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sl.N /–link homology (N � 4)
using foams and the Kapustin–Li formula

MARCO MACKAAY

MARKO STOŠIĆ

PEDRO VAZ

We use foams to give a topological construction of a rational link homology cate-
gorifying the sl.N / link invariant, for N � 4 . To evaluate closed foams we use the
Kapustin–Li formula adapted to foams by Khovanov and Rozansky [9]. We show that
for any link our homology is isomorphic to the Khovanov–Rozansky [11] homology.

57M27; 57M25, 81R50, 18G60

1 Introduction

In [14], Murakami, Ohtsuki and Yamada (MOY) developed a graphical calculus for
the sl.N / link polynomial. In [7], Khovanov categorified the sl.3/ polynomial using
singular cobordisms between webs called foams. Mackaay and Vaz [12] generalized
Khovanov’s results to obtain the universal sl.3/ integral link homology, following an
approach similar to the one adopted by Bar-Natan [1] for the original sl.2/ integral
Khovanov homology. In [11] Khovanov and Rozansky defined a rational link homology
which categorifies the sl.N / link polynomial using the theory of matrix factorizations.

In this paper we use foams, as in [1; 7; 12], for an almost completely combinatorial
topological construction of a rational link homology categorifying the sl.N / link
polynomial. Our theory is functorial under link cobordisms up to nonzero scalars.
Khovanov had to modify considerably his original setting for the construction of sl.2/

link homology in order to produce his sl.3/ link homology. It required the introduction
of singular cobordisms with a particular type of singularity. The jump from sl.3/ to
sl.N /, for N > 3, requires the introduction of a new type of singularity. The latter is
needed for proving invariance under the third Reidemeister move and is qualitatively
different from the other singularities. The old singularities, which are the same as for
sl.3/, are part of seams where three facets meet. The new singularities occur at points
where such seams intersect. This is new, because for sl.3/ the seams are disjoint arcs.
Furthermore the combinatorics involved in establishing certain identities gets much
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harder for arbitrary N . The theory of symmetric polynomials, in particular Schur
polynomials, is used to handle that problem.

Our aim was to find a combinatorial topological definition of Khovanov–Rozansky
link homology. Such a definition is desirable for several reasons, the main one being
that it might help to find a good way to compute the Khovanov–Rozansky link homol-
ogy. Unfortunately the construction that we present in this paper is not completely
combinatorial. The introduction of the new singularities makes it much harder to
evaluate closed foams and we do not know how to do it combinatorially. Instead we
use the Kapustin–Li formula [6], adapted by Khovanov and Rozansky [9]1. A positive
side-effect is that it allows us to show that for any link our homology is isomorphic to
Khovanov and Rozansky’s.

Although we have not completely achieved our final goal, we believe that we have
made good progress towards it. In Propositions 6.2 and 6.9 we derive a small set of
relations on foams which we show to be sufficient to guarantee that our link homology
is homotopy invariant under the Reidemeister moves. By deriving these relations from
the Kapustin–Li formula we prove that these relations are consistent. However, in order
to get a purely combinatorial construction we would have to show that they generate
the kernel of the Kapustin–Li formula on closed foams. We conjecture that this holds
true, but so far our attempts to prove it have failed. It would be very interesting to have
a proof of this conjecture. So far we can only conclude that any other way of evaluating
closed foams which satisfies the same relations as in Propositions 6.2 and 6.9 gives
rise to a functorial link homology which categorifies the sl.N / link polynomial. We
conjecture that such a link homology is equivalent to the one presented in this paper
and therefore to Khovanov and Rozansky’s.

In Section 2 we recall some basic facts about the sl.N /–link polynomials. In Section 3
we recall some basic facts about Schur polynomials and the cohomology of partial
flag varieties. In Section 4 we define prefoams and their grading. In Section 5 we
explain the Kapustin–Li formula for evaluating closed prefoams and compute the
spheres and the theta-foams. In Section 6 we derive a set of basic relations in the
category FoamN , which is the quotient of the category of prefoams by the kernel of
the Kapustin–Li evaluation. In Section 7 we show that our link homology complex
is homotopy invariant under the Reidemeister moves. In Section 8 we show that our
link homology complex extends to a link homology projective functor. In Section 9
we show that our link homology, obtained from our link homology complex using the
tautological functor, categorifies the sl.N /–link polynomial and that it is isomorphic
to the Khovanov–Rozansky link homology.

1We thank M Khovanov for suggesting that we try to use the Kapustin–Li formula.
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2 Graphical calculus for the sl.N / polynomial

In this section we recall some facts about the graphical calculus for sl.N /. The sl.N /

link polynomial is defined by the skein relation

qN PN ."/� q�N PN .!/D .q� q�1/PN .Q/;

and its value for the unknot, which we take to be equal to ŒN �D .qN �q�N /=.q�q�1/.
Let D be a diagram of a link L 2 S3 with nC positive crossings and n� negative
crossings. Following an approach based on MOY’s state sum model [14] we can

0 1 1 0positive negative

D qN�1
� qN

D q1�N
� q�N

Figure 1: Positive and negative crossings and their 0– and 1–flattening

compute PN .D/ by flattening each crossing of D in two possible ways, as shown
in Figure 1, where we also show our convention for positive and negative crossings.
Each complete flattening of D is an example of a web: a trivalent graph with three
types of edges: simple, double and marked edges. A vertex has at most one marked
incident edge. Only the simple edges are equipped with an orientation, which fixes the
orientations on the other edges according to the following conventions: given a vertex
with two simple ingoing (outgoing) edges, then it has one double edge which is outgoing
(ingoing). There are no vertices with one ingoing simple edge and one outgoing simple
edge. If a vertex has only one simple ingoing (outgoing) edge, then it has one double
edge which is ingoing (outgoing) and one marked edge which is outgoing (ingoing).
Other vertices are not allowed (see Figure 2). In a web the orientations of all edges
have to match up according to the rules above. Note that a complete flattening of D

never has marked edges, but we will need the latter for webs that show up in the proof
of invariance under the third Reidemeister move.

* *

* *

Figure 2: Vertices

Simple edges correspond to edges labelled 1, double edges to edges labelled 2 and
marked simple edges to edges labelled 3 in [14], where edges carry labels from 1
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to N � 1 and label j is associated to the j –th exterior power of the fundamental
representation of sl.N /.

We call a planar trivalent graph generated by the vertices and edges defined above
a web. Webs can contain closed plane loops (simple, double or marked). The MOY
web moves in Figure 3 provide a recursive way of assigning to each web � that only
contains simple and double edges a polynomial in ZŒq; q�1� with positive coefficients,
which we call PN .�/. There are more general web moves [13], which allow for the
evaluation of arbitrary webs, but we do not need them here. Note that a complete
flattening of a link diagram only contains simple and double edges.

D ŒN �; D

�
N

2

�

D Œ2� ; D ŒN � 1�

D C ŒN � 2�

C D C

Figure 3: MOY web moves

Consistency of the relations in Figure 3 is shown in [14].

Finally let us define the sl.N / link polynomial. For any i let �i denote a complete
flattening of D . Then

PN .D/D
X
�

q˛.�/PN .�/;

where ˛.�/ is determined by the coefficients of the resolutions in Figure 1 and the
sum is over all possible flattenings � of D .

3 Schur polynomials and the cohomology of partial flag vari-
eties

In this section we recall some basic facts about Schur polynomials and the cohomology
of partial flag varieties which we need in the rest of this paper.

Geometry & Topology, Volume 13 (2009)
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3.1 Schur polynomials

A nice basis for homogeneous symmetric polynomials is given by the Schur polynomials.
If �D .�1; : : : ; �k/ is a partition such that �1� : : :��k �0, then the Schur polynomial
��.x1; : : : ;xk/ is given by the following expression:

(1) ��.x1; : : : ;xk/D
jx
�jCk�j

i j

�
;

where �D
Q

i<j .xi � xj /, and by jx�jCk�j

i j, we have denoted the determinant of
the k � k matrix whose .i; j / entry is equal to x

�jCk�j

i . Note that the elementary
symmetric polynomials are given by �1;0;0;:::;0; �1;1;0;:::;0; : : : ; �1;1;1;:::;1 . There are
multiplication rules for the Schur polynomials which show that any ��1;�2;:::;�k

can
be expressed in terms of the elementary symmetric polynomials.

If we do not specify the variables of the Schur polynomial �� , we will assume that
these are exactly x1; : : : ;xk , with k being the length of �, ie

��1;:::;�k
WD ��1;:::;�k

.x1; : : : ;xk/:

In this paper we only use Schur polynomials of two and three variables. In the case
of two variables, the Schur polynomials are indexed by pairs of nonnegative integers
.i; j /, such that i � j , and (1) becomes

�i;j D

iX
`Dj

x`1x
iCj�`
2

:

Directly from Pieri’s formula (see Fulton [3] and Fulton and Harris [4]) we obtain the
following multiplication rule for the Schur polynomials in two variables:

(2) �i;j�a;b D

X
�x;y ;

where the sum on the right-hand side is over all indices x and y such that xCy D

iCjCaCb and aCi�x�max.aCj ; bCi/. Note that this implies min.aCj ; bCi/�

y� bCj . Also, we shall write �x;y 2�i;j�a;b if �x;y belongs to the sum on the right-
hand side of (2). Hence, we have that �x;x 2 �i;j�a;b if and only if aCj D bC i D x

and �xC1;x 2 �i;j�a;b if and only if aC j D x C 1, b C i D x or aC j D x ,
bC i D xC 1.

We shall need the following combinatorial result which expresses the Schur polynomial
in three variables as a combination of Schur polynomials of two variables.

For i � j � k � 0, and the triple .a; b; c/ of nonnegative integers, we define

.a; b; c/@ .i; j ; k/;

Geometry & Topology, Volume 13 (2009)
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if aC bC c D i C j C k , i � a � j and j � b � k . We note that this implies that
i � c � k , and hence maxfa; b; cg � i .

