q the
root lattice with Z-basis given by the simple roots (αi )1≤i≤d−1 where αi = εi−εi+1.
Denote by 8+ the set of positive roots, by P+ the set of dominant weights for glm ,
that is µ =

∑m
i=1 µiεi with µ1 ≥ µ2 ≥ · · · ≥ µm . We also endow P with the

standard nondegenerate bilinear form: 〈εi , ε j 〉 = δi, j . The symmetric group Sm

acts on P by permuting the coordinates and leaves the bilinear form 〈 · , · 〉 invariant.
Finally, let ρ be the half-sum of the positive roots.
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We will often work with extensions Z[β1, . . . , βk] ⊗Z P , where the βi ’s are
indeterminates and we also extend the bilinear form 〈 · , · 〉 to Z[β1, . . . , βk]⊗Z P.

3B. Weights and parabolic Verma modules. Suppose that our field k contains the
field Q(q) and let M be an Uq(glm)-module over the ground field k. An element
v ∈ M is said to be a weight vector if L iv = ϕ(εi )v, where ϕ : P → k is the
corresponding weight. The module M is said to be a weight module if the action
of the elements L1, . . . , Lm is simultaneously diagonalizable. A highest weight
module is a weight module M such that M =Uq(glm)v, where v is a weight vector
such that Eiv = 0 for 1≤ i ≤ m− 1.

It is well-known that finite-dimensional weight Uq(glm)-modules of type 1 are
parametrized by the set P+ of dominant weights.

In this paper, we will be interested in modules over the field Q(q, λ1, . . . , λk),
where λi = qβi is an indeterminate (recall that q is formal and so qβi is also formal).
Moreover, we only consider type 1 modules, where the weights are of the form

ϕ(ν)= q〈µ,ν〉,

for some µ ∈ Z[β1, . . . , βk]⊗Z P and for all ν ∈ P.

We now turn to parabolic Verma modules. Let p be a standard parabolic subalge-
bra of glm with Levi factor l= glm1

× · · ·× glmd
, where mi ≥ 1 and

∑d
i=1 mi = m.

Denote by I the set {m̃i | 1≤ i ≤ d − 1}, where m̃i = m1+ . . .+mi , so that Uq(l)

is generated by L i , E j and F j for 1≤ i ≤ m and j 6∈ I and Uq(p) is generated by
L i , E j and Fk for 1 ≤ i ≤ m, 1 ≤ j ≤ m − 1 and k 6∈ I. Denote by P+i the set of
dominant weights for glmi

. We identify the set P+1 × · · ·× P+d with the dominant
weights P+l of l by the map

(µ(1), . . . , µ(d))→

d∑
i=1

( mi∑
j=1

µ
(i)
j εm̃i−1+ j

)
.

For a dominant weight µ ∈ P+l , we have an simple integrable finite-dimensional
Uq(l)-module V l(3,µ) of highest weight

3µ =

d∑
i=1

( mi∑
j=1

(βi +µ
(i)
j )εm̃i−1+ j

)
.

Indeed, one can check that 〈3µ, αi 〉 ∈ N for any i 6∈ I. We turn this Uq(l)-module
into a Uq(p)-module by setting Ei V l(3,µ)= 0 for all i ∈ I. Then the parabolic
Verma module Mp(3,µ) is

Mp(3,µ)=Uq(glm)⊗Uq (p) V l(3,µ).
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It is a highest weight module of highest weight 3µ. If µ= 0, then we will simply
denote this module by Mp(3) and its highest weight by 3.

Lemma 3.2. For any µ ∈ P+l , the parabolic Verma module Mp(3,µ) is simple.

Proof. Since for any i ∈ I the scalar product 〈3µ, αi 〉 is not an integer, as one easily
checks, the claim follows. �

Remark 3.3. If the parabolic subalgebra p is the Borel subalgebra b of upper
triangular matrices, we have Uq(p)=Uq(glm)

≥0 and the parabolic Verma module
Mb(3) is the universal Verma module. The adjective universal means that any
parabolic Verma module can be obtained from Mb(3) by specialization of the
parameters.

In the rest of this article, all dominant weights µ ∈ P+l will satisfy µ(i)mi ≥ 0
for all 1 ≤ i ≤ d, and it will be convenient to identify such a weight µ with the
corresponding d-partition in Pn

m . We will use the same notation µ to denote the
d-partition or the corresponding dominant weight.

