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We define two functors from Elias and Khovanov’s diagrammatic Soergel category, one targeting
Clark-Morrison-Walker’s category of disoriented sl(2) cobordisms and the other targeting the
category of (universal) sl(3) foams.

1. Introduction

In this paper we define functors between the Elias-Khovanov diagrammatic version of the
Soergel category SC defined in [1] and the categories of universal sl(2) and sl(3) foams
defined in [2, 3].

The Soergel category provides a categorification of the Hecke algebra and was used by
Khovanov in [4] to construct a triply-graded link homology categorifying the HOMFLYPT
polynomial. Elias and Khovanov constructed in [1] a category defined diagrammatically by
generators and relations and showed it to be equivalent to SC.

The sl(2) and sl(3) foams were introduced in [2, 5] and in [3, 6], respectively, to give
topological constructions of the sl(2) and sl(3) link homologies.

This paper can be seen as a first step towards the construction of a family of functors
between SC and the categories of sl(N)-foams for all N ∈ Z+, to be completed in a
subsequent paper [7]. The functors Fsl(2),n and Fsl(3),n are not faithful. In [7] we will extend
the construction of these functors to all N. The whole family of functors is faithful in the
following sense: if for a morphism f in SC1 we have Fsl(N),n(f) = 0 for all N, then f = 0.
With these functors one can try to give a graphical interpretation of Rasmussen’s [8] spectral
sequences from the HOMFLYPT link homology to the sl(N)-link homologies.

The plan of the paper is as follows. In Section 2 we give a brief description of Elias
and Khovanov’s diagrammatic Soergel category. In Section 3 we describe the category Foam2
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of sl(2) foams and construct a functor from SC to Foam2. Finally in Section 4 we give the
analogue of these results for the case of sl(3) foams.

We have tried to keep this paper reasonably self-contained. Although not mandatory,
some acquaintance with [1–3, 9] is desirable.

2. The Diagrammatic Soergel Category Revisited

This section is a reminder of the diagrammatics for Soergel categories introduced by Elias
and Khovanov in [1]. Actually we give the version which they explained in [1, Section 4.5]
and which can be found in detail in [9].

Fix a positive integer n. The categorySC1 is the category whose objects are finite length
sequences of points on the real line, where each point is colored by an integer between 1 and
n. We read sequences of points from left to right. Two colors i and j are called adjacent if
|i − j| = 1 and distant if |i − j| > 1. The morphisms of SC1 are given by generators modulo
relations. A morphism of SC1 is a C-linear combination of planar diagrams constructed by
horizontal and vertical gluings of the following generators (by convention no label means a
generic color j).

(i) Generators involving only one color are as follows:

EndDot StartDot Merge Split

(2.1)

It is useful to define the cap and cup as

≡
≡ (2.2)

(ii) Generators involving two colors are as follows:

- The 4-valent vertex, with distant colors,

i j

(2.3)

- and the 6-valent vertex, with adjacent colors i and j

i j ij

(2.4)
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read from bottom to top. In this setting a diagram represents a morphism from the bottom
boundary to the top. We can add a new colored point to a sequence and this endows SC1

with a monoidal structure on objects, which is extended to morphisms in the obvious way.
Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.
”Isotopy” Relations.

= = (2.5)

= = (2.6)

= = (2.7)

= = (2.8)

= = (2.9)

The relations are presented in terms of diagrams with generic colorings. Because of
isotopy invariance, one may draw a diagram with a boundary on the side, and view it as a
morphism in SC1 by either bending the line up or down. By the same reasoning, a horizontal
line corresponds to a sequence of cups and caps.
One Color Relations.

= (2.10)

= 0 (2.11)
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+ = 2 (2.12)

Two Distant Colors.

= (2.13)

= (2.14)

= (2.15)

Two Adjacent Colors.

= + (2.16)

= − (2.17)

= (2.18)

=
1
2

− − (2.19)
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Relations Involving Three Colors: (Adjacency is determined by the vertices which appear)

= (2.20)

= (2.21)

= (2.22)

Introduce a q-grading on SC1 declaring that dots have degree 1, trivalent vertices have
degree −1 and 4-, and 6-valent vertices have degree 0.

Definition 2.1. The category SC2 is the category containing all direct sums and grading shifts
of objects in SC1 and whose morphisms are the grading-preserving morphisms from SC1.

Definition 2.2. The category SC is the Karoubi envelope of the category SC2.

