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Abstract
We provide an introduction to the higher representation theory of Kac–Moody algebras 

and categorification of Verma modules.
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1.  Introduction

Higher Representation Theory studies actions of groups, algebras, ..., 
on categories. In HRT the usual basic structures of representation theory, 
like vector spaces and linear maps, are replaced by category theory analogs, 
like categories and functors. Opposite to vector spaces and linear maps, 
the world of categories is tremendously big, offering enough room for 
finding richer structures: for example, replacing linear maps by a functors 
always comes accompanied by a “higher structure” which is associated to 

E-mail:  pedro.vaz@uclouvain.be.

Journal of Interdisciplinary Mathematics
ISSN:  0972-0502 (Print), ISSN:  2169-012X (Online)
DOI : 10.1080/09720502.2019.1615675

This survey is an extended version of the material covered  in a three 90 minute lecture 
series on categorification of Verma modules, held as part of the Junior Hausdorff Trimes-
ter Program “Symplectic Geometry and Representation Theory” of the Hausdorff Research 
Institute in Bonn in November 2017.  I’d like to aknowledge the organizers of the program.  
Special thanks to Daniel Tubbenhauer and Grégoire Naisse for comments on a preliminary 
version of these notes.

http://www.tarupublications.com
http://www.tandfonline.com
dx.doi.org/10.1080/09720502.2019.1615675


2� P. VAZ

natural transformations between them. This higher structure is invisible 
to traditional representation theory.

Categorical actions of Lie algebras were first developed by Chuang 
and Rouquier [1] to solve a conjecture on modular representation theory 
of the symmetric group called the Broué conjecture. There were parallel 
ideas being developed at that time by Frenkel, Khovanov and Stroppel 
[3] based on earlier work of Khovanov and collaborators. All these ideas 
were boosted by the categorification of quantum groups by Lauda [11], 
Khovanov–Lauda [8, 9, 10] and Rouquier [20] and converged to what is 
called nowadays Higher Representation Theory.

Besides it relations with representation theory, HRT has shown to 
share interesting connections with other subjects, like for example topology 
[13, 17, 19, 21]. A popular example is the construction of Khovanov’s link 
homology in [21] (see also [22]), giving it a conceptual context in terms of 
HRT of sl2.

Overview: This series of lectures consist of an introduction to my joint 
work with Grégoire Naisse on categorification of Verma modules for 
quantum Kac–Moody algebras [15, 18, 18].
l	� In Section 1, we first give the necessary background on representation 

theory of (quantum) sl2 adjusting the exposition in [14] to the 
quantum case. We the give a somehow detailed overview on the 
categorification of the finite-dimensional irreducible representations 
of quantum sl2 using categories of modules for cohomologies of finite-
dimensional Grassmannians and partial flag varieties. This is due 
to Frenkel–Khovanov–Stroppel [3] and independently to Chuang–
Rouquier [1], and is an example of how such categorifications arise 
naturally.

l	� In Section 2, by working with infinite Grassmannians and adding 
a bit more structure we are able to categorify Verma modules for 
quantum sl2. One natural sub-product of the geometric approach 
to categorification of Verma modules is a certain superalgebra 
extending the well-known nilHecke algebra, one of the fundamental 
ingredients in the categorification of quantum sl2.

l	� In Section 3 we explain the case of categorification of Verma modules 
for Kac–Moody algebras. This requires a generalization of KLR 
algebras, the latter being the main ingredient in the categorification 
of quantum groups by Khovanov–Lauda–Rouquier.
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1.  Background 

1.1  sl2-actions

1.1.1  Quantum sl2

Let k = C(q). Quantum sl2 is the associative k-algebra U generated by 
e, f and k ± 1, modulo the relations 

−
− − −

−

−
= = = = − =

−

1
2 2 1 1

1, , 1, .k kkf q fk ke q ek kk k k ef fe
q q

It is a Hopf algebra with comultiplication D(e) = 1 ƒ e + ƒ k –1, D(f ) = 
k ƒ f + f ƒ 1, D (k ± 1) ƒ k ± 1, antipode S(k ± 1) = k  1, S(e) = – ek and S( f ) = – k–1f. 
This is a quantization of the universal enveloping algebra of sl2.

1.1.2  sl2.-modules

We say that (quantum) sl2 acts on the k-vector space M if we have 
operators 

± ∈ k
1, , ( )E F K End M

such that, for every m ŒM we have 
− − − −= = = =2 2 1 1( ) ( ), ( ) ( ), ( ) ( ),KF m q FK m KE m q EK m KK m m K K m

and
−

−

−
= +

−

1

1
( ) ( )( ) ( ) .K m K mEF m FE m

q q

We say that sl2 acts on M through the application f  F, e  E, 
k ± 1  K ± 1 or that M is an sl2-module, or even that M is a representation of sl2. 
Sometimes we denote F(m) = F.m, E(m) = E.m, etc ...

A subspace n Õ M which is closed under the sl2-action (U.N Õ N) is 
called a submodule. An sl2-module is irreducible if it does not contain any 
proper submodule (i.e. different from {0} and M).

1.1.3  Integrable modules

We say that an sl2-action on M is integrable (or that M is integrable) if 
for every m ŒM we have = =1 2( ) 0 and ( ) 0r rE m F m  for r1, r2  0. Note that 
r1 and r2 depend on m. In the case of weight modules (see 1.1.4 below) and 
q = 1, the name comes from the fact that one can “integrate these up to the 
group”.
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1.1.4  Weight modules

Fix a complex number x and for a Œx + Z Ã C put α α ξλ λ− ±= ∈ 1[ ].q q k
Suppose that M has an eigenvector for K that is, M has a vector mm, 

for some x ŒC and some m Œx + Z, such that µ
µ µ=( ) .K m q m  We say that mm 

is a weight vector of weight m. Note that M becomes a λ±1[ ]k -vector space.
It is easy to show that in this case F(mm) and E(mm) are also weight 

vectors of weights m – 2 and m + 2 respectively. We see that the subvector 
space U.mm Õ M is a submodule which consists only of weight vectors. 
This is an example of a type of modules called weight modules. The weight 
space Mm Õ M is the subspace consisting of weight vectors of weight m: 

µ
µ = ∈ ={ | ( ) }.M m M K m q m

Define the support supp(M) as the set of all its weights: supp(M) = {m 
ŒC | Mm π 0}. Then, we have that 

µ
µ∈

⊆⊕
( )supp M

M M

is a submodule and, in general M is a weight module if as a vector space, 
it is the direct-sum of all its weight spaces: 

µ
µ∈

= ⊕
( )

.
supp M

M M

From now on we will only consider weight modules.
There are also non-weight modules, and these are necessarily infinite-

dimensional.

1.1.5  Dense modules

In the special case M = U.mm all weight spaces are 1-dimensional, and 
it is useful to depict M as in the diagram below:

This is a collection of 1-dimensional k-vector spaces fixed by k ± 1, 
while F and E allow moving between them. This is an example of a class 
of modules called dense modules. In this case µ= + ( ) 2 .supp M
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1.1.6  Verma modules

Suppose that in a dense module as the one above we have E(mb) = 0 
for some b Œsupp (M). Then U.mb Ã M is a submodule with support b – 2N0 
which is called a Verma module and denoted M(b ). 

The vector mb for which E(mb) = 0 is a highest weight vector (of highest 
weight b ) and M(b ) is said to be a highest weight module1 (of highest weight 
b ) (the terminology should be clear from the diagrams).

Verma modules are also called standard modules. They are defined as 
induced modules. Let U(b) Ã U be the (Hopf) subalgebra generated by k ± 1 
and e. It is an example of Borel subalgebra and this one is the standard Borel 
subalgebra.

Let kb = kvb be a 1-dimensional representation of U(b) generated by a 
weight vector vb of weight b : 

β
β β β= =. , . 0.k v q v e v

The Verma module M(b ) is the induced module 

ββ = ⊗ ( )( ) .U bM U k

It is easy to see that it is a highest weight module of highest weight b 
with the vector 1 ƒ vb the highest weight vector, and that all weight spaces 
are 1-dimensional, and therefore it agrees with the description above as a 
submodule of a dense module. Physicists like lowest-weight modules, as 
do Rouquier [20].

The description of M(b ) as an induced module has the advantage of 
giving immediately a basis, the F basis. From now on we find convenient 
to label the basis vectors ′ ′ …0 1, , :m m

	
Here, for a Œx + Z we put 

1	 There is also the corresponding notion of lowest weight module.
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α α

α λ
−

±
−

−
= ∈

−
1

1[ ] : ( )[ ].q q q
q q

k

There are other interesting bases: the canonical basis {m0, m1, ...} : 

1.1.7  The Shapovalov form

Verma modules come equipped with a bilinear form, called the 
Shapovalov form (–, –)b. It is the bilinear form on M(b ) uniquely defined, 
for m, m¢ŒM(b ), u ŒU, and f Œk, by 

•	�  β =0 0( , ) 1,m m
•	�  β βρ′ ′=( , ) ( , ( ) ) ,um m m u m  where r is the q-linear antiautomorphism 

U Æ U defined by ρ ρ ρ− − −= = =1 1 1( ) , ( ) and ( ) ,e q k f f q ke k k  
•	�  β β β

′ ′ ′= =( , ) ( , ) ( , ) .f m m fm m m fm  

For example, 

β
β

β β β− − + − +
=

( ) [ 1][ 2] [ ]( , ) .
[ ]!

i i
i i

i im m q
i

Note that the canonical basis and the F basis are both orthogonal 
w.r.t. the Shapovalov form and this will be important later

When M(b ) is irreducible, the Shapovalov form is nondegenerate 
(this is in fact a iff condition, since the radical of ·–, –Ò is a submodule). 
This allows defining a dual canonical basis of M(b ), denoted {m0, m1, ...}, as 

δ= ,( , ) .j
i i jm m  This gives 

β

β β β
− −=

− + − + 

( ) [ ]! .
[ 1][ 2] [ ]

i i i
i

im q m
i i

We need the [b + i]’s to be invertible in k (we can work for example in 
k (q b). In this basis the sl2-action is described in the diagram below. 
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The Verma module M(b ) is irreducible unless b ŒN0. If b = n ŒN0 then 
M(n) contains M(–n–2) as a submodule.

1.1.8  Finite-dimensional modules

We denote V(n) the quotient M(n)/M(–n–2). It has a canonical basis 
{v0, v1, ...} : 

The basis {v0, v1, ...} is a particular case of Lusztig-Kashiwara’s 
canonical bases for finite-dimensional irreducible representations of 
quantum groups.

Note that V(n) has several symmetries: it is invariant under the 
operation that switches vi ´ vn – 2i for all i Œ{0, ..., n} and E ´ F.

Note also that in this case 
−

− − − − − + + − + +
−

−
= − = + +…+ +

−

1
2 1 2 3 2 3 2 1

1 [ 2 ] ( )n i n i n i n i
i i i

k k v n i v q q q q v
q q

if n – 2i ≥ 0 (and its negative if n – 2i £ 0) is a finite sum, and therefore, the 
main sl2-relation can be written 

( ) ( ) [ ] ,EF v FE v vµ− =

for v in the weight space Vm. Note that, as defined above, [m] is a 
polynomial in q. As long as we have the weight space decomposition and 
the representation is finite dimensional we don’t really need k ± 1. actually 
this is more general: we can get rid of k ± 1 acting on a weight module M 
whenever the support supp (M) Õ (Z).

The Shapovalov form descends to an nondegenerate bilinear form 
(–,–)n on V(n) (since we have modded out by its radical. This allows 
defining the dual canonical basis of V(n)in the same way as before yielding2 :

− +=
− +

( 1) [ ]! . (1)
[ 1]!

i i n
i

iv q v
n i

Either the canonical basis and the dual canonical basis are orthogonal 
bases w.r.t. to (–, –)n.