We also denote by V the standard representation of glm of dimension m. Ex-
plicitly, this is a highest weight module with highest weight ε1, it has as a basis
v1, . . . , vm and the action of Uq(glm) is given by

L i · v j = qδi, jv j , Ei · v j = δi+1, jv j−1 and Fi · v j = δi, jv j+1.

3C. Tensor products and branching rule. As Uq(glm) is a Hopf algebra, its cate-
gory of modules can be endowed with a tensor product. Explicitly, given M and N
two modules over a ground ring R, the action of the generators on M⊗R N is given
using the comultiplication: for all v ∈ M and w ∈ N, we have

L i · (v⊗w)= L i · v⊗ L i ·w,

Ei · (v⊗w)= Ei · v⊗w+ L i L−1
i+1 · v⊗ Ei ·w,

Fi · (v⊗w)= Fi · v⊗ L−1
i L−1

i+1 ·w+ v⊗ Fi ·w.

We will write ⊗ instead of ⊗R to simplify the notation. Since we will be
interested in the endomorphism algebra of Mp(3)⊗V⊗n, we start by understanding
the decomposition of this module.

Proposition 3.4. For any µ ∈ Pn
l , there is an isomorphism of Uq(glm)-modules

Mp(3,µ)⊗ V '
⊕
ν∈Pn+1

l

Mp(3, ν),

where the sum is over all ν ∈ Pn+1
l whose Young diagram is obtained from the

Young diagram of µ by adding one addable box.
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Proof. We start by showing that Mp(3,µ)⊗V has a filtration given by the Mp(3, ν)

as in the statement. First, we have the following tensor identity:(
Uq(glm)⊗Uq (p) V l(3,µ)

)
⊗ V 'Uq(glm)⊗Uq (p) (V

l(3,µ)⊗ V ).

Noticing that L 7→ Uq(glm) ⊗Uq (p) L is an exact functor from the category of
finite-dimensional Uq(p)-modules to the category of Uq(glm)-modules, it remains
to show that

V l(3,µ)⊗ V '
⊕
ν∈Pn+1

l

V l(3, ν),

where the sum is over all ν ∈ Pn+1
l whose Young diagram is obtained from the

Young diagram of µ by adding one addable box. This follows from the usual
branching rule for Uq(glmi

)-modules.
To show that the sum is direct, we use arguments from the infinite-dimensional

representation theory of Lie algebras. We consider the usual category O for Uq(glm)

[Mazorchuk 2012, Chapter 4]. We then show that each Mp(3, ν) lie in a different
block of the category O, which then implies that the sum is direct.

First, as Mp(3, ν) is a quotient of the universal Verma module Mb(3ν), these
two modules share the same central character. Therefore Mp(3, ν) and Mp(3, ν ′)

are in the same block if and only if the central characters afforded by Mb(3ν) and
Mb(3ν′) are the same. But these central characters are equal if and only if 3ν
and 3ν′ are in the same orbit for the dot action of the symmetric group, which is
the usual action of the symmetric group shifted by the sum of simple roots ρ.

We obtain that Mp(3, ν) and Mp(3, ν ′) are in the same block if and only if
there exists w ∈Sm such that

w ·3ν =3ν′ .

Now, suppose that Mp(3, ν) and Mp(3, ν ′) are in the same block. Since the dot
action satisfies w · (η+γ )=w ·η+w(γ ), we deduce that w(3)=3 so that w lies
in Sm1 ×· · ·×Smd . Then, writing w = (w1, . . . , wd), we find that wi · ν

(i)
= ν ′(i)

for every 1≤ i ≤ d . Since both ν(i) and ν ′(i) are dominant weights, we deduce that
ν(i) = ν ′(i) for every 1 ≤ i ≤ d. Indeed, each orbit for the dot action contains a
unique dominant weight.

Hence if ν 6= ν ′, the parabolic Verma modules Mp(3, ν) and Mp(3, ν ′) are in
different blocks of the category O. �

Using the previous proposition and induction, one shows the following corollary.

Corollary 3.5. There is an isomorphism

Mp(3)⊗ V⊗n
'

⊕
µ∈Pn

l

M(3,µ)nµ,
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where nµ is the number of paths from the empty d-partition to µ in the Young lattice
of d-multipartitions.

3D. Braiding and an action of the Artin–Tits group of type B. The quantized
enveloping algebra (or rather a completion of the tensor product with itself) contains
an element, called the quasi-R-matrix, which is a crucial tool in defining a braiding
on a subcategory of the Uq(glm)-modules. Since there are several possible braidings,
we make our choice explicit and refer to [Chari and Pressley 1994, 10.1.D] for
more details.