Elias and Khovanov’s main result in [1] is the following theorem.

Theorem 2.3 (Elias-Khovanov). The category SC is equivalent to the Soergel category in [10].

From Soergel’s results from [10] we have the following corollary.

Corollary 2.4. The Grothendieck algebra of SC is isomorphic to the Hecke algebra.

Notice that SC is an additive category but not abelian and we are using the (additive)
split Grothendieck algebra.

In Sections 3 and 4 we will define functors from SC1 to the categories of sl(2) and sl(3)
foams. These functors are grading preserving, so they obviously extend uniquely to SC2. By
the universality of the Karoubi envelope, they also extend uniquely to functors between the
respective Karoubi envelopes.

3. The sl(2) Case

3.1. Clark-Morrison-Walker’s Category of Disoriented sl(2) Foams

In this subsection we review the category Foam2 of sl(2) foams following Clark et al.
construction in [2]. This category was introduced in [2] to modify Khovanov’s link homology
theory making it properly functorial with respect to link cobordisms. Actually we will use
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the version with dots of Clark-Morrison-Walker’s original construction in [2]. Recall that we
obtain one from the other by replacing each dot by 1/2 times a handle.

A disoriented arc is an arc composed by oriented segments with oppositely oriented
segments separated by a mark pointing to one of these segments. A disoriented diagram
consists of a collection D of disoriented arcs in the strip in R

2 bounded by the lines y = 0, 1
containing the boundary points ofD. We allow diagrams containing oriented and disoriented
circles. Disoriented diagrams can be composed vertically, which endows Foam2 with a
monoidal structure on objects. For example, the diagrams 1n and uj for (1 < j < n) are
disoriented diagrams:

1n =

1 2 n

· · · uj =

1 n

· · · · · ·

j j + 1

(3.1)

A disoriented cobordism between disoriented diagrams is a 2D cobordism which can be
decorated with dots and with seams separating differently oriented regions and such that the
vertical boundary of each cobordism is a set (possibly empty) of vertical lines. Disorientation
seams can have one out of two possible orientations which we identify with a fringe. We read
cobordisms from bottom to top. For example,

1 j

· · ·

n

· · ·
(3.2)

is a disoriented cobordism from 1n to uj .
Cobordism composition consists of placing one cobordism on top of the other and

the monoidal structure is given by vertical composition which corresponds to placing one
cobordism behind the other in our pictures. Let C[t] be the ring of polynomials in t with
coefficients in C.

Definition 3.1. The category Foam2 is the category whose objects are disoriented diagrams,
and whose morphisms are C[t]-linear combinations of isotopy classes of disoriented
cobordisms, modulo some relations:

(i) the disorientation relations

= i = −i (3.3)

= −i (3.4)
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= − (3.5)

where i is the imaginary unit,

(ii) and the Bar-Natan (BN) relations

= t (3.6)

= 0 = 1 (3.7)

= + (3.8)

which are only valid away from the disorientations.

The universal theory for the original Khovanov homology contains another parameter
h, but we have to put h = 0 in the Clark-Morrison-Walker’s cobordism theory over a field
of characteristic zero. Suppose that we have a cylinder with a transversal disoriented circle.
Applying (3.8) on one side of the disorientation circle followed by the disoriented relation
(3.3) gives a cobordism that is independent of the side chosen to apply (3.8) only if h = 0 over
a field of characteristic zero.

Define a q-grading on C[t] by q(1) = 0 and q(t) = 4. We introduce a q-grading on
Foam2 as follows. Let f be a cobordism with | • | dots and |b| vertical boundary components.
The q-grading of f is given by

q
(
f
)
= −χ

(
f
)
+ 2|•| + 1

2
|b|, (3.9)

where χ is the Euler characteristic. For example, the degree of a saddle is 1 while the degree
of a cap or a cup is −1. The category Foam2 is additive and monoidal. More details about
Foam2 can be found in [2].

3.2. The Functor Fsl(2),n

In this subsection we define a monoidal functorFsl(2),n between the categories SC and Foam2.
On Objects. Fsl(2),n sends the empty sequence to 1n and the one-term sequence (j) to uj with
Fsl(2),n(jk) given by the vertical composite ujuk.
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On Morphisms

(i) The empty diagram is sent to n parallel vertical sheets:

∅ �−→ · · ·

n − 1 n21

(3.10)

(ii) The vertical line colored j is sent to the identity cobordism of uj :

�−→ · · ·

j + 1j

j (3.11)

The remaining n−2 vertical parallel sheets on the r.h.s. are not shown for simplicity,
a convention that we will follow from now on.