2	 This is a convention which is different from [3]. The dual canonical basis elements there 
were defined as (vi, vi) = qj(n–j)dij.
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For each n ŒN0 there is a unique isomorphism class of n + 1-dimen- 
sional irreducible representation for sl2. Moreover, every finite-
dimensional representation of sl2 decomposes into a direct sum of V(n)’s 
for various n’s.

1.2  Categorical sl2-actions

1.2.1  What should a categorical sl2-action be?

Roughly speaking, a categorical sl2-action on a category C consists of 
functors F, E, k ± 1 on C that “satisfy the sl2-relations”.

There are several ways of defining what is to satisfy the sl2-relations, 
and apparently we have to make a choice.

The Grothendieck group of a category C endowed with a class of 
distinguished triples (e.g. exact sequences in abelian categories, triangles 
in triangulated categories, direct-sum decompositions A @ B ≈ C in additive 
categories) is the abelian group k0(C), freely generated by symbols [A] for 
objects A of C, subjected to relations [B] = [A] + [C] for each distinguished 
triple (A, B, C). Sometimes we can take different Grothendieck groups for 
the same category. We will then use the notation G0(–) in the case we take 
the Grothendieck group w.r.t. exact sequences.

Since we are assuming almost nothing about C, at the time being it 
seems reasonable to ask that the functors F, E, K+1 induce an sl2-action on 
the Grothendieck group3 of C. This means the assignment f  [F], e  [E], 
k ± 1  [K ± 1] defines an sl2-action on k0(C).

This seems to be the simplest definition, but it doesn’t say much 
about the functors, nor about C. The only information we can extract at 
this moment is that C is a graded category (in which q corresponds to the 
grading shift {1} via q [A] = [A{1}]). We also know that the functors {F, 
E, K+1} induce operators on the Grothendieck group. Assuming it exists, 
we call it a naïve categorical sl2-action. This can be slightly improved by 
demanding that the functor F is isomorphic to a left adjoint of E : 

•	� sl2 acts weakly on C if the functors F, E, K+1 induce an sl2-action on the 
Grothendieck group of C, and F is isomorphic to a left adjoint of E . 

We say that (C, F, E, k ± 1) is a weak categorification of the sl2-module 
k0(C).

3	 In other words, we well be only interested in exact functors, where exact means they 
preserve the triples (i.e. additive, exact or triangulated).
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Note that (naïve, weak) categorical actions on C gives bilinear forms 
on K0(C) (depending on the type of category C is). For example, one can 
have 

〈 〉 =[ ],[ ] gdim(Hom ( , )).X Y X YC

To go any further we have to restrict the class of categories C on 
which we act.

1.2.2  Integrable categorical sl2-actions

Suppose that sl2 acts weakly on C. Suppose also that C has a zero 
object and if for every object X of C we have =1 ( ) 0rE X  and =2 ( ) 0rF X  for 
r1, r2  0, where 1rE  (resp 2rF ) is the composite of E (resp. F) with itself r1 
(resp. r2) times.

In this case, the Grothendieck group of C is a direct sum of finite-
dimensional irreducible representations. Moreover, all weights occurring 
in K0(C) are integers: supp(K0(C))Õ Z.

It seems reasonable to assume that C has finite coproducts (direct 
sums) and moreover to ask that it has a block decomposition (recall the 
orthogonality of the several bases w.r.t. the Shapovalov form) 

µ
µ∈

= ⊕


,C C

where Cm Õ C is the full subcategory generated by objects M such that [M] 
ŒK0(C)m.

In this case we can give a step further and ask the functors {E, F} to 
satisfy the following isomorphisms (recall we don’t need k ± 1 anymore): 

µ

µ

µ
µ−

≅ ⊕ ≥

≅ ⊕ ≤

[ ]

[ ]

( ) ( ) ( ), for 0,
( ) ( ) ( ), for 0,

EF X FE X Id X
FE X EF X Id X

for every object X ŒCi. Here Id[m](X) = X{m – 1} ≈ X {m – 3} ≈ ... X {– m + 3}  ≈ 
Z {– m + 1}. Looking further at the form of the direct sum decompositions 
above we see that we’d better work with categories that are at least additive.

We have a bit more information about the functors that realize the 
action (we have a bit more of knowledge about the higher structure).

We have made a crucial choice: we have imposed that the functors 
F and E satisfy a direct-sum decomposition realizing the sl2-commutator. 
Later we will find important to reformulate this condition.

We can now summarize. 
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Definition 1.1 : An integrable categorical sl2-action on an additive category 
µ

µ∈
= ⊕



C C  consists of functors F and E such that 

•	� F is isomorphic to a left adjoint of E up to degree shift, and they 
satisfy 

µ= = = =

1 2( ) 0, ( ) 0, for ( ) 0 ( 1,2),r r
i iF X E X r r i

	 and 
µ

µ

µ
µ−

≅ ⊕ ≥

≅ ⊕ ≤

[ ]

[ ]

( ) ( ) ( ), for 0,
( ) ( ) ( ), for 0,

EF X FE X Id X
FE X EF X Id X

	 for every object X ŒCm. 

Note we haven’t given a notion of sl2-action that is not naïve, nor weak, 
nor integrable. This will be done later in the context of categorification of 
Verma modules.

1.3 � Categorification of the finite-dimensional irreducibles: the CR–FKS 
approach

The main idea is to replace the weight spaces with categories, on which f 
and e act via (exact) functors F and E:

and ask these functors to be an adjoint pair ((F, E) as always) and to satisfy 
the sl2-relations: 

2

2

[ 2 ]
2 2

[ 2 ]
2 2

( ) ( ) , 2 0,

( ) ( ) , 2 0.
n k

n k

n k
n k n k

n k
n k n k

EF FE Id n k

FE EF Id n k
−

−

−
− −

− +
− −

≅ ⊕ − ≥

≅ ⊕ − ≤
V

V

V V

V V

1.3.1  Categorification of the weight spaces: the cohomology of Grassmannians

For 0 £ k £ n, let Gk(n) denote the variety of complex k-planes in CN. The 
cohomology ring of Gk(n) has a natural structure of a Z-graded Q-algebra, 

≤ ≤ −
= ⊕ 

*

0 ( )
( ( ), ) ( , ) .k

k k
k k n k

H G n H G

We write Hk : = H *(Gk(n), Q).
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The graded ring Hk can be given an explicit description in terms of 
Chern classes. We have 

1 1 ,[ , , , , , ]/ ,k k n k k nH Q c c c c I−= … …

where deg cj = 2 j = degcj , and Ik,n is the ideal generated by equating the 
terms in the equation 

−
−+ + + + + + + = 

2 2
1 2 1 2(1 )(1 ) 1k n k

k n kc t c t c t c t c t c t

that are homogeneous in t. This is a neat way of encoding a large number 
of relations at once.

Example 1.2 : As a simple example, take k = 1. Then G1(n) is the complex 
projective space, and ≅ =1 [ ]/( ) with deg( ) 2.nH x x x

Let 
•	� Hk – gmod : the category of graded, finitely generated, projective Hk-

modules, with degree-preserving maps, and set 
•	�  − = −2 gmod.n k kHV

The rings Hk being graded local rings (they have an unique maximal 
left/right ideal) implies that their Grothendieck group is a free Z [q, q–1]-
module, generated by a unique indecomposable projective module, since 
objects satisfy the Krull-Schmidt property.

Hence, 

10 [ , ]
( ) ( ) ( ),n q q

K q q−⊗ ≅


 V

so that the category 

−
=

= ⊕ 2
0

n

n k
k

V V

categorifies the irreducible representation V(n) in the sense that 

±−
=

= ⊗ ≅⊕


10 0 2 [
0

]( ( )) ( ) ( ) ( )
n

n k q
k

K n K q V nV V

as Q(q)-vector spaces.
At this point we have not yet defined a categorical sl2-action...

1.3.2  Moving between the weight spaces: the categorical sl2-action

Consider the partial flag variety 

+ + + += = = + ⊂ ⊂ ⊂
 

, 1 1 1 1( ) {( , )| , ( 1), 0 }.dim dim n
k k k k k k k kG n W W W k W k W W
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We write + += *
, 1 , 1: ( ( ))k k k kH H G n  for the cohomology ring of this 

variety. Again, this ring is simple to describe explicitly in terms of Chern 
classes: polynomial ring: 

ξ+ − − += … …, 1 1 2 1 2 1 , 1,: [ , , ; ; , , , ]/ , (2)k k k n k k k nH c c c c c c I

where Ik, k + 1, n is the ideal generated by equating the homogeneous terms in 
the equation 

ξ − −
− −+ + +…+ + + + +…+ =2 2 1

1 2 1 2 1(1 )(1 )(1 ) 1.k n k
k n kc c t c t t c t c t c t

As before, everything is completely explicit. Here the generator x has 
degree 2 and corresponds to the Chern class of the natural line bundle 
over Gk, k + 1(n)) whose fibre over a point +⊂ ⊂ ⊂ 10 n

k kW W  in Gk, k + 1(n)) is 
the line Wk+1/Wk.

This variety has natural forgetful maps 

inducing inclusion maps 

on cohomology.

These inclusions make Hk, k + 1 an (Hk, k + 1, Hk)-bimodule. Since these 
rings are commutative we can also think of Hk, k + 1 as an (Hk, Hk + 1)-bimodule 
which we will denote by Hk + 1, k.

Recall that we get functors between categories of modules by 
tensoring with a bimodule. We compose these functors by tensoring the 
corresponding bimodules.

The action of e and f is given by tensoring with the bimodules Hk + 1, k. 
and Hk, k + 1, respectively. 
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Define the functors 
, 1

2 2 2 1 , 1
, 1

2 2 2 , 1 1

: Res ( ( )){1 },
: Res ( ( )){ }.

k k
k n k n k k k k k

k k
k n kk n k k k k k

F H n k
E H k

+
− − − + +

+
− + − + +

→ ⊗ − − +

→ ⊗ − −

V V

V V

The grading shifts in the definition of E andF are necessary to ensure 
that these functors satisfy the sl2-relations in Proposition 1.4 below. 

Proposition 1.3 : The functors Fk, Ek have both left and right adjoints and 
commute with the grading shift functor on graded modules. 

This implies that they are exact, take projectives to projectives and 
therefore induce maps on the Grothendieck groups. As a matter of fact, 

+ + −= ⊕ − + = ⊕ −[ ] 1 1 [ ]( ) {1 }, ( ) { }.k k k k k k n k kF H H n k E H H k

Proposition 1.4 : The functors Fk, Ek satisfy the sl2-relations 
E [ 2 ]

[ 2 ]

F F E , 2 0,

F E E F , 2 0.
k

k

n k
k k k k

n k
k k k k

Id n k

Id n k

−

−

≅ ⊕ − ≥

≅ ⊕ − ≤
V

V

1.3.3 Categorification of V(n)

Put 

≥ ≥
= =⊕ ⊕

0 0
F F and E .k k

k k
E

Theorem 1.5 : (Frenkel-Khovanov-Stroppel, Chuang-Rouquier) 
(1)	� Functors E and F induce an action on the Grothendieck group K0(V(n)). 
(2)	 With this action K0(V(n)) is isomorphic with V(n), as sl2-modules. 
(3)	 �The isomorphism sends classes of projective indecomposables to canonical 

basis elements. 
(4)	 ([M], [N])n = gdim HomV(n) (M, N). 

