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Super q–Howe duality and web categories

DANIEL TUBBENHAUER

PEDRO VAZ

PAUL WEDRICH

We use super q–Howe duality to provide diagrammatic presentations of an idempo-
tented form of the Hecke algebra and of categories of glN –modules (and, more gener-
ally, glN jM –modules) whose objects are tensor generated by exterior and symmetric
powers of the vector representations. As an application, we give a representation-
theoretic explanation and a diagrammatic version of a known symmetry of colored
HOMFLY–PT polynomials.

57M25, 81R50

1 Introduction

Let Uq.glN / be the quantum enveloping Cq DC.q/–algebra for glN with q being
generic. Let glN –Modes denote the braided monoidal category of Uq.glN /–modules1

tensor generated by exterior
Vk
qCN

q and symmetric SymlqCN
q powers and Uq.glN /–

intertwiners between them.

We denote by LH an idempotented version of the direct sum of all Iwahori–Hecke
algebras H1.q/D

L
K2Z�0HK.q/ of type A. Roughly, LH is the category obtained

from the one-object category H1.q/ by adding formal Gyoja–Aiston idempotents
corresponding to column and row Young diagrams as new objects.2 By quantum Schur–
Weyl duality, the categories glN –Modes are quotients of LH and the added idempotents
can be thought of as lifts of the exterior

Vk
qCN

q and the symmetric SymlqCN
q powers.

We construct diagrammatic presentations of LH and glN –Modes by using the green–red
web categories 1–Webgr and N–Webgr . Morphisms in these Cq –linear categories
are combinations of planar, upward-oriented, trivalent graphs with edges labeled by
positive integers and colored black, green or red3 modulo local relations. Objects are

1We only consider finite-dimensional, left modules (of type 1) throughout the paper.
2Adding only column idempotents, one obtains the type A Schur algebroids introduced by Williamson

in [30].
3We use colored diagrams in this paper. The colors (black, green and red) are important and we

recommend to read the paper in color. If the reader has a black-and-white version, then green will appear
lightly shaded and black and red can be distinguished since black edges are always labeled 1 .
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boundaries of such green–red webs, ie finite sequences of positive integers, each of
which additionally carries the color black, green or red, indicated either by an actual
coloring or by a subscript.

An example of a green–red web is:

5 2 6 1 7

6 6 7 2

5
7 1 8

2 3
5

1 6

A green integer k in a boundary sequence is meant to correspond to the Uq.glN /–
module

Vk
qCN

q , a red integer l to SymlqCN
q , and sequences of integers correspond to

tensor products of such. Vertical edges are identities on these Uq.glN /–modules and
trivalent vertices encode more interesting Uq.glN /–intertwiners. The integer 1 should
be CN

q Š
V1
qCN

q Š Sym1qCN
q independent of the color green or red, so we color it

black.

Our main result is:

Theorem (The diagrammatic presentation) The additive closures of 1–Webgr and
of N–Webgr are braided monoidally equivalent to LH and glN –Modes , respectively.

We will see that 1–Webgr admits an involution interchanging the colors green and
red. An almost direct consequence of this is a symmetry between the HOMFLY–PT

polynomial Pa;q. � / of a link L colored with E�D .�1; : : : ; �d / and the HOMFLY–PT

polynomial of L colored with E�T D ..�1/T; : : : ; .�d /T/:
Proposition (The colored HOMFLY–PT symmetry) We have

(1-1) Pa;q.L.E�//D .�1/cPa;q�1.L.E�T//:

Here c is the sum of the number of nodes in the Young diagrams �i for 1� i � d .

Our results might help to understand symmetries observed within the homologies that
categorify the colored HOMFLY–PT polynomials; see Gukov and Stošić [10, Section 5].

Moreover, we show that a straightforward generalization of our approach also leads
to diagrammatic presentations for categories glN jM–Modes of Uq.glN jM /–modules
tensor generated by exterior and symmetric powers of the vector representation. The
presentations are given by quotients N jM–Webgr of 1–Webgr , which are obtained
by killing Gyoja–Aiston idempotents corresponding to box-shaped Young diagrams.
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1.1 The framework

A prototypical diagrammatic presentation result (with roots in the work of Rumer, Teller
and Weyl [26]) states that the Temperley–Lieb category gives a presentation of the full
subcategory of Uq.sl2/–modules tensor generated by the vector representation C2

q .
Kuperberg [15] extended this to all rank-2 Lie algebras. In particular, he described
a presentation of the full subcategory of Uq.sl3/–modules tensor generated by the
exterior powers

V1
qC3

q Š C3
q and

V2
qC3

q . More generally, Cautis, Kamnitzer and
Morrison [3] gave a presentation of glN –Mode , the full subcategory of Uq.glN /–
modules tensor generated by the exterior powers

Vk
qCN

q for k D 0; : : : ; N.

One of their key ideas in [3] is the usage of skew quantum Howe duality (or, short,
skew q–Howe duality). In order to explain their approach, let Ek 2 Zm�0 be such that
k1C� � �CkmDK . By skew q–Howe duality, the commuting actions of Uq.glm/ and
Uq.glN / on VK

q .C
m
q ˝CN

q /Š
M
Ek2Zm�0

Vk1
q CN

q ˝ � � �˝
Vkm
q CN

q

give rise to a functor ˆmskewW PUq.glm/! glN –Mode , where PUq.glm/ is the idempo-
tented form of Uq.glm/. Then Cautis, Kamnitzer and Morrison construct a commutative
diagram, which takes the following form in our notation:4

(1-2)

PUq.glm/
ˆmskew

//

‡mskew &&

glN –Mode

N –Webg

�

OO

Here ‡mskew is a certain ladder functor realizing an action of PUq.glm/ on the diagram
category N –Webg . The presentation functor � is constructed so that (1-2) commutes.
The functor ˆmskew is full and its kernel is generated by killing glm–weights with entries
not in f0; : : : ; N g. That � is an equivalence follows since N –Webg is defined to be the
quotient of a “free” web category by relations coming from PUq.glm/ (to make the ladder
functor ‡mskew well-defined) and the ‡mskew image of the kernel of ˆmskew . slN –Mode
can be recovered by identifying

Vk
qCN

q Š .
VN�k
q CN

q /
� as Uq.slN /–modules.

Rose and the first-named author [25] studied the situation of symmetric quantum Howe
duality (for short, symmetric q–Howe duality).5 That is, there is an analogue of (1-2)
where glN –Mode is replaced by glN –Mods , the full subcategory of Uq.glN /–modules
tensor generated by the symmetric powers SymlqCN

q for l 2 Z�0 . In the N D 2 case,

4We consider glN –Modes instead of slN –Modes ; see also Remark 1.1.
5In fact, the observations made in [25] were one of the main motivations to start this project.
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the kernel of ˆmsym is generated by killing glm–weights with negative entries and one
additional dumbbell relation, which encodes the relation C2

q ˝C2
q ŠCq˚Sym2qC2

q

in gl2–Mods . A direct generalization for N > 2 would require additional complicated
relations besides killing glm–weights.

In this paper we give a diagrammatic presentation of the category glN –Modes , the full
subcategory of Uq.glN /–modules tensor generated by both exterior and symmetric
powers of the vector representation. This diagrammatic presentation gives a common
generalization of the web categories of [3] (only black–green webs) and [25] (only
black–red webs). We see Cautis, Kamnitzer and Morrison’s approach as a machine that
takes dualities and produces diagrammatic presentations of the related representation-
theoretical categories. Specifically, we start with super quantum Howe duality (for short,
super q–Howe duality) between the superalgebra Uq.glmjn/ and Uq.glN /. We obtain a
full super q–Howe functor ˆmjnsu , which we attempt to factor as a composite of a ladder
functor ‡mjnsu — mapping into an appropriate web category — and a diagrammatic
presentation functor �N , to give an analogue of the commutative diagram (1-2):6

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es

N–Websort
gr

�sort
N

OO

Having decided to follow this strategy, the definition of the appropriate web category
is already determined. Two aspects are important:

(I) In order to make ‡mjnsu well-defined, the web category needs to satisfy ladder
images of PUq.glmjn/ relations. Remarkably, it suffices to consider relations
coming from the subalgebra PUq.glm/˚ PUq.gln/ and only one additional super
commutation relation Œ2�1 Ek D FmEm1 Ek CEmFm1 Ek for glmjn–weights with
km D kmC1 D 1. This corresponds to the dumbbell relation on webs and to
CN
q ˝CN

q Š
V2
qCN

q ˚Sym2qCN
q in glN –Modes .

(II) In order to make the diagrammatic presentation functor an equivalence, we
need to impose the ladder image of ker.ˆmjnsu / as relations in the web category.
In fact, ker.ˆmjnsu / is spanned by idempotents corresponding to glmjn–weights
EkD .k1; : : : ; kmCn/ with k1; : : : ; km … f0; : : : ; N g or kmC1; : : : ; kmCn …Z�0 .
It is remarkable that no extra relations, aside from killing these glmjn–weights,
are necessary.

6Here the superscript “sort” indicates subcategories in which exterior powers are sorted to the left of
symmetric powers in tensor products. This small technical restriction stems from the use of super q–Howe
duality, but will be removed later on.
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We impose the ladder images of ker.ˆmjnsu / in two steps: first we kill all glmjn–weights
with negative entries by allowing only nonnegative labels on web edges. This produces
the web category 1–Webgr , which is symmetric under exchanging green and red.
On this we further quotient by setting glmjn–weights Ek D .k1; : : : ; kmCn/ to zero if
one of k1; : : : ; km is greater than N. This produces the web category N–Webgr and
in Theorem 3.20 we show that its additive closure is equivalent to glN –Modes . Note
that, although our graphical calculus is finer than the one in [3] in the sense that it
contains more objects, the Karoubi envelopes of these diagrammatic categories agree
for each N.

In Theorem 3.22 we use quantum Schur–Weyl duality to derive from Theorem 3.20
that 1–Webgr gives a diagrammatic presentation of the idempotented Iwahori–Hecke
algebra LH from above.

Remark 1.1 We describe glN –Modes and not slN –Modes because of the algebraic
form of super q–Howe duality. In particular, our web categories do not contain
duality isomorphisms

Vk
qCN

q Š .
V
N�k
q CN

q /
� , which would be necessary for a dia-

grammatic presentation of slN –Modes . In glN –Modes , on the other hand, there are
no such hidden duals, as we have

Vk
qCN

q Š
VN
qCN

q ˝ .
VN�k
q CN

q /
� as Uq.glN /–

modules. Here
VN
qCN

q Š L..1; : : : ; 1// is the Uq.glN /–module of highest weight
�D .1; : : : ; 1/ 2 ZN�0.

Last, but not least, we use the more general super q -Howe duality between Uq.glmjn/
and Uq.glN jM / to describe glN jM–Modes . Feeding this duality into the “diagrammatic
presentation machine” shows that this representation category is equivalent to the
quotient N jM–Webgr of 1–Webgr , which is obtained by killing the Gyoja–Aiston
idempotent corresponding to the size .N C 1/� .M C 1/ box-shaped Young diagram.
This is a generalization, since, for M D 0, glN jM–Modes is equivalent to glN –Modes

and N jM–Webgr is equal to N–Webgr , because the box idempotent corresponds
exactly to an .NC1/–labeled green edge.

This generalizes Grant’s [9] and Sartori’s [28] presentations of the category gl1j1–Mode ,
and the diagrammatic calculus for glN jM–Mode given by Queffelec and Sartori [23]
(see also Grant [8]). Compared to the latter, our generalization, which also takes the
symmetric powers of CN jM

q into account, does not need any extra relations aside from
the dumbbell relation. In fact, the one extra relation needed to make the diagrammatic
calculus given in [23] faithful — see [23, Remark 6.19] — has a very compact and
natural description in our green–red web category N jM–Webgr .