Lemma 3.1
�i;j ;k.x1;x2;x3/D

X
.a;b;c/@.i;j ;k/

�a;b.x1;x2/x
c
3:

Proof From the definition of the Schur polynomial, we have

�i;j ;k.x1;x2;x3/D
.x1x2x3/

k

.x1�x2/.x1�x3/.x2�x3/

ˇ̌̌̌
ˇ̌̌ xi�kC2

1
x

j�kC1
1

1

xi�kC2
2

x
j�kC1
2

1

xi�kC2
3

x
j�kC1
3

1

ˇ̌̌̌
ˇ̌̌ :

After subtracting the last row from the first and the second one of the last determinant,
we obtain

�i;j ;k D
.x1x2x3/

k

.x1�x2/.x1�x3/.x2�x3/

ˇ̌̌̌
ˇ xi�kC2

1
�xi�kC2

3
x

j�kC1
1

�x
j�kC1
3

xi�kC2
2

�xi�kC2
3

x
j�kC1
2

�x
j�kC1
3

ˇ̌̌̌
ˇ ;

�i;j ;k D
.x1x2x3/

k

x1�x2

ˇ̌̌̌
ˇ̌
Pi�kC1

mD0 xm
1

xi�kC1�m
3

Pj�k
nD0

xn
1
x

j�k�n
3Pi�kC1

mD0 xm
2

xi�kC1�m
3

Pj�k
nD0

xn
2
x

j�kCn
3

ˇ̌̌̌
ˇ̌ :

and so

Finally, after expanding the last determinant we obtain

(3) �i;j ;k D
.x1x2x3/

k

x1�x2

i�kC1X
mD0

j�kX
nD0

.xm
1 xn

2 �xn
1xm

2 /x
iCj�2kC1�m�n
3

:

We split the last double sum into two: the first one when m goes from 0 to j � k ,
denoted by S1 , and the other one when m goes from j � kC 1 to i � kC 1, denoted
by S2 . To show that S1 D 0, we split the double sum further into three parts: when
m< n, mD n and m> n. Obviously, each summand with mD n is equal to 0, while
the summands of the sum for m< n are exactly the opposite of the summands of the
sum for m> n. Thus, by replacing only S2 instead of the double sum in (3) and after
rescaling the indices aDmC k � 1, b D nC k , we get

�i;j ;k D
.x1x2x3/

k

x1�x2

i�kC1X
mDj�kC1

j�kX
nD0

.xm
1 xn

2 �xn
1xm

2 /x
iCj�2kC1�m�n
3

D

iX
aDj

jX
bDk

�a;bx
iCjCk�a�b
3

D

X
.a;b;c/@.i;j ;k/

�a;bxc
3:
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Of course there is a multiplication rule for three-variable Schur polynomials which is
compatible with (2) and the lemma above, but we do not want to discuss it here. For
details see Fulton [3] and Fulton and Harris [4].

3.2 The cohomology of partial flag varieties

In this paper the rational cohomology rings of partial flag varieties play an essential
role. The partial flag variety Fld1;d2;:::;dl

for 1� d1 < d2 < : : : < dl DN is defined by

Fld1;d2;:::;dl
D fVd1

� Vd2
� : : :� Vdl

DCN
j dim.Vi/D ig:

A special case is Flk;N , the Grassmannian variety of all k –planes in CN , also denoted
Gk;N . The dimension of the partial flag variety is given by

dim Fld1;d2;:::;dl
DN 2

�

l�1X
iD1

.diC1� di/
2
� d2

1 :

The rational cohomology rings of the partial flag varieties are well known and we only
recall those facts that we need in this paper. For more details and proofs see Fulton [3]
and Hiller [5].

Lemma 3.2 H�.Gk;N / is isomorphic to the vector space generated by all �i1;i2;:::;ik

modulo the relations

(4) �N�kC1;0;:::;0 D 0; �N�kC2;0;:::;0 D 0; : : : ; �N;0;:::;0 D 0;

where there are exactly k � 1 zeros in the multi-indices of the Schur polynomials.

A consequence of the multiplication rules for Schur polynomials is:

Corollary 3.3 The Schur polynomials �i1;i2;:::;ik
, for N �k � i1 � i2 � : : :� ik � 0,

form a basis of H�.Gk;N /.

Thus, the dimension of H�.Gk;N / is
�
N
k

�
, and up to a degree shift, its quantum

dimension (or graded dimension) is
�
N
k

�
.

Another consequence of the multiplication rules is:

Corollary 3.4 The Schur polynomials �1;0;0;:::;0; �1;1;0;:::;0; : : : ; �1;1;1;:::;1 (the ele-
mentary symmetric polynomials) generate H�.Gk;N / as a ring.
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Furthermore, we can introduce a nondegenerate trace form on H�.Gk;N / by giving its
values on the basis elements

(5) �.��/D

�
.�1/bk=2c; �D .N � k; : : : ;N � k/

0; else.

This makes H�.Gk;N / into a commutative Frobenius algebra. One can compute the
basis dual to f��g in H�.Gk;N /, with respect to � . It is given by

(6) y��1;:::;�k
D .�1/bk=2c�N�k��k ;:::;N�k��1

:

We can also express the cohomology rings of the partial flag varieties Fl1;2;N and
Fl2;3;N in terms of Schur polynomials. Indeed, we have

H�.Fl1;2;N /DQŒx1;x2�=h�N�1;0; �N;0i;

H�.Fl2;3;N /DQŒx1Cx2;x1x2;x3�=h�N�2;0;0; �N�1;0;0; �N;0;0i:

The natural projection map p1W Fl1;2;N ! G2;N induces

p�1 W H
�.G2;N /!H�.Fl1;2;N /;

which is just the inclusion of the polynomial rings. Analogously, the natural projection
p2W Fl2;3;N ! G3;N , induces

p�2 W H
�.G3;N /!H�.Fl2;3;N /;

which is also given by the inclusion of the polynomial rings.

4 Prefoams

In this section we begin to define the foams we will work with. The philosophy behind
these foams will be explained in Section 5. To categorify the sl.N / link polynomial we
need singular cobordisms with two types of singularities. The basic examples are given
in Figure 4. These foams are composed of three types of facets: simple, double and
triple facets. The double facets are coloured and the triple facets are marked to show
the difference. Intersecting such a foam with a plane results in a web, as long as the
plane avoids the singularities where six facets meet, such as on the right in Figure 4.

We adapt the definition of a world-sheet foam given in [15] to our setting.

Definition 4.1 Let s be a finite closed oriented 4–valent graph, which may contain
disjoint circles. We assume that all edges of s are oriented. A cycle in s is defined to
be a circle or a closed sequence of edges which form a piece-wise linear circle. Let † be
a compact orientable possibly disconnected surface, whose connected components are

Geometry & Topology, Volume 13 (2009)
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* *

Figure 4: Some elementary foams

white, coloured or marked, also denoted by simple, double or triple. Each component
can have a boundary consisting of several disjoint circles and can have additional
decorations which we discuss below. A closed prefoam u is the identification space
†=s obtained by gluing boundary circles of † to cycles in s such that every edge
and circle in s is glued to exactly three boundary circles of † and such that for any
point p 2 s ,

(1) if p is an interior point of an edge, then p has a neighborhood homeomorphic
to the letter Y times an interval with exactly one of the facets being double, and
at most one of them being triple. For an example see Figure 4;

(2) if p is a vertex of s , then it has a neighborhood as shown in Figure 4.

We call s the singular graph, its edges and vertices singular arcs and singular vertices,
and the connected components of u� s the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black
dots (]), a double facet can also have white dots (^), and a triple facet besides black
and white dots can have double dots (_). Dots can move freely on a facet but are not
allowed to cross singular arcs. See Figure 5 for an example of a prefoam.

*

Figure 5: A prefoam

Note that the cycles to which the boundaries of the simple and the triple facets are glued
are always oriented, whereas the ones to which the boundaries of the double facets are

Geometry & Topology, Volume 13 (2009)
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glued are not. Note also that there are two types of singular vertices. Given a singular
vertex v , there are precisely two singular edges which meet at v and bound a triple
facet: one oriented toward v , denoted e1 , and one oriented away from v , denoted e2 .
If we use the “left hand rule”, then the cyclic ordering of the facets incident to e1

and e2 is either .3; 2; 1/ and .3; 1; 2/ respectively, or the other way around. We say
that v is of type I in the first case and of type II in the second case. When we go around
a triple facet we see that there have to be as many singular vertices of type I as there
are of type II for the cyclic orderings of the facets to match up. This shows that for
a closed prefoam the number of singular vertices of type I is equal to the number of
singular vertices of type II.

We can intersect a prefoam u generically by a plane W in order to get a web, as long
as the plane avoids the vertices of s . The orientation of s determines the orientation
of the simple edges of the web according to the convention in Figure 6.

W

*

W
*

W

W

*

W
*

W

Figure 6: Orientations near a singular arc

Suppose that for all but a finite number of values i 2 �0; 1Œ, the plane W � i intersects
u generically. Suppose also that W �0 and W �1 intersect u generically and outside
the vertices of s . We call W � I \u an open prefoam. Interpreted as morphisms we
read open prefoams from bottom to top, and their composition consists of placing one
prefoam on top of the other, as long as their boundaries are isotopic and the orientations
of the simple edges coincide.

Definition 4.2 Let Prefoam be the category whose objects are closed webs and whose
morphisms are Q–linear combinations of isotopy classes of prefoams with the obvious
identity prefoams and composition rule.

We now define the q–degree of a prefoam. Let u be a prefoam, u1 , u2 and u3 the
disjoint union of its simple and double and marked facets respectively and s .u/ its

Geometry & Topology, Volume 13 (2009)
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singular graph. Define the partial q–gradings of u as

qi.u/D �.ui/�
1

2
�.@ui \ @u/; i D 1; 2; 3

qs .u/D �.s .u//�
1

2
�.@s .u//;

where � is the Euler characteristic and @ denotes the boundary.

Definition 4.3 Let u be a prefoam with d
]

dots of type ], d
^

dots of type ^ and
d
_

dots of type _. The q–grading of u is given by

(7) q.u/D�

3X
iD1

i.N � i/qi.u/� 2.N � 2/qs .u/C 2d
]
C 4d

^
C 6d

_
:

The following result is a direct consequence of the definitions.

Lemma 4.4 q.u/ is additive under the gluing of prefoams.

5 The Kapustin–Li formula and the evaluation of closed pre-
foams

Let us briefly recall the philosophy behind the prefoams. Recall that we want to
associate a number to each closed prefoam. To do this, we could first associate an
element in the homology ring of a configuration space of planes in some big CM to a
prefoam. To each i –facet we can associate an arbitrary i –plane in CM . We consider
the subspace of all such planes with orthogonality conditions imposed by the singular
graph. The set of dots could be interpreted as a cocycle on the same big configuration
space. The evaluation of a prefoam with dots should then correspond to the pairing
of the fundamental cycle of this subspace and the cocycle corresponding to the dots.
However, one encounters difficult technical problems when working out the details of
this philosophy. Without explaining these details, we can say that one problem consists
of figuring out what to associate to the singular vertices. Ideally we would like to find
a combinatorial solution to this problem, but so far it has eluded us. That is the reason
why we are forced to use the Kapustin–Li formula.

We denote a simple facet with i dots by:

i

Geometry & Topology, Volume 13 (2009)
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Recall that �k;m can be expressed in terms of �1;0 and �1;1 . In the philosophy
explained above, the latter should correspond to ] and ^ on a double facet respectively.
We can then define

(k,m)

as being the linear combination of dotted double facets corresponding to the expression
of �k;m in terms of �1;0 and �1;1 . Analogously we expressed �p;q;r in terms of
�1;0;0 , �1;1;0 and �1;1;1 (see Section 3). The latter correspond to ], ^ and _ on a
triple facet respectively, so we can make sense of:

*
(p,q,r)

Our dot conventions and the results in Proposition 6.2 will allow us to use decorated
facets in exactly the same way as we did Schur polynomials in the cohomology rings
of partial flag varieties.

In the sequel, we shall give a working definition of the Kapustin–Li formula for
the evaluation of prefoams and state some of its basic properties. The Kapustin–Li
formula was introduced by A Kapustin and Y Li [6] in the context of the evaluation
of 2-dimensional TQFTs and extended to the case of prefoams by M Khovanov and
L Rozansky in [9].

5.1 The general framework

Let uD†=s be a closed prefoam with singular graph s and without any dots on it.
Let F denote an arbitrary i –facet, i 2 f1; 2; 3g, with a 1–facet being a simple facet, a
2–facet being a double facet and a 3–facet being a triple facet.