Due to results of Chuang-Rouquier and Rouquier we know that 
V(n) is essentially unique. This will be our typical example of a strong 
categorical action, where the isomorphisms are fixed by the 2-morphisms. 
An important ingredient is an action of the nilHecke algebra.
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1.3.4 Categorifying the dual canonical basis

In order to categorify the dual canonical basis we have to work with a 
bigger category. We consider 
•	� Hk – fmod: the category of graded, finitely generated, Hk-modules, 

with degree-preserving maps, and set [resume] 
•	 − = −V 2 f mod,n k kH

•	 −
=

= = −⊕ V V 2
1

f mod.
n

n k k
k

H

The Grothendieck group G0(Vn–2k) is a free Z[q, q] -module generated 
by the unique simple module since objects in Vn–2k either have finite length 
(and the unique indecomposable projective module after tensoring with 
Q(q) over Z[q±1]).

Example 1.6 : For example, for H1 we have that the simple S of Q[x]/
xn is the quotient of Q[x]/xn by the (maximal) ideal generated by x, 
and its projective cover is the indecomposable Q[x]/xn. The projective 
indecomposable Q[x]/xn has a composition series 

−⊆ ⊆ ⊆ ⊆ ⊆    

1 20 [ ]/ [ ]/ [ ]/ [ ]/ ,n n n n nx x x x x x x x x x x

where −⊆ 

1[ ]/ [ ]/m n m nx x x x x x  is the submodule generated by xm. We 
have 

+
≅





1

[ ]/ {2 },
[ ]/

i n

i n

x x x S i
x x x

and so, in the Grothendieck group we have 
−

−

=

= =∑

1
2 1

0
[ [ ]/ ] [ ] [ ] [ ],

n
n i n

q
i

x x q S q n S

where we have written [–]q for quantum numbers to avoid confusion with 
the notation for the classes on the Grothendieck group (cf. (1) which gives 

−= 1 1
1 [ ] ).nv q n v  

For the Grothendieck group of V( )n  we have an isomorphism 

10 0 2 [ ]0
( ( )) ( ) ( ) ( ),

n

n k qk
G n G q V n±−

=
= ⊗ ≅⊕



 

V V

as Q(q)-vector spaces.
The categorical action is constructed as as before, and we have the 

following. 
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Theorem 1.7 : (Frenkel-Khovanov-Stroppel, Chuang-Rouquier) 
(1)	� Functors E and F induce an action on the Grothendieck group G0(V(n)). 
(2)	 With this action G0(V(n)) is isomorphic with (V(n), as sl2-modules. 
(3)	 �The isomorphism sends classes of projective indecomposables to canonical 

basis elements, and classes of irreducibles to dual canonical basis elements. 

The duality between a canonical basis vector and a dual canonical 
basis vector is categorified by a Hom-like form.

Within this construction it is not possible to categorify the “change-of 
basis”, since the formulas expressing dual canonical basis vectors in terms 
of canonical basis vectors (and vice versa) involve denominators. One 
way to go around is to work with completed Grothendieck groups à la Achar-
Stroppel. A different approach is to consider slightly different categories 
and work with topological Grothendieck groups, as we will see in §2.3.

Again in this case we have an action of the nilHecke algebra.

1.3.5. Unraveling the higher structure: the nilHecke algebra

We are interested in studying the natural transformations between 
various composites of the functors Fk’s and Ek’s. The presentation of Hk, k + 1 
we have makes it easy to explicitly construct bimodule homomorphisms 
and determine relations between them.

Up to a shift, the functor Fm decomposes into a direct sum of functors, 
each one involving tensoring (at the left) with a bimodule like 

+ + − + − + − + − + − + + + + +⊗ ⊗ ⊗ ⊗, 1 1 1, 2 2 2 2, 1 1 1, .r m r m r m r m r m r m r r r r r rH H H H

This bimodule is isomorphic to the bimodule 

+ … + … += 

*
, , , 1, ,( ( ), ),r m r r r r mH H G n

where 

+ … + + + += … = ⊂ ⊂ ⊂ ⊂


 , 1, , 1( ) {( , , , )| ,0 }.dim n
r r r m r r r m j r r mG n W W W W j W W

Once again, we can give an explicit description of this cohomology 
ring using Chern classes: 

ξ ξ ξ+ − … += … … …


, , 1 1 2 1 , ,[ , , , , , , , , , ]/ ,r r m r m n m r r mH c c c c I

where … +, ,r r mI  is the ideal generated by the homogeneous terms in the 
equation 

ξ ξ ξ −
−+ + +…+ + + + + +…+

2
1 2 1 2 1(1 )(1 )(1 ) (1 )(1 ).r n m

r m n mx t x t x t t t t y t y t
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The degree two generators xj arise from the Chern classes of the line 
bundles Wr+1/Wr+j–1.

Lemma 1.8 : The operators xj and + +∂ →
 , , , ,:j r r m r r mH H  (1 £ i £ n, 1£j£n–1), 

defined on +∈
, ,r r mf H  by 

ξ ξ
ξ ξ +

−
= ∂ =

− 1

( )
( ) and ( ) ,j

i j
j j

f s f
f f f

are (Hr, Hr+m)-bimodule maps. 
The Q-algebra generated by the operators xi (1 £ i £ n) and  

∂i (1 £ i £ n – 1) is called the nilHecke algebra and will be denoted NHm. It can 
be defined over any associative unital ring k and has a presentation by the 
generators above and relations 

ξ ξ ξ ξ

ξ ξ

ξ ξ
ξ ξ

+

+ + + +

=

∂ = ∂ − > ∂ ∂ = ∂ ∂ − >

∂ = ∂ + ∂ =

∂ = ∂ + ∂ ∂ ∂ = ∂ ∂ ∂

2
1

1 1 1 1

,
if | | 1, if | | 1, (3)

1, 0,
1, .

i j j i

i j j i i j j i

i i i i i

i i i i i i i i i i

i j i j

An immediate consequence of Lemma 1.8 is the following. 

Proposition 1.9 : The composite functors Fm carry an action of the nilHecke 
algebra NHm. 

By adjunction, the E’s also carry an action of the nilHecke algebra.
The nilHecke algebra is Z-graded with deg(x ) = 2 and deg(∂t) = 2. 

Later we will call this grading the q-grading.
Note also that the category V(n) is abelian. In order for it to have a 

nilHecke action is enough it is k-linear. For example we can work with 
projective objects and k0.

2.  Categorification of Verma modules : sl2
2.1  (Universal  Verma modules revisited

Recall that we put l = q b and treat l as a formal parameter. This gives 
the universal Verma module which, abusing notation, we write M(l). It is 
universal in the sense that any Verma module can be obtained from this 
one by specializing l: there is an “evaluation map” M(l) Æ M(b) (l  qb). 
Note that our ground field now contains C(q, l). We prefer to work over 
C((q, l)), the field of formal Laurent series for technical reasons related to 
the fact that we interpret denominators in C(q, l) as Laurent series.
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In terms of the canonical basis, the universal Verma module M(l) has 
the form: 

where 
λ λλ

− −

−

−
=

−

1

1[ , ]
r rq qr
q q

(recall this is [b + r]).

2.2  Towards a categorification of a Verma module: initial constraints

Just by looking at the diagram above for M(l) one sees that one needs to 
categorify “multiplication by [l, k]”. We see that 
•	 we need (at least) a bigraded category. 
	� Note also that we cannot write [l, k] as a finite sum. One way forward 

is to [resume] 
•	 interpret the denominator as a power sum 

−
−

= − + + +
−



1 2
1

1 (1 ),q q q
q q

	 and ask our categories to have (controlled) infinite coproducts. 
	� But we also have the minus signs!. One possibility to deal with them 

is to [resume] 
•	 work with supercategories4. 
	� Notation: For an object X in such a category we denote by X〈r, s〉 its shift 

up by r units in the first grading (the “q”) and by s units in the second 
(the “l”) and by PX its shift in the Z/2Z-degree, called the parity.

	� To categorify multiplication by −− 1
1

q q  one can (and we will!) consider 
the infinite coproduct 

∈

Π − 〈 − 〉




0

( ) 2 1,0 .
i

i

4	 See for example [2.6] or [7] for the basic background on super structures.
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	� We have made some choices, and they seem reasonable at this point! 
Altogether, if we are to categorify Verma modules we can work 
with (at least) additive, bigraded, supercategories, which have infinite 
coproducts.

	� In this context a weak categorification of the Verma module M(l) 
should consist of an additive, bigraded, supercategory, with infinite 
coproducts 

µ
µ λ

λ λ
∈

= ⊕M M
sup ( ( ))

( ) ( ) ,
p M

	� and functors λ± ∈ M1F, E, K Fun( ( ))  such that F is a left adjoint of E, 
and they satisfy a categorical version of the sl2-relations.

	� Let’s look at what we mean by sl2-relations in this context. There is 
a point whose importance is fundamental: F is a left adjoint but not 
a right adjoint of E (the pair (F, E) is not an adjoint pair), otherwise, 
there would be an r ŒN such that Fr = 0 (see the remarks right after 
the definition of strong integrable 2-representation).

	� This means that F, E and K+1 cannot be connected through a direct-
sum decomposition as in the case of categorification of integrable 
representations. Otherwise, that maps realizing the decomposition 
could be used to imply that (F, E) is a biadjoint pair.

	� Recall that we want this EF-relation to imply the sl2-commutator on 
the Grothendieck group. Therefore, the next type of relation one can 
think of is to ask that M(l) admits exact sequences and the composite 
functors EF and FE be related through an exact sequence...

	� One of the principal features of the universal Verma module is that 
it projects to the irreducible representation V(n) (for any n). It seems 
reasonable to impose that

•	� a weak categorification of M(l) comes equipped with a categorical projection 
onto a categorification of V(n). 

	 Let’s sketch a provisional definition.

Definition 2.1 : (Provisional definition). A weak categorification of the Verma 
module M(l) is an additive, bigraded, supercategory M(l), with infinite 
coproducts and admitting exact sequences, 

µ
µ λ

λ λ
∈

= ⊕M M
sup ( ( ))

( ) ( ) ,
p M
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and functors λ± ∈ M1F, E, K Fun( ( )),  which commute with grading shifts, 
and descend to operators on a Grothendieck group of M(l) and satisfy: 

(1)	� F(M(l)m) Õ M(l)m – 2, E(M(l)m) Õ M(l)m + 2, K(M(l)m) Õ M(l)m, for all  
m Œ supp (M(l)), 

(2)	 F is isomorphic to a left adjoint of E (up to a shift), 
(3)	 KF @ FK 〈–2, 0〉, KE @ EK 〈2, 0〉, KF±1 @ F±1K @ IDM(l),
(4)	� F, E K+1 and commute with grading shifts and with the parity change 

P, 
(5)	 there is a (non-split) exact sequence 

−→ → → ⊕ Π 10 EF FE QK QK ,

	 where Q is the infinite coproduct ∈− = Π − 〈 − 〉




0
Q( ) ( ( )) 2 1,0 ,i i  

(6)	� For any n Œ N0 there is a “projection” from M(l) to a categorification 
of V(n). 

2.3  Topological Grothendieck groups

The fact that we are to work with infinite coproducts impose severe 
restrictions on the categories we will work with. Recall that we in order to 
categorify Verma modules we need the Grothendieck group of each block 
M(l)m (m Œ supp(M(l)) to be finite dimensional (and non-zero).

We will work with (bigraded, super, locally additive5 categories C 
whose enriched A ŒC spaces 

∈ ∈
= = 〈 〉⊕ ⊕

   



,

, ,
HOM( , ) HOM ( , ) Hom( , , )r

r r
M N M N M N r

are finite-dimensional in each degree. Moreover we demand that 
•	� pairs ∈ 

2( , )r  for which ≠ ,HOM ( , ) 0,r M N  lie inside a cone 
⊂ 2C  compatible with an order in Z2, 

•	 = ,HOM ( , ) 0r M N  for  0r  or  0,r  

5	 We say that an additive, strictly Z-graded category ( { }A r A≅C  for all )A∈C is locally 
additive if all its locally finite coproducts are biproducts.)
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We also require that C has: 
•	� local Krull-Schmidt property: every object decomposes into a locally 

finite direct sum of small6 objects having local endomorphisms rings 
(see [15, §5.1]),

	 or 
•	� local Jordan-Hölder property (if C is abelian: every object has locally 

finitely many composition factors, plus a stability condition) (see 
[15, §5.2]), or both.