Finally, we sketch how our presentation of glN jM–Modes extends to take duals of
exterior and symmetric powers into account. This closely follows [23, Section 6]. The
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resulting diagrammatic category allows the computation of the colored Reshetikhin–
Turaev glN jM –link invariants. In Corollary 5.13, we interpret the colored HOMFLY–PT

symmetry (1-1) as a stable version of a symmetry between colored Reshetikhin–Turaev
glN jM – and glM jN –link invariants.

1.2 Outline of the paper

Section 2 is the diagrammatic heart of our paper, where we introduce 1–Webgr and
its subquotients N–Webgr , N–Webg and N–Webr .

Section 3 contains the proof of our main theorems and splits into three subsections: We
first introduce super q–Howe duality. Then we show an equivalence between “sorted”
subcategories of N–Webgr and glN –Modes . These subcategories are induced by the
algebraic form of super q–Howe duality. By using the “sorted” equivalence and the
fact that the braiding gives a way to “shuffle” the “sorted” subcategories, we prove our
main theorems.

In Section 4 we discuss one application of our diagrammatic presentation: we give a
procedure to recover the colored HOMFLY–PT polynomial from 1–Webgr . A direct
consequence of the green–red symmetry is a symmetry within the colored HOMFLY–
PT polynomial obtained by transposing Young diagrams, see (1-1). The colored
Reshetikhin–Turaev slN –link polynomials can be recovered from our approach as well,
as we sketch in the last subsection.

Finally, in Section 5 we generalize the diagrammatic presentation of glN –Modes to the
super case glN jM–Modes , and we sketch an extension of our diagrammatic calculus
to include dual representations. The required arguments are — mutatis mutandis —
contained in the previous sections and in [23, Section 6], which allows a very compact
exposition in Section 5.
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2 The diagrammatic categories

In the present section we introduce the category 1–Webgr and its quotient N–Webgr .
These provide diagrammatic presentations of LH and its quotient categories glN –Modes

respectively. Other subquotients of 1–Webgr are N–Webg and N–Webr (and later
in Section 5, N jM–Webgr ) which are related to categories studied in [3] and [25],
respectively.

2.1 Definition of the category 1–Webgr and its subquotients

We first introduce the free green–red web category 1–Webfgr . To this end, we denote
by X the set

X DXb [Xg [Xr D f0b; 1bg[ f2g ; 3g ; : : : g[ f2r ; 3r ; : : : g;
where we think of the elements of Xb as being colored black, of the elements of Xg as
being colored green and of the elements of Xr as being colored red. We usually omit
the subscripts, since the colors on the boundary can be read off from the diagrams.

Definition 2.1 The free green–red web category, which we denote by 1–Webfgr , is
the category determined by the following data:

� The objects of1–Webfgr are finite (possibly empty) sequences Ek 2XL with entries
from X for some L 2 Z�0 , together with a zero object. We display the entries of Ek
ordered from left to right according to their appearance in Ek .

� The morphism space Hom1–Webfgr
. Ek; El/ from Ek to El is the Cq –vector space

spanned by isotopy classes7 of planar, upward-oriented, trivalent graphs with edges
labeled by positive integers and colored black, green or red, with bottom boundary Ek
and top boundary El . More precisely, we only allow webs that can be obtained by compo-
sition ı (vertical gluing) and taking the monoidal product ˝ (horizontal juxtaposition)
of the following basic pieces (including the empty diagram).

7We require that isotopies preserve the upward orientations and the boundary of green–red webs.
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Let k; l 2 Z�2 ; then the generators are

(2-1)

0

0

;

1

1

;

k

k

;

k

k

;

kCl

k l

;

kCl

k l

;

kCl

k l

;

kCl

k l

called (from left to right) empty identity, black identity, green identity, red identity,
green merge, green split, red merge and red split, together with (here k; l 2 Z�0 )

(2-2)

kC1

k 1

;

kC1

k 1

;

lC1

1 l

;

lC1

1 l

;

lC1

1 l

;

lC1

1 l

;

kC1

k 1

;

kC1

k 1

called mixed merges and mixed splits, respectively. (We also include versions of these
involving edges labeled 0, which we, as in (2-1), do not illustrate.)

We call webs obtained by composition of generators with only black and green edges
or only black and red edges monochromatic; cf (2-3). Þ

Remark 2.2 Note the following conventions and properties of 1–Webfgr :

� The category is Cq –linear, ie the spaces Hom1–Webfgr
. Ek; El/ are Cq –vector spaces

and the composition ı is Cq –bilinear. Moreover, the category is monoidal by juxtapo-
sition ˝ of objects and morphisms. ˝ is also Cq –bilinear on morphism spaces.

� It is sometimes convenient in illustrations to allow green and red edges with label 1.
By convention, these edges are to be read as being black:

(2-3)

1

1

D
1

1

D
1

1

and

2

1 1

;

2

1 1

;

2

1 1

;

2

1 1

For example, the diagrams on the right are obtained by setting k D 1 or l D 1 in (2-2).

� The reading conventions for all webs are from bottom to top and left to right: if
u and v are webs, then v ıu is obtained by gluing v on top of u and u˝ v is given
by putting v to the right of u. Moreover, if any of the top boundary labels of u differs
from the corresponding bottom boundary label of v , then, by convention, v ıuD 0.

� For j 2 Z�1 , we define the so-called monochromatic F .j /1.k;l/– and E.j /1.k;l/–
ladders as

Algebraic & Geometric Topology, Volume 17 (2017)
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(2-4) F .j /1.k;l/ D
k l

k�j lCj

j
; E.j /1.k;l/ D

lk

l�jkCj

j

and analogously in red. (The notation 1.k;l/ is motivated by the “dual side”, as we will
see in Section 3.1. For the green–red web calculus it is just a shorthand to indicated
the underlying objects.) Sometimes we draw such ladder rungs horizontally. We also
have the mixed F 1.k;l/– and E1.k;l/–ladders

(2-5) F 1.k;l/ D
k l

k�1 lC1

1
; E1.k;l/ D

lk

l�1kC1

1

and similarly by exchanging green and red. Note that the ladders from (2-4) exist for
all j 2 Z�1 , while the mixed ladders from (2-5) exist only for j D 1.

� We usually omit the object 0 as well as edges labeled 0 from illustrations; cf (2-1).

Definition 2.3 The green–red web category 1–Webgr is the quotient of 1–Webfgr
obtained by imposing the following local relations on morphisms. The monochromatic
relations, which hold for green webs as well as for red webs: (co)associativity

(2-6)

h k

hCk

l

hCkCl

D

lk

kCl

h

hCkCl

;

lk

kCl

h

hCkCl

D

h k

hCk

l

hCkCl

where we use the shorthand notation from (2-3) if some of the labels are 1. Next, the
digon removal relations

(2-7)

kCl

kCl

k l D
�
kC l
l

�
kCl

kCl

for which k and l might be 1. In these relations the .s; t/–quantum binomial is given
by �

s

t

�
D Œs�Œs� 1� � � � Œs� t C 2�Œs� t C 1�

Œt �Š
2Cq:
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Here Œs�D.qs�q�s/=.q�q�1/2Cq is the quantum number and Œt �ŠD Œ1�Œ2� � � � Œt �2Cq
is the quantum factorial for s 2 Z and t 2 Z�0 . Finally, the square switch relations

(2-8)

k l

k�j1Cj2 lCj1�j2

k�j1 lCj1

j1

j2

D
X
j 0�0

�
k� j1� l C j2

j 0

�

k l

k�j1Cj2 lCj1�j2

kCj2�j 0 l�j2Cj 0
j2�j 0

j1�j 0

Here we allow j1 or j2 to be 1 (we will get mixed square switch relations, with one
green and one red side, in Lemma 2.10).

To write these relations in a uniform manner, we allow negative labels on edges and set
webs with such edges equal to zero.

The defining relation between green and red edges is

(2-9) Œ2�

1 1

1 1

D

1 1

1 1

2 C

1 1

1 1

2

which we call the dumbbell relation. Þ

Remark 2.4 The category 1–Webgr is symmetric under exchanging green and red.
In the following we will often refer to this symmetry to shorten arguments.

Definition 2.5 The category N–Webgr is the quotient category obtained from the
category 1–Webgr by imposing the exterior relations, that is,

(2-10) k D 0 if k > N:

The exterior relations hold only for green edges. These relations mean that any web
u with a green edge labeled k > N is zero. In contrast, red edges labeled k > N are
usually not zero.

The sorted web category N–Websort
gr is the full (nonmonoidal) subcategory of N–Webgr

whose object set consists of Ek 2XL with no red boundary point left of a green boundary
point: if ki 2Xr for some i , then k>i 2Xb [Xr . Þ

Remark 2.6 The relations (2-10) are diagrammatic versions of
V>N
q CN

q Š 0.
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Definition 2.7 The category N–Webg is the subcategory of N–Webgr consisting of
only black and green objects and whose morphism spaces are spanned as Cq –vector
spaces by webs that contain only black or green edges.

Similarly, the category N–Webr is the subcategory of N–Webgr consisting of only
black and red objects and whose morphism spaces are spanned as Cq –vector spaces
by webs that contain only black or red edges.

We call these categories monochromatic. Þ

Remark 2.8 We will see in Corollary 2.16 that N–Webg is equivalent to the web
category given in [3, Definition 2.2] (without tags and downward-pointing arrows). The
category N–Webr is a generalization of the one given in [25, Definition 1.4]. In fact,
Proposition 2.15 shows that both monochromatic subcategories are full in N–Webgr .

2.2 The diagrammatic super relations

We show in this subsection that diagrammatic versions of the relations (3-1) in the
Howe dual quantum group PUq.glmjn/ from Definition 3.1 hold in our diagrammatic
categories 1–Webgr and N–Webgr .

Lemma 2.9 We have the relations

k

k

1 1� � � D 0D

k

k

1 1� � �

where the dots indicate k parallel black edges with label 1 which split off the bottom
and merge with the top in any order (the order does not matter because of (2-6)).

Proof It suffices by associativity (2-6) to show the statement for k D 2. We have

2

2

1 1

(2-7)D 1

Œ2�

2

2

1 1

1 1

(2-9)D

2

2

1 1 � 1

Œ2�

2

2

1 1

1 1

(2-7)D

2

2

1 1 �

2

2

1 1

D 0:

The other k D 2 relation follows by symmetry.
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Lemma 2.10 (a) We have, for all k; l 2 Z�0 ,

k l

k�2 lC2

k�1 lC1
1

1

D

k l

k�2 lC2

k�1 lC1
1

1

D 0D

k l

kC2 l�2

kC1 l�1
1

1

D

k l

kC2 l�2

kC1 l�1
1

1

(b) We have, for all k; l 2 Z�0 ,

ŒkC l �

k l

k l

D

k l

k l

kC1 l�1
1

1

C

k l

k l

k�1 lC1
1

1

and similarly for exchanged roles of green and red.

(c) We have, for all k; l 2 Z�0 ,

Œ2�

k1 k2 k3 k4

1

1

1 1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

and similarly for exchanged roles of green and red, and flipped horizontal orientations.

Proof (a) This follows directly from (2-6), Lemma 2.9 and symmetry.

