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Preface

The principal changes in this revised printing are in Section 6.1, where
I have corrected two major errors in my discussion of completeness
results for the V-logics. Both of them were spotted by Erik C. W. Krabbe
in 1976. I am most grateful to him for finding the trouble, and also for
very helpful correspondence about alternative methods of repair. One
error was in my construction of the canonical basis on pages 127-130:
I falsely claimed that the set of co-spheres of cuts around a given index
would be closed under unions.* In order to ensure such closure, it is
necessary to construct the canonical basis differently. The other was in
the axiom system for VC given on page 132. I left out the rule of Inter-
change of Logical Equivalents; however I tacitly appealed to this rule
in proving completeness, so my proof did not apply to the axiom system
I had given.

In addition I have corrected minor errors on pages 35, 55 and 129, also
spotted by Krabbe; removed misprints; and brought some references
up to date.

I have had more to say about counterfactuals and related matters.
These further thoughts might appropriately have been added to this
book; but since they are to be found elsewhere, I have been content to
add an appendix giving citations and abstracts.

David Lewis
1986

* Erik C. W. Krabbe, ‘Note on a Completeness Theorem in the Theory of
Counterfactuals’, Journal of Philosophical Logic 7 (1978): 91-93.
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1. An Analysis of Counterfactuals

1.1 Introduction

¢ If kangaroos had no tails, they would topple over’ seems to me to mean
something like this: in any possible state of affairs in which kangaroos
have no tails, and which resembles our actual state of affairs as much
as kangaroos having no tails permits it to, the kangaroos topple over. I
shall give a general analysis of counterfactual conditionals along these
lines.

My methods are those of much recent work in possible-world
semantics for intensional logic.* I shall introduce a pair of counter-
factual conditional operators intended to correspond to the various
counterfactual conditional constructions of ordinary language; and I
shall interpret these operators by saying how the truth value at a given
possible world of a counterfactual conditional is to depend on the
truth values at various possible worlds of its antecedent and consequent.

Counterfactuals are notoriously vague. That does not mean that we
cannot give a clear account of their truth conditions. It does mean that
such an account must either be stated in vague terms—which does not
mean 1ill-understood terms—or be made relative to some parameter
that is fixed only within rough limits on any given occasion of language
use. It is to be hoped that this imperfectly fixed parameter is a familiar
one that we would be stuck with whether or not we used it in the analysis
of counterfactuals; and so it will be. It will be a relation of comparative
similarity.

Let us employ a language containing these two counterfactual
conditional operators:

-

* See, for instance, Saul Kripke, ‘Semantical Considerations on Modal Logic’,
Acta Philosophica Fennica 16 (1963): 83-94; Richard Montague, ‘Pragmatics’, in
R. Klibansky, Contemporary Philosophy (La Nuova Italie Editrice: Firenze, 1968):
102-122, reprinted in Montague, Formal Philosophy (Yale University Press: New
Haven, 1974); Dana Scott, ‘ Advice on Modal Logic’, in K. Lambert, Philosophical
Problems in Logic (D. Reidel: Dordrecht, 1970); and David Lewis, ‘General Seman-
tics’, Synthese 22 (1970): 18-67.



2 An Analysis of Counterfactuals

read as ‘If it were the case that ____, then it would be the case that . ..,
and

O—
read as ‘If it were the case that ____, then it might be the case that . ...

For instance, the two sentences below would be symbolized as shown.

If Otto behaved himself, he would be ignored.
Otto behaves himself (1 Otto is ignored

If Otto were ignored, he might behave himself.
Otto is ignored O— Otto behaves himself

There is to be no prohibition against embedding counterfactual con-
ditionals within other counterfactual conditionals. A sentence of such a
form as this.

(O (xO> ) O $) O %)
O ¢ O @ O (x O~ ¢) O (¢ O—=>9))

will be perfectly well formed and will be assigned truth conditions,
although doubtless it would be such a confusing sentence that we
never would have occasion to utter it.

The two counterfactual operators are to be interdefinable as follows.

¢ Oy =4 ~($ O~ ~¢),
¢ Oy =4 ~( O ~¥).

Thus we can take either one as primitive. Its interpretation determines
the interpretation of the other. I shall take the ‘would’ counterfactual
[(J— as primitive.

Other operators can be introduced into our language by definition
in terms of the counterfactual operators, and it will prove useful to do
so. Certain modal operators will be thus introduced in Sections 1.5 and
1.7; modified versions of the counterfactual in Section 1.6; and ‘com-
parative possibility’ operators in Section 2.5.

My official English readings of my counterfactual operators must
be taken with a good deal of caution. First, I do not intend that they
should interfere, as the counterfactual constructions of English some-
times do, with the tenses of the antecedent and consequent. My official
reading of the sentence

We were finished packing Monday night (1~ we departed Tuesday
morning
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comes out as a sentence obscure in meaning and of doubtful gram-
maticality:

If it were the case that we were finished packing Monday night, then
it would be the case that we departed Tuesday morning.

In the correct reading, the subjunctive ‘were’ of the counterfactual
construction and the temporal ‘were’ of the antecedent are trans-
formationally combined into a past subjunctive:

If we had been finished packing Monday night, then we would have
departed Tuesday morning.

Second, the ‘If it were the case that ___° of my official reading of (]
is not meant to imply that it is not the case that ____. Counterfactuals
with true antecedents—counterfactuals that are not counterfactual—
are not automatically false, nor do they lack truth value. This stipula-
tion does not seem to me at all artificial. Granted, the counterfactual
constructions of English do carry some sort of presupposition that the
antecedent is false. It is some sort of mistake to use them unless the
speaker does take the antecedent to be false, and some sort of mishap
to use them when the speaker wrongly takes the antecedent to be false.
But there is no reason to suppose that every sort of presupposition
failure must produce automatic falsity or a truth-value gap. Some or all
sorts of presupposition, and in particular the presupposition that the
antecedent of a counterfactual is false, may be mere matters of con-
versational implicature, without any effect on truth conditions. Though
it is difficult to find out the truth conditions of counterfactuals with
true antecedents, since they would be asserted only by mistake, we
will see later (in Section 1.7) how this may be done.

You may justly complain, therefore, that my title ‘Counterfactuals’
is too narrow for my subject. I agree, but I know no better. I cannot
claim to be giving a theory of conditionals in general. As Ernest Adams
has observed,* the first conditional below is probably true, but the
second may very well be false. (Change the example if you are not a
Warrenite.)

If Oswald did not kill Kennedy, then someone else did.
If Oswald had not killed Kennedy, then someone else would have.

Therefore there really are two different sorts of conditional; not a single
conditional that can appear as indicative or as counterfactual depending
on the speaker’s opinion about the truth of the antecedent.

_* ‘Subjunctive and Indicative Conditionals’, Foundations of Language 6 (1970):
89-94.
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The title ‘Subjunctive Conditionals’ would not have delineated my
subject properly. For one thing, there are shortened counterfactual
conditionals like ‘No Hitler, no A-bomb’ that have no subjunctives
except in their—still all-too-hypothetical—deep structure. More im-
portant, there are subjunctive conditionals pertaining to the future,
like “ If our ground troops entered Laos next year, there would be trouble’
that appear to have the truth conditions of indicative conditionals,
rather than of the counterfactual conditionals I shall be considering.*

1.2 Strict Conditionals

We shall see that the counterfactual cannot be any strict conditional.
Since it turns out to be something not too different, however, let us set
the stage by reviewing the interpretation of strict conditionals in the
usual possible-world semantics for modality. Generally speaking, a
strict conditional is a material conditional preceded by some sort of

necessity operator:
0O¢ = 9.

With every necessity operator [J there is paired its dual possibility
operator . The two are interdefinable:

0¢ =df ~D~¢, or D¢ =df ~O~¢.
If we like, we can rewrite the strict conditional using the possibility

operator:
~O(b & ~y).

Or we could introduce a primitive strict conditional arrow or hook,
and define the necessity and possibility operators from that.]

A necessity operator, in general, is an operator that acts like a re-
stricted universal quantifier over possible worlds. Necessity of a certain
sort is truth at all possible worlds that satisfy a certain restriction. We

* Notation: sentences of our language are mentioned by means of lower-case
Greek letters ¢, ¥, x et al.; sets of sentences by means of Greek capitals. Logical
symbols and the like are used autonymously, and juxtaposition of names of
expressions signifies concatenation of the expressions named. Possible worlds are
mentioned by means of the lower-case letters A, i, j, k; sets of worlds by means of
capital letters; and sets of sets of worlds by means of script capitals.

1 In this section only, I use the unmarked box and diamond to stand for any
arbitrary paired necessity operator and possibility operator. When next they
appear, in Section 1.5, they will be reserved thenceforth for a specific use: they
will be the ‘outer’ necessity and possibility operators definable in a certain way
from the counterfactual (or they will be analogously related to operators analo-
gous to the counterfactual). The dotted box and diamond, {3 and ©, will be
likewise reserved when they appear in Section 1.7.



1.2 Strict Conditionals 5

call these worlds accessible, meaning thereby simply that they satisfy
the restriction associated with the sort of necessity under consideration.
Necessity is truth at all accessible worlds, and different sorts of necessity
correspond to different accessibility restrictions. A possibility operator,
likewise, is an operator that acts like a restricted existential quantifier
over worlds. Possibility is truth at some accessible world, and the
accessibility restriction imposed depends on the sort of possibility under
consideration. If a necessity operator and a possibility operator cor-
respond to the same accessibility restriction on the worlds quantified
over, then they will be a dual, interdefinable pair.

In the case of physical necessity, for instance, we have this restriction:
the accessible worlds are those where the actual laws of nature hold
true. Physical necessity is truth at all worlds where those laws hold
true; physical possibility is truth at some worlds where those laws hold
true.

In the case of physical necessity, which possible worlds are admitted
as accessible depends on what the actual laws of nature happen to be.
The restriction will be different from the standpoint of worlds with
different laws of nature. Let i and j be worlds with different laws of
nature, and let k£ be a world where the laws of i hold true but the
different laws of j are violated. From the standpoint of i, k is an acces-
sible world; from the standpoint of j it is not. Accessibility is in this
case—and most cases—a relative matter. It is the custom, therefore,
to think of accessibility as a relation between worlds: we say that k is
accessible from i, but k is not accessible from j. We say also that i
stands to k, but j does not stand to k, in the accessibility relation for
physical necessity and possibility.

In general: to a necessity operator []J or a possibility operator <
there corresponds an accessibility relation. The appropriate accessi-
bility relation serves to restrict quantification over worlds in giving the
truth conditions for [J or <. For any possible world i and sentence ¢,
the sentence [(J¢ is true at the world i if and only if, for every world j
such that j is accessible from i, ¢ is true at j. Likewise ¢ is true at i
if and only if, for some world j such that j is accessible from i, ¢ is true
at j. More concisely: [J¢ is true at i if and only if ¢ is true at every world
accessible from i; ¢ is true at i if and only if ¢ is true at some world
accessible from i. It follows that the strict conditional [J(¢ = ¥) is
true at 7 if and only if, for every world j such that j is accessible from i,
the material conditional ¢ > ¢ is true at j; that is, if and only if, for
every world j such that j is accessible from i and ¢ is true at j, ¢ is true at
J- More concisely: [(¢ = ¢) is true at i if and only if ¢ is true at every
accessible ¢-world. (‘¢-world’, of course, abbreviates ‘world at which
¢ is true’, and likewise for parallel formations.)
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(A) NECESSITY

O(¢ > )

FIGURE 1
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It suits my purposes better not to use the customary accessibility
relations, but instead to adopt a slightly different—but obviously
equivalent—formulation. Corresponding to a necessity operator [],
or a possibility operator <, or a kind of strict conditional, let us have an
assignment to each world i of a set S; of worlds, called the sphere of
accessibility around i and regarded as the set of worlds accessible from
i.* The assignment of spheres to worlds may be called the accessibility
assignment corresponding to the modal operator. It is used to give the
truth conditions for modal sentences as follows.

A sentence (¢ is true at a world i if and only if ¢ is true throughout
the sphere of accessibility S; around i (as shown in Figure 1(A)).

A sentence ¢ is true at a world i if and only if ¢ is true somewhere
in the sphere S; (as shown in Figure 1(B)).

A strict conditional sentence [}(¢ = ) is true at i if and only if
é D ¢ is true throughout the sphere S;; that is, if and only if ¢ is true
at every ¢-world in S; (as shown in Figure 1(C)).

Let us consider various examples of accessibility assignments for
various sorts of necessity, with particular attention to the corresponding
strict conditionals.

Corresponding to logical necessity, and the logical strict conditional,
we assign to each world i as its sphere of accessibility S, the set of all
possible worlds. Thus the logical strict conditional [J(¢ = ¢) is true
at i if and only if ¢ is true at all ¢-worlds whatever; there are no inacces-
sible ¢-worlds to be left out of consideration.

Corresponding to physical necessity, and the physical strict con-
ditional, we assign to each world i as its sphere of accessibility S; the
set of all worlds where the laws of nature prevailing at i hold; so the
physical strict conditional [J(¢ > ) is true at i if and only if ¢ is true at
all those ¢-worlds where the laws prevailing at i hold.

Corresponding to a kind of time-dependent necessity we may call
inevitability at time t, and its strict conditional, we assign to each world
i as its sphere of accessibility the set of all worlds that are exactly like i
at all times up to time ¢, so [J(¢ > ¢) is true at i if and only if ¢ is true
at all ¢-worlds that are exactly like i up to ¢.

Corresponding to what we might call necessity in respect of facts of
so-and-so kind, and its strict conditional, we assign to each world i as
its sphere of accessibility the set of all worlds that are exactly like i
in respect of all facts of so-and-so kind, so [(J(¢ > ¢) is true at i if and
only if ¢ is true at all $-worlds that are exactly like i in respect of all
facts of so-and-so kind.

* Warning: in some mathematicians’ usage, a sphere is a hollow surface.
Think of my spheres rather as solid regions, like spheres of influence. In mathe-
maticians’ usage, solid *spheres’ are called balls.
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A degenerate case: corresponding to what we may call necessity in
respect of all facts, or fatalistic necessity, we assign to each world i
as its sphere of accessibility the set of all worlds that are exactly like i
in all respects whatever. Since ‘all respects whatever’ includes likeness
in respect of identity or nonidentity to i, i alone is like i in all respects
whatever; thus each world i has as its sphere of accessibility the set {i}
having i as its sole member. Then (¢ is true at i if and only if ¢ is
true at i; and the fatalistic strict conditional [J(¢ = ) is true at i if and
only if the material conditional ¢ > 4 is true at i.

Sometimes we do not insist that each world i must belong to its own
sphere of accessibility S,. Corresponding to deontic (or moral) necessity,
we assign to each world i as its sphere of accessibility the set of all
morally perfect worlds. Then [J¢ is true at i if and only if ¢ is true at
every morally perfect world. A morally imperfect world like ours does
not belong to its own sphere of accessibility.

We have another degenerate case: corresponding to what I may call
vacuous necessity, we assign to each world i as its sphere of accessibility
the empty set, making [J¢ true at i for any sentence ¢ and world i
whatever.

We may compare the strictness of different strict conditionals. The
more inclusive are the spheres of accessibility, the stricter is the con-
ditional. Suppose we have necessity operators (], and [J,, correspond-
ing to the assignment to each world i of spheres of accessibility S{ and S?
respectively. Then the strict conditional [Jo(¢ = ¢) is stricter at world i
than [7J,(¢ = ¢) if and only if S? properly includes S{. One strict con-
ditional is stricter than another if and only if the first is stricter at every
world. Note that any strict conditional is implied by any stricter con-
ditional with the same antecedent and consequent.

Thus the logical strict conditional is stricter than any other; the
material conditional is the least strict of all the conditionals that obey
the constraint that every world is self-accessible; and the physical
strict conditional, for instance, falls in between. The vacuous condi-
tional is the least strict conditional of all.

It may happen, of course, that two strict conditionals are incom-
parable. It may be that they are incomparable at some world because
neither sphere includes the other. Or they may be comparable at every
world, but one may be stricter at some worlds and the other at other
worlds.

Counterfactuals are related to a kind of strict conditional based on
comparative similarity of possible worlds. A counterfactual ¢ (J— ¢
is true at a world i if and only if ¥ holds at certain ¢-worlds; but cer-
tainly not all ¢-worlds matter. ‘If kangaroos had no tails, they would
topple over’ is true (or false, as the case may be) at our world, quite
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without regard to those possible worlds where kangaroos walk around
on crutches, and stay upright that way. Those worlds are too far away
from ours. What is meant by the counterfactual is that, things being
pretty much as they are—the scarcity of crutches for kangaroos being
pretty much as it actually is, the kangaroos inability to use crutches
being pretty much as it actually is, and so on—if kangaroos had no
tails they would topple over.

We might think it best to confine our attention to worlds where
kangaroos have no tails and everything else is as it actually is; but there
are no such worlds. Are we to suppose that kangaroos have no tails
but that their tracks in the sand are as they actually are? Then we
shall have to suppose that these tracks are produced in a way quite
different from the actual way. Are we to suppose that kangaroos have
no tails but that their genetic makeup is as it actually is? Then we shall
have to suppose that genes control growth in a way quite different from
the actual way (or else that there is something, unlike anything there
actually is, that removes the tails). And so it goes; respects of similarity
and difference trade off. If we try too hard for exact similarity to the
actual world in one respect, we will get excessive differences in some
other respect.

There is a simpler argument that there is no world where kangaroos
have no tails and everything else is as it actually is. Consider all the
material conditionals of the form

é > kangaroos have tails

such that ¢ is true at the actual world. If kangaroos had no tails and
everything else were as it actually is, then these conditionals would be
true as they actually are, for these conditionals are part of the ‘every-
thing else’. Also, in most cases, the antecedents would be true as they
actually are, for (at least when the antecedent is irrelevant to whether
kangaroos have tails) the antecedents also are part of the ‘everything
else’. But then, unless the world is one where modus ponens goes hay-
wire (so that logic itself is not as it actually is!), kangaroos do have
tails there after all. I know of nothing wrong with this argument, but I
admit that it looks like an unconvincing trick; so I prefer to rely on the
considerations of the previous paragraph.

It therefore seems as if counterfactuals are strict conditionals cor-
responding to an accessibility assignment determined by similarity of
worlds—overall similarity, with respects of difference balanced off
somehow against respects cf similarity. Let S;, for each world i, be the
set of all worlds that are similar to at least a certain fixed degree to the
world i. Then the corresponding strict conditional is true at i if and only
if the material conditional of its antecedent and consequent is true
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throughout S; that is, if and only if the consequent holds at all ante-
cedent-worlds similar to at least that degree to i.

If we take any one counterfactual, this will do nicely. But trouble may
come if we consider several counterfactuals together. (1) ‘If I (or you,
or anyone else) walked on the lawn, no harm at all would come of it; but if
everyone did that, the lawn would be ruined.’ (2) ‘If the USA threw its
weapons into the sea tomorrow, there would be war; but if the USA and
the other nuclear powers all threw their weapons into the sea tomorrow
there would be peace; but if they did so without sufficient precautions
against polluting the world’s fisheries there would be war; but if, after
doing so, they immediately offered generous reparations for the pollution
there would be peace; . . . ’* (3) ‘If Otto had come, it would have been a
lively party; but if both Otto and Anna had come it would have been a
dreary party,; but if Waldo had come as well, it would have been lively,
but. ...’

These sequences have the following general form. I include with
each asserted counterfactual also the negated opposite, for in the cases I
imagine these negated opposites also are held true.

¢ O—¢ and ~(¢, (0~ ~9),
$1 & [0~ ~¢ and ~(¢, & $, 00— ),
$ & ¢3 & $3 (1> ¢ al}d ~(d & ¢ & ¢3 (1> ~¢),

With a little ingenuity, it seems possible to prolong such a sequence
indefinitely. No one stage in the sequence refutes the theory that the
counterfactual is a strict conditional based on similarity, but any two
adjacent stages do. The counterfactual on the left at any stage contra-
dicts the negated counterfactual on the right at the next stage. Take the
first and second stages: no matter how the spheres of accessibility may
be assigned, if ¢ is true at every accessible ¢;-world, then ¢ is true at
every accessible (¢, & ¢;)-world. So if the counterfactual is any strict
conditional whatever, then ¢, [}~ implies ¢, & ¢, [} ¢ and
contradicts ~(¢, & ¢ (1> ). Likewise ¢; & ¢, 1> ~¢ implies
¢, & ¢, & ¢3 (1> ~¢ and contradicts ~(¢, & ¢, & ¢3 (1> ~¢), and
so on down the sequence.

The left-hand counterfactuals make trouble for the theory that the
counterfactual is a strict conditional, even without their negated

* J. Howard Sobel first brought such combinations of counterfactuals to my
attention, pointing out that they are characteristic of the situations in which act-
and rule-utilitarianism seem to prescribe different courses of action. Sobel has
applied my theory of counterfactuals in examining the claim that act- and rule-
utilitarianism are extensionally equivalent; see his ‘ Utilitarianisms: Simple and
General’, Inquiry 13 (1970): 394-449.
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opposites. If those at two adjacent stages both are true, then according
to the theory the second is true vacuously. So are all those beyond it.
Beginning at the beginning: if ¢ is true at every accessible ¢;-world
but ~ is true at every accessible (¢, & ¢5)-world, then there must not
be any accessible (¢, & ¢5)-worlds—nor any accessible (¢; & ¢; & ¢3)-
worlds, nor. ... Then if the lower counterfactuals are true, it is no
thanks to their consequents: if a strict conditional is vacuously true,
then so is any other with the same antecedent. From the premises that
if Otto had come it would have been lively and that if Otto and Anna
had come it would have been dreary, it follows that if Otto and Anna
had come then the cow would have jumped over the moon. Since that
does not follow, the counterfactual is not a strict conditional.

If we treat the counterfactual as a strict conditional based on simi-
larity, then the best we can do for our troublesome -sequences is to
keep changing our minds about which such strict conditional it is.
We may be able to make the two sentences at any one stage true by an
appropriate choice of a sphere of accessibility based on similarity, but
we must choose anew for each stage. If so, we have the situation shown

3
Si
FIGURE 2
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in Figure 2. Suppose we have a sphere S} around i/ that is right for the
first stage: ¢ is true at every ¢,-world in S}, and—since there are
¢,-worlds in S}-—it is not the case that ~ also is true at every ¢;-
world in S}. Then S} is wrong for the second stage. So is any sphere
smaller than S}. But by changing our minds about the degree of simi-
larity to i that we require, perhaps we can find a sphere S? that is right
for the second stage. S? corresponds to less stringent standards of
similarity than S, and to a stricter conditional. (The stringency of the
standards of similarity goes inversely with the strictness of the con-
ditional. Less stringent standards of similarity bring more worlds into
accessibility, making it more difficult for anything to hold at all those
worlds.) S? is wrong for the first stage; in order to handle the second
stage we had to expand the sphere of accessibility to reach some
(¢, & ¢, & ~y)-worlds, and these falsify the first-stage counterfactual.
S? is wrong also for the third stage. So is any sphere smaller than S?.
But by changing our minds once again, perhaps we can find a still
larger sphere SP—a still less stringent standard of similarity, a still
stricter conditional—that is right for the third stage. It is wrong for
the second and first, however; and for the fourth, if the sequence
continues. In short: it may be that for every stage of the sequence, there
is a choice of strictness that is right for that stage. But as we go down
the sequence, we need stricter and stricter conditionals. The choice that
works at any one stage makes false all the counterfactuals at previous
stages, and all the negated opposites at subsequent stages. If counter-
factuals are strict conditionals we have no hope of deciding, once and
for all, how strict they are.

It will not help to plead vagueness. If counterfactuals were strict
conditionals based on similarity, indeed they would presumably be
vague ones. The assignment of spheres of accessibility for them would
be fixed only within rough limits. This might happen both because our
ways of trading off respects of similarity and difference against each
other are not well fixed and because the degree of overall similarity
to a world i that is set as a condition of membership in the sphere of
accessibility around i is not well fixed. Both sources of vagueness would
tend to make some counterfactuals indefinite in truth value, since the
truth value will come out differently under different equally acceptable
resolutions of the vagueness. But the counterfactuals and their negated
opposites in our troublesome sequence are not necessarily especially
indefinite in their truth value. I think it is clear from my examples that
such a sequence could consist of counterfactuals and their negated
opposites all of which are as definitely true as counterfactuals ever are

(except for those paragon counterfactuals in which the antecedent
logically implies the consequent).
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Neither will it help to plead dependence on context. If counter-
factuals were vague strict conditionals, no doubt context would re-
solve some of the vagueness, and different contexts would sometimes
resolve it differently. But our problem is not a conflict between counter-
factuals in different contexts, but rather between counterfactuals in
a single context. It is for this reason that I put my examples in the form
of a single run-on sentence, with the counterfactuals of different stages
conjoined by semicolons and ‘but’. While one context may favor a
delineation of baldness on which Dudley is bald, and another may favor
a delineation on which he is not, no context can favor a delineation on
which he both is and is not. There is no such delineation. While one
context might favor a level of strictness on which the first-stage pair in
our sequence are both true, and another may favor a greater strictness
on which the second-stage pair are both true, and still another may
favor a still greater strictness on which the third-stage pair are both
true, and so on, none can favor a strictness on which the four sentences
from the pairs at two adjacent stages are alltrue. Thereisnosuchstrictness.

It is still open to say that counterfactuals are vague strict conditionals
based on similarity, and that the vagueness is resolved—the strictness is
fixed—by very local context: the antecedent itself. That is not altogether
wrong, but it is defeatist. It consigns to the wastebasket of contextually
resolved vagueness something much more amenable to systematic
analysis than most of the rest of the mess in that wastebasket.

1.3 Variably Strict Conditionals

Counterfactuals are like strict conditionals based on similarity of
worlds, but there is no saying how strict they are. They come in as many
different strictnesses as there can be stages in my sequence of counter-
factuals and their negated opposites. I suggest, therefore, that the
counterfactual is not any one strict conditional, but is rather what
I shall call a variably strict conditional. Any particular counterfac-
tual is as strict, within limits, as it must be to escape vacuity, and no
stricter.

Corresponding to any (constantly) strict conditional, as we have
seen, there is an assignment to each world i of a single sphere of accessi-
bility S; around i. Corresponding to a variably strict conditional, on
the other hand, there must be an assignment to each world i of a set §,
of spheres of accessibility around i, some larger and some smaller.
Such an assignment is required to meet certain formal constraints,
laid down in the following definition. We shall see later how, and to
what extent, these constraints are justified.

Let $ be an assignment to each possible world i of a set $; of sets of
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possible worlds. Then $ is called a (centered*) system of spheres, and

the members of each $, are called spheres around i, if and only if, for

each world i, the following conditions hold.

(O) §, is centered on i; that is, the set {i} having i as its only member
belongs to §,.

(1) §, is nested; that is, whenever S and T belong to §;, either S is
included in T or T is included in S.

(2) §, is closed under unions; that is, whenever 8 is a subset of $; and
{US is the set of all worlds j such that j belongs to some member of
S, S belongs to §,.

(3) §, is closed under (nonempty) intersections; that is, whenever 8 is a
nonempty subset of §, and (S is the set of all worlds j such that j
belongs to every member of 8, (S belongs to §,.

The system of spheres used in interpreting counterfactuals is meant
to carry information about the comparative overall similarity of
worlds. Any particular sphere around a world i is to contain just those
worlds that resemble i to at least a certain degree. This degree is dif-
ferent for different spheres around i. The smaller the sphere, the more
similar to i must 2 world be to fall within it. To say the same thing in
purely comparative terms: whenever one world lies within some sphere
around i and another world lies outside that sphere, the first world is
more closely similar to i than the second. Conversely, if S is any set
of worlds such that every member of S is more similar to i than any
non-member of S, then S should be one of the spheres around i. (An
exception: we may or may not count the set of all worlds as one of the
spheres around i, although it vacuously meets the condition just given.)}

Our four formal constraints in the definition of a centered system of
spheres are justified because, if they were not met, the spheres could
not very well be regarded as carrying information about comparative
similarity of worlds.

(C) Surely each world i is as similar to itself as any other world is to it;

* We may omit the qualifying adjective ‘centered’ for the most part, restoring it

only when we have need to discuss systems of spheres that are perhaps not cen-
tered: that is, assignments $ that satisfy conditions (1), (2), and (3) but perhaps not

1 Whether or not a quantitative concept of similarity ‘distance’ between worlds
makes sense, I need only the non-quantitative, comparative concept given by
means of a system of spheres. In topology also we find a non-quantitative concept
of distance, given sometimes by means of a system of ‘neighborhoods’. Neigh-
borhoods are something like my spheres, but there is one important difference:
because topological neighborhoods around a point are not in general nested,
they yield a purely qualitative concept of distance—not quantitative, but not even
comparative. We can say whether one point or point-set is at all separated from
another; but if 4 and B both are separated from C we cannot say whether one
separation exceeds the other.
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therefore i should belong to every (nonempty) sphere around i. Almost
as surely, no other world is quite as similar to a world i as i itself is;
even if there were a world j qualitatively indiscernible from i (imagining
for the moment that possible worlds are not the sort of things that
obey a non-trivial law of identity of indiscernibles) we might still argue
that i does, and j does not, resemble i in respect of being identical to i.
Therefore some sphere around i should contain i and exclude all other
worlds; that is, {i} should be a sphere around i.

(1) If some §; were not nested, we would have two spheres S and T
in $;, and two worlds j and k, such that j lies within S but outside T,
and k lies within T but outside S. If S and T both carried information
about comparative similarity to i, then j would be more similar than k
to i (because j does and k does not lie within the sphere S) but also &
would be more similar than j to i (because k does and j does not lie
within 7). We cannot have it both ways.

(2) Suppose j does, and k does not, lie within the union { 8 of a set §
of spheres around i. It follows that j does, and k does not, lie within
some sphere S in 8, and hence that j is more similar than k to i. There-
fore | S is a set such that any world within it is more similar to i than
any world outside it, and such a set should be a sphere around i.

(3) Similarly, suppose j does, and k does not, lie within the inter-
section (S of a nonempty set S of spheres; then j does, and k does not,
lie within some sphere Sin §; so jis more similar than k to 7. (S is a set
such that any world within it is more similar to i than any world outside
it, and hence should be a sphere around i.

Note that conditions (2) and (3) of closure under union and inter-
section are automatically satisfied when there are only finitely many
spheres around i, or in the case of a finite subset 8§ of an infinite §,. If
there is a biggest sphere in S (one that includes all the others) it is (8.
If there is a smallest sphere in 8 (one that is included in all the others) it
is (S. By nesting, every finite set of spheres around a world has a
biggest and a smallest. But not so an infinite set: it may have bigger
and bigger spheres without end, or smaller and smaller spheres without
end. It would simplify things considerably if we could rule out this
annoying possibility by fiat; but we shall see that such a fiat would be
unjustifiable.

Condition (2) of closure under unions implies that the empty set is a
sphere around each i; for in (2) I did not require 8 to be nonempty, and
by definition the union of empty 8 is empty. To include the empty
sphere is technically convenient, but unintuitive; however, it can easily
be verified that the presence of the empty sphere has no effect at all on
the truth conditions to be given with reference to the system of spheres.

More important, I have left it open whether or not the set of all
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possible worlds is to be one of the spheres around each world i; or
in other words, whether or not the union {J$; of all spheres around i
is to exhaust the set of worlds; or, in still other words, whether or not
every possible world is to lie within some or other sphere around i.
If US$, is the set of all worlds, for each #, I will call § universal. If not,
then I regard the worlds that the spheres around i do not reach—those
that lie outside | J$,—as being all equally similar to i, and less similar
to i than any world that the spheres do reach. We will see that any such
world will be left out of consideration in determining whether a counter-
factual is true at i. It is as if, from the point of view of i, these remotest
worlds were not possible worlds at all.

Now that we have set up this Ptolemaic astronomy, we are ready to
use it to give truth conditions for counterfactual conditionals, as follows.

¢ [J— ¢ is true at a world i (according to a system of spheres §) if and

only if either

(1) no ¢-world belongs to any sphere S in §;, or

(2) some sphere S in $§ does contain at least one ¢-world, and
¢ > ¢ holds at every world in S.

Alternative (1) gives the vacuous case: either ¢ is true at no world, or it
is true only at worlds outstde |_J$;. Then our counterfactual is vacuously
true at i. We shall say in this case that ¢ is not entertainable, at i, as a
counterfactual supposition. Alternative (2) gives the principal case:
¢ is an entertainable supposition at i, and within some sphere around i
that is big enough to reach at least one ¢-world—call such a sphere
¢-permitting—y is true at all ¢-worlds. In brief: a counterfactual is
vacuously true if there is no antecedent-permitting sphere, non-
vacuously true if there is some antecedent-permitting sphere in which
the consequent holds at every antecedent-world, and false otherwise.

Figure 3 depicts the four cases that might arise for a counterfactual
¢ [ y—two ways for it to be true at a world i, and two ways for it to
be false.

In case (A), there is no ¢-permitting sphere. Even the outermost
sphere around i does not reach the ¢-worlds, if indeed there are any.
Then every counterfactual with antecedent ¢ is vacuously true at i;
for instance, both ¢ [J— ¢ and its opposite ¢ [ > ~y. It does not
matter (and so is not shown) where the y-worlds are, or even whether
there are any.

In case (B), there is a ¢-permitting sphere around i within which
¥ holds at all ¢-worlds—namely, the next-to-outermost sphere. ¢ > ¢
holds throughout this sphere. Therefore ¢ [} ¢ is non-vacuously
true. One such sphere is enough to make it true; it does no harm that
there also is a larger ¢-permitting sphere—the outermost—that reaches
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(A) VACUOUS TRUTH

FIGURE 3
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¢-worlds where i is false. The opposite counterfactual ¢ (3> ~¢ is
false: there are ¢-permitting spheres, and both of them contain ¢-worlds
where the new consequent ~ i is false.

Case (C) is the other way around. There are ¢-permitting spheres,
but none in which ¢ holds at every ¢-world, so none throughout which
¢ = ¢ holds. Therefore ¢ [1— ¢ is false. In the inner one of the two
¢-permitting spheres, ~i holds at every ¢-world; so the opposite
counterfactual ¢ [} ~y is true.

In case (D), finally, there are ¢-permitting spheres, and both of them
contain a mixture of ¢-worlds where  holds and ¢-worlds where ~ ¢
holds. Therefore ¢ [J— ¢ and its opposite ¢ [} ~ both are false.

Let us reconsider the sequences of true counterfactuals and their
true negated opposites that drove us to give up the theory that the
counterfactual is a constantly strict conditional based on similarity:

é: 0—~¢ and ~(¢; 0~ ~¥),
é1 & ¢ 0> ~¢ and ~(¢; & ¢, [~ ¢),
$ & ¢; & d3 0>y and ~($, & ¢ & ¢3[1—> ~¥),

FIGURE 2
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and so on. Figure 2 portrayed our difficulty: taking the counterfactual
as a constantly strict conditional, we had to choose one of the spheres

1, S, S2, . . . to be the sphere of accessibility around i, but no choice
was right. S} was right for the first stage of the sequence but not the
second, S? was right for the second stage but not the first or third, and so
on. Now Figure 2 portrays the solution: taking the counterfactual as a
variably strict conditional, we do not need to choose. The several
spheres are all present in §, together. S} is there to make the first-stage
counterfactual non-vacuously true, S? is there to make the second-
stage counterfactual non-vacuously true, and so on. The stages can
coexist in peace.

1.4 The Limit Assumption

If there are only finitely many spheres around some world i, then
any nonempty set of these spheres has a smallest member: a sphere in
the set that is included in every other sphere in the set. In particular,
for any entertainable antecedent, the set of antecedent-permitting
spheres has a smallest member. This smallest antecedent-permitting
sphere is the intersection of the set of all antecedent-permitting spheres
around i. It contains the antecedent-worlds closest to i: all and only
those of the antecedent-worlds than which no other antecedent world
is closer to i.

The same may be true even if there are infinitely many spheres around
i, provided we have no infinite descending sequence of smaller and
smaller spheres without end. (That is: if the ordering of the spheres by
inclusion is a well-ordering.) For instance, if we could number the
spheres in such a way that sphere 0 is the smallest (the empty set),
sphere 1 is the next smallest (the sphere {i}), sphere 2 is the next smallest,
and so on, then there would be a smallest member of every set of
spheres, and in particular there would be a smallest antecedent-permit-
ting sphere for every entertainable antecedent.

If there are sequences of smaller and smaller spheres without end,
then there are sets of spheres with no smallest member: take the set
of all spheres in any such sequence. Yet it might still happen that for
every entertainable antecedent in our language, there is a smallest
antecedent-permitting sphere. For our language may be limited in
expressive power so that not just any set of worlds is the set of ¢-worlds
for some sentence ¢; and, in that case, it may never happen that the
set of ¢-permitting spheres is one of the sets that lacks a smallest
member, for any antecedent ¢.

The assumption that, for every world i and antecedent ¢ that is
entertainable at i, there is a smallest ¢-permitting sphere, I call the
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Limit Assumption. It is the assumption that as we take smaller and
smaller antecedent-permitting spheres, containing antecedent-worlds
closer and closer to i, we eventually reach a limit: the smallest ante-
cedent-permitting sphere, and in it the closest antecedent-worlds.

If the consequent of a counterfactual holds at all antecedent-worlds
within some antecedent-permitting sphere around i, then also the
consequent holds at all antecedent-worlds in any smaller antecedent-
permitting sphere. In particular, the consequent holds at all antecedent-
worlds in the smallest antecedent-permitting sphere, if such there be.
Conversely, if the consequent holds at all antecedent-worlds in the
smallest antecedent-permitting sphere, then the consequent holds at all
antecedent worlds in some antecedent-permitting sphere. Under the
Limit Assumption, therefore, we could make the truth conditions for
counterfactuals simpler: a counterfactual is true at i if and only if
either (1) there is no antecedent-permitting sphere around i, or (2) the
consequent holds at every antecedent-world in the smallest antecedent-
permitting sphere around i. Simpler still: a counterfactual is true at
i if and only if the consequent holds at every antecedent-world closest to
i (where we do not call an antecedent-world outside (J$§, ‘closest’,
even if it is an antecedent-world than which there is none closer).