Remark 2.2 : A locally Krull-Schmidt category is idempotent complete. 
Moreover, an object with local endomorphism ring is indecomposable, 
and have only 0 and 1 as idempotents. 

For these type of categories we can define the 
•	� Topological Grothendieck group G0(C) : this is the free Z((q, l))-module 

generated by the classes of simple objects (up to shifts).
•	� Topological split Grothendieck group F0(C) : this is the free Z((q, l))-

module generated by the classes of indecomposables (up to shifts). 

Both Grothendieck groups above are modules over Zp = Z[p]/p2–1. 
When specializing the parameter p = – 1 and extending the scalars to Q, 
we write 



π
π π= ⊗ +



C C0 0( ) ( )) [ ]/( 1),G G

and the same for  C0 ( ).K

Remark 2.3 : The conditions above are mainly technical and are necessary 
to be able to define Grothendieck groups with the correct properties for 
the sake of categorification. A complete description of these categories 
and the details its Grothendieck groups can be found in [15, §5]. 

2.4  Extending CR–FKS to Verma modules

In the following it seems more natural to categorify M(lq–1) and this 
will be clear very soon. We want to find nice bigraded (super)rings Wk with 
1-dimensional Grothendieck groups and (Wk, Wk+1)-bimodules (denoted  
Wk, k+1), such that 

6	 An object A in a category C is small if every map 
⊂

→


: i
i I

f A B  factors through 
∈
 j
j J

B  for 
a finite subset J ⊂ I.
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•	 Wk, k+1 is a free Wk+1-left module of graded rank [k + 1], 
•	 Wk, k+1 is a free Wk-left module of graded rank [l; –k], 
•	 The (Wk, Wk)-bimodules 

+ + + + − − − −Ω = Ω ⊗ Ω Ω = Ω ⊗ Ω( ) , 1 1 1, ( ) , 1 1 1,: , :k k k k k k k k k k k k k k k k k k

	 are related through a short exact sequence 

( 1) ( 1)0 [ ] 2 2, 1 [ ] 2 ,1 .k k k k k k k kk kξ ξ− +→Ω → Ω → Ω 〈 + − 〉 ⊕ ΠΩ 〈− 〉

2.4.1 � Categorification of the weight spaces of M(lq–1) : H*(G(n)) and 
H*(G(n))!

Let Gk be the Grassmannian variety of k-planes in C∞. Its (rational) 
cohomology ring is just a polynomial ring generated by the Chern classes 

≅ … = 1( ) [ , , ], deg( ) 2 ,k k kH G x x x k

The Ext-algebra 
 ( )Ext ( , )

kH G  is an exterior algebra 
ω ω= ∧ … 

•
( ) 1Ext ( , ) ( , , ),

kH G k

with ω ω λ ω= = −deg( ) ( deg( ), deg( ) ( 2 , 2).k k iq k
We form 

( )( ) Ext ( , ),
kk k H GH GΩ = ⊗  

which we regard as a bigraded superring. Here the xi’s are even while the 
wi’s are odd.

Put 

1 2 mod .k k lfqλ − − = Ω −M

The latter being bigraded, left (super) Wk-modules that are finite 
dimensional on each degree and cone bounded.
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2.4.2  Moving between the weight spaces: the categorical sl2-action

Let Gk, k+1 be the infinite 1-step partial flag variety 
∞

+⊂ ⊂ ⊂ =


1{0 | ( ) }.dimk k jW W W j

We have 
ξ ξ+ ≅ … = =, 1 1( ) [ , , , ], deg( ) 2 ,deg( ) 2.k k k jH G y y y j

Put 

1, 1 , 1 ( )( ) ( , ).
kk k k k H GH G Ext

++ +Ω = ⊗  

We consider the maps 

Explicitly, these maps are 

φ
ω ω ξω

ξ
ψ

ω ω

+
+

−

+ + +

Ω → Ω 
+

 +Ω → Ω 










*
, 1

1

1*
1 1 , 1

,
: ,

,

and
,

: ,
.

j j
k k k k

j j j

j j j
k k k k

j j

x y

x y j

with y0 = 1 and yi +1 = 0.

Define the functors 

1 2

1 2( 1) 1 2

1 2 1 2

, 1
1 2( 1) 1 , 1

, 1
, 1 1

F : Re ( ( )) , 0 ,

E : Re ( ( )) 2, 1 ,

K : ( ) 2 ,1 ,

k

k k

k k

k k
k k k k k kq q

k k
k k k k kq q

k q q

s k

s k

k

λ λ

λ λ

λ λ

− −

− − + − −

− − − −

+
− − + + +

+
+ +

→ Ω ⊗ − 〈− 〉

→ Ω ⊗ − 〈 + − 〉

→ − 〈 〉

M M

M M

M M

and 
λ λ− − − −→M M1 2 1 2: ,k kk q q

Q  defined for all k ≥ 0 by ξ− = Π − ⊗ 〈 〉 ( ) ( ) [ ] 1, 0  
and put 

1
1 2

0
( ) ,kqk

q
λ

λ −
− −

≥
= ⊕M M

and 

≥ ≥≥
= = =⊕ ⊕⊕

0 00
F F , E E , K K .k k k

k kk
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Proposition 2.4 : Functors F, E are exact and E is isomorphic to a right adjoint 
of F (they are not biadjoint!). Moreover, there is an action of the nilHecke algebra 
on Fm (and on Em). 

Actually, there is a bigger (super)algebra acting on Fm and Em. It can 
be computed through bimodule homomorphisms the same way we did 
NHm. We will find this algebra again in § 3.1.2.

Theorem 2.5 : We have natural isomorphisms 
− −≅ ≅

≅ 〈− 〉 ≅ 〈 〉

1 1KK Id K K,
KF FK 2,0 , KE EK 2,0 ,

and a natural exact sequence 
−→ → → ⊕ Π →10 FE EF KQ 0.K Q

2.4.3. The categorification theorem

Theorem 2.6 : 
(1)	� The functors F, E and K induce an action of quantum sl2 on the Grothendieck 

group of M(lq–1). With this action K0(M) is isomorphic with the Verma 
module M(lq–1) after specializing the action of [P] to –1. 

(2)	 �The isomorphism from K0(M(lq–1)) sends classes of projective 
indecomposable objects to canonical basis elements, and classes of 
irreducibles to dual canonical basis elements. 

2.5  DGAs and the recovering of CK–FKS’s categorification of V(n)

2.5.1 DG rings

For n ŒN0 and for each k we turn Wk and Wk, k+1 into DG rings by 
introducing differentials dn

k and dn
k, k+1, both with degrees 〈n, –2〉 and Z/2Z-

degree 1.
These act trivially on H(Gk) and H(Gk, k+1) and send the generators of 

 ( )Ext ( , )
iH G  to elements of H(Gk) (and H(Gk, k+1) respectively). Moreover, 

these differentials commute with the canonical maps that give Wk, k+1 the 
structure of a (Wk, W k+1)-bimodule, so that it becomes a DG bimodule.

Proposition 2.7 : The DG rings (Wk, dn
k) and (Wk, k+1, dn

k) are formal. Moreover we 
have quasi-isomorphisms 

. .

, 1 . . , 1

( , ) ( ( ( )), 0),

( , ) ( ( ( )), 0).

k
k n q i k

k
k k n q i k k

d H G n

d H G n+ +

Ω ≅

Ω ≅
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2.5.2  The snake lemma and consequences

Recall that in the case of V(n) we had a direct sum decomposition for 
the functors EF and FE. We will now see that this comes naturally as a 
consequence of our exact sequence and differentials.

We can equip ξ ξΩ ⊕ ΠΩ 〈− − 〉[ ] [ ] 2 2k k k  with a differential dn such that 
it becomes a DG bimodule over (Wk, dn

k). This is not a direct sum of two 
DG bimodules, since dn mixes terms of both summands. This differential is 
compatible with the maps in the SES and we have a short exact sequence 
of DG ((Wk, dn ), (Wk, dn))-bimodules 

ξ ξ
− +→ Ω → Ω →

Ω 〈 − 〉 ⊕ ΠΩ 〈− − 〉 →
( 1) ( 1)0 ( , ) ( , )
( [ ] 2 , 1 [ ] 2 2,1 , ) 0.

k k k n k k k n

k k n

d d
k k d

By the snake lemma, it descends to a long exact sequence of 
Ω ≅ ;( , ) ( )k n k nH d H G -bimodules 

1 1
( 1)

0 0 0
( 1) ( 1)

1
( 1)

( , ) ( [ ] 2 , 1 [ ] 2 2,1 , )

( , ) ( , ) ( [ ] 2 , 1 [ ] 2 2,1 , )

( , )

k k k n k k n

k k k n k k k n k k n

k k k n

H d H k k d

H d H d H k k d

H d

ξ ξ

ξ ξ

+

− +

−

…→ Ω → Ω 〈 − 〉 ⊕ ΠΩ 〈− − 〉

Ω → Ω → Ω 〈 − 〉 ⊕ ΠΩ 〈− − 〉

Ω →…

We know that the homology of +Ω ( 1)( , )k k k nd  is concentrated in parity 
0 and thus we have a long exact sequence 

1

0 0 0
( 1) ( 1)

0 ( [ ] 2 , 1 [ ] 2 2,1 , )

( , ) ( , ) ( [ ] 2 , 1 [ ] 2 2,1 , )

0.

k k n

k k k n k k k n k k n

H k k d

H d H d H k k d

ξ ξ

ξ ξ− +

→ Ω 〈 − 〉 ⊕ ΠΩ 〈− − 〉

Ω → Ω → Ω 〈 − 〉 ⊕ ΠΩ 〈− − 〉

Since we have explicit formulas and nice decompositions we can easily 
compute the homologies: 
(1)	� For − ≥2 0n k  the homology of ξ ξΩ 〈 − 〉 ⊕ ΠΩ 〈− − 〉( [ ] 2 , 1 [ ] 2 2,1 , )k k nk k d  

is concentrated in parity 0 and given by 

−
⊕ 2

;
{ 2 }

( ).k
k n

n k
q H G

	 Therefore we get the following short exact sequence
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−

+

− −

+ +
−

→ ⊗

⊗ →⊕ 
1;

1;

, 1; ( ) 1, ;

2
, 1; ( ) 1, ; ;

{ 2 }

0 ( ) ( )

( ) ( ) ( ) 0.
k n

k n

k k n H G k k n

k
k k n H G k k n k n

n k

H G H G

H G H G q H G

(2)	� For n – 2k £ 0 the homology is concentrated in parity 1 and it is 
isomorphic to 

λ− −

−

Π⊕ 2 2 2
;

{2 }
( ).k

k n
k n

q H G

After shifting by the degree of the connecting homomorphism, it 
yields the short exact sequence 

1;

1;

2
; , 1; ( ) 1, ;

[2 ]

, 1; ( ) 1, ;

0 ( ) ( ) ( )

( ) ( ) 0.

k n

k n

k
k n k k n H G k k n

k n

k k n H G k k n

q H G H G H G

H G H G

−

+

− −
−

+ +

→ ⊗

⊗ →

⊕ 



Proposition 2.8 : Both exact sequences split, and recover the well-known sl2 
categorical action of CR–FKS [1, 3] using cohomology of the finite Grassmannians 
and 1-step flag varieties. 