Recall that to each i –facet we associated the rational cohomology ring of the Grass-
mannian Gi;N , ie H�.Gi;N ;Q/. Alternatively, we can associate to every i –facet F , i

variables xF
1
: : : ;xF

i , with deg xF
i D 2i , and the potential W .xF

1
; : : : ;xF

i /, which is
the polynomial defined such that

W .�1; : : : ; �i/D yNC1
1

C : : :CyNC1
i ;

where �j is the j –th elementary symmetric polynomial in the variables y1; : : : ;yi .
The Jacobi algebra JW , which is given by

JW DQŒxF
1 ; : : : ;x

F
i �=h@W i

Geometry & Topology, Volume 13 (2009)



sl.N /–link homology (N � 4) using foams and the Kapustin–Li formula 1087

where we mod out by the ideal generated by the partial derivatives of W , is isomorphic
to H�.Gi;N ;Q/. Note that the top degree nonvanishing element in this Jacobi algebra
is �N�i;:::;N�i (multi-index of length i ), ie the polynomial in variables xF

1
; : : : ;xF

i

which gives �N�i;:::;N�i after replacing the variable xF
j by �1;:::;1;0;:::;0 with exactly

j 1’s, 1 � j � i (see also Section 3.1). We define the trace (volume) form, � , on
the cohomology ring of the Grassmannian, by giving it on the basis of the Schur
polynomials:

�.�j1;:::;ji
/D

(
.�1/bi=2c if .j1; : : : ; ji/D .N � i; : : : ;N � i/

0 else.

The Kapustin–Li formula associates to u an element in the product of the cohomology
rings of the Grassmannians (or Jacobi algebras), J , over all the facets in the prefoam.
Alternatively, we can see this element as a polynomial, KLu 2 J , in all the variables
associated to the facets. Now, let us put some dots on u. Recall that a dot corresponds
to an elementary symmetric polynomial. So a linear combination of dots on u is
equivalent to a polynomial, f , in the variables of the dotted facets. The value of this
dotted prefoam we define to be

(8) huiKL WD �

 Y
F

det.@i@j WF /
g.F /

.N C 1/g
0.F /

KLu f

!
:

The product is over all facets F and WF is the potential associated to F . For any
i –facet F , i D 1; 2; 3, the symbol g.F / denotes the genus of F and g0.F /D ig.F /.

Having explained the general idea, we are left with defining the element KLu for a
dotless prefoam. For that we have to explain Khovanov and Rozansky’s extension of the
Kapustin–Li formula to prefoams [9], which uses the theory of matrix factorizations.

5.2 Matrix factorizations

Let RDQŒx1; : : : ;xk � be a polynomial ring, and W 2R. By a matrix factorization
over ring R with the potential W we mean a triple .M;D;W /, where M DM 0˚M 1

(rank M 0 D rank M 1 ) is a finite-dimensional Z=2Z–graded free R–module, while
the (twisted) differential D 2 End.M / is such that deg D D 1 and

(9) D2
DW Id :

In other words, a matrix factorization is given by the following square matrix with
polynomial entries

D D

�
0 D0

D1 0

�
;
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such that D0D1 DD1D0 DW Id. Matrix factorizations are also represented in the
following form:

M 0 D0
����!M 1 D1

����!M 0:

The tensor product of two matrix factorizations with potentials W1 and W2 is a matrix
factorization with potential W1CW2 .

The dual of the matrix factorization .M;D;W / is given by

.M;D;W /� D .M �;D�;�W /;

D� D

�
0 D�

1

�D�
0

0

�
where

and D�i , i D 0; 1, is the dual map (transpose matrix) of Di .

Throughout the paper we shall use a particular type of matrix factorizations – namely
the tensor products of Koszul factorizations. For two elements a; b 2R, the Koszul
factorization fa; bg is defined as the matrix factorization

R
a
���!R

b
���!R:

Moreover if a D .a1; : : : ; am/ 2 Rm and b D .b1; : : : ; bm/ 2 Rm , then the tensor
product of the Koszul factorizations fai ; big, i D 1; : : : ;m, is denoted by

(10)

0BBB@
a1 b1

a2 b2
:::

:::

am bm

1CCCA WD
mO

iD1

fai ; big:

Sometimes we also write fa; bg D ˝m
iD1
fai ; big. If

Pm
iD1 aibi D 0 then fa; bg is a

2–periodic complex, and its homology is an R=ha1; : : : ; am; b1; : : : ; bmi–module.

5.3 Decoration of prefoams

As we said, to each facet we associate certain variables (depending on the type of
facet), a potential and the corresponding Jacobi algebra. If the variables associated to a
facet F are x1; : : : ;xi , then we define RF DQŒx1; : : : ;xi �.

Now we pass to the edges. To each edge, we associate a matrix factorization whose
potential is equal to the signed sum of the potentials of the facets that are glued along
this edge. We define it to be a certain tensor product of Koszul factorizations. In the
cases we are interested in, there are always three facets glued along an edge, with two
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possibilities: either two simple facets and one double facet, or one simple, one double
and one triple facet.

In the first case, we denote the variables of the two simple facets by x and y and
the potentials by xNC1 and yNC1 respectively. To the double facet we associate
the variables s and t and the potential W .s; t/. To the edge we associate the matrix
factorization which is the tensor product of Koszul factorizations given by

(11) MF1 D

�
xCy � s A0

xy � t B0

�
;

where A0 and B0 are given by

A0 D
W .xCy;xy/�W .s;xy/

xCy � s
;

B0 D
W .s;xy/�W .s; t/

xy � t
:

Note that .xCy � s/A0C .xy � t/B0 D xNC1CyNC1�W .s; t/.

In the second case, the variable of the simple facet is x and the potential is xNC1 ,
the variables of the double facet are s and t and the potential is W .s; t/, and the
variables of the triple face are p , q and r and the potential is W .p; q; r/. Define the
polynomials

AD
W .xC s;xsC t;xt/�W .p;xsC t;xt/

xC s�p
;(12)

B D
W .p;xsC t;xt/�W .p; q;xt/

xsC t � q
;(13)

C D
W .p; q;xt/�W .p; q; r/

xt � r
;(14)

so that

.xC s�p/AC .xsC t � q/BC .xt � r/C D xNC1
CW .s; t/�W .p; q; r/:

To such an edge we associate the matrix factorization given by the following tensor
product of Koszul factorizations:

(15) MF2 D

0@ xC s�p A

xsC t � q B

xt � r C

1A :
In both cases, to an edge with the opposite orientation we associate the dual matrix
factorization.

Geometry & Topology, Volume 13 (2009)



1090 Marco Mackaay, Marko Stošić and Pedro Vaz

Next we explain what we associate to a singular vertex. First of all, for each vertex v ,
we define its local graph v to be the intersection of a small sphere centered at v with
the prefoam. Then the vertices of v correspond to the edges of u that are incident
to v , to which we had associated matrix factorizations.

In this paper all local graphs are in fact tetrahedrons. However, recall that there are
two types of vertices (see the remarks below Definition 4.1). Label the six facets that
are incident to a vertex v by the numbers 1; 2; 3; 4; 5 and 6. Furthermore, denote
the edge along which are glued the facets i , j and k by .ij k/. Denote the matrix
factorization associated to the edge .ij k/ by Mijk , if the edge points toward v , and
by M �

ijk
, if the edge points away from v . Note that Mijk and M �

ijk
are both defined

over Ri ˝Rj ˝Rk .

Now we can take the tensor product of these four matrix factorizations, over the
polynomial rings of the facets of the prefoam, that correspond to the vertices of v .
This way we obtain the matrix factorization Mv , whose potential is equal to 0, and so
it is a 2–periodic chain complex and we can take its homology. To each vertex v we
associate an element Ov 2H�.Mv/.

More precisely, if v is of type I, then

H�.Mv/Š Ext
�
MF1.x;y; s1; t1/˝s1;t1

MF2.z; s1; t1;p; q; r/ ;

MF1.y; z; s2; t2/˝s2;t2
MF2.x; s2; t2;p; q; r/

�
:

(16)

If v is of type II, then

H�.Mv/Š Ext
�
MF1.y; z; s2; t2/˝s2;t2

MF2.x; s2; t2;p; q; r/ ;

MF1.x;y; s1; t1/˝s1;t1
MF2.z; s1; t1;p; q; r/

�
:

(17)

Both isomorphisms hold up to a global shift in q . Note that

MF1.x;y; s1; t1/˝s1;t1
MF2.z; s1; t1;p; q; r/

'MF1.y; z; s2; t2/˝s2;t2
MF2.x; s2; t2;p; q; r/;

because both tensor products are homotopy equivalent to0@ xCyC z�p �

xyCxzCyz� q �

xyz� r �

1A :
We have not specified the right-hand side of the latter Koszul factorizations, because by
[10, Theorem 2.1] we have fa; bg ' fa; b0g if

P
aibi D

P
aib
0
i and if the sequence
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faig is regular. If v is of type I, we take Ov to be the cohomology class of a fixed
degree 0 homotopy equivalence

wvW MF1.x;y; s1; t1/˝s1;t1
MF2.z; s1; t1;p; q; r/

!MF1.y; z; s2; t2/˝s2;t2
MF2.x; s2; t2;p; q; r/:

The choice of Ov is unique up to a scalar, because the q–dimension of the Ext–group
in (16) is equal to

q3N�6 qdim.H�.Mv//D q3N�6ŒN �ŒN � 1�ŒN � 2�D 1C q.: : :/;

where .: : :/ is a polynomial in q . Note that Mv is homotopy equivalent to the matrix
factorization which corresponds to the closure of ‡ in [11], which allows one to
compute the q–dimension above using the results in the latter paper. If v is of type II,
we take Ov to be the cohomology class of the homotopy inverse of wv . Note that a
particular choice of wv fixes Ov for both types of vertices and that the value of the
Kapustin–Li formula for a closed prefoam does not depend on that choice because
there are as many singular vertices of type I as there are of type II (see the remarks
below Definition 4.1). We do not know an explicit formula for Ov . Although such a
formula would be very interesting to have, we do not need it for the purposes of this
paper.

5.4 The Kapustin–Li derivative and the evaluation of closed prefoams

From the definition, every boundary component of each facet F is either a circle or
a cyclicly ordered finite sequence of edges, such that the beginning of the next edge
corresponds to the end of the previous edge. For every boundary component we choose
an edge e - the value of the Kapustin–Li formula does not depend on this choice.
Denote the differential of the matrix factorization associated to this edge by De .

The associated Kapustin–Li derivative of De in the variables x1; : : : ;xk associated to
the facet F , is an element from End.M /ŠM ˝M � , given by

(18) OF;e D @D
^
e D

1

k!

X
�2Sk

.sgn �/@�.1/De@�.2/De : : : @�.k/De;

where Sk is the set of all permutations of the set f1; : : : ; kg, and @iD is the partial
derivative of D with respect to the variable xi . Note that e can be the preferred edge
for more than one facet. In general, let Oe be the product of OF;e over all facets F

for which e is the preferred edge. The order of the factors in this product is irrelevant,
because they commute [9]. If e is not the preferred edge for any F , we take Oe to be
the identity.
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Finally, around each boundary component of @F , for each facet F , we contract all
tensor factors Oe and Ov . Note that one has to use supercontraction in order to get
the right signs.