Unfortunately, we have no right to assume that there always are a
smallest antecedent-permitting sphere and, within it, a set of closest
antecedent-worlds. Suppose we entertain the counterfactual supposi-
tion that at this point

there appears a line more than an inch long. (Actually it is just under
an inch.) There are worlds with a line 2" long; worlds presumably
closer to ours with a line 14" long; worlds presumably still closer to
ours with a line 13" long; worlds presumably still closer . ... But how
long is the line in the closest worlds with a line more than an inch long?
If it is 1+ x” for any x however small, why are there not other worlds
still closer to ours in which it is 1 +3x", a length still closer to its actual
length ? The shorter we make the line (above 1), the closer we come to
the actual length; so the closer we come, presumably, to our actual
world.* Just as there is no shortest possible length above 17, so there
is no closest world to ours among the worlds with lines more than an

* ‘Presumably’, here and elsewhere, because it depends on the technique of
printing. Suppose the actual line was printed by a digital process of some sort,
and the shortest length above 17 that is possible using this process is 14*. Then
perhaps some world at which this process is used to give a 13" line is closest,
being closer to ours than any world at which a process unlike the actual process
is used to give a slightly shorter line. Thus this and other examples are not quite
decisive; but they should suffice at least to deter us from rashly assuming that
there must be a smallest antecedent-permitting sphere.
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inch long, and no smallest sphere permitting the supposition that there is
a line more than an inch long.

When there is no smallest antecedent-permitting sphere, our truth
conditions amount to this: if there are antecedent-permitting spheres,
then as we take smaller and smaller ones without end, eventually we
come to ones in which the consequent holds at every antecedent-world.

1.5 ‘Might’ Counterfactuals and Outer Modalities

My interpretation of the ‘would’ counterfactual as a variably strict
conditional, together with my definition

$ O =% ~ (¢ O ~4)

of the ‘might’ counterfactual in terms of the ‘would’ counterfactual,
yield derived truth conditions for the ‘might’ counterfactual as follows.

é O— s true at a world i (according to a system of spheres $) if and
only if both

(1) some ¢-world belongs to some sphere S in §;, and
(2) every sphere S in $; that contains at least one ¢-world contains at
least one world where ¢ & ¢ holds.

Under the Limit Assumption, we could restate the derived truth con-
ditions for ‘might’ counterfactuals thus: ¢ O— ¢ is true at i if and only
if ¢ holds at some ¢-world in the smallest ¢-permitting sphere around i.
More simply: a ‘might’ counterfactual is true at i if and only if the
consequent holds at some antecedent-world closest to i. (Again, an
antecedent-world outside |_$§; must never count as a closest antecedent-
world to i, not even if there are none closer.) But if the Limit Assump-
tion does not hold, then these simplified restatements will not do; the
‘might’ counterfactual is then true if and only if, as we take smaller and
smaller antecedent-permitting spheres around i without end, and
thereby confine our attention to antecedent-worlds closer and closer to
i, we never leave behind all the antecedent-worlds where the consequent
holds.

If the ‘would’ counterfactual ¢ [J— ¢ is non-vacuously true, then
the ‘might’ counterfactual ¢ O— ¢ also is true. If ¢ (3~ ¢ and its
opposite ¢ [J—> ~y are both false, then ¢ O— ¢ and its opposite
¢ O— ~1 are both true; for this is the case in which ¢ is true at some
of the closest ¢-worlds and ~ 4 is true at others of them. But when
é (1 ¢ is false and its opposite ¢ (1— ~4¢ is true, ¢ holds at none of
the closest ¢-worlds and ¢ O— ¢ is therefore false. Finally, when ¢ is
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not entertainable and ¢ [(J— ¢ is therefore vacuously true, ¢ O— ¢ is
again false.

Let T be a sentential constant true at every world; let L be a sentential
constant false at every world. (Or, if you prefer, let T abbreviate some
arbitrarily chosen truth-functional tautology and let 1 abbreviate its
contradictory negation.) Then the ‘would’ counterfactual ¢ [}~ 1
cannot be true otherwise than vacuously, when ¢ is not entertainable.
Therefore the ‘might’ counterfactual ¢ O— T, definitionally equivalent
to ~(¢ (0> ~T) and hence to the negation of ¢ [J— 1, is a sentence
true if and only if ¢ is entertainable.

We may therefore introduce into our language a pair of modal
operators defined in terms of the counterfactual conditional connectives:

O¢ =4 ¢ O— T (or, equivalently, ~(¢ (3~ 1)),
(¢ =% ~O~¢ (or, equivalently, ~¢ [ 1).

We may read < as ‘Possibly ____’ or as ‘It is entertainable that ;
we may read (] as ‘Necessarily ____ or as ‘It would be the case, no
matter what, that ____’. The two are interdefinable in the usual way:
not only is [J¢ definitionally, equivalent to ~<O~¢, as stipulated
above, but also it follows that ¢ is equivalent to ~[J~¢. Other
definitions could be given of the two modal operators:

O =" 4O 4,
O¢ =%~ O~ ¢,

for instance, are equivalent to the definitions given above.

From the truth conditions for counterfactuals and the definitions of
the two modal operators, we obtain derived truth conditions for modal
sentences as follows.

<O is true at a world i (according to a system of spheres $) if and
only if ¢ is true at some world in some sphere S in §,.

(¢ is true at a world i (according to a system of spheres $8) if and only
if ¢ is true at every world in every sphere S in §,.

We can also express these truth conditions in terms of the assign-
ment to each world i of the set of worlds | J$;: the union of all the
spheres around i (that is, the set of all and only those worlds that belong
to some or other sphere around 7). {_J$, is itself a sphere around i;itis the
largest, or outermost sphere around i.

<O is true at i (according to §) if and only if ¢ is true at some world in

US$:.
(J¢ is true at i (according to §) if and only if ¢ is true at every world in

US:.
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Hence our defined modal operators turn out to be interpretable in the
usual way by means of accessibility; they correspond to the assignment
to each world i of the single sphere of accessibility {_J§;. Since they per-
tain to the outermost of our spheres around each world i, let us call
them the outer modalities: outer necessity and outer possibility.

In case our system of spheres is universal, in that each | $, is the set
of all possible worlds, then our outer necessity and possibility will be
ordinary logical necessity and possibility. If the system of spheres is not
universal, so that at least for some worlds i the outermost sphere J$,
around i does not exhaust the set of all worlds, then our outer modali-
ties may not be the same as any familiar modalities. They will be
rather strict modalities: probably stricter than anything familiar except
the logical modalities themselves.

Our reading of < as ‘It is entertainable that ____ is justified by the
fact that, as we have already noted, ¢ is true at i if and only if ¢ is an
entertainable counterfactual supposition at i. That is so, we recall, if
and only if there is some ¢-permitting sphere around i, so that counter-
factuals with ¢ as antecedent can be false or non-vacuously true at i.
In other words, that is so if and only if ¢ is true at some world in some
sphere around i.

Our reading of [] as ‘It would be the case, no matter what, that ____’
is justified by the fact that if [J¢ is true at a world i, then x (J— ¢ is
true at i for any antecedent ¥ whatever. If y is.not entertainable, then
x C— ¢ is vacuously true; if x is entertainable, then x [}~ ¢ is non-
vacuously true because by hypothesis ¢ is true throughout every sphere
around i, and hence ¢ is true throughout some x-permitting sphere
around 7, and hence x > ¢ is true throughout some x-permitting
sphere around i.

()(¢ = ¢), the outer strict conditional, implies the counterfactual
é (3= ¢; if ¢ 2 ¢ is true throughout every sphere around i, then in
particular, if there is any ¢-permitting sphere around i, it is true through-
out that. But not conversely: the counterfactual is not the outer strict
conditional any more than it is any other constantly strict conditional,
despite the fact that (] is defined from [J—. ¢ [} ¢ is true and
()¢ = o) is false if D ¢ is true throughout some ¢-permitting sphere,
but false somewhere in some larger ¢-permitting sphere.

Indeed the counterfactual cannot be defined in any way whatever
from the outer modalities and truth-functional connectives. Given a
system of spheres, we may consider what happens to the truth values
of sentences when spheres are added or deleted, but in such a way as
never to change the outermost sphere around any world. The truth values
at worlds of counterfactuals (with non-counterfactual antecedents and
consequents) will in some cases change when non-outermost spheres
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are added or deleted; but such additions or deletions never could
change the truth value at any world of any sentence built up from non-
counterfactual sentences by means of the outer modalities and truth-
functional connectives alone. Therefore some counterfactuals cannot be
definitionally equivalent to any such sentences.

1.6 Impossible Antecedents

There is at least some intuitive justification for the decision to make a
‘would’ counterfactual with an impossible antecedent come out
vacuously true. Confronted by an antecedent that is not really an
entertainable supposition, one may react by saying, with a shrug: If
that were so, anything you like would be true! Further, it seems that a
counterfactual in which the antecedent logically implies the consequent
ought always to be true; and one sort of impossible antecedent, a self-
contradictory one, logically implies any consequent.

Moreover, one sometimes asserts counterfactuals by way of reductio
in philosophy, mathematics, and even logic. (I have done so in this very
chapter.) These counterfactuals are asserted in argument, and must
therefore be thought true; but their antecedents deny what are thought
to be philosophical, mathematical, or even logical truths, and must
therefore be thought not only false but impossible. These asserted
counterphilosophicals, countermathematicals, and counterlogicals look
like examples of vacuously true counterfactuals.

There are other things they might be, however. They might not really
be counterfactuals, but subjunctive conditionals of some other kind.
More interesting, they might be non-vacuously true counterfactuals,
understood in the way I have proposed; but so understood under the
pretense that along with the possible possible worlds that differ from
our world only in matters of contingent, empirical fact, there also are
some impossible possible worlds that differ from our world in matters
of philosophical, mathematical, and even logical truth. (The pretense
need not be taken very seriously to explain what happens in conversa-
tion; it just might be that this part of our conversational practice is
founded upon a confused fantasy.) These alternative hypotheses have
the merit that they might explain how we could discriminate in truth
value between different counterfactuals with impossible antecedents,
whereas my theory makes all of them alike come out vacuously true.

I do not think, however, that we need to discriminate in truth value
among such counterfactuals. Of course there are some we would assert
and some we would not:
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If there were a largest prime p, p!+ 1 would be prime.
If there were a largest prime p, p'+ 1 would be composite.

are both sensible things to say, but

If there were a largest prime p, there would be six regular solids.
If there were a largest prime p, pigs would have wings.

are not. But what does that prove? We have to explain why things we
do want to assert are true (or at least why we take them to be true, or
at least why we take them to approximate to truth), but we do not have
to explain why things we do not want to assert are false. We have
plenty of cases in which we do not want to assert counterfactuals with
impossible antecedents, but so far as I know we do not want to assert
their negations either. Therefore they do not have to be made false by a
correct account of truth conditions; they can be truths which (for good
conversational reasons) it would always be pointless to assert.

Therefore I am fairly content to let counterfactuals with impossible
antecedents be vacuously true. But my reasons are less than decisive,
and some might prefer a stronger ‘would’ counterfactual that cannot
be vacuously true. We write this as []—, and give it the following
truth conditions:

é (J= ¢ is true at a world i (according to a system of spheres $) if
and only if there is some sphere S in $; such that S contains at least
one ¢-world, and ¢ = ¢ holds at every world in S.

Preserving the interdefinability of ‘would’ and ‘might’ counterfactuals
as before, we introduce also a weakened ‘might’ counterfactual O—-,
vacuously true whenever its antecedent is impossible. It is defined by

¢ O= ¢ =% ~(¢ O— ~ ),
and it has the following derived truth conditions:

¢ O= 3 is true at a world i (according to a system of spheres $)
if and only if every sphere S in §, that contains at least one ¢-world
contains at least one ¢-world at which ¢ & ¢ holds.

One might perhaps motivate this weakened ‘might’ in much the same
way as I motivated the original, weak ‘would’: confronted by an
antecedent that is not really entertainable, one might say, with a shrug:
If that were so, anything you like might be true!

I find [J— and &—, taken as a pair, somewhat better intuitively
than [J=> and &=>; and the simple interdefinability of ‘would’
and ‘might’ seems plausible enough to destroy the appeal of the
mixed pair of [J— and $&=>. There seems not to be much more to be
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said; perhaps ordinary usage is insufficiently fixed to force either
choice, and technical convenience may favor one or the other pair
depending on how we choose to formulate our truth conditions. (On
the present formulation, (]~ and &= have simpler truth conditions;
on the formulation to be given in Section 2.7, [} and &— have
simpler truth conditions.) In any case, we have both pairs in stock;
and we can get either pair from the other via the following definitions:

¢ O=> ¢ =% (3 O>¢) 2 (4 O ),
¢ O ¢ =% (¢ 0O ¢) = (6 O ¢).

1.7 True Antecedents

We noted at the outset that truth of the antecedent was a defect in a
counterfactual, but not necessarily the sort of defect that produces
automatic falsity or a truth-value gap. According to the truth con-
ditions I have given, a counterfactual with true antecedent is true if
and only if the consequent is true. This is so both for ‘would’ and
‘might’ counterfactuals (and for the strong ‘would’ and weak ‘might’
counterfactuals introduced in the previous section). In short: counter-
factuals with true antecedents reduce to material conditionals.

Suppose the antecedent ¢ is true at a world i. Then there is a ¢-
permitting sphere around #, because {i} is a sphere. If the consequent ¢ is
true at i, then there is a ¢-permitting sphere around i throughout
which ¢ > ¢ holds, to wit {i}; so ¢ (1= ¢ is true at i. Also every ¢-
permitting sphere around # contains a world where ¢ & ¢ holds, since
every sphere around i, except the empty set which is not a ¢-permitting
sphere, contains the world i itself; so ¢ O— ¢ is true at i. If, on the
other hand, the consequent ¢ is false at i, then there is no ¢-permitting
sphere around i throughout which ¢ = ¢ holds, since it fails at the
world i which belongs to every ¢-permitting sphere; so ¢ [(J— ¢ is
false at i. Also there is a ¢-permitting sphere containing no world
where ¢ & ¢ holds, to wit {i}; so ¢ O— ¢ is false at i.

I can summarize the status of counterfactuals with true antecedents
by noting that the following two inference-patterns are valid: that is,
my truth conditions guarantee that whenever the premise is true at a
world, so is the conclusion.

b & ~y $&y
T =) R Yw e

The validity of the first inference-pattern guarantees also the validity
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of the inference from a counterfactual to a material conditional and the
validity of modus ponens from a counterfactual conditional:

_____¢|_3)—;¢/:/’ and ID_N/‘
7

How plausible are these consequences of my truth conditions? It is
hard to test them directly. It is not much help considering a counter-
factual with an antecedent known to be true, and asking whether it
seems to be true or false according as the consequent is thought to be
true or false. Our principal response will be not that the conditional
is true or that it is false, but that it is mistaken and misleading because
of its true antecedent. So it is, but that is not at issue. The false
information conveyed by using a counterfactual construction with
a true antecedent eclipses the falsity or truth of the conditional
itself.

It is not safe to put the conditional in indicative form in order to get
rid of the presupposition that the antecedent is false. Sometimes when
the antecedent is thought to be probably false, so that the counter-
factual construction is appropriate, the counterfactual and indicative
conditionals are thought to differ in truth value. (We considered
Ernest Adams’s example of this in Section 1.1.) Therefore we have no
right to take for granted that they have the same truth values when the
antecedent is thought to be true, differing only in the presuppositions
they carry.

What we must do, I think, is consider a dialog in which the partici-
pants disagree on the truth of the antecedent. The first speaker does not
deliberately violate the prohibition against asserting a counterfactual
with a true antecedent; rather, he asserts a counterfactual with an
antecedent he takes to be false. The second speaker replies, registering
disagreement with the first speaker’s manifest supposition that the
antecedent is false, but also expressing agreement or disagreement
with the first speaker’s assertion.

You say: ‘If Caspar had come, it would have been a good party.’ 1
reply: ‘That’s false; for he did come, yet it was a rotten party.’ Or else 1
reply: ‘That’s true; for he did, and it was a good party. You didn’t see
him because you spent the whole time in the kitchen, missing all the fun.’
Either reply seems perfectly cogent. In each reply, I correct your false
belief that Caspar was absent, manifest in your use of the counter-
factual form; but I do this while expressing overall disagreement or
agreement with your conditional assertion. Moreover, I justify my
disagreement or agreement by giving an argument. The argument is
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abbreviated, but its presence is signalled by the word ‘for’ in my reply.
The arguments I give have the forms

b&~p &Y
.. That’s false .. That’s true

respectively, where ¢ and ¢ are the antecedent and consequent of the
counterfactual you have just asserted, and ‘that’ in the conclusion refers
to what you have asserted. Therefore my replies are cogent only if the
inference-patterns that we want to test,

b & ~y b& Y
TG D ™M Tioy

are valid. The replies do seem cogent; so the inference-patterns are
valid; so my truth conditions for counterfactuals with true antecedents
are confirmed.

I admit that this test is not quite decisive. It is just possible that my
arguments to ‘That’s false’ and ‘That’s true’ are invalid with only the
premises that appear explicitly in my reply, and depend also on further
premises that are understood but not stated. Or it is just possible that
what I refer to as ‘that’ in my reply, and judge false or true, is not the
counterfactual you asserted, but rather some belief that I take to have
been your reason for thinking the counterfactual true.

The test by dialog is evidence for my truth conditions. What can be
said against them? So far as I know, only this: it would seem very odd
to pick two completely unrelated truths ¢ and ¢ and, on the strength
of their truth, to deny the counterfactual ¢ [} ~¢; and even odder to
assert the counterfactual ¢ [J— 4. What would we make of someone
who saw fit to deny that if the sky were blue then grass would not be
green, or to assert that if the sky were blue then grass would be green?
It would be doubly odd. First, because he is using the counterfactual
construction with an antecedent he takes to be true, though this con-
struction is customarily reserved for antecedents taken to be false;
second, because his assertions could serve no likely conversational
purpose that would not be better served by separate assertions of ¢ and
¥. But oddity is not falsity; not everything true is a good thing to say.
In fact, the oddity dazzles us. It blinds us to the truth value of the
sentences, and we can make no confident judgements one way or the
other. We ordinarily take no interest in the truth value of extreme
oddities, so we cannot be expected to be good at judging them. They
prove nothing at all about truth conditions.

I have claimed that the counterfactuals with true antecedent and false
consequent are false, and that those with true antecedent and true
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consequent are true. I am fairly sure of both claims, but surer of the
first; so it may be of interest to see what changes could be made to
keep the first result but not the second.

The first is a consequence of the assumption that no world is more
similar to a world i than i/ itself is; and that seems perfectly safe. The
second is a consequence of the assumption that no other world is even as
similar to i as i itself is; and that is not quite such a safe assumption.
Perhaps our discriminations of similarity are rather coarse, and some
worlds different from i are enough like i so that such small differences
as there are fail to register. In that case, we would need to revise the
definition of a system of spheres, weakening the original centering
condition (C) which stipulated that {i} was to be a sphere around i.

Let § be an assignment to each world i of a set $, of sets of worlds.
Then $ is a weakly centered system of spheres if and only if, for each
world i, the following conditions hold.

(W) 8, is weakly centered on i; that is, i belongs to every nonempty
sphere around i, and there is at least one nonempty sphere
around i.

(1)-(3) $, is nested, closed under unions, and closed under (nonempty)
intersections; these conditions are unchanged.

In a weakly centered system of spheres, the smallest, or innermost,
nonempty sphere around i is the intersection of all nonempty spheres
around i—that is, ()($;—{A}). It contains the closest worlds to i. The
world i itself is one of these closest worlds to i; but there may be others
as well—worlds differing negligibly from i, so that they come out just as
close to i as 7 itself.

Having weakened our conditions on the system of spheres, we can
leave the truth conditions for counterfactuals unchanged and still
have the intended result: a counterfactual with true antecedent and false
consequent must be false, but one with true antecedent and true conse-
quent may be either true or false. Suppose ¢ is true at a world i; then
the smallest ¢-permitting sphere around i is the innermost nonempty
sphere around i. This sphere contains i itself. It may or may not contain
other worlds, now that we have (temporarily!) retreated from centering
to weak centering. If it does, there may or may not be ¢-worlds other
than i among them. Suppose there are; then ¢ [J— ¢ holds at i if and
only if the consequent i holds not only at i itself but also at the other
#-worlds in the innermost nonempty sphere around i. Thus it may
happen that a counterfactual with true antecedent and consequent is
false if the consequent is false at a sufficiently close antecedent-
world.

When we weaken centering, then a distinction appears between
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truth at i itself and truth at all or some of the worlds in the innermost
nonempty sphere around i. To express the latter, we may introduce a
second pair of modal operators, defined ultimately in terms of the
counterfactual connectives. These will pertain to the innermost non-
empty sphere around each world i, so let us call them the inner modali-
ties: inner necessity and inner possibility.

Cl¢ =4 T[J=>¢ (or, equivalently, OT & T [ ¢),
OS¢ =T O=>¢ (or, equivalently, OT 2 T O— ¢).

We obtain derived truth conditions for the inner modalities as
follows.

[[)¢ is true at i if and only if ¢ is true at every world in some non-
empty sphere around i.

<&¢ is true at i if and only if ¢ is true at some world in every non-
empty sphere around i.

Given that we have an innermost nonempty sphere around i, the truth
conditions can be stated more simply: the inner modalities are in-
terpreted by means of accessibility, the appropriate assignment of
spheres of accessibility being the assignment to each world i of the
innermost nonempty sphere around i, that is (8, —{A}), as its single
sphere of accessibility. ()¢ is true at i if and only if ¢ holds throughout
the innermost nonempty sphere around /, and thus means that ¢ holds
at every maximally close world. <>¢ is true at i if and only if ¢ holds
somewhere in the innermost nonempty sphere around /i, and thus
means that ¢ holds at some maximally close world.

The outermost sphere includes the innermost nonempty sphere;
therefore outer necessity is stricter than inner necessity. Therefore
(¢ implies ¢ and <S¢ implies O.

So long as we confine our attention to weakly centered systems of
spheres, the inner modalities could be defined more simply as T (J— ¢
and T O— ¢ respectively. According to any weakly centered system
of spheres, these definitions are exactly equivalent to those I gave, since
T is true at every world and hence never fails to be entertainable. But in
Section 5.1 I shall give a deontic reinterpretation of our language, on
which it will be appropriate to give up even weak centering. Then there
may not be any nonempty spheres around a world; in which case
nothing, not even T, is entertainable and the definitions no longer will be
equivalent. Then it will prove advantageous to have defined the inner
modalities as I did.

If we insist—correctly, I think—on interpreting the counterfactuals
by means of a centered system of spheres, then it is pointless to con-
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sider the inner modalities. Under unweakened centering, the inner
modalities are trivial: both [J¢ and ©&¢ are equivalent to ¢ itself.*

We noted that the counterfactual cannot be defined from truth-
functional connectives and the outer modalities; neither can it be
defined from these plus the inner modalities. That is so whether we
assume centering, weak centering, or neither. The reason is that we can
change truth values of counterfactuals by adding or deleting spheres
that are neither outermost nor innermost, but we cannot in this way
change the truth value of any sentence built up from non-counter-
factual sentences by means of truth-functional connectives and outer
and inner modalities.

1.8 Counterfactual Fallacies

Certain inferences are correct for the material conditional, and indeed
for any constantly strict conditional, but not for variably strict con-
ditionals. The inference fails because the strictness varies between
different conditionals in the premises and conclusion. Three especially
important inferences that fail for variably strict conditionals may be
called the fallacy of strengthening the antecedent, the fallacy of transi-
tivity, and the fallacy of contraposition.}
The fallacy of strengthening the antecedent is the invalid inference-
pattern:
¢ O— ¢ .
S & xO—4

We have already noted that the premise of such an inference may be
true and the conclusion false, in connection with my sequences of
counterfactuals and their negated opposites with stronger and stronger
antecedents and consequents alternating between a sentence and its
negation. The consistency of such sequences, and therefore the in-
validity of inference by strengthening the antecedent, was indeed the
principal evidence I gave that counterfactuals were variably, not
constantly, strict conditionals.

Adding a conjunct to an antecedent is only one among many ways to

* The observation that two different pairs of modalities are definable from the
counterfactual, both non-trival under weak centering, is due to Sobel.

t These three fallacies have been discussed by Robert Stalnaker from the
standpoint of a theory equivalent (as explained in Section 3.4) to a special case of
mine. See Stalnaker, ‘A Theory of Conditionals’, in N. Rescher, Studies in
Logical Theory (Blackwell: Oxford, 1968). An extensive survey of these and other
counterfactual fallacies is given in Sobel, ¢ Utilitarianisms: Simple and General’
(appendix).
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strengthen it. A more general form of the fallacy of strengthening the
antecedent is as an invalid inference-pattern with two premises:

Okx > ¢)
$0—=>¢
SoxO—9

In the special case that y is the conjunction of ¢ and something else, the
strict conditional [J(x @ ¢) will hold. The inference is fallacious even
if outer necessity is logical necessity, and a fortiori also if it is a less
strict necessity. For a counterexample to inference by strengthening the
antecedent, in which the strengthening is done otherwise than by
adding a conjunct, consider this invalid argument.

(1 (I started at 5 this morning = I started before 6)
If I had started before 6, I would have arrived before noon.
.. If I had started at 5, I would have arrived before noon.

Certainly the first premise is true. To see how the second premise may
be true and the conclusion false, suppose that in fact I started just after
6, tried out a new shortcut that turned out to cut two hours off the usual
time for the journey, and arrived at noon exactly; but suppose that if 1
had started at 5, I would have been too sleepy to remember to try the
shortcut. (I am supposing that the later I started, in the range of times
permitted by the antecedent, the closer an antecedent-world is to our
actual world; this may be so, but might not be if, for instance, I planned
on starting at 5 and failed to do so only because my alarm did not
quite wake me up.)
The fallacy of transitivity is the invalid inference-pattern

x[O—4¢
>4
Sox O

The fallacy of transitivity is a further generalization of the fallacy of
strengthening the antecedent. From the strict conditional [(x = ¢)
we can correctly infer y [J— ¢; from that and ¢ [J— ¢ we can fallacious-
ly infer x (J— ¢ by transitivity. Inference by transitivity would thus
justify inference by strengthening the antecedent; since we know that
the latter is fallacious, so is the former. For a direct counterexample to
transitivity, consider this argument:

If Otto had gone to the party, then Anna would have gone.
If Anna had gone, then Waldo would have gone.

.. If Otto had gone, then Waldo would have gone.
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The fact is that Otto is Waldo’s successful rival for Anna’s affections.
Waldo still tags around after Anna, but never runs the risk of meeting
Otto. Otto was locked up at the time of the party, so that his going to
it is a far-fetched supposition; but Anna almost did go. Then the
premises are true and the conclusion false. Or take this counterexample,
from Stalnaker:*

If J. Edgar Hoover had been born a Russian, then he would have
been a Communist.
If he had been a Communist, he would have been a traitor.

.. If he had been born a Russian, he would have been a traitor.

In general, transitivity fails in the situation shown in Figure 4(A).
The antecedent of the first premise must be more far-fetched than the
antecedent of the second, which is the consequent of the first. Then the
closest worlds where the first antecedent holds are different from—and
may differ in character from—the closest worlds where the second
antecedent holds. That is the situation in our examples. We must go
farther from actuality to find worlds where Otto went than to find
worlds where Anna went. A Communist Hoover is nowhere to be
found at worlds near ours, but a Russian-born Hoover is still more
remote.

In these and all other counterexamples to transivity, the ‘might’
counterfactual ¢ &— ~y is true. In these examples, but not in all, we
can say something stronger: the ‘would’ counterfactual ¢ [}> ~y is
non-vacuously true. If Anna had gone, Otto would still not have; if
Hoover had been a Communist, he would still not have been born a
Russian.f By adding a third premise to the inference by transitivity,
we may rule out all cases where transitivity fails. The inference-pattern

~(p O—> ~x) ¢ O—x
x[—4¢ x O~ ¢
$L>9 or, more simply, ————~¢ >y

Sox Oy SoxO-¢

* ‘A Theory of Conditionals’.

T Still’, ‘even so’, etc. in the consequent, or ‘even’ before the antecedent, mark
a presupposition that the consequent fails to contrast with something. In the cases
above, it is true and so fails to contrast with the actual state of affairs; in other
cases, it is false but fails to contrast with the consequent of some other counter-
factual. Insofar as it is misleading to omit these contrast-marking devices when
they would be appropriate, perhaps we may say that the unmarked counter-
factual carries a weak presupposition that the consequent does contrast with
something. I treat such presuppositions about the consequent, as I do the pre-
supposed falsity of the antecedent, as matters of conversational implicature
irrelevant to truth conditions.
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(A) FAILURE OF TRANSITIVITY

FIGURE 4
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is perfectly valid. Using this valid inference-pattern, and the fact that
the requisite third premise of the form ¥ & ¢ [J— x must be true, we can
justify a valid special case of inference by transitivity:

xO>x & ¢
x &¢0>¢
SoxO—¢

Since the inference from x (> ¢ to x [(J— x & ¢ is valid, we can
simplify this inference-pattern to:

x O—>¢
x & ¢O0~>¢
x>y

Another valid inference-pattern resembling the fallacious inference
by transitivity may be called inference by weakening the consequent.
It is like transitivity except that the second conditional premise is a
strict conditional instead of the corresponding counterfactual.

x 0~ ¢
0> ¢)
Sox Oy

The fallacy of contraposition is either one of the two invalid inference-
patterns

¢ O~y ~Yp 0> ~¢
b~ M T

Obviously, both or neither are valid; let us concentrate on the first.
For instance, consider this argument.

If Boris had gone to the party, Olga would still haye gone.
.. If Olga had not gone, Boris would still not have gone.

Suppose that Boris wanted to go, but stayed away solely in order to
avoid Olga, so the conclusion is false; but Olga would have gone all
the more willingly if Boris had been there, so the premise is true. In
general, ¢ (J— ¢ may be true and its contrapositive false in the situation
shown in Figure 4(B).

Note that we could use contraposition to justify the following
inference-pattern involving *might’ counterfactuals:

$O—>¢
SLPO—>¢

But this inference has no plausibility at all. Note also that although
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contraposition of counterfactuals is invalid, nevertheless inference by
modus tollens on a counterfactual is valid:

We cannot regard this modus tollens as proceeding by contraposition
followed by modus ponens, as we can in the case of modus tollens on a
material conditional; rather we should think of it as an inference from
the counterfactual to the material conditional ¢ > i, followed by
contraposition of the material conditional, followed by modus ponens
on the contraposed material conditional.

1.9 Potentialities

We might have occasion to complain that if the winner had not bribed
the judge, then he would not have won. By this, we do not mean that
the closest worlds to ours where ‘The winner did not bribe the judge’ is
true are worlds where ‘The winner did not win’ is true. Our complaint
might be true, but that construal of it certainly is false. The supposition
that someone managed to win without bribing the judge—far-fetched
though it might be—is entertainable; but there are no worlds at all,
neither the closest worlds where that supposition holds nor any others,
where anyone wins without winning. (One can win officially without
‘really’ winning, but that is equivocation—stick to official winning.)
Our complaint therefore is not

The winner did not bribe the judge [1— the winner did not win.

Rather, it is de re with respect to ‘the winner’. We are ascribing to
whoever actually was the winner a counterfactual property, or poten-
tiality, expressed by the formula

x did not bribe the judge [1— x did not win.

We are talking about what would have befallen the actual winner, not
about what would have befallen whoever would have been the winner.
Our supposition is that he—the actual winner—did not bribe the judge.
It matters not that the description ‘winner’ we used to specify him as
the one we were making suppositions about would not have fitted him
(in our opinion) if the supposition had been true. The right way to
symbolize what we want to say would be something like this:

The winner is an x such that
(x did not bribe the judge [1— x did not win).
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This symbolization reveals that the counterfactual formula and its
subformulas ‘x did not bribe the judge’ and ‘x did not win’ are what
enter into the interpretation of the sentence, whereas the seeming
antecedent and consequent ‘The winner did not bribe the judge’ and
‘The winner did not win’ are foisted upon us by a superficial illusion of
grammar.

We could treat ‘is an x such that . ..’ as a structureless abstraction
operator that attaches to a formula ¢, to make a predicate that can
combine in turn with a denoting term « to make a subject-predicate
sentence. (Or to make another formula, in case there are free variables
besides the free x in ¢,.) Alternatively, we could treat ‘*__is an x such
that ... as a quantificational matrix with two gaps suitable to receive
« and ¢, respectively:

Ix(x=—— & ...).

Either way, a sentence ‘« is an x such that ¢,’ is true at a world i if
and only if whatever is denoted at i by « satisfies ¢, at i (as a value of the
variable x)—in other words, has the property expressed by the formula
b *

Counterfactuals de re crop up in connection with countercompara-
tives. What if my yacht were longer than it is? The supposition is
notoriously not that the seeming antecedent ‘ My yacht is longer than
it is’ is true (in any straightforward way; but see Section 2.8). One way
to handle counterfactuals with this seeming antecedent is as de re
predications of a counterfactual potentiality to whatever is the actual
length of my yacht.

The length of my yacht is an x such that
(the length of my yacht exceeds x [(]—. ..)

Of course, we need an entity to have the potentiality being ascribed.
It is easy enough to hypostatize lengths, but what do we make of ‘If
mankind were wiser ...’ ?

Potentialities expressed by counterfactual formulas are needed not
only in the de re cases, but also for universal or existential quantifica-
tions (including the existential quantifications that arise if we take
‘___is an x such that ... as a quantificational matrix). We want a
way to say that any winner who would not have won if he had not
bribed the judge is a knave:

Vx((Wx & (~Bx [} ~Wx))> Kx),
* On the use of abstraction operators to give a clear and unambiguous sym-

bolization of modal predications de re, see Richmond Thomason and Robert
Stalnaker, ‘Modality and Reference’, Noiis 2 (1968): 359-372.
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using the obvious abbreviations. Or that there was at least one Roman
emperor who, if only he had had gunpowder, would have conquered
all of Europe:

Ix(Rx & (Gx [J— Cx)).

Or that a thing has disposition D if and only if, subjected to test T, it
would give response R:

Vx(Dx = (Tx (]~ Rx)).

(The point is not that I want to believe instances of the last—I am in-
clined not to—but that I want my theory of counterfactuals to explain
what they mean.) There is nothing peculiar about the use of quantifiers
in these sentences. To interpret them, and to interpret also our counter-
factuals de re, all we need is an account of satisfaction by things of
counterfactual formulas. Or, in the material mode: of possession by
things of counterfactual potentialities.

It is enough to ask for conditions under which a single thing satisfies a
formula ¢, [} ¢ with x as the only free variable. The generalization
to satisfaction of formulas with arbitrarily many free variables by
arbitrarily long or infinite sequences of things is routine, once we know
what to do in the one-variable case. It is not required that x appear
both in ¢, and in ¢,. Often it does not:

The length of my yacht exceeds x (0— I am contented
I am ostentatious [} the length of my yacht exceeds x

for instance, might be used in symbolizations of ‘If my yacht were
longer I would be contented’ and ‘If I were ostentatious my yacht would
be longer’. In fact, I do not even exclude the degenerate case that x
appears neither in ¢, nor in ¢,.

As a first try, we could give satisfaction conditions for counterfactual
formulas simply by imitating the truth conditions for counterfactual
sentences, letting the thing that satisfies the formula tag along through-
out. Something satisfies ¢, (1 ¥, at a world i, on this proposal, if and
only if either (1) no world where it satisfies ¢, belongs to any sphere
around i (the vacuous case), or (2) some sphere S around i does contain
at least one world where it satisfies ¢,, and at every world in S where it
satisfies ¢, it also satisfies ¢,. So, for example, if Ripov is the winner
because he bribed the judge (here at our world), then he has the poten-
tiality expressed by

x did not bribe the judge [} x did not win

non-vacuously if and only if there is some sphere containing worlds
where he did not bribe the judge, throughout which all the worlds
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where he did not bribe the judge are worlds where he did not win.
Roughly: if and only if he did not win at the closest of the worlds where
he did not bribe the judge.

The trouble is that this presumes that we have the very same Ripov
active at several worlds: ours, where he bribes the judge and wins, and
others, where he does not bribe the judge and does not win. What makes
the inhabitant of another world, who does not bribe and does not win,
identical with our Ripov? I suppose the answer must be either that his
identity with our Ripov is an irreducible fact, not to be explained in
terms of anything else, or that his identity with our Ripov is due to some
sort of similarity to our Ripov—he is Ripov because he plays much the
same role at the other world that our Ripov plays here. Neither answer
pleases me. The first answer either posits trans-world identities between
things arbitrarily different in character, thereby denying what1 take to be
some of the facts about de re modality, or else it makes a mystery of
those facts by denying us any way to explain why there are some
sorts of trans-world identities but not others. The second answer at least
is not defeatist, but it runs into trouble because similarity relations lack
the formal properties—transitivity, for instance—of identity.

The best thing to do, I think, is to escape the problems of trans-
world identity by insisting that there is nothing that inhabits more than
one world. There are some abstract entities, for instance numbers or
properties, that inhabit no particular world but exist alike from the
standpoint of all worlds, just as they have no location in time and space
but exist alike from the standpoint of all times and places. Things that
do inhabit worlds—people, flames, buildings, puddles, concrete particu-
lars generally—inhabit one world each, no more. Our Ripov is a man of
our world, who does not reappear elsewhere. Other worlds may have
Ripovs of their own, but none of these is our Ripov. Rather, they are
counterparts of our Ripov. What comes from trans-world resemblance
is not trans-world identity, but a substitute for trans-world identity:
the counterpart relation. What our Ripov cannot do in person at
other worlds, not being present there to do it, he may do vicariously
through his counterparts. He himself is not an honest man at any world
—he is dishonest here, and nonexistent elsewhere—but he is vicariously
honest through his honest counterparts.

In general: something has for counterparts at a given world those
things existing there that resemble it closely enough in important
respects of intrinsic quality and extrinsic relations, and that resemble
it no less closely than do other things existing there. Ordinarily some-
thing will have one counterpart or none at a world, but ties in simi-
larity may give it multiple counterparts. Two special cases: (1) any-
thing is its own unique counterpart at its own world, and (2) the abstract
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entities that exist alike from the standpoint of all worlds, but inhabit
none, are their own unique counterparts at all worlds.