(b) Let u and v denote the two webs on the right-hand side of (b) above. Using (2-8)
for the edges labeled kC 1 and l C 1 in u, respectively v , we get
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uD

k l

k l

k�1 l�1

1

1

1

1

2 � Œk� 1�Œl�

k l

k l

v D

k l

k l

k�1 l�1

1

1

1

1

2 C Œk�Œ1� l �

k l

k l

after collapsing appearing digons. By using (2-9) on the central vertical edges in the ex-
pansions, we see that uCvDs�id.k;l/ . The scalar is sD Œ2�Œk�Œl �CŒk�Œ1�l ��Œk�1�Œl�D
ŒkC l �. The other cases follow by symmetry.

(c) We start with the web on the left-hand side and first use (2-9) on the middle two
horizontal edges. Thus, we obtain (our drawings are simplified and the orientations
pointing down could be isotoped to point up)

Œ2�

k1 k2 k3 k4

1

1

1 1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

21 1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

21 1

k1�1 k2�1 k3C1 k4C1

The two marked parts above are monochromatic squares, which can be switched to
give

1 k2

k2�1 2

k2 1
k2�1

1

D

1 k2

k2�1 2

k2C1

1

k2�1

C

1 k2

k2�1 2

k2�2
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2 k3

k3C1 1

1 k3C1

1

k3

D

2 k3

k3C1 1

k3C2

k3

1

C

2 k3

k3C1 1

k3�1

Plugging these four terms back in, we get the four webs from the right-hand side of
the equation in (c) (in the indicated order), which can be seen by using (2-6), as for
example

k1 k2 k3 k4

2 1

1

1

1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

The other three cases in (c) follow by symmetry.

2.3 Green and red clasps

We show now that our calculus contains web analogues of the Jones–Wenzl projectors
of the Temperley–Lieb algebra. We call them clasps, following [15].

From now on, we denote by capital vectors such as EK 2 XK special objects of
1–Webgr of the form EK D .1b; : : : ; 1b/ with K entries equal 1b and no other entries.

Definition 2.11 Let K 2Z>0 . We define the K th green clasp CLgK 2End1–Webgr.
EK/

recursively: CLg1 is the black identity strand and for K 2 Z>1 set

1 1 1 1

1 1 1 1
� � �

� � �

CLg
K D

1 1 1 1

1 1 1 1
� � �

� � �

CLg
K � ŒK � 1�

ŒK�

1 1 1 1

1 1 1 1

1

1

21 1

� � �

� � �

� � �

CLg
K

CLg
K

and similarly for the red clasp CLrK by exchanging green and red. Þ

The following lemma identifies the clasps, avoiding the recursive definition.
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Lemma 2.12 We have, for all K 2 Z>0 ,

CLgK D
1

ŒK�Š

1� � �1

1� � �1

K ; CLrK D
1

ŒK�Š

1� � �1

1� � �1

K

where we repeatedly split an edge labeled K until all of the top and bottom edges are
black.

Proof Up to signs and drawing conventions as in [25, Lemma 2.12] and left to the
reader.

Corollary 2.13 For all K 2 Z>0 , the projector CLgK can be expressed as a linear
combination of webs with only black and red edges of label 2, and similarly for CLrK .

Proof This follows directly from (2-9) and Lemma 2.12.

Example 2.14 The projector CLr1 is just the black identity strand, the projector CLr2
is 1=Œ2� times the red dumbbell, as in (2-9), and

CLr3 D
1

Œ3�Š

1� � �1

1� � �1

3 D

1 1 1

1 1 1

� Œ2�
Œ3�

1 1 1

1 1 1

2

C 1

Œ3�

0BBBBB@
1 1 1

1 1 1

1
2

2

C
111

111

1
2

2

1CCCCCA�
1

Œ2�Œ3�

1 1 1

1 1 1

2

2

21

1

1

Note that all edges appearing on the right-hand side are black or green with label 2.
G

Proposition 2.15 Let Ek and El be sequences of black and green boundary points. Every
web u 2 Hom1–Webgr.

Ek; El/ can be expressed as a sum of webs with only black and
green edges, and similarly by exchanging green and red.

Proof We start by exploding8 every red edge. Around internal vertices of u with no
outgoing green edges we get

8We “explode” by using (2-7) — the order does not matter by (2-6). We indicate “explosions” with
dots.
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kCl

k l

D 1

Œk�Š

1

Œl�Š

1

ŒkC l �Š

kCl

k l

kCl
k l

1 1� � �

� � �1
1� � �

1
1

Note that the marked part above is CLr
kCl up to a nonzero scalar. This can be seen

by using (co)associativity (2-6) and the expression in Lemma 2.12. Thus, we can
use Corollary 2.13 to replace CLr

kCl by a nonzero sum of webs with only black and
green edges. Repeating this for all purely red internal vertices shows the statement,
since all outer edges are assumed to be black or green. The other statement follows by
symmetry.

Denote by N–WebCKM the subcategory given in [3, Definition 2.2] with only upward-
pointing strands, tags replaced by (untruncated) N –labeled edges and additionally
allowing 0–labeled objects. As a consequence of Proposition 2.15 we see that interpret-
ing webs in N–WebCKM as green webs in N–Webgr gives a full functor �11 between
these categories. In Lemma 3.13 we will see that it is also faithful and we get the
following corollary.

Corollary 2.16 The functor �11 W N–WebCKM! N–Webgr , given by coloring webs
green, is an inclusion of a full, monoidal subcategory. In particular, N–WebCKM and
N–Webg are equivalent as monoidal categories.

Proof The functor is well-defined since all relations in N–WebCKM hold in N–Webgr .
That �11 is monoidal is clear, fullness follows from Proposition 2.15 and faithfulness
from Lemma 3.13. Thus, we see that N–WebCKM and N–Webg are monoidally
equivalent.

2.4 Braidings

We define now a braided monoidal structure on 1–Webgr .

Definition 2.17 Define for k; l 2 Z�0 an elementary crossing depending on four
cases. The monochromatic crossings (note the different powers of q )
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(2-11)

ˇ
g

k;l
D

k l

D .�1/kCklqk
X

j1;j2�0
j1�j2Dk�l

.�q/�j1

k l

l k

k�j1 lCj1

j1

j2

ˇrk;l D
k l

D .�1/kq�k
X

j1;j2�0
j1�j2Dk�l

.�q/Cj1

k l

l k

k�j1 lCj1

j1

j2

The mixed crossings are defined via explosion of the strand going over:

(2-12) ˇmk;l D
k l

D 1

Œk�Š

k l

1 1� � �
� � � and ˇ zmk;l D

k l

D 1

Œk�Š

k l

1 1� � �
� � �

where the remaining crossings are of the form ˇr
1;l

or ˇg
1;l

, respectively. Þ

Example 2.18 The case k D l D 1 is not ambiguous, since we have

ˇ
g
1;1 D q

0BBBB@
1 1

1 1

� q�1
1 1

1 1

2

1CCCCA (2-9)D �q�1

0BBBB@
1 1

1 1

� q

1 1

1 1

2

1CCCCAD ˇr1;1;
as a small calculation shows. G
As shorthand notation, we write ˇ�

k;l
, where � stands for either g , r , m or zm from now

on. Note that the sums in (2-11) are finite, because webs with negative labels are zero.

Lemma 2.19 (Pitchfork relations) We have

k l

1

1

� � �
D

k l

1

1

� � �
;

lk

1

1
���
D

lk

1

1
���

and similar with exchanged roles of green and red, for the monochromatic cases and
with merges.
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Note that the pitchfork lemma directly implies that (2-12) could also be done by
exploding the edges going underneath instead of the edges going over (or exploding
both).

Proof The pitchfork lemma with only green colored edges follows as in Lemma 5.3
of [22]. By symmetry, the arguments go through for the monochromatic red case as well.

The mixed, left-hand equation is easy to verify by the above, since we explode the
overcrossing edge and we thus can directly use the monochromatic case. It remains
to prove the mixed, right-hand equation. We only need to check the case k D 2; the
case k 2 Z>2 then follows easily from this case by using Lemma 2.9. We write

l2

1

1

D 1

Œ2�

l2

1

1

2

1

1 (2-9)D

l2

1

1

� 1

Œ2�

l2

1

1

2

1

1

The rightmost diagram is zero by Lemma 2.9 and the monochromatic pitchfork relations.
This proves the mixed right-hand equation. The other cases are analogous.

Let Ek 2XL�0 be an object in 1–Webgr . We define for i D 1; : : : ; L� 1 the crossing
ˇ�i 1 Ek to be the corresponding elementary crossing ˇ�

ki ;kiC1 between the strands i and
i C 1 and the identity elsewhere. Clearly, it suffices to indicate the rightmost 1 Ek in a
sequence of the ˇ�i 1 Ek .

Lemma 2.20 The crossings ˇ�i 1 Ek satisfy the braid relations, that is, they are invertible,
they satisfy the commutation relations ˇ�i ˇ

�
j 1 Ek D ˇ�jˇ

�
i 1 Ek for ji � j j > 2 and the

Reidemeister 3 relations ˇ�i ˇ
�
jˇ
�
i 1 Ek D ˇ�jˇ�i ˇ�j 1 Ek for ji � j j D 1.

The inverses .ˇ�i /
�1 are given as in (2-11), but with q! q�1. See also [22, Section 5].

Proof This follows from Lemma 2.19, since the black case can be verified as in [22,
Section 5].

Remark 2.21 Let SK denote the symmetric group on K letters. Moreover, let w2SK
and let ˇ�w 2 End1–Webgr.

EK/ be the permutation braid associated to w (this is a well-
defined assignment by Lemma 2.20). Let `.w/ be the length of w . Following [14,
Chapter 3, Section 2], one can show that

CLgK D q
K.K�1/

2
1

ŒK�Š

X
w2SK

.�q/�`.w/ˇ�w ; CLrK D q�
K.K�1/

2
1

ŒK�Š

X
w2SK

q`.w/ˇ�w :

The factors q
K.K�1/

2 and q�
K.K�1/

2 come from our conventions for crossings.
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Define ˇ�Ek;El for objects Ek D .k1; : : : ; ka/ and El D .l1; : : : ; lb/ via

ˇ�Ek;El D

k1
: : : ka l1 : : : lb

l1 : : : lb k1
: : : ka

2 Hom1–Webgr.
Ek˝ El ; El ˝ Ek/;

where blue stands for all suitable color possibilities.

Recall that a braided monoidal category (with an underlying strict monoidal category)
is a pair .C; ˇC�;�/ consisting of a monoidal category C and a collection of natural
isomorphisms ˇC

Ek;El W
Ek˝El! El˝ Ek such that the hexagon identities hold for any objects

Ek; El ; Em of C :

(2-13) ˇC
Ek;El˝ EmD .idEl˝ˇ

C
Ek; Em/ı.ˇ

C
Ek;El˝id Em/; ˇC

Ek˝El; EmD .ˇ
C
Ek; Em˝idEl/ı.id Ek˝ˇ

C
El; Em/:

Proposition 2.22 The pair .1–Webgr; ˇ
��;�/ is a braided monoidal category.

Proof Since 1–Webgr is a monoidal category and the ˇ�Ek;El are isomorphisms that
clearly satisfy (2-13), we only need to prove that they are natural. That is, we need to
show that, for each web u2Hom1–Webgr.

Ek; El/ and each other object EmD .m1; : : : ; mc/
of 1–Webgr , we have (we again use blue as a generic color)

k1
: : : ka m1 : : : mc

m1 : : : mc l1 : : : lb

u id Em

D

k1
: : : ka m1 : : : mc

m1 : : : mc l1 : : : lb

uid Em

The equality follows from Lemma 2.19. This proves the statement.