For a better understanding of the Kapustin–Li formula, consider the special case of
a theta prefoam ‚. There are three facets F1 , F2 , F3 which are glued along a
common circle c , which is the preferred edge for all three. We associated a certain
matrix factorization M to c with differential D . Let @D^

1
, @D^

2
and @D^

3
be the

Kapustin–Li derivatives of D with respect to the variables of the facets F1 , F2 and
F3 , respectively. Then we have

(19) KL‚ D Trs.@D^1 @D
^
2 @D

^
3 /:

As a matter of fact we will see that we have to normalize the Kapustin–Li formula in
order to get “nice values”.

5.5 Dot conversion and dot migration

The pictures related to the computations in this subsection and the next three can be
found in Proposition 6.2.

Since KLu takes values in the tensor product of the Jacobian algebras of the potentials
associated to the facets of u, we see that for a simple facet we have xN D 0, for a
double facet �i;j D 0 if i �N �1, and for a triple facet �p;q;r D 0 if p �N �2. We
call these the dot conversion relations.

To each edge along which two simple facets with variables x and y and one double
facet with the variables s and t are glued, we associated the matrix factorization
MF1 with entries xCy � s and xy � t . Therefore Ext.MF1;MF1/ is a module over
R=hxCy � s;xy � ti. Hence, we obtain the dot migration relations along this edge.

Analogously, to the other type of singular edge along which are glued a simple facet
with variable x , a double facet with variable s and t , and a triple facet with variables
p , q and r , we associated the matrix factorization MF2 and Ext.MF2;MF2/ is a
module over R=hxC s�p;xsC t �q;xt � ri, and hence we obtain the dot migration
relations along this edge.

5.6 .1; 1; 2/–Theta

In this subsection we prove the first ‚–foam relation in Proposition 6.2, for the theta-
foam with two simple and one double facet. Recall that W .s; t/ is the polynomial such
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that W .xCy;xy/D xNC1CyNC1 . More precisely, we have

(20) W .s; t/D
X

iC2jDNC1

aij si tj ;

with aNC1;0 D 1, aNC1�2j ;j D ..�1/j=j /.N C 1/
�
N�j
j�1

�
, for 2� 2j �N C 1, and

aij D 0 otherwise. In particular aN�1;1 D�.N C 1/. Then we have

W 01.s; t/D
X

iC2jDNC1

iaij si�1tj ;(21)

W 02.s; t/D
X

iC2jDNC1

jaij si tj�1:(22)

By W 0
1
.s; t/ and W 0

2
.s; t/, we denote the partial derivatives of W .s; t/ with respect to

the first and the second variable, respectively.

To the singular circle of a standard theta prefoam with two simple facets, with variables
x and y respectively, and one double facet, with variables s and t , we assign the
matrix factorization MF1 :

(23) MF1 D

�
xCy � s A0

xy � t B0

�
:

Recall that

A0 D
W .xCy;xy/�W .s;xy/

xCy � s
;(24)

B0 D
W .s;xy/�W .s; t/

xy � t
:(25)

Hence, the differential of this matrix factorization is given by the 4-by-4 matrix

D D

�
0 D0

D1 0

�
;(26)

D0 D

�
xCy � s �B0

xy � t A0

�
; D1 D

�
A0 B0

t �xy xCy � s

�
:where

The Kapustin–Li formula assigns the polynomial, KL‚1
.x;y; s; t/, which is given by

the supertrace of the twisted differential of D

(27) KL‚1
D Trs

�
@xD@yD

1

2
.@sD@tD� @tD@sD/

�
:
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Straightforward computation gives

(28) KL‚1
D B0s.A

0
x �A0y/C .A

0
xCA0s/.B

0
y CxB0t /� .A

0
y CA0s/.B

0
xCyB0t /;

where by A0i and B0i we have denoted the partial derivatives with respect to the
variable i . From the definitions (24) and (25) we have

A0x �A0y D .y �x/
W 0

2
.xCy;xy/�W 0

2
.s;xy/

xCy � s
;

A0xCA0s D
W 0

1
.xCy;xy/�W 0

1
.s;xy/Cy.W 0

2
.xCy;xy/�W 0

2
.s;xy//

xCy � s
;

A0y CA0s D
W 0

1
.xCy;xy/�W 0

1
.s;xy/Cx.W 0

2
.xCy;xy/�W 0

2
.s;xy//

xCy � s
;

B0s D
W 0

1
.s;xy/�W 0

1
.s; t/

xy � t
;

B0xCyB0t D y
W 0

2
.s;xy/�W 0

2
.s; t/

xy � t
;

B0y CxB0t D x
W 0

2
.s;xy/�W 0

2
.s; t/

xy � t
:

After substituting this back into (28), we obtain

KL‚1
D .y �x/

ˇ̌̌̌
˛ ˇ

 ı

ˇ̌̌̌
;(29)

˛ D
W 0

1
.xCy;xy/�W 0

1
.s;xy/

xCy � s
;where

ˇ D
W 0

2
.xCy;xy/�W 0

2
.s;xy/

xCy � s
;

 D
W 0

1
.s;xy/�W 0

1
.s; t/

xy � t
;

ı D
W 0

2
.s;xy/�W 0

2
.s; t/

xy � t
:

From this formula we see that KL‚1
is homogeneous of degree 4N � 6 (remember

that deg x D deg y D deg s D 2 and deg t D 4).

Since the evaluation is in the product of the Grassmannians corresponding to the three
disks, ie in the ring

QŒx�=xN
�QŒy�=yN

�QŒs; t �=hW 01.s; t/;W
0

2.s; t/i;
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we have xN D yN D 0DW 0
1
.s; t/DW 0

2
.s; t/. Also, we can express the monomials

in s and t as linear combinations of the Schur polynomials �k;l (writing sD �1;0 and
t D �1;1/), and we have W 0

1
.s; t/D .N C 1/�N;0 and W 0

2
.s; t/D�.N C 1/�N�1;0 .

Hence, we can write KL‚1
as

KL‚1
D .y �x/

X
N�2�k�l�0

�k;lpkl.x;y/;

with pkl being a polynomial in x and y . We want to determine which combinations
of dots on the simple facets give rise to nonzero evaluations, so our aim is to compute
the coefficient of �N�2;N�2 in the sum on the right-hand side of the above equation
(ie in the determinant in (29)). For degree reasons, this coefficient is of degree zero, and
so we shall only compute the parts of ˛ , ˇ ,  and ı which do not contain x and y .
We shall denote these parts by putting a bar over the Greek letters. Thus we have

x̨ D .N C 1/sN�1;

x̌ D �.N C 1/sN�2;

x D
X

iC2jDNC1; j�1

iaij si�1tj�1;

xı D
X

iC2jDNC1; j�2

jaij si tj�2:

Note that we have

t x C .N C 1/sN
DW 01.s; t/;

txı� .N C 1/sN�1
DW 02.s; t/;and

and so in the cohomology ring of the Grassmannian G2;N , we have t x D�.N C1/sN

and txıD .N C1/sN�1 . On the other hand, by using sD�1;0 and t D�1;1 , we obtain
that in

H�.G2;N /ŠQŒs; t �=h�N�1;0; �N;0i;

the following holds

sN�2
D �N�2;0C tq.s; t/;

for some polynomial q , and so

sN�1
D sN�2s D �N�1;0C�N�2;1C stq.s; t/D t.�N�3;0C sq.s; t//:
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Thus, we have

(30)
ˇ̌̌̌
x̨ x̌

x xı

ˇ̌̌̌
D .NC1/.�N�3;0Csq.s; t//txıC.NC1/�N�2;0xC.NC1/q.s; t/t x

D .N C 1/2.�N�3;0C sq.s; t//sN�1
C .N C 1/�N�2;0x

�.N C 1/2q.s; t/sN

D .N C 1/2�N�3;0sN�1
C .N C 1/�N�2;0x :

Since x D .N � 1/aN�1;1sN�2
C t r.s; t/

holds in the cohomology ring of the Grassmannian, for some polynomial r.s; t/, we
have

�N�2;0x D �N�2;0.N � 1/aN�1;1sN�2
D��N�2;0.N � 1/.N C 1/sN�2:

Also, we have that for every k � 2,

sk
D �k;0C .k � 1/�k�1;1C t2w.s; t/;

for some polynomial w . Replacing this in (30) and bearing in mind that �i;j D 0, for
i �N � 1, we get

(31)
ˇ̌̌̌
x̨ x̌

x xı

ˇ̌̌̌
D .N C 1/2sN�2.�N�2;0C�N�3;1� .N � 1/�N�2;0/

D .N C 1/2.�N�2;0C .N � 3/�N�3;1C�2;2w.s; t//

�.�N�3;1� .N � 2/�N�2;0/

D�.N C 1/2�N�2;N�2:

Hence, we have

KL‚1
D .N C 1/2.x�y/�N�2;N�2C

X
N�2�k�l�0

N�2>l

ci;j ;k;l�k;lx
iyj :

Recall that in the product of the Grassmannians corresponding to the three disks, ie in
the ring QŒx�=xN �QŒy�=yN �QŒs; t �=h�N�1;0; �N;0i, we have

�.xN�1yN�1�N�2;N�2/D�1:

Therefore the only monomials f in x and y such that hKL‚1
f iKL ¤ 0 are f1 D

xN�2yN�1 and f2DxN�1yN�2 , and hKL‚1
f1iKLD�.NC1/2 and hKL‚1

f2iD

.N C 1/2 . Thus, we have that the value of the theta prefoam with unlabelled 2–facet
is nonzero only when the first 1–facet has N � 2 dots and the second one has N � 1

dots (and has the value �.N C1/2 ) and when the first 1–facet has N �1 dots and the
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second one has N � 2 dots (and has the value .N C 1/2 ). The evaluation of this theta
foam with other labellings can be obtained from the result above by dot migration.

5.7 .1; 2 ; 3/–Theta

In this subsection we prove the second ‚–foam relation in Proposition 6.2, for the
theta-foam with one simple, one double and one marked facet. For this theta the method
is the same as in the previous case, just the computations are more complicated. In this
case, we have one 1–facet, to which we associate the variable x , one 2–facet, with
variables s and t and the 3–facet with variables p , q and r . Recall that the polynomial
W .p; q; r/ is such that W .aC bC c; abC bcC ac; abc/D aNC1C bNC1C cNC1 .
We denote by W 0i .p; q; r/, i D 1; 2; 3, the partial derivative of W with respect to i –th
variable. Also, let A, B and C be the polynomials such that

AD
W .xC s;xsC t;xt/�W .p;xsC t;xt/

xC s�p
;(32)

B D
W .p;xsC t;xt/�W .p; q;xt/

xsC t � q
;(33)

C D
W .p; q;xt/�W .p; q; r/

xt � r
:(34)

To the singular circle of this theta prefoam, we associated the matrix factorization (see
(12)–(15)):

MF2 D

0@ xC s�p A

xsC t � q B

xt � r C

1A :
The differential of this matrix factorization is the 8 by 8 matrix

D D

�
0 D0

D1 0

�
;

D0 D

�
d0 �C I2

.xt � r/I2 d1

�
;where

D1 D

�
d1 C I2

.r �xt/I2 d0

�
:

Here d0 and d1 are the differentials of the matrix factorization�
xC s�p A

xsC t � q B

�
;

d0 D

�
xC s�p �B

xsC t � q A

�
; d1 D

�
A B

q�xs� t xC s�p

�
:that is,
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The Kapustin–Li formula assigns to this prefoam the polynomial KL‚2
.x; s; t;p; q; r/

given as the supertrace of the twisted differential of D , ie

KL‚2
D Trs

�
@xD

1

2
.@sD@tD� @tD@sD/@3D^

�
;

where @3D^ D
1

3!