I have proposed elsewhere that the counterpart relation ought to be
used as a substitute for trans-world identity in explaining de re modal-
ity.* The realm of essence and accident is the realm of the vicarious.
What something might have done (or might have been) is what it does
(or is) vicariously ; and that is what its counterparts do (or are). What is
essential to something is what it has in common with all its counterparts;
what it nowhere vicariously lacks. Ripov’s honest counterparts make
him someone who might have been honest. His lack of inanimate
counterparts makes him essentially animate. In terms of satisfaction of
modal formulas: something satisfies []é, at a world i if and only if any
counterpart of it at any world j accessible from i satisfies ¢, at j;
something satisfies O¢, at a world i if and only if it has some counter-
part at some world j accessible from i that satisfies ¢, at j. Alternatively,
we can say that something vicariously satisfies ¢, at a world i if and only
if it has some counterpart at i that satisfies ¢, at i. (At one’s own world,
vicarious satisfaction coincides with satisfaction.) Then we can restate
the conditions in terms of vicarious satisfaction. Something satisfies
[O¢. at i if and only if there is no world accessible from i where it vica-
riously satisfies ~ .. Something satisfies O¢, if and only if there is some
world accessible from i where it vicariously satisfies ¢,.1

The method of counterparts seems to me to have many virtues as a
theory of de re modality. (1) It has the same explanatory power as a
theory of de re modality that employs trans-world identity based on
trans-world resemblance. The facts about what things might have been
and might have done are explained by our standards of similarity—
that is, of the comparative importances of respects of comparison—plus
facts about how things actually are. Modal facts are grounded in facts
about actual character, not mysteriously independent. It is because
of the way Ripov actually is that certain honest men at other worlds
resemble him enough to be his counterparts, and inanimate things at
other worlds do not. (2) However, we are rid of the worst burden of a
theory of trans-world identity based on trans-world resemblance: the
counterpart relation is not identity, so we need not try to force it to

* ‘Counterpart Theory and Quantified Modal Logic’, Journal of Philosophy 65
(1968): 113-126; ‘Counterparts of Persons and Their Bodies’, Journal of Philo-
sophy 68 (1971): 203-211.

$ An alternative definition of vicarious satisfaction would put the double
negation in the satisfaction conditions for O¢, instead of those for [Jé.; but we
would be stuck with it one place or other. The reason is that something with more
or less than one counterpart at a world may vicariously satisfy both or neither of
¢, and ~¢,, so vicariously satisfying ~ ¢, is not the same as not vicariously

satisfying ¢..
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have the logical properties of identity. (3) Therefore we have a desirable
flexibility. For instance, we can say that something might have been
twins because it has twin counterparts somewhere, without claiming
that it is literally identical with two things not identical to one another.
(4) Since the counterpart relation is based on similarity, the vagueness
of similarity infects de re modality. And that is all to the good. It goes a
long way toward explaining why questions of de re modality are as
difficult as we have found them to be. (5) We can plead this same vague-
ness to explain away seeming discrepancies among our de re modal
opinions. For instance, consider two inhabitants of a certain world that
is exactly like ours in every detail until 1888, and thereafter diverges.
One has exactly the ancestral origins of our Hitler; that is so in virtue
of events within the region of perfect match that ended just before his
birth. In that region, it is quite unequivocal what is the counterpart of
what. The other has quite different ancestral origins, but as he grows
up he gradually duplicates more and more of the infamous deeds of our
Hitler until after 1930 his career matches our Hitler’s career in every
detail. Meanwhile the first lives an obscure and blameless life. Does
this world prove that Hitler might have lived a blameless life? Or does
it prove that he might have had different ancestral origins ? I want to be
able to say either—though perhaps not both in the same breath—
depending on which respects of comparison are foremost in my mind;
and the method of counterparts, with due allowance for vagueness,
allows me to do so. (6) There are also cases where we need to mix
different counterpart relations in a single sentence in order to make
sense of it as a reasonable thing to think; for instance, sentences of de re
contingent identity. We shall see other cases in connection with counter-
factuals. I see no way to get the same effect by means of trans-world
identity alone, though one might get it by mixing in trans-world
identity along with the counterpart relations.

Now I shall use the method of counterparts to correct my previous
satisfaction conditions for counterfactual formulas. The formulation I
gave will not do at all. Without the trans-world identities I reject, it
leads in most cases to vacuity. We need to replace trans-world identity
by the counterpart relation; that is, to replace satisfaction (in the
definiens) by vicarious satisfaction. Roughly speaking, I want to say
that Ripov has the potentiality expressed by

x reforms [ 1> x confesses

—that he satisfies that formula—because the closest worlds where he
vicariously reforms are worlds where he vicariously confesses. But that
is not quite right, even if we forget to doubt the Limit Assumption.
What if he has multiple counterparts at one of the closest worlds
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where he vicariously reforms? It is not enough if one reforms and
another confesses; it is not even enough if one reforms and confesses,
and another reforms without confessing. What we must require is that
at every closest world where one of Ripov’s counterparts reforms, all of
those who reform also confess—that is, none reforms without con-
fessing. The closest worlds where he vicariously reforms must be worlds
where he does not vicariously both reform and not confess. (Distin-
guish between (1) vicariously both reforming and not confessing, both
through the same counterpart, and (2) both vicariously reforming
and vicariously not confessing, perhaps through different counter-
parts.)

In general: something satisfies ¢, [J— ¢, at a world i if and only if
either (1) no world where it vicariously satisfies ¢, belongs to any sphere
around i (the vacuous case), or (2) some sphere .S around i does contain
at least one world where it vicariously satisfies ¢,, and at no world in
that sphere does it vicariously satisfy ¢, & ~i,. Putting it in terms of
the counterpart relation: something satisfies ¢, (1> ¢, at a world i if
and only if either (1) at no world j in any sphere around i does it have a
counterpart that satisfies ¢, at j, or (2) some sphere S around i does
contain at least one world j such that some counterpart of it at j satisfies
é. at j, and every counterpart of it at any world k in S that satisfies
é. at k also satisfies ¢, at k.

The method of counterparts is needed not only to give an account of
satisfaction of counterfactual formulas by things that inhabit our
world alone, but also to interpret counterfactuals containing ‘I’,
‘you’, or demonstratives. These denote on any occasion of utterance
such things as the speaker, his audience, the things he points to; and
these are things that inhabit only the world of the utterance. So if I say
“If I had given you that, you would have broken it’, what are denoted by
‘I’, ‘you’, and ‘that’ are three things confined to our world. The
closest antecedent-worlds are not worlds where those things reappear,
suitably related—that way lies vacuity—but worlds where those things
have suitably related counterparts. The counterfactual is true, roughly, if
and only if the closest worlds where there is a triple {a, b, c) of counter-
parts of I, you, and that, respectively, such that a gives ¢ to b, are
worlds where there is no such triple in which b does not break ¢. We
have two options. We could give special truth conditions for counter-
factuals with ‘I’, ‘you’, or demonstratives, along the lines I have
sketched ; or we could use the satisfaction conditions just laid down for
counterfactual formulas by insisting that all occurrences of ‘I’, ‘you’, or
demonstratives should be taken as de re.

It would be a good idea to provide for more than one counterpart
relation. Different counterpart relations might vary in the stringency
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of resemblance they require; or they might stress different respects of
comparison.

We can explain the simultaneous truth of Goodman’s sentences

(1) If New York City were in Georgia, New York City would be in the
South.

and

(2) If Georgia included New York City, Georgia would not be entirely
in the South.

by the hypothesis that both are de re both with respect to ‘New York
City’ and with respect to ‘Georgia’, and that a less stringent counter-
part relation is summoned up by the subject terms ‘New York City’ in
(1) and ‘Georgia’ in (2) than by the object terms ‘Georgia’ in (1) and
‘New York City’ in (2). Then in (1) we are concerned with the closest
worlds to ours where a not-too-close counterpart of our New York
is in a close counterpart of our Georgia, and hence is in (a counterpart
of ?) the South; whereas in (2) we are concerned with the closest worlds
to ours where a not-too-close counterpart of our Georgia includes a
close counterpart of our New York City, and hence is not entirely
included in the South.*

For a familiar illustration of the need for counterpart relations
stressing different respects of comparison, take ‘If I were you . ..’. The
antecedent-worlds are worlds where you and I are vicariously identical;
that is, we share a common counterpart. But we want him to be in your
predicament with my ideas, not the other way around. He should be
your counterpart under a counterpart relation that stresses similarity
of predicament; mine under a different counterpart relation that
stresses similarity of ideas.

* Alternatively, perhaps each is de re with respect to one of the two names—
perhaps the subject in both, perhaps the object in both—and we are seeing a dif-
ference in stringency between a counterpart relation involved in satisfaction of
counterfactual formulas and a counterpart relation involved in determining the
denotation at other worlds of a proper name originally bestowed by an episode
of naming that involved some inhabitant of our world,



2. Reformulations

2.1 Multiple Modalities

There are various ways to formulate my analysis of counterfactuals as
variably strict conditionals based on comparative similarity of worlds.
Let us look at some of the alternative formulations. Some are exactly
equivalent to my first formulation by means of systems of spheres;
others are equivalent only to special cases thereof.

Suppose there are no more than a certain finite number n of non-
empty spheres around any world. Then we can number the spheres
around each world i in order of increasing size. We begin with S?, the
empty set; then comes S}, the innermost nonempty sphere (assuming
centering, S} is {i}); then S?, the next smallest; and so on out to S%,
the largest sphere around i. (In case i has fewer than its full complement
of n distinct nonempty spheres, we give all the left-over numbers to the
outermost sphere. If there are only #—2 nonempty spheres around a
certain world i, for instance, the outermost of them counts as S} ~2, as
St—1, and as S7'.) We introduce a family of increasingly strict necessity
operators (7, ..., [, together with the corresponding possibility
operators <y, . . ., Oy For any number m from 1 through n, [J,¢ is to
be true at a world i if and only if ¢ holds throughout S7*; and <pé
is to be true at i and if only if ¢ holds at some world in S". In other
words, the spheres ST are the spheres of accessibility for the mth pair of
modal operators, [, and <y *

Given such a family of modalities, the counterfactual connectives are
definable.

0>y =i &L (d2¢) V...V
(<>n¢ & O, (d’ = l)t‘)) \ ~0n¢’

PO =%(C1p> 1 & P &... &
(Ond 2 On (B &) & Ond

* Such a system of multiple modalities is discussed in M. K. Rennie, ‘Models
for Multiply Modal Systems’, Zeitschrift fiir mathematische Logik und Grundlagen
der Mathematik 16 (1970): 175~186, and in L. F. Goble, ‘Grades of Modality’,
Logique et Analyse 51 (1970): 323-334.
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More generally, if we were willing to assume that there are no infinite
descending sequences of smaller and smaller spheres around any one
world, we could number the spheres around each world by ordinals,
including perhaps transfinite ordinals. We could then introduce an
infinite family of increasingly strict necessity operators, together with
the corresponding possibility operators, indexed by ordinals and thereby
placed in correspondence with the spheres around each world. We
could then define the counterfactual connective by an infinite dis-
junction (for [}-+) or an infinite conjunction (for ©&—) of disjuncts or
conjuncts like those in the finite definitions above.

2.2 Propositional Quantification

Infinite disjunctions or conjunctions often can be replaced by existential
or universal quantifications. They can be thus replaced in this case; and
as a bonus we can drop the restriction against infinite descending
sequences of smaller and smaller spheres around a world. We could
quantify over modalities themselves;* instead of a disjunction or con-
junction of parallel clauses involving different modalities, we could have
a definiens in which an initial quantifier over suitable modalities binds
a modal-operator-variable in its scope. But for our present purposes we
need nothing so exotic. Propositional quantification will serve as well.

Suppose that our language has the following resources: (1) pro-
positional variables, grammatically interchangeable with sentences;
(2) existential and universal quantifiers 3 and ¥ that may be used to
bind these variables; (3) the operators (] and < of outer necessity and
possibility; (4) the truth-functional connectives; and (5) a special one-
place sentential operator O, called the sphericality operator. A sentence
O#¢ is to be true at a world 7 if and only if there is some sphere S around
i such that ¢ is true at all and only the worlds in S. More precisely,
since ¢ may be an open sentence with free propositional variables:
O¢ is true at i, relative to a given assignment of values to its free
propositional variables (if any), if and only if there is some sphere S
around 7 such that ¢ is true, relative to that assignment of values, at all
and only the worlds in S.}

Now we are ready to define the counterfactual connectives. We have

* A system that permits quantification over modalities is given in Richard
Montague, ‘Universal Grammar’, Theoria 36 (1970): 373-398; reprinted in
Montague Formal Philosophy.

{ Alternatively, suppose we are given the logical modalities rather than tne
outer modalities; then we may begin by defining the outer modalities using the
given apparatus.
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only to copy their truth conditions into the object language. We no
longer assume any special restrictions on the system of spheres.

¢ ¢ =12 (0O & O (£ & ¢) & T(¢ & ¢.2¥)),
pO>¢h =4 Op & VEOE & O(¢ & 4).2 O & ¢ & ).

Here £ is any variable that does not occur in ¢ or .

The values of propositional variables are, of course, called proposi-
tions. It does not much matter what propositions are, so long as (1) they
are entities that can be true or false at worlds, and (2) there are enough
of them. They must have truth values at worlds so that an open sentence
consisting of a propositional variable standing alone will have truth
values at worlds, relative to an assignment of a value to the variable:
the truth value of the sentence is the truth value of the proposition
assigned as value to the variable. For every proposition, as for every
sentence, there is a set of the worlds where it is true. Conversely, for
each set of worlds, there should be a proposition true at all and only
the worlds in that set. Otherwise we cannot safely transform quantifica-
tion over sets of worlds in the metalanguage into propositional quanti-
fication in the object language, as we did to obtain our definitions of
the counterfactual operators.

For the sake of definiteness, we may take sets of worlds to be proposi-
tions.* A proposition P is true at a world i if and only if i belongs to the
proposition—the set—P. There is a proposition for every set of worlds
because the set itself is the proposition true at all and only the worlds

* Asis done in much recent work in possible-world semantics. (Sometimes with a
trivial difference: propositions are taken to be the characteristic functions of sets of
worlds rather than the sets themselves.) The idea goes back at least to Clarence 1.
Lewis, ‘The Modes of Meaning’, Plulosophy and Phenomenological Research 4
(1944): 236-249, in which the set of worlds is called the ‘comprehension’ of the
proposition; and to Rudolf Carnap, Meaning and Necessity (University of
Chicago Press: Chicago, 1947), in which propositions are taken as sets of state
descriptions, and state descriptions are said to ‘represent Leibniz’ possible worlds
or Wittgenstein’s possible states of affairs’. No theory can fit all that philosophers
have said about ‘propositions’—they have said too much—but the identification
of propositions with sets of worlds captures a good part of the tradition. Proposi-
tions so understood are non-linguistic entities capable of being true or false.
They exist eternally, non-contingently, and independently of us. One proposition
may be expressed by many sentences, in one language or in many, or by non-
verbal means of communication; on the other hand, there may be propositions
that we have no way to express. Two sentences that are logically equivalent, or
that do not differ in truth value at any world for whatever reason, express the
same proposition. But one part of the tradition about propositions must be given
up: propositions understood as sets of worlds cannot serve as the meanings of
sentences that express them, since there are sentences—for instance, all the logical
truths—that express the same proposition but do not, in any ordinary sense, have
the same meaning.
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in the set. For any sentence ¢, let [¢]) be the set of worlds where ¢ is
true. [$], being a set of worlds, is a proposition; call it the proposition
expressed by the sentence ¢. Then a sentence ¢ is true at a world i if and
only if the proposition [¢]] expressed by ¢ is true at i; that is, if and
only if i belongs to the proposition [¢]. All the tautologies express the
same proposition: the necessary proposition, in other words the set of all
worlds. All contradictions express the same proposition: the impossible
proposition, in other words the empty set. A proposition expressed by
some or other sentence of a language is said to be expressible in that
language. We cannot safely assume that every proposition is expressible
in our language, or indeed in any practical enrichment thereof. There
are apt to be too many propositions and too few sentences. (I shall
argue in Section 4.1 that there are more worlds than sets of sentences. 4
fortiori there are more propositions than sentences.) That is why we
need to quantify over propositions. Quantification over sentences—in
effect, over expressible propositions—could not substitute for meta-
linguistic quantification over sets of worlds.

If sets of worlds are propositions, the truth conditions for many
sentential connectives and operators can be restated by means of an
algebra of propositions. With an n-place connective we associate an
n-place operation on propositions, so that the proposition expressed by a
compound sentence is obtained by applying the operation to the
propositions expressed by the sentences whence it was compounded.
Negation corresponds to complementation relative to the set I of all
worlds; conjunction to intersection; disjunction to union; and so on for
the other truth functions. Then the truth conditions for compound
sentences are given by propositional equations:

[~¢1 = I-[4]
(¢ & 41 = [¢I N [¥],
(¢ v ¢1=[¢]V [¥].

Our counterfactual connective [} corresponds to a more complicated
two-place operation on propositions; call it the counterfactual operation.
Given as arguments two sets of worlds P and Q, this operation yields as
value the set of all worlds i such that if P overlaps any sphere around i,
then P overlaps some sphere S around i such that the intersection
PN S is included in Q. We can now state the truth conditions for
counterfactuals by saying that, for any ¢ and ¢, the proposition
[¢ O— ¢ is the result of applying this counterfactual operation to the
propositions [¢]] and [¢]. We can say that the connective expresses
the operation. If we want to give the connective an entity to be its
meaning, the operation can serve the purpose.
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2.3 Comparative Similarity

Our system of spheres is nothing but a convenient device for carrying
information about the comparative similarity of worlds. We could do
away with the spheres, and give the truth conditions for counterfactuals
directly in terms of comparative similarity of worlds, together with
accessibility. Let us introduce the notation

J<ik

to mean that the world j is at least as similar to the world i as the world
k is; also '

J <ik (defined as: it is not the case that k <,j)

to mean that j is more similar to i than k is. We may posit an assign-
ment to each world i of two items: a two-place relation <, among
worlds, regarded as the ordering of worlds in respect of their compara-
tive similarity to i, and a set S; of worlds, regarded as the set of worlds
accessible from i. Call such an assignment a (centered) comparative
similarity system if and only if, for each world i, the following six
conditions hold.

(1) The relation <; is transitive; that is, whenever j <,k and k <, A,
then j < A.

(2) Therelation'<is strongly connected; that is, for any worlds j and k,
either j <,k or k <j. (Equivalently: if j <, k thenj <, k.)

(3) The world iis self-accessible; that is, i belongs to S;.

(4) The world i is strictly <-minimal; that is, for any world j different
fromi,i <j.

(5) Inaccessible worlds are <;-maximal; that is, if k does not belong to
S;, then for any world j, j <, k.

(6) Accessible worlds are more similar to i than inaccessible worlds: if
J belongs to S; and k does not, then j <, k.

A relation that is transitive and strongly connected is called a weak
ordering or a (total) preordering.* We can state the six conditions
concisely as follows: each <, is a weak ordering of the worlds, with i
alone at the bottom and all the worlds inaccessible from i, if there are
any, together at the top above all the accessible worlds. All inaccessible

* ‘Weak’ because, unlike a strong (or linear) ordering, ties are permitted: two
different things can stand in the relation to each other, and thus be tied in the
ordering. ‘Preordering’ because if we take equivalence classes under the relation
of being thus tied, the induced ordering of the equivalence classes is a strong
ordering. Familiar weak orderings are the relations of being at least as tall as, at
least as far north as, etc. When I speak simply of an ordering, I shall mean a weak
ordering; we shall be little concerned with strong orderings.
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worlds are equally dissimilar to i; if j and k both are outside S, then
j €<ik and k <,j. If there are no worlds inaccessible from i, then it may
be that there are remoter and remoter accessible worlds without end,
or it may be that some of the accessible worlds are maximally remote
from i.

We may now give the truth conditions for the ‘would’ counterfactual
in terms of a comparative similarity system, as follows.

¢ O3> ¢ is true at a world i (according to a given comparative

similarity system) if and only if either

(1) no ¢-world belongs to S; (the vacuous case), or

(2) there is a ¢-world k in S, such that, for any world j, if j <; k then
¢ O ¢ holds at j.

The counterfactual is true at i if and only if, if there is an antecedent-
world accessible from i, then the consequent holds at every antecedent-
world at least as close to i as a certain accessible antecedent-world.

The present formulation is exactly equivalent to the original formu-
lation by means of spheres, without any restrictive assumptions.
Recalling the way in which systems of spheres are supposed to carry
information about comparative similarity, it is easily seen that we can
put systems of spheres in one-to-one correspondence with comparative
similarity systems, in such a way that the corresponding systems agree
on the truth value at every world of every counterfactual. Starting with
a comparative similarity system that assigns to each world i the relation
<, and the set S, let $ be the assignment to each world i of the set §;
containing all and only those subsets S of S; such that, whenever j
belongs to S and k does not, j <, k. Then it is easy to show (1) that §is a
system of spheres, and (2) that a counterfactual is true at a world
according to the defined system of spheres $ if and only if it is true
at that world according to the original comparative similarity system.
Call $ the system of spheres derived from the original comparative
similarity system. To go the other way, suppose we start with a system
of spheres $. For each world 7, let j <, k if and only if every sphere S in
$, that contains k also contains j; and let S; be {_$,. Then it is easy to
show (1) that the assignment to each world i of the relation <; and the
set S, so defined is a comparative similarity system, and (2) that a
counterfactual is true at a world according to this defined comparative
similarity system if and only if it is true at that world according to the
original system of spheres $. Say that this comparative similarity system
is derived from the system of spheres $. We can show, finally, that for any
comparative similarity system and system of spheres, the latter is de-
rived from the former if and only if the former is derived from the latter.

The assignment to each world i of the sphere of accessibility S; is the
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accessibility assignment corresponding to the outer necessity operator.
It seems clumsy to assign the two separate items <; and S; to each
world i, but S is independent of <,. If there are no <,~-maximal worlds,
we know that S; must be the whole set of worlds; but if there are some
< ;-maximal worlds, we do not know from <, alone whether these are
inaccessible worlds, to be left out of consideration in determining
whether a counterfactual is true at i, or maximally remote accessible
worlds. An alternative method * would be to let <, be an ordering not of
all worlds, but only of accessible worlds, so that S; could be defined as
the field of the relation <,; but this method is even clumsier.

There is something to be said for a philosophic conscience untroubled
by possible worlds, but troubled by sets. After all, possible worlds have
not led into paradox. The owner of such a conscience should prefer the
present formulation to the original formulation involving an assignment
to each world of a set of sets of worlds. He should regard a comparative
similarity system, however, not as an assignment to each world of a
two-place comparative similarity relation and a set of worlds regarded
as accessible, but rather as a single three-place comparative similarity
relation and a single two-place accessibility rélation; or better still, as
the two predicates ‘____is at least as similar to---as...is’ and
‘____is accessible from . ...

2.4 Similarity Measures

I have sometimes spoken informally of degrees of similarity, as if
similarity of worlds could be measured numerically; but I have not
assumed that it could be. I have not used any quantitative concept of
similarity, but only a comparative concept. One world is more similar
than another to a third; but we need never say how much more, and the
question how much more need not make sense.

Suppose, however, that we did have a quantitative concept of the
similarity of worlds, so that we could speak sensibly of the degree of
similarity, measured numerically, of one world to another. Then the
truth conditions of ‘would’ counterfactuals would be as follows:
¢ (1 ¢ is true at a world i if and only if either (1) no ¢-world is similar
to i to a degree greater than zero, or (2) for some positive number d,
there are ¢-worlds similar to i to degree at least d, and ¢ holds at every
¢-world similar to i to degree at least d. (Worlds too unlike i to be
considered—those that we previously regarded as lying outside all
the spheres around i—are now assigned zero degree of similarity to i.)

* Followed in my ‘ Completeness and Decidability of Three Logics of Counter-
factual Conditionals®, Theoria 37 (1971): 74-85.
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What additional assumptions do we make about comparative
similarity orderings if we assume that they can be obtained from a
numerical measure of similarity ?

For one thing, we limit the number of gradations of similarity to the
number of numbers, and we limit the order type of the comparative
similarity ordering to the order types of orderings of numbers. Every
similarity ordering with only countably many distinct gradations of
similarity can be represented as derived from a numerical measure. Not
every similarity ordering with more than countably many distinct
gradations can be so represented; and no ordering with more distinct
gradations than there are real numbers can be. This limitation hardly
seems serious.

If we measure similarity numerically, and make uninhibited use of the
analogy of similarity ‘distance’ between worlds to spatial distance
between places, we are liable to make a much more serious and ques-
tionable assumption: that the degree of similarity of i to j equals the
degree of similarity of j to i.* This assumption of symmetry for the
similarity measure implies a constraint on similarity orderings derived
from that measure: if j <, k and k <, i, then j <, i. But that constraint
would be unjustified if we suppose that the facts about a world i help
to determine which respects of similarity and dissimilarity are important
in comparing-other worlds in respect of similarity to the world i. The
colors of things are moderately important at our world, so similarities
and dissimilarities in respect of color contribute with moderate weight
to the similarity or dissimilarity of other worlds to ours. But there are
worlds where colors are much more important than they are at ours;
for instance, worlds where the colors of things figure in fundamental
physical laws. There are other worlds where colors are much less im-
portant than they are at ours; for instance, worlds where the colors of
things are random and constantly changing. Similarities or dissimilari-
ties in color will contribute with more or less weight to the similarity
or dissimilarity of a world to one of those worlds where color is more
important or less important. Thus it can happen that j is more similar
than k to i in the respects of comparison that are important at i; k is
more similar than i to j in the respects of comparison that are important
at j; yet i is more similar than j to k in the respects of comparison that
are important at k.

This assumption of symmetry is, of course, not an inevitable con-
sequence of assuming that similarity of worlds admits of numerical
measurement. We could have an asymmetric similarity measure. It

* Sobel, in ‘Utilitarianisms: Simple and General’, formulates essentially my
analysis of counterfactuals by means of a numerical similarity measure, and does
make this assumption.
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would give us the degree of similarity of j to i, from the standpoint of i;
that might not equal the degree of similarity of i to j, from the stand-
point of j, because the relative importances of respects of comparison
might differ from the standpoints of the two different worlds. (Having
gone that far, we might as well have a function of three arguments that
gives the degree of similarity of i to j from the standpoint of k, whether
or not k is the same as 7 or j.) But why bother ? The appeal of a numerical
similarity measure comes from the analogy between similarity ‘distance’
and spatial distance. To the extent that the analogy breaks down, the
point of having a numerical measure is lost.

2.5 Comparative Possibility

Ordinarily we think of possibility as an all-or-nothing matter. Some-
thing is possible or it is not, and the only way for it to be more possible
that ¢ than that ¢ is for it to be possible that ¢ but not possible that .
Given the notion of comparative overall similarity of worlds, however,
there is a natural comparative concept of possibility. It is more possible
for a dog to talk than for a stone to talk, since some worlds with talk-
ing dogs are more like our world than is any world with talking stones.
It is more possible for a stone to talk than for eighteen to be a prime
number, however, since stones do talk at some worlds far from ours,
but presumably eighteen is not a prime number at any world at all, no
matter how remote.

We may introduce into our language three comparative possibility
operators:

<
read as ‘It is at least as possible that ____ as it is that ...’, or as ‘It is no
more far-fetched that _____ than that ..., or as ‘It is no more remote
JSrom actuality that ____ than that . . .,

<
read as ‘It is more possible that ____ than that...’, or as ‘It is less
Sfar-fetched (less remote from actuality) that ____than that...’; and

~y

read as ‘It is equally possible (equally far-fetched, equally remote from
actuality) that and that...’. The pair of <X and < are inter-
definable, and =~ is definable from =, as follows:

$<U =~ <),
$<4 =%~ <9
PRY="P<4 & IS
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Let us take < as primitive and the other two as defined. The truth con-
ditions for <X are given thus:

é < ¢ is true at a world i (according to a system of spheres $) if and
only if, for every sphere S in §;, if S contains any y¢-world then S
contains a ¢-world.

We thence obtain derived truth conditions for the defined operators
< and %~

é < ¢ is true at i (according to $) if and only if some sphere in §
contains a ¢-world but no ¢-world.

é ~ ¢ is true at i (according to $) if and only if all and only those
spheres in §; that contain ¢-worlds contain g-worlds.

The outer and inner modalities, previously defined from the counter-
factual, may now be redefined in terms of comparative possibility. The
following definitions give the same derived truth conditions as the
original ones. For the outer modalities:

O =4 <1,
¢ =4 ~O ~ ¢ (or,directly, L & ~¢).

For any ¢, ¢ <X L is everywhere true; thus the everywhere-false sentence
1 is minimally possible. Outer possibility, then, is more-than-minimal
possibility—possibility at least exceeding that of L. For the inner
modalities:

¢ — af ¢ T
e =4 ~> ~ ¢ (or, directly, T < ~4¢).

For any ¢, T < ¢ is everywhere true; thus the everywhere-true sentence
T is maximally p0551ble Inner possibility, then, is maximal possibility—
possibility equal to that of T. In a centered system of spheres, all and
only truths are maximally possible; as we noted before, the inner
modalities are trivial in this case.

Now we can reintroduce our counterfactual operators by definition
from comparative possibility (and outer possibility, defined in turn
from comparative possibility). The following definitions give the correct
truth conditions.

¢ O ¢ ‘"(¢&¢)<(¢&~¢),

¢ O=> ¢ =4 ~ (¢ O— ~¢) (or; directly, (4 & ¢) < (4 & ~¢)),
¢ O0—¢ ‘“<>¢ ¢ O— ¢,

$ Oy =4 ~($ 0> ~§) (or, Op & ¢ O=> ).
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We can just as well go the other way. Taking [J— again as primitive,
and defining &= and [J=> from it as in Section 1.6 (or taking one
of the latter as primitive), we can introduce comparative possibility,
with the correct derived truth conditions, by either of the following
definitions. If we want to introduce < first,

$<XY=Y@VP)O—>¢;
if we prefer to introduce < first,

¢ <¢ =%V ) O ~¢

We now have six alternative primitives: all of [(J—, &—, O—, O—>,
=, and < can be defined from any one of them.

So far, I have only been introducing new operators into the language
to be interpreted. Truth conditions for sentences with this new vocabu-
lary have been given by means of the same system of spheres already
used to give truth conditions for counterfactuals. When we consider
taking < rather than [J— as our primitive, however, it becomes con-
venient to give truth conditions not by means of the system of spheres
but by means of relations of comparative possibility among proposi-
tions (sets of worlds). Let us write

P<,Q

to mean that the proposition P is at least as possible, at the world i, as
the proposition Q; let us write

P <, Q (defined as: it is not the case that Q <, P)
to mean that P is more possible at i than Q; and let us write
~; Q (defined as: P <; Q and Q X, P)

to mean that P and Q are equally possible at i. The symbols <, <, and
~ thus lead a double life, but there is no danger of confusion: un-
subscripted, they are sentential connectives of the object language;
subscripted, they are terms of the metalanguage denoting relations
between propositions.

We may posit an assignment to each world i of a two-place relation
=<, among propositions, regarded as the ordering of propositions in
respect of their comparative possibility from the standpoint of the
world i. Call such an assignment a (centered) comparative possibility
system if and only if, for each world i, the following five conditions
hold.

(1) The relation <, is transitive; that is, whenever P <; Q and Q <, R,
then P <, R.
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(2) The relation <, is strongly connected; that is, for any propositions
P and Q, either P <, Q or Q <, P. (Equivalently: if P <, Q then
P<,0)

(3) All and only truths are maximally possible; that is, the world i itself
belongs to a proposition P if and only if, for every proposition
0, P x; Q. (Equivalently: if i belongs both to a proposition P and
to a proposition Q, then P =, Q; if i belongs to P but not to Q,
then P <; Q.)

(4) The union of a set of propositions is the greatest lower bound of the
set. Let 7 be a set of propositions and let | JT be the proposition
containing all and only the worlds contained in members of the set
T. Then Q <{P for every P in ¥ if and only if Q <, UJ. (If T is
finite, this means that { ¢ is as possible as the most possible member
of T.)

(5) A singleton proposition that is more possible than every member of
a set of propositions is also more possible than the union of the set.
Let § and \UJ be asin (4) and let § be nonempty; thenif {j} <, P
forevery Pind, {j}<. 7.

A comparative possibility system thus assigns to each world i a weak
ordering of all propositions, with the propositions true at i itself—that
is, containing i—together at the bottom. It follows from (4) that when-
ever Q is a subset of P, P <{; Q. From that it follows further that for any
proposition P, P <; A, where A is the empty set—in other words, the
proposition true at no world, expressed by 1 or any contradiction. As
we shall see, the five conditions are required by the connection we
intend between comparative possibility of propositions and compara-
tive similarity of worlds.

It is easy to give the truth conditions for comparative possibility
sentences according to a given comparative possibility system:

¢ < ¢ istrue atiif and only if [¢] <, [¢].
(Recall that for any sentence ¢, [#]] is the set of worlds where ¢ is true,

or in other words the proposition expressed by ¢.) The derived truth
conditions for < and ~ are similar:

¢ <4 istrueatiif and only if [¢] <, [¥],

¢~ ¢ istrue atiif and only if [é] =, [¢¥].
The derived truth conditions for modal sentences and counterfactuals
can simply be read off from the definitions of these in terms of the
connectives of comparative possibility. For instance:

<O is true at i if and only if [¢] <, A.

é 1= ¢ istrue at i if and only if, if [¢]] <; A,

then [[] N [¢] <. [¢]-[¥]-
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The present formulation by means of comparative possibility is
exactly equivalent to the original formulation by means of spheres,
with no restrictive assumptions. We can put systems of spheres in
one-to-one correspondence with comparative possibility systems, in
such a way that the corresponding systems agree on the truth value at
every world of all counterfactuals and comparative possibility sentences.
Starting with a comparative possibility system that assigns to each
world i the relation <, let $ be the assignment to each world i of the
set $, of all and only those sets S of worlds such that, whenever a
proposition P overlaps S and a proposition Q does not, then P <; Q.
Then it is easy to show (1) that § is a system of spheres, and (2) that a
counterfactual or comparative possibility sentence is true at a world
according to the defined system of spheres $ if and only if it is true at
that world according to the original comparative possibility system.
Call $ the system of spheres derived from the comparative possibility
system. Starting rather with a system of spheres $, let P <; Q if and
only if every sphere S in $; that overlaps Q also overlaps P. Then it is
easy to show (1) that the assignment to each world i of the relation <, so
defined is a comparative possibility system, and (2) that a counter-
factual or comparative possibility sentence is true at a world according
to this defined comparative possibility system if and only if it is true
at that world according to the original system of spheres $. Say that the
comparative possibility system is derived from the system of spheres.
Then we can show that for any comparative possibility system and
system of spheres, the latter is derived from the former if and only if the
former is derived from the latter.

Since comparative possibility systems and comparative similarity
systems both can be put into one-to-one truth-preserving correspon-
dence with systems of spheres, it follows that they can also be put into
one-to-one truth-preserving correspondence with each other. This
correspondence is quite simple: a comparative similarity ordering of
worlds is, essentially, the corresponding comparative possibility
ordering of singleton propositions, and accessible worlds are worlds
that are more than minimally possible. More precisely: if the com-
parative similarity system that assigns to each world i the similarity
ordering < of worlds and the sphere of accessibility S; corresponds to
the comparative possibility system that assigns to each world i the
ordering <,of propositions, then (1) j <, k if and only if {j} <, {k}, and
(2) j belongs to S; if and only if {j} <; A.
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2.6 Cotenability

In order to compare my theory with most previous theories of counter-
factuals (this will be done in Sections 3.1-3.3) it will be helpful to
reformulate my truth conditions in terms of relations of logical impli-
cation and of ‘cotenability’ between sentences.

Let us say that x is cotenable with ¢ at a world i (according to a system
of spheres $) if and only if either (1) x holds throughout {J$,, or (2) x
holds throughout some ¢-permitting sphere in $,. In other words: if
and only if either (1) x holds at all worlds accessible from i, or (2) some
#-world is closer to i than any ~x-world. A necessary truth (in the
sense of outer necessity) is cotenable with anything; a falsehood is
cotenable with nothing; between these limits, cotenability is a matter of
comparative possibility. If ¢ is entertainable at i, y is cotenable with ¢
at 7 if and only if [¢]] <; [~xI.

A counterfactual ¢ [1— ¢ is true at i (according to my truth con-
ditions) if and only if the premise ¢ and some auxiliary premise y,
cotenable with ¢ at i, logically imply . Proof: Suppose there is some
such premise x. Perhaps there is no ¢-permitting sphere around i, in
which case ¢ [J— ¢ is vacuously true at i. Otherwise there is a ¢-per-
mitting sphere throughout which x holds; since ¢ and y jointly imply
¥, ¢ = ¢ also holds throughout this sphere; so ¢ [J-> ¢ is true. Con-
versely, suppose ¢ [1— ¢ is true at i. Either there is no ¢-permitting
sphere around i, in which case ~¢ is a premise, cotenable with ¢ at i,
which together with ¢ implies ¢; or else there is a ¢-permitting sphere
throughout which ¢ = ¢ holds, in which case ¢ > ¢ is a premise,
cotenable with ¢ at i, which together with ¢ implies y. Q.E.D.

If each of x4, . . ., xa is cotenable with ¢, then so is their conjunction;
so we can also say that ¢ (J— ¢ is true at i if and only if ¢ together with
finitely many premises x, . . ., x., €ach cotenable with ¢ at 7, logically
imply 4.

That would be the customary way to give truth conditions by means
of cotenability, but there is an easier way: ¢ [J— ¢ is vacuously true at i
if and only if ~¢ is cotenable with ¢ at i, non-vacuously true at i if and
only if ¢ > ¢ is cotenable with ¢ at i.

2.7 Selection Functions

The simplest and most direct formulation of the idea that a counter-
factual is true if and only if the consequent holds at the closest ante-
cedent-worlds depends, unfortunately, on the objectionable Limit
Assumption. Suppose we are given a system of spheres $ that satisfies
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the Assumption (for antecedents in our language). That means, we
recall, that for every world i and antecedent ¢ (in our language) that is
entertainable at i, there is a smallest ¢-permitting sphere around i.
The ¢-worlds in that sphere are the closest ¢-worlds to i. If an antecedent
¢ is not entertainable at i, then the set of closest ¢-worlds to i is empty.

We may define a function f which selects, for any sentence ¢ and
world i, the set f(¢, 7) of closest ¢-worlds to i. Let

the set of ¢-worlds belonging to every ¢-permit-
N ting sphere in §;, if there is any ¢-permitting
f($, 1) = sphere in $,,
the empty set otherwise.