The braiding ˇ��;� descends to the subquotients N–Webgr , N–Webg and N–Webr and
we denote all induced braidings also by ˇ��;� . They are all given by the formulas
in Definition 2.17, but some diagrams might be zero due to (2-10).

Corollary 2.23 .N–Webgr; ˇ
��;�/, .N–Webg; ˇ

��;�/ and .N–Webr; ˇ
��;�/, with the braid-

ing ˇ��;� induced from .1–Webgr; ˇ
��;�/, are braided monoidal categories.
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Note that N–WebCKM is also a braided monoidal category; see [3, Corollary 6.2.3].
We rescale their braiding by multiplying it with qkl=N and we denote the resulting
braided monoidal category by .N–WebCKM; ˇ

��;�/. The following corollary is immediate
from Corollary 2.16.

Corollary 2.24 The functor �11 W .N–WebCKM; ˇ
��;�/! .N–Webgr; ˇ

��;�/ is an inclusion
of a full, braided monoidal subcategory.

2.5 A collection of diagrammatic idempotents

Recall that the Iwahori–Hecke algebra HK.q/ is the q–deformation of the symmet-
ric group algebra CŒSK � on K letters. It is generated by fHi j si 2 SKg for all
transpositions si D .i; i C 1/ 2 SK , subject to the relations

H 2
i D .q� q�1/Hi C 1 for i D 1; : : : ; K � 1;

HiHj DHjHi for ji � j j> 1;
HiHjHi DHjHiHj for ji � j j D 1:

There is a representation pK W Cq.BK/! HK.q/ of the group algebra Cq.BK/ of
the braid group BK with K strands given by sending the braid group generators bi
(between the strands i and i C 1) to Hi . Thinking of the generators Hi of HK.q/ as
crossings also makes sense from the perspective of the webs, as the next lemma shows.

Lemma 2.25 Given K 2 Z�0 , there is an isomorphism of Cq –algebras

ˆ1qSWW HK.q/ Š�!End1–Webgr.
EK/; Hi 7!

1 1 1 1 1 1

1 1 1 1 1 1
� � � � � �

In order to prove Lemma 2.25, which will be used in Section 4, we need Theorem 3.20.

Proof A direct computation shows that ˆqSW is a well-defined Cq –algebra homo-
morphism. In fact, the composite � ıˆ1qSW is the isomorphism induced by quantum
Schur–Weyl duality. To see this, let V D .CN

q /
˝K and recall that quantum Schur–Weyl

duality states that

(2-14)
ˆNqSWW HK.q/� EndUq.glN /.V /;

ˆNqSWW HK.q/ Š�!EndUq.glN /.V / if N �K:
Here ˆNqSW is the Cq –algebra homomorphism induced by the action of HK.q/ on the
K–fold tensor product V . By Theorem 3.20, we will get an isomorphism HK.q/Š
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EndN–Webgr.
EK/ if N �K . By using Proposition 2.15, there is a basis of EndN–Webgr.

EK/
for N �K given by webs with only black edges or green edges with labels at most K .
Since K is fixed, a direct comparison shows that ˆ1qSW has to be an isomorphism as
well.

Let K 2 Z�0 and let ƒC.K/ denote the set of all Young diagrams with K nodes, eg

�D .4; 3; 1; 1/ 2ƒC.9/! �D ;

�T D .4; 2; 2; 1/ 2ƒC.9/! �T D ;

where we use the English notation for our Young diagrams. Here we have also displayed
the transpose Young diagram �T of �. Next, the following definition is motivated
by [11; 1]. (It is best explained via examples — cf Example 2.27 and Example 2.29 —
which the reader might want to check while reading the definition.)

Definition 2.26 (Gyoja–Aiston idempotents) Given � 2ƒC.K/, we associate to it
a primitive idempotent eq.�/ 2 End1–Webgr.

EK/. First we define two idempotents as
tensor products of green or red clasps:

ecol.�/D CLgcol1 ˝ � � �˝ CLgcolc ; erow.�/D CLrrow1 ˝ � � �˝ CLrrowr ;

where c and r are the number of columns and rows of � respectively, and coli and
rowi denote the number of nodes in the i th column and row.

Denote by T !
�

and by T #
�

the two tableaux of shape � obtained by filling the numbers
1; : : : ; K into the Young diagram � in order: ! means rows before columns and #
means columns before rows (both from left to right). Pick any shortest presentation of
the permutation w.�/2SK permuting T !

�
to T #

�
. Then we define the quasi-idempotent

associated to � via

zeq.�/D ecol.�/ ıˇ�w.�/ ı erow.�/ ı .ˇ�w.�//�1:
By [1, Theorem 4.7] (and the fact that their definition agrees with ours by Lemma 2.25
and Remark 2.21), there exists a nonzero scalar a.�/ 2 Cq such that zeq.�/2 D
a.�/zeq.�/. Thus, we define the idempotent associated to � to be

eq.�/D 1

a.�/
zeq.�/: Þ

These idempotents are primitive and orthogonal by [11, Theorem 4.5; 1, Theorem 4.7].
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Example 2.27 If K D 2, then there are two primitive idempotents, namely

eq

� �
D 1

Œ2�

1 1

1 1

2
green to red

// 1

Œ2�

1 1

1 1

2 D eq. /:
red to green
oo

Note that a.�/D 1 for only one column or only one row Young diagrams �. G

Lemma 2.28 Exchanging green and red sends eq.�/ to eq.�T/ modulo a commutator.

Proof Note that ecol.�/ and erow.�/ differ from erow.�
T/ and ecol.�

T/, respectively,
only in exchanging the colors green and red. On black crossings the green–red symmetry
acts by ˇ�1;1 7! �.ˇ�1;1/�1 , on permutation braids as ˇ�w 7! .�1/`.w/.ˇ�

w�1/
�1 and

on the quasi-idempotent zeq.�/ as

zeq.�/D ecol.�/ ıˇ�w.�/ ı erow.�/ ı .ˇ�w.�//�1

7! erow.�
T/ ı .ˇ�

w.�/�1/
�1 ı ecol.�

T/ ıˇ�
w.�/�1

D erow.�
T/ ı .ˇ�w.�T//

�1 ı ecol.�
T/ ıˇ�w.�T/:

In the first line, the signs from the crossing inversions cancel, and in the second line
we use w.�/�1 D w.�T/. The result agrees with zeq.�T/ up to a commutator. This
proves the statement of the lemma for the quasi-idempotents. Applying the green–red
symmetry to both sides of the equation zeq.�/2 D a.�/zeq.�/ shows that a.�/D a.�T/

and the lemma follows.

Example 2.29 For �D .3; 1/ 2ƒC.4/, we have

�D ; T !� D 1 2 3
4

; T
#
�
D 1 3 4

2
:

Thus, w D .243/D .23/.34/ 2 S4 permutes T !
�

to T #
�

. Then

zeq.�/D

CLg2

ˇ�
w.�/

CLr3

.ˇ�
w.�/

/�1

1 1 1 1

1 1 1 1

green$red �����!

CLr2

.ˇ�
w.�/�1/

�1

CLg3

ˇ�
w.�/�1

1 1 1 1

1 1 1 1

�tr
CLr2

.ˇ�
w.�T/

/�1

CLg3

ˇ�
w.�T/

1 1 1 1

1 1 1 1

D zeq.�T/:
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Here �tr means equal modulo a commutator and the scaling factor in this case is
a.�/D Œ4�=.Œ2�Œ3�/D a.�T/. G
Remark 2.30 For N �K , the HK.q/–module .CN

q /
˝K decomposes intoM

�2ƒC.K/
.S�/˚m� ;

where the S� are the irreducible Specht modules for HK.q/ and m� are their multi-
plicities. The primitive idempotents eq.�/ from Definition 2.26 are quantizations of
Young symmetrizers that project onto S�. Note that a braid-conjugate of eq.�/ might
project onto a different copy of S� in the above decomposition.

3 Proofs of the diagrammatic presentations

This section contains the proof of our main theorems.

3.1 Super q–Howe duality

Let m; n 2 Z�0 . We start by recalling the quantum general linear superalgebra
Uq.glmjn/ and its idempotented form PUq.glmjn/. We follow the conventions used
in [33], but adapt Zhang’s notation to be closer to the one from [3].

To this end, recall that the glmjn–weight lattice is isomorphic to ZmCn and we denote
the glmjn–weights usually by vectors Ek D .k1; : : : ; km; kmC1; : : : ; kmCn/. For I D
I0 [ I1 with I0 D f1; : : : ; mg (even part) and I1 D fmC 1; : : : ; mC ng (odd part),
define

ji j D
�
0 if i 2 I0 D f1; : : : ; mg;
1 if i 2 I1 D fmC 1; : : : ; mCng:

The notation j � j means the super degree (which is a Z=2–degree). We use a similar
notation for all Z=2–graded spaces, where we, by convention, always consider degrees
modulo 2 in the following. Moreover, let �iD .0; : : : ; 0; 1; 0; : : : ; 0/2ZmCn, with 1 be-
ing in the i th coordinate, and denote by ˛i D �i��iC1D .0; : : : ; 1;�1; : : : ; 0/2ZmCn
for i 2 I�fmCng the i th simple root. Recall that the super Euclidean inner product
on ZmCn is given by .�i ; �j /su D .�1/ji jıi;j .

Definition 3.1 Let m; n 2Z�0 . The quantum general linear superalgebra Uq.glmjn/
is the associative, Z=2–graded, unital Cq –algebra generated by L˙1i for i 2 I , and
Fi and Ei for i 2 I�fmCng, subject to the nonsuper relations

LiLj D LjLi ; LiL
�1
i D L�1i Li D 1;

LiFj D q�.�i ; j̨ /suFjLi ; LiEj D q.�i ; j̨ /suEjLi ;
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EiFj �FjEi D .�1/ji jıi;j
LiL

�1
iC1�L�1i LiC1
q� q�1 if i ¤m;

Œ2�FiFjFi D F 2i Fj CFjF 2i if ji � j j D 1; i ¤m;
Œ2�EiEjEi DE2i Ej CEjE2i if ji � j j D 1; i ¤m;

FiFj �FjFi D 0 if ji � j j> 1;
EiEj �EjEi D 0 if ji � j j> 1

(for suitable i; j 2 I ) and the super relations

F 2m D 0DE2m; EmFmCFmEm D
LmL

�1
mC1�L�1m LmC1
q� q�1 ;

Œ2�FmFmC1Fm�1Fm D
FmFmC1FmFm�1CFm�1FmFmC1FmCFmC1FmFm�1FmCFmFm�1FmFmC1;
Œ2�EmEmC1Em�1Em D
EmEmC1EmEm�1CEm�1EmEmC1EmCEmC1EmEm�1EmCEmEm�1EmEmC1:
Also, jLi j D 0 for i 2 I , jFi j D jEi j D 0 for i 2 I�fmg and jFmj D jEmj D 1. Þ

We recover Uq.glN / by setting m D N and n D 0. We write IN D f1; : : : ; N g in
the following to distinguish it from I as above. Note that Uq.glN / is concentrated in
degree 0.