�
@pD@qD@r D� @pD@r D@qDC @qD@r D@pD

�@qD@pD@r DC @r D@pD@qD� @r D@qD@pD
�
:

After straightforward computations and some grouping, we obtain

KL‚2
D� .ApCAs/

�
.Bt CBq/.CxC tCr /� .BxC sBq/.Ct CxCr /

� .Bx � sBt /Cq

�
� .ApCAx/

�
.BsCxBq/.Ct CxCr /C .Bs �xBt /Cq

�
� .Ax �As/

�
Bp.Ct CxCr /� .Bt CBq/CpCBpCq

�
C At

�
..BsCxBq/CBp/.CxC tCr /C ..BsCxBq/

C .BxC sBq//CpC ..sBs �xBx/C .s�x/Bp/Cq

�
:

In order to simplify this expression, we introduce the following polynomials:

a1i D
W 0i .xC s;xsC t;xt/�W 0i .p;xsC t;xt/

xC s�p
; i D 1; 2; 3;

a2i D
W 0i .p;xsC t;xt/�W 0i .p; q;xt/

xsC t � q
; i D 1; 2; 3;

a3i D
W 0i .p; q;xt/�W 0i .p; q; r/

xt � r
; i D 1; 2; 3:

Then from (32)–(34), we have

AxCAp D a11C sa12C ta13; ApCAs D a11Cxa12;

Ax �As D .s�x/a12C ta13; At D a12Cxa13;

Bp D a21; Bs �xBt D�x2a23;

sBs �xBx D xta23; Bx � sBt D .t � sx/a23;

Bt CBq D a22Cxa23; BxC sBq D sa22C ta23;BsCxBq D xa22;

Cp D a31; Cq D a32; CxC tCr D ta33; Ct CxCr D xa33:
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Using this KL‚2
becomes

KL‚2
D�.t � sxCx2/

ˇ̌̌̌
ˇ̌ a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ̌̌̌
ˇ̌ :

Now the last part follows analogously as in the case of the .1; 1; 2/–theta prefoam.
For degree reasons the coefficient of �N�3;N�3;N�3 in the latter determinant is of
degree zero, and one can obtain that it is equal to .N C 1/3 . Thus, the coefficient of
�N�3;N�3;N�3 in KL‚2

is �.N C1/3.t � sxCx2/ from which we obtain the value
of the theta prefoam when the 3–facet is undotted. For example, we see that

�.KL‚2
�1;1.s; t/

N�3xN�1/D�.N C 1/3:

It is then easy to obtain the values when the 3–facet is labelled by

�N�3;N�3;N�3.p; q; r/

using dot migration. The example above implies that

�.KL‚2
�N�3;N�3;N�3.p; q; r/x

2/D�.N C 1/3:

5.8 Spheres

The values of dotted spheres are easy to compute. Note that for any sphere with dots
f the Kapustin–Li formula gives

�.f /:

Therefore for a simple sphere we get 1 if f D xN�1 , for a double sphere we get �1

if f D �N�2;N�2 and for a triple sphere we get �1 if f D �N�3;N�3;N�3 .

5.9 Normalization

It will be convenient to normalize the Kapustin–Li evaluation. Let u be a closed
prefoam with graph � . Note that � has two types of edges: the ones incident to two
simple facets and one double facet and the ones incident to one simple, one double
and one triple facet. Edges of the same type form cycles in � . Let e112.u/ be the
total number of cycles in � with edges of the first type and e123.u/ the total number
of cycles with edges of the second type. We normalize the Kapustin–Li formula by
dividing KLu by

.N C 1/2e112C3e123 :

In the sequel we only use this normalized Kapustin–Li evaluation keeping the same
notation huiKL . Note that the numbers e112.u/ and e123.u/ are invariant under the
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relation (MP). Note also that with this normalization the KL–evaluation in the examples
above always gives 0, �1 or 1.

5.10 The gluing property

If u is an open prefoam whose boundary consists of two parts �1 and �2 , then the
Kapustin–Li formula associates to u an element from Ext.M1;M2/, where M1 and
M2 are matrix factorizations associated to �1 and �2 respectively. If u0 is another
prefoam whose boundary consists of �2 and �3 , then it corresponds to an element from
Ext.M2;M3/, while the element associated to the prefoam uu0 , which is obtained by
gluing the prefoams u and u0 along �2 , is equal to the composite of the elements
associated to u and u0 .

On the other hand, we can see u as a morphism from the empty set to its boundary
� D �2[�1 , where �1 is equal to �1 but with the opposite orientation. In that case,
the Kapustin–Li formula associates to it an element from

Ext.∅;M�2
˝M �

�1
/ŠH�.�/:

Of course both ways of applying the Kapustin–Li formula are equivalent up to a global
q–shift by [11, Corollary 6].

In the case of a prefoam u with corners, ie a prefoam with two horizontal boundary
components �1 and �2 which are connected by vertical edges, one has to “pinch” the
vertical edges. This way one can consider u to be a morphism from the empty set
to �2 [v �1 , where [v means that the webs are glued at their vertices. The same
observations as above hold, except that M�2

˝M �
�1

is now the tensor product over
the polynomial ring in the variables associated to the horizontal edges with corners.

6 The category FoamN

Recall that huiKL denotes the Kapustin–Li evaluation of a closed prefoam u.

Definition 6.1 The category FoamN is the quotient of the category Prefoam by the
kernel of h iKL , ie by the following identifications: for any webs � , � 0 and finite sets
fi 2 HomPrefoam .�; �

0/ and ci 2Q we impose the relationsX
i

cifi D 0 ”

X
i

cihg
0figiKL D 0;

for all g2HomPrefoam .∅; �/ and g02HomPrefoam .�
0;∅/. The morphisms of FoamN

are called foams.
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In the next two propositions we prove the “principal” relations in FoamN . All other
relations that we need are consequences of these and will be proved in subsequent
lemmas and corollaries.

Proposition 6.2 The following identities hold in FoamN :

The dot conversion relations:

i D 0 if i �N:

(k,m) D 0 if k �N � 1:

*
(p,q,r) D 0 if p �N � 2:

The dot migration relations:

D C

D

* D * C *

* D * C *

* D *

The cutting neck relations:

D

N�1X
iD0

N−1−i

i

(CN1)

D�

X
0�j�i�N�2

(i,j)

(i,j)

(CN2)
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* D�

X
0�k�j�i�N�3

*

*
(i,j,k)

(i,j,k)

(CN�)

The sphere relations:

i
D

(
1; i DN � 1

0; else.
(S1)

(i,j)
D

(
�1; i D j DN � 2

0; else.
(S2)

*

(i,j,k)
D

(
�1; i D j D k DN � 3

0; else:
(S�)

The ‚–foam relations:

N−1

N−2
D�1D�

N−2

N−1
(C)

*
(N−3,N−3,N−3)

D�1D�

(N−3,N−3,N−3)
*

(C�)

Inverting the orientation of the singular circle of (C� ) inverts the sign of the corre-
sponding foam. A theta-foam with dots on the double facet can be transformed into a
theta-foam with dots only on the other two facets, using the dot migration relations.

The Matveev–Piergalini relation:

(MP)
*

D

*

;
*
D

*

Proof The dot conversion and migration relations, the sphere relations, the theta foam
relations have already been proved in Section 5.

The cutting neck relations are special cases of Formula (5.68) in [9], where Oj and
O�j can be read off from our equations (6).

The Matveev–Piergalini (MP) relation is an immediate consequence of the choice of
input for the singular vertices. Note that in this relation there are always two singular
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vertices of different type. The elements in the Ext–groups associated to those two
types of singular vertices are inverses of each other, which implies exactly the (MP)
relation by the gluing properties explained in Section 5.10.

The following identities are a consequence of the dot and the theta relations.

Lemma 6.3

*(p,q,r)
(j,k)

i
D

8̂̂̂̂
<̂
ˆ̂̂:
�1 if .p; q; r/D .N � 3� i;N � 2� k;N � 2� j /

�1 if .p; q; r/D .N � 3� k;N � 3� j ;N � 1� i/

1 if .p; q; r/D .N � 3� k;N � 2� i;N � 2� j /

0 else.

Note that the first three cases only make sense if

N � 2�j � k � i C 1� 1;

N � 1�i � j C 2� kC 2� 2;

N � 2�j � i � kC 1� 1;

respectively.

Proof We denote the value of a theta foam by ‚.�p;q;r ; �j ;k ; i/. Since the q–degree
of a nondecorated theta foam is equal to �.N �1/�2.N �2/�3.N �3/D�.6N �14/,
we can have nonzero values of ‚.�p;q;r ; �j ;k ; i/ only if pCqCrCjCkCiD3N �7.
Thus, if the 3–facet is not decorated, ie pD qD r D 0, we have only four possibilities
for the triple .j ; k; i/ – namely .N � 2;N � 2;N � 3/, .N � 2;N � 3;N � 2/,
.N � 2;N � 4;N � 1/ and .N � 3;N � 3;N � 1/. By Proposition 6.2 we have

‚.�0;0;0; �N�2;N�2;N � 3/D�1:

However by dot migration, Lemma 3.1 and the fact that �p;q;r D 0 if p �N � 2, we
have

0D‚.�N�2;N�2;N�3; �0;0; 0/

D‚.�0;0;0; �N�2;N�2;N � 3/C‚.�0;0;0; �N�2;N�3;N � 2/;

0D‚.�N�1;N�3;N�3; �0;0; 0/

D‚.�0;0;0; �N�2;N�3;N � 2/C‚.�0;0;0; �N�3;N�3;N � 1/;

0D‚.�N�1;N�2;N�4; �0;0; 0/

D‚.�0;0;0; �N�2;N�2;N � 3/C‚.�0;0;0; �N�2;N�3;N � 2/

C‚.�0;0;0; �N�2;N�4;N � 1/:
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Thus, the only nonzero values of the theta foams, when the 3–facet is nondecorated are

‚.�0;0;0; �N�2;N�2;N � 3/D‚.�0;0;0; �N�3;N�3;N � 1/D�1;

‚.�0;0;0; �N�2;N�3;N � 2/DC1:

Now we calculate the values of the general theta foam. Suppose first that i � k . Then
we have

(35) ‚.�p;q;r ; �j ;k ; i/D‚.�p;q;r ; �i;i�j�i;k�i ; i/D‚.�pCi;qCi;rCi ; �j�i;k�i ; 0/;

by dot migration. In order to calculate ‚.�x;y;z; �w;u; 0/ for N � 3� x � y � z � 0

and N � 2� w � u� 0, we use Lemma 3.1. By dot migration we have

(36) ‚.�x;y;z; �w;u; 0/D
X

.a;b;c/@.x;y;z/

‚.�0;0;0; �w;u�a;b; c/:

Since c � p �N � 3, a summand on the right-hand side of (36) can be nonzero only
for c DN � 3 and a and b such that �N�2;N�2 2 �w;u�a;b , ie aDN � 2�u and
b DN � 2�w . Hence the value of (36) is equal to �1 if

(37) .N � 2�u;N � 2�w;N � 3/@ .x;y; z/;

and 0 otherwise. Finally, (37) is equivalent to xC y C zCwC u D 3N � 7, x �

N � 2�u� y , y �N � 2�w � z and x �N � 3� z , so we must have u> 0 and

x DN � 3;

y DN � 2�u;

z DN � 2�w:

Going back to (36), we have that the value of theta is equal to 0 if l D i , and in the
case l > i it is nonzero (and equal to �1) if and only if

p DN � 3� i;

q DN � 2� k;

r DN � 2� j ;

which gives the first family.