We call f a selection function (or a set-selection function, when we wish
to compare these with Stalnaker’s world-selection functions to be
considered in Section 3.4). We will say that f is derived from the given
system of spheres $§. We have already seen how to give the truth con-
ditions for counterfactuals under the Limit Assumption. In terms of the
selection function: the ‘would’ counterfactual ¢ [} ¢ is true at a
world i if and only if ¢ is true at every world in f(¢, i). Similarly the
‘might’ counterfactual ¢ O— ¢ is true at i if and only if ¢ is true at
some world in f(¢, i).*

When f'is derived from a system of spheres $§ that satisfies the Limit
Assumption, then these truth conditions will agree with my original
truth conditions given in terms of the system of spheres. But if § does
not satisfy the Limit Assumption, then there will be disagreement.
Sometimes f(¢, i), as I have defined it, will be empty because, although
there are ¢-permitting spheres around i, yet there is no ¢-world that
belongs to every ¢-permitting sphere. Then ¢ [ ¢ will incorrectly
come out as vacuously true at i for any consequent ¢, contrary to my
original truth conditions in terms of the system of spheres.

We may call a function ffrom sentences and worlds to sets of worlds a
(centered) (set-) selection function if and only if, for all sentences ¢ and ¢
and for each world i, the following four conditions hold.

(1) If ¢ is true at i, then f(¢, i) is the set {i} having i as its only member.
(2) f(¢, i) is included in [¢]].
(3) If [¢] is included in [] and f(¢, i) is nonempty, then f(y, i) also is
nonempty.
(4) If [¢] is included in []) and [¢] overlaps f(i, i), then f(¢, i) is the
intersection of [¢]] and f(¥, i).
* The use of set-selection functions in this way to give an analysis of counter-
factuals has been suggested by John Vickers, and further studied by Peter Wood-

ruff in ‘Notes on Conditional Logic’ (duplicated, May 1969, University of
California at Irvine).
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Such selection functions turn out to be all and only the selection
functions derived from (centered) systems of spheres satisfying the
Limit Assumption. If fis derived from some such system of spheres,
then it is easily verified that conditions (1)-(4) are satisfied. Conversely,
suppose f satisfies conditions (1)-(4). Let $ be the assignment to each
world i of the set $§; of all and only those sets .S of worlds such that,
first, every world in S belongs to some f(¢, i); and, second, whenever
[¢] overlaps S, f(¢, i) is included in S. Then it is easily verified that $
is a system of spheres satisfying the Limit Assumption. It remains to
show that fis derived from $. Proof: first consider the case that there
is no ¢-permitting sphere in $,. The union of the sets f(y, i) for all
sentences Y—including ¢—is obviously a sphere in §;; if this sphere
is not ¢-permitting although it includes f(¢, i), then f(¢, i) must
be empty, so in this case f(¢, i) agrees with the selection function
derived from §. Next consider the case that there is some ¢-permitting
sphere in $;. By (2) and the definition of $, f(¢, i) is included in the
intersection of [[¢]] and any ¢-permitting sphere; so to show that in
this case also f(¢, i) agrees with the selection function derived from
$, it suffices to find a sphere S in §; such that the intersection of [¢]]
and S is exactly f(¢,i). Take S to be the union of the sets f(, i),
for all sentences ¢ such that [¢] is included in []. Whenever [x]
overlaps S, [x] overlaps some f(y, i) such that [[¢] is included in
[¥]. [¢] is included also in [y Vv ¥, so f(x V ¥, i) is included in S.
[[x] overlaps f(x V ¥, i); if not, it would follow by (2)-(4) that (¢, i)
and f(x Vv ¢,i) are the same, contradicting the fact that [x]) does overlap
S, i). It now follows by (4) that f(x, i) is included in f(x Vv ¢, i), and
hence in S; so S is a sphere. The intersection of [¢] and S is the union
of all intersections of [[¢] with a set f(i, i) such that [¢] is included in
[¥]. By (4), each such intersection is either the empty set or f(¢, i);
and by (2), one such intersection—that of [¢]] with f(¢, i)—is f($, i);
so the intersection of [[¢]] and the sphere S is exactly f(¢, i), as desired.
Q.E.D.

The truth-preserving correspondence between systems of spheres
satisfying the Limit Assumption and the selection functions derived
from them is not, in general, one-to-one. Given a system of spheres $
satisfying the Limit Assumption, we may be able to add a new sphere S
around some world 7 in such a way that S does not become the smallest
¢-permitting sphere around i for any sentence ¢é. Let $ be the new
system of spheres obtained by the addition of S; then $§ also satisfies
the Limit Assumption, and $ and §' yield the same derived selection
function. This means that systems of spheres sometimes carry more
information about comparative similarity than is needed to determine
the truth values at all worlds of all counterfactuals. The same is true of
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comparative similarity and comparative possibility systems since these,
as we have seen, stand in one-to-one truth-preserving correspondence
with systems of spheres.

My conditions (2)—(4) imply that if [¢]] and [¢] are the same—if ¢
and ¢ are different sentences expressing the same proposition—then
f(é, i) and f(¢, i) are the same. Therefore instead of taking the first
arguments of selection functions to be sentences, as I did, I could just
as well have taken them to be propositions expressible by sentences.

Instead of taking a single function f of two arguments, I could just as
well have taken an assignment to each world i of a function f; of one
argument—a sentence or a proposition, according to taste. Instead of
f(¢, i) we then have f(¢) or fi([¢#]). If we take the arguments to be
propositions rather than sentences, and if we let U; be the set of
expressible propositions 4 such that f(4) is nonempty, then each
(U, £ is what Bengt Hansson has called a choice structure.*

We might also reformulate a selection function as a family, indexed
by sentences or by propositions, of assignments to worlds of spheres of
accessibility; or, more traditionally, as a family, indexed by sentences or
by propositions, of accessibility relations between worlds. A world j is
accessible, (or accessibleyy; if we prefer) from a world i if and only if j
isin f(¢, i). For any fixed antecedent ¢, we can regard ¢} and ¢ O—- as
if they were a pair of one-place modal operators, interpreted as usual
by means of accessibility,. ¢ [1— ¢ is true at i if and only if ¢ holds at
every world accessible, from i; ¢ O— ¢ is true at i if and only if ¢
holds at some world accessible, from i. My analysis of variably strict
conditionals, as restricted by the Limit Assumption, can thus be
subsumed as a special case under a general theory of sententially or
propositionally indexed modalities.} My analysis in its full generality,
on the other hand, cannot be thus subsumed—the Limit Assumption is
essential.

* ‘Choice Structures and Preference Relations®, Synthese 18 (1968): 443-458.
We saw that every selection function is derived from a system of spheres; this
could have been obtained as a corollary of Hansson’s theorem that whenever
<V, f>is a choice structure such that U is closed under finite unions, there is a
weak ordering R underlying {°U, f)—that is, for each A4 in VU, f(A) is the set of
members of A that bear R to every member of 4. In this case, the ordering under-
lying <%, f,) is the comparative similarity ordering <,.

1 A general account of propositionally indexed modalities is to be found in
Brian F. Chellas, ‘Basic Conditional Logic’, Journal of Philosophical Logic 4 (1975):
133-153.
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2.8 The Selection Operator

If we tolerate the Limit Assumption and use a selection function to
interpret the counterfactual, we can express the selection function by an
operator in the object language. We can define the counterfactual
connectives from that operator, plus other logical apparatus.

Introduce a one-place sentential operator ¢, called the selection
operator. We may read it as ‘Things are the way they would be if it were
the case that ____. The sentence /¢ is to be true at all and only the
selected, closest ¢-worlds given by our selection function f. The counter-
factual may (provisionally) be defined thus:

¢ O =Y0(/¢ > ).

This definition makes the counterfactual into a strict conditional after
all; however the antecedent ¢ of the counterfactual is not the same as
the antecedent /¢ of the strict conditional. According to this definition
the counterfactual is true if and only if ¢ holds at all /¢-worlds—that is,
at all of the selected, closest ¢-worlds.

That is more or less what we want, but the account so far is incom-
plete. The /¢-worlds are the ‘selected, closest ¢-worlds’. Selected
from, and closest to, what world? A selection function has two argu-
ments. I said that /¢ was to be true at all and only the worlds in f(¢, i)}—
but without specifying which world is i.

Lennart Aquvist, in first proposing the use of a selection operator,
specified that the selection was to be done always from the standpoint
of our actual world.* That is, /¢ was to be true at all and only the
closest ¢-worlds to ours—all and only the worlds in f(¢, i) where i is our
actual world. Since Aqvist selects always from the standpoint of a
single world, ours, his selection functions have no need of a second
argument.

That will do so long as we care only to say how the actual truth
values of counterfactuals depend on the truth values at various worlds of
their antecedents and consequents. But we have been more ambitious
hitherto. Counterfactuals are, for the most part, contingent. We have
been trying to give their truth conditions in general: to say how the
truth value of a counterfactual at any world depends on the truth
values at various worlds of its antecedent and consequent. Even if we
are ultimately interested only in the actual truth values of sentences,
still we must consider the truth values of counterfactuals at other
worlds than ours to obtain the actual truth values of sentences in

* ‘Modal Logic with Subjunctive Conditionals and Dispositional Predicates’,
Journal of Philosophical Logic 2 (1973): 1-76.
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which counterfactuals are embedded inside other counterfactuals. For
instance, Aqvist’s method cannot be made to account for the truth of
the sentence

(I look in my pocket [1— I find a penny) & (There is no penny in my
pocket (1> ~(I look in my pocket (1— I find a penny)).

In order to make proper use of the selection operator, we must
recognize that there are sentences that cannot naturally be assessed
simply for truth or falsehood at a world, but rather call for a three-
place truth relation: truth of a sentence ¢ at a world i with reference to a
world j. For instance, ‘Things are better’ is true at i with reference to j
if and only if things are better at i than at j, but there is no natural way
to assess ‘ Things are better’ for truth at a world without some reference
world to serve as a standard of comparison. Similarly, we cannot give a
satisfactory general account of the truth conditions for the selection
operator by means simply of the two-place truth-at relation. We should
rather use the three-place truth relation and say that /¢ is true at a
world i with reference to a world j if and only if i belongs to f(¢, j)—
that is, if and only if i is a closest ¢-world to j.

What shall we do when we need to mix these special sentences that
require the three-place truth relation with ordinary sentences that can
be treated adequately by means of the two-place truth relation?
Although it is unsatisfactory to treat special sentences as though they
were ordinary, it is harmless to treat ordinary sentences as though they
were special. Let us call an ordinary sentence true at i with reference to
any j if and only if it is true at i. Given this stipulation, we can explain
the difference between ordinary and special sentences by saying that an
ordinary sentence is true at a world with reference to all worlds or
none, whereas a special sentence is sometimes true at a world with
reference to some worlds but not others.

Just as the truth conditions for ordinary sentences are formulated in
terms of the two-place truth relation, so parallel truth conditions for
special sentences—or for ordinary sentences treated as special in order
to compound them with special sentences—may be given in terms of the
three-place truth relation. The reference world tags along throughout.
For instance, a material conditional is true at i with reference to j if and
only if either the consequent is true at i with reference to j or the ante-
cedent is false at i with reference to j. A sentence [J¢ is true at i with
reference to j if and only if ¢ is true with reference to j at every world
accessible from i; the appropriate accessibility assignment for outer
modality is given in terms of the selection function by specifying that a
world is accessible from i if and only if it belongs to some f(x, i) or
other.
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Suppose ¢ and ¢ are ordinary sentences. Then the strict conditional
(/4 = ) that we took provisionally to define ¢ [J— ¢ is in many
cases a special sentence. It is true at a world i with reference to a world j
if and only if /¢ > ¢ is true with reference to j at every world accessible
from i; that is, if and only if  is true with reference to j at every world
accessible from i where /¢ is true with reference to j; that is, if and only
if ¢ is true at every world in f(4, j) that is accessible from i. Taking j as i,
the accessibility restriction becomes redundant. Thus (/4 > ¢) is
true at i with reference to i itself if and only if ¢ is true at every world in
f(, i); that is, if and only if ¢ [J— ¢ is true at i.

That is good enough to explain our success with actual truth values,
but it is not quite right. We want to define ¢ [J— ¢ by an ordinary
sentence that will be true at a world i if and only if our provisional
definiens [)(/¢ > ¢) is true at i with reference to i. We must provide a
new operator t with truth conditions as follows: ty is an ordinary
sentence true at 7 if and only if y is true at i with reference to i. (When x
is ordinary, tx has the same truth conditions as y itself.) Prefixing the
t-operator to our provisional definens, we obtain the correct definition.*
With it we have a parallel definition for the ‘might’ counterfactual.

¢ O ¢ =" 10(/¢ = ¥),
¢ O—=> ¢ =" 1O(/¢ & ¥).

We could go instead in the other direction and define the selection
operator from the counterfactual, using propositional quantification
and another special operator for the three-place truth relation. Let }y
be true at i with reference to j if and only if y is true at j with reference
to j; a sentence |x will in most cases be special. Now we may define 4

thus:
/o =4VE(P O €) > ).

(Here ¢ is to be any propositional variable that does not occur in ¢.)
Intuitively, the definiens says that whatever would hold, if ¢ did, does
hold.}

* Correct on the assumption that the antecedent and consequent are ordinary.
But we might want to drop that assumption. For instance, if we want to handle
countercomparatives like ‘ If my yacht were longer, things would be better® without
quantifying in, we will want to take the antecedent and consequent as special
sentences. But if we want to use the object-language selection operator in the
presence of special antecedents and consequents, then we must consider extra-
special sentences that require a four-place truth relation—and so on up.

1 The -operator and the t-operator, or rather their temporal analogs, were
first introduced by Hans Kamp and Frank Vlach, respectively. They are needed
for symbolizing such sentences as ‘Jones is going to remember (simultaneously)
everyone now living’ and ‘Jones was once going to remember (simultaneously)
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everyone then living’ in a language without overt quantification over times.
‘Now’ or ‘then’ is }, ‘once’ is t. See Kamp, ‘Formal Properties of “Now™’,
Theoria 37 (1971): 227-273; and Vlach, *“Now” and “Then”: a Formal Study in
the Logic of Tense and Anaphora’ (Ph.D. dissertation, 1973, University of California
at Los Angeles). Aqvist, in an appendix to ‘Modal Logic with Subjunctive Con-
ditionals and Dispositional Predicates’ (written subsequently to the body of the
work) has adopted my suggestion to use the t-operator along with a selection
operator that yields special rather than ordinary sentences.



3. Comparisons

3.1 The Metalinguistic Theory: Implicit Premises

It is not to be expected that an adequate new theory of counterfactuals
will be entirely unlike previous theories. I hope I have improved on
them, but it is incumbent on me to show that, to the considerable
extent that other theories succeed, my new theory has enough in
common with them to share in their success and to explain it.

Most previous theories of counterfactuals are metalinguistic: a counter-
factual is true, or assertable, if and only if its antecedent, together
with suitable further premises, implies its consequent.* Thus a counter-
factual ¢ (J— ¢ is somehow backed by a valid argument:

¢, X1s e« oy Xn_
R/

Either the counterfactual is a sentence meaning that some such
argument exists, or—as in Mackie’s version—it is itself an elliptical pre-
sentation of such an argument.f On the former version, the counter-
factual can be evaluated as true or false according as there do or do not
exist suitable premises x;, . . ., x» Which, together with ¢, imply 4. On
the latter version, it cannot be evaluated as true or false, but only—after

* Such theories of counterfactuals are given, for instance, in Roderick Chisholm,
‘The Contrary-to-fact Conditional’, Mind 55 (1946): 289-307; Nelson Goodman,
‘The Problem of Counterfactual Conditionals’, Journal of Philosophy 44 (1947):
113-128; John L. Mackie, ‘Counterfactuals and Causal Laws’, in R. J. Butler,
Anaiytical Philosophy (Blackwell: Oxford, 1962): 66-80; and Nicholas Rescher,
Hypothetical Reasoning (North-Holland: Amsterdam, 1964).

1 There is an analogous disagreement about sentences of the form

¢ because ¢.

Morton White, in Foundations of Historical Knowledge (Harper & Row: New
York, 1965): 56-84, regards the sentence as meaning that there exists some correct
explanatory argument from ¢ and other premises to ¢; whereas Carl Hempel, in
Aspects of Scientific Explanation (The Free Press: New York, 1965): 415, regards
it as being itself an elliptical presentation of such an argument.
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the omitted premises x;, ..., x» have been restored—as valid or in-
valid. The latter version has the drawback common to all theories that
make do with conditions for assertability rather than truth conditions:
it gives no account of the meaning of compounds with embedded
conditionals that are not themselves asserted, such as a material
conditional with a counterfactual as its antecedent.

Note that metalinguistic theorists are so-called because they hold
that linguistic entities—arguments and their premises—enter pro-
minently into the truth conditions or assertability conditions of counter-
factuals. That is not to say that counterfactuals are about linguistic
entities. A metalinguistic theorist may well insist that a counterfactual
is about whatever its antecedent and consequent are about. Indeed, a
metalinguistic theorist like Mackie, who regards a counterfactual as an
elliptical argument with its antecedent as one premise and its consequent
as conclusion, could scarcely say anything else.

On any metalinguistic theory, the principal problem is to specify
which further premises x;, . . ., x» are suitable to be used with a given
antecedent and which are not. The metalinguistic theorist uses his
further premises in much the same way as I have used the system of
spheres representing comparative similarity of worlds: to rule out of
consideration many of the various ways the antecedent could hold,
especially the more bizarre ways. ¢ [J— ¢ is true or assertable on a
metalinguistic theory if and only if ¢ holds at all ¢-worlds of a certain
sort: ¢-worlds at which some further premises, suitable for use with the
antecedent ¢, hold.

Whence come the further premises? A metalinguistic theorist might
hold that some of them, at least, are implicitly understood. The ante-
cedent that is explicitly spoken is not the whole antecedent that the
parties to a conversation have in mind, but only an elliptical sketch of it.
The rest is understood. Each party to a conversation has in mind, more
or less consciously, a way to spell out the antecedent in full; and each
supposes that the others have in mind the same expansion of the
antecedent, each supposes that each supposes this, and so on. Or the
rest of the antecedent fails to be understood, on occasion; but then
more and more of it can be spelled out until the rest is understood. Thus
we account for such pairs of counterfactuals as Quine’s

If Caesar had been in command (in Korea] he would have used the
atom bomb.
versus
If Caesar had been in command he would have used catapults.

If in doubt, we ask the propounder of the counterfactual supposition
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that Caesar was in command whether he has in mind a modernized or an
unmodernized Caesar. We thus ask him to make explicit part of his
antecedent that was left implicit in his antecedent-sketch ‘If Caesar
had been in command . . ..

I would not mind agreeing that sometimes the real, conversationally
understood antecedent is an expansion of the explicit part of the
antecedent. I would then say that my theory applies to counterfactuals
in a conversational context (as opposed to counterfactuals considered
in isolation) only after any part of the antecedent that had been left
implicit has been restored.

I am not forced to agree to this, however. I could get the same effect
another way. In dealing with Quine’s opposed counterfactuals about
Caesar, context must of course be consulted somehow. But instead of
using context to restore the real antecedent from the explicit part of the
antecedent, I could say that the explicit antecedent is the real ante-
cedent and call on context rather to resolve part of the vagueness of
comparative similarity in a way favorable to the truth of one counter-
factual or the other. In one context, we may attach great importance to
similarities and differences in respect of Caesar’s character and in
respect of regularities concerning the knowledge of weapons common
to commanders in Korea. In another context we may attach less
importance to these similarities and differences, and more im-
portance to similarities and differences in respect of Caesar’s own
knowledge of weapons. The first context resolves the vagueness of
comparative similarity in such a way that some worlds with a modern-
ized Caesar in command come out closer to our world than any
with an unmodernized Caesar. It thereby makes the first counterfactual
true. The second context resolves the vagueness in the opposite direc-
tion, making the second counterfactual true. Other contexts might
resolve the vagueness in other ways. A third context, for instance,
might produce a tie between the closest worlds with modernized
Caesars and the closest worlds with unmodernized Caesars. That
context makes both counterfactuals false.

It matters little how we divide up the influence of context between (1)
resolution of the vagueness of comparative similarity, and (2) ex-
pansion of the explicit antecedent to the real, conversationally under-
stood antecedent. My inclination, however, is to explain the influence
of context entirely as the resolution influence. Better one sort of in-
fluence of context than two different sorts; we are stuck with the resolu-
tion influence whether or not we also admit the expansion influence;
but given the resolution influence we do not need to admit the expansion
influence as well.
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3.2 The Metalinguistic Theory: Factual Premises

A metalinguistic theorist cannot be content only with the sort of further
premises we have considered so far: those that spell out parts of the
understood antecedent that originally were left implicit. Counter-
factuals are usually contingent. The truth value of a counterfactual
may depend on matters of empirical fact, unknown to the parties in a
conversation. Even when they understand perfectly what antecedent
it is that they are concerned with, and how any implicit parts of it are
to be spelled out, they may yet be in doubt or disagreement about the
truth of the counterfactual. Consider this counterfactual:

If I had looked in my wallet, I would have found a penny.

I may say this, and someone else may doubt it. There may be some
work to do on reaching agreement about the antecedent I have in
mind: I may have to explain that I meant that if I had looked just now,
carefully, in the wallet in my pocket 1 would have found a penny. But
this legitimate expansion of the antecedent does not settle the question
whether the counterfactual is true. That still depends on whether there
was a penny there to be found. Of course, if I expanded the antecedent to
‘If I had looked and there had been a penny . ..’ or to ‘If I had looked
and there had been no penny ...’ 1 would thereby obtain an uncontro-
versial (but still contingent) counterfactual. But neither expansion
merely makes explicit what was already present implicitly in the original
counterfactual supposition, as understood by the parties to the con-
versation.

The premise that there was a penny may or may not be a ‘suitable
further premise’ in this case. But whether it is cannot depend on whether
it was implicitly understood; for it definitely was not. Rather, it depends
principally on whether there was a penny in my wallet. It is another
kind of premise, eligible to enter the argument that backs the counter-
factual (if it is eligible) not because it is implicitly understood but
because it is true. Call it a factual premise.

Not any old truth will do as a factual premise; the negation of a
false antecedent is a truth, but ordinarily not eligible to enter into the
argument that backs a counterfactual with that antecedent. I shall use
Goodman’s term ‘cotenability’ for the present, simply to name what-
ever relation it is that must obtain between a truth and an antecedent
to make that truth eligible to enter into a backing argument with that
antecedent.
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Let us recapitulate the metalinguistic theory. A counterfactual
¢ (O0— ¢ is backed, on a given occasion, by an argument

¢’ X1s+ ¢+ 5 Xn
Sy

if and only if the argument is valid, and each of the premises x, . . ., x»
added to ¢ is either (1) understood, on that occasion, as an implicit
part of the counterfactual supposition being made, or (2) true, and
cotenable with the counterfactual supposition (¢ plus implicit premises,
if any) being made on that occasion. A counterfactual is true on an
occasion if and only if there exists an argument backing it; or it is
assertable if and only if a backing argument is thought to exist; or it is
an elliptical presentation of some particular backing argument.

On a metalinguistic theory of truth conditions, most counterfactuals
express contingent propositions about the world. They can do so be-
cause it is a contingent matter of fact what truths cotenable with the
antecedent there are. On my theory also, most counterfactuals express
contingent propositions about the world. It may seem that they are
about other worlds than ours; so they are, but they are about our
actual world as well. The truth of a counterfactual at our world de-
pends on the character of the closest antecedent-worlds to ours.
Which worlds those are depends on which world is ours. It is a fact
about a town that it is situated near to one city rather than another, and
in the same way it is a fact about our world that its character is such as
to make some antecedent-worlds be similar to it, and others not. It is
just such contingent facts about our world that make some counter-
factuals true at it, and others false. It is the fact that there was a penny
in my wallet that makes some of the worlds where I looked and found a
penny be closer to ours than any of the worlds where I looked and
found no penny. If this were one of the worlds with no penny, it
would be the other way around. Such worlds are situated in other
neighborhoods than ours.

What is cotenability ? That is the problem of counterfactuals for a
metalinguistic theorist, and counterfactuals remain mysterious to him
just to the extent that cotenability remains mysterious. I suggested an
answer to his problem in Section 2.6. Say that x is cotenable with an
entertainable antecedent ¢ at a world i if and only if x holds throughout
some ¢-permitting sphere around i; say also that x is cotenable with
¢ at i if x holds throughout every sphere around i, whether or not ¢ is
entertainable. We saw in Section 2.6 that the metalinguistic theory of
truth conditions obtained by using this definition of cotenability is
exactly equivalent to my theory.
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Other definitions of cotenability also would yield metalinguistic
theories equivalent to my theory. We might simply say that x is co-
tenable with ¢ at i if and only if y is true at i and ¢ (J— x is true (accord-
ing to my theory) at i. But I think that my definition of cotenability,
unlike this one, captures the intentions of metalinguistic theorists. On
my definition, a cotenable premise is not only true, but also necessary
to some extent. The strictness of its necessity is the least strictness that
will not rule the antecedent out as impossible, provided that the ante-
cedent is entertainable so that some such strictness exists. In terms of
comparative possibility: the denial of a cotenable premise is less
possible than the counterfactual antecedent itself, unless the antecedent
is already minimally possible.*

Of course, anyone who holds a metalinguistic theory is likely to do so
partly because he does not like such things as possible worlds and
comparative similarity relations among them. Then my definition of
cotenability will be almost useless to him because of its suspect commit-
ments. But perhaps not quite useless. We know better what it is to be
inspired by a muse for knowing the myth of the muses, even though
we reject the mythical analysis that says that someone is inspired by a
muse if and only if there exists a muse who inspires him. Likewise a
metalinguistic theorist who rejects the foundations of my definition of
cotenability may yet find that the definition offers some guidance
about which premises are cotenable with which antecedents.

A metalinguistic theorist who is content to give conditions of asser-
tability for counterfactuals, rather than a metalinguistic theory of truth
conditions, need not face the problem of saying when a premise actually
is cotenable with an antecedent. His problem is rather: when is a
premise thought to be cotenable with an antecedent ? Some metalinguis-
tic theorists propose to solve this problem by means of thought experi-
ments.} Imagine that you somehow came to know the antecedent for
certain and reorganized your system of beliefs under the impact of
this new knowledge; the beliefs you would retain are the ones you
regard as cotenable with the antecedent. The problem of cotenability
then reduces, as Mackie observes, to the familiar problem of induction:

* The doctrine of modal categories in Rescher, Hypothetical Reasoning, is an
approach to cotenability by way of something like comparative possibility. But
since Rescher is principally concerned with conditions of assertability or accepta-
bility for counterfactuals, rather than with truth conditions, I shall not pursue the
comparison further.

% For instance Chisholm, *The Contrary-to-fact Conditional’; Mackie, ‘Coun-
terfactuals and Causal Laws’; and Rescher, Hyporhetical Reasoning. F. P. Ramsey,
in Foundations (Routledge & Kegan Paul: London, 1978): 143, mentions such
thought experiments, but he seems to have in mind assertability conditions for
indicative conditionals rather than counterfactuals.
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how should one’s system of beliefs change under the impact of an exo-
genous piece of new knowledge.

But the method of thought experiments is wrong. Return to Ernest
Adams’s example about Oswald and Kennedy, used for another purpose
in Section 1.1. I am a-moderate Warrenite. I think it quite probable
that Oswald killed Kennedy, that he was working alone, and that there
was no second killer waiting. But I think it slightly probable that Oswald
was innocent, and that someone else killed Kennedy. I think it over-
whelmingly probable that one or other of these two hypotheses is true;
and negligibly probable, for instance, that Kennedy was not killed at
all. Then what happens when I make the thought experiment of adding
“Oswald did not kill Kennedy’ to my stock of beliefs as if it were an
item of new knowledge ? Clearly I continue to believe that Kennedy was
killed (perhaps not with quite as much certainty as before, but still very
strongly indeed), and give up the belief that there was no killer but
Oswald. That is: when my most probable hypothesis is ruled out,
most of the probability goes to what was my next-most-probable
hypothesis. According to the method of thought experiments, this
means that * Kennedy was killed’ is cotenable for me with the supposi-
tion that Oswald did not kill him, and ‘No one but Oswald killed
Kennedy’ is not. I should therefore assert such counterfactuals as

If Oswald had not killed Kennedy, someone else would have.

rather than
If Oswald had not killed him, Kennedy would not have been killed.

But that is just backward from the truth. Actually I assert the second
and deny the first. Further, I regard ‘ No one but Oswald killed Kennedy’
as cotenable with the supposition that Oswald did not kill him, and I
regard ‘Kennedy was killed’ as not cotenable with that supposition.
The reason is plain. According to my actual system of beliefs—beliefs
that have not really been revised under the impact of new knowledge—
probably I inhabit one of the worlds where Oswald did kill Kennedy,
working alone, with no other killer waiting. These worlds (except for
some with negligible probability according to my beliefs) are worlds
where the second counterfactual is true and the first is false. That is
because they are worlds to which worlds with no killing are closer than
worlds with a different killer. Therefore the second counterfactual is
probably true, according to my beliefs, and the first is probably false.
Therefore I assert the second and deny the first. To summarize: there
is no reason at all why my most probable antecedent-worlds should be
the same as the antecedent-worlds closest to my most probable worlds.
The method of thought experiments gives me the character of the
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former worlds, but the assertability of counterfactuals depends on the
character of the latter worlds.*

Perhaps I have considered the wrong thought experiment; the right
one is to add the antecedent to your system of beliefs not as if it were an
item of new knowledge, but simply as a counterfactual supposition.
That is the right thing to do, I agree, but it is unhelpful to say so. For
what is the thought experiment of adding ¢ to your beliefs as a counter-
factual supposition? I suppose it is nothing else than the exercise of
deciding which counterfactuals with the antecedent ¢ you believe.

3.3 The Metalinguistic Theory: Laws of Nature

Metalinguistic theorists commonly give a special place among cotenable
factual premises to laws of nature. A law is thought to be cotenable
with any antecedent, except an antecedent that is logically inconsistent
with that law, or perhaps with some other law. On this view, if the
antecedent of a counterfactual, together with some laws, implies the
consequent, and if the antecedent is logically consistent with all laws,
then the counterfactual is true. (Or: if that is thought to be the case,
then the counterfactual is assertable.) On this view also, there can be
no true counterfactual saying that if so-and-so particular state of
affairs were to hold, then such-and-such law would be violated.

I could, if I wished, incorporate this special status of laws into my
theory by imposing the following constraint on systems of spheres: the
set of all and only those worlds that do not violate the laws prevailing at

* Perhaps the method of thought experiments gives the proper conditions of
assertability not for counterfactuals but for indicative conditionals. Let P be a
subjective probability function representing your system of beliefs, and let Py
likewise represent the revised belief system that would result under the new item
of knowledge ¢. According to standard Bayesian confirmation theory, Py(h) =
P/ $) =% P (4 & $) | P($), provided that the denominator P(¢) is nonzero. Ernest
Adams has observed that P( / ¢) seems also to measure the assertability of the indi-
cative conditional * If ¢, then ¢’ according to the belief system P; see his *The Logic
of Conditionals’, Inquiry 8 (1965): 166-197. For instance, I do assert that if Oswald
did not kill Kennedy, then someone else did; I do so because P (Someone else did |
Oswald did not) is high. And I deny that if Oswald did not kill Kennedy, then
Kennedy was not killed; that is because P(Kennedy was not killed | Oswald did not
kill him) is low. (The indicatives are thus opposite in assertability to the corres-
ponding counterfactuals.) Adams’s observation about the assertability conditions
for indicative conditionals is compatible with various alternative views about their
truth conditions, or lack thereof. I favor the view that the indicative conditional
‘If ¢, then Y’ has the truth conditions of the material conditional ¢ = ¢; its
assertability is measured by P(¢ / ¢) rather than P(¢ = ¢) because if the latter is
high and the former is low, then P(~¢) is almost as high as P(¢ > ¢) and it is
pointless and misleading to assert ¢ > ¢ rather than ~d.
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a world i is one of the spheres around i. Equivalently, in terms of com-
parative similarity: whenever the laws prevailing at i are violated at
a world & but not at a world j, j is closer than k to i. This would mean
that any violation of the laws of 7, however slight, would outweigh
any amount of difference from i in respect of particular states of affairs.

I have not chosen to impose any such constraint. I doubt that laws
of nature have as much of a special status as has been thought. Such
special status as they do have, they need not have by fiat. I think I can
explain, within the theory already given, why laws tend to be cotenable,
unless inconsistent, with counterfactual suppositions.

I adopt as a working hypothesis a theory of lawhood held by F. P.
Ramsey in 1928: that laws are ‘consequences of those propositions
which we should take as axioms if we knew everything and organized
it as simply as possible in a deductive system’.* We need not state
Ramsey’s theory as a counterfactual about omniscience. Whatever
we may or may not ever come to know, there exist (as abstract objects)
innumerable true deductive systems: deductively closed, axiomatizable
sets of true sentences. Of these true deductive systems, some can be
axiomatized more simply than others. Also, some of them have more
strength, or information content, than others. The virtues of simplicity
and strength tend to conflict. Simplicity without strength can be had
from pure logic, strength without simplicity from (the deductive
closure of) an almanac. Some deductive systems, of course, are neither
simple nor strong. What we value in a deductive system is a properly
balanced combination of simplicity and strength—as much of both as
truth and our way of balancing will permit. We can restate Ramsey’s
1928 theory of lawhood as follows: a contingent generalization is a law
of nature if and only if it appears as a theorem (or axiom) in each of the
true deductive systems that achieves a best combination of simplicity
and strength.} A generalization is a law at a world i, likewise, if and
only if it appears as a theorem in each of the best deductive systems
true ati.

In science we have standards—vague ones, to be sure—for assessing

* See ‘Universals of Law and Fact’, in Ramsey, Foundations. (R. B. Braithwaite
kindly permitted me to see this note in manuscript.) Ramsey regarded it as super-
seded by ‘General Propositions and Causality’, also in Foundations. He there
alludes to his previous theory of 1928 in the words I have quoted (page 138); rejects
it on the ground that we néver will know everything; and goes on to develop a
different theory. See also Braithwaite’s mention of the 1928 note in his editorial
introduction, The Foundations of Mathematics: xiii.

1 I doubt that our standards of simplicity would permit an infinite ascent of
better and better systems; but if they do, we should say that a law must appear as a
theorem in all sufficiently good true systems.
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the combinations of strength and simplicity offered by deductive sys-
tems. We trade off these virtues against each other and against prob-
ability of truth on the available evidence. If we knew everything,
probability of truth would no longer be a consideration. The false
systems would drop out, leaving the true ones to compete in simplicity-
cum-strength. (Imagine that God has decided to provide mankind
with a Concise Encyclopedia of Unified Science, chosen according to
His standards of truthfulness and our standards of simplicity and
strength.) Our standards of simplicity and strength, and of the proper
balance between them, apply—though we who are not omniscient
have no occasion so to apply them—to the set of all true deductive
systems. Thus it makes sense to speak of the best true systems, and of
the theorems common to all the best true systems.

I adopt Ramsey’s 1928 theory of lawhood, glossed as above, because
of its success in explaining some facts about laws of nature. (1) It
explains why lawhood is not just a matter of the generality, syntactically
or semantically defined, of a single sentence. It may happen that two
true sentences are alike general, but one is a law of nature and the other
is not. That can happen because the first does, and the second does not,
fit together with other truths to make a best system. (2) It explains why
lawhood is a contingent property. A generalization may be true as a law
at one world, and true but not as a law at another, because the first
world but not the second provides other truths with which it makes a
best system. (3) It therefore explains how we can know by exhausting
the instances that a generalization—say, Bode’s ‘ Law’—is true, but not
yet know if it is a law. (4) It explains why being a law is not the same as
being regarded as a law—being projected, and so forth—and not the
same as being regarded as a law and also being true. It allows there to
be laws of which we have no inkling. (5) It explains why we have reason
to take the theorems of well-established scientific theories provisionally
as laws. Our scientific theorizing is an attempt to approximate, as best
we can, the true deductive systems with the best combination of sim-
plicity and strength. (6) It explains why lawhood has seemed a rather
vague and difficult concept: our standards of simplicity and strength,
and of the proper balance between them, are only roughly fixed. That
may or may not matter. We may hope, or take as an item of faith, that
our world is one where certain true deductive systems come out as best,
and certain generalizations come out as laws, by any remotely reason-
able standards—but we might be unlucky.

On the working hypothesis that the laws of a world are the generaliza-
tions that fit into the best deductive systems true there, we can also say
that the laws are generalizations which (given suitable companions) are
highly informative about that world in a simple way. Such generaliza-
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tions are important to us. It makes a big difference to the character of a
world which generalizations enjoy the status of lawhood there. There-
fore similarity and difference of worlds in respect of their laws is an
important respect of similarity and difference, contributing weightily to
overall similarity and difference. Since a difference in laws would be a
big difference between worlds, we can expect that worlds with the same
laws as a world i will tend to be closer to i than worlds at which the laws
of 7 hold only as accidental generalizations, or are violated, or—worse
still—are replaced by contrary laws. In other words, the laws of i will
hold throughout many of the spheres around i, and thus will tend to be
cotenable with counterfactual suppositions. That is so simply because
laws are especially important to us, compared with particular facts or
true generalizations that are not laws.