The algebra Uq.glmjn/ is a Z=2–graded Hopf algebra with coproduct �, antipode S
and the counit " given by

�.Fi /DFi˝1CL�1i LiC1˝Fi ; �.Ei /DEi˝LiL�1iC1C1˝Ei ; �.Li /DLi˝Li ;
S.Fi /D�LiL�1iC1Fi ; S.Ei /D�EiL�1i LiC1; S.Li /D L�1i ;

".Fi /D ".Ei /D 0; ".Li /D 1:
In the spirit of Lusztig [20, Chapter 23], we now adjoin, for all Ek 2ZmCn, idempotents
1 Ek of super degree j1 Ekj D 0 to Uq.glmjn/. Denote by I the ideal generated by

1 Ek1El D ı Ek;El1 Ek; 1 Ek�˛iFi1 Ek D Fi1 Ek D 1 Ek�˛iFi ;
Li1 Ek D q

ki .�i ;�i /su1 Ek; 1 EkC˛iEi1 Ek DEi1 Ek D 1 EkC˛iEi :
Definition 3.2 Define by

PUq.glmjn/D
� M
Ek;El2ZmCn

1ElUq.glmjn/1 Ek

�.
I

the idempotented quantum general linear superalgebra. Þ

Algebraic & Geometric Topology, Volume 17 (2017)



Super q–Howe duality and web categories 3727

Remark 3.3 One can view PUq.glmjn/ as generated by the divided powers

F
.j /
i D F

j
i

Œj �Š
and E

.j /
i D

E
j
i

Œj �Š
for i 2 I�fmCng:

This allows the definition of an integral version of PUq.glmjn/. For simplicity, we work
over Cq in this paper and we do not consider the integral version.

The relations in PUq.glmjn/ are obtained from the relations of Uq.glmjn/. For conve-
nience we list the new versions of the super relations:

(3-1)

F 2m1 Ek D 0DE
2
m1 Ek;

EmFm1 EkCFmEm1 Ek D ŒkmC kmC1�1 Ek;
Œ2�FmFmC1Fm�1Fm1 Ek D FmFmC1FmFm�11 EkCFm�1FmFmC1Fm1 Ek

CFmC1FmFm�1Fm1 EkCFmFm�1FmFmC11 Ek;

the second of which we call the super commutation relation (the third type of relation
holds for E as well).

It is convenient for us hereinafter to view PUq.glmjn/ as a category whose objects are
the glmjn–weights Ek 2 ZmCn and Hom PUq.glmjn/.

Ek; El/D 1El PUq.glmjn/1 Ek .

Recall that the vector representation Cmjn
q of Uq.glmjn/ has a basis given by fxi j i 2 Ig

with super degrees jxi j D ji j for i 2 I , where the Uq.glmjn/–action is defined via

Fi .xj /D
�
xjC1 if i D j;
0 otherwise,

Ei .xj /D
�
xj�1 if i D j � 1;
0; otherwise,

Li .xj /D q.�i ;�j /suxj :

We need to consider the quantum exterior superalgebra
V�
q.C

mjn
q ˝CN

q /. Recall that a
vector space V D V0˚V1 with a Z=2–grading is called a super vector space. Here V0
and V1 are its degree 0 and 1 parts. These graded parts of Cmjn

q have bases given by
fxi j i 2 I0g and fxi j i 2 I1g, respectively. In contrast, CN

q D .CN
q /0 is concentrated in

degree zero and we denote its basis by fyj j j 2 IN g. Additionally, the tensor product
V ˝W of two super vector spaces V and W is a super vector space with v˝w of
degree jvjCjwj for two homogeneous elements v and w . Specifically, Cmjn

q ˝CN
q is

a super vector space with .Cmjn
q ˝CN

q /0 spanned by fzij D xi ˝yj j i 2 I0; j 2 IN g
and .Cmjn

q ˝CN
q /1 spanned by fzij D xi ˝ yj j i 2 I1; j 2 IN g. Here jzij j D ji j.

Note that .Cmjn
q ˝CN

q /
˝K is a Z=2–graded Uq.glmjn/˝Uq.glN /–module for all

K 2 Z�0 by using the Hopf algebras structures of Uq.glmjn/ and Uq.glN /.
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We denote by Sym2q.C
mjn
q ˝CN

q / the second symmetric super power as in [23, (4.1)],
but with q inverted in their formulas. Armed with this notation, we define the quantum
exterior superalgebraV�

q.C
mjn
q ˝CN

q /D T .Cmjn
q ˝CN

q /=Sym2q.C
mjn
q ˝CN

q /;

where T .Cmjn
q ˝CN

q /D
L
K2Z�0.C

mjn
q ˝CN

q /
˝K denotes the super tensor algebra

of Cmjn
q ˝CN

q . This is a Uq.glmjn/˝Uq.glN /–module and decompose asV�
q.C

mjn
q ˝CN

q /Š
M

K2Z�0

VK
q .C

mjn
q ˝CN

q /:

The space
VK
q .C

mjn
q ˝CN

q / is called the degree K part of
V�
q.C

mjn
q ˝CN

q /.

Remark 3.4 We can recover the degree K part of the quantum exterior algebraVK
q .C

m
q ˝CN

q / by setting n D 0 and, by [28, Remark 2.1], the degree K part of
the quantum symmetric algebra SymKq .C

n
q ˝CN

q / by setting m D 0. These were
originally defined in [2, Definition 2.7] and used in [3, Section 4.2; 25, Section 2.1] to
study skew and symmetric q–Howe duality.

Example 3.5 Write z Eij D zi1j1 ˝ � � � ˝ ziKjK and zikjk � zikC1jkC1 for the anti-
lexicographical order on the indices of the zij . Then

V
K
q .C

mjn
q ˝CN

q / has a basis
given by (cf [23, Lemma 4.1])

(3-2)
˚
z Eij j zikjk � zikC1jkC1 ; 1� i1 � � � � � iK �mCn; 1� j1 � � � � � jK �N;

and jikj D 1; if ik D ikC1 and jk D jkC1
	
:

By setting mD 1 and nD 0, we obtain the (usual) basis for
VK
qCN

q of the form

(3-3) fyi1 ˝ � � �˝yiK j 1� y1 < � � �< yK �N g;
while setting mD 0 and nD 1 gives the (usual) basis for SymKq CN

q of the form

(3-4) fyi1 ˝ � � �˝yiK j 1� y1 � � � � � yK �N g:
These are precisely the usual (nonsuper) bases; see for example [2, Section 2.4]. G

We call a glmjn–weight � D .�1; : : : ; �mCn/ 2 ZmCn a dominant integral glmjn–
weight if it is a dominant integral glm˚ gln–weight. We only need � that are .mjn/–
hook Young diagrams, ie diagrams that fit into a hook-shaped region with one horizontal
arm of height m and one vertical arm of width n (here we use the conventions from [4,
Definition 2.10]). The following figure shows an .mjn/–hook Young diagram � and a
box-shaped Young diagram that is not an .mjn/–hook:
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� m

n

;
m

n

We call a dominant integral glmjn–weight � an .mjn;N /–supported glmjn–weight
if it corresponds to an .mjn/–hook Young diagram with at most N columns. For
each such � there exists an irreducible Uq.glmjn/–module Lmjn.�/ and an irreducible
Uq.glN /–module LN .�T/; see eg [16, Section 2.5].

Theorem 3.6 (Super q–Howe duality) We have the following:

(a) Let K 2 Z�0 . The actions of Uq.glmjn/ and Uq.glN / on
VK
q .C

mjn
q ˝CN

q /

commute and generate each others commutant.

(b) There exists an isomorphismV�
q.C

mjn
q ˝CN

q /Š .
V�
qCN

q /
˝m˝ .Sym�qCN

q /
˝n

of Uq.glN /–modules under which the Ek–weight space of
V�
q.C

mjn
q ˝ CN

q /

(considered as a Uq.glmjn/–module) is identified with

(3-5)
VEk0
q CN

q ˝Sym
Ek1
q CN

q DVk1
q CN

q ˝ � � �˝
Vkm
q CN

q ˝SymkmC1q CN
q ˝ � � �˝SymkmCnq CN

q :

Here Ek D .k1; : : : ; kmCn/, Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/.
(c) As Uq.glmjn/˝Uq.glN /–modules, we have a decomposition of the formVK

q .C
mjn
q ˝CN

q /Š
M
�

Lmjn.�/˝LN .�T/;

where we sum over all .mjn;N /–supported glmjn–weights � whose entries sum
up to K . This induces a decompositionV�

q.C
mjn
q ˝Cn

q /Š
M
�

Lmjn.�/˝LN .�T/;

where we sum over all .mjn;N /–supported glmjn–weights �.

Remark 3.7 Symmetric and skew Howe duality for the pair .GLm;GLN / is orig-
inally due to Howe; see [12, Sections 2 and 4]. Note that the nonquantum version
of Theorem 3.6 can be found for example in [4, Theorem 3.3] or [28, Proposition 2.2].
Moreover, the “dual” of Theorem 3.6, given by considering Uq.glN / as the Howe dual
group instead of Uq.glmjn/, can be found in [23, Proposition 4.3].
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Proof Parts (a) and (c) are proven in [31, Theorem 2.2] or in [23, Theorem 4.2] and
only (b) remains to be verified. For this purpose, we use the bases from (3-2), (3-3)
and (3-4) to define

T ei W
Vk
q.C

N
q /!

Vk
q.C

mjn
q ˝CN

q /; yj1 ˝ � � �˝yjk 7! zij1 ˝ � � �˝ zijk ; i 2 I0;

T si W Symkq.C
n
q /!

Vk
q.C

mjn
q ˝CN

q /; yj1 ˝ � � �˝yjk 7! zij1 ˝ � � �˝ zijk ; i 2 I1:

That these maps are well-defined Uq.glN /–intertwiners follows from the explicit
description in Example 3.5. Injectivity was shown in [3, Theorem 4.2.2] for the first and
in [25, Theorem 2.6] for the second map. Thus, for Ek2ZmCn with k1C� � �CkmCnDK ,
we see that

T W
M
Ek2ZmCn�0

VEk0
q CN

q ˝Sym
Ek1
q CN

q !
VK
q .C

mjn
q ˝CN

q /

given by

T .v1˝� � �˝ vmCn/D T e1 .v1/˝� � �˝T em.vm/˝T smC1.vmC1/˝� � �˝T smCn.vmCn/
is a Uq.glN /–module isomorphism by comparing the sizes of the bases from Example
3.5. This clearly induces the isomorphism of Uq.glN /–modules we are looking for.

It remains to verify the Uq.glmjn/–weight space decomposition from (3-5). To this end,
we only have to see that the action on

VEk0
q CN

q ˝ Sym Ek1q CN
q of the Li 0 of Uq.glmjn/

under the inverse of T is just a multiplication with qki .�i ;�i0 /su . The action of Uq.glmjn/
is given by

Li 0.zij1˝� � �˝zijmCn/DLi 0.zij1/˝� � �˝Li 0.zijmCn/Dqki .�i ;�i0 /suzij1˝� � �˝zijmCn :
Hence, the Uq.glmjn/–weight space decomposition follows.

By Theorem 3.6(b), we get linear maps

f
El
Ek W 1El PUq.glmjn/1 Ek! HomUq.glN /

�VEk0
q CN

q ˝Sym
Ek1
q CN

q ;
VEl0
qCN

q ˝Sym
El1
q CN

q

�
for any two Ek; El 2 ZmCn�0 such that

PmCn
iD0 ki D

PmCn
iD0 li . Using Theorem 3.6(a), we

see that the homomorphisms f ElEk are all surjective. Thus, we get the following.

Corollary 3.8 There exists a full functor ˆmjnsu W PUq.glmjn/! glN –Modes , which we
call the super q–Howe functor, given on objects and morphisms by

ˆmjnsu . Ek/DVEk0
q CN

q ˝Sym
Ek1
q CN

q ; ˆmjnsu .1Elx1 Ek/D f
El
Ek .x/:

Everything else is sent to zero.
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3.2 The sorted equivalences

In this subsection we construct a full and faithful functor

�sort
N W N–Websort

gr ! glN –Modsort
es ;

where N–Websort
gr is the sorted web category from Definition 2.5 and glN –Modsort

es
denotes the full subcategory of glN –Modes whose objects are sorted as in (3-5).