(iii) The StartDot and EndDot morphisms are sent to saddle cobordisms:

�−→

j + 1j

j j �−→

j + 1j

(3.12)

(iv) Merge and Split are sent to cup and cap cobordisms:

�−→

j + 1j

j j �−→

j + 1j

(3.13)
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(v) The 4-valent vertex with distant colors is given as follows. For j + 1 < k we have

�−→

j + 1j

jk

· · · k + 1k

(3.14)

The case j > k + 1 is given by reflection in a horizontal plane.

(vi) The 6-valent vertices are sent to zero:

�−→ 0 (3.15)

Notice that Fsl(2),n respects the gradings of the morphisms. Taking the quotient of SC by the
6-valent vertex gives a diagrammatic category TL categorifying the Temperley-Lieb algebra.
According to [11] relations (2.16) and (2.17) can be replaced by a single relation in TL. The
functor Fsl(2),n descends to a functor between TL and Foam2.

Proposition 3.2. Fsl(2),n is a monoidal functor.

Proof. The assignment given by Fsl(2),n clearly respects the monoidal structures of SC1 and
Foam2. So we only need to show that Fsl(2),n is a functor, that is, it respects the relations (2.5)
to (2.22) of Section 2.

”Isotopy Relations”

Relations (2.5) to (2.8) are straightforward to check and correspond to isotopies of their
images under Fsl(2),n which respect the disorientations. Relation (2.9) is automatic since
Fsl(2),n sends all terms to zero. For the sake of completeness we show the first equality in
(2.5). We have

Fsl(2),n j =

j j + 1

∼= = Fsl(2),n j

j j + 1

(3.16)

One Color Relations

For relation (2.10) we have

Fsl(2),n ,∼= Fsl(2),n ∼= Fsl(2),n (3.17)
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where the first equivalence follows from relations (2.5) and (2.7) and the second from isotopy
of the cobordisms involved.

For relation (2.11) we have

Fsl(2),n
j

= = 0

j j + 1

by relations (3.3) and (3.7). (3.18)

Relation (2.12) requires some more work. We have

Fsl(2),n
j

j
= = −i

j j + 1 j j + 1

= −i
,

j j + 1 j j + 1

+

(3.19)

where the second equality follows from the disoriented relation (3.4) and the third follows
from the BN relation (3.8). We also have

Fsl(2),n j = = −i + i

j + 1j j + 1j j + 1j

(3.20)

and therefore

Fsl(2),n j = −2i

j + 1j

(3.21)
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Fsl(2),n j = −2i .

j + 1j

(3.22)

We thus have that

Fsl(2),n + Fsl(2),n = 2Fsl(2),n . (3.23)

Two Distant Colors

Relations (2.13) to (2.15) correspond to isotopies of the cobordisms involved and are
straightforward to check.

Adjacent Colors

We prove the case where “blue” corresponds to j and ”red“ corresponds to j+1. The relations
with colors reversed are proved the same way. To prove relation (2.16) we first notice that

Fsl(2),n ∼=

j + 1j j + 2

(3.24)

which means that

Fsl(2),n ∼=

j + 1j j + 2

(3.25)
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On the other side we have

Fsl(2), n ∼=

j + 1j j + 2

(3.26)

which, using isotopies and the disorientation relation (3.4) twice, can be seen to be equivalent
to

−

j + 1j j + 2

(3.27)

which equals

−Fsl(2),n . (3.28)

This implies that

0 = Fsl(2),n = Fsl(2),n + Fsl(2),n . (3.29)

We now prove relation (2.17). We have isotopy equivalences

Fsl(2),n ∼=

j + 1j j + 2

(3.30)
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Fsl(2),n ∼=

j + 1j j + 2

= −

j + 1j j + 2

(3.31)

Therefore we see that

0 = Fsl(2),n = Fsl(2),n + Fsl(2),n . (3.32)

The functor Fsl(2),n sends both sides of relation (2.18) to zero and so there is nothing to
prove here. To prove relation (2.19) we start with the equivalence

Fsl(2),n =

j + 1j j + 2

∼= −i

j + 1j j + 2

+ i

j + 1j j + 2

(3.33)
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which is a consequence of the neck-cutting relation (3.8) and the disorientation relations (3.3)
and (3.5). We also have

Fsl(2),n ∼= −i

j + 1j j + 2

+ i

.

j + 1j j + 2

(3.34)

Comparing with (3.21) and (3.22) and using the disoriented relation (3.5), we get

Fsl(2),n − Fsl(2),n =
1
2
Fsl(2),n − 1

2
Fsl(2),n . (3.35)

Relations Involving Three Colors

Functor Fsl(2),n sends to zero both sides of relations (2.20) and (2.22). Relation (2.21) follows
from isotopies of the cobordisms involved.