Though similarities or differences in laws have some tendency to out-
weigh differences or similarities in particular facts, I do not think they
invariably do so. Suppose that the laws prevailing at a world i are
deterministic, as we used to think the laws of our own world were.
Suppose a certain roulette wheel in this deterministic world i stops on
black at a time ¢, and consider the counterfactual antecedent that it
stopped on red. What sort of antecedent-worlds are closest to i? On
the one hand, we have antecedent-worlds where the deterministic laws
of i hold without exception, but where the wheel is determined to stop
on red by particular facts different from those of i. Since the laws are
deterministic, the particular facts must be different at all times before ¢,
no matter how far back. (Nor can we assume that the differences of
particular fact diminish as we go back in time. Assume for the sake of
argument that i and its laws are such that any antecedent-world where
the laws hold without exception differs more and more from i as we go
back.) On the other hand, we have antecedent-worlds that are exactly
like 7 until ¢ or shortly before; where the laws of i hold almost without
exception; but where a small, localized, inconspicuous miracle at ¢ or
just before permits the wheel to stop on red in violation of the laws.
Laws are very important, but great masses of particular fact count for
something too; and a localized violation is not the most serious sort of
difference of law. The violated deterministic law has presumably not
been replaced by a contrary law. Indeed, a version of the violated law,
complicated and weakened by a clause to permit the one exception, may
still be simple and strong enough to survive as a law. Therefore some of the
antecedent-worlds where the law is violated may be closer to i than any
of the ones where the particular facts are different at all times before ¢. At
least, this seems plausible enough to deter me from decreeing the oppo-
site, I therefore proceed on the assumption that the preeminence of laws
of nature among cotenable factual premises is a matter only of degree.
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My example of the deterministic roulette wheel raises a problem for
me: what about differences of particular fact at times after t? Among
the antecedent worlds I prefer—those where the wheel stops on red by a
minor miracle and the particular facts are just as they are at i until ¢ or
shortly before—there are two sorts. There are some where the determin-
istic laws of 7 are unviolated after ¢ and the particular facts after ¢
diverge more and more from those of i. (I now assume that the deter-
ministic laws are deterministic both forward and backward, so that
they do not permit a reconvergence.) There are others where a second
minor miracle occurs just after ¢, erasing all traces of the first miracle,
so that we have two violations of law instead of one but the particular
facts from that time on are just as they are at i. If I have decided that a
small miracle before t makes less of a difference from i than a big
difference of particular fact at all times before ¢, then why do I not also
think that a small miracle after ¢ makes less of a difference from i than a
big difference of particular fact at all times after ¢ ? That is not what I do
think: the worlds with no second miracle and divergence must be
regarded as closer, since I certainly think it true (at i) that if the wheel
had stopped on red at ¢, all sorts of particular facts afterward would have
been otherwise than they are at i. The stopping on red would have
plenty of traces and consequences from that time on.

Perhaps it is just brute fact that we put more weight on earlier
similarities of particular fact than on later ones. Divergence of par-
ticular fact throughout the past might make more of a difference than a
small violation of law, but a small violation of law might make more of a
difference than divergence of particular fact throughout the future.
Then the closest antecedent-worlds to i would be those with a miracle
and with no difference of particular fact before ¢, but with no miracle
and with divergence of particular fact after ¢. Such discrimination be-
tween the two directions of time seems anthropocentric; but we are
understandably given to just such anthropocentric discrimination, and
it would be no surprise if it turns out to infect our standards of com-
parative similarity and our truth conditions for counterfactuals.

But perhaps my standards are less discriminatory than they seem.
For some reason—something to do with the de facto or nomological
asymmetries of time that prevail at i if i is a world something like ours—
it seems to take less of a miracle to give us an antecedent-world exactly
like i in the past than it does to give us one exactly like i in the future.
For the first, all we need is one little miraculous shove, applied to the
wheel at the right moment. For the second, we need much more. All
kinds of traces of the wheel’s having stopped on red must be falsified.
The rest position of the wheel; the distribution of light, heat, and sound
in the vicinity; the memories of the spectators—all must be changed to
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bring about a reconvergence of particular fact between the antecedent-
world and i. One shove will not do it; many of the laws of i must be
violated in many ways at many places. Small wonder if the closest
antecedent-worlds to i are worlds where the particular facts before ¢ are
preserved at the cost of a small miracle, but the particular facts after ¢
are not preserved at the cost of a bigger, more complicated miracle.

3.4 Stalnaker’s Theory

The previous theory closest to mine is not any sort of metalinguistic
theory, but rather the theory of conditionals put forth by Robert
Stalnaker and developed formally by Stalnaker and Richmond Thoma-
son.* According to Stalnaker’s theory, a counterfactual ¢ [1— ¢ (he
writes it as ¢ > i) is true at a world i if and only if either (1) ¢ is true at
no world accessible from i (the vacuous case), or (2) ¢ is true at the
¢-world closest to i.

Stalnaker’s theory depends for its success not only on the Limit
Assumption that there never are closer and closer ¢-worlds to i without
end, but also on a stronger assumption: that there never are two equally
close closest ¢-worlds to i, but rather (if ¢ is true at any world accessible
from i) there is exactly one closest ¢-world. Otherwise there would be no
such thing as the closest ¢-world to i, and counterfactuals that certainly
ought to be true—say, ¢ [J—> ¢—would turn out false.

Stalnaker’s formal apparatus consists of three things. The first is an
accessibility relation. Only those worlds that are accessible from i need
be considered in determining the truth value at i of a counterfactual,
given the truth values at all worlds of the antecedent and consequent.
The second (and principal) one is a selection function f. Given any ante-
cedent ¢ and world i such that some ¢-world is accessible from i, f
picks out a single world f(4, i): one of the ¢-worlds accessible from i,
regarded as the one closest to i. The third item is the absurd world where
everything whatever is true; it is the value of f(4, i) if, but only if, there
is no ¢-world accessible from i.

Two further formal constraints are imposed, without which we
could not regard f as making a selection based on comparative
similarity. (1) Whenever i itself is a ¢-world, f($, i) is i. (2) Whenever
¢ holds at f(¢, i) and ¢ holds at f(, i), f(, i) and f(¢, i) are the same
world.

* Stalnaker, ‘A Theory of Conditionals’; Stalnaker and Thomason, ‘A Seman-
tic Analysis of Conditional Logic®, Theoria 36 (1970): 23-42; and Thomason, ‘A
Fitch-Style Formulation of Conditional Logic’, Logique et Analyse 52 (1970):
397-412.
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The truth conditions for counterfactuals are very simple: ¢ [J— ¢ is
true at i if and only if ¢ is true at f(¢, i).

Stalnaker’s absurd world is a technical convenience not to be taken
seriously. To do without it, we could simply say that when no ¢-world
is accessible from i, f(¢, i) is undefined and ¢ [J— ¢ is true for any
consequent . Also it is unnecessary to introduce the accessibility
relation independently. It will suffice to say that j is accessible from
if and only if, for any ¢ that holds at j, f(¢, i) is defined (otherwise than
as the absurd world).

Stalnaker’s theory is equivalent to a special case of mine. Consider
those systems of spheres that satisfy the following condition, which we
may call Stalnaker’s Assumption: for every world i and antecedent ¢
(in our language) that is entertainable at 7, there is a sphere around i
containing exactly one ¢-world. Stalnaker’s Assumption implies but is
not implied by the Limit Assumption: one such sphere is the smallest
¢-permitting sphere around 7, and the one ¢-world in it is the closest
¢-world to i. ¢ [J— ¢ is true at i, under my truth conditions, if and only
if ¢ holds at this closest ¢-world to i. So if we define a selection function

the only ¢-world in the smallest #-permitting
f($, i) = sphere around i, if there is any ¢-permitting
’ sphere around i,
the absurd world (or undefined) otherwise,

then it is easy to show (1) that /' meets Stalnaker’s conditions for a
selection function, and (2) that a counterfactual is true at a world
according to Stalnaker’s truth conditions involving the derived selection
function fif and only if it is true there according to my truth conditions
involving the system of spheres.

Going the other way, let f be any selection function meeting Stal-
naker’s conditions. The function f selects single worlds; but we can
convert it into a set-selection function of the sort we considered in
Section 2.7. Let f’ be derived from f as follows: whenever f(¢, i) is j
(and j is not the absurd world), let f'(¢, i) be {j}; whenever f(¢,i) is the
absurd world (or undefined) let f(¢, i) be the empty set. It is easy to show
(1) that f’ is a set-selection function according to my definition in
Section 2.7, and (2) that a counterfactual is true at a world according to
my truth conditions involving f” if and only if it is true there according
to Stalnaker’s truth conditions involving . We know, further, that since
f' is a set-selection function, it is derived from a system of spheres $:
that is, for any entertainable antecedent ¢ and world i, f'(¢, i) is the set
of ¢-worlds belonging to every ¢-permitting sphere in §,. It follows (1)
that § satisfies Stalnaker’s Assumption, and (2) that a counterfactual
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is true at a world according to my truth conditions involving the system
of spheres $ if and only if it is true there according to Stalnaker’s truth
conditions involving the selection function f.

As we saw in Section 2.3, systems of spheres stand in one-to-one
truth-preserving correspondence with comparative similarity systems.
Accordingly, Stalnaker’s selection functions also can be placed in truth-
preserving correspondence (not in general one-to-one) with a certain
class of comparative similarity systems: those such that, for any sen-
tence ¢ and world i, if there is some ¢-world in the sphere of accessibility
S,, then there is exactly one ¢-world j such that, for every other ¢-world
k,j <; k. Taking this world j as f(¢, i), and taking f(¢, i) as the absurd
world (or undefined) in case there is no ¢-world in S;, fis a Stalnaker
selection function and agrees with the given comparative similarity
system on the truth value at every world of every counterfactual. Given
a selection function f, on the other hand, we may let S;, for each world i,
be the set of (non-absurd) values of f(¢, i) for all sentences ¢; and we
may let j <; k if and only if either k& does not belong to S; or, for some
sentence ¢ holding both at j and at k, j is f(¢, i). We thus derive a com-
parative similarity system meeting the condition above, and it agrees
with the given selection function on the truth value at every world of
every counterfactual.

If all propositions were expressible in our language (or if we had
taken selection functions defined not on sentences but on all proposi-
tions) we could describe the appropriate class of comparative similarity
systems more simply as those such that, for every world i, <, is a well-
ordering of S;: that is, a linear ordering such that every nonempty set
has a lowest member.

The principal virtue and the principal vice of Stalnaker’s theory is that
it makes valid the law of Conditional Excluded Middle:

(¢ O~ v (¢ 0> ~).

Both disjuncts are true in the vacuous case; otherwise exactly one is,
since by the ordinary law of excluded middle exactly one of ¢ and ~¢
is true at any one world, and in particular at the single world f(¢, i).

The law of Conditional Excluded Middle is plausible because it
explains why we do not distinguish, in ordinary language, between the
external negation of a whole conditional

~(¢ O~ 9)

and the internal negation of the consequent
¢ 00> ~.

The latter implies the former, except in the vacuous case, both on
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Stalnaker’s theory and on mine; given Conditional Excluded Middle,
the former also implies the latter.

Given Conditional Excluded Middle, we cannot truly say such things
as this:

It is not the case that if Bizet and Verdi were compatriots, Bizet would
be Italian; and it is not the case that if Bizet and Verdi were com-
patriots, Bizet would not be Italian; nevertheless, if Bizet and Verdi
were compatriots, Bizet either would or would not be Italian.

That is:
~PO>Y) & ~@ 0> ~¢) & (d0O>¢ Vv ~).

I want to say this, and think it probably true; my own theory was de-
signed to make it true. But offhand, I must admit, it does sound like a
contradiction. Stalnaker’s theory does, and mine does not, respect the
opinion of any ordinary language speaker who cares to insist that it is a
contradiction.

But the cost of respecting this offhand opinion is too much. However
little there is to choose for closeness between worlds where Bizet and
Verdi are compatriots by both being Italian and worlds where they are
compatriots by both being French, the selection function still must
choose. I do not think it can choose—not if it is based entirely on
comparative similarity, anyhow. Comparative similarity permits ties,
and Stalnaker’s selection function does not.

Another manifestation of Stalnaker’s Assumption is that, except in
the vacuous case, the difference between ‘would’ and ‘might’ counter-
factuals is lost. Given my definition of &G— (namely, ¢ O— =%
~(¢ (3> ~)), it is a consequence of Conditional Excluded Middle
that ¢ O— ¢ implies ¢ [ ¢; and ¢ (1> ¢ implies ¢ O— 3, except
in the vacuous case, both on Stalnaker’s theory and on mine. Hence
é O~ ¢ and ¢ O— ¢ cannot differ in truth value, for Stalnaker, except
in the vacuous case. But surely English ‘would’ and ‘might’ counter-
factuals do sometimes differ in truth value, and not only in the vacuous
case. Stalnaker therefore cannot define the ‘might’ counterfactual as I
have done.

How else could he define it? Four candidates come to mind:
O($ & ), O(6 O—¢), ¢ 0= Oy, and ¢ 0> (¢ & ). But none
will do. Take ¢ as ‘I looked in my pocket’ and y as ‘I found a penny’;
suppose I did not look, suppose there was no penny to be found, and
make commonplace assumptions about relevant matters of fact. Then
*If I had looked, I might have found a penny’ is plainly false, but all four
candidate symbolizations are true. ¢ & i is false, but only contingently
s0; hence O(¢ & ¢) is true. ¢ (1 ¢ is false, but again only contingently
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so; hence O(é (— ¢) is true. If I had looked, ¢ and (¢ & ) would
have been false, but again only contingently so; hence ¢ (01— <Oy and
é [0 <O(¢ & ¥) are true. Nor would it help to exchange the outer
possibility operator < for some other sort of possibility operator, since
the contingencies I have noted persist for other sorts of possibility also.
(Exception: if I had looked, I would have known that I had found no
penny; ¥ and ¢ & ¥ would not have been epistemically possible. But
change the example so that if I had looked I would not have known
whether I had found a penny or not, so that ¢ and ¢ & ¢ would have
been epistemically possible; yet the original English ‘might’ counter-
factual remains false.)

The obvious revision of Stalnaker’s theory, for one who cannot
accept Conditional Excluded Middle because he thinks there might
be more than one equally close closest antecedent-world, is the theory
based on set-selection functions that we considered in Section 2.7. If we
have a function that selects a set of closest antecedent-worlds to a world
i, the set may contain a single world, but it may rather contain finitely
or infinitely many. (Or none, in case the antecedent is not entertainable
at i; a set-selection function selects the empty set when a world-selection
function selects the absurd world, or is undefined.) The theory of set-
selection functions does away with Stalnaker’s Assumption, but still
depends on the Limit Assumption. I argued that the Limit Assumption
also was unjustified, but at least it is safer than Stalnaker’s Assumption.

Be that as it may; if we are prepared to tolerate the Limit Assumption
but not Stalnaker’s Assumption, then there is another way to revise
Stalnaker’s theory, preserving more of its original character. We can
stick to world-selection functions of Stalnaker’s sort while denying
that the choice of one of them is fully determined by comparative
similarity of worlds. We are required to pick an admissible world-
selection function—that being one such that, for any antecedent ¢ and
world i (provided there is some ¢-world accessible from ) the selection
function gives us one of the closest ¢-worlds to i. If Stalnaker’s Assump-
tion fails and we sometimes have more than one closest ¢-world to i,
then we will have more than one admissible selection function. If so, the
choice of one of these admissible selection functions is arbitrary.

Stalnaker’s truth conditions, taken over unchanged, tell us about
truth relative to any one particular arbitrary choice of an admissible
selection function. But we are not much interested in what happens
under any one arbitrary choice. Rather we are interested in what is
common to all the choices. Call a sentence true at a world if it is true
there relative to all admissible selection functions; false if it is false
there relative to all admissible selection functions; arbitrary or neuter
there if it is true there relative to some admissible selection functions
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but false there relative to others. It is truth simpliciter—not truth relative
to some particular arbitrary choice—that makes a sentence worthy of
assertion.

So far as the truth conditions for counterfactuals go, it is just as if we
had gone over to set-selection functions: ¢ [J— ¢ is true at i relative
to all admissible selection functions—that is, true at i—if and only if ¢ is
true at every closest ¢-world to i, if there are any. But when we turn
to falsity conditions for counterfactuals, and truth conditions for
negations or other truth-functional compounds of counterfactuals, we
find differences. Assume that the closest worlds to ours where Bizet
and Verdi are compatriots are divided into worlds where both are
French and worlds where both are Italian. ‘If they were compatriots,
they would be French’ is simply false on my theory; and its negation is
true. But on the revised version of Stalnaker’s theory that we are
examining, this counterfactual and its negation both are neither true
nor false, since they vary from one admissible selection function to
another. Their truth value is arbitrary. (‘If they were compatriots, they
would be German’, on the other hand, is false on either theory; and its
negation is true on either theory.) ‘Either if they were compatriots
they would be French or if they were compatriots they would be Italian’
is false on my theory, being a disjunction of two falsehoods. But on the
revision of Stalnaker’s theory, it is true although both disjuncts are not
true but arbitrary; for since every admissible selection function makes
one disjunct or the other true, every admissible selection function
makes the disjunction true. For the same reason, Conditional Excluded
Middle is valid: every admissible selection function makes one of the
disjuncts ¢ [ ¢ and ¢ (1> ~4¢ true, though it may be that they do
not all make the same one true. More generally: any sentence schema
valid on the original version of Stalnaker’s theory is valid still on the
revised version.*

This revision of Stalnaker’s theory overcomes one defect of the
original version: no longer does the theory depend for its success on
the implausible assumption that we never have two or more tied closest
antecedent-worlds. Two major problems remain. First, the revised
version still depends for success on the Limit Assumption. If ever there
were closer and closer antecedent-worlds without end, there would be
no admissible selection functions at all. Second, the revised version still

* The strategy followed to obtain this half-way house between Stalnaker’s
theory and mine is Bas van Fraassen’s method of supervaluations. See van Fraas-
sen, ‘Singular Terms, Truth-Value Gaps and Free Logic’, Journal of Philosophy
63 (1966): 481-495. Stalnaker suggested the revision I have outlined (personal
communication, 1968) and discusses it further in ‘ A Defense of Conditional Excluded
Middle’, in W. L. Harper et al., Ifs (D. Reidel: Dordrecht, 1981) ; Thomason makes
a similar proposal in ‘A Fitch-Style Formulation of Conditional Logic’.
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gives us no ‘might’ counterfactual. My definition is still ruled out
because, except in the vacuous case, ¢ [} ¢ and ¢ O— ¢ are still
equivalent. (They are both true, both false, or both arbitrary; moreover,
they have the same truth value relative to any admissible selection
function.) Nor does the revision help us to find an alternative defini-
tion.*

* Except that my * might’ counterfactual, and with it my ‘ would’ counterfactual,
can be defined on the revised version of Stalnaker’s theory, with the aid of certain
special operators. For instance, suppose we have an operator that attaches to any
sentence ¢ to make a sentence that is true if ¢ is true, false if ¢ is either false or
arbitrary. By prefixing this operator to ¢ [1— ¢ we recover my ‘would’ counter-
factual, and from there we can get to my ‘might’ counterfactual as usual. But
why bother? If you like my theory, there are easier ways to formulate it; if you
prefer Stalnaker’s you will not wish to introduce my ‘might’ and ‘ would’ counter-
factuals into it.



4. Foundations

4.1 Possible Worlds

It is time to face the fact that my analysis rests on suspect foundations.
Doubly so: possible worlds are widely regarded with suspicion, and so is
similarity even among entities not themselves suspect. If the common
suspicion of possible worlds and of similarity were justified, then my
analysis could have little interest: only the interest of connecting
mysteries to other mysteries. I shall argue, however, that the suspicions
are not well justified.

I believe that there are possible worlds other than the one we happen to
inhabit. If an argument is wanted, it is this. It is uncontroversially true
that things might be otherwise than they are. I believe, and so do you,
that things could have been different in countless ways. But what does
this mean ? Ordinary language permits the paraphrase: there are many
ways things could have been besides the way they actually are. On the
face of it, this sentence is an existential quantification. It says that there
exist many entities of a certain description, to wit ‘ways things could
have been’. I believe that things could have been different in countless
ways; I believe permissible paraphrases of what I believe; taking the
paraphrase at its face value, I therefore believe in the existence of
entities that might be called ‘ways things could have been’. I prefer to
call them ‘possible worlds’.

I do not make it an inviolable principle to take seeming existential
quantifications in ordinary language at their face value. But I do
recognize a presumption in favor of taking sentences at their face value,
unless (1) taking them at face value is known to lead to trouble, and
(2) taking them some other way is known not to. In this case, neither
condition is met. I do not know any successful argument that my
realism about possible worlds leads to trouble, unless you beg the
question by saying that it already is trouble. (I shall shortly consider
some unsuccessful arguments.) All the alternatives I know, on the
other hand, do lead to trouble.
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If our modal idioms are not quantifiers over possible worlds, then
what else are they? (1) We might take them as unanalyzed primitives;
this is not an alternative theory at all, but an abstinence from theorizing.
(2) We might take them as metalinguistic predicates analyzable in terms
of consistency: ‘Possibly ¢’ means that ¢ is a consistent sentence. But
what is consistency ? If a consistent sentence is one that could be true,
or one that is not necessarily false, then the theory is circular; of course,
one can be more artful than I have been in hiding the circularity. If a
consistent sentence is one whose denial is not a theorem of some speci-
fied deductive system, then the theory is incorrect rather than circular:
no falsehood of arithmetic is possibly true, but for any deductive system
you care to specify either there are falschoods among its theorems or
there is some falsehood of arithmetic whose denial is not among its
theorems. If a consistent sentence is one that comes out true under some
assignment of extensions to the non-logical vocabulary, then the theory
is incorrect: some assignments of extensions are impossible, for instance
one that assigns overlapping extensions to the English terms ‘pig’ and
‘sheep’. If a consistent sentence is one that comes out true under some
possible assignment of extensions, then the theory is again circular.
(3) We might take them as quantifiers over so-called ‘possible worlds’
that are really some sort of respectable linguistic entities: say, maximal
consistent sets of sentences of some language. (Or maximal consistent
sets of atomic sentences, that is state-descriptions; or maximal consis-
tent sets of atomic sentences in the language as enriched by the addition
of names for all the things there are, that is diagrammed models.)
We might call these things ‘possible worlds’, but hasten to reassure
anyone who was worried that secretly we were talking about something
else that he likes better. But again the theory would be either circular
or incorrect, according as we explain consistency in modal terms or in
deductive (or purely model-theoretic) terms.

I emphatically do not identify possible worlds in any way with
respectable linguistic entities; I take them to be respectable entities in
their own right. When I profess realism about possible worlds, I mean
to be taken literally. Possible worlds are what they are, and not some
other thing. If asked what sort of thing they are, I cannot give the kind
of reply my questioner probably expects: that is, a proposal to reduce
possible worlds to something else.

I can only ask him to admit that he knows what sort of thing our
actual world is, and then explain that other worlds are more things
of that sort, differing not in kind but only in what goes on at them. Our
actual world is only one world among others. We call it alone actual
not because it differs in kind from all the rest but because it is the world
we inhabit. The inhabitants of other worlds may truly call their own
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worlds actual, if they mean by ‘actual’ what we do; for the meaning we
give to “actual’ is such that it refers at any world / to that world i itself.
‘Actual’ is indexical, like ‘I’ or ‘here’, or ‘now’: it depends for its
reference on the circumstances of utterance, to wit the world where the
utterance is located.*

My indexical theory of actuality exactly mirrors a less controversial
doctrine about time. Our present time is only one time among others.
We call it alone present not because it differs in kind from all the rest,
but because it is the time we inhabit. The inhabitants of other times may
truly call their own times ‘present’, if they mean by ‘present’ what we
do; for the meaning we give to ‘present’ is such that it is indexical, and
refers at any time ¢ to that time ¢ itself.

I have already said that it would gain us nothing to identify possible
worlds with sets of sentences (or the like), since we would need the
notion of possibility otherwise understood to specify correctly which
sets of sentences were to be identified with worlds. Not only would it
gain nothing: given that the actual world does not differ in kind from
the rest, it would lead to the conclusion that our actual world is a set of
sentences. Since I cannot believe that I and all my surroundings are a set
of sentences (though I have no argument that they are not), I cannot
believe that other worlds are sets of sentences either.

What arguments can be given against realism about possible worlds ?
I have met with few arguments—incredulous stares are more common.
But I shall try to answer those that I have heard.

It is said that realism about possible worlds is false because only our
own world, and its contents, actually exist. But of course unactualized
possible worlds and their unactualized inhabitants do not actually
exist. To actually exist is to exist and to be located here at our actual
world—at this world that we inhabit. Other worlds than ours are not our
world, or inhabitants thereof. It does not follow that realism about
possible worlds is false. Realism about unactualized possibles is
exactly the thesis that there are more things than actually exist. Either
the argument tacitly assumes what it purports to prove, that realism
about possibles is false, or it proceeds by equivocation. Our idioms of
existential quantification may be used to range over everything without
exception, or they may be tacitly restricted in various ways. In particu-
lar, they may be restricted to our own world and things in it. Taking
them as thus restricted, we can truly say that there exist nothing but our
own world and its inhabitants; by removing the restriction we pass
illegitimately from that truth to the conclusion that realism about
possibles is false. It would be convenient if there were one idiom of

* For more on this theme, see my ‘Anselm and Actuality’, Nods 4 (1970):
175-188.
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quantification, say ‘there are ...’, that was firmly reserved for un-
restricted use and another, say ‘there actually exist . . .’, that was firmly
reserved for the restricted use. Unfortunately, even these two idioms
of quantification can be used either way; and thus one can pass in-
decisively from equivocating on one to equivocating on another. All the
same, there are the two uses (unless realism about possibles is false, as
has yet to be shown) and we need only keep track of them to see that
the argument is fallacious.

Realism about possible worlds might be thought implausible on
grounds of parsimony, though this could not be a decisive argument
against it. Distinguish two kinds of parsimony, however: qualitative
and quantitative. A doctrine is qualitatively parsimonious if it keeps
down the number of fundamentally different kinds of entity: if it posits
sets alone rather than sets and unreduced numbers, or particles alone
rather than particles and fields, or bodies alone or spirits alone rather
than both bodies and spirits. A doctrine is quantitatively parsimonious
if it keeps down the number of instances of the kinds it posits; if it
posits 10%? electrons rather than 10%7, or spirits only for people rather
than spirits for all animals. I subscribe to the general view that qualita-
tive parsimony is good in a philosophical or empirical hypothesis; but
I recognize no presumption whatever in favor of quantitative parsi-
mony. My realism about possible worlds is merely quantitatively, not
qualitatively, unparsimonious. You believe in our actual world already.
I ask you to believe in more things of that kind, not in things of some
new kind.

Quine has complained that unactualized possibles are disorderly
elements, well-nigh incorrigibly involved in mysteries of individuation.*
That well may be true of any unactualized possibles who lead double
lives, lounging in the doorways of two worlds at once. But I do not
believe in any of those. The unactualized possibles I do believe in,
confined each to his own world and united only by ties of resemblance
to their counterparts elsewhere (see Section 1.9) do not pose any special
problems of individuation. At least, they pose only such problems of
individuation as might arise within a single world.

Perhaps some who dislike the use of possible worlds in philosophical
analysis are bothered not because they think they have reason to doubt
the existence of other worlds, but only because they wish to be told
more about these supposed entities before they know what to think.
How many are there? In what respects do they vary, and what is
common to them all? Do they obey a non-trivial law of identity of
indiscernibles ? Here I am at a disadvantage compared to someone who

* Willard V. Quine, ‘On What There Is’, in From a Logical Point of View
(Harvard University Press: Cambridge, Mass., 1953): 4.
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pretends as a figure of speech to believe in possible worlds, but really
does not. If worlds were creatures of my imagination, I could imagine
them to be any way I liked, and I could tell you all you wish to hear
simply by carrying on my imaginative creation. But as I believe that
there really are other worlds, I am entitled to confess that there is much
about them that I do not know, and that I do not know how to find out.

One comes to philosophy already endowed with a stock of opinions.
It is not the business of philosophy either to undermine or to justify
these preexisting opinions, to any great extent, but only to try to dis-
cover ways of expanding them into an orderly system. A metaphysician’s
analysis of mind is an attempt at systematizing our opinions about mind.
It succeeds to the extent that (1) it is systematic, and (2) it respects those
of our pre-philosophical opinions to which we are firmly attached.
Insofar as it does both better than any alternative we have thought of,
we give it credence. There is some give-and-take, but not too much:
some of us sometimes change our minds on some points of common
opinion, if they conflict irremediably with a doctrine that commands
our belief by its systematic beauty and its agreement with more im-
portant common opinions.

So it is throughout metaphysics; and so it is with my doctrine of
realism about possible worlds. Among my common opinions that
philosophy must respect (if it is to deserve credence) are not only my
naive belief in tables and chairs, but also my naive belief that these
tables and chairs might have been otherwise arranged. Realism about
possible worlds is an attempt, the only successful attempt I know of, to
systematize these preexisting modal opinions. To the extent that I am
modally opinionated, independently of my: philosophizing, I can dis-
tinguish between alternative versions of realism about possible worlds
that conform to my opinions and versions that do not. Because I
believe my opinions, I believe that the true version is one of the former.
For instance, I believe that there are worlds where physics is different
from the physics of our world, but none where logic and arithmetic
are different from the logic and arithmetic of our world. This is nothing
but the systematic expression of my naive, pre-philosophical opinion
that physics could be different, but not logic or arithmetic. I do not know
of any non-circular argument that I could give in favor of that opinion;
but so long as that is my firm opinion nevertheless, I must make a
place for it when I do metaphysics. I have no more use for a philo-
sophical doctrine that denies my firm, unjustified modal opinions than I
have for one that denies my firm, unjustified belief in chairs and tables.

Unfortunately, though, I am not opinionated enough. There are too
many versions of realism about worlds that would serve equally well to
systematize my modal opinions. I do not know which to believe; unless
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I become more opinionated, or find unsuspected connections between my
opinions I may never have any way to choose. But why should I think
that I ought to be able to make up my mind on every question about
possible worlds, when it seems clear that I may have no way whatever
of finding out the answers to other questions about noncontingent
matters—for instance, about the infinite cardinals ?

Quine has suggested one way to seek fixation of belief about possible
worlds by proposing that worlds might be put into correspondence
with certain mathematical structures representing the distribution of
matter in space and time.* Suppose, for simplicity, that we are con-
cerned with worlds where space-time is Euclidean and four-dimensional,
and where there is only one kind of matter and no fields. (Quine calls
these Democritean worlds.) We can represent any such world by a
mapping from all quadruples <x, y, z, t> of real numbers to the numbers
0 and 1. We are to think of the quadruples as coordinates, in some
coordinate system, of space-time points; and we are to think of the
quadruples mapped onto 0 as coordinates of points unoccupied by
matter, and of quadruples mapped onto 1 as coordinates of points
occupied by matter. Thus the entire mapping represents a possible
distribution of uniform matter over Euclidean space-time. Since there
are many different coordinate systems—differing in the location of the
<0, 0, 0, 0> point, the length of the units of spatial and of temporal dis-
tance, and the directions of the spatial axes—there are many different
mappings (differing by a transformation of coordinates) that we regard
as representing the same distribution of matter. To overcome this
dependence of the mapping on an arbitrary choice of coordinates, we
take not the mappings themselves, but equivalence classes of mappings
under transformations of coordinates. We get a perfectly well-defined,
well-understood set of mathematical entities, exactly one for every
different possible distribution of matter.

Of course, this is a simplified example. The construction must be
generalized in several ways to cover possibilities so far overlooked.
Space-time might be non-Euclidean; there might be scalar, vector, or
tensor fields independent of the distribution of matter; there might be
more than one kind of matter, or more or less density of matter, even
in the small. We would have to go on generalizing as long as we could
think of possibilities not yet taken into account. But generalizing
Quine’s simplified example is easy mathematical work. We can hope
that soon we will reach the end of the generalizations required and
permitted by our opinions about what is possible, and then we will
have a well-defined set of mathematical entities of a familiar and

* Willard V. Quine, ‘ Propositional Objects’, in Ontological Relativity (Columbia
University Press: New York, 1969): 147-155.
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well-understood sort, corresponding one-to-one in a specified way with
the possible worlds.

I do not, of course, claim that these complicated mathematical
entities are the possible worlds. I cannot believe (though I do not know
why not) that our own world is a purely mathematical entity. Since I
do not believe that other worlds are different in kind from ours, I do not
believe that they are either. What is interesting is not the reduction of
worlds to mathematical entities, but rather the claim that the possible
worlds stand in a certain one-to-one correspondence with certain
mathematical entities. Call these ersatz possible worlds. Any credible
correspondence claim would give us an excellent grip on the real
possible worlds by their ersatz handles. It would answer most of our
questions about what the possible worlds are like.*

We already have a good grip, in this way, on at least some of the
possible worlds: those that correspond to mathematical ersatz worlds
constructed at the highest level of generality that our modal opinions
clearly require and permit. It is only because there may be higher levels
of generality that we have failed to think of, and because our modal
opinions are indecisive about whether there really are possibilities
corresponding to some of the levels of generality we have thought of
(what about letting the number of spatial dimensions vary ? what about
letting there be entities that are temporally but not spatially located ?
what about letting the distinction between space and time be local rather
than global, like the distinction between up and down ?), that we fail to
have a good grip on all the worlds.

The mathematical construction of ersatz worlds may seem to depend
too much on our current knowledge of physics. We know that we must
generalize enough to include non-Euclidean worlds, for instance, just
because the physicists have found reason to believe that we live in one.
But physics is contingent. If we look to physics to tell us what is possible,
will we get all possible worlds? Or only the physically possible worlds,
according to current physics ?

More, at least, than the latter. We will certainly construct ersatz
worlds that disobey currently accepted physical laws; for instance,

* Even the indefinite correspondence claim that some generalization of Quine’s
simplified example is right is enough to answer one important question about the
possible worlds. How many are there? Answer: at least 3., the infinite cardinal
of the set of all subsets of the real numbers. It can easily be shown that this is the
number of ersatz worlds in Quine’s original construction. Indeed, it is the number
of ersatz worlds at any level of generality that seems to me clearly called for.
Here is another reason why possible worlds are not sets of sentences of a language.
If we take ‘language’ at all literally, so that sentences are finite strings over a
finite alphabet, there are not enough sets of sentences to go around. There are at
most 3;, the infinite cardinal of the set of all real numbers.
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ersatz worlds where mass-energy is not conserved. Still, we cannot be
sure of getting all possible worlds, since we cannot be sure that we
have constructed our ersatz worlds at a high enough level of generality.
If we knew only the physics of 1871, we would fail to cover some of the
possibilities that we recognize today. Perhaps we fail today to cover
possibilities that will be recognized in 2071. Our modal opinions do
change, and physicists do a lot to change them. But this is not to say
that we can argue from the contingent results of empirical investigation
to conclusions about what possibilities there are. It is only to say that
when we find it hard to locate our actual world among the possibilities
that we recognize, we may reasonably be stimulated to reconsider our
modal opinions. We may try to think of credible possibilities hitherto
overlooked, and we may consider whether we are still as sure as we were
about those of our modal opinions that have turned out to be restrictive.
It is this reconsideration of modal opinions that may influence our
construction of ersatz worlds, not the results of empirical investigation
itself. We are concerned not with physics proper, but with the prelimi-
nary metaphysics done by physicists.

4.2 Similarity

It may be said that even if possible worlds are tolerable, still the notion
of comparative overall similarity of worlds is hopelessly unclear, and
so no fit foundation for the clarification of counterfactuals or anything
else. I think the objection is wrong. ‘Unclear’ is unclear: does it mean
‘ill-understood’ or does it mean ‘vague’? Ill-understood notions are
bad primitives because an analysis by means of them will be an ill-
understood analysis. (It may yet be better than no analysis at all.) But
comparative similarity is not ill-understood. It is vague—very vague—in
a well-understood way. Therefore it is just the sort of primitive that we
must use to give a correct analysis of something that is itself undeniably
vague.

Overall similarity consists of innumerable similarities and differences
in innumerable respects of comparison, balanced against each other
according to the relative importances we attach to those respects of
comparison. Insofar as these relative importances differ from one person
to another, or differ from one occasion to another, or are indeterminate
even for a single person on a single occasion, so far is comparative
similarity indeterminate. As Goodman says,* ‘Importance is a highly

* Nelson Goodman, ‘Seven Strictures on Similarity’, in L. Foster and J. W.
Swanson, Experience and Theory (University of Massachusetts Press: 1970): 27.
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volatile matter, varying with every shift of context and interest, and
quite incapable of supporting the fixed distinctions that philosophers
so often seek to rest upon it.’

All this is not special to the comparative similarity of worlds that
appears in my analysis of counterfactuals. It is the same sort of vague-
ness that arises if I say that Seattle resembles San Francisco more closely
than it resembles Los Angeles. Does it? That depends on whether we
attach more importance to the surrounding landscape, the architecture,
the dominant industries, the political temper, the state of the arts, the
climate, the public transportation system, the form of the city govern-
ment, or what. Possible worlds are bigger than cities (sometimes), and
are capable of differing in a greater variety of respects. They are also
capable of being more alike than any two actual cities. Still, any prob-
lems posed by my use of comparative similarity differ only in degree, not
in kind, from problems about similarity that we would be stuck with no
matter what we did about counterfactuals. Somehow, we do have a
familiar notion of comparative overall similarity, even of comparative
similarity of big, complicated, variegated things like whole people,
whole cities, or even—I think—whole possible worlds. However
mysterious that notion may be, if we can analyze counterfactuals by
means of it we will be left with one mystery in place of two.

I am not one of those philosophers who seek to rest fixed distinctions
upon a foundation quite incapable of supporting them. I rather seek to
rest an unfixed distinction upon a swaying foundation, claiming that
the two sway together rather than independently. The truth conditions
for counterfactuals are fixed only within rough limits; like the relative
importances of respects of comparison that underlie the comparative
similarity of worlds, they are a highly volatile matter, varying with every
shift of context and interest.

It often happens that two vague concepts are vague in a coordinated
way: firmly connected to each other, if to nothing else. The border
between blue and green is not well fixed, so ‘blue’ and ‘green’ are both
vague. But their relation to each other is fixed: one begins where the
other leaves off, with no gap and no overlap. They are vague in a
coordinated way, not independently. A single roughly fixed parameter
serves to delineate both the border of blue (on the side facing green)
and the border of green (on the side facing blue). If we wish to give truth
conditions for sentences containing the vague terms ‘blue’ and “green’,
there are two things to do. First we can give precise conditions of truth
relative to any given value of this delineating parameter (and others,
such as the one that delineates the border between green and yellow).
Then we can go on to say roughly what the values of the delineating
parameters are supposed to be, thereby removing the relativity and
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giving imprecise conditions of truth simpliciter.* In easy cases, such as
the vagueness of ‘many’ or ‘hot’, the delineating parameter need be
nothing more than a single number. In other cases, it will have to be
something more complicated—several numbers, for instance, or a
surface through the color solid.