As already explained in the introduction, we essentially define �sort
N such that there is

a commuting diagram:

(3-6)

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es

N–Websort
gr

�sort
N

OO

The functor ‡mjnsu is a ladder functor, whose definition is motivated by [3, Section 5.1].

Lemma 3.9 Let m; n 2 Z�0 . There exists a functor

‡mjnsu W PUq.glmjn/!N–Websort
gr

which sends a glmjn–weight Ek 2ZmCn�0 to ..k1/g ; : : : ; .km/g ; .kmC1/r ; : : : ; .kmCn/r/
in N–Websort

gr and all other glmjn–weights to the zero object. On morphisms, ‡mjnsu is
given by

F
.j /
i 1 Ek 7!

k1 ki kiC1 km kmC1 kmCn

ki�j kiC1Cjk1 km kmC1 kmCn

j� � � � � � � � �

F
.j /
i 1 Ek 7!

k1 km kmC1 ki kiC1 kmCn

km kmC1k1 ki�j kiC1Cj kmCn

j� � � � � � � � �

for i 2 I0�fmg or i 2 I1�fmCng, respectively, and

Fm1 Ek 7!

k1 km�1 km kmC1 kmC2 kmCn

k1 km�1 km�1 kmC1C1 kmC2 kmCn

1� � � � � �

and similarly, but with reversed horizontal orientations, for the generators E.j /i 1 Ek
and Em1 Ek .
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Proof To show that ‡mjnsu is well-defined, it suffices to show that all relations in
PUq.glmjn/ are satisfied in N–Websort

gr . For monochromatic relations we can copy [3,
Proposition 5.2.1]. Lemma 2.10 shows that the super relations (3-1) hold in N–Websort

gr .

Definition 3.10 (The diagrammatic presentation functor �sort
N ) We define a functor

�sort
N W N–Websort

gr ! glN –Modsort
es as follows:

� On objects: to each EkD ..k1/g ; : : : ; .km/g ; .kmC1/r ; : : : ; .kmCn/r/, we assign

�sort
N . Ek/DVEk0

q CN
q ˝Sym

Ek1
q CN

q ;

where Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/. Moreover, we send
the empty tuple to the trivial Uq.glN /–module Cq and the zero object to the
Uq.glN /–module 0.

� On morphisms: we use the functor ˆmjnsu from Corollary 3.8 to define �sort
N on

the generating trivalent vertices in N–Websort
gr (here we assume that the diagrams

are the identities outside of the illustrated part). For this, let i 2 I and we use the
notation k D ki ; l D kiC1 and .k; l/D .k1; : : : ; ki D k; kiC1D l; : : : ; kmCn/.

(3-7)

�sort
N

0BB@
kCl

k l

1CCADˆmjnsu .E
.l/
i 1.k;l//; �sort

N

0BB@
kCl

k l
1CCADˆmjnsu .F

.l/
i 1.kCl;0//;

�sort
N

0BB@
kCl

k l

1CCADˆmjnsu .F
.k/
i 1.k;l//; �sort

N

0BB@
kCl

k l
1CCADˆmjnsu .E

.k/
i 1.0;kCl//:

Note that these definitions include the mixed case, where we either have l D 1 (and
colored black) or kD 1 (and colored black) and we use the odd generators Fm and Em .

Þ

Remark 3.11 There are certain choices for the images of monochromatic merges and
splits, but these choices do not matter; see [25, Remark 2.18]. In contrast, there is no
other choice for the mixed merges and splits. For example, take l D 1 in the top left
in (3-7). The green edge labeled k C 1 should represent

VkC1
q CN

q . Thus, we have
to see the top boundary of the left-hand side as 1.kC1;0/ and not as 1.0;kC1/ , which
determines our choices, and similarly for the other mixed generators. For example, if
mD nD 1, and k D 1 or l D 1, then
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�sort
N

0BB@
2

1 1

1CCADˆ1j1su .E11.1;1//¤ˆ1j1su .F11.1;1//D �sort
N

0BB@
2

1 1

1CCA :
Lemma 3.12 �sort

N is a well-defined functor �sort
N W N–Websort

gr !glN –Modsort
es making

the diagram (3-6) commutative.

Proof First we note that �sort
N ı‡mjnsu Dˆmjnsu on generators F .j /i 1 Ek and Fm1 Ek (and

analogously for E ) with i 2 I � fmg, j 2 Z�0 and Ek 2 ZmCn . This follows from
the definition of �sort

N via ˆmjnsu and the observation that ladders can be written as
compositions of merges and splits; see also [25, Lemma 2.20].

We need to check that the images of the relations from N–Websort
gr under �sort

N hold in
glN –Modsort

es . Corollary 3.8 guarantees that all relations in glN –Modsort
es are induced

via ˆmjnsu from relations in PUq.glmjn/ and the fact that ˆmjnsu kills certain glmjn–
weights. It remains to check that the relations in N–Websort

gr are, likewise, induced via
‡
mjn
su from relations in PUq.glmjn/. For the monochromatic and isotopy relations, this

follows as in [25, Lemma 2.20].

The dumbbell relation (2-9) can be recovered from PUq.glmjn/ as follows. Without loss
of generality we work with mD nD 1:

Œ2�

1 1

1 1

D ‡1j1su .Œ2�1.1;1//D ‡1j1su .FE1.1;1/CEF 1.1;1//D

1 1

1 1

2 C

1 1

1 1

2

Relation (2-10) is a consequence of killing glmjn–weights Ek D .k1; : : : ; kmCn/, one
of whose first m entries is larger than N.

Lemma 3.13 The functor �11 W N–WebCKM!N–Webgr is faithful.

Proof By Lemma 3.12 and a comparison of definitions, we have a commuting diagram

glN –Mode
�es
e
// glN –Modsort

es

N–WebCKM

�CKM

OO

�11
// N–Websort

gr

�sort
N

OO
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where �CKM is the functor considered in [3, Section 3.2] and �es
e is the evident embed-

ding of a full subcategory. �CKM is faithful by [3, Theorem 3.3.1] and, thus, �11 is
faithful as well.

Remark 3.14 Let Mat.N–Websort
gr / be the additive closure of N–Websort

gr : objects
are finite, formal direct sums of the objects of N–Websort

gr and morphisms are matrices
(whose entries are morphisms from N–Websort

gr ). We can extend �sort
N additively to a

functor
�sort
N W Mat.N–Websort

gr /! glN –Modsort
es ;

and similarly for �N later on.

Proposition 3.15 The functor �sort
N W N–Websort

gr !glN –Modsort
es gives rise to an equiv-

alence of categories �sort
N W Mat.N–Websort

gr /! glN –Modsort
es .

Proof Since �sort
N W Mat.N–Websort

gr /! glN –Modsort
es is well-defined by Lemma 3.12

and Remark 3.14, it remains to show that �sort
N is essentially surjective, full and faithful.

Essentially surjective This follows directly from the definitions of �sort
N , N–Websort

gr ,
its additive closure Mat.N–Websort

gr / and glN –Modsort
es .

Full It suffices to verify fullness for morphisms between objects of the form Ek2XmCn,
where XmCn D .Xb [Xg/m[ .Xb [Xr/n. That it holds is clear from diagram (3-6),
since ˆmjnsu is full by Corollary 3.8.

Faithful Again it suffices to verify faithfulness for morphisms between objects of
the form Ek 2 XmCn. Given any web u 2 HomN–Websort

gr
. Ek; El/ for Ek 2 XmCn and

El 2Xm0Cn0 , we can compose u from the bottom and the top with merges and splits,
respectively, to obtain

u0 D
� � �

� � �

� � �

� � �
u

lm0Cn0

kmCn

l1

k1

lm0

km

lm0C1

kmC1

� � �

� � �

� � �

� � �

1 1

1 1

1 1

1 1

Recall that exploding edges is, by (2-7), a reversible operation. Hence, we have

�sort
N .u/D �sort

N .v/ if and only if �sort
N .u0/D �sort

N .v0/;
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which together with Corollary 2.16 reduces the verification of faithfulness to the
case where all web edges are black or green. Such webs lie in �11 .N–WebCKM/ and
faithfulness follows as in the proof of Lemma 3.13.

3.3 Proofs of the equivalences

Remark 3.16 Recall that the universal R–matrix for glN gives a braiding on the
category glN –Modes as follows (see eg [29, Chapter XI, Sections 2 and 7]). For any
pair of Uq.glN /–modules V and W in glN –Modes , let PermV;W W V ˝W !W ˝V
be the permutation PermV;W .v˝w/D w˝ v and define ˇRV;W D PermV;W ıR . We
scale ˇRV;W as

žR
V;W D q�

kl
N ˇRV;W

whenever V and W are exterior or symmetric power Uq.glN /–modules of exponent
k and l , respectively. This induces a scaling žRV;W of ˇRV;W for all Uq.glN /–modules
V;W 2 glN –Modes . Then .glN –Modes; žR�;�/ is a braided monoidal category.

The goal of this subsection is to finally prove our main theorems. To this end, we
extend (3-6) to a diagram

(3-8)

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es
� � �alg

// glN –Modes

N–Websort
gr

�sort
N

OO

� �

�dia
// N–Webgr

�N

OO

where �alg and �dia are the evident inclusions of full subcategories. We will define the
functor �N such that the diagram (3-8) commutes.

Definition 3.17 (The diagrammatic presentation functor �N ) We define a functor
�N W N–Webgr! glN –Modes as follows:

� On objects, �N sends an object Ek 2XL of N–Webgr to the tensor product of
exterior and symmetric powers of CN

q specified by the entries of Ek ; green and
red integers encode exterior and symmetric powers respectively, and a black
entry 1 corresponds to CN

q itself.
� On morphisms, for an object Ek 2 XL let w. Ek/ 2 SL be a shortest length

permutation that sorts green integers in Ek to the left of red integers. We define �N
on an arbitrary web u 2HomN–Webgr.

Ek; El/ by precomposing and postcomposing
with elementary crossings and the universal R–matrix intertwiners:

�N .u/D . žR
w.El//

�1 ı�sort
N .ˇ�

w.El/ ıu ı .ˇ
�
w. Ek//

�1/ ı žR
w. Ek/:

Clearly, �N restricts to �sort
N . Þ
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Lemma 3.18 �N W N–Webgr! glN –Modes is a monoidal functor making (3-8) com-
mutative.

Proof By Lemma 3.12 and the fact that ˇ��;� and žR�;� are braidings (see Proposition 2.22
and Remark 3.16), we see that �N is well-defined. That �N is monoidal and
makes (3-8) commutative is clear from its construction.

Proposition 3.19 The functor �N W .N–Webgr; ˇ
��;�/! .glN –Modes; žR�;�/ is a functor

of braided monoidal categories.

Proof By Lemma 3.18, it remains to verify

�N .ˇ
�
Ek˝El/D ž

R

�N . Ek/;�N .El/
for all objects Ek and El of N–Webgr:

The green–red symmetry and the fact that the mixed crossings are defined via the
monochromatic crossings, together with Corollary 2.24, reduce this problem to the
situation studied in [3, Theorem 6.2.1 and Lemma 6.2.2]. It remains to show

�N .ˇ
g
1;1/D �N .ˇr1;1/D �sort

N .ˇ
g
1;1/D �sort

N .ˇr1;1/D žRCNq ;CNq :

This follows since �sort
N .ˇ

g
1;1/D �sort

N .ˇr1;1/ acts on

CN
q ˝CN

q Š
V2
q.C

N
q /˚Sym2q.C

N
q /

as �q�1 on the first summand and as q on the second (see Example 2.18).