Suppose now that k < i . As in (35) we have

(38) ‚.�p;q;r ; �j ;k ; i/D‚.�pCk;qCk;rCk ; �j�k;0; i � k/:
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Hence, we now concentrate on ‚.�x;y;z; �w;0;u/ for N � 3 � x � y � z � 0,
N � 2� w � 0 and N � 1� u� 1. Again, by using Lemma 3.1 we have

(39) ‚.�x;y;z; �w;0; 0/D
X

.a;b;c/@.x;y;z/

‚.�0;0;0; �w;0�a;b;uC c/:

Since a�N�3, we cannot have �N�2;N�22�w;0�a;b and we can have �N�2;N�32

�w;0�a;b if and only if aDN �3 and bDN �2�w . In this case we have a nonzero
summand (equal to 1) if and only if c DN � 2�u. Finally �N�3;N�3 2 �w;0�a;b if
and only if aDN � 3 and b DN � 3�w . In this case we have a nonzero summand
(equal to �1) if and only if cDN �1�u. Thus we have a summand on the right-hand
side of (39) equal to C1 if and only if

(40) .N � 3;N � 2�w;N � 2�u/@ .x;y; z/;

and a summand equal to �1 if and only if

(41) .N � 3;N � 3�w;N � 1�u/@ .x;y; z/:

Note that in both above cases we must have xCyC zCwCuD 3N �7, x DN �3

and u� 1. Finally, the value of the r.h.s of (39) will be nonzero if and only if exactly
one of (40) and (41) holds.

In order to find the value of the sum on right-hand side of (39), we split the rest of the
proof in three cases according to the relation between w and u.

If w � u, (40) is equivalent to y �N �2�w , z �N �2�w , while (41) is equivalent
to y �N �3�w , z �N �3�w and u� 2. Now, we can see that the sum is nonzero
and equal to 1 if and only if z DN � 2�w and so y DN � 2�u. Returning to (38),
we have that the value of ‚.�p;q;r ; �j ;k ; i/ is equal to 1 for

p DN � 3� k;

q DN � 2� i;

r DN � 2� j ;

for N � 2� j � i � kC 1� 1, which is our third family.

If w � u� 2, (40) is equivalent to y � N � 2�w , z � N � 2� u and u � N � 2

while (41) is equivalent to y � N � 3�w , z � N � 1� u. Hence, in this case we
have that the total sum is nonzero and equal to �1 if and only if y DN � 3�w and
z DN � 1�u, which by returning to (38) gives that the value of ‚.�p;q;r ; �j ;k ; i/ is
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equal to �1 for

p DN � 3� k;

q DN � 3� j ;

r DN � 1� i;

for N � 3� i � 2� j � k � 0, which is our second family.

Finally, if uD wC 1 (40) becomes equivalent to y �N � 2�w and z �N � 3�w ,
while (41) becomes y � N � 3�w and z � N � 3�w . Thus, in order to have a
nonzero sum, we must have y D N � 3�w . But in that case, because of the fixed
total sum of indices, we would have z DN �1�uDN �2�w >N �3�w , which
contradicts (41). Hence, in this case, the total value of the theta foam is 0.

As a direct consequence of the previous theorem, we have:

Corollary 6.4 For fixed values of j , k and i , if j ¤ i � 1 and k ¤ i , there is
exactly one triple .p; q; r/ such that the value of ‚.�p;q;r ; �j ;k ; i/ is nonzero. Also, if
j D i�1 or kD i , the value of ‚.�p;q;r ; �j ;k ; i/ is equal to 0 for every triple .p; q; r/.
Hence, for fixed i , there are

�
n�1

2

�
5–tuples .p; q; r; j ; k/ such that ‚.�p;q;r ; �j ;k ; i/

is nonzero.

Conversely, for fixed p , q and r , there always exist three different triples .j ; k; i/ (one
from each family), such that ‚.�p;q;r ; �j ;k ; i/ is nonzero.

Finally, for all p , q , r , j , k and i , we have

‚.�p;q;r ; �j ;k ; i/D‚.y�p;q;r ; y�j ;k ;N � 1� i/:

The following relations are an immediate consequence of Lemma 6.3, Corollary 6.4,
(CN1 ), (CN2 ) and (CN� ).

Corollary 6.5

*
(p,q,r)

i

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

� (q,r) if p DN � 3� i

� (p+1,q+1) if r DN � 1� i

(p+1,r) if q DN � 2� i

0 else.

(42)

Geometry & Topology, Volume 13 (2009)



sl.N /–link homology (N � 4) using foams and the Kapustin–Li formula 1107

*
i

(k,m)

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
*

(k−1,m−1,i) if N � 2� k �m� i C 1� 1

�
*
(i−2,k,m) if N � 1� i � kC 2�mC 2� 2

*
(k−1,i−1,m) if N � 2� k � i �mC 1� 1

0 else.

(43)

*
*

(p,q,r)

(k,m)

D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

� p+2 if q DN � 2�m; r DN � 2� k

� r if p DN � 3�m; q DN � 3� k

q+1 if p DN � 3�m; r DN � 2� k

0 else.

(44)

Lemma 6.6

m

(i,j)

k

D

(
�1 if mC j DN � 1D i C kC 1

C1 if j C k DN � 1D i CmC 1:

Proof By the dot conversion formulas, we get:

m

(i,j)

k

D

i�jX
˛D0 α

m+i−α

k+j+

By (C) we have

α

m+i−α

k+j+
D

8̂<̂
:
�1 if mC i � .N � 1/D ˛ DN � 2� .kC j /

C1 if mC i � .N � 2/D ˛ DN � 1� .kC j /

0 else:

We see that, in the sum above, the summands for two consecutive values of ˛ will
cancel unless one of them is zero and the other is not. We see that the total sum is
equal to �1 if the first nonzero summand is at ˛ D i � j and C1 if the last nonzero
summand is at ˛ D 0.

The following bubble identities are an immediate consequence of Lemma 6.6 and
(CN1 ) and (CN2 ).
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Corollary 6.7

j

i

D

8̂̂̂̂
<̂
ˆ̂̂:
� (i−1,j) if i > j � 0

(j−1,i) if j > i � 0

0 if i D j:

(45)

i

(k,j)

D

8̂̂̂<̂
ˆ̂:
� k+1 if i C j DN � 1

j if i C k DN � 2

0 else.

(46)

The following identities follow easily from (CN1 ), (CN2 ), Lemma 6.3, Lemma 6.6
and their corollaries.

Corollary 6.8

C

X
aCbCcDN�2

a b

c

D(3C)

D �(RD1)

* D � C(RD2)

D�(FC)

Note that by the results above we are able to compute huiKL combinatorially, for any
closed foam u whose singular graphs has no vertices, simply by using the cutting
neck relations near all singular circles and evaluating the resulting spheres and theta
foams. If the singular graph of u has vertices, then we do not know if our relations are
sufficient to evaluate u. We conjecture that they are sufficient, and that therefore our
theory is strictly combinatorial, but we do not have a complete proof.
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Proposition 6.9 The following identities hold in FoamN :

The digon removal relations:

D �(DR1)

D

X
aCbCcDN�2

a

b

c

D

N�2X
iD0

(i,0)

N−2−i

(DR2)

**
D �

*
C

*
�

*(DR31
)

*

D�

X
0�j�i�N�3

*

*

(i,j,0)

(N−3−j,N−3−i,0)

(DR32
)

*

D�

N�3X
iD0

*

(N−3−i,0,0)

*
i

(DR33
)

The first square removal relation:

(SqR1) D� C

X
aCbCcCdDN�3

c b

a

d

Proof We first explain the idea of the proof. Naively one could try to consider all
closures of the foams in a relation and compare their KL–evaluations. However, in
practice we are not able to compute the KL–evaluations of arbitrary closed foams
with singular vertices. Therefore we use a different strategy. We consider any foam in
the proposition as a foam from ∅ to its boundary, rather than as a foam between one
part of its boundary to another part. If u is such a foam whose boundary is a closed
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web � , then by the properties explained in Section 5 the KL–formula associates to u

an element in H�.�/, which is the homology of the complex associated to � in [11].
By Definition 6.1 and by the gluing properties of the KL–formula, as explained in
Section 5, the induced linear map from h jKLW FoamN .∅; �/!H�.�/ is injective.
The KL–formula also defines an inner product on FoamN .∅; �/ by

.u; v/ 7! huyviKL:

By yv we mean the foam in FoamN .�;∅/ obtained by rotating v along the axis which
corresponds to the y–axis (ie the horizontal axis parallel to the computer screen) in
the original picture in this proposition. By the results in [11] we know the dimension
of H�.�/. Suppose it is equal to m and that we can find two sets of elements ui and
u�i in FoamN .∅; �/, i D 1; 2; : : : ;m, such that

hui
cu�j iKL D ıi;j ;

where ıi;j is the Kronecker delta. Then fuig and fu�i g are mutually dual bases
of FoamN .∅; �/ and h jKL is an isomorphism. Therefore, two elements f;g 2
FoamN .∅; �/ are equal if and only if

hf bui iKL D hgbui iKL;

for all i D 1; 2; : : : ;m (alternatively one can use the u�i of course). In practice this
only helps if the left-hand side and the right-hand side of these m equations can be
computed, eg if f;g and the ui are all foams with singular graphs without vertices.
Fortunately that is the case for all the relations in this proposition.

Let us now prove (DR1 ) in detail. Note that the boundary of any of the foams in (DR1 ),
denoted � , is homeomorphic to the web:

Recall that the dimension of H�.�/ is equal to 2N.N �1/ [11]. For 0� i; j � 1 and
0�m� k �N � 2, let ui;j I.k;m/ denote the following foam:

i

j
(k,m)

Let u�i;j I.k;m/ D u1�j ;1�iI.N�2�m;N�2�k/:
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From Equation (45) and the sphere relation (S2 ) it easily follows that

hui;j I.k;m/
2u�
r;sI.t;v/

iKL D ıi;rıj ;sık;tım;v;

where ı denotes the Kronecker delta. Note that there are exactly 2N.N �1/ quadruples
.i; j I .k; l// which satisfy the conditions. Therefore the ui;j I.k;m/ define a basis of
H�.�/ and the u�

i;j I.k;m/
define its dual basis. In order to prove (DR1 ) all we need to

do next is check that

h.left-hand side of (DR1 )/3ui;j I.k;m/ iKL D h.right-hand side of (DR1 )/3ui;j I.k;m/ iKL;

for all i , j and .k;m/. This again follows easily from equation (45) and the sphere
relation (S2 ).