In a completion of Uq(glm)⊗Uq(glm), we define an element 2 by

2=
∏
α∈8+

( +∞∑
n=0

q
1
2 (n(n−1)) (q − q−1)n

[n]!
En
α ⊗ Fn

α

)
,

where

[n]! =
n∏

i=1

q i
− q−i

q − q−1

and Eα, Fα are the root vectors associated to a positive root α. If M and N are two
Uq(glm) type 1 weight modules over the ground ring Q(q, λ1, . . . , λd−1) where
Uq(glm)

>0 act locally nilpotently, 2 induces an isomorphism of vector spaces
2M,N : M ⊗ N → M ⊗ N. We then define a morphism of Uq(glm)-modules

cM,N : M ⊗ N → N ⊗M,

by
cM,N = τ ◦ f ◦2M,N ,

where τ is the flip v⊗w 7→ w⊗ v and f is the map v⊗w 7→ q〈µ,ν〉v⊗w if v
and w are of respective weights µ and ν. This endows the category of type 1 weight
modules on which Uq(glm)

>0 acts locally nilpotently with a braiding. In particular,
we have the hexagon equation:

cL⊗M,N=(cL ,N⊗IdM)◦(IdL⊗cM,N ) and cL ,M⊗N=(IdM⊗cL ,N )◦(cL ,M⊗IdN ).

Let Bn be the Artin–Tits braid group of type Bn . It has the following presentation
in terms of generators and relations:

Bn =

〈
τ0, τ1, . . . , τn−1

∣∣∣∣∣ τ0τ1τ0τ1 = τ1τ0τ1τ0,

τiτ j = τ jτi if |i − j |> 1,
τiτi+1τi = τi+1τiτi+1 for 1≤ i ≤ n− 2

〉
.

Using the braiding, we define the following endomorphisms of M ⊗ N⊗n:

R0 = (cN ,M ◦ cM,N )⊗ IdN⊗n−1,

Ri = IdM⊗N⊗i−1 ⊗cN ,N ⊗ IdN⊗n−i−1 for 1≤ i ≤ n− 1.
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Pictorially, one can represent these endomorphisms as

R0 =

NM N

. . .

N

and Ri =

M N

. . .

NN

. . .

N

i

Proposition 3.6. The assignment τi 7→ Ri defines an action of Bn on the module
M ⊗ N⊗n which commutes with the Uq(glm) action.

Proof. The fact that Ri is a Uq(glm)-morphism follows by definition of Ri . The
fact that the defining relations of Bn are satisfied follows from the embedding of
the braid group of type Bn into the braid group of type An+1 [Iohara et al. 2018,
Lemma 2.1]. �

Finally, we end this section with a lemma due to Drinfeld [1990, Proposition 5.1
and Remark 4) below] computing the action of the double braiding on highest
weight modules, which is related with the action of the ribbon element.

Lemma 3.7. Let L ,M and N be highest weight modules of respective highest
weight λ,µ and ν such that L ⊂ M ⊗ N. Then the double braiding cN ,M ◦ cM,N

restricted to N acts by multiplication by the scalar

q〈λ,λ+2ρ〉−〈µ,µ+2ρ〉−〈ν,ν+2ρ〉.

4. The endomorphism algebra of Mp(3) ⊗ V⊗n

The aim of this section is to prove the main result of this paper. We first explain
why Mp(3)⊗ V⊗n inherits an action of the Ariki–Koike algebra from the action
of the braid group of type Bn . It is a classical result that the eigenvalues of Ri are
q and −q−1: the action of the braiding on V ⊗ V is

vi ⊗ v j 7→


qv j ⊗ vi if i = j,
v j ⊗ vi if i > j,

v j ⊗ vi + (q − q−1)vi ⊗ v j if i < j.

Further, using Lemma 3.7, we easily compute the eigenvalues of the endomorphism
R0 in order to show that the action of Bn factors through the Ariki–Koike algebra.