Theorem 3.20 (The diagrammatic presentations) The functor

�N W .Mat.N–Webgr/; ˇ
��;�/! .glN –Modes; žR�;�/

is an equivalence of braided monoidal categories.

Proof By Proposition 3.19, �N extends to a braided monoidal functor on the additive
closure and it remains to show that �N is essentially surjective, full and faithful.

Essentially surjective This follows directly from the definitions; see also Remark 3.14.

Full and faithful As before, it suffices to verify this on morphisms between objects
of the form Ek 2XL. Consider the commuting diagram

glN –Modsort
es glN –Modes

!R
oo

N–Websort
gr

�sort
N

OO

N–Webgr

�N

OO

!�
oo
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where !R and !� are the functors that order f 2 HomglN –Modes.�N .
Ek/; �N .El// and

webs u 2 HomN–Webgr.
Ek; El/ by using the R–matrix braiding žR�;� and the braiding ˇ��;� ,

respectively, via a permutation of shortest length. Since sorting is invertible, we get

dim
�
HomglN –Modes.�N .

Ek/; �N .El//
�
D dim

�
HomglN –Modsort

es

�
�sort
N .!�. Ek//; �sort

N .!�.El//
��

D dim
�
HomN–Websort

gr
.!�. Ek/; !�.El//

�
D dim.HomN–Webgr.

Ek; El//;
where the second equality follows from Proposition 3.15.

Remark 3.21 For now we restrict ourselves to working with webs with only upward-
oriented edges. Downward-oriented edges, as for example in [3], can be used to
represent the duals of the Uq.glN /–modules

Vk
qCN

q and SymlqCN
q . With respect to

such an enriched web calculus, the statement of Theorem 3.20 extends to an equivalence
of pivotal categories; see [23, Section 6] and Remark 5.12.

Let LH denotes the monoidal, Cq –linear category obtained from the collection H1.q/
of Iwahori–Hecke algebras as follows. The objects e and e0 of LH are tensor prod-
ucts of Iwahori–Hecke algebra idempotents corresponding to ecol.�/ and erow.�/ (as
in Definition 2.26) under the isomorphism in Lemma 2.25. The morphism spaces are
given by Hom LH .e; e

0/D e0H1.q/e . The category LH is braided with braiding žH�;�
induced from H1.q/.

Theorem 3.22 (The diagrammatic presentation) For large N the functors �N stabi-
lize to a functor

�1W .Mat.1–Webgr/; ˇ
��;�/! .Mat. LH /; žH�;� /;

which is an equivalence of braided monoidal categories.

Proof By Schur–Weyl duality (2-14) and by the construction of the categories
N–Webgr as quotients of 1–Webgr , we have quotient functors �N1 and �N for
N 2 Z�0 such that

(3-9)

Mat. LH /
�N

// glN –Modes

Mat.1–Webgr/
�N1
//

�1

OO

Mat.N–Webgr/

�N

OO

commutes. Here the functor �1 is an idempotented version of the inverse of the
isomorphism ˆ1qSW from Lemma 2.25.
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Fix two objects Ek 2 XL and El 2 XL of 1–Webgr and suppose that N is greater
than the sum of the integer values of the entries of Ek (ignoring their colors). Then,
by (2-14), Theorem 3.20, the commutativity of (3-9) and the fullness of �N1 , we have

dim
�
Hom LH .�1. Ek/; �1.El//

�D dim
�
HomglN –Modes

�
�N .�1. Ek//; �N .�1.El//

��
D dim

�
HomN–Webgr.�

N1. Ek/; �N1.El//
�

D dim.Hom1–Webgr.
Ek; El//:

�1 is clearly essentially surjective and a braided monoidal functor, and the theorem
follows.

4 Applications

In this section we write LD for diagrams of framed, oriented links L, bKD for diagrams
of braids in K strands and xbKD for closures of such braid diagrams. We consider
labelings of the connected components of L and of braids by Young diagrams �i. If
L is a d –component link, then we write L.E�/ for its labeling by a vector of Young
diagrams E�D .�1; : : : ; �d /, and use an analogous notation for labeled link and braid
diagrams. If not mentioned otherwise, then all appearing links and related concepts are
assumed to be framed and oriented from now on.

Let LD.E�/D xbKD .E�/ be a diagram of a framed, oriented, labeled link given as a braid
closure. The following process associates to bKD .

E�/ an element pK0.zbK0D /eq.E�/ of
HK0.q/Š End1–Webgr.

EK 0/:

�i

�i 2ƒC.Ki /

cable��! � � �
Ki strands

pKi . � /���! pKi

 
� � �

Ki strands

!
eq.�

i /D
� � �

� � �
eq.�

i /

1 1 1 1

1 1 1 1

where the last equality follows from Lemma 2.25 and we write pKi for the Iwahori–
Hecke algebra representation of the braid group on Ki strands. The first step replaces
strands labeled by a Young diagram �i with Ki nodes in the braid diagram bKD by
Ki parallel strands. This results in a new braid zbK0D , where K 0 indicates the number
of strands. In the second step this cabled braid is interpreted as an element of the
Iwahori–Hecke algebra, or, equivalently, as a web in 1–Webgr , with an idempotent
eq.�

i / placed on the cable of each previously �i labeled strand.

4.1 The colored HOMFLY–PT polynomial via 1–Webgr

In this subsection we work over the ground field Ca;q DCq.a/, with a being a generic
parameter. We will use the Ca;q –valued Jones–Ocneanu trace tr. � / on the direct sum
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of all Iwahori–Hecke algebras H1.q/D
L
K2Z�0HK.q/. The definition of tr. � / can

be found in [13, Section 5] (which can be easily adapted to our notation). We will use
it in the form of the following lemma.

Lemma 4.1 Given a web u 2 End1–Webgr.
EK/,

tr.u/D u

1

1

1

1

:::

� � � � � �

:::

� � � � � �
2Ca;q;

where the closed diagram can be evaluated by using the relations in 1–Webgr and,
additionally,

(4-1) 1 D a� a�1
q� q�1 ;

1

1

2

1

D aq�1� a�1q
q� q�1

1

1

Proof By Proposition 2.15 and Corollary 2.13: any given web u 2 End1–Webgr.
EK/

can be expressed using black or green edges with labels at most 2. Using Lemma 2.25
and additionally [24, Section 4.2], where Rasmussen’s singular crossings correspond to
green dumbbells with label 2, provides the statement. Note that Rasmussen’s relations
II and III are already part of our diagrammatic calculus.

Definition 4.2 (The colored HOMFLY–PT polynomial) Let LD.E�/ D xbKD .E�/ be a
diagram of a framed, oriented, labeled link L.E�/ given as a braid closure.

The colored HOMFLY–PT polynomial of L.E�/, denoted by Pa;q.L.E�//, is defined via

Pa;q.L.E�//D tr.pK0.zbK0D /eq.E�// 2Ca;q;

where eq.E�/ is a tensor product of the eq.�i /, as described above. Þ

This polynomial is independent of all choices involved and an invariant of framed,
oriented, colored links. Up to different conventions, this is shown for example in [17,
Corollary 4.5].
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Remark 4.3 In fact, Definition 4.2 gives the framing dependent, unnormalized version
of the colored HOMFLY–PT polynomial. As usual, the polynomial can be normalized
by fixing the value of the unknot to be 1 (instead of .a� a�1/=.q � q�1/ as in our
convention) and one can get rid of the framing dependence by scaling with a factor
coming from Reidemeister 1 moves; see for example [13, Definition 6.1]. We suppress
these distinctions in the following.

Note that Lemma 4.1 provides a method to calculate the colored HOMFLY–PT polyno-
mials Pa;q. � / using the web category 1–Webgr .

Proposition 4.4 (The colored HOMFLY–PT symmetry) We have

Pa;q.L.E�//D .�1/cPa;q�1.L.E�T//;

where E�T D ..�1/T; : : : ; .�d /T/ and c is the sum of the number of nodes in the �i for
1� i � d .

This symmetry is not new: it can be deduced from [19, Section 9] and has been studied
in [18; 6, Proposition 4.4]. In our framework it follows directly from the green–red
symmetry in 1–Webgr .

Proof We only give a proof for the case of knots K . The proof for links is analogous,
but the notation is more involved. We denote by Igr the involution on 1–Webgr

given by the green–red symmetry, and by Iq the involution on Ca;q which inverts the
variable q .

Claim For u 2 End1–Webgr.
EK/ we have

(4-2) tr.u/D .�1/KIq
�
tr.Iq.Igr.u///

�
:

It suffices to prove tr.u/D .�1/KIq.tr.Igr.u/// in the case where u is a primitive web
(a morphism that consists of a single web with coefficient 1, which is thus invariant
under Iq ). In Lemma 4.1 we have met evaluation relations for monochromatic green
webs of edge label at most 2, but clearly analogous relations can be derived for red and
mixed webs. In fact, all necessary evaluation relations are invariant under Igr and Iq ,
except the two relations in (4-1). The circle relation is Igr –invariant, but acquires a sign
under Iq . The following computation shows that the green and red bubble relations
also respect (4-2):
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1

1

2

1

(2-9)D Œ2�

1

1

1

�

1

1

2

1

D aq� a�1q�1
q� q�1

1

1

q$q�1 ��!�

1

1

2

1

We note that in the computation of tr.u/ via Lemma 4.1 strands can only be removed
by circle moves and bubble moves. Both of these acquire a sign under Iq , which causes
the factor .�1/K in (4-2). This proves the claim.

Let bKD be a braid diagram that closes to a diagram of K and suppose that K is labeled
by a Young diagram � of with L nodes. Let zbKLD be the L–fold cable of the braid
diagram bKD .

Now we have

Pa;q.K.�//D tr.pKL.zbKLD /eq.�/
˝K/

D .�1/KLIq
�
tr
�
Iq.Igr.pKL.zbKLD /eq.�/

˝K//
��

D .�1/KLCcrL2Iq.tr.pKL.zbKLD /eq.�
T/˝K//D .�1/LPa;q�1.K.�T//;

where cr is the number of crossings of bKD . Here we have used (4-2) and that
IqIgr acts as �1 on black crossings — see Example 2.18 — while sending eq.�/ to
eq.�

T/ plus a commutator (which is zero in the trace), see Lemma 2.28. Moreover,
.�1/KLCcrL2 D .�1/L since cr�K � 1 mod 2 as bKD closes into a knot.

4.2 The colored slN –link polynomials via the categories N–Webgr

Recall that the colored Reshetikhin–Turaev slN –link polynomial RT qN ;q.L.E�// are
determined by the corresponding colored HOMFLY–PT polynomials Pa;q.L.E�// by
specializing aD qN. Alternatively, they can be computed directly inside the categories
N–Webgr from a framed, oriented, labeled link diagram as follows:

� First we replace all �–labeled strands in the link diagram by cables equipped
with the diagrammatic idempotent eq.�/, written in monochromatic green webs.

� The resulting diagram will contain downward-oriented green edges of label k ,
which we replace by upward-oriented green edges of label N�k . Simultaneously,
caps and cups are replaced by splits and merges

k N�k

D
N

k N�k

;

k N�k

D
N

k N � k
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� The result is a morphism in N–Webgr between objects consisting only of entries
0 and Ng . It follows from Theorem 3.20 that this Hom–space is one-dimensional.
Thus, the framed, oriented, labeled link diagram determines a polynomial, which
is the desired colored Reshetikhin–Turaev slN –link polynomial.