The delineating parameter for the vagueness of counterfactuals is the
comparative similarity relation itself: the system of spheres, compara-
tive similarity system, selection function, or whatever other entity we
use to carry information about the comparative similarity of worlds. I
have stated precise truth conditions relative to any given value of this
roughly fixed parameter. My formal statements of truth conditions in
Section 1.3 took the form: ¢ [J— ¢ is true at a world i according to a
system of spheres $ if and only if. . .. To get down to truth at a world
simpliciter, I had to remove the relativity at the cost of introducing
vagueness by saying that the system of spheres was supposed to be based
on comparative similarity. Thus I fixed the delineating parameter $
within a fuzzily bounded range of values.

The border delineating blue from green is only roughly fixed, but it is
at least roughly fixed. Not anything goes. We can find a color that is
blue according to some quite permissible delineations and green
according to others, and therefore indeterminate between blue and green.
But it is not indeterminate whether the sky is blue or green. No delinea-
tion is at all permissible, under our conventions of language, relative
to which it is anything but blue. Likewise the relative importances of
respects of comparison, and thereby the comparative similarity of
worlds, are at least roughly fixed. Not anything goes. It can happen that
a counterfactual is true (at a world) according to some permissible
systems of spheres but not according to others, so that its truth value
will be indeterminate by reason of vagueness. But it can happen also,
and often does, that a counterfactual has the same truth value according
to all permissible systems of spheres, and so is definitely true or de-
finitely false.

There might be a man who was inclined to deny that if he had stepped
out of his window he would have fallen to the ground ; to deny this not—
as we might expect—because he had eccentric factual opinions, but
rather because he attached eccentric relative importances to respects
of comparison of worlds and therefore favored a system of spheres
unlike systems that others would favor. He is not entitled to give in to
his inclination to deny this, at least not without giving warning of his
eccentric notions. If he denies it without warning he lies; if he denies it
with warning, he temporarily changes the conventional meaning of his
words. There is a rough consensus about the importances of respects

* This treatment of vagueness is discussed further in my ‘General Semantics’.
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of comparison, and hence about comparative similarity. Our standards
of importance and similarity do vary; but mostly within a certain range,
narrow by comparison with the range of variation permitted by the
formal constraints in my definition of a system of spheres. We mostly
stay within that comparatively narrow range, expect each other to stay
within it, expect each other to expect each other to stay within it, and so
on. It is natural that we should have vocabulary conventionally
reserved for use within that mutually expected range. If special interests
or eccentricity lead us outside the mutually expected range of variation,
we have no right to take our conventionally reserved vocabulary with us.
For if we do (unless we serve notice), we will deceive those of our
listeners who justifiably suppose that our standards of importance and
similarity are more or less the usual ones.

. I conclude that the limited vagueness of similarity accounts nicely
for the limited vagueness of counterfactuals. It accounts for the fact
that some sensitive counterfactuals are so vague as to be unsuitable for
use in serious discourse; that others have definite truth values only
when context serves to narrow their range of vagueness; and that many
more have quite definite truth values (in worlds of the sort we think we
inhabit), insensitive to small shifts in our standards of comparative
similarity.

It is tempting to try to define some exact measure of the similarity
‘distance’ among worlds, using the mathematical ersatz worlds intro-
duced in Section 4.1. Assume, for instance, that the worlds stand in
one-to-one correspondence with Quine’s Democritean ersatz worlds.
These, we recall, are equivalence classes, under certain transformations
of coordinates, of mappings from the set of all quadruples of real
numbers to O (for the quadruples which are the coordinates of points
unoccupied by matter) and 1 (for the coordinates of occupied points).
We might define the distance between any two of these mappings as the
hypervolume of the set of quadruples on which the two mappings differ
in value; and we might next define the distance between any two sets of
these mappings—in particular, between any two ersatz worlds—as the
greatest lower bound on the distances between a mapping in one set
and a mapping in the other. It remains only to equate the similarity
‘distance’ between two worlds with the defined distance between the
two corresponding ersatz worlds.

The Democritean ersatz worlds are not constructed at a high enough
level of generality. We could, however, define exact distance measures
in much the same way for more adequate constructions of ersatz worlds.
At worst, we might need a few numerical parameters. For instance, we
might define one similarity measure for distribution of matter and
another for distribution of fields, and we would then need to choose
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a weighting parameter to tell us how to combine these in arriving at the
overall similarity of two worlds. All this would be easy work for those
who like that sort of thing, and would yield an exact measure of some-
thing—something that we might be tempted to regard as the similarity
‘distance’ between worlds.

We must resist temptation. The exact measure thus defined cannot be
expected to correspond well to our own opinions about comparative
similarity. Some of the similarities and differences most important to
us involve idiosyncratic, subtle, Gestalt properties. It is impossible in
practice, and perhaps in principle, to express these respects of com-
parison in terms of the distribution of matter over space-time (or the
like), even if the distribution of matter suffices to determine them.

Consider a similar proposal to measure the visual similarity of faces.
Any face can be represented by a matrix of dots, some black and some
white. (I ignore color for simplicity.) With enough dots, nothing per-
ceptible is lost: any two faces that yield the same matrix of dots look
exactly alike to the (color-blind) eye. There is an easy way to measure the
‘distance’ between two matrices of dots (with the same number of rows
and columns). Take the number of dots that are black in the first matrix
but white in the second, or black in the second but white in the first, as a
fraction of the total number of dots. Let the measure of the difference
between two faces be the distance, so defined, between their representa-
tions by matrices of dots.

Various refinements come to mind. Vertical and horizontal shifts
should not affect the measure of distance, so take the minimum distance
that can be obtained by vertical and horizontal shifting. Likewise for
rotation, for change of scale, for change of average darkness, and for
change of contrast (within limits).

When all this is done, we may have a measure that will be right at the
extremes. When we think two faces are very similar, they will be very
similar according to the measure; when we think two faces are very
different, they will be very different according to the measure. Between
the extremes, however, the measure will miss features that we consider
important. Not many dots need to be switched between black and
white to go from an Oriental face to a Caucasian face; from a male face
to a female face; from an open, friendly face to a face with a sinister
leer. So we will have defined a precise measure of something, but it will
not be a measure of the overall similarity of faces according to any
ordinary standards. The same goes, I fear, for any humanly possible
attempt at a precise definition of comparative similarity of worlds. Not
only would we go wrong by giving a precise analysis of an imprecise
concept; our precise concept would not fall within—or even near—the
permissible range of variation of the ordinary concept.
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5.1 Conditional Obligation

Our understanding of modality has been much improved by the ex-
ploitation of formal analogies between modal logic and other branches
of intensional logic: deontic logic, tense logic, and recently Prior’s
‘egocentric logic’. It therefore behooves us to see whether counterfactuals
likewise bear formal analogies to anything else. They do: there are
variably strict conditionals to be found also in deontic logic, tense logic,
and egocentric logic. These turn out to be familiar concepts, with an
interest independent of their analogy to counterfactuals.

We may base a system of spheres not on comparative similarity of
possible worlds, but rather on comparative goodness of worlds. Sup-
pose we have a preference ordering of the worlds, perhaps different from
the standpoints of different worlds. As is the custom in deontic logic, I
shall say nothing definite about the source and significance of this
ordering. Perhaps the worlds are ordered according to their total net
content of pleasure, measured by some hedonic calculus; or their
content of beauty, truth, and love; or their content of some simple,
non-natural quality. Perhaps they are ordered according to the extent
that their inhabitants obey the law of God, of Nature, or of man.
Perhaps according to how well they measure up to some sort of stan-
dards of objective morality, if such there be; perhaps according to
someone’s personal taste in possible worlds; perhaps according to the
tastes we would have if we attained a superhuman capacity for calm,
sympathetic, impartial contemplation of alternative possibilities. It does
not matter. We can build in the same way on any of these foundations,
or on others.

Suppose we have also an assignment to each world i of a sphere of
accessibility, or evaluability. We may leave a world out of i’s sphere of
evaluability if we want to exclude it from consideration, from the stand-
point of i—say, because the standards of evaluation that give rise to
the ordering cannot be applied to that world.
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Let a sphere around a world i now be any set S of worlds evaluable
from i such that any world in S is better than any world outside S, in
our ordering from the standpoint of i. If the preference ordering (from
the standpoint of any world /) has the properties of a weak ordering,
then a world j is better than a world k if and only if some sphere
contains j but not k. The system of spheres so obtained is nested, closed
under unions, and closed under nonempty intersections.

In contrast to systems of spheres based on comparative similarity,
however, these systems of spheres based on comparative goodness
will not generally be centered, or even weakly centered. Centering means
that for each world i, {i} is a sphere around i; and that would mean now
that each world is, from its own standpoint, the best of all possible
worlds. Weak centering means that each world i belongs to the inner-
most nonempty sphere around i; and that would mean now that each
world is, from its own standpoint, at least one of the best worlds. It is
quite clear, no matter what (within reason) is the source of our pre-
ference ordering, that ours is nowhere near being one of the best
possible worlds!

Let us restate the definition of a system of spheres in a general form,
without the previous clauses for centering or weak centering. Let $
be an assignment to each world i of a set $; of sets of worlds. Then § is
called a system of spheres, and the members of each $, are called spheres
around i,* if and only if, for each world i, the following conditions hold.

(1) §, is nested; that is, whenever S and T belong to §,, either S is in-
cluded in T or T is included in S.

(2) $; is closed under unions; that is, whenever 8 is a subset of §, and
S is the set of all worlds j such that j belongs to some member of
8, S belongs to $,.

(3) $; is closed under (nonempty) intersections; that is, whenever 8
is a nonempty subset of §; and (S is the set of all worlds j such that j
belongs to every member of §, (S belongs to §,.

The Limit Assumption may fail for spheres based on comparative
goodness, just as for spheres based on comparative similarity. If there
is a ¢-permitting sphere around i, there may be a smallest ¢-permitting
sphere around i, containing exactly those ¢-worlds that are best from
the standpoint of i; or there may be no smallest ¢-permitting sphere,
and better and better ¢-worlds without end. (That is not to say that the
goodness of ¢-worlds is unbounded; there may also be worlds better
than any of the ¢-worlds.) That could happen in a way parallel to fail-
ures of the Limit Assumption for spheres based on comparative

* ¢ Around’ is rather a misnomer without centering, but we shall keep using it
nonetheless.
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similarity. Suppose that the goodness of certain worlds increases
according to the value of some continuously variable magnitude, and
let ¢ be true at all and only those worlds of the proper kind where the
value of the magnitude is strictly less than some upper bound. Then
there are no best ¢-worlds.

Previously, centering (or weak centering) guaranteed us one special
case of the Limit Assumption, at least: a smallest ¢-permitting sphere
around i whenever ¢ was true at i. This was the innermost nonempty
sphere around i; in other words, the intersection of all nonempty
spheres around i, which was itself nonempty because it contained i.
Now that special case is no more defensible than the Limit Assumption
in general. We might have an infinite ascent to better and better worlds,
and no innermost sphere containing best worlds of all. For every world,
there would be a sphere small enough to exclude it, so the intersection of
all nonempty spheres would be empty.

For our systems of spheres based on comparative goodness, the
analog of Stalnaker’s Assumption is implausible in the extreme. By
any reasonable standards of evaluation, there are respects of difference
among worlds that are wholly irrelevant to their comparative goodness.
Worlds differing only in such respects would be tied in the preference
order. Further ties would occur if relevant differences balanced out. If
any of the respects of comparison admit of continuous variation, ties
by balancing seem inevitable. (Previously, we had only ties by balancing.
No differences are irrelevant to comparative similarity, so we had no
ties by irrelevance.)

There are three conditions we might wish to impose, however, beyond
those that are definitive of a system of spheres.

Normality. Call a world i abnormal if there are no nonempty spheres
around i, so that | J$; is empty; otherwise normal. The system of spheres
$ is normal if and only if all worlds are normal. Previously we had
normality as a consequence of centering (or weak centering), but there
is nothing in the general definition of a system of spheres to rule out
the abnormality of some—or even all—worlds. We shall see that ab-
normal worlds are deservedly so-called. Peculiar things happen there.
Nothing is obligatory; everything is permissible. In what would other-
wise be reasonable senses of ‘necessary’ and ‘possible’, everything is
necessary, even contradictions, and nothing is possible, not even
tautologies. We might choose to rule out these objectionable conse-
quences by imposing a prohibition against abnormal worlds.

What shall we do, then, if our preference ordering from the stand-
point of any world i depends on some contingent feature of i, and there
are certain worlds where this feature is either missing or somehow
unsuited to determine a preference ordering? For instance, let the
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worlds be ordered, from the standpoint of a world i, according to the
extent that their inhabitants obey the laws promulgated by the ruling
god of i. Then what shall we do when we have no ordering from the
standpoint of a certain world i because i is not ruled by any law-
promulgating god ? We can have no distinctions in comparative good-
ness from the standpoint of i, so there are only two options. (1) Let
there be no nonempty spheres around i, making i abnormal; or (2) let
the set of all worlds be the one and only nonempty sphere around i. If we
have decided to impose a requirement of normality, we must choose
the second option.

Universality. As before, call § universal if and only if each $, is the
set of all worlds. The worlds left out of | J$; are the worlds, if any, that
are not evaluable from i. To assume universality is therefore to do away
with evaluability restrictions. I am not sure whether evaluability
restrictions are needed (just as I was previously not sure whether
accessibility restrictions were needed for the counterfactual case). It
would be a simplification if they could be dropped.* Universality
implies normality, but if we do not wish to prohibit abnormal worlds,
we still might want to impose a condition requiring normal universality:
each ($, is the set of all worlds unless i is abnormal. That would be to
assume that evaluability of j from i may be blocked by a defect in i, but
never by a defect in j.

Absoluteness. Call $ absolute if and only if $, is the same for all worlds
i. That is so if we have the same preference ordering from the standpoint
of every world. Then one world is better than another simpliciter, better
from the standpoint of every world; or else it is better from the stand-
point of none. (Obviously we never have the same order of comparative
similarity to different worlds, so that absoluteness was out of the
question for the counterfactual case. Indeed, absoluteness is incom-
patible with centering unless there is only one world.) Clearly the
assumption of absoluteness is correct for some preference orderings
and wrong for others. An ordering of worlds according to their.net
content of pleasure or whatnot is the same from the standpoint of any
world, so it yields an absolute system of spheres. But an ordering of
worlds according to the extent that their inhabitants obey the law of
God will differ from the standpoints of different worlds ruled by dif-
ferent gods who promulgate different laws, so the system of spheres
will not be absolute.

* I left the question of universality open in the counterfactual case partly in
order not to exaggerate my disagreements with Stalnaker’s theory. Stalnaker, like
me, does not assume universality but does not make a case against it. Similarly, I
leave the question open in this case partly in order not to multiply disagreements
with van Fraassen’s treatment of conditional obligation, discussed below.
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The truth conditions for our variably strict conditionals, inner and
outer modalities, and comparative possibility operators (according to a
system of spheres §) remain as before. The interdefinitions of the opera-
tors continue to give the correct derived truth conditions.

The variably strict conditionals [} and [J—> may now be regarded
as versions of the conditional obligation operator of deontic logic,
commonly written as O(../..).* Either ¢ [}— ¢ or ¢ [J— ¢ may be
read as ‘Given that ¢, it is obligatory that ° or—better—as ‘ Given that ¢,
it ought to be that y’. Roughly (under the Limit Assumption) if there
are ¢-worlds evaluable from a world i, then ¢ [J— ¢ and ¢ [J— ¢ are
true at i if and only if ¢ holds at all the best ¢-worlds, according to the
ordering from the standpoint of i. More precisely: if there are ¢-worlds
evaluable from i, then they are true at i if and only if some (¢ & ¢)-
world is better, from the standpoint of i, than any (¢ & ~)-world.
¢ [0 and ¢ (= ¢ diverge only when ¢ is impossible—true no-
where, except perhaps at inevaluable worlds that are left out of con-
sideration—in which case ¢ [J— ¢ is vacuously true and ¢ []— ¢ is
automatically false, regardless of . It is hard to summon up any opin-
ion about whether everything or nothing ought to come out as obli-
gatory under an impossible condition.

<O—> and O—> are the corresponding versions of the conditional
permission operator, commonly written as P(../..). Either ¢ O— ¢ or
é O=—> Y may be read as ‘ Given that ¢, it is permissible that ’. Roughly,
if there are ¢-worlds evaluable from a world i, then ¢ &— ¢ and
¢ O—> Y are true at i if and only if ¢ holds at some of the best ¢-worlds,
from the standpoint of i. More precisely: if there are ¢-worlds evaluable
from i, then they are true if and only if, for any (¢ & ~¢)-world, there
is some (¢ & y)-world at least as good, from the standpoint of i. If
there are no ¢-worlds evaluable from i, then ¢ O— ¢ is false and
¢ O=—> ¢ is true, regardless of ¢; again, there seems little to choose.

The inner modalities [[] and < are versions of the basic deontic
operators of (unconditional) obligation and permission, commonly
written as O and P. [(J¢ may be read as It is obligatory that ¢’ or as ‘It
ought to be that ¢’; <S¢ may be read as ‘It is permissible that ¢’. 1f
there is an innermost nonempty sphere around each world i, containing
the best of all worlds from the standpoint of i, then [-] and <& may be
treated as ordinary necessity and possibility operators, interpreted by
assigning the set of best worlds to 7 as its sphere of accessibility. [1¢ is
true at i if and only if ¢ holds at all worlds that are best from the stand-

* ‘Obligation’ is here used in a special, impersonal sense. What is obligatory
(conditionally or unconditionally) is what ought to be the case, whether or not
anyone in particular is obligated to see to it. Personal obligations may or may not
follow from these impersonal obligations.
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point of i; ©&¢ is true at i if and only if ¢ holds at some world that is
best from the standpoint of i. If there is no nonempty sphere around
some world #, however, there is no way to interpret [ and <& by means
of an accessibility assignment. If there are no best worlds from the
standpoint of i, but rather there is an infinite ascent to better and
better worlds, then [-1¢ is true at i if and only if ¢ holds throughout all
sufficiently good worlds; and <4 is true at i if and only if there continue
to be some ¢-worlds no matter how high we ascend. If i is an abnormal
world—say, a world with no god to promulgate laws that would
determine a preference ordering from the standpoint of i—then [¢ is
false and ©¢ is true, at i, for any ¢ whatever. Deontic distinctions
collapse: nothing is obligatory, everything is permissible.*

The outer modalities (] and < are the logical modalities if we assume
universality. Otherwise they are nothing familiar. In general, (¢ is
true at i if and only if ¢ holds at every world evaluable from i; &g is
true at i if and only if ¢ holds at some world evaluable from i. If we
want to regard the outer modalities as expressing necessity and possi-
bility, in any more or less ordinary sense, then we must insist on nor-
mality. At an abnormal world, if such there be, the outer modalities
go vacuous: [J¢ is true and ¢ is false, for any ¢ whatever. Even
contradictions are ‘necessary’; even tautologies are not ‘possible’.

The comparative possibility operators now express comparative
permissibility—that is, comparative goodness-at-best. We may read
& < as ‘It is better that ¢ than that ; it is true at i if and only if,
from the standpoint of i, some evaluable ¢-world is better than any
Y-world. This is not instrumental or intrinsic betterness of any familiar
sort, but rather maximax betterness. Roughly, we are comparing
$-at-its-best with y-at-its-best, and ignoring the non-best ways for ¢ and
¥ to hold. Nothing is better than the truth of a tautology (at its best).
It is better that either I drink cyanide or I drink beer than that I drink
water, since any disjunction is as good-at-best as its best disjunct. As for
the other operators: ¢ < ¢ may be read as‘ It is at least as good that ¢ as
that ¥’ in a similar maximax sense, and is true at i if and only if, from
the standpoint of i, no evaluable y-world is better than every ¢-world.
é ~ Y may be read as ‘It is just as good that ¢ as that J’, and is true at i if
and only if, from the standpoint of i, neither is there an evaluable
¢-world better than every y-world nor vice versa. Most simply, it is
true if the best ¢-worlds and the best y-worlds are equally good. It can
also be true in another way: if, for instance, the ¢-worlds have good-
nesses of .9, .99, .999, . .. and the y¥-worlds have goodnesses of .8, .98,

* If we had defined the inner modalities as T (J— and T ©O—, rather than as
T [J=> and T O=>, the collapse at abnormal worlds would have gone the wrong
way: everything obligatory, nothing permissible.
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998, . .. (pretending momentarily that we have some sort of numerical
scale).

Operators of conditional obligation and permission were introduced
into deontic logic in order to handle cases in which, given that ¢, it
ought to be that i, but it (unconditionally) ought not to be that ¢ and it
ought not to be that ¢. For instance, let ¢ be ‘Jesse robs the bank’ and
let y be ‘Jesse confesses and gives back the loot’. 1t ought not to be that ¢.
Also it ought not to be that ¢, since what really ought to be the case—
what is the case at the best of worlds—is that Jesse has nothing to
confess and no loot to give back. But it ought to be that ¢, given that ¢.
Analyses of ‘Given that ¢, it ought to be that ’ by means of the un-
conditional obligation operator—our [-], or something similar—do not
work. (¢ = ¢) fails because this follows simply from [[] ~ ¢, what-
ever ¢ may be: given that Jesse robs the bank, it ought to be that he
shoots up the town afterward, or that the cow jumps over the moon.
¢ > [y, or the corresponding counterfactual or logical strict con-
ditional, fails because [J¢ is false even if ¢ is true.* Since these analyses
fail, and no better way comes to mind of expressing conditional obliga-
tion in terms of unconditional obligation, the conditional obligation
operator has to be provided as a primitive.

Several axiomatic or semantic treatments of conditional obligation
are open to serious criticism because they validate inferences from
‘Given that ¢, it ought to be that §’ to ‘Given that ¢, & ¢4, it ought to be
that §’, or conversely.l Neither direction ought to be valid, since it
seems that we can have consistent alternating sequences like this:

Given that ¢,, it ought to be that i,
Given that ¢, & ¢,, it ought to be that ~ i,
Given that ¢, & ¢; & ¢3, it ought to be that i,

along with all their negated opposites.§ For instance: ‘Given that Jesse
robbed the bank, he ought to confess, but given in addition that his con-
fession would send his ailing mother to an early grave, he ought not to;

* There is a natural way to construe ‘It ought to be that J’ so that it does become
true when Jesse robs the bank. It can be taken as tacitly conditional, meaning
something like ‘Given those actual circumstances that now cannot be helped, it
ought to be that . But this tacitly conditional and time-dependent construal is
not the appropriate one when * It ought to be that ’ is used as a reading for the
unconditional obligation operator of standard tenseless deontic logic.

{ Such criticisms may be found in Bengt Hansson, ‘An Analysis of Some
Deontic Logics’, Noiis 3 (1969): 373-398, and in Bas van Fraassen, * The Logic of
Conditional Obligation’, Journal of Philosophical Logic 1 (1972): 417-438.

§ We have the negated opposites, rather than conflicting obligations, because
we are dealing not with prima facie obligations but with what ought on balance to
be the case.
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but given in addition that an innocent man is on trial for the crime, he
ought to after all. . .. This alternating sequence is analogous to those I
gave in Section 1.2 as evidence that the counterfactual is a variably
strict conditional. It has a parallel explanation by means of my pro-
posal that conditional obligation is a variably strict conditional based on
comparative goodness of worlds.

Bengt Hansson and Bas van Fraassen have given analyses of con-
ditional obligation expressly designed to permit such appearances and
disappearances of conditional obligation as are found in my alternat-
ing sequence.* I have based my analysis on theirs, but with various
changes.

Hansson, for his principal system DSDL3, posits a preference order-
ing of worlds and specifies that a sentence O( / ¢) is to be true if and
only if ¢ holds at the best ¢-worlds, if such there be. These would be my
truth conditions for ¢é (]~ ¢ under the Limit Assumption, stated
directly in terms of the preference ordering. Hansson imposes the Limit
Assumption in this form: if a sentence ¢ without deontic operators is
true at any world, then there are some best ¢-worlds. Hansson declines
to consider sentences having deontic operators within the scope of
deontic operators. Hence he does not need to evaluate the truth of any
sentence O(y | ) at other worlds than our actual world in order to
evaluate the actual truth value of any of the sentences he considers.
He thus avoids the question of absoluteness: whether his preference
ordering of worlds is the ordering from the standpoint of our world
only, or from the standpoint of every world. He assumes universality,
and consequently also normality, in positing a preference ordering of
all worlds.$

Van Fraassen posits a preference ordering not of worlds themselves
but of values (items of unspecified character) that are realized at worlds.
He specifies that a sentence O(y / $) is true at a world i if and only if,
from the standpoint of i, some value realized at some (¢ & ¢)-world is
better than any value realized at any (¢ & ~y)-world. Compare my
truth conditions for ¢ [J=> ¢: it is true at i if and only if, from the
standpoint of i, some evaluable (¢ & §)-world is better than any
(¢ & ~y)-world. Given van Fraassen’s preference ordering of values
realized at worlds, we may derive a preference ordering of the worlds
themselves (from the standpoint of any world i) as follows. Let the

* Hansson, *An Analysis of Some Deontic Logics’; van Fraassen, ‘The Logic
of Conditional Obligation’.

* More precisely: of all state descriptions, these being maximal logically con-
sistent sets of negated and unnegated atomic formulas. Unless the language is
such that every state description is possible, he may be assuming more than
universality by including not only state descriptions representing all possible
worlds but also state descriptions representing impossible worlds.
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evaluable worlds be those where values are realized ; and let one evalu-
able world be better than another if and only if some value realized
at the first is better than any realized at the second. Provided that, for
any evaluable world, there is a best value among the values realized
there, my truth conditions for ¢ [J—> ¢ and van Fraassen’s for
Oy | $) will then agree.

But if at some world there is no best value, but rather an infinite
ascent to better and better values, then the truth conditions may not
agree. For instance, suppose that from the standpoint of some world i
(1) the values are the integers, under their usual ordering, (2) some
(¢ & ¢)-world j is assigned the set of all integers as its set of values,
(3) every other ¢-world is assigned only finitely many integers as values,
and (4) every integer is realized as a value not only at j but at some
(¢ & ~y)-world as well. Then ¢ [J—- ¢ is true at i according to my truth
conditions, but O(y / ¢) is false at i according to van Fraassen’s truth
conditions. Thus my analysis (with [J=> as the conditional obligation
operator) is equivalent to a special case of van Fraassen’s.*

Van Fraassen assumes normality, in the form of a requirement that,
from the standpoint of any world, some value is realized at some world.
He does not assume universality : there may be worlds where no value is
realized, and these are left out of consideration. He does not assume
absoluteness: the values, their preference ordering, and their assignment
to worlds may be completely different from the standpoint of different
worlds.

5.2 ‘When Next’ and * When Last’

Contingent sentences have different truth values at different worlds;
many sentences likewise have different truth values at different mo-
ments of time. In fact, most of our sentences depend for their truth
values on a bundle of coordinates: world, time, place, and many more.
We have so far been concerned with dependence on world. To avoid
distraction, I have tried (with imperfect success) to keep the other
dimensions of variation out of sight by sticking to examples where they
may be held fixed. Let us, for a change, now isolate dependence on
time, tacitly holding the world and the other ¢oordinates fixed. Mo-
ments of time now play the same role as possible worlds hitherto.
Sentences are true at them; propositions are sets of them; and systems
of spheres are sets of sets of them.

* It can be shown that van Fraassen’s truth conditions are equivalent to mine
minus the requirement that systems of spheres are closed under nonempty inter-
sections, and plus the normality condition.
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There is one big difference between worlds and times: times come
with a natural linear order. I shall assume that it is linear, ignoring
the possibility of branches or loops, but I shall not assume anything
else about it. As for relativity, let us stick to some one definite inertial
frame.

I shall use the usual notation for intervals. Letting < and < signify
the linear order of time:

[i, /1 =% the set of times k such that i < k < j,
[i,j) =9 the set of times k such that i <
(i, j] =9 the set of times k such that i < k < j,
(i, j) =% the set of times k such thati < k < j
[i, c0) =9 the set of times k such that i < k,
(i, 0) =9 the set of times k such that i < k,
(—o0, i] =9 the set of times k such that k < i,
(— o0, i) =9 the set of times k such that k < i.

There are not really times co and — co; they are a notational pretense.
Note that (i, i), [i, i), (i, i], and any interval with the beginning (left-
hand) endpoint later than the ending (right-hand) endpoint are all the
empty interval.

We shall be concerned with four systems of spheres, all based on the
order of time. The future temporal system of spheres $* assigns to each
time i the set $F of all intervals (i, j], (i, f), or (i, ) beginning at i but not
including i itself; that is, all intervals beginning immediately after i and
extending into the future (and the empty interval). The past temporal
system of spheres $* assigns to each time i the set ${ of all intervals [j, i),
(j, i), or (— oo, i) ending at i but not including i. The semi-future temporal
system of spheres $' assigns to each time i the set §/ of all intervals
[, /1, [i, ), or [i, o) beginning at i and including i itself, as though the
present were the first moment of the future. The semi-past temporal
system of spheres $7 assigns to each time i the set $7 of all intervals
[j, i1, (j, i], or (— o, i] ending at i and including i.

The semi-future and semi-past systems of spheres are centered; they
are not universal or absolute except in the trivial case that there is only
one moment of time. Thus they are analogous to centered systems of
spheres based on comparative similarity of worlds.

The future and past systems are more like the deontic systems. They
are neither centered nor weakly centered. They are not universal, and
not absolute unless there is only one moment of time. They may or may
not be normal. In the future system, the last moment of time is abnor-
mal, if there is a last moment; all other times are normal. Therefore the
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future system is normal if and only if time has no end. Likewise in the
past system, only the first moment, if there is a first, is abnormal; so
the past system is normal if and only if time has no beginning.

The linearity of time does not guarantee that Stalnaker’s Assumption
holds, but it does make Stalnaker’s Assumption equivalent to the
Limit Assumption. Both hold, for all four systems, if the order of time
is discrete: that is, if the moments of time can be placed in order-
preserving correspondence with some or all of the integers. But if time
is not discrete, for instance if the order of time is like the order of the
rational or real numbers, or like the order of a transfinite ordinal, then
somewhere in time there is either an infinite descending sequence of
earlier and earlier times, with a time i before all the times in the se-
quence, or else an infinite ascending sequence of later and later times,
with a time 7 after all the times in the sequence. If we have a sentence ¢
true at all and only the times in the sequence, then either there is no
first ¢-time after i (if the sequence is descending) or there is no last
¢-time before i (if the sequence is ascending). If so, then either the future
and semi-future systems or the past and semi-past systems violate
Stalnaker’s Assumption and the Limit Assumption.

The Limit Assumption taken both for $7 and $° (whence it follows
for $ and $* as well) amounts almost to the assumption that time is
discrete. But not quite: $¥ and $° might satisfy the Limit Assumption by
accident in non-discrete time of a certain sort, because the propositions
that violate it happen not to be expressible. If all propositions were
expressible, then the assumption that time is discrete, the Limit Assump-
tion for $* and $7, and Stalnaker’s Assumption for $* and $* would
all three be equivalent. What does follow from the Limit Assumption
for $F and $F both is this: for every moment of time, there is a next
moment after it (unless it is the end of time) and a last moment before
it (unless it is the beginning of time). To see this, apply the Limit As-
sumption to any tautology. A time order of this sort has the structure
of several copies of the integers one after the other, perhaps with the
first or last (if there is a first or last) truncated. Time is discrete if there
is only one copy, perhaps truncated at one or both ends.

The truth conditions for our variably strict conditionals, modal
operators, and comparative possibility operators are to be given as
usual according to the four systems of spheres. Let us mark each
operator with the superscript F, P, f, or p to indicate whether its truth
conditions are given according to $*, $7, $/, or $*. Now what do our
operators mean ?

All of our variably strict conditionals may be regarded as alternative
versions of the temporal connectives ‘When next’ and ‘When last’,
with differences in detail. All of
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$O->"¢  s0O-"¢
¢O0—>"¢ s0O0—>"¢
pO—>Fd 4O
O $O=TY

may be read as ‘ When it is next the case that $, it will then be the case
that §’, or more concisely as ‘i the next time that ¢’ or  When next ¢, §’.
The differences between them are these. (1) Those on the left pertain
strictly to the future; those on the right pertain also to the present.
The truth values at a time i of ¢ and ¢ are irrelevant to the truth at i
of the strictly future versions of ‘when next’; whereas if ¢ is true already
at i, then all the semi-future versions on the right are true at i if and
only if ¢ is true at i. (2) In the vacuous case, if ¢ is never true after i
(or at i, for the semi-future versions) then ¢ [(0—=F¢, ¢ O=F 4,
é (01—’ ¢, and ¢ O=—>' ¢ are vacuously true at i, whereas the other four
are false. (3) Suppose that there are ¢-times after i, but no first ¢-time
after i (or at i, for the semi-future versions). For instance, suppose ¢
holds at all times more than a year later than i, but no sooner. Suppose
also that the initial ¢-times after i are a fuzz of ¢-times when ¢ holds and
¢-times when it does not: before every ¢-time after i when ¢ holds there
is one when ¢ does not hold, and before every ¢-time after i when ¢ does
not hold there is one when it does. For instance, suppose that ¢ holds a
year and .1 seconds after i, a year and .01 seconds after i, a year and
.001 seconds after i, and so on; and suppose ¢ fails to hold a year and
.2 seconds after i, a year and .02 seconds after i, a year and .002 seconds
after i, and so on. Then the ‘might’-like versions ¢ O—F ¢, ¢ O—=>F 4,
¢ O— ¢, and ¢ O=>7  are true at i, whereas the ‘ would’-like versions
are false. But these differences arise only in special cases. The principal
case is the case in which there is a first moment after i when ¢ holds
(and ¢ does not hold already at i); and in that case, all eight alike are
true at i if and only if ¥ holds at that first ¢-time after i.

Exactly the same goes, mutatis mutandis, for the eight mirror-image
past and semi-past variably strict conditionals ¢ []1—" ¢ and so on.
These may all be read as ‘ When it was last the case that $, it was then
the case that y°, or as ‘i the last time that ¢’ or as ‘ When last ¢, §’. The
principal case is that in which there is a last moment before i when ¢
holds (and ¢ does not hold at i); then all eight versions of ¢ When last
$, ¥’ are true at i if and only if ¢ holds at that last ¢-time before i. The
eight differ in respect to what happens when ¢ is true at present, what
happens when ¢ has never been true, and what happens when there is a
fuzz of ¢-times and ~y-times among the last ¢-times.

The future and past outer modalities are the usual basic operators of
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tense logic, sometimes written as G, F, H, and P.* [JF¢ is true at i if and
only if ¢ holds at all times after i, and may be read as ‘ Henceforth ¢’.
OF¢ is true at i if and only if ¢ holds at some time after i, and may be
read as ‘Ir will be that ¢°. [1F¢ is true at i if and only if ¢ holds at all
times before i, and may be read as ‘ Hitherto ¢’. <Fé is true at i if and
only if ¢ holds at some time before i, and may be read as ‘It has been
that ¢°.

The semi-future and semi-past outer modalities are called the Dio-
dorean modalities. (Sometimes the term ‘Diodorean’ is reserved for
these modalities in discrete time.) (/¢ is true at i if and only if ¢ holds
both at i and at all times after i, and so may be read as ‘¢ now and
henceforth’. The others are likewise related to the corresponding future
and past outer modalities. The Diodorean modalities are closer than
the future and past outer modalities to sharing the properties of logical
necessity and possibility, since ['¢ implies ¢ which in turn implies
</, and likewise for [1°¢ and <P,

The future and past inner modalities pertain to the immediate future
and the immediate past. [-1¥¢ and <F$ may both be read as ‘It will be
immediately that ¢’. If there is a next moment after i, then the two do
not differ: both are true at i if and only if ¢ is true at that next moment
after i. Both are true at i also if there is no next moment after i, but ¢
holds throughout some interval—however short—beginning at i. Both
are false at i if ¢ is false throughout some such interval. But they may
differ: (1) (374 is false and &F¢ is true, for any ¢, at the end of time
if such there be, and (2) if i is followed by a fuzz of ¢-times and ~ ¢-
times—if every ¢-time after i is preceded by a ~ ¢-time after i, and vice
versa—then at i &f¢ and &F~¢ are true but [1*$ and [JF~¢ are
false. As for the past, [:]f¢ and <>F¢ may both be read as ‘It has just
been that ¢’; if there is a last moment before i, they are both true or
false at i according as ¢ is true or false at that moment. Again, they may
differ (1) at the beginning of time, or (2) at a time preceded by a fuzz
of ¢-times and ~ ¢-times.

In discrete time with no end and no beginning, however, there is no
way for [[J* and <%, or [[F and &7, to differ. Then the first pair can be
consolidated into a single ‘tomorrow’ operator, and the second into a
single ‘yesterday’ operator.}

The conjunction [Jf¢ & ¢ & [JF¢ is true at i (in any sort of time
order) if and only if i is an interior point of an interval throughout
which ¢ holds. Dana Scott has observed that a sentence with these truth
conditions can be regarded as the present progressive tense of ¢.§ A

* The principal account of tense logic is Arthur N. Prior, Past, Present and
Future (Clarendon Press: Oxford, 1967).
} See Past, Present and Future:. 66-70. § ‘ Advice on Modal Logic’.
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present progressive tense operator defined accordingly is of interest
because it has the logic of an S4 necessity operator and yet cannot be
interpreted, in general, as a universal quantifier over times restricted
by an accessibility relation.

The semi-future and semi-past inner modalities are trivial, since
$’ and $” are centered. All of (['¢, &4, (174, and P4 are equivalent to

é.

Comparative possibility becomes comparative futurity or compara-
tive pastness. ¢ <F ¢ may be read as ‘It will next be that ¢ before it will
be that ’, or more concisely as ‘¢ before ¢’, and it is true at i if and only
if some ¢-time after i precedes every y-time after i (including the case
that there is a ¢-time after i but no y-time after i). <* and xF are de-
fined as usual from <F. Note that there are two ways for ¢ X ¢ to be
true at i; not only is it true when ¢ and ¢ simultaneously begin to be
true, but also when there is an initial fuzz of ¢-times and -times after i.
Even ¢ ~F ~¢ can be true by a fuzz; it is so in the same situation that
makes both of &F¢$ and &F ~¢ true. As for the past, ¢ <F ¢ may be
read as ‘It was last that ¢ after it was that ’ or as ‘¢ after ’, and it is
true at i if and only if some ¢-time before i follows every ¢-time before .
We also have comparative semi-futurity and comparative semi-pastness.
For instance ¢ <’ ¢ may be read as ‘It is or will be that ¢ before it is or
will be that 4’ and is true at i if and only if ¢ is false at i and either ¢ is
true at i or some ¢-time after i precedes every ¢-time after i.