Lemma 4.1. The eigenvalues u1, . . . , ud of R0 on Mp(3)⊗ V are equal to

ui = (λi q−m̃i−1)2.
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Proof. Let 3 be the highest weight of Mp(3). The decomposition of Mp(3)⊗ V
is given in Proposition 3.4:

Mp(3)⊗ V '
d⊕

i=1

Mp(3,µi ),

where µi is the d-partition of 1 whose only nonzero component is the i-th one and
is equal to (1). The highest weight of Mp(3,µi ) being 3+ εm̃i−1+1, the action of
R0 on Mp(3,µi ) is given by

q〈3+εm̃i−1+1,3+εm̃i−1+1+2ρ〉−〈3,3+2ρ〉−〈ε1,ε1+2ρ〉,

and we check that

〈3+εm̃i−1+1,3+εm̃i−1+1+2ρ〉−〈3,3+2ρ〉−〈ε1, ε1+2ρ〉 = 2(βi−m̃i−1). �

By the definition of the Ariki–Koike algebra, Proposition 3.6 and the previous
lemma we thus get an action of the Ariki–Koike algebra for the parameters ui =

(λi q−m̃i−1)2 on Mp(3) ⊗ V⊗n. Therefore, the assignment Ti 7→ Ri defines a
morphism of algebras

H(d, n)→ EndUq (glm)(M
p(3)⊗ V⊗n).

Theorem 4.2.

• The algebra morphism H(d, n)→EndUq (glm)(M
p(3)⊗V⊗n) is surjective and

factors through an isomorphism

Hm(d, n) '−→ EndUq (glm)(M
p(3)⊗ V⊗n).

• There is an isomorphism of H(d, n)⊗Uq(glm)-module

Mp(3)⊗ V⊗n
'

⊕
µ∈Pn

m

Vµ⊗Mp(3,µ).

Proof. The first part of the theorem follows immediately from the second part and
the definition of the row-quotient Hm(d, n).

Using Corollary 3.5 and the fact that H(d, n) acts on Mp(3)⊗V⊗n by Uq(glm)-
linear endomorphisms, we see that

Mp(3)⊗ V⊗n
'

⊕
µ∈Pn

l

Ṽµ⊗Mp(3,µ),

for some H(d, n)-modules Ṽµ. Since the multiplicity of Mp(3,µ) in Mp(3)⊗V⊗n

is given by the number of paths in the Young lattice from the empty d-partition to
the d-partition µ, we have dim(Ṽµ)= dim(Vµ). Showing that Vµ is a submodule
of Ṽµ will end the proof of the second part of the theorem.
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Let t be a standard Young tableau of shape µ and denote by (ai , bi , ci )= t−1(i).
Denote by µ[i] the d-partition of i obtained by adding the boxes labeled by 1 to i
in the chosen standard tableau t to the empty d-partition. We now choose a highest
weight vector v ∈ Mp(3)⊗ V⊗n of weight 3µ such that for all 1≤ i ≤ n we have

v ∈ Mp(3,µ[i])⊗ V⊗(n−i)
⊂ Mp(3)⊗ V⊗n.

Using the branching rule, one see that such a vector exists and is unique up to a
scalar. Let us show that this vector v is a common eigenvector of the Jucys–Murphy
elements X i . It is easy to see that the action of the Jucys–Murphy element X i on
Mp(3)⊗ V⊗n is given by the double braiding

(cV,Mp(3)⊗V⊗(i−1) ◦ cMp(3)⊗V⊗(i−1),V )⊗ IdV⊗(n−i) .

By Lemma 3.7, we obtain that X i acts on v by multiplication by

q〈3µ[i],3µ[i]+2ρ〉−〈3µ[i−1],3µ[i−1]+2ρ〉−〈ε1,ε1+2ρ〉.

Indeed, v lies in the summand

Mp(3,µ[i])⊗ V⊗(n−i)
⊂ Mp(3,µ[i − 1])⊗ V ⊗ V⊗(n−i)

of Mp(3)⊗ V⊗n. But 3µ[i] =3µ[i−1]+ εki , where ki = m̃ci−1 + ai so that

〈3µ[i],3µ[i]+ 2ρ〉− 〈3µ[i−1],3µ[i−1]+ 2ρ〉− 〈ε1, ε1+ 2ρ〉

= 2〈3µ[i−1], εki 〉+ 2(1− ki )= 2(βci + bi − ki ),

since the component of 3µ[i−1] on εki is βci + (bi − 1). Therefore, X i acts on v by
multiplication by

(λci q
bi−ki )2 = uci q

2(bi−ai ).

Therefore, the H(d, n) submodule spanned by v is isomorphic to Vµ and then Vµ
is a submodule of Ṽµ. �

4A. Some particular cases. We finish by giving some special cases of Theorem 4.2
in order to recover various well-known algebras. The two first special cases involve
the well-known situation without a parabolic Verma module: it suffices to note that,
if p= glm , then Mp(3) is the trivial module.