Define the DG +Ω Ω1(( , ), ( , ))k n k nd d -bimodule 

+ +

+

+ +

Ω = Ω 〈 〉

Ω Ω −

Ω = Ω 〈− 〉

1, 1,

1

, 1 , 1

ˆ( , ) ( , ) 0, 0 ,
and the  (( , ), ( , )) bi module

ˆ( , ) ( , ) ,1 .

k k n k k n

k n k n

k k n k k n

d d
DG d d

d d n

Proposition 2.9 : We have quasi-isomorphisms of bigraded DG ((Wk, dn),  
(Wk, dn))-bimodules 

+ + + − − − −

− − − + + + −

Ω ⊗ Ω ≅ Ω ⊗ Ω ⊕ Ω − ≥

Ω ⊗ Ω ≅ Ω ⊗ Ω ⊕ Ω − ≤
, 1 1 1, , 1 1 1, [ 2 ]

, 1 1 1, , 1 1 1, [2 ]

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ), if 2 0,
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ), if 2 0.

k k k k k n k k k k k n n k k n

k k k k k n k k k k k n k n k n

d d d n k

d d d n k

2.5.3  Derived equivalences

Let ΩD ˆ( , )c
k nd  and +ΩD , 1

ˆ( , )c
k k nd  be respectively the derived category 

of bigraded, left, compact Ω̂( , )k nd  modules and the derived category of 
bigraded, left, compact +Ω 1,

ˆ( , )k k nd -modules.
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Proposition 2.10 : There are equivalences of triangulated categories between 

+

+ + +

Ω ≅ − =

Ω ≅ − =

D D D V

D D D V
1,

1,1 , 1 1,

ˆ( , ) ( ( ( )) mod) ( )
ˆ( , ) ( ( ( )) mod) ( ),

c b b
k n k k k

c b b
k n k k k k

d H G n g
d H G n g

where Mb(-) is the bounded derived category. 
Recall that Vk and Vk, k+1 are the categories used in CR–FKS.
The induction (derived) functor Indk

k+1, k is the derived tensor functor 
associated with the DG bimodule +Ω 1,

ˆ( , ) :k k nd  
+

+ += Ω ⊗ − Ω → ΩD D1,
1, 1,

ˆ ˆ ˆInd ( , ) ( ) : ( , ) ( , )k k L c c
k k k n k k n k k nd d d

and the restriction functor Resk
k+1, k coincides with the (derived) functor 

+
Ω + += Ω − Ω → ΩD D1,

( , ) 1, 1,
ˆ ˆ ˆRes Hom (( , ), ) : ( , ) ( , ).

k n

k k c c
k d k k n k k n k nd d dR

Analogously, we define
+
+ + +

+
+ + +

Ω → Ω

Ω → Ω

D D

D D

1,
1 1 1,
1,
1 1, 1

ˆ ˆInd : ( , ) ( , ),
ˆ ˆRe : ( , ) ( , ).

k k c c
k k n k k n
k k c c
k k k n k n

d d
s d d

For each k ≥ 0 define the functors 
+

+ +

+
+ +

− = Ω ⊗ −

− = Ω ⊗ −





, 1
1 1,

, 1
, 1 1

ˆ( ) Res (( , ) ( )),
and

ˆ( ) Res (( , ) ( )),

k k
k k k k n k

k k
k k k k n k

F d

E d

L

L

where +Ω 1,
ˆ( , )k k nd  is seen as a DG +Ω Ω1,(( , ), ( , ))k k n k nd d -bimodule and 

+Ω , 1
ˆ( , )k k nd  as a DG +Ω Ω , 1(( , ), ( , ))k n k k nd d -bimodule.

Corollary 2.11 : The functors Fk and Ek are biadjoint up to a shift. Moreover we 
have natural isomorphisms 

− − −

− − −

≅ ⊕ − ≥

≅ ⊕ − ≤

 

 

1 1 [ 2 ]

1 1 [2 ]

E F F E Id , if 2 0,
and

F E E F Id , if 2 0.

k k k k n k k

k k k k k n k

n k

n k

Corollary 2.12 : Define the category 
≥

= Ω⊕ D
0

ˆ( ) ( , ).c
k nk

n d We have a Z[q, q–1]-
linear isomorphism of Uq(sl2)-modules, ≅( ( )) ( ),0K n V n for all n ≥ 0. 
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2.5.4 nilHecke action

By taking tensor products we can form the DG ((Wk, dn), (Wk+m, 
dn)-bimodule … +Ω , ,

ˆ( , )k k m nd  and the DG (Wk+m, dn), (Wk, dn))n-bimodule 

+ …Ω , ,
ˆ( , ).k m k nd

Proposition 2.13 : The nilHecke algebra NHm acts as endomorphisms of the DG 
bimodules 

… + + …Ω Ω, , , ,
ˆ ˆ( , ) and ( , ).k k m n k m k nd d

Corollary 2.14 : The nilHecke algebra NHs acts as endomorphisms of Es and of 
Fs. 

This action coincides with the one from Lauda and Chuang-Rouquier.

3.  Algebraic categorification of Vermas for symmetrizable g

3.1  Towards 2-Verma modules for sl2

Recall that the nilHecke algebra NHm was obtained by studying 
natural transformations of the CR–FKS functors Fm (and Em). We have 
also seen that the categorification of V(n) obtained from D(M(lq–1), dn) 
is canonically isomorphic to the one using Db(V(n), 0) (recall V(n) is CR–
FKS’s). The action of the nilHecke algebra on M(lq–1) descends to an 
action on D(M(lq–1), dn) that coincides with the action on V(n). But we can 
say a bit more:

•	� There is a (bigraded, super-) algebra Am, that can be seen as an extension of 
the nilHecke algebra NHm and acts on Fm by natural transformations (and 
therefore on Em). 

Here is the main idea: the composite functor F n acting on M(lq–1) 
decomposes into functors associated with bimodules of the form 

… + + + + + + + − + − +Ω = Ω ⊗ Ω ⊗ ⊗ Ω, , , 1 1 1, 2 2 1 1,: .k k n k k k k k k k n k n k n

One can compute that 
ξ ξ σ σ ω ω… +Ω ≅ … … ⊗∧ … …

•
, , 1 1 1 1[ , , , , , ] ( , , , , , ),k k n k m k nx x

where ξ σ= = = −deg( ) (2 ,0), deg( ) (2,0), deg( ) ( 2 , 2)i i ix i i  and deg(wi) = 
(–2(k + i), 2).
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One can verify that action of NHn on ξ ξ… 1[ , , ]n  extend to maps of 
(Wk, Wk+n) bimodules iff ω δ ω +∂ = − 1( )i j ij i  (the sign is just a convention). Note 
that ∂i is an even operator of degree deg(∂i) = (–2, 0).

As we did above we can define a bigraded, (super)algebra Ak, n as the 
algebra of operators on ξ ξ ω ω… ⊗ ∧ …

•
1 1[ , , ] ( , , )m n  generated by ∂i (i = 1, 

..., n –1) and multiplication by xj and by wi (j = 1, ..., n).
In the sequel we will consider the case k = 0 and the superalgebra An 

= A0, n.

3.1.1  Cyclotomic nilHecke algebra: categorification of V(n) using NH

The nilHecke algebra can be given a diagrammatic presentation as 
follows.

Generators: The following n-strand diagrams (the q-degree is indicated 
under the diagram). 

Let k be a commutative unital ring (we can take k = Z).

Definition 3.1 : Let NHn be the k-algebra generated by isotopy classes 
of the diagrams described above with multiplication given by gluing 
diagrams on top of each other. We read diagrams from bottom to top 
by convention and so ab means we stack a atop of b. The diagrams are 
subjected to the local relations below.

	 	 (4)

	 	 (5)

	

	 	 (6)
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Definition 3.2 : 
≥

⊕=
0

NH NH .mm
 

Fix n ŒN. Define the cyclotomic ideal In Ã NH as the 2-sided ideal 
generated by all diagrams having n dots on the leftmost strand: 

Definition 3.3 : The cyclotomic nilHecke algebra NHn is the quotient NHn = 
NHn/ In. We have 

0
NH NH .n n

k
k≥

= ⊕

Proposition 3.4 : There is an isomorphism NH Mat( !, ).n
k kk H≅  

This implies immediately that the Grothendieck group of NHk is 
1-dimensional, since Morita equivalent rings have the same Grothendieck 
groups. This also implies the following. 

Corollary 3.5 : There is an isomorphism of Q-vector spaces 

10 [ ]0
(NH gmod) ( ) ( ).n

k qk
K q V n±

≥
− ⊗ ≅⊕





It is natural to take NHn
k as a categorification of the weight space Vn–2k. 

The sl2-action on NHn – gmod follows a familiar scheme using induction 
and restriction functors for the inclusion NHn

k Æ NHn
k+1 that add a vertical 

strand at the right of a diagram from NHn
k. We will see this in detail in 

§3.1.2 and §3.1.7.

3.1.2. The superalgebras An

•	� Generators: The following n-strand diagrams (a triple (q, l, p) below 
each diagram indicates its q-degree, its l-degree and its parity). The 
nilHecke generators, 

	 and the floatig dots,
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Here, there are  ≥ 1 strands to the left of the floating dot. Note the 
degree of a floating dot is not defined locally.

We say an isotopy is admissible if it doesn’t change the relative height 
of floating dots (we are assuming that diagrams are equipped with a 
height function).

Definition 3.6 : Let An be the k-(super)algebra generated by admissible 
isotopy classes of the diagrams described above with multiplication 
defined as in NHm. The diagrams are subjected to the nilHecke relations of 
Definition 3.1, together with the local relations (7) and (8) below.

	 	 (7)

	 	 (8)

Definition 3.7 : 
0

.n
n

A A
≥

= ⊕  

3.1.3. Bases for An (optional)

From the defining relations one can see immediately that one can write 
a diagram of An as a k-linear combination of diagrams containing three 
regions: 
(1)	 A region consisting of n vertical strands and only floating dots, 
(2)	 A region consisting of n vertical strands and only (nilHecke) dots, 
(3)	 A region consisting only of crossings. 
	 The six ways of placing these regions give basis of An. For example, 

Proposition 3.8 : The superalgebra An is a free k-module. The sets 
1 1

1

1 1 0

1
1 1 0

{ : , {0,1}, },

{ : , {0,1}, },

n

n

kk n
n n i i n

kk n
n n i i n

x x T k S
and

T x x k S

ϑ

ϑ

ω ω ϑ

ω ω ϑ

∈ ∈ ∈

∈ ∈ ∈







   

   

being basis. 
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There is another basis which turns out to be useful, defined in terms 
of a special type of floating dot. The following is now an easy consequence 
of the defining relations of An. 

Lemma 3.9 : We have the following relation in An for any pair of consecutive 
strands: 

	 	 (9)

Definition 3.10 : We say that a floating dot is tight if it is placed directly to 
the right of the leftmost strand. 

For example, the floating dot in the diagram below is tight: 

Using Lemma 3.9 recursively we can write any diagram of An as a 
linear combination of diagrams involving only nilHecke generators and 
tight floating dots. Moreover we are able to give a basis for An in terms of 
tight floating dots7.

Proposition 3.11 : There is a basis of An defined in terms of generators of the 
nilHecke algebra and tight floating dots. 

3.1.4. The algebra An is isomorphic to a matrix algebra

From the action of ∂i on the supercommutative ring 1[ , , ]nR ξ ξ= …k
•

1( , , )nω ω⊗ …∧  explained above on can see that the symmetric group Sn 
acts (from the left) on R: it acts via the permutation action on 1[ , , ]nξ ξ…k  
while the simple transposition si = (i i + 1) acts on the wj’s as 

, 1 1( ) ( ) ,i j j i j i i is ω ω δ ξ ξ ω+ += + −

together with ( ) ( ) ( ).i i is fg s f s g=
This action respects the bigrading as well as the parity, as one easily 

checks. On can easily check as well that the action of An on R corresponds 
with the diagrammatic presentation given above.