Given the future and past operators, the semi-future and semi-past
operators are definable. All of them are definable from <’ and <?, for
instance, and those are definable as follows.

p<'Yy=Y~y &V $<Y),

p<PY =2~y &PV S<TY.
But we cannot go the other direction. For instance, the future and past
operators provide us with a sentence [(JFL that is true precisely at the
end of time, if such there be; whereas it is easy to show that no sentence
built up from the semi-future and semi-past operators will distinguish
between the end of time and the beginning of everlasting monotony
(monotony being constancy of the truth values of at least all sentences
that contain none of our tense operators).

We can write a sentence ¢ <7 ~ (or, in terms of one of the ‘when
next’ operators (¢ vV ~y) (J—>F (¢ & ¢)) which is true at i if and only
if some ¢-time after i precedes every ~i-time after i; we could read
this as ¢ Until ¢, . Likewise for the past: ¢ <P ~ (or the equivalent
with [(J=>7) is true at i if and only if some ¢-time before i follows every
~ y-time before i; we could read it as‘ Since ¢,4’ (with ‘since’ understood
as ‘ever since’, not as ‘sometime since’). Hans Kamp has studied
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operators for ‘since’ and ‘until’ that give almost the same truth con-
ditions, but not quite.* His version of ‘ Until ¢, ¢, written U(¢, ¥), is
true at i if and only if some ¢-time after 7 is not preceded by any ~ -
time after #; his ‘Since ¢, ¢’, written S(¢, ¥), is true at 7 if and only if
some ¢-time before i is not followed by any ~-time before i.

The small difference between my versions of ‘until’ and ‘since’ and
Kamp’s has a surprising consequence. Kamp proves that if the order of
time is a complete linear order, then U and S suffice to define all pos-
sible tense operators; whereas my operators do not suffice because, in
particular, they do not suffice to define U and S.{ Suppose time has no
end and no beginning; suppose the order of time is a complete linear
order with a mixture of discrete stretches and dense stretches; and
suppose monotony prevails throughout. With Kamp’s operators we
have sentences that vary in truth value: U(T, 1) is true at i if and only if
there is a next moment after i, hence true in the discrete stretches and
false in the dense stretches. Likewise in mirror-image for S(T, 1). But
it is easily verified that any sentence built up by means of my operators
has constant truth value.

In discrete time, however, my operators have the power of Kamp's;
for mine can define U and S and they can define anything. For the
special case of discrete time, the following definitions are correct.

U, ¥) =" ¢ <T ~¢ & O,
S($, ¢) =Y ¢ <7~ & O

Prior has noted that ‘when next’ and ‘when last’ can be used to
define metric tense operators, if some periodic process is available.§
These would othewise need to be introduced into tense logic as new
primitives. Suppose we can find some sentence y that is alternately true
and false, and we want to clock states of affairs by the truth and false-
hood of y. For instance y might be ‘The sun is setting’. Now suppose I
want to say that it was raining three sunsets ago. Let ¢ be ‘It is raining’.
Then I say roughly this:

When last x, (When last x, (When last y, ¢)).

* ‘On Tense Logic and the Theory of Order’ (Ph.D. dissertation, 1968, Uni-
versity of California at Los Angeles).

$ The order is complete unless there are two nonempty, non-overlapping
intervals such that the first has no last moment, the second has no first moment,
and no moments fall between the two intervals. The order of the integers or of the
real numbers is complete, but that of the rational numbers is not. A rense operator,
in general, is any operator whose truth conditions can be formulated in terms of
nothing but truth of sentences at times, the order of times, quantification over
times, and truth-functional connectives.

§ Past, Present and Future: 106-112.
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That will not quite work as it stands, however, since it takes time for the
sun to set. We will not get different sunsets, but earlier and earlier
times in the most recent one. What we need is a clock sentence true at
one and only one time in each sunset—say, at the beginning. If a sunset
has a first moment, x & [1¥ ~ x will do; if it is preceded by a last
moment of non-sunset, ~y & SFy will do; if we think that there is
either a first moment of sunset or a last moment of non-sunset but not
both, and we do not know which, then we may take the disjunction.
Given our corrected clock sentence, if we can find one, we proceed as
before. It does not much matter whether we use [1—, O—F, (—F, or
&O=>F as our ‘when last’; of course the semi-past ones will not work,
since we will get stuck at the most recent time when the clock sentence
was true. Suppose we choose []—7; then our metric sentence is

(x O=F (x O->F (x O0->7 ¢))
where y is our corrected clock sentence ‘The sun is beginning to set’.

We might also wish to clock things that do not occur exactly at the
beginning of a sunset, and we can do that too. Suppose I want to say
that it was raining some time during the day before yesterday. (Let
each new day begin at the beginning of sunset on the previous night.)
The sentence is

(x O—=F (x O—=F (¢ <7 X))
Or suppose I want to say that it was raining all of the day before yes-
terday:
(x O-F (x O->F (x < ~9)).

Prior defines a ‘when last’ operator for this use. It is none of mine;

rather it is defined by means of Kamp’s S:

When last ¢, ¢ =% S(¢ & ¢, ~¢).

This Prior-Kamp ‘when last’ can be approximated from my opera-
tors, just as Kamp’s U and S can; and I think that mine serve equally
well the purpose for which Prior introduced it. But I cannot define it.
For When last T, T is equivalent to S(T, 1), and we have already seen
that S(T, 1) cannot be defined from my tense operators.

5.3 Contextually Definite Descriptions

Still other coordinates may play the role of worlds or times. Let us
think of sentences as being true or false at rhings, with the world and
time and everything else tacitly held fixed. Propositions (though it is
strange now to call them that) are sets of things, and systems of spheres
are sets of sets of things.
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What sort of sentence can be assessed for truth at a thing? A first per-
son sentence, for instance. ‘ Cogito’ is true at me, and at any other thing
that thinks. ‘Sum’ is true at everything. ‘7 am a rock’ is true at any
rock. ‘I am even’ is true at 948, and ‘I am prime’ at 2311. Roughly, ¢ is
true at i if and only if ¢ is truly assertable by i; but that it is not quite
right, because ‘I cannot talk’ is true at anything that cannot talk. With
the first person sentences in mind, we call sentences that can be assessed
for truth at things egocentric sentences. The study of them is Prior’s
‘egocentric logic’.*

There is a problem, at least in English, with the first person reading of
egocentric sentences. If we prefix to one of them an operator ‘Every-
thing is such that ____°, ‘The Anighito meteorite is such that ____’, or
the like, nothing happens. ‘The Anighito meteorite is such that I am a
rock’ is false at me because I am not a rock, even though the Anighito
meteorite is a rock. ‘I’ is like the present tense marked by ‘now’, and un-
like the unmarked present tense, in that we cannot shift its reference by
putting it in the scope of a suitable operator.f Unless we pretend that ‘I’
is shiftable, we have no non-trivial egocentric operators.

Prior reads egocentric sentences as gerunds. ‘Thinking’ is an egocen-
tric sentence true at me. ‘Being such that being a rock is true of the
Anighito meteorite’ is true at me, so ‘Being such that is true of
the Anighito meteorite’ is a non-trivial shifting operator. But the
gerunds are clumsy, so I would rather introduce into the language a
shiftable variant of ‘I’. Write this as ‘x’. Now ‘x is thinking’ is an ego-
centric sentence true at me, or anything else that is thinking. If ‘x’
resembles a free variable, that is all to the good. It is a free variable,
approached from a new direction. Egocentric logic is predicate logic
with only one variable. Because there is only one variable, we can give
truth conditions in a special way, confining our attention to the com-
plete egocentric sentences and disregarding the meanings of the parts—
‘x’ and the predicate, or whatever—that combine to form the smallest
sentences. If we apply the customary way of disambiguating a mixture
of free and bound occurrences of ‘x’—<call it a variable or a shiftable
version of ‘I’ as you like—the egocentric sentence ‘x is such that (the
Anighito meteorite is an x such that x is a rock)’ is true at me, or any-
thing else, because the Anighito meteorite is a rock; so we have a non-
trivial shifting operator, as intended.

Now consider a system of spheres $§ based on comparative salience of

* Arthur N. Prior, ‘Egocentric Logic’, Noiis 2 (1968): 191-207.

1 See Hans Kamp, ‘Formal Properties of *“Now*’’. For example, ‘It will be the
case in 2100 A.D. that there are men on Mars’ is probably true, whereas ‘It will
be the case in 2100 A.D. that there are men on Mars now’ contains an idle shifting
operator, and is certainly false.
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things. When i is a thing with a point of view-—say, a person or an
animal—then some things are more salient than others from the point
of view of i. They loom larger in his mental life ; they are more important
to him; they come more readily to the center of his attention. Right now,
as I sit writing this, my typewriter is more salient to me than my left
shoe; that is more salient than the kitchen clock in the house where I
grew up; that is more salient than the fourteenth brick from the right in
the seventh row from the top in the garden wall outside my window;
but all of these are salient to me to some extent, in contrast to the count-
less things that are outside my ken altogether. (I am speaking of how
salient these things were before I started to think up examples of things
that were not very salient; comparative salience is much shiftier even
than comparative similarity.)

A sphere around i is to be any set of things in the ken of i such that
all those in the set are more salient to i than any of those outside.
Assuming that comparative salience orderings have the definitive pro-
perties of weak orderings, then these sets do indeed comprise a system
of spheres §.

The system $ clearly does not satisfy any of the special conditions we
have considered. It is not normal: there are no differences in compara-
tive salience from the point of view of a rock, so there are no nonempty
spheres around the rock. To be normal is to have some propensity to
pay attention to something. Since § is not normal, it is not centered or
weakly centered. (It is not even normally centered, or normally weakly
centered: that is, it is not the case that whenever i is normal, §; is cen-
tered or weakly centered on i. We are not all such egotists; for at least
some normal i, there is something even more salient to i than he is to
himself.) The system $ is not universal (or normally universal) since for
most things i there is something outside the ken of i. It is not absolute,
since different ones of us pay attention to different things.

We may give the truth conditions of our operators as usual according
to this system of spheres. The comparative possibility operators and
inner modalities turn out to be nothing of interest. The outer modalities
[J and < are universal and existential quantifiers, restricted to the
things one knows of. The variable of quantification is superfluous, of
course, since we only have one variable. [J¢ is true at i if and only if ¢ is
true at everything in the ken of i; ¢ is true at i if and only if ¢ is true at
something in the ken of i. We may read them as ‘ For everything known,
¢’ and ¢ For something known, ¢’, where ‘known’ makes the sentence
subjective. Or if we prefer Prior’s gerund readings, we may read them as
* Knowing only things of which ¢ holds’ and ‘ Knowing something of which
¢ holds’, where ¢ is itself a gerund.

The real object of the exercise, however, is to show that the variably
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strict egocentric conditional [J=> will serve as a connective of contextu-
ally definite description. Suppose we read ¢ [J—> ¢ as ‘The x such that
¢ is such that J’, or some less clumsy paraphrase thereof. For instance,
we may read

x is a pig (= x is grunting

as ‘The pig is grunting’. 1 claim that this will give the correct truth con-
ditions for such a sentence if we take ‘the’ not as the usual logicians’
definite description operator (under any of the various treatments of
improper descriptions) but in a different sense, no less familiar in ordin-
ary language than the logicians’ sense.

It is nothing special to parse ‘the’ as a connective rather than a
term-maker. The same can advantageously be done for the logicians’
definite description operator. Rather than writing

$(1xd.)

as usual—this being the result of substituting 1x¢, for free occurrences
of x throughout y,—we can write something like

"X($x, )

with the same meaning. (In our present one-variable language, there is
no need for the explicit occurrences of ‘x’.) This connective notation
captures scope distinctions automatically, with no special scope
marker. Further, it practices what Russell preached: that the seeming
denoting term 1x¢$, is not really a meaningful constituent of the
sentence.*

Contextually definite descriptions, as I shall call them, are definite
descriptions ‘the so-and-so’ suitable for use when it is perfectly well
understood that there exist many different so-and-so’s, not just one. It
makes nonsense of them to take them as logicians’ definite descriptions.
Suppose I am walking past a piggery. I say to myself: ‘The pig is grunt-
ing’, since my attention is centered on a certain conspicuously grunting
pig. I do not mean that there is exactly one pig in existence, and that it is
grunting. I know better than that. Nor do I mean that some pig some-
where, or every pig there is, is grunting. Still less do I mean that the null
entity—something chosen arbitrarily to serve as an artificial denotation
for all improper definite descriptions—is grunting. What I mean is more
like this: among the things that have captured my attention just now
there is exactly one pig, and it is grunting. But that is not quite right. If
there are several pigs around, it seems that I might be able to assert all
of these sentences together, and with them their negated opposites.

See Richard Sharvy, ‘Things,’ Monist 53 (1969): 489.
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The pig is grunting.
The pig with floppy ears is not grunting.
The spotted pig with floppy ears is grunting.

Let S be a set of ‘things that have captured my attention just now’. If S
contains exactly one pig, and it is grunting, then it cannot also be that
S contains exactly one pig with floppy ears, which is not grunting. If, on
the other hand, S does contain exactly one pig with floppy ears, and it is
not grunting, then it cannot be that S contains a grunting pig to make
the first sentence true. Moreover, it cannot be that S contains exactly
one spotted pig with floppy ears, which is grunting, to make the third
sentence true.

Here we have another of our alternating sequences; and we know by
now that such sequences are the mark of a variably strict conditional.
We should not take a fixed set of the things that fall within a certain fixed
degree of salience. Instead we should expand the set of things under
consideration, starting with the most salient things and working out-
ward until we have expanded enough to admit something that falls un-
der the description in question. If the most salient pig does not have
floppy ears, we must expand farther to reach a pig with floppy ears than
to reach a pig; and if the most salient pig with floppy ears is not spotted,
then we must expand farther still to admit a spotted pig with floppy ears.

That is what happens if we take the contextually definite description
operator to be the variably strict egocentric conditional [(J—-. In
general, ¢ [J— ¢ is true at i if and only if there is some ¢-permitting
sphere based on comparative salience from the point of view of i,
throughout which ¢ is true at every ¢-thing. If there is one ¢-thing most
salient to i, then ¢ [J— ¢ is true at i if and only if ¢ is true at that thing.

Suppose that only a few pigs are in my ken: the nine in the piggery I
am walking past, and perhaps two or three others that I have met else-
where. (I know that there are other pigs; but that is not to say that there
are other particular pigs I know of.) It may be safe to assume that no
two of these pigs are precisely equal in salience to me. Then the sentences

x is a pig [(J=> x is grunting
x is a pig & x has floppy ears. ()= ~ x is grunting
x is a pig & x has floppy ears & x is spotted. [ 1= x is grunting

may all be true (at me) together. The first because the most salient of all
the pigs in my ken is grunting; the second because the most salient pig
with floppy ears is not; the third because the most salient spotted pig
with floppy ears is. So [J—> works properly as the contextually definite
description operator.

[}, O—, and O=> would work as well in this case, but would go
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wrong in others. There are no aardvarks in my ken, so it is clear that
‘The aardvark is grunting’ ought not to be true at me. That eliminates
[0 and &=, since ¢ [ 1> ¢ and ¢ &= o are true at i if there is no
¢-thing in i’s ken. ‘The pig is grunting’ and ‘The pig is not grunting’
sound inconsistent. They ought never to be true together at me, not
even if there are two equally salient most salient pigs in my ken, one
grunting and one not. That eliminates <— and (again) &=, since
¢ O— i and ¢ O=—> i are true at i if ¢ is true at even one most salient
¢-thing in i’s ken, and ¢ O—> ~ ¢ and ¢ O=> ~ 3 are true at i as well
if ~¢ is true at another one.

Using [J=, as I prefer, what happens when there are two equally
salient most salient pigs ? If neither is grunting, or one but not the other,
then ‘x is a pig [J=> x is grunting’ is false, and that seems correct. It is
true if both are grunting, and that seems more questionable. Hasn’t a
presupposition of uniqueness been violated? Granted; ‘The pig is
grunting’ is only appropriate under the presupposition (roughly speak-
ing) that there is a unique most salient pig, just as ‘ The root of z° — 17z —
1 = O is negative’ (a specimen of the logicians’ ‘the’, presumably) is
appropriate only under the presupposition that the equation has a
unique solution. But I have rejected the view that presupposition failure
must always produce untruth; and I do not think it does so in this
case.

Consider that comparative salience is shifty in the extreme. Nothing
is easier than to break the tie; and if it were broken either way the sen-
tence would be true. Recognizing the inevitable vagueness of compara-
tive salience, we see that we almost never will simply have a tie. What
we will have is indeterminacy between many reasonable ways to resolve
the vagueness. Some will break the tie in favor of one pig, some in favor
of the other, and some will land exactly on the border and make a tie.
Borders have zero thickness, so presumably most reasonable resolutions
break the tie one way or the other and thereby make the sentence true.
Then what would be the point of having untruth at the border ? It would
have negligible effect on what we really care about: truth under most,
many, or few reasonable resolutions of vagueness.*

The presupposition carried by ‘The pig is grunting’ is not exactly a
uniqueness presupposition, if I am right that we can always expect
uniqueness one way or another under most reasonable resolutions of
vagueness. It is better called a presupposition of determinate uniqueness:
that most reasonable resolutions will yield the same unique most salient
pig. That is so if one pig is well ahead of the rest in salience; if he is

* A parallel proposal to make *x(¢., ¥») true when there are two or more ¢-
things, while granting that a presupposition has been violated, could not be
defended in a parallel way by considerations about vagueness.
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enough ahead on one resolution of vagueness, he probably will be
ahead on the others too.

Finally, it is interesting to note a special case. Imagine that I am
keenly interested in the natural numbers; so fanatically so that all of
them are in my ken and nothing else is. Further, I pay most attention to
the small ones: 1 is more salient than 2, 2 more than 3, and so on
throughout. Then our contextually definite description operator []—>
is essentially the familiar u-operator of recursion theory.



6. Logics

6.1 Completeness Results

Investigations in possible-world semantics traditionally culminate in
completeness proofs. It is shown that the sentences of a specified
language that must be true according to the proposed semantic analysis
are exactly the theorems of a specified deductive system called a ‘logic
of” the concept under analysis. I am not sure how much completeness
proofs really add to our understanding, but I here provide them for
those readers who do find them helpful and for those—like myself—who
find them interesting in their own right. Readers of other persuasions
have no reason to read on, and are warned that this final chapter is
more technical than the rest.

Our formal language has as its vocabulary (1) countably many sen-
tence letters; (2) the sentential constants T and 1; (3) the connectives
~, &, v, 2, and =; (4) our special operators ¥, <, &, &, [0, &, [0,
0=, &=, [0, and O—; and (5) punctuation. The sentences com-
prise the smallest superset of the sentence letters and sentential constants
that is closed under compounding by means of the connectives and
operators (with the aid of suitable punctuation, which we can leave to
take care of itself).

An interpretation of this language, over a nonempty set / and based on
a system of spheres $ over /, is a function [[ ]] mapping all sentences of
the language onto the subsets of I in such a way that the following con-
ditions hold for all sentences ¢ and .

(Let AeB =% AN B # A, that is, A overlaps B.)

() [M) =1

@MI=A

) [~¢] = I-[¢]

(4) [¢ &¢I = {41 N [¢]

() I¢ v 41 = [4] ¥ [¥]

©) [¢ = 41 = I-[¢D) v [¥]
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() [¢ = 41 = [¢1 N YD Y (—-[8D) N -]
®) <yl ={ie:YSe$([YJ+S > [¢]+S)}
9) [¢<y] ={iecl:I3Se $([¢]*S & ~[¥I+S)}
(10) [d = ] = {ic I: VS e $([4]l S = [¥]«S)}
(1) [O¢] = {ie I: [T« US}
(12) [O4] = {ie I: U$, < (¢}
(13) [©O¢]] = {ic: YSe $(S # A > [[¢]*S)}
(14) [C1$] = {icI: IS 8(S # A & S < [$])}
(15) [¢0—= ¢l = {ie - 3Se $(A # [$] N S < [}
(16) [ O= ¢l = {ieI: VS e $([¢]*S > [$] N [¥]« S)}
(17) [¢00—> ¢ = {ieI: [¢]+ U$ > IS $(A # [¢] N S < [¥])}
(18) [p Oy = {iel: [¢]le US$: & VSe$([¢lleS> [N 4] S)}

Call I the index set of the interpretation, and call its members indices.
Call [[4] the proposition expressed by ¢ (under the interpretation). ¢ is
true at index i (under the interpretation) if and only if i is in [¢]. Thus
the equations above give truth conditions for compound sentences by
means of an algebra of propositions, as discussed in Section 2.2. ¢ is
valid (under the interpretation) if and only if [¢] = I, so that ¢ is true
at every index. A set of sentences or sentence schema is valid (under the
interpretation) if and only if all its members or instances are.

We are concerned now only with the formal aspects of my analyses of
comparative possibility, inner and outer modalities, and variably strict
conditionals. Therefore we leave it open what the index set /is; it can be
the set of worlds, the set of times, the set of things, or any other non-
empty set whatever. We leave it open likewise whether the system of
spheres $ is based on comparative similarity, on comparative goodness,
on the order of time, on comparative salience, on something else, or on
nothing in particular. We require only that it have the formal properties
of a system of spheres; that is, it must assign to each index iin 7 a set $§, of
subsets of I such that (1) $ is nested, (2) $, is closed under unions, and
(3) $, is closed under (nonempty) intersections.*

A sentence, set of sentences, or sentence schema is valid uncondition-
ally if and only if it is valid under every interpretation (of the kind
specified above). It is valid under a given combination of conditions if

* Closure under unions and intersections is inessential. It is easily seen that all
my soundness results would hold even if these closure requirements were dropped ;
as of course would the completeness results, since we never could get more valid
sentences by relaxing constraints on interpretations. In my ‘Completeness and
Decidability of Three Logics of Counterfactual Conditionals’ these closure re-
quirements on systems of spheres were not imposed.
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and only if it is valid under every interpretation based on a system of
spheres that satisfies the conditions. We shall consider conditions of
two sorts: conditions on the system of spheres by itself, and conditions
on the system of spheres in relation to an interpretation based on it.

We shall be concerned in particular with the conditions listed below.
We have met most of them before.

(N) $is normal if and only if, for each i in I, | J$, is nonempty.

(T) $istotally reflexive if and only if, for eachiin /, i belongs to | $,.

(W) 8 is weakly centered if and only if, for each i in 7, i belongs to every
nonempty member of $§,, and there is at least one nonempty
member of §;.

(C) $is centered if and only if, for each i in /, {i} belongs to $,.

(These four conditions are increasingly strong. (C) implies (W), (W) im-
plies (T), (T) implies (N); but the converse implications do not hold.)

(L) $ satisfies the Limit Assumption in relation to [ ] if and only if, for
any @, if [¢]] overlaps | J$; there is some smallest member of $, that
overlaps [¢].

(S) 8 satisfies Stalnaker’s Assumption in relation to [ ] if and only if,
for any ¢, if [¢] overlaps |U$; there is some member of $; whose
intersection with [¢]] contains exactly one index.

((S) implies (L), but not conversely. (S) and (W) together imply (C).)

(U-) $is locally uniform if and only if, foreach i in 7 and j in | J$,, U$;
and |J$, are the same.

(U) $is uniform if and only if, for each i and j in 7, | J$, and {J$; are
the same.

(A-) $islocally absolute if and only if, for eachiin /and jin | J$,, §; and
8, are the same.

(A) 8 is absolute if and only if, for each i and j in I, §; and $, are the
same.

((U) implies (U-) but not conversely; (A) implies (A-) but not con-
versely; (A) implies (U) but not conversely.)

(UT) 8 is universal if and only if, for each i in 7, | J$, is .

((UT) is equivalent to the combination of (T) and (U). It is for the sake
of this combination that the hitherto unmentioned conditions (T) and
(U) have been listed.)

(WA) $is weakly trivial if and only if, for each i in I, I is the only non-
empty member of §,.

(CA) $is trivial if and only if I contains exactly one member i, and $,
contains both A and {i}.
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((WA) is equivalent to the combination of (W) and (A); (CA) is equiva-
lent to the combination of (C) and (A). (CA) implies (WA), but not
conversely. (CA) implies (S), and (WA) implies (L), in relation to any
interpretation based on $. Note that (CA) implies a// the listed con-
ditions.)

We can associate characteristic axioms (or axiom schemata, or pairs
of axiom schemata) with the listed conditions, as follows. In all cases,
the axioms are valid under the corresponding conditions. It follows that
combinations of the axioms also are valid under the corresponding
combinations of conditions.

Conditions Axioms

(N) Normality .............. N: T<1

(T) Total reflexivity.......... T:-O¢> ¢

(W) Weak centering.......... W:Oév 20

(C) Centering............... C: 092 ¢

(L) Limit Assumption ....... (none)

(S)  Stalnaker’s Assumption...S: (¢ & Y) X (¢ & ~¥) 2 ~é
(U-) Local uniformity ....... }U' {()qS > OO¢

(U)  Uniformity ............ O 2 O0¢

(A-) Local absoluteness ..... } A: {gb ¢=> 0 < ‘ﬁ)}
(A) Absoluteness .......... "<y O <)

(UT) Universality............. Uand T
(WA) Weak triviality .......... Wand A;ord Sy =. OY 2 O
(CA) Triviality ............... Cand Aj;jord <y =.y> ¢

There is no special characteristic axiom corresponding to the Limit
Assumption. We can therefore say that if any combination of axioms
corresponds to a combination of conditions without the Limit Assump-
tion, then the same combination of axioms corresponds also to that
combination of conditions with the Limit Assumption added.

The characteristic axiom corresponding to weak triviality provides a
definition of <{, and thence of all our other operators, by means of
outer modalities and truth functions. Under an interpretation based on
a weakly trivial system of spheres, moreover, the outer modalities are
simply the logical modalities. Our language, so interpreted, therefore
collapses into the simplest sort of modal logic. The case of triviality is
still worse: the characteristic axiom defines <X from truth functions
alone, so that our language collapses into ordinary truth-functional
logic.

Local uniformity and uniformity have the same pair of characteristic



122 Logics

axioms; as do local absoluteness and absoluteness. Indeed, so far as
validity is concerned, there is no difference between local uniformity and
uniformity, or between local absoluteness and absoluteness. Suppose
two combinations of our conditions are alike except that uniformity or
absoluteness in the first is replaced by local uniformity or local abso-
luteness in the second. Then exactly the same sentences are valid under
both. Proof: The first is a special case of the second, so whatever is
valid under the second is valid under the first. Conversely, suppose ¢ is
valid under the first; and let [ ]] be any interpretation, with index set 7,
based on a system of spheres $ satisfying the second. For any i in 7, let
I'be {i} U US$, let [T be [¢] N I' for any ¢, and let § be § restricted
to I'. It is easily verified, given that § is at least locally uniform, that
each [ J! is an interpretation over I* based on §'; that if § is normal,
totally reflexive, weakly centered, or centered then so is each $; that if
$ satisfies the Limit Assumption or Stalnaker’s Assumption in relation
to [[ ] then so does each $! in relation to [ J; and that if § is locally uni-
form or locally absolute then each §* is uniform or absolute. We have
eliminated the local quality of the uniformity or absoluteness by cutting
away part of the index set. By hypothesis, ¢ is valid under each [ JI'. But
each of them gives the same truth values within its index set as the ori-
ginal interpretation, and the index sets cover /; so ¢ isvalid also under
[ I QE.D.

Thanks to this replacement result, we can prove theorems about
validity under the local versions of uniformity or absoluteness, and they
will carry over to uniformity or absoluteness proper. That is the only
point of introducing local uniformity and absoluteness; they are of no
interest in themselves.

Our task now is to specify, by means of axiomatized deductive sys-
tems, the sets of sentences valid under various combinations of our
listed conditions. I call these systems V-logics—‘ V'’ stands for ‘variable
strictness’. We may identify the system with the set of its theorems (so
we can have different axiomatizations for one V-logic, not different V-
logics with the same theorems). That gives us an implication relation as
well: ¢ implies  in a given system if and only if ¢ > 4 is a theorem. For
sets of premises: @ implies ¢ if and only if some finite conjunction of
members of the premise-set @ implies ¢ in the previous sense. A V-logic
is sound for a combination of conditions if and only if its theorems are
valid under those conditions; complete for a combination of conditions
if and only if every sentence valid under those conditions is a theorem.
We want systems that are both sound and complete for various com-
binations of conditions, so that the theorems are exactly the sentences
valid under the combination of conditions.

The V-logics will be specified by means of axioms (given often by
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schemata) and rules of inference. The system generated by such an
axiomatization has as theorems the sentences obtainable from the axioms
by repeated application of the rules. More precisely: it is the smallest
superset of the axioms that is closed under the rules. Note that since the
rules are used only to go from theorems to theorems—not to draw con-
clusions from premises that are not theorems—we need not require
them to preserve truth, but only validity.
Let us specify the V-logics by axiomatizations as follows.

Rules: (1) Modus Ponens,
(2) Rule for Comparative Possibility: for anyn > 1,

F2D (W V...V ) |
g <P V...V < ¢)

Axioms: (1) Truth-functional tautologies,
(2) Definitions of operators,
) Trans: (¢ <P &EF<X)> (<0,

(4) Comnex: (4 < ¢) V (¥ < ¢),
(5) Characteristic axioms for conditions: some combination

(zero or more) of N, T, W, C, S, U, A.

Given any combination of our conditions, we have an axiomatization
of this form, with the combination of characteristic axioms that corre-
sponds to the given combination of conditions. The V-logic generated
thereby also will be said to correspond to the combination of conditions,
and conversely. We name this logic by writing *V’ followed by the list of
characteristic axioms. Example: corresponding to the combination of
centering and uniformity, we have the V-logic VCU generated by the
rules, the basic axioms (1)-(4), and the characteristic axioms C and U
corresponding, respectively, to centering and uniformity. A special
case: the basic F-logic, V, is generated by the rules and basic axioms
alone; there are no characteristic axioms, and the logic corresponds to
the empty combination of conditions.

By taking Modus Ponens as a rule and all tautologies as axioms, we
provide for all of ordinary truth-functional logic: not only the truth-
functional theorems, but also the truth-functional consequences of
other theorems. Inclusion of the tautologies makes there be infinitely
many axioms, as does the fact that most of the listed axioms are really
axiom schemata, but no harm is done since the set of axioms remains
decidable. Having chosen =< as primitive for purposes of axiomatiza-
tion—it gives more perspicuous axioms than [J—, and easier proofs—
we need to reintroduce our other ten operators by a sequence of defini-
tions starting from =<{; the needed definitions are found in Section 2.5.
(Replace ‘=9 by ‘=" throughout, so that the definitions become
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object-language schemata.) The Rule for Comparative Possibility com-
bines two intuitive principles. One is that a premise cannot be more
possible than a conclusion it implies; the other is that a (finite) disjunc-
tion cannot be more possible than all of its disjuncts.* Trams and
Connex express the fact that comparative possibility is a weak ordering.

The V-logics are sound for their corresponding combinations of con-
ditions. Proof: Each characteristic axiom is valid under its correspond-
ing condition, and hence under any combination that includes that
condition. The tautologies, the definitions, Trans, and Connex are valid
unconditionally, and hence under any combination of conditions.
Modus Ponens preserves truth, and therefore preserves validity under
any combination of conditions. The Rule for Comparative Possibility,
although it does not preserve truth in general, also preserves validity
under any combination of conditions. So, for any combination of con-
ditions, the axioms for the corresponding V-logic are valid, and the
rules preserve validity, under that combination of conditions. Therefore
the theorems also are valid under it.

There are interpretations based on systems of spheres that satisfy any
combination of our conditions; most simply, there are interpretations
based on trivial systems of spheres, and these satisfy all the conditions
at once. Hence our soundness results are not vacuous. Therefore the V-
logics are consistent: none of them has 1 as a theorem. For if one did,
then by its non-vacuous soundness, L would be valid under some inter-
pretation; which is impossible.

It remains to show that the V-logics are complete, as well as sound,
for their corresponding combinations of conditions. To prove this, I
adapt a standard method for proving completeness results in modal
logic.t

A set X of sentences is consistent in a given deductive system if and
only if it does not imply L; it is consistent with a sentence ¢ if and only
if the union X U {¢} is consistent. A maximal consistent set of sentences

* If we prefer, we can embody the first principle in a simpler rule, and the
second in another axiom, as follows:

B2l and G<GVHVE<GY .

Together, these can replace the Rule for Comparative Possibility.

1 I rely principally on work of John Lemmon and Dana Scott; see E. J. Lemmon,
An Introduction to Modal Logic (Blackwell: Oxford, 1977), Sections 2 and 4. Similar
methods were developed independently in David Makinson, ‘On Some Complete-
ness Theorems in Modal Logic’, Zeitschrift fiir mathematische Logik und
Grundlagen der Mathematik 12 (1966): 379-384. A third source is David Kaplan,
review of Saul Kripke, ‘ Semantical Analysis of Modal Logic I’, Journal of Symbolic
Logic 31 (1966): 120-122.
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is one that is consistent, but not consistent with any sentence that is not
already in it. All our V-logics satisfy Lindenbaum’s Lemma: any con-
sistent set of sentences can be extended to a maximal consistent set.
Proof’: the countably many sentences in our language can all be arranged
in a sequence ¢,, ¢,, .... Given any consistent set of sentences 2o, we
define a parallel sequence of sets of sentences: for eachn > 0, if %, _, is
consistent with ¢,, let X, = 2, _; U {¢,}; if not, let X, =2, _;. Xy is
consistent by hypothesis, and an inconsistent 2, never can follow a con-
sistent 2, _;, so every set in the sequence is consistent. Let X, be the
union of all the sets in the sequence. X is consistent; if not, a finite
subset of X, implies L, but that finite subset must already be included
in some X, contradicting the consistency of each%,. X, is maximal con-
sistent ; if not, it is consistent with some sentence that does not belong
to it, say ¢,. Either X, _, is consistent with ¢,, contradicting the absence
of ¢, fromZ, or X, _, is inconsistent with ¢,, contradicting the consis-
tency of 2, with ¢,. Finally, £, includes %,. Q.E.D.

If a logic is valid under a certain interpretation, then whenever X is
the set of all sentences true together at some index under the interpre-
tation, £ is a maximal consistent set. The converse is not ordinarily
true; but we shall now consider special interpretations such that every
maximal consistent set is the set of all sentences true together at some
index.

We define the canonical interpretation for any V-logic to be the func-
tion [ ]) that assigns to any sentence ¢ the set [¢] of all maximal con-
sistent sets having ¢ as a member. That is, letting 7 be the set of all sets
of sentences that are maximal consistent in the given V-logic, [¢] =4
{ie I:  €i}. Under the canonical interpretation, truth at an index is
membership therein. Since all maximal consistent sets are indices,
every maximal consistent set of sentences comprises the sentences true
together at some index—namely, at itself.*

We shall shortly see that the so-called canonical interpretation really
is an interpretation, based on a system of spheres satisfying one of the
combinations of conditions corresponding to the V-logic: the one with
local uniformity rather than uniformity if the axiomatization includes
U, with local absoluteness rather than absoluteness if it includes A, and
with the Limit Assumption no matter what.

All and only theorems of the V-logic are valid under its canonical
interpretation. Proof: Any theorem is valid; an index that did not

* Have I reverted to the idea, denounced in Section 4.1, of identifying possible
worlds with respectable linguistic entities? No; sets of sentences are indices in
canonical interpretations, just as worlds or times or things are indices in our
intended interpretations, but that does not mean that they are the worlds or
times or things. Canonical interpretations are wnintended interpretations. Their
purpose is mathematical, not metaphysical.
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contain it would be inconsistent with it and hence inconsistent, so it must
be in—true at—every index. Any non-theorem ¢ is invalid: {~ ¢} is con-
sistent and can be extended to a maximal consistent set i; ¢ is false at i,
otherwise both ¢ and ~¢ would be in 7/, making i inconsistent. Q.E.D.

Given this coineidence of theoremhood and validity, and given also—
what we have yet to prove—that the canonical interpretation is based
on a system of spheres satisfying the appropriate conditions, our com-
pleteness results are forthcoming at once. First case: suppose ¢ is valid
under a combination of conditions without uniformity or absoluteness,
and with the Limit Assumption. Then the canonical interpretation for
the corresponding V-logic is based on a system of spheres satisfying
those conditions, so ¢ is valid in particular under that interpretation, so
¢ is a theorem of the V-logic. Second case: suppose ¢ is valid under any
combination of conditions. Revise the combination, if necessary, as
follows. Replace uniformity by local uniformity, replace absoluteness
by local absoluteness, and add the Limit Assumption. ¢ is still valid
under the new combination: we saw that the difference between uni-
formity and local uniformity, or absoluteness and local absoluteness,
makes no difference to validity, and adding a condition cannot diminish
the valid sentences. Then by the first case, ¢ is a theorem of the V-logic
corresponding to the revised combination. But that is the same V-logic
that corresponds to the original combination: local uniformity and
uniformity have the same characteristic axiom, so do local absolute-
ness and absoluteness, and the Limit Assumption has no characteristic
axiom at all.

It has yet to be shown that the so-called canonical interpretation
really is an interpretation, and that it is based on a system of spheres
that satisfies the appropriate conditions.

First: the index set I is nonempty. Proof: the V-logic itself is a con-
sistent set of sentences, and can be expanded to a maximal consistent
set belonging to 1. Q.E.D.

Next: the canonical interpretation gives the correct truth conditions
for the sentential constants and truth-functional connectives. Proof: T is
a tautology, hence a theorem, hence in every maximal consistent set, so
[T] = I. L belongs to no consistent set, maximal or otherwise, so
[1] = A. [~¢] = I-[¢]], since a maximal consistent set contains
just one of ¢ and ~¢; if it contained both it would be inconsistent, and
if it contained neither it would be consistent with neither, so it would be
inconsistent with the theorem ¢ v ~¢, so it would be inconsistent. A
maximal consistent set contains every sentence that it implies; other-
wise it would be inconsistent with some such sentence and hence incon-
sistent. Therefore [¢ & ¢ = [¢]] N [¥] for any ¢ and ¢, and likewise
for the remaining truth-functional connectives. Q.E.D.
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Now I define a system of spheres $, called the canonical basis for the
logic in question. Call any set ¥ of sentences a cut around any index i if
and only if (1) y <X ¢ is false at i whenever ¢ does and ¢ does not belong
to ¥, and (2) 1 belongs to ¥'. Associate with every cut ¥ a subset of /
called the co-sphere of ¥': the set of all and only those indices where no
sentence in ¥ is true. Let § assign to each index i the set §, of all unions
of sets of co-spheres of cuts around i.