Corollary 4.3. If the parabolic subalgebra p is glm and m ≥ n, then the endomor-
phism algebra of Mp(3)⊗ V⊗n is isomorphic to Hecke algebra of type A.

Corollary 4.4. If the parabolic subalgebra p is glm and m = 2, then the endo-
morphism algebra of Mp(3)⊗ V⊗n is isomorphic to Temperley–Lieb algebra of
type A.

We now turn to special cases where p is a strict subalgebra of glm . The following
corollary follows from Remark 2.12.
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Corollary 4.5. For p such that m ≥ nd and mi ≥ n for all 1≤ i ≤ d , the endomor-
phism algebra of Mp(3)⊗ V⊗n is isomorphic to the Ariki–Koike algebra H(d, n).

The Hecke algebra of type B with unequal parameters appears when we work
with a standard parabolic subalgebra p with Levi factor glm1

× glm2
.

Corollary 4.6. If the parabolic subalgebra p is such that d = 2, m1≥ n and m2≥ n,
then the endomorphism algebra of Mp(3)⊗V⊗n is isomorphic to the Hecke algebra
of type B with unequal and algebraically independent parameters.

Finally, the last special case is a generalization of the gl2 case of [Iohara et al.
2018], where we recover the generalized blob algebra.

Corollary 4.7. If the parabolic subalgebra p is the standard Borel subalgebra b

of glm , that is d = m and mi = 1 for 1≤ i ≤ d, then the endomorphism algebra of
M(3)⊗ V⊗n is isomorphic to the generalized blob algebra B(d, n).

5. Some remarks on the nonsemisimple case

This paper deals with the semisimple case, where the decomposition of Mp(3)⊗V⊗n

as the sum of simple modules is a crucial tool to compute its endomorphism algebra.
Nonsemisimple situations appear if q is no longer an indeterminate in the base
field k but a root of unity. If q and the parameters λ1, . . . , λd appearing in the
highest weight of Mp(3) are no longer algebraically independent, a nonsemisimple
situation may also appear. Indeed, the parabolic Verma module might not be simple
anymore as it is readily seen from the case of gl2. It is then natural to ask whether
it is possible to extend the Schur–Weyl duality to the nonsemisimple case. Let us
remark that if q is not a root of unity and if λiλ

−1
j 6∈ Z for all 1≤ i, j ≤ d then the

behavior is similar to the one described in the previous sections.
In order to define the action, we use an “integral version” of the algebras Uq(glm)

and H(d, n) and of the module Mp(3)⊗ V⊗n, compatible with the specialization
at a root of unity.

We start with the Ariki–Koike algebra. The definition given in Section 2A is valid
for any field k and any choice of parameters. Concerning the algebra Uq(glm), we
consider Lusztig’s integral from Ures

q (glm) over Z[q, q−1
]; see [Chari and Pressley

1994, Section 9.3]. It is also known that the quasi-R-matrix 2 is an element of (a
completion of) Ures

q (glm)⊗Ures
q (glm). Then for a base field k and any ξ ∈ k∗, the

quantum group Uξ (glm) is defined as k⊗Z[q,q−1]U
res
q (glm), where we see k as a

Z[q, q−1
]-module via the morphism sending q to ξ .

The parabolic Verma module Mp(3) is a highest weight module and we choose v3
a highest weight vector. We then have at our disposal an integral version, which is
the submodule generated over Ures

q (glm) by the highest weight v3. Its specialization
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at q = ξ will still be denoted Mp(3). Similarly, we have a version at q = ξ of the
standard module V, which has a well-known integral form.

Since the quasi-R-matrix 2 lies in the Lusztig’s integral form of the quantum
group, we can similarly use the braiding to define the endomorphisms R0, R1, . . . ,
Rn−1 of the Uξ (glm)-module Mp(3)⊗ V⊗n. As in the semisimple case, we have:

Proposition 5.1. Let k be a field, q ∈ k∗ and λ1, . . . , λd ∈ k. Then the assignment
Ti 7→ Ri is a morphism of algebras from H(d, n) to EndUξ (glm)(M

p(3)⊗ V⊗n).
The parameters ui of the Ariki–Koike algebra are still given by Lemma 4.1.