Recall from Remark 1.1 that this approach relies on the fact that slN –Modes contains
the duality isomorphisms

Vk
qCN

q Š
�VN�k

q CN
q

��. In Remark 5.12 we sketch how to
include duals in diagrammatic presentations of glN –Modes and glN jM–Modes and,
thus, to compute the corresponding Reshetikhin–Turaev glN or glmjn–link invariants.

5 Generalization to webs for glN jM

We now give a diagrammatic presentation of glN jM–Modes , the (additive closure of
the) braided monoidal category of Uq.glN jM /–modules tensor generated by the exteriorVk
qCN jM

q and the symmetric SymlqCN jM
q powers of the vector representation CN jM

q

of Uq.glN jM /. The diagrammatic presentation is given by the following quotient of
1–Webgr .

Definition 5.1 The category N jM–Webgr is the quotient category obtained from
1–Webgr by imposing the not-a-hook relation, that is,

eq.boxNC1;MC1/D 0;
where boxNC1;MC1 is the box-shaped Young diagram with N C 1 rows and M C 1
columns. Þ

Note that N jM–Webgr inherits the braiding ˇ��;� from 1–Webgr .

Example 5.2 If we take M D 0, then boxNC1;1 is a column Young diagram with
NC1 nodes and the corresponding not-a-hook relation is just the exterior relation (2-10).
In this case we have that N j0–Webgr is N–Webgr and glN j0–Modes is isomorphic to
glN –Modes . G
Example 5.3 If we take M DN D 1, then we have

zeq.box2;2/D zeq
� �

D 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2
D� 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2

2 D 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2

2

Algebraic & Geometric Topology, Volume 17 (2017)



Super q–Howe duality and web categories 3743

It is easy to see that eq.box2;2/ D 0 is equivalent to the relations [27, (3.3.13a)
and (3.3.13b)], [9, Section 3.6] and [23, Corollary 6.18], which are used to describe
the “purely exterior” representation category gl1j1–Mode . This category could be
presented as monochromatic green subcategory of 1j1–Webgr , defined analogously as
in Definition 2.7. G

To prove that N jM–Webgr gives a diagrammatic presentation of glN jM–Modes , we use
a version of super q–Howe duality between Uq.glmjn/ and Uq.glN jM /. For this, we
say a dominant integral glmjn–weight � is .mjn;M jN/–supported if it corresponds to
a Young diagram which is simultaneously an .mjn/–hook as well as an .M jN/–hook.9

Theorem 5.4 (Super q–Howe duality, super–super version) We have the following:

(a) Let K 2Z�0 . The actions of Uq.glmjn/ and Uq.glN jM / on
VK
q .C

mjn
q ˝CN jM

q /

commute and generate each others commutant.

(b) There exists an isomorphismV�
q.C

mjn
q ˝CN jM

q /Š .V�qCN jM
q /˝m˝ .Sym�qCN jM

q /˝n

of Uq.glN jM /–modules under which the Ek–weight space of
V�
q.C

mjn
q ˝CN jM

q /

(considered as a Uq.glmjn/–module) is identified with

VEk0
q CN jM

q ˝Sym
Ek1
q CN jM

q DVk1
q CN jM

q ˝ � � �˝Vkmq CN jM
q ˝SymkmC1q CN jM

q ˝ � � �˝SymkmCnq CN jM
q :

Here Ek D .k1; : : : ; kmCn/, Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/.
(c) As Uq.glmjn/˝Uq.glN jM /–modules, we have a decomposition of the formVK

q .C
mjn
q ˝CN jM

q /Š
M
�

Lmjn.�/˝LN jM .�T/;

where we sum over all .mjn;M jN/–supported glmjn–weights � whose entries
sum up to K . This induces a decompositionV�

q.C
mjn
q ˝CN jM

q /Š
M
�

Lmjn.�/˝LN jM .�T/;

where we sum over all .mjn;M jN/–supported glmjn–weights �.

9This is really intended to be .M jN/ .
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Proof As before, (a) and (c) are proven in [23, Theorem 4.2] and only (b) remains
to be verified. This works similarly as in the proof of Theorem 3.6 and is left to the
reader. For a nonquantized version see [28, Proposition 2.2].

In the statement of this theorem,
Vk
qCN jM

q , SymlqCN jM
q and

VK
q .C

mjn
q ˝CN jM

q / are
defined similarly as in Section 3.1; see also [23, Section 3]. As before we then get:

Corollary 5.5 There exists a full functor ˆmjnsu W PUq.glmjn/! glN jM–Modes , which
we again call the super q–Howe functor, given on objects and morphisms by

ˆmjnsu . Ek/DVEk0
q CN jM

q ˝Sym
Ek1
q CN jM

q ; ˆmjnsu .1El x1 Ek/D f
El
Ek .x/:

Everything else is sent to zero.

In what follows, we denote by PUq.glmjn/�0 the quotient of PUq.glmjn/ obtained by
killing all glmjn–weights with negative entries.

Corollary 5.6 The super q–Howe functor ˆmjnsu from Corollary 5.5 induces an algebra
epimorphism (denoted by the same symbol) as in the diagram:

PUq.glmjn/�0 Š
//

ˆ
mjn
su
����

L
.mjn/–
hooks �

EndCq .Lmjn.�//

�

����

EndUq.glN jM /
�V�

q.C
mjn
q ˝CN jM

q /
�
Š
//
L
.mjn;M jN/–

supported �
EndCq .Lmjn.�//

Under Artin–Wedderburn decompositions, ˆmjnsu corresponds to an algebra epimor-
phism � , which acts on the summand EndCq .Lmjn.�// either as an isomorphism or as
zero, depending on whether the Young diagram � is .mjn;M jN/–supported or not.

Proof First, note that by Theorem 3.22, PUq.glmjn/�0 is isomorphic to LH sort
mCn , the

sorted version of LH with exactly m exterior strands and n symmetric strands. The
Artin–Wedderburn decomposition in the top row of the diagram is then given in [21,
Theorem 5.1]. The bottom Artin–Wedderburn decomposition follows directly from
part (c) of Theorem 5.4.

Remark 5.7 We obtain from Corollary 5.6 an alternative proof of the presentation of
the q–Schur superalgebra Sq.N jM;K/Š EndHK.q/..C

N jM
q /˝K/ from [5, Theorem

3.13.1].
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Lemma 5.8 Under the correspondence

LH sort
mCn

Š ! PUq.glmjn/�0 Š !
M

.mjn/–hooks �

EndCq .Lmjn.�//;

the kernel of the super q–Howe functor ˆmjnsu from Corollary 5.5 is given by the tensor
ideal Ibox in LH sort

mCn generated by the primitive idempotent eq.boxNC1;MC1/.

Proof From the right isomorphism we know that the kernel of ˆmjnsu is gener-
ated by all eq.�T/ where � is an .mjn/–hook, but not an .M jN/–hook. Every
such � corresponds to a simple Uq.glN jM /–module which appears in a tensor product
LN jM ..boxNC1;MC1/T/˝ .CN jM

q /˝K for some K 2 Z�0 . Accordingly, eq.�T / is
contained in the ideal Ibox .

Proposition 5.9 There is an equivalence of categories

Mat.N jM–Websort
gr /Š glN jM–Modsort

es :

Proof Lemma 5.8 shows that the sorted web category N jM–Websort
mCn , in which

webs have m green and n red boundary points both on the bottom and on the top, is
equivalent to EndUq.glN jM /

�V�
q.C

mjn
q ˝CN jM

q /
�
, considered as a category. Via the

PUq.glmjn/–weight space decomposition in Theorem 5.4(b), N jM–Websort
mCn gives a

presentation of the morphism spaces in glN jM–Modsort
es between objects of the formVk1

q CN jM
q ˝ � � �˝Vkmq CN jM

q ˝SymkmC1q CN jM
q ˝ � � �˝SymkmCnq CN jM

q :

Any object in glN jM–Modsort
es is a formal sum of such objects for suitable m; n 2Z�0 ,

and the conclusion follows.

Remark 5.10 Recall that glN jM–Modes is a braided monoidal category, where the
braiding ˇR�;� is given by the universal R–matrix for glN jM ; see [32]. As before, we use
a rescaled braiding žR�;� , where we follow the conventions from [23, (3.12)] except that
we substitute q by q�1 in their formulas. In particular, žR

CN jMq ;CN jMq

acts as �q�1
on

V2
qCN jM

q and as q on Sym2qCN jM
q .

Theorem 5.11 (The diagrammatic presentation) There is an equivalence of braided
monoidal categories

.Mat.N jM–Webgr/; ˇ
��;�/Š .glN jM–Modes; ˇ

R�;�/:
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Proof The equivalence from Proposition 5.9 can be extended to a monoidal functor
between the categories Mat.N jM–Webgr/ and glN jM–Modes as in Definition 3.17.
We can also copy the proof of Proposition 3.19, where we use Remark 5.10 to prove
that this functor respects the braiding. Equivalence via this functor follows then as
in Theorem 3.20.

Remark 5.12 In [23, Section 6] the authors show how to extend a diagrammatic
presentation of glN jM–Mode to diagrammatically encode the full subcategory of
Uq.glN jM /–modules tensor generated by exterior powers and their duals. Graphically,
this involves the introduction of additional objects corresponding to the duals of exterior
powers, downward-oriented edges (to represent identity morphisms on duals) and cap
and cup webs (which represent coevaluation and evaluation morphisms). Additional
web relations including analogues of (4-1) are introduced to encode basic relationships
between exterior powers and their duals. The extension of the diagrammatic presentation
to include duals is then tautological and [23, Theorem 6.5 and Proposition 6.16] show
that the extended presentation functor is fully faithful.

They further show in [23, Proposition 6.15] that their graphical calculus allows the
computation of the Reshetikhin–Turaev glN jM –tangle invariants for tangles labeled
with exterior powers of the vector representation.

The same spiderization strategy — with minimal changes in proofs — gives an exten-
sion of our diagrammatic presentation N jM–Webgr of glN jM–Modes to one for the
full subcategory of Uq.glN jM /–modules tensor generated by exterior and symmetric
powers and their duals. This spiderized green–red web category directly allows the
computation of Reshetikhin–Turaev glN jM –tangle invariants for tangles labeled with
exterior as well as symmetric powers of the vector representation. The cabling strategy
from Section 4 can then be used to compute these invariants with respect to arbitrary
irreducible representations.

Lastly, we have a direct consequence of the discussion in this section and Proposition 4.4.
It is based on the facts that N jM–Webgr is defined as a quotient of 1–Webgr and
that the spiderization in [23, Section 6] respects the specialization aD qN�M of the
relations (4-1), which are sufficient to compute colored HOMFLY–PT polynomials of
braid closures.

Corollary 5.13 We have:

(1) The Reshetikhin–Turaev glN jM –tangle invariant of a labeled tangle depends
only on N �M. In the case of a labeled link, it agrees with the specialization
aD qN�M of the corresponding colored HOMFLY–PT polynomial.

Algebraic & Geometric Topology, Volume 17 (2017)
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(2) The green–red symmetry on 1–Webgr descends to a symmetry between the
categories N jM–Webgr and M jN –Webgr . Hence, there is a symmetry between
the representation categories of Uq.glN jM / and Uq.glM jN / that transposes
Young diagrams indexing irreducibles.

(3) The symmetry of HOMFLY–PT polynomials described in Proposition 4.4 is a
stabilized version of the symmetry between colored Reshetikhin–Turaev glN jM –
link invariants and glM jN –link invariants which transposes Young diagrams and
inverts q .

This confirms decategorified analogues of predictions about relationships between
colored HOMFLY–PT homology and conjectural colored glN jM –link homologies;
see [7].
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