Denote nSR R⊂  be the subring of Sn-invariants. We have the 
following. 

7	 This basis is defined combinatorially (see 16, §2.2, §2.7 ) and its particular form is not 
important for this lectures.
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Proposition 3.12 : 
(1)	 The supercenter of An is isomorphic to .SnR  
(2)	 There are isomorphisms 

End ( ) Mat( !, )n
Sn

S
n R

A R n R≅ ≅

	 of bigraded superalgebras. 

As with NHn this allows computing Grothendieck groups of An very 
easily.

3.1.5  Categorical sl2-action and a new categorification of M(lq–1)

The inclusion of algebras 1n nA A +  that adds a vertical strand to the 
right of a diagram gives rise to an induction functor8

1
1Ind : smod smod.n

n n nA A+
+− → −

In terms of bimodules, it can be viewed as tensoring on the left 
with the (An+1, Ak)-bimodule 1 .

nn AA + ⊗ −  Taking its right adjoint gives a 
restriction functor 

1
1Res : smod smod,n

n n nA A+
+ − → −

which is given by tensoring with the (An, An+1)-bimodule 
1

.
nn AA

+
⊗ −

Proposition 3.13 : We have 

1 1 1gdim ( , ) ,s n n
n q q q

A F v F v
λ λ λ− − −=

where  ( , ) mqλ− −  is the universal Shapovalov form. 
We shift these functors by the right amount to get an sl2 commutator 

relation: we define the functors 
1 1F : Ind , E : Res 2 , 1 , : ( ) [ ] 1, 0 .n n

n n n n nn Q ξ+ += = 〈 − 〉 = Π − ⊗ 〈 〉k

Theorem 3.14 : There is a short exact sequence of functors 

1 1 1 10 2 ,1 2 , 1 0.n n n n n nF E E F Q m n Q n m− − + +→ → → 〈 − 〉 ⊕ Π 〈 − − 〉 →

Proposition 3.15 : Functors Fn and En are exact and send projectives to projectives. 

8	 As with An we drop the prefix “super” from our terminology.
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3.1.6 The categorification theorem

We now restrict to the case where k is a field of characteristic zero. In 
the following, 
•	 Zp is 2[ ]/( 1),π π −

•	�  (( , ))qπ λ  is the ring of formal Laurent series in the variables q and l, 
given by the order 0 ,q λ 

•	� An – smodif is the category of An-supermodules which have cone 
bounded (see §2.3), locally finite dimension over k, with morphisms 
preserving the degrees. 

The superalgebra An has the following properties: 
(1)	� It admits a unique indecomposable projective module P(n), up to 

isomorphism and grading shifts. This projective module is of locally 
finite dimension contained in a cone compatible with .

(2)	� Its (topological) Grothendieck group is a (( , ))qπ λ -module freely 
generated by the unique simple module. 

(3)	 This simple module admits a projective cover given by P(n).
(4)	� Taking a (an infinite) projective resolution of S, it is not hard to see the 

Grothendieck group is also generated by the unique indecomposable 
projective module. 

Theorem 3.16 : The functors F F= n 0 n≥⊕  and E E= n 0 n≥⊕  induce an action of 
quantum sl2 on the Grothendieck group ( ).0 lfA smod−G  With this action there 
is an isomorphism 

0 ( smod ) /( 1) ( )m
lfA M q

π π π λ− ⊗ + ≅G




of Uq(sl2)-modules. This isomorphism sends classes of projective indecomposables 
to the canonical basis elements and classes of simples to dual canonical elements. 

3.1.7  Derived equivalences

It is also not hard to see that dn from §2.5 induces a differential on Am 
and turns it into a (bigraded) DGA.

In terms of the usual generators it is given by
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Proposition 3.17 : (A  dn) is quasi-isomorphic to (NHn, 0). 
The story with the snake lemma repeats again here, almost vertim ...

3.2. (Quantum, symmetrizable) Kac–Moody algebras and Verma modules

3.2.1  Quantum Kac--Moody algebras

Let (I, ⋅) be a Cartan datum: 
•	 I is a finite set equipped with a symmetric bilinear form 

: [ ] [ ] ,I I− ⋅ − × →  

	 such that 
	 (1)	 {2, 4, },i i⋅ ∈ … and 
	 (2)	 {0, 1, 2, }i j⋅ ∈ − − …  for all i, j Œ I with i π j. 

Elements of I are called simple roots. To such a Cartan datum we 
assign a graph G with vertices given by I and we put an edge between i 
and j whenever i ⋅ j π 0.

A root datum of type (I, ⋅) is given by two freely generated abelian 
groups X, Y, both containing I, and a perfect pairing , : Y X〈− −〉 × →   
such that , 2X

i j
i ii j ⋅
⋅

〈 〉 =  for all i I Y∈ ⊂   and . We call Y the weight lattice 
and X the dual weight lattice.

The quantum Kac-Moody algebra g associated to the root datum (I, ⋅) is 
the unital associative Q(q)-algebra generated by Ei, Fi and Kg for i Œ I and  
g Œ Y, with relations for all g, g  ¢ Œ Y and i Œ I: 

0
, ,

1, ,

, ,X Xi i
i i i i

K K K K

K E q E K K F q F K
γ γ γ γ

γ γ
γ γ γ γ

′ ′+

〈 〉 −〈 〉

= =

= =

and with the sl2-commutator relation for all i, j Œ I: 

( /2) ( /2)
1

,i i i i i i
i j j i ij

i i

K K
E F F E

q q
δ ⋅ − ⋅

−

−
− =

−

where ( )/2 ,i i
iq q ⋅=  and the quantum Serre relations for i π j Œ I: 

1 1

1 1
( 1) 0, ( 1) 0,

ij ij

ij ija a b a a b
i j i i j i

a b d a b dq qi i

d d
E E E F F F

a a+ = + + = +

   + +
− = − =   

      
∑ ∑

where ,ij Xd i j= −〈 〉  and 
qi

a
b

 
 
 

 is the quantum binomial in the variable qi.
Given a sequence 1 mi i= …i  we write 

1 mi i iF F F= …  and the same for 

1
.

mi iE E E= …i
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3.2.2 Universal Verma modules

The (standard) Borel subalgebra b of b is the subalgebra generated by 
Kg and Ei for all i Œ I and g ŒY.

Let ||= { } I
i i Iβ β ∈ ∈C  and (( , ))q vβ ββ= 

 be the Uq(b)-module defined 
by 

,0, ,iE v K v q vβ γ
β γ β β

〈 〉= =

for all i Œ I and g ŒY. The universal Verma module is the induced 
representation 

( ) .M ββ = ⊗ 

b
g

It is an infinite dimensional Uq(g)-weight module with highest weight 
b.

Remark 3.18 : Whenever iβ ∉  we denote i
i qβλ =  and treat it as a formal 

parameter. 

Remark 3.19 : The notation Q((q, l)) means the field of formal Laurent 
series in the variables q and li’s (if any). It is given by formal series with 
degrees contained in cones compatible with some fixed additive order  
on 1 ||.I+

  For the means of categorification, and to agree with common 
conventions, we will require that this order is given by 0  q and 0  li for 
all i Œ I, so that 

2 4
1 2

1 1 (1 ).
1

q q q q
q q q−

= − = − + + +…
− −

We will also demand 0  li so that 

2 2 4 4
2 2

1 (1 ).
1 i i i i

i i

q q
q

λ λ
λ

− −
−

= + + +…
−

Other choices could be possible and everything should work the 
same way with minor modifications. 

3.2.3 (Parabolic) Verma modules and finite-dimensional irreducibles

•	� A (standard) parabolic subalgebra p of g is a subalgebra that contains 
b. 

It is generated by Kg  , Ei and Fj for all g ŒY, i ŒI and j Œ If for some fixed 
subset If ⊂ I. 
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(1)	� The part given by Kg and Ej, Fj for g ŒY and j Œ If is called the Levi 
factor and written l. 

(2)	� The part generated by Ei for \r fi I I I∈ =  is called the nilpotent radical 
and denoted u. 

(3)	 There is a decomposition .= ⊕p l u  

Fix a parabolic subalgebra p and choose ||{ } I
i i Iβ β ∈= ∈  such that 

j jnβ = ∈  for all j ŒIf. We write { } .
fj j IN n ∈=

Let V(b, N) be the unique, finite dimensional, irreducible 
representation of l with highest weight b, over Q((q, b)). We extend it to a 
representation of p by setting . ( , ) 0.V Nβ =u

Definition 3.20 : The parabolic Verma module of highest weight b associated 
to ⊆p g  is the induced module 

( , ) ( , ).M N V Nβ β= ⊗p

p
g

The parabolic Verma module ( , )M Nβp  is a weight module with 
highest weight b, infinite dimensional whenever .≠p g  We denote the 
highest weight vector vb by abuse of notation.

•	� We think of a parabolic Verma module intuitively as a “mixture of a finite-
dimensional representation and a Verma module”, in the sense that there 
are simple roots for which we have a Verma module (the subset Ir Õ I), and 
others for which we have a finite-dimensional representation (the subset  
If Õ I).

Theorem 3.21 : 
(1)	 If iβ ∉  for all i ŒIr, then ( , )M Nβp  is irreducible. 
(2)	� If i i 0nβ = ∈  for some i ŒIr, then there is a short exact sequence of 

g-modules 
( \{ } { }, ) ( , )

( \{ }, { }) ,

i i

i i

n n 2
i i

F n
i i

0 M q q N M N
M q N n 0

β β

β

− −

⊕

→ ∪ → →

∪ →

p p

p

	 where iF⊕p  is the parabolic subalgebra given by { }.fI i∪

(3)	� Given a parabolic Verma module ( , )M Nβp  with i 0β ∉  for some i Œ Ir, 
then for any ni Œ Z there is a surjective map 

v : ( , ) ( \{ } { }, ),
i

ni
n i ie M N M q Nβ β λ ∪p p

	 given by evaluating .in
i iqλ =  
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We say that there is an arrow from irreducible ( , )M Nβp  to ( , )M Nβ′ ′ ′p  
if there is an evaluation map ev

in  yielding an exact sequence 

( )20 ( \{ } { }, ) ( , ) ( , ) 0.i

i

n
i i nM q N ev M N M Nβ λ β β− − ′ ′ ′→ ∪ → → →p p p

This allows us to define a partial order on the irreducible parabolic 
Verma modules, saying that Mp(b, N) is greater than Mp¢(b¢, N¢) if there 
is a sequence of arrows from Mp(b, N) to Mp¢(b¢, N¢). There are maximal 
elements given by the universal Verma module M(b) and its shifts M(bqm), 
and a collection of minimal elements given by all the finite dimensional 
irreducible modules V(N).