It is more difficult to understand the image of map

H(d, n)→ EndUξ (glm)(M
p(3)⊗ V⊗n),

and even harder to describe the image and the kernel of the map. Iohara, Lehrer
and Zhang [Iohara et al. 2018] studied the particular case of gl2 and p = b (this
corresponds to m=2 and d=2) and proved that if q is an indeterminate in k and that
λ1λ
−1
2 = ql for l ∈ Z, l ≥−1, then the map H(d, n)→ EndUq (glm)(M

p(3)⊗V⊗n)

is surjective [Iohara et al. 2018, Proposition 5.11].
In order to extend the Schur–Weyl duality form the semisimple case to a non-

semisimple case, a classical strategy [Doty 2009; Andersen et al. 2018] is to argue
that the dimensions of the various algebras, such as EndUξ (glm)(M

p(3)⊗ V⊗n) or
H(d, n), are independent of the base field k.

Following the arguments of [Andersen et al. 2018], a first step would be to
determine whether the parabolic Verma module Mp(3) is tilting in an appropriate
category O of infinite-dimensional Uq(glm)-modules. Since V is tilting and the
tensor product of tilting modules is tilting, having Mp(3) being tilting would mean
that Mp(3)⊗V⊗n is. Since the space of endomorphisms of a tilting module is flat,
its dimension does not depend on the base field k.

Concerning H(d, n), its definition is valid over the ring Z[q±1, u1, . . . , ud ] and
it is known that the basis given in Theorem 2.3 is a basis over this ring. This implies
that the dimension of the algebra H(d, n) is independent of the field k and the
choice of q ∈ k∗ and of u1, . . . , ud ∈ k.

Therefore, if Mp(3) is tilting in an appropriate category O of infinite-dimensional
Uq(glm)-modules, the map H(d, n)→ EndUξ (glm)(M

p(3)⊗V⊗n) would be surjec-
tive for any base field k.

If we want to consider the row-quotients Hm(d, n) of H(d, n), one must first
give a definition which does not rely on the semisimplicity of the algebra H(d, n)
so that the map H(d, n)→ EndUξ (glm)(M

p(3)⊗ V⊗n) factors through Hm(d, n)
and then study the existence of an integral basis of Hm(d, n).

Let us stress that these arguments depend heavily on Mp(3) being tilting and
on the existence of an integral basis of Hm(d, n). One may need some extra
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assumptions on the field k, as for example being infinite, or on the parameters of
the parabolic Verma module. This nonsemisimple behavior deserves further study,
which was outside the scope of this paper.
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[Balagović et al. 2020] M. Balagović, Z. Daugherty, I. Entova-Aizenbud, I. Halacheva, J. Hennig,
M. S. Im, G. Letzter, E. Norton, V. Serganova, and C. Stroppel, “The affine VW supercategory”,
Selecta Math. (N.S.) 26:2 (2020), Paper No. 20, 42. MR Zbl

[Bao et al. 2018] H. Bao, W. Wang, and H. Watanabe, “Multiparameter quantum Schur duality of
type B”, Proc. Amer. Math. Soc. 146:8 (2018), 3203–3216. MR Zbl

[Broué and Malle 1993] M. Broué and G. Malle, “Zyklotomische Heckealgebren”, pp. 119–189 in
Représentations unipotentes génériques et blocs des groupes réductifs finis, Astérisque 212, Soc.
math. de France, Paris, 1993. MR Zbl

[Chari and Pressley 1994] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ.
Press, 1994. MR Zbl

[Chari and Pressley 1996] V. Chari and A. Pressley, “Quantum affine algebras and affine Hecke
algebras”, Pacific J. Math. 174:2 (1996), 295–326. MR Zbl

[Cherednik 1987] I. V. Cherednik, “A new interpretation of Gel’fand–Tzetlin bases”, Duke Math. J.
54:2 (1987), 563–577. MR

[Daugherty and Ram 2018] Z. Daugherty and A. Ram, “Two boundary Hecke algebras and combina-
torics of type C”, 2018. arXiv 1804.10296v1

[Doty 2009] S. Doty, “Schur–Weyl duality in positive characteristic”, pp. 15–28 in Representation
theory, edited by Z. Lin and J. Wang, Contemp. Math. 478, Amer. Math. Soc., Providence, RI, 2009.
MR Zbl

[Drinfeld 1990] V. G. Drinfeld, “On almost cocommutative Hopf algebras”, Leningrad Math. J. 1:2
(1990), 321–342. MR