The other digon removal relations are proved in the same way. We do not repeat the
whole argument again for each digon removal relation, but will only give the relevant
mutually dual bases. For (DR2 ), note that � is equal to:

Let ui;k;m denote the foam

k

(i,0)

(m,0)

for 0� i;m�N � 2 and 0� k �N � 1. The dual basis is defined by

u�i;k;m D�uN�2�m;N�1�k;N�2�i ;

for the same range of indices. Note that there are N.N � 1/2 possible indices, which
corresponds exactly to the dimension of H�.�/.

For (DR31
), the web � is equal to:

* *

let uiI.k;m/I.p;q;r/ denote the foam

*

i

(k,m)

(p,q,r)
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for 0� i � 2, 0�m� k � 1 and 0� r � q � p �N � 3. The dual basis is given by

u�iI.k;m/I.p;q;r/ D u2�.kCm/I.1�bi=2c;1�di=2e/I.N�3�r;N�3�q;N�3�p/;

for 0 � t � s � 1, 0 �m � k � 1 and 0 � r � q � p � N � 3. Note that there are
32
�
N
3

�
possible indices, which corresponds exactly to the dimension of H�.�/.

For (DR32
), take � to be:

*

*

Let uiI.k;m/I.s;t/ denote the foam

i

*
*

(k,m,0)

(s,t,0)

for 0 � i � N � 1, 0 � m � k � N � 3 and 0 � t � s � N � 3. The dual basis is
given by

u�iI.k;m/I.s;t/ D uN�1�iI.N�3�t;N�3�s/I.N�3�m;N�3�k/;

for the same range of indices. Note that there are N
�
N�1

2

�2
indices, which corresponds

exactly to the dimension of H�.�/.

For (DR33
), take � to be:

*

*

Let ui;j I.k;m/ denote the foam

*
i

*
(j,0,0)

(k,m
)

for 0� i; j �N � 3 and 0�m� k �N � 2. Define

u�i;j I.k;m/ D uN�3�j ;N�3�iI.N�2�m;N�2�k/;

for the same range of indices. Note that there are .N � 2/2
�
N
2

�
indices, which corre-

sponds exactly to the dimension of H�.�/.

Geometry & Topology, Volume 13 (2009)



sl.N /–link homology (N � 4) using foams and the Kapustin–Li formula 1113

For (SqR1 ), the relevant web � is equal to:

By the results in [11], the dimension of H�.�/ equals N 2C2N.N �2/CN 2.N �2/2 .
The proof of this relation is very similar, except that it is slightly harder to find the
mutually dual bases in H�.�/. The problem is that the two terms on the right-hand
side of (SqR1 ) are topologically distinct. Therefore we get four different types of basis
elements, which are gluings of the upper or lower half of the first term and the upper
or lower half of the second term. For 0� i; j �N � 1, let ui;j denote the foam

with the top simple facet labelled by i and the bottom one by j . Take

u�i;j D uN�1�j ;N�1�i :

hui;j
bu�
k;m
iKL D ıi;kıj ;mNote that

by the (FC) relation in Corollary 6.8 and the sphere relation (S1 ).

For 0� i �N � 1 and 0� k �N � 3, let v0
i;k

denote the foam

with the simple square on the right-hand side labelled by i and the other simple facet
by k . Note that the latter is indeed only one facet, because it has a saddle-point in the
middle where the dotted lines meet. For the same range of indices, we define w0

i;k
by
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with the simple square on the left-hand side labelled by i and the other simple facet
by k . The basis elements are now defined by

vi;k D

X
aCbCcDN�3�k

v0c;aCbCi ;

wi;j D

X
aCbCcDN�3�j

w0c;aCbCi :

The respective duals are defined by

v�i;k D w
0
k;N�1�i and w�i;k D v

0
k;N�1�i :

We show that
hvi;j

bv�
k;m
iKL D ıi;kıj ;m D hvi;j

bv�
k;m
iKL

holds. First apply the (FC) relation of Corollary 6.8. Then apply (RD1 ) of the same
corollary twice and finally use the sphere relation (S1 ).

For 0� i; j �N � 1 and 0� k;m�N � 3, let s0
i;j ;k;m

denote the foam

with the simple squares labelled by k and m, from left to right respectively, and the
other two simple facets by i and j , from front to back respectively. The basis elements
are defined by

si;j ;k;m D

X
. aCbCcDN�3�k

dCeCfDN�3�m/

s0c;f;iCaCd;jCbCe:

For the same range of indices, the dual elements of this shape are given by

s�i;j ;k;m D s0m;k;N�1�i;N�1�j :

From (RD1 ) of Corollary 6.8, applied twice, and the sphere relation (S1 ), the following
holds:

hsa;b;c;d
2s�
i;j ;k;m

iKL D ıa;iıb;jıc;kıd;m:

It is also easy to see that the inner product h iKL of a basis element and a dual basis
element of distinct shapes, ie indicated by different letters above, gives zero. For
example, consider

hui;j
bv�
k;m
iKL
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for any valid choice of i; j ; k;m. At the place where the two different shapes are
glued,

ui;j
bv�
k;m

contains a simple saddle with a simple-double bubble. By Equation (46) that bubble
kills

hui;j
bv�
k;m
iKL;

because m � N � 3. The same argument holds for the other cases. This shows that
fu; v; w; sg and fu�; v�; w�; s�g form dual bases of H�.�/, because the number of
possible indices equals N 2C 2N.N � 2/CN 2.N � 2/2 .

In order to prove (SqR1 ) one now has to compute the inner product of the left-hand
side and the right-hand side with any basis element of H�.�/ and show that they are
equal. We leave this to the reader, since the arguments one has to use are the same as
we used above.

Corollary 6.10 (The second square removal relation)

(SqR2) D� �
**

Proof Apply the relation (SqR1 ) to the simple-double square tube perpendicular to
the triple facet of the second term on the right-hand side of (SqR2 ). The first term
on the right-hand side of (SqR1 ) yields minus the first term on the right-hand side of
(SqR2 ) after applying the relations (DR32

), (MP) and the bubble relation (42). The
second term on the right-hand side of (SqR1 ), ie the whole sum, yields the left-hand
side of (SqR2 ) after applying the relations (DR33

), (MP) and the bubble relation (42).
Note that the signs come out right because in both cases we get two bubbles with
opposite orientations.

7 Invariance under the Reidemeister moves

Let Kom.FoamN / and Kom=h.FoamN / denote the category of complexes in FoamN

and the same category modulo homotopies respectively. As in [1] and [12] we can take
all different flattenings of D to obtain an object in Kom.FoamN / which we call hDi.
The construction is well known by now and is indicated in Figure 7.

Theorem 7.1 The bracket h i is invariant in Kom=h.FoamN / under the Reidemeister
moves.
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h"i D 0 �! hQif1�N g ���! h[if�N g �! 0

h!i D 0 �! h[ifN g ���! hQifN � 1g �! 0

Figure 7: Complex associated to a crossing. Underlined terms correspond to
homological degree zero and fag is a positive shift by a in the q–degree.

Proof Reidemeister I Consider diagrams D and D0 that differ in a circular region,
as in the figure below.

D D D0 D

We give the homotopy between complexes hDi and hD0i in Figure 8 2. By the sphere

hDi W

hD0i W

g0 D

��

d D

//

hD
P

aCbCcDN�2

a

b

c

oo

0 //

f 0 D
N�1P
iD0

i

N−1−i

OO

0
��

0

OO

Figure 8: Invariance under Reidemeister I

relation (S1 ), we get g0f 0 D IdhD0i0 . To see that df 0 D 0 holds, one can use dot
mutation to get a new labelling of the same foam with the double facet labelled by
�N�1;0 , which kills the foam by the dot conversion relations. The equality dhD IdhDi1
follows from (DR2 ). To show that f 0g0Chd D IdhDi0 , apply (RD1 ) to hd and then
cancel all terms which appear twice with opposite signs. What is left is the sum of

2We thank Christian Blanchet for spotting a mistake in a previous version of this diagram.

Geometry & Topology, Volume 13 (2009)



sl.N /–link homology (N � 4) using foams and the Kapustin–Li formula 1117

N terms which is equal to IdhDi0 by (CN1 ). Therefore hD0i is homotopy-equivalent
to hDi.

For the Reidemeister I move with a positive crossing one can easily write down a
similar homotopy equivalence.

Reidemeister IIa Consider diagrams D and D0 that differ in a circular region, as in
the figure below.

D D D0 D

We only sketch the arguments that the diagram in Figure 9 defines a homotopy equiva-
lence between the complexes hDi and hD0i:

−
0

0 0

I

fg
0

hDiW

hD0iW

Figure 9: Invariance under Reidemeister IIa

� g and f are morphisms of complexes (use only isotopies);

� g1f 1 D IdhD0i1 (uses Equation (45));

� f 0g0C hd D IdhDi0 and f 2g2C dhD IdhDi2 (use isotopies);

� f 1g1C dhC hd D IdhDi1 (use (DR1 )).
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Reidemeister IIb Consider diagrams D and D0 that differ only in a circular region,
as in the figure below.

D D D0 D

Again, we sketch the arguments that the diagram in Figure 10 defines a homotopy
equivalence between the complexes hDi and hD0i:

0 0

a

b

ca c
b

d
c

a
b

0

fg
0

a+b+c = N−2Σ− Σ
a+b+c = N−2

−

a+b+c+d=N−3

Σ
hDiW

hD0iW

Figure 10: Invariance under Reidemeister IIb

� g and f are morphisms of complexes (use isotopies and (DR2 ));

� g1f 1 D IdhD0i1 (use (FC) and (S1 ));

� f 0g0C hd D IdhDi0 and f 2g2C dhD IdhDi2 (use (RD1 ) and (DR2 ));

� f 1g1C dhC hd D IdhDi1 (use (DR2 ), (RD1 ), (3C) and (SqR1 )).
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Reidemeister III Consider diagrams D and D0 that differ only in a circular region,
as in the figure below.

D D D0 D

In order to prove that hD0i is homotopy equivalent to hDi we show that the latter is
homotopy equivalent to a third complex denoted hQi in Figure 11. The differential in
hQi in homological degree 0 is defined by

**

for one summand and a similar foam for the other summand. By applying a symmetry
relative to a horizontal axis crossing each diagram in hDi and hQi we obtain a
homotopy equivalence between hD0i and hQ0i. It is easy to see that hQi and hQ0i
are isomorphic. In homological degree 0 the isomorphism is given by the obvious
foam with two singular vertices. In the other degrees the isomorphism is given by the
identity (in degrees 1 and 2 one has to swap the two terms of course). The fact that
this defines an isomorphism follows immediately from the (MP) relation. We conclude
that hDi and hD0i are homotopy equivalent.

The other versions of the Reidemeister III move can be obtained from the one above and
Reidemeister II moves. The homotopy equivalences can then be defined as composites.
For more details we refer the reader to Clark, Morrison and Walker [2].

From Theorem 7.1 we see that we can use any diagram D of L to obtain the invariant
in Kom=h.FoamN / which justifies the notation hLi for hDi.