4. The sl(3) Case

4.1. The Category Foam3 of sl(3) Foams

In this subsection we review the category Foam3 of sl(3) foams introduced by the author and
Mackaay in [3]. This category was introduced to universally deform Khovanov’s construction
in [6] leading to the sl(3)-link homology theory.

We follow the conventions and notation of [3]. Recall that a web is a trivalent planar
graph, where near each vertex all edges are oriented away from it or all edges are oriented
towards it. We also allow webs without vertices, which are oriented loops. A pre-foam is a
cobordism with singular arcs between two webs. A singular arc in a prefoam f is the set
of points of f which has a neighborhood homeomorphic to the letter Y times an interval.
Singular arcs are disjoint. Interpreted as morphisms, we read prefoams from bottom to top
by convention; foam composition consists of placing one prefoam on top of the other. The
orientation of the singular arcs is by convention as in the zip and the unzip:

and , (4.1)

respectively. Pre-foams can have dots which can move freely on the facet to which they belong
but are not allowed to cross singular arcs. A foam is an isotopy class of pre-foams. Let C[a, b, c]
be the ring of polynomials in a, b, c with coefficients in C.
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We impose the set of relations � = (3D,CN,S,Θ) on foams, as well as the closure
relation, which are explained below.

= a + b + c (3D)

= − − − + a + + b (CN)

= = 0, = −1 (S)

α

β

δ

1

−1

0

(α, β, δ) = (1, 2, 0) or a cyclic permutation

(α, β, δ) = (2, 1, 0) or a cyclic permutation

else

(Θ)

The closure relation says that any C[a, b, c]-linear combination of foams, all of which
having the same boundary, is equal to zero if and only if any common way of closing these
foams yields a C[a, b, c]-linear combination of closed foams whose evaluation is zero.

Using the relations �, one can prove the identities below (for detailed proofs see [3]).

= − (Bamboo)

= − (RD)

= 0 (Bubble)

= − (DR)
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= − − (SqR)

+ + = a

+ + = −b

= c

(Dot Migration)

In this paper we will work with open webs and open foams.

Definition 4.1. Foam3 is the category whose objects are webs Γ inside a horizontal strip in R
2

bounded by the lines y = 0, 1 containing the boundary points of Γ and whose morphisms are
C[a, b, c]-linear combinations of foams inside that strip times the unit interval such that the
vertical boundary of each foam is a set (possibly empty) of vertical lines.

For example, the diagrams 1n and vj are objects of Foam3:

1n =

1 2 n

· · · vj =

1 n

· · · · · ·

j j + 1

(4.2)

The category Foam3 is additive and monoidal, with the monoidal structure given as in
Foam2. The category Foam3 is also additive and graded. The q-grading in C[a, b, c] is defined
as

q(1) = 0, q(a) = 2, q(b) = 4, q(c) = 6 (4.3)

and the degree of a foam f with | • | dots and |b| vertical boundary components is given by

q
(
f
)
= −2χ

(
f
)
+ χ

(
∂f

)
+ 2|•| + |b|, (4.4)

where χ denotes the Euler characteristic and ∂f is the boundary of f .
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4.2. The Functor Fsl(3),n

In this subsection we define a monoidal functorFsl(3),n between the categories SC and Foam3.

On Objects

Fsl(3),n sends the empty sequence to 1n and the one-term sequence (j) to vj with Fsl(3),n(jk)
given by the vertical composite vjvk.

On Morphisms

(i) As before the empty diagram is sent to n parallel vertical sheets:

∅ �−→ · · ·

n − 1 n21

(4.5)

(ii) The vertical line colored j is sent to the identity foam of vj :

�−→

j + 1j

j (4.6)

(iii) The StartDot and EndDot morphisms are sent to the zip and the unzip, respectively:

�−→

j + 1j

j �−→

j + 1j

j
(4.7)

(iv) Merge and Split are sent to the digon annihilation and creation, respectively:

�−→

j + 1j

j �−→

j + 1j

j (4.8)
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(v) The 4-valent vertex with distant colors is showen as follows. For j + 1 < k we have.