[Geck and Jacon 2011] M. Geck and N. Jacon, Representations of Hecke algebras at roots of unity,
Algebra and Applications 15, Springer, 2011. MR Zbl

http://dx.doi.org/10.2140/pjm.2018.292.21
http://dx.doi.org/10.2140/pjm.2018.292.21
http://msp.org/idx/mr/3708257
http://msp.org/idx/zbl/1425.17005
http://dx.doi.org/10.1006/jabr.1994.1280
http://msp.org/idx/mr/1296590
http://msp.org/idx/zbl/0833.16009
http://dx.doi.org/10.1006/aima.1994.1057
http://dx.doi.org/10.1006/aima.1994.1057
http://msp.org/idx/mr/1279219
http://msp.org/idx/zbl/0840.20007
http://dx.doi.org/10.1006/jabr.1995.1354
http://dx.doi.org/10.1006/jabr.1995.1354
http://msp.org/idx/mr/1359891
http://msp.org/idx/zbl/0841.20016
http://dx.doi.org/10.1007/s00029-020-0541-4
http://msp.org/idx/mr/4073971
http://msp.org/idx/zbl/07186761
http://dx.doi.org/10.1090/proc/13749
http://dx.doi.org/10.1090/proc/13749
http://msp.org/idx/mr/3803649
http://msp.org/idx/zbl/1431.17006
http://msp.org/idx/mr/94m:20095
http://msp.org/idx/zbl/0835.20064
http://msp.org/idx/mr/1300632
http://msp.org/idx/zbl/0839.17009
http://dx.doi.org/10.2140/pjm.1996.174.295
http://dx.doi.org/10.2140/pjm.1996.174.295
http://msp.org/idx/mr/1405590
http://msp.org/idx/zbl/0881.17011
http://dx.doi.org/10.1215/S0012-7094-87-05423-8
http://msp.org/idx/mr/899405
http://msp.org/idx/arx/1804.10296v1
http://dx.doi.org/10.1090/conm/478/09316
http://msp.org/idx/mr/2513263
http://msp.org/idx/zbl/1176.20048
http://msp.org/idx/mr/1025154
http://dx.doi.org/10.1007/978-0-85729-716-7
http://msp.org/idx/mr/2799052
http://msp.org/idx/zbl/1232.20008


SCHUR–WEYL DUALITY AND VERMA MODULES 133

[Iohara et al. 2018] K. Iohara, G. Lehrer, and R. Zhang, “Schur–Weyl duality for certain infinite
dimensional Uq(sl2)-modules”, 2018. arXiv 1811.01325v2

[Jimbo 1986] M. Jimbo, “A q-analogue of U (gl(N + 1)), Hecke algebra, and the Yang–Baxter
equation”, Lett. Math. Phys. 11:3 (1986), 247–252. MR Zbl

[Kazhdan and Lusztig 1993] D. Kazhdan and G. Lusztig, “Tensor structures arising from affine Lie
algebras, I, II”, J. Amer. Math. Soc. 6:4 (1993), 905–947, 949–1011. MR Zbl

[Kazhdan and Lusztig 1994] D. Kazhdan and G. Lusztig, “Tensor structures arising from affine Lie
algebras, III, IV”, J. Amer. Math. Soc. 7:2 (1994), 335–381, 383–453. MR

[Lacabanne et al. 2020] A. Lacabanne, G. Naisse, and P. Vaz, “Tensor product categorifications,
Verma modules and the blob 2-category”, 2020. To appear in Quantum Topol. arXiv 2005.06257v1

[Martin and Saleur 1994] P. Martin and H. Saleur, “The blob algebra and the periodic Temperley–Lieb
algebra”, Lett. Math. Phys. 30:3 (1994), 189–206. MR Zbl

[Martin and Woodcock 2003] P. P. Martin and D. Woodcock, “Generalized blob algebras and alcove
geometry”, LMS J. Comput. Math. 6 (2003), 249–296. MR Zbl

[Mazorchuk 2012] V. Mazorchuk, Lectures on algebraic categorification, European Mathematical
Society, Zürich, 2012. MR Zbl

[Rose and Tubbenhauer 2019] D. E. V. Rose and D. Tubbenhauer, “HOMFLYPT homology for links in
handlebodies via type A Soergel bimodules”, 2019. To appear in Quantum Topol. arXiv 1908.06878v1

[Rouquier et al. 2016] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot, “Categorifications and
cyclotomic rational double affine Hecke algebras”, Invent. Math. 204:3 (2016), 671–786. MR Zbl

[Sakamoto and Shoji 1999] M. Sakamoto and T. Shoji, “Schur–Weyl reciprocity for Ariki–Koike
algebras”, J. Algebra 221:1 (1999), 293–314. MR Zbl

Received April 14, 2020. Revised January 12, 2021.