3.2.4 The Shapovalov form

We consider some (anti-)automorphisms of g. First let — be the C(q)-
linear involution mapping q to q–1. Then let : opρ →g g  be the C(q)-linear 
algebra anti-involution defined by 

1 1
( /2) ( /2)( ) , ( ) , ( ) ,i i i i i i i i i i i iE q K F F q K E K Kγ γρ ρ ρ− −

− ⋅ ⋅= = =

for all i Œ I and g ŒY. Let also : opτ →g g  be the Q(q)-linear anti-
automorphism given by 

1 1
( /2) ( /2)( ) , ( ) , ( ) ,

for all  and ,  and
i i i i i i i i i i i iE q K F F q K E K K

i I Y
γ γτ τ τ

γ

− −
− ⋅ ⋅ −= = =

∈ ∈

( ) = ( ), ( ) = ( ) ( ),pW p W WW W Wτ τ τ τ τ′ ′

for , ( )qW W U′∈ g  and ( ).p q∈

Definition 3.22 : The universal Shapovalov form 

( , ) : ( , ) ( , ) (( , ))M N M N qβ β β− − × →

p p

is the bilinear form defined by 
•	 (vb, vb) = 1, 
•	 (uv, v¢) = (v, r(u)v¢), with u Œg and , ( , ),v v M Nβ′∈ p  
•	 ( , ) ( , ) ( , ),f v v fv v v fv′ ′ ′= =  with (( , )).f q β∈  

The C(q)-linear involution — extends to Q(q, b) (but not to Q((q, b)) !) 
by sending li to li

–1 for all i ŒIr.
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3.2.5 Bases for Mp(b, N)

Any parabolic Verma module admits at least one natural basis 
(the F’s basis) supp( ( , ))

{ }
M N

mµ µ β∈ p  generated by the action of the Chevalley 
generators { }i i IF ∈  on the highest weight vector. Namely each element can 
be written as a Q((q, b))-linear combination of the various 1

1

r

r

b b
i iF F vβ…  for 

some 1 , , ri i I… ∈  and 1 , , .rb b… ∈
Of course we do not have all possible combinations of words in the 

Fi’s because of the Serre relations and the fact that for some i ŒIf the Fi’s act 
nilpotently.

Replacing each Fi
b by the divided power ( ) /([ ] !)

i

b b
i i qF F b=  gives an 

another useful basis denoted supp( ( , ))
{ }

M N
mµ µ β∈

′
p  that we refer to as divided 

power basis. For each such basis there is a dual basis supp( ( , ))
{ }

M N
mµ

µ β∈ p  and 

supp( ( , ))
{ }

M N
m µ

µ β∈
′

p  defined respectively by the relations ,( , )m mν
µ µ νδ=  and 

,( , ) .m m ν
µ µ νδ′ ′ =

3.3  p-KLR algebras

Let k be a commutative unital ring (later we will need it to be a field 
of characteristic 0).

Fix a Cartan datum (I, ⋅), a root datum and a parabolic subalgebra p 
given by If ⊂ I. Using the notations from Khovanov and Lauda, we write 
for [ ] :Iν ∈N  

, ,i i
i I

iν ν ν
∈

= ⋅ ∈∑ 

with | |= i iν ν∑  and Supp( ) { | 0}.iiν ν= ≠  We put 2 , .ij X
i j
i id i j⋅
⋅

= − = −〈 〉 ∈
We also fix a choice of scalars Q as introduced by Rouquier. Following 

the conventions in Cautis-Lauda, the set Q consists of: 
•	 ijt ×∈k  for all i, j Œ I, 
•	 tv

ijs ∈k  for , 0 < iji j t d≠ ≤  and 0 ,jiv d≤ <  
•	 ir

×∈k  for all i ŒI, 
respecting 
•	 tii = 1, 
•	 tij = tji whenever dij = 0, 
•	 .tv vt

ij jis s=  
For ( ) ( ) 2( ),t i i v j j i j⋅ + ⋅ ≠ − ⋅ or t < 0, or v < 0, we put 0.tv

ijs =  Thus we 
have 0pq

ijs =  for p > dij or q > dji. We will also write 
0ijd

ij ijs t=  and 0 jid
ij jis t= . 

Hence if i ⋅ j = 0 we get 00 00 .ij ji ij jis s t t= = =
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Remark 3.23 : A usual choice is given by ri = ±1, tij = 1 and 0tv
ijs =  for  

t π dij or v π dji. 

3.3.1  KLR algebras and their cyclotomic quotients

Consider the collection of braid-like diagrams on the plane connecting 
|n| points on the horizontal axis R × {0} to |n| points on the horizontal 
line R × {1}, admitting no critical point when projected onto the y-axis, so 
that a strand can never turn around. 

•	� We allow strands to intersect each other without triple intersection 
points.

•	� Each strand is labeled by a simple root, with ni strands labeled i, and 
they can carry dots.

•	� A non-negative integer k ŒN next to a dot means there are k 
consecutive dots on the strand.

•	� These diagrams are taken up to regular isotopy which does not 
create critical points. 

Definition 3.24 : Let R(n) be the k-algebra generated by the diagrams 
described above with multiplication given by gluing diagrams on top of 
each other whenever the labels of the strands agree, and zero otherwise. 
We read diagrams from bottom to top by convention and so ab means we 
stack a atop of b. The diagrams are subjected to the local relations (10) to 
(13) below.

	 	 (10)

where the sum is restricted to the finite number of pairs t, v Œ N such that 
( ) ( ) 2( ),t i i v j j i j⋅ + ⋅ = − ⋅  

	 	 (11)

	  	 (12)
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        (13)

Remark 3.25 : We also remark that, whenever i ⋅ j = 0 we have t = v = 0 and 
the sums in in (10) give tij. Also in this case, the sums over t, v in (13) vanish 
since we must have v = 0. 

The algebra R(v) is graded and generated by (we indicate the grading 
below the diagrams) 

Definition 3.26 : 
[ ]

( ).
I

R R
ν

ν
∈

= ⊕


 

3.3.2 Cyclotomic KLR algebras

Let { }i i I∈Λ = Λ  be an integral dominant weight. Define the cyclotomic 
ideal ( ) ( )I Rν νΛ ⊂  as the 2-sided ideal generated by the diagrams 

with 1 1 ( )mji i Seq ν−… ∈  and j Œ I.

Definition 3.27 : The cyclotomic KLR algebra RL(n) is the quotient 

( ) ( )/ ( ).R R Iν ν νΛ Λ=

We put 

[ ]
( ).

I
R R

ν
νΛ Λ

∈
= ⊕



•	� The cyclotomic KLR algebra RL categorifies the irreducible V(L) 
in the sense that there is a g-action on categories of modules of RL 
that descend to the Grothendieck groups, yielding isomorphisms of 
g-modules 
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0 0( gmod) ( ), ( pmod) ( ).G R V K R VΛ Λ− ≅ Λ − ≅ Λ

3.3.3 Extended KLR superalgebras: p-KLR superalgebras

We introduce below KLR-like super algebras associated to a pair 
(p, g), where g is a quantum Kac-Moody algebra and p Õ g a parabolic 
subalgebra. These algebras can be thought as a mix between the KLR 
algebras R(v) the algebras An.

Consider the collection of KLR diagrams where regions can be 
decorated with floating dots, drawn as hollow dots .

•	� Floating dots are labeled by simple roots in Ir as a subscript, together 
with a non-negative integer as a superscript. By convention, we do 
not write the superscript of a floating dot whenever it is 0.

•	� Two floating dots are not allowed to be at the same height in a 
diagram.

•	� These diagrams are taken up to the isotopies allowed for KLR 
diagrams that preserve the relative height of floating dots.

•	� We assign a parity to these diagrams by declaring that floating dots 
are odd while crossings and dots are even. 

An example of such a diagram is given below, for i, j, k ŒI with i, k ŒIr,

	 	 (14) 

Definition 3.28 : Let Rp(v) be the k-super algebra generated by the KLR 
diagrams together with the floating dots, with multiplications as defined 
in the KLR algebra.

The diagrams are subjected to the KLR relations together with the 
local relations (15)-(19) involving floating dots, where we suppose all 
subscripts are in Ir: 

	 	 (15)

	 	 (16)
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	 	 (17)

	 	 (18)

for all a, b ŒN and i, j, k Œ I. Moreover, we also demand a floating dot in 
the leftmost region to be zero: 

	 	 (19)

We put 

[ ]
( ),

I
R R

ν
ν

∈
= ⊕



p p

and call it the extended KLR algebra associated to the pair (p, q) (p-KLR algebra 
for short). Taking p = g recovers the usual KLR algebra.

Definition 3.29 : 
[ ]

( ).
I

R R
ν

ν
∈

= ⊕


p p
 

Remark 3.30 :  
•	� Relation (15) means that, up to a sign, floating dots can move freely 

within regions. 
•	� It also means that a diagram containing two floating dots with the 

same subscript and superscript in the same region is zero.
•	� Relation (19) implies the diagram in (14) is zero since the floating dot 

with subscript i slides to the left over the strand with label j by (17), 
and reaches the leftmost region.

•	� Whenever i ⋅ j = 0 we have t = v = 0 and the sums in (17) give tij, so 
that the floating dot jumps over the strand at the cost of multiplying 
by an invertible scalar. Also in this case the sums over t, v in (18) 
vanish, since we must have v = 0. 

The algebra Rp(v) is multigraded and the degree of a floating dot is not 
defined locally: it depends on the strands at its left. In order to still be able 
to write equations in a compact form, we introduce for each diagram a 
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function that takes a region and spits a |I|-tuple = iK k i⋅∑  where ki ŒN is 
the number of strands labeled i at its left.

Concretely, when we write a local relation with a K placed somewhere 
in a region, it means it is embedded in a diagram where there are ki strands 
labeled i at the left of this region.

For a fixed K it will be sometimes useful to also consider i IXK ∈= ∑
.i Xk i X⋅ ∈  This allows compact notations such as , .j IX j iji K k d∈〈 〉 = −∑  

In particular |K| counts the total number of strands at the left of the 
considered region. We will also abuse notation and write K – i instead of 
K – 1 ⋅ i.

For example, we can now write relation (19) as a local relation 

We introduce a multigrading on Rp(v) consisting of a quantum 
grading q and |Ir| homological gradings { } .

ri i Iλ λ ∈= We write the degree 
of an element as a pair (r, L) with r ŒZ being the q-degree, and i Ir

L ∈= ∑
| |Ir

i i⋅ ∈   being the homological multigrading.
We fix the degree of the generators by

Relations (10-19) above are clearly homogeneous for this multigrading, 
and Rp(v) becomes a multigraded superalgebra (recall dots and crossings 
are even and floating dots are odd). To keep the notation simple we will 
write grading shifts by monomials in variables q and lis, and the parity 
shift by P. 

•	� Rp(v) contains the KLR algebra R(v) as a graded subalgebra if we 
extend its q-grading to a multigrading trivially.

•	� If { }rI I i= =  with i ⋅ i = 2 we recover the algebra An. In this case, 
a floating dot with nonzero subscript is a linear combination of 
floating dots with zero subscript with coefficients being (partially 
symmetric) polynomials on dots.

•	� In general for p ⊂ p¢, with If ⊂ If  ¢, we can obtain Rp¢(v) as a quotient (or 
resp. a sub-algebra) of Rp(v) by killing floating dots with subscript in 
If  ¢\If (resp. by restricting to floating dots with subscript in If ¢ ⊂ If  ).
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•	� As in the case of the KLR algebras and An the algebras Rp(v) act 
faithfully on a supercommutative ring.

3.3.4 Tight floating dots and a basis for Rp

Contrary to the algebra An, in general we cannot slide all floating 
dots to the bottom (or to the top) of a diagram from Rp. This implies that 
the basis of An in Proposition 3.8 do not extend to basis of Rp(v) unless  
v = vi ⋅ i. This is different from situation in KLR algebras where we have a 
basis given by diagrams split in two regions, one containing all crossings 
(labelled by elements of S|v|) and one containing dots: 

•	� considering diagrams of Rp(v) that are split in three regions (containing 
crossings, dots and floating dots respectively) does not give a basis of Rp(v). 

Definition 3.31 : We say that a floating dot is tight if it has superscript 0 
and it is placed directly at the right of the leftmost strand. 