Note that $, contains all co-spheres of cuts around i. Each $, is nested.
Proof: the cuts around i are nested; otherwise we would have two cuts
® and ¥ around i, a sentence ¢ in ® but notin ¥, and a sentence ¢ in ¥
but notin ®. Then both ¢ < Y and ¢ < ¢ would be false at i, contradict-
ing the truth at 7 of instances of Connex. It follows that the co-spheres
also are nested, since if one cut around i includes another, then the
co-sphere of the former cut is included in the co-sphere of the latter.
It then follows that unions of sets of co-spheres also are nested.
Q.E.D.

Each §; is closed under unions. Proof: a union of unions of sets of
co-spheres is itself the union of a set of co-spheres. Q.E.D.

Similarly, each §; is closed under nonempty intersections. Proof’: the
union of any given nonempty set of cuts around i is itself a cut around i
since (1) whenever ¢ does and ¢ does not belong to it, then also ¢ does
and ¢ does not belong to one of the given cuts, so that ¢ < ¢ is false
at i, and (2) 1 belongs to it. The intersection of the co-spheres of any
given nonempty set of cuts around i is the co-sphere of the union of the
cuts. So we have closure of the co-spheres under nonempty intersec-
tions. Now our general result follows by distribution of intersection
over union. Q.E.D. This completes the proof that § is a system of
spheres.

Before I can proceed to show that § gives the correct truth conditions
for comparative possibility, I shall need this lemma. Co-sphere Lemma:
if S is the co-sphere of a cut ¥ around some i (under the canonical
interpretation of some consistent V-logic) then a sentence ¢ belongs to
Y if and only if [¢] does not overlap S. Proof: Suppose ¢ belongs to V.
Then by definition of a co-sphere, ¢ is true nowhere in S, so [[¢]] does
not overlap S. Conversely, suppose ¢ does not belong to V. If the set
{~y: ¢ € ¥} of negations of sentences in '} is consistent with ¢, then the
union of this set and {¢} can be extended to a maximal consistent set j.
Since the interpretation is canonical, this j is a member of /. No sen-
tence in ¥ is true at j, and ¢ is true at j; so [¢] overlaps S, since j be-
longs to both. But suppose on the other hand that the set {~y: ¢ € ¥}
is not consistent with ¢. Then for some sentences ¢, . . . ; Y, in ¥ we
have in the logic a theorem

(~ &...& ~§, & $)> 1
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By truth-functional logic we have also a theorem

$2 W V...V i),

and by the Rule for Comparative Possibility we have also a theorem

<P V...V{H <9

The theoremhood, and hence truth at i, of this disjunction contradicts
the falsehood at i, by definition of a cut, of each of its disjuncts. Q.E.D.
8 gives the correct truth conditions for comparative possibility:
é < ¢ is true at i if and only if every S in §; that overlaps [[4] also over-
laps [[¢]. Proof: Suppose some member of $; overlaps [/]] but not also
[¢7]. Then so does the co-sphere S of some cut @ around i. By the
Co-sphere Lemma, ¢ does and ¢ does not belong to ®. By definition
of a cut, ¢ < ¢ is false at i. Conversely, suppose every S in §; that
overlaps [[¢] also overlaps [¢]. Let ® be the set of all sentences x
such that ¢ < x is true at i. By the validity of Connex, ¢ < ¢ is true at i
and hence ¢ belongs to ®@. @ is a cut around i since (1) whenever » does
and ¢ does not belong to it, then ¢ < 7 is true and ¢ <X {is false at i, so
by validity of Trans n < { is false at i, and (2) L belongs to @ because
é < L is a theorem (proved easily from the Rule for Comparative Pos-
sibility). Let S be the co-sphere of ®. By the Co-sphere Lemma, S does
not overlap [¢]; so by hypothesis S does not overlap [¥]; so by the
Co-sphere Lemma ¢ belongs to @; so ¢ < ¢ is true at i. Q.E.D.

$ gives the correct truth conditions also for the other ten operators
defined from =<: given that the truth conditions for <X are correct, the
validity of the definitions ensures the correct derived truth conditions
for the others.

Now we have verified that the canonical interpretation [ ] is an
interpretation based on the canonical basis $. It remains to show that §
satisfies the proper conditions—those whose characteristic axioms were
included in the axiomatization of the given V-logic.

If the axiomatization includes N, then $ is normal. Proof: If any ($;
were empty, N would be false at i. Q.E.D.

If the axiomatization includes T, then $ is totally reflexive. Proof:
For any i, let @ be the set of all sentences ¢ such that (1~ ¢ is true at i.
It is easily verified that @ is a cut around i; let S be its co-sphere. Every
sentence in @ is false at i, by T, so i belongs to S. Hence i belongs to
U$. Q.E.D.

If the axiomatization includes W, then $ is weakly centered. Proof:
First, W implies N; hence $ is normal; hence each $, contains at least
one nonempty sphere. Now suppose S’ is a nonempty member of some
$.. Then S’ includes a nonempty S which is the co-sphere of a cut @
around i. Since S is nonempty, [T] overlaps S, so by the Co-sphere
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Lemma T is not in @, and for any sentence ¢ in @, ¢ < T is false at i.
Then < ¢ is false at i, and so is ¢ itself by W. Since every sentence in
® is false at i, i belongs to S and hence to S’. Q.E.D.

If the axiomatization includes C, then $§ is centered. Proof: for any
i, let ¥ be the set of all sentences ¢ such that <4 is false at i. It is easily
verified that W' is a cut around i; let S be its co-sphere. T is a theorem,
hence true at i, so T is not in ¥'; then by the Co-sphere Lemma, [T]]
overlaps S. Hence S is nonempty. Consider any j in S. If j is not the
same as i, there is a sentence ¢ in j but not in 7, hence true at j but not
at i. Since ¢ does not belong to ¥, by definition of co-sphere, &4 is
true at i. But then ¢ also is true at i, by C, contrary to the choice of ¢.
Hence any j in S is the same as i; so since S is nonempty, S is {i}.
Therefore {i} belongs to $;. Q.E.D.

No matter what characteristic axioms are included in the axiomatiza-
tion, $§ satisfies the Limit Assumption in relation to [ JJ. Proof: Suppose
[#] overlaps (J$;. Let ® be the union of all cuts around i that do not
contain ¢; there are such, by the Co-sphere Lemma and the fact that
[¢] overlaps some co-sphere. Then @ itself is a cut around i that does
not contain ¢. Let S be its co-sphere; by the Co-sphere Lemma S over-
laps [#]. No smaller member of $; does so; else [¢]] would overlap the
co-sphere of some cut which was larger than ® yet did not contain ¢,
which is impossible. Q.E.D.

If the axiomatization includes S, then $ satisfies Stalnaker’s Assump-
tion in relation to [[ J. Proof: Suppose [[¢] overlaps | $;; then ¢ is
true at i. Let ®@ be the set of all sentences x such that ¥ < ¢ is false at i.
@ is a cut around i; let S be its co-sphere. By the Co-sphere Lemma, the
intersection [[¢]] N S is nonempty. Suppose it contains two indices;
then some sentence ¢ belongs to one but not the other, so [[¢ & ] and
[¢ & ~¢] both overlap S, so by the Co-sphere Lemma neither ¢ & ¢
nor ¢ & ~ iy belongs to @, so both (¢ & ¥) < ¢ and (¢ & ~¢) < ¢ are
true at i. By Trans, and the theorems ¢ < (¢ & ¢) and ¢ < (¢ & ~¥)
(consequences of the Rule for Comparative Possibility) we have
(¢ & ¢Y) ~ (¢ & ~y) true at i; whence we have ~ ¢ true at i by S,
which is impossible. Therefore [¢]] N S contains exactly one index.
Q.E.D.

If the axiomatization includes U, then $ is locally uniform. Proof:
Take any i and j such that j is in | J$,. By U, any sentence of the form
<4 is true at both or neither of i and j. The set of all sentences ¢ such
that ¢ is false at i is the smallest cut around i, so its co-sphere is the
largest sphere around i, | $,. Likewise | J$, is the co-sphere of the set of
all sentences ¢ such that ¢ is false at j; since this is the same set of
sentences, | J$, and {U$, are the same. Q.E.D.

If the axiomatization includes A, then $ is locally absolute. Proof:
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Take any i and j such that j is in | J$,. By A, any sentence of the form
¢ <X ¢ is true at both or neither of i and j. Hence a set of sentences is a
cut around both or neither of / and j, and a subset of I is a co-sphere
of a cut around both or neither of i and j. Thus §; and $, are the same.
Q.E.D.

This completes the proof that the canonical basis $ satisfies those of
our conditions (except non-local uniformity and absoluteness) whose
characteristic axioms are included in the axiomatization by which we
specify the V-logic in question. Therefore we have proved the desired
general soundness and completeness result for the V-logics: the V-logic
corresponding to any combination of our conditions is sound and complete
for that combination of conditions.

Figure 5 is a chart of the V-logics. There are 26 in all—one for each
of the 26 non-equivalent combinations of our principal conditions.
Whenever one system is connected to another by a path of upward
lines, the higher one is an extension of the lower—that is, the higher
system has all the theorems of the lower and more besides. The upward
paths diverge from the basic system V at the bottom and reconverge to
the trivial system VCA—truth-functional logic in disguise—at the top.
A little below the top is the weakly trivial system VWA, which is nothing
but the modal logic S5.

In my analysis of counterfactuals, I officially imposed centering and
none of the other conditions. VC is therefore my official logic for the
counterfactual interpretation.* I left open the question whether to
assume universality as well, in order to forget the bothersome acces-
sibility restrictions and identify the outer modalities with the logical
modalities. If universality were assumed, the resulting system would be
VCU. (Universality is uniformity plus total reflexivity, but since the
latter is already implied by centering, only the axiom U for uniformity
needs to be added.) Anyone who would like to weaken centering for the
reasons considered in Section 1.7 will prefer VW, or perhaps VWU if
he opts for universality. The only real difference between Stalnaker’s
theory and mine is the addition of Stalnaker’s Assumption. His ‘condi-
tional logic’ C2 is therefore a system equivalent to VCS.} Universality
has its appeal on Stalnaker’s theory as on mine, so VCSU is another
contender. None of the other V-logics would do at all for counter-

* VC is definitionally equivalent to the system C1 of my paper ‘ Completeness
and Decidability of Three Logics of Counterfactual Conditionals’; I there en-
dorsed C1 as the correct logic of counterfactuals. V is definitionally equivalent
to the system there called CO; VCS to the system there called C2.

$ Thomason calls the same system CS, or FCS in the Fitch-style formulation.
Its quantificational extension is called CQ. See the papers of Stalnaker and
Thomason cited in Section 3.4,
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factuals, since we surely need at least weak centering and we surely
must reject absoluteness.

Turning next to deontic interpretations: we must reject centering and
weak centering, and I have argued that in this case also we do not want

FIGURE 5
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Stalnaker’s Assumption. For some deontic interpretations we definitely
want absoluteness; for others we definitely do not. I argued inconclu-
sively for normality; universality again simplifies things, but I know of
no strong arguments pro or con. Uniformity might come as a conse-
quence either of absoluteness or of universality; I know of no reason to
want it by itself. Likewise I know of no reason to want total reflexivity
except as part of universality. It seems, therefore, that the proper V-
logics for deontic interpretations are V, VN, VTU, VA, VNA, VTA.*

Temporal interpretations divide into two cases. For the semi-future
and semi-past interpretations we have centering; for the future and past
interpretations we must reject centering, weak centering, and total
reflexivity, and we want normality only if we want to build in the
assumption that time has no end (or no beginning). Stalnaker’s Assump-
tion amounts roughly to the implausible assumption that time is dis-
crete. Uniformity and absoluteness must be rejected. However, none
of the V-logics really fit the temporal interpretations: there are further
conditions to be imposed, arising from the linear order of time, and for
these I have been unable to find characteristic axioms.

Finally the egocentric interpretation, based on comparative salience:
here, I argued, all of our conditions must be rejected. The proper V-
logic is the basic system V.

Since our principal interest has been the analysis of counterfactuals,
it is incumbent on me to provide an alternative axiomatization for VC,
my official logic of counterfactuals, with the ‘would’ counterfactual it-
self as primitive. The simplest one I know is as follows.

Rules: (1) Modus Ponens,
(2) Deduction within Conditionals: for any n > 1,
FH i &. .. & xa) 2 ¢
HE O x) &...& (G O xa) 2 O’

(3) Interchange of Logical Equivalents;

Axioms: (1) Truth-functional tautologies,
(2) Definitions of non-primitive operators,}
(3) ¢ O~ 4,
@) (~¢ O~ > GO 9),
5) @O ~P Vv (¢ &P O>x) =@ OG> ),
6) pO->p=>(d> ),
M) (P &Y) > (O~

* VN is equivalent to the system CD in van Fraassen, ‘The Logic of Condi-
tional Obligation’.

1t Definitions of our other operators from [J— may be assembled from Sections
1.5, 1.6, 1.7, and 2.5. Replace ‘=9’ by ‘=’ to make them into object-language
schemata.
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(For VW, delete (7). For VCS add Conditional Excluded Middle:

®) GO—9) v (6O ~9).

For VCU, or VWU or VCSU, it is best to add the previous schemata U,
with the outer modalities defined now from the counterfactual.)

I apologize for (5). It is because there seems to be no way to take the
counterfactual as primitive without at least one such long and obscure
axiom that I prefer axiomatizations in terms of comparative possibility.*

It would be tedious to make sure that this really is an axiomatization
of VC by showing that the axioms and rules of this axiomatization are
theorems and derived rules of the former axiomatization, and vice
versa. It is easier and more illuminating to show that the system
generated by the new axiomatization must be VC because it, like VC,
has all and only the sentences valid under centering as theorems.

Its soundness under centering is routine: we can verify that the rules
preserve validity, and axioms (1)-(5) are valid, under any interpretation;
that (6) is valid under weak centering and a fortiori under centering;
and that (7) is valid under centering. It follows that the theorems are
valid under centering; that is, that the system is at least included in VC.

To show its completeness for centering, we define the canonical inter-
pretation for the system as before, show that the canonical interpretation
is based on a centered system of spheres, and argue that any sentence
valid under centering—any theorem of VC, that is—is valid under the
canonical interpretation and therefore a theorem.

This time, however, we go by two steps to the system of spheres.
First we show that the canonical interpretation is based on a certain
(centered) selection function, in the way described in Section 2.7. Then
it follows that the canonical interpretation also is based on a centered
system of spheres; for in Section 2.7 it was shown that any (centered)
selection function is derived from a centered system of spheres, and
agrees on the truth conditions for counterfactuals with the system of
spheres whence it is derived.

Let [[ ] be the canonical interpretation for the system generated by
the new axiomatization: the index set [ is the set of maximal consistent
sets of sentences and [¢] = {i€ I: ¢ €i}. For any ¢ and i, let O(¢, i)}—
the counterfactual theory for ¢ at i—be the set {: i€ [¢ (OJ— ¢} of
sentences i such that ¢ [J— ¢ holds at i; and let the canonical selection
Junction be the function f that assigns to each ¢ and i the set (@, i) of
all maximal consistent extensions of the counterfactual theory O(¢, ). It
is easily verified that f'is indeed a (centered) selection function according

* The present axiomatization, however, is a great improvement on the axioma-
tization for VC—there called C1—in ‘Completeness and. Decidability of Three
Logics of Counterfactual Conditionals’.
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to th'e four defining conditions given in Section 2.7 (reading ‘index’
now in place of ‘world’). Also f gives the correct truth conditions:

(¢ O—¢] = {ie I f($, i) = [¥I}.

Proof: Suppose i is in [¢ [J— ¢]; then ¢ is in O(d, i), and hence in
every maximal consistent extension thereof, so f(¢, i) < [¢]. Con-
versely, suppose f(¢,i) < [[¥]. Then O(¢, i) implies ; otherwise
O(4, i) U {~¢} would be consistent and could be extended to a maxi-
mal consistent set in f(¢, i), contrary to the supposition that ¢ belongs
to all such sets. By the rule of Deduction within Conditionals (¢, i) is
closed under implication—that is why it is called a theory—and hence
contains i; therefore i is in [¢ (J— ¢J. Q.E.D. In this way the canonical
interpretation is based on the canonical selection function; and there-
fore based also on the system of spheres whence the canonical selection
function is derived.

6.2 Decidability Results

Theoremhood in the FV-logics is effectively decidable. There is a
mechanical procedure which, if asked whether a given sentence is a
theorem of a given V-logic, always answers correctly after a finite time.
(A long finite time in most cases; I do not know any practical decision
procedure.) We know by our soundness and completeness results that
questions of theoremhood reduce to questions of validity. Now we shall
see that those questions reduce in turn to questions of validity under a
finite bound on the size of the index set; and these last are decidable.
Suppose we wish to decide whether a certain sentence ¢ is a theorem
of a certain V-logic. We may safely assume that =< is the only one of
our special operators to appear in ¢, since if we could decide theorem-
hood for any such sentence then we could decide theoremhood for
other sentences by first eliminating the other operators by means of
their definitions in terms of =<{. Take the combination of conditions
corresponding to the given V-logic; use uniformity rather than local
uniformity, use absoluteness rather than local absoluteness, and omit
the Limit Assumption. A triple {/, §, [ ]> is a counterexample to the
validity of ¢ under these conditions if and only if (1) [ ] is an interpre-
tation over I based on $, (2)$ satisfies the conditions, and (3) ¢ is invalid
under [ ]. The triple is a small counterexample if and only if, in addition,
there are at most 2" members of the index set I, n being the number of
subsentences of ¢. (Count ¢ as one of its own subsentences.) If ¢ is a
theorem of the given V-logic, then by soundness there is no counter-
example, small or otherwise, to its validity under the conditions. But if
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# is not a theorem, then by completeness there is a counterexample; and
we shall prove that if there is any counterexample, then there is a small
one. We can therefore decide whether ¢ is a theorem of the given V-
logic by deciding whether there exists any small counterexample to the
validity of ¢ under the corresponding combination of conditions. And
that is obviously a decidable question. Of course, we cannot search
through all the infinitely many (I, §, [ T) triples with small enough I;
however, most of the differences between the triples can be ignored, so
it suffices to search through finitely many finitely specifiable structural
types, checking in each case whether triples of that type are small
counterexamples to the validity of ¢ under the conditions.

It only remains to prove that if there is any counterexample </, $, [ 1>
to the validity of ¢ under the conditions, then there also is a small
counterexample. We can obtain a small counterexample <I*, $*, [ J*>,
called a filtration through ¢ of the original counterexample, as follows.}

Call i and j in I indistinguishable if and only if any subsentence of ¢ is
true, under [[ ]I, at both or neither of them. There exist subsets of 7 that
contain, for any i in I, one and only one index indistinguishable from i.
Let 7* be any such subset. /* is small enough: there are at most 2" ways
to assign truth values to the » subsentences of ¢ (fewer ways, in general,
under the constraints imposed by the truth conditions for connectives
in ¢), no two members of /* are indistinguishable, and hence /* has at
most 2" members.

Define a function * as follows. For any i in 7, i is the unique index
in I* that is indistinguishable from i. For any subset S of I, »S is the set
of all indices in 7* that are indistinguishable from members of S—that
is, *S = {xi: ie S}.

Now we define $* as follows. For any i in I*, $f is the set of all sets
*S such that S belongs to §,. $* is a system of spheres. Proof: whenever
S < T, then S < T, so that each $f inherits the nesting of §,. Because
each $f is nested and finite, it is closed under unions and nonempty
intersections. Q.E.D.

It is easy to verify that if § is normal, totally reflexive, weakly centered,
centered, uniform, or absolute, then so is $*. Also, if $ satisfies Stal-
naker’s Assumption in relation to [ J, then $* satisfies Stalnaker’s
Assumption in relation to any interpretation based on $*. Proof: It is
enough to show that whenever two indices j and k belong to some (J$7,
then there is some sphere in $; that contains one of them but not the
other. Let x, be a sentence true under [[ ] at all and only indices indis-
tinguishable from j, and let y, likewise be true at all and only indices

$ I am adapting the method of filtrations used in modal logic; see Lemmon, An
Introduction to Modal Logic, Sections 3 and 6.
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indistinguishable from k; such sentences always can be formed as con-
junctions of subsentences of ¢ and negated subsentences of ¢. Since j
and k are in US$F, [x; vV x.]) overlaps |U$,. Then by Stalnaker’s Assump-
tion for $ there is some S in $§;, whose intersection with [x; V x,] con-
tains exactly one index A. This 4 is indistinguishable from one of j and
k; but not from both since they are both in I* and so not indistin-
guishable from one another. Then *S is a member of & that contains
whichever one of j and k is indistinguishable from A, but not the other.
Q.E.D.

Now we are ready to define the interpretation [[ J*. If o is any sen-
tence letter, let Jo]]* be [o] N I*; and stipulate that [ J* is to be an
interpretation over /* based on $*. That is enough to determine [y ]*
for any sentence ¢, since the truth conditions for the connectives and
operators by which ¢ is built up from its sentence letters are written into
the definition of an inferpretation.

Call a sentence ¢ invariant if and only if [y ][* is [[]] N I'*, so that
Y has the same truth value under both [ J and [ }* at any index in I'*.
Suppose both that ¢ is invariant and that ¢ is a subsentence of ¢. Then
for any subset S of I, [y]] overlaps S if and only if [¥J* overlaps *S.
Proof: Suppose [¢]] overlaps S; let i belong to both. Then *i belongs to
*S. Also, since i and i are indistinguishable and ¢ is a subsentence of ¢,
*i belongs to [¥]; so since y is invariant and *i belongs to 7*, *i belongs
to [ 7*. Conversely, suppose [§]* overlaps *S; let j belong to both. By
invariance, j belongs to [[¢]; also j is *i for some i in S. Since i and j are
indistinguishable and ¢ is a subsentence of ¢, i belongs to [¢]. Q.E.D.

Now suppose ¢ and y both are invariant subsentences of ¢; then
¢ < x is invariant. Proof: For any i in I*, iis in [ < x] if and only
if, for every S in $,, if [x] overlaps S then so does [/]; that is, by our
last result, if and only if, for every S in §;, if [x]* overlaps xS then so
does [y ]*; that is, if and only if, for every S in $f, if [x]* overlaps S
then so does [[y]}*; that is, if and only if i is in [§ < x]*. Q.E.D.

It follows that all subsentences of ¢ are invariant. For sentence letters
are invariant by definition of [ J*; truth-functional compounds of in-
variant sentences are obviously invariant; and we have just seen that
compounds with <{ are invariant so long as the combined sentences are
subsentences of ¢. In particular, ¢ itself is invariant.

By hypothesis, ¢ is invalid under [ J. Let i be an index where ¢ is
false under [[ JJ; then since i and *i are indistinguishable, ¢ is false under
[ T at =i also; then since ¢ is invariant and *i belongs to I*, ¢ is false at
xi under [ J*. Therefore ¢ is invalid under [ J*. This completes the
proof that the filtration {/*, $*, [ J*> is a small counterexample to the
validity of the given sentence ¢ under the combination of conditions
corresponding to the given V-logic.
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6.3 Derived Modal Logics

An outer modal sentence of our language is one that contains none of
our special operators except perhaps the outer modal operators. It is
built up from sentence letters, T, and L by means of nothing but [] and
< and truth-functional connectives. Likewise an inner modal sentence is
one that contains none of the operators except perhaps the inner modal
operators [-] and <.

For each of the V-logics, there is a derived outer modal logic com-
prising those theorems of the V-logic that are outer modal sentences;
also a derived inner modal logic comprising the inner modal theorems of
the V-logic. All of the outer modal logics, and most of the inner modal
logics, can be axiomatized in the following familiar form. (For inner
modal logics, replace [J and < throughout by [[] and ©.)

Rules: (1) Modus Ponens,
(2) Necessitation: +¢/t [1¢;

Axioms: (1) Truth-functional tautologies,
(2) Definition: O = ~ [0 ~¢,
(3) O = ¥ = (O¢ = O),

(4) Some combination (zero or more) of:

D: O¢> O
T: p>4¢

P: O¢ > [Od
E: ©¢>2[O004
4: [O¢ = O0O¢.

Nomenclature (after Lemmon, except for my addition of P): the name
of the logic is its axiom list, preceded by ‘K’ unless the list begins with
‘D’ or ‘T’. TE is S5, the best-known modal logic. K (with no special
axioms), D, and T are well known under those names. TP is the trivial
modal logic—truth-functional logic in disguise—since it has theorems
to the effect that [J¢ and ¢ are equivalent simply to ¢.*

The derived outer modal logics, and the derived inner modal logics
for V-logics at least as strong as VN, are as follows.

V-Logic Outer Modal Logic
VW, VS i e e e e K
VN, VNS i ittt e ettt D
VI, VW, VC, VIS, VCS. ... T

9

* DP is the system W of Krister Segerberg, ‘On the Logic of *“To-morrow”’,
Theoria 33 (1967): 45-52. 1 prefer to think of it as Prussian deontic logic, whence
the name.
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VU, VA,VSU,VSA . ... .t KE4
VNU,VNA,VNSU,VNSA............iit DE4

VTU, VWU, VCU, VTA, VWA, VTISU, VCSU, VTSA.. S5 (TE)
VO A o e et et Trivial (TP)
V-Logic Inner Modal Logic
VN,VI,VNU,VTU ...... . i D

VW, VWU i it ees T

VNA, VT A i i it DE4

VW A e e i e e i e S5 (TE)
VNS, VIS, VNSU, VISU ........coiiiiiiiiinens. DP

VNSA, VISA .. i it - DPE

VC, VCU, VCA, VCS, VCSU .........ciiiiiiinee, Trivial (TP)

In each case listed, the rules of inference for the modal logic preserve
theoremhood in the V-logic, and the axioms for the modal logic are
theorems—indeed, often axioms—of the ¥-logic. Therefore all theorems
of the modal logic are theorems of the ¥-logic as well. In particular, for
the outer modalities: VN and its extensions give axiom D; VT and its
extensions give axiom T (which we took as an axiom for those V-logics);
VU and its extensions give axioms E and 4 (the upper and lower halves
of U); and VCA, the trivial V-logic, gives axiom P. For the inner
modalities: all V-logics give axiom D; VW and its extensions give axiom
T; VNA and its extensions give axioms E and 4; and VC and VNS and
their extensions give axiom P.

In each case listed, conversely, the modal logic yields all the modal
theorems—outer or inner, as the case may be—of the V-logic. Proof: In
each case, we have a completeness theorem for the modal logic, saying
that any modal sentence valid under a certain condition on accessibility
is a theorem of the logic. (These theorems are mostly well-known; they
can be proved in much the same way as my completeness results in
Section 6.1, but more easily. I state them here in terms of an assignment
of spheres of accessibility, as in Section 1.2, rather than an accessibility
relation.) Contrapositively: let ¢ be any modal sentence—outer or
inner, as the case may be—that is not a theorem of the modal logic;
then ¢ is invalid under some interpretation [ ] of the modal sentences of
our language, over a set 7, based on an accessibility assignment S that
satisfies the condition given in the completeness theorem. That is, S
assigns to each i in I a sphere of accessibility S; (a subset of ) and the
interpretation is based on these spheres as follows:

(O] = {iel: S, < [¥I}
[OY] = (iel: S, [Y]} (where AeB =AN B # A),
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in the case of outer modality, and likewise but with [] and < replaced
by (] and < in the case of inner modality. Say that a system of spheres
$ over I matches this accessibility assignment S, in the case of outer
modality, if and only if each S; is the outermost sphere in §; (that is,
(U$); or, in the case of inner modality, if and only if each S, is the inner-
most nonempty sphere in $; (which is possible only if $ is such that each
$: has an innermost nonempty sphere). Given a system of spheres § that
matches S in the appropriate way, we can expand the interpretation [ J
into an interpretation, based on $, of our full language; that is possible
because the matching ensures that $ gives the same truth conditions as
S for the modal sentences. ¢ remains invalid under the expanded inter-
pretation. Suppose further that § satisfies conditions corresponding to a
certain V-logic; then ¢ is invalid under those conditions, and hence not
a theorem of the V-logic. The modal logic did not omit any modal
theorems of that V-logic. Nor did it omit any modal theorems of any
weaker V-logic, since the theorems of the weaker system are among
those of the stronger.

Now we turn to particular cases. First we consider the outer modal
cases; take the modal logics discussed to be outer.

For K we are given no condition on the accessibility assignment S.
We can nevertheless match S with a system of spheres $ that satisfies
Stalnaker’s Assumption (in relation to any interpretation based on it),
as follows. For each i in I, take an arbitrary well-ordering of S;; let the
spheres in $§, be all and only those subsets of S; such that whenever j
belongs to the subset and k belongs to S; but not to the subset, then j
precedes k in the well-ordering. Hence K captures all the outer modal
theorems of VS, including those of V.

For D, we have the condition that each S; is nonempty. We can match
S with a normal system of spheres that satisfies Stalnaker’s Assumption:
use an arbitrary well-ordering of each S; as before. Hence D captures all
the outer modal theorems of VNS, including those of VN.

For T, we have the condition that each S; contains i. We can match S
with a centered system of spheres that satisfies Stalnaker’s Assumption:
this time, use a well-ordering of each S; that is arbitrary except that i
comes first. Hence T captures all the outer modal theorems of VCS,
including those of VIS, VC, VW, and VT.

For KE4, we have the condition that S, is the same for every i in I,
We can match S with an absolute system of spheres that satisfies
Stalnaker’s Assumption: use the same arbitrary well-ordering of S; for
every i. Hence KE4 captures all the outer modal theorems of VSA,
including those of VSU, VA, and VU.

For DE4, we have the condition that S, is the same for every i in /,
and further that it is nonempty. We can match S with a normal,
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absolute system of spheres that satisfies Stalnaker’s Assumption: again,
use the same well-ordering for every i. Hence DE4 captures all the outer
modal theorems of VNSA, including those of VNSU, VNA, and VNU.

For S5 (TE), we have the condition that each S, is the whole index
set 1. We can match S with a totally reflexive, absolute system of spheres
that satisfies Stalnaker’s Assumption: use the same well-ordering of I
for every i. Hence S5 captures all the outer modal theorems of VITSA,
including those of VISU, VTA, and VTU. Alternatively, we can match
S with a centered, uniform system of spheres that satisfies Stalnaker’s
Assumption: for each i, use a well-ordering of [ that is arbitrary except
that i comes first. Hence S5 captures all the outer modal theorems of
VCSU, including those of VCU and YWU. Alternatively, we can match
S with a weakly trivial system of spheres: for each i, let 7 be the only
nonempty sphere around i. Hence S5 captures all the outer modal
theorems of VWA—no surprise, since we already noted that VWA is
nothing but (a definitional extension of) SS.

For the trivial system TP, we have the condition that there is only one
index 7, and S is {i}. We can match S with a trivial system of spheres:
let {i} be the only nonempty sphere around i. Hence TP captures all the
outer modal theorems of VCA—as expected, since both of them are
nothing but truth-functional logic.

Now for the inner modal cases; henceforth take the modal logics dis-
cussed to be inner.

For D, we have again the condition that each S is nonempty. We
can match S with a totally reflexive, uniform system of spheres: for
each i, let the nonempty spheres around i be S; and 1. Hence D captures
all the inner modal theorems of VTU, including those of VNU, VT, and
VN.

For T, we have again the condition that each S, contains i. We can
match S with a weakly centered, uniform system of spheres: as before,
let the nonempty spheres around any i be S; and 1. Hence T captures all
the inner modal theorems of VWU, including those of VW.

For DE4, we have again the condition that S; is the same for every i
in I, and further that it is nonempty. We can match S with a totally
reflexive, absolute system of spheres: let the nonempty spheres around
any i be S;—now constant—and 1. Hence DE4 captures all the inner
modal theorems of VTA, including those of VNA.

For S5, we have again the condition that each S, is I. We can match §
with a weakly trivial system of spheres: let / be the only nonempty
sphere around any i. Hence S5 captures all the inner modal theorems of
VWA.

For DP, we have the condition that each S; contains exactly one
index j;. We can match S with a totally reflexive, uniform system of
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spheres that satisfies Stalnaker’s Assumption: for each i, use a well-
ordering of I, arbitrary except that j, comes first. Hence DP captures all
the inner modal theorems of VISU, including those of VNSU, VTS,
and VNS.

For DPE, we have the condition that each S; contains exactly one
index j, the same for every i. We can match S with a totally reflexive,
absolute system of spheres that satisfies Stalnaker’s Assumption: use a
fixed well-ordering of I, arbitrary except that j comes first. Hence DPE
captures all the inner modal theorems of VISA, including those of
VNSA.

For the trivial system TP, we have again the condition that there is
only one index 7, and S; is {i}. We can match S with a trivial system of
spheres: let {i} be the only nonempty sphere around i. Hence TP cap-
tures all the inner modal theorems of VCA, including those of VCSU,
VCS, VCU, and VC—all the systems in which the inner modalities are
trivialized. Q.E.D.

I have so far ignored the inner modal logics derived from V, VU, VA,
VS, VSU, and VSA. It turns out that these derived logics do not belong
to the well-known family of modal logics we have been considering
hitherto. Rather, they are among the so-called non-normal modal logics
—systems in which the rule of necessitation fails to preserve theorem-
hood.* In fact, the rule of necessitation never yields theorems; these
derived logics have no theorems whatever of the form [Jé. Recall this
consequence of our truth conditions for inner modality: if there are no
nonempty spheres around an index i—if i is an abnormal index—then
no sentences of the form [-]¢ are true at i. (Contrariwise, if there are
nonempty spheres around i—if i is a normal index—then some such
sentences are true at i. In particular [(JT, an inner modal sentence
definitionally equivalent to our axiom N, is true at all and only normal
indices.) A sentence of the form [F]¢ therefore cannot be valid under a
combination of conditions unless the conditions somehow prohibit
abnormal indices. Our normality condition does exactly that. Total
reflexivity, weak centering,-or centering also prohibits abnormal in-
dices. But Stalnaker’s Assumption, uniformity, and absoluteness,
singly or in combination, do nothing to prohibit abnormal indices.
Hence the V-logics we are considering, which correspond to the com-
binations of these three conditions, have no theorems of the form [é.
That is why their derived inner modal logics have no such theorems;

* See John Lemmon, ‘Algebraic Semantics for Modal Logic’, Journal of
Symbolic Logic 31 (1966): 46-65 and 191-218; and Saul Kripke, ‘Semantical
Analysis of Modal Logic II: Non-normal Modal Propositional Calculi’, in
J. W. Addison, L. Henkin, and A. Tarski, The Theory of Models (North-Holland:
Amsterdam, 1965): 206-220.
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and (since they do have some theorems, as we shall see) it follows that
they are systems in which the rule of necessitation does not preserve
theoremhood.

I shall not attempt a catalog of the non-normal derived inner modal
logics, but shall be content to discuss one case: the inner modal logic
derived from our basic system V. This is the non-normal modal logic
called D2 by Lemmon, and it may be axiomatized as follows.

Rules: (1) Modus Ponens,
(2) Weakened Necessitation: t¢ > | F[¢ > [y

Axioms: (1) Truth-functional tautologies,
(2) Definition: &¢ = ~ [~ ¢,
(3) B3¢ = ¢) = (D¢ = [y,
(4) D: (¢ = 9.

The rules preserve theoremhood in V, and the axioms are theorems of
V; so all theorems of D2 are theorems of V (and therefore of all V-
logics). Conversely, D2 captures all the inner modal theorems of V.
Proof: There is a completeness theorem for D2, according to which any
inner modal sentence ¢ that is not a theorem of D2 is invalid under some
interpretation [[ J] of the inner modal sentences, over a set 7, based on a
partial accessibility assignment S—one that may be undefined at some
indices in /—satisfying the condition that whenever S is defined at i,
then S; is nonempty.* The interpretation is based on S as follows.

[¢] = {ieI: Sis defined at i and S; < ¥},
[yl = {i e I: S is undefined at i or S;« [}

Now let $ be a system of spheres over I such that if S is defined at i, then
S is the only nonempty sphere around 7, and if S is undefined at i, then
there is no nonempty sphere around i; and expand the interpretation
[ T into an interpretation, based on $, of our full language. ¢ remains
invalid, and hence is not a theorem of V. Therefore D2 captures all
inner modal theorems of V. Q.E.D.

* If we were using accessibility relations instead of assignments of spheres of
accessibility, we would need a second item to spe-ify the indices here specified as
those where § is undefined; and we would raise idle questions about accessibility
from such indices.
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Related Writings by David Lewis

‘Completeness and Decidability of Three Logics of Counterfactual
Conditionals’, Theoria 37 (1971): 74-85.

I consider the three logics here called V, VC, and VCS, formulated
with the counterfactual connective as primitive. They are shown to be
complete, first for a semantic analysis in terms of selection functions,
and derivatively for analyses in terms of systems of spheres and in terms
of comparative similarity relations. They are shown to be decidable,
using the method of filtrations.

‘Causation’, Journal of Philosophy 70 (1973): 556-567; reprinted in
Ernest Sosa, Causation and Conditionals (Oxford University Press:
Oxford, 1975). German translation by Giinter Posch (with additions)
published as ‘Kausalitat’, in Giinter Posch, Kausalitit—Neue Texte
(Philip Reclam: Stuttgart, 1981); reprinted with added postscripts in
David Lewis, Philosophical Papers, Volume II (Oxford University Press:
Oxford, 1986).

I propose a counterfactual analysis of causal dependence and caus-
ation between particular events. First, an event e depends causally on a
(wholly distinct) event c iff ¢ and e both occur, but if ¢ had not occurred
then e would not have occurred. Second, ¢ is a cause of e iff either e
depends on ¢, or e depends on d which depends in turn on ¢,or....
The counterfactuals must be of the proper, non-backtracking sort.

In the added postscripts, I extend the treatment to cover probabilistic
causation under indeterminism; piecemeal causation, in which c is said
to cause e because some part of ¢ causes e according to the original
analysis; and certain forms of redundant causation which are not
covered by the original treatment.

‘Counterfactuals and Comparative