ABEL LACABANNE

INSTITUT DE RECHERCHE EN MATHÉMATIQUE ET PHYSIQUE

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

LOUVAIN-LA-NEUVE

BELGIUM

abel.lacabanne@uclouvain.be

PEDRO VAZ

INSTITUT DE RECHERCHE EN MATHÉMATIQUE ET PHYSIQUE

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

LOUVAIN-LA-NEUVE

BELGIUM

pedro.vaz@uclouvain.be

http://msp.org/idx/arx/1811.01325v2
http://dx.doi.org/10.1007/BF00400222
http://dx.doi.org/10.1007/BF00400222
http://msp.org/idx/mr/841713
http://msp.org/idx/zbl/0602.17005
http://dx.doi.org/10.2307/2152745
http://dx.doi.org/10.2307/2152745
http://msp.org/idx/mr/1186962
http://msp.org/idx/zbl/0786.17017
http://dx.doi.org/10.2307/2152762
http://dx.doi.org/10.2307/2152762
http://msp.org/idx/mr/1239506
http://msp.org/idx/arx/2005.06257v1
http://dx.doi.org/10.1007/BF00805852
http://dx.doi.org/10.1007/BF00805852
http://msp.org/idx/mr/1267001
http://msp.org/idx/zbl/0799.16005
http://dx.doi.org/10.1112/S1461157000000450
http://dx.doi.org/10.1112/S1461157000000450
http://msp.org/idx/mr/2051586
http://msp.org/idx/zbl/1080.20004
http://dx.doi.org/10.4171/108
http://msp.org/idx/mr/2918217
http://msp.org/idx/zbl/1238.18001
http://msp.org/idx/arx/1908.06878v1
http://dx.doi.org/10.1007/s00222-015-0623-7
http://dx.doi.org/10.1007/s00222-015-0623-7
http://msp.org/idx/mr/3502064
http://msp.org/idx/zbl/1347.20004
http://dx.doi.org/10.1006/jabr.1999.7973
http://dx.doi.org/10.1006/jabr.1999.7973
http://msp.org/idx/mr/1722914
http://msp.org/idx/zbl/0957.17022
mailto:abel.lacabanne@uclouvain.be
mailto:pedro.vaz@uclouvain.be


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2021 is US $520/year for the electronic version, and $705/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2021 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 311 No. 1 March 2021

1Integrability of quotients in Poisson and Dirac geometry
DANIEL ÁLVAREZ

33The σ2 Yamabe problem on conic spheres, II: Boundary compactness
of the moduli

HAO FANG and WEI WEI

53Embeddings of maximal tori in groups of type F4

ANDREW FIORI and FEDERICO SCAVIA

89Distinguished cuspidal representations over p-adic and finite fields
JEFFREY HAKIM

113Schur–Weyl duality, Verma modules, and row quotients of
Ariki–Koike algebras

ABEL LACABANNE and PEDRO VAZ

135Conjugacy class numbers and π -subgroups
GUNTER MALLE, GABRIEL NAVARRO and GEOFFREY R.
ROBINSON

165MacLane–Vaquié chains of valuations on a polynomial ring
ENRIC NART

197The length and depth of associative algebras
DAMIAN SERCOMBE and ANER SHALEV

221Regular irreducible representations of classical groups over finite
quotient rings

KOICHI TAKASE

Pacific
JournalofM

athem
atics

2021
Vol.311,N

o.1


	1. Introduction
	1A. In this paper
	1B. Connection to other works

	2. Ariki–Koike algebras, row quotients and generalized blob algebras
	2A. Reminders on Ariki–Koike algebras
	2B. Modules over Ariki–Koike algebras
	2B1. d-partitions and the Young lattice
	2B2. Constructing the simple modules

	2C. Row quotients of H(d,n) and generalized blob algebras
	2C1. Generalized blob algebras


	3. Quantum glm, parabolic Verma modules and tensor products
	3A. The quantum enveloping algebra of glm
	3B. Weights and parabolic Verma modules
	3C. Tensor products and branching rule
	3D. Braiding and an action of the Artin–Tits group of type B

	4. The endomorphism algebra of Mp(Lambda)Vn
	4A. Some particular cases

	5. Some remarks on the nonsemisimple case
	Acknowledgments
	References
	
	