By (19), for a tight floating dot not to be zero, it must have the same 
subscript as the strand at its left and so we will always assume it is the 
case. For example, 

Thanks to relations (17), (18) and (19) these can be brought to the 
region immediately at the right of the first strand, and this shows that 
any diagram of Rp(v) can be written as a k-linear combination of diagrams 
involving only KLR generators and tight floating dots. Moreover, we can 
also construct a basis in terms of these type of diagrams. 

Proposition 3.32 : There is a basis of Rp(v) given in terms of KLR generators and 
involving only tight floating dots. 

This basis generalizes the basis of An in Proposition 3.11, it is defined 
combinatorially and its particular form is not important for this lectures 
(see 18, §3.3).

3.3.5. Semi-cyclotomic p-KLR algebras

Fix b and { }
fj j IN n ∈=  as before.
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Define the semi-cyclotomic ideal ( ) ( )NI Rν ν⊂
p

 as the 2-sided ideal 
generated by the diagrams 

with 1 1 ( )mji i Seq ν−… ∈  and j ŒIf.

Definition 3.33 : The semi-cyclotomic p-KLR algebra ( )NR ν
p

 is the quotient 

( ) ( )/ ( ).N NR R Iν ν ν=
p p

We put 

[ ]
( ).N N

I
R R

ν
ν

∈
= ⊕



p p

By taking p = g we recover the usual cyclotomic KLR algebras.

3.3.6. Categorical g-action

Adding a vertical strand labeled i at the right of a diagram from Rp(v) 
defines a homomorphism ( ) ( ).R R iν ν→ +

p p  Define the functors 
2 1

0

1 , 1

1 ,

: ( ) mod ( ) mod,

and
: ( ) mod ( ) mod,

Res : ( ) mod ( ) mod if ,

Res : ( ) mod ( ) mod otherwise.

X

X

a N N
i i

a

i N N
i

i i N N
i i r

i n i i N Ni
i

Q q R s R s

F Ind R s R i s

q R i s R s i I
E

q R i s R s

ν
ν

ν ν
ν

ν ν
ν

ν ν

ν ν

λ ν ν

ν ν

+

≥

+

+〈 〉 − +

− +〈 〉 +

= Π − → −

= − → + −

 + − → − ∈= 
+ − → −

 p p

p p

p p

p p

We write 1v for the identity functor of Rp(v) – smod.

Theorem 3.34 : Functors Qi, Fi, Ei are exact and send projectives to projectives. 
Moreover, there are natural, non-split, short exact sequences 

, , 10 1 1 1 0,X Xi i
i i i i i i i i i iFE E F q Q q Qν ν

ν ν νλ λ−〈 〉 〈 〉 −→ → → ⊕ Π →

for all i ŒIr, and natural isomorphisms 

[ , ]

[ , ]

1 1 1 if , 0,

1 1 1 if , 0,
X qj

X j qj

j j j j n j j Xj

j j j j j n j X

E F F E n j

F E E F n j

ν ν ν ν

ν ν ν ν

ν

ν

−〈 〉

〈 〉−

≅ ⊕ − 〈 〉 ≥

≅ ⊕ − 〈 〉 ≤
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for all j ŒIf . There are also natural isomorphisms 
1 1 ,i j j iFE E Fν ν≅

and 
( 1)/2 /2

1 2 22 2 1

0 0

( 1)/2 /2
1 2 22 2 1

0 0

1 1
1 1 ,

2 2 1

1 1
1 1 ,

2 2 1

d dij ijd a d aij ijij ija a
i j i i j i

a aq qi i
d dij ijd a d aij ijij ija a

i j i i j i
a aq qi i

d d
F F F F F F

a a

d d
E E E E E E

a a

ν ν

ν ν

 +   
+ − −+

= =

 +   
+ − −+

= =

   + +
≅   

+      

   + +
≅   

+      

⊕ ⊕

⊕ ⊕

for all i, j Œ I with i π j. 
Choosing p = g (and thus = )rI ∅  in the theorem above yields the direct 

sums decompositions used to prove the Khovanov-Lauda cyclotomic 
categorification conjecture, which was proven by Kang-Kashiwara [5] and 
Webster [21].

3.3.7 Rb and Rp

N as a DGAs

(1)	� The case p = b: Choose a subset If ⊂ I and consider the corresponding 
parabolic subalgebra p. Fix also some { } .

fj j IN n ∈=  We will see below 
that Rp

N can be obtained as the homology of Rb with respect to a 
differential dN.

We equip Rb(v) with the differential dN below. Firstly, it acts trivial on 
KLR generators, 

all i, j Œ I.
To define dN on floating dots we decompose it into diagrams involving 

only tight floating dots and put 

1( ) ( 1) , (20)j jn n
N jd xω = −

for j ŒIf and wj supposed to be tight, that is in a region with K = 1 ⋅ j.
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Remark 3.35 : There is an explicit formula for the action of dN on an 
arbitrary floating dot [18]. In this case dN returns a linear combination of 
partially symmetric polynomials. 

Remark 3.36 : The case p = b gives the cyclotomic KLR algebra RN. 

Proposition 3.37 : The algebra Rb(v) equipped with dN forms a formal DG 
algebra (Rp(v), dN) whose homology is isomorphic to the cyclotomic quotient 
Rp

N(v). Moreover, if , X j jj nν ν〈 〉 > +  for j ŒIf  ¢ then (Rp(v), dN) is acyclic. 
This results fits the idea that a parabolic Verma module is a mix 

between a finite-dimensional representation and a Verma module.

(2)	 The case of general p: Suppose that If and p are fixed. 
	 • 	 Choose a subset f fI I I′ ⊂   such that .′p p

	 • 	 For each \ ,f fj I I′∈  choose a non-negative integer nj ŒN.
	 •	 Write { | \ }.j f fN n j I I′′ = ∈  

The same formulas as before endow Rp

N(v) with a differential dN¢.

Proposition 3.38 : (Rp

N, dN¢) is a formal DG algebra and 
* ( , ) ( ).N N N

NH R d R ν∪ ′
′ ′≅

p p

The following diagram summarizes the several extended KLR DG 
algebras and differentials. 

'( ) ( ) ( ) ( ).
N N Nd d d

N N N N N NR R R Rν ν ν ν
′ ′′

′ ′ ′′∪ ∪ ∪
b p p
  

We have various (commutative) ways of going from Rb(v) to RN″(v).

3.3.8. New bases for cyclotomic KLR algebras

Under Proposition 3.38, the basis in Proposition 3.32 give new basis 
of cyclotomic KLR algebras (for all types). It would be interesting to know 
if in type A these are related to the Hu--Matthas graded cellular bases [4].
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3.4. Categorification of Verma modules

Let 
•	�  ( ) psmodN

lfgR ν −
p  be the category of cone bounded, locally finitely 

generated projective, left Rp

N(v)-supermodules. 

These are the projective modules generated by a collection of 
elements such that the (infinite) sum of the monomials corresponding to 
their degrees gives an element of Z((q, b)). This category is cone complete 
(i.e. it contains all cone bounded, locally finite coproducts), and possesses 
the local Krull-Schmidt property. Indeed, the indecomposable projectives 
have all locally finite dimensions contained in cones compatible with , 
and their part in minimal degree is isomorphic to k. The topological split 
Grothendieck group K0(Rp

N(v)) is a free Zp((q, b))-module, with Zp = Z[p]/
(p2 – 1), generated by the classes of indecomposable projective modules, 
up to shift.

We consider also 
•	�  , ( ) smod ,N

lfR µ ν −
p

 the category of cone bounded, locally finite 
dimensional Rp

N(v)-modules. 

Here, the graded dimension of the modules seen as k-vector spaces are 
in Z((q, b)). It is also cone complete and possesses the local Jordan-Hölder 
property. Therefore its topological Grothendieck group G0(Rp

N(v)) is also 
a Zp((q, b))-module, freely generated by the classes of simple modules. 
When specializing the parameter p = –1 and extending the scalars to Q, 
we write 



0 0( ( )) ( ( )) [ ]/( 1),N NR R
π

ν ν π π= ⊗ +G G




p p

and the same for  0 ( ( )).NR νK
p

Taking projective resolutions of the simple objects yields a change of 
basis, and  0 ( ( ))NR νK

p
 is also freely generated by the classes of projective 

modules. This justifies the choice q  li in the order chosen to define  
Z((q, b)).

The functor Qi descends onto the Grothendieck groups as 

2 4
1

1[ ] (1 )[ ] [ ],i i i i
i i

Q M q q q M M
q q−

= − + + +… =
−

explaining the choice 0  q.
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Example 3.39 : Take a simple object S = Q and projective ( )NR i ≅
p

•[ ]ξ ω⊗ 〈 〉∧  with deg( ) (2 ,0)i iξ = ⋅  and deg( ) ( 2 , 2 ),i i iω = − ⋅ ⋅  viewed as 
modules over Rp

N(i). Then S admits a projective resolution yielding 
2 2 4 4[ ] (1 )(1 )[ ( )].N
i i i i iS q q q R iπ λ λ− −= − − + −…

p

We want to take 2 4 4(1 )i i i iq qλ λ− −+ + +…  as the inverse of 2 2(1 ).i iq λ−−  

Theorem 3.40 : The functors { , }i i i IE F ∈  induce an action of g on ( ).N
0 RG

p  In 
particular there is an isomorphism of g-modules 

 1( ) ( , ),NR M q Nλ −≅ p

p0G

sending classes of indecomposable projective modules to divided canonical basis 
elements and classes of simple modules to dual canonical basis elements. 

Here (lq–1)i is liqi
–1 if i ŒIf or ni if i Œ I\If.

Similarly, { , }i i i IE F ∈  induce an action of g on  0 ,( )NRK
p

 and we have an 
isomorphism of g-modules  1

0 ( ) ( , ).NR M q Nλ −≅K p

p
 However in this case 

dual canonical basis elements are only given by formal power series of the 
classes of projectives.

The Shapovalov form admits a nice interpretation in term of graded 
(super)dimensions of some vector spaces.

Proposition 3.41 : For each , N
lfM N R smod∈ −

p
 we have 

([ ],[ ]) sdim ,NR
M N M Nψ= ⊗

p

where (–, –) is the universal Shapovalov form, and My is the right Rp

N-module 
given by the anti-involution on Rp

N that reverses diagrams along the horizontal 
axis. 

The induction and restriction functors Ei, Fi have their derived 
counterparts given by replacing objects with their bar resolution, so that 

( , )lc N
NR d ′p

D  and ( , )lf N
NR d ′p

D  are equipped with a categorical action of g. 
This categorical action induces in turn an action of g on both topological 
Grothendieck groups.

Theorem 3.42 : There are equivalences of triangulated categories 
( ) ( )( , ) ( , 0), ( , ) ( , 0).lf lflc N lc N N N N N

N NR d R R d R∪ ′ ∪ ′
′ ′ ′ ′≅ ≅

p p p p
D D D D

Corollary 3.43 : There are isomorphisms of g-modules 
( ) ( )

00 0( ( , )) ( ( , 0)) ( ) ( , ),lc N lc N N N N
NR d R R M N N∪ ′ ∪ ′ ′

′ ′ ′
′ ′⊗ ≅ ⊗ ≅ ≅ Λ ∪K K K 

p

p p p
D D
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and 
( ) ( )

0 0 0( ( , )) ( ( , 0)) ( ) ( , ),lf lfN N N N N
NR d R R M N Nβ∪ ′ ∪ ′ ′

′ ′ ′
′ ′⊗ ≅ ⊗ ≅ ≅ ∪K K G 

p

p p p
D D

where { | }.i ri Iβ β ′
′ = ∈  

We view this result as a categorification of the order on the parabolic 
Verma modules.

Remark 3.44 : Note that equipping Rp

N with a trivial differential and 
passing to the derived category yields a natural way to specialize p = –1 in 
the Grothendieck group. 
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