8 Functoriality

The proof of the functoriality of our homology follows the same line of reasoning as
in [1] and [12]. As in those papers, it is clear that the construction and the results of
the previous sections can be extended to the category of tangles, following a similar
approach using open webs and foams with corners. A foam with corners should be
considered as living inside a cylinder, as in [1], such that the intersection with the
cylinder is just a disjoint set of vertical edges.
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*

*

−

−

−
I

I
−

I
−

I

I

I

*

−

hD
i
WhQ
i
W

Figure 11: Invariance under Reidemeister III. A circle attached to the tail of
an arrow indicates that the corresponding morphism has a minus sign.
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The degree formula can be extended to the category of open webs and foams with
corners by:

Definition 8.1 Let u be a foam with d
]

dots of type ], d
^

dots of type ^ and d
_

dots of type _. Let bi be the number of vertical edges of type i of the boundary of u.
The q–grading of u is given by

q.u/D�

3X
iD1

i.N �i/qi.u/�2.N �2/qs .u/C
1

2

3X
iD1

i.N �i/biC2d
]
C4d

^
C6d

_
:

Note that the Kapustin–Li formula also induces a grading on foams with corners,
because for any foam u between two (open) webs �1 and �2 , it gives an element in
the graded vector space Ext.M1;M2/, where Mi is the matrix factorization associated
to �i in [11], for i D 1; 2. Recall that the Ext groups have a Z=2Z�Z–grading. For
foams there is no Z=2Z–grading, but the Z–grading survives.

Lemma 8.2 For any foam u, the Kapustin–Li grading of u is equal to q.u/.

Proof Both gradings are additive under horizontal and vertical gluing and are preserved
by the relations in FoamN . Also the degrees of the dots are the same in both gradings.
Therefore it is enough to establish the equality between the gradings for the foams
which generate FoamN . For any foam without a singular graph the gradings are
obviously equal, so let us concentrate on the singular cups and caps, the singular saddle
point cobordisms and the cobordisms with one singular vertex in Figure 4. To compute
the degree of the singular cups and caps, for both gradings, one can use the digon
removal relations. For example, let us consider the singular cup:

Any grading that preserves relation (DR1 ) has to attribute the value of �1 to that foam,
because the foam on the left-hand side of (DR1 ) has degree 0, being an identity, and
the dot on the right-hand side has degree 2. Similarly one can compute the degrees of
the other singular cups and caps. To compute the degree of the singular saddle-point
cobordisms, one can use the removing disc relations (RD1 ) and (RD2 ). For example,
the saddle-point cobordism in Figure 4 has to have degree 1. Finally, using the (MP)
relation one shows that both foams on the right-hand side in Figure 4 have to have
degree 0.

Corollary 8.3 For any closed foam u we have that huiKL is zero if q.u/¤ 0.
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As in [12] we have the following lemma, which is the analogue of [1, Lemma 8.6]:

Lemma 8.4 For a crossingless tangle diagram T we have that HomFoamN
.T;T / is

zero in negative degrees and Q in degree zero.

Proof Let T be a crossingless tangle diagram and u 2 HomFoamN
.T;T /. Recall

that u can be considered to be in a cylinder with vertical edges intersecting the latter.
The boundary of u consists of a disjoint union of circles (topologically speaking). By
dragging these circles slightly into the interior of u one gets a disjoint union of circles
in the interior of u. Apply relation (CN1 ) to each of these circles. We get a linear
combination of terms in HomFoamN

.T;T / each of which is the disjoint union of the
identity on T , possibly decorated with dots, and a closed foam, which can be evaluated
by h iKL . Note that the identity of T with any number of dots has always nonnegative
degree. Therefore, if u has negative degree, the closed foams above have negative
degree as well and evaluate to zero. This shows the first claim in the lemma. If u has
degree 0, the only terms which survive after evaluating the closed foams have degree 0

as well and are therefore a multiple of the identity on T . This proves the second claim
in the lemma.

The proofs of Lemmas 8.7–8.9 in [1] are “identical”. The proofs of the analogues of
Theorem 4 and Theorem 5 in [1] follow the same reasoning but have to be adapted as
in [12]. One has to use the homotopies of our Section 7 instead of the homotopies used
in [1]. Without giving further details, we state the main result. Let Kom=Q�h.FoamN /

denote the category Kom=h.FoamN / modded out by Q� , the invertible rational
numbers.

Proposition 8.5 h i defines a functor Link!Kom=Q�h.FoamN /.

We do not know if the above projective functor can actually be considered as a functor to
Kom=h.FoamN /. For certain applications, such as the sl.N /–version of Rasmussen’s
s–invariant or the coloured sl.N / link homologies, one needs to have an affirmative
answer to this question at least up to a sign.

9 The sl.N /–link homology

Definition 9.1 Let � , � 0 be closed webs and f 2HomFoamN
.�; � 0/. Define a functor

F between the categories FoamN and the category VectZ of Z–graded rational vector
spaces and Z–graded linear maps as:

(1) F.�/D HomFoamN
.∅; �/.

(2) F.f / is the Q–linear map F.f / W HomFoamN
.∅; �/ ! HomFoamN

.∅; � 0/
given by composition.
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Note that F is a tensor functor and that the degree of F.f / equals q.f /. Note also
that F.S/ŠH�.CPN�1/f�N C 1g and F. /ŠH�.G2;N /f�2N C 4g.

The following are a categorified version of the relations in Figure 3.

Lemma 9.2 (MOY decomposition) We have the following decompositions under the
functor F :

(1) F
� �

Š F
� �
f�1g

L
F
� �
f1g.

(2) F
� �

Š

N�2L
iD0

F
� �
f2�N C 2ig.

(3) F
� �

Š F
� �L 

N�3L
iD0

F
� �

f3�N C 2ig

!
.

(4) F

0B@
1CALF

0B@
1CAŠ F

0B@
1CALF

0B@
1CA.

Proof (1) Define grading-preserving maps

'0W F
� �

f1g ! F
� �

'1W F
� �

f�1g ! F
� �

 0W F
� �
! F

� �
f1g  1W F

� �
! F

� �
f�1g

'0 D F
� �

; '1 D F
� �

;as

 0 D F
� �

;  1 D�F
� �

:

The bubble identities imply that 'i j D ıi;j (for i; j D 0; 1) and from the (DR1 )
relation it follows that  0'0C 1'1 is the identity map in

F
� �

:

(2) Define grading-preserving maps

'i W F
� �

fN � 2� 2ig ! F
� �

;  i W F
� �
! F

� �
fN � 2� 2ig ;
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for 0� i �N � 2, as

'i D F

0BB@
N−2−i

1CCA ;  i D

iX
jD0

F

0B@
i−j

j

1CA :
We have 'i k D ıi;k and

N�2X
iD0

 i'i D Id
�
F
� ��

:

The first assertion is straightforward and can be checked using the (RD1 ) and (S1 )
relations. The second is immediate from the (DR2 ) relation, which can be written as:

(DR2) D

N�2X
iD0

iX
jD0

i−j

j

N−2−i

(3) Define grading-preserving maps

'i W F
� �

fN � 3C 2ig ! F
� �

;

 i W F
� �

! F
� �

fN � 3C 2ig ;

for 0� i �N � 3, and

�W F
� �

! F
� �

; � W F
� �

! F
� �

;

'i D F

0BB@
i

1CCA ;  i D

X
aCbCcDN�3�i

F

0BB@ a b

c

1CCA ;as

�D F

0BB@
1CCA ; � D�F

0BB@
1CCA :
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Checking that 'i kDıi;k for 0� i; k�N�3, 'i�D0 and � iD0, for 0� i �N�3,
and �� D�1 is left to the reader. From the (SqR1 ) relation it follows that

��C

N�3X
iD0

 i'i D Id
�
F
� ��

:

Direct sum decomposition (4) We prove direct decomposition (4) showing that

.a/ F

0B@
1CAŠF

0B@
1CA˚F

0B@*

1CA ; .b/ F

0B@
1CAŠF

0B@
1CA˚F

0B@ *

1CA :
Note that this suffices because the last term on the right-hand side of (a) is isomorphic
to the last term on the right-hand side of (b) by the (MP) relation.

To prove (a) we define grading-preserving maps

'0W F

0@ 1A! F

0@ 1A ; '1W F

0@ 1A! F

0@ *

1A ;
 0W F

0@ 1A! F

0@ 1A ;  1W F

0@ *

1A! F

0@ 1A ;
'0 D�F

0@ 1A ; '1 D�F

0@ **
1A ;by

 0 D F

0@ 1A ;  1 D F

0@
**

1A :
We have that 'i j D ıi;j for i; j D 0; 1 (we leave the details to the reader). From the
(SqR2 ) relation it follows that

 0'0C 1'1 D Id

0@F
0@ 1A1A :

Applying a symmetry to all diagrams in decomposition (a) gives decomposition (b).

In order to relate our construction to the sl.N / polynomial we need to introduce shifts.
We denote by fng an upward shift in the q–grading by n and by Œm� an upward shift
in the homological grading by m.
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Definition 9.3 Let hLii denote the i –th homological degree of the complex hLi. We
define the i –th homological degree of the complex F.L/ to be

Fi.L/D FhLii Œ�n��f.N � 1/nC�N n�C ig;

where nC and n� denote the number of positive and negative crossings in the diagram
used to calculate hLi.

We now have a homology functor Link!VectZ=Q
� which we still call F . Definition

9.3, Theorem 7.1 and Lemma 9.2 imply:

Theorem 9.4 For a link L the graded Euler characteristic of H� .F.L// equals
PN .L/, the sl.N / polynomial of L.

The MOY–relations are also the last bit that we need in order to show the following
theorem.

Theorem 9.5 For any link L, the bigraded complex F.L/ is isomorphic to the
Khovanov–Rozansky complex KR.L/ in [11].

Proof The map h jKL defines a grading preserving linear injection F.�/! KR.�/,
for any web � . Lemma 9.2 implies that the graded dimensions of F.�/ and KR.�/
are equal, so h jKL is a grading preserving linear isomorphism, for any web � .

To prove the theorem we would have to show that h jKL commutes with the differentials.
We call

the zip and

the unzip. Note that both the zip and the unzip have q–degree 1. Let �1 be the source
web of the zip and �2 its target web, and let � be the theta web, which is the total
boundary of the zip where the vertical edges have been pinched. The q–dimension of
Ext.�1; �2/ is equal to

q2N�2 qdim.�/D qC q2.: : :/;
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where .: : :/ is a polynomial in q . Therefore the differentials in the two complexes
commute up to a scalar. By the removing disc relation (RD1 ) we see that if the “zips”
commute up to �, then the “unzips” commute up to ��1 . If �¤ 1, we have to modify
our map between the two complexes slightly, in order to get an honest morphism of
complexes. We use Khovanov’s idea of “twist equivalence” in [8]. For a given link
consider the hypercube of resolutions. If an arrow in the hypercube corresponds to
a zip, multiply h.target/jKL by �, where target means the target of the arrow. If it
corresponds to an unzip, multiply h.target/jKL by ��1 . This is well-defined, because
all squares in the hypercube (anti-)commute. By definition this new map commutes
with the differentials and therefore proves that the two complexes are isomorphic.

We conjecture that the above isomorphism actually extends to link cobordisms, giving
a projective natural isomorphism between the two projective link homology functors.
Proving this would require a careful comparison between the two functors for all the
elementary link cobordisms.
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