�−→

j + 1j

jk

· · · k + 1k

(4.9)

The case j > k + 1 is given by reflection around a horizontal plane.

(vi) For the 6-valent vertex we have

�−→ −

j + 1j

jj + 1

j + 2

(4.10)

The case with the colors switched is given by reflection in a vertical plane.
Notice that Fsl(3),n respects the gradings of the morphisms.

Proposition 4.2. Fsl(3),n is a monoidal functor.

Proof. The assignment given by Fsl(3),n clearly respects the monoidal structures of SC1 and
Foam3. To prove that it is a monoidal functor we need only to show that it is actually a functor,
that is, it respects relations (2.5) to (2.22) of Section 2.

Isotopy Relations

Relations (2.5) to (2.9) correspond to isotopies of their images under Fsl(3),n, and we leave its
check to the reader.

One-Color Relations

Relation (2.10) is straightforward and left to the reader. For relation (2.11) we have

Fsl(3),n = = 0,

j + 1j

j (4.11)

the last equality following from the (Bubble) relation.
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For relation (2.12) we have

Fsl(3),n = = −

j + 1j j + 1j j + 1j

j

j (4.12)

where the second equality follows from the (DR) relation. We also have

Fsl(3),n = = − ,

j + 1j j + 1j j + 1j

j (4.13)

which is given by (RD). Using (Dot Migration) one obtains

Fsl(3),n = 2 + + a

j + 1j j + 1j j + 1j

j (4.14)

Fsl(3),n = −2 − − a

j + 1j j + 1j j + 1j

j (4.15)

and therefore, we have that

Fsl(3),n + Fsl(3),n = 2Fsl(3),n . (4.16)

Two Distant Colors

Relations (2.13) to (2.15) correspond to isotopies of the foams involved and are straightfor-
ward to check.
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Adjacent Colors

We prove the case where ”blue“ corresponds to j and ”red“ corresponds to j+1. The relations
with colors reversed are proved the same way. To prove relation (2.16) we first notice that

Fsl(3),n =

j + 1j j + 2

(4.17)

Fsl(3),n =
.

j + 1j j + 2

(4.18)

We also have an isotopy equivalence

Fsl(3),n ∼= −

j + 1j j + 2

(4.19)

which in turn is isotopy equivalent to the foam obtained by putting

on top of −

.
(4.20)

T he common boundary of these two foams contains two squares. Putting (SqR) on the square
on the right glued with the identity foam everywhere else gives two terms, one isotopic to
Fsl(3),n and the other isotopic to Fsl(3),n .
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We now prove relation (2.17). We have

Fsl(3),n ∼=
.

j + 1
j

j + 2

(4.21)

Applying (SqR) to the middle square we obtain two terms. One is isotopic to −Fsl(3),n and
the other gives Fsl(3),n after using the (Bamboo) relation.

We now prove relation (2.18) in the form

= . (4.22)

The images of the l.h.s. and r.h.s. under Fsl(3),n are isotopic to

and

j + 1
j

j + 2
j + 1
j

j + 2

(4.23)

respectively, and both give the same foam after applying the (Bamboo) relation.
Relation (2.19) follows from a straightforward computation and is left to the reader.

Relations Involving Three Colors

Relations (2.20) and (2.21) follow from isotopies of the cobordisms involved.
We prove relation (2.22) in the form

= . (4.24)
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We claim that Fsl(3),n sends both sides to zero. Since the images of both sides of (4.24) can be
obtained from each other using a symmetry relative to a vertical plane placed between the
sheets labelled j+1 and j+2, it suffices to show that one side of (4.24) is sent to zero. The foams
involved are rather complicated and hard to visualize. To make the computations easier we
use movies (two dimensional diagrams) for the whole foam and implicitly translate some
bits to three-dimensional foams to apply isotopy equivalences or relations from Section 4.1.
The r.h.s. corresponds to

f1 = (4.25)

followed by

f2 = . (4.26)

The foam f2 is isotopic to

. (4.27)

Using this, we can also see that the foams corresponding with

, (4.28)

(4.29)

are isotopic. We see that the foam we have contains

, (4.30)

which corresponds to a foam containing , which is zero by the (Bubble) relation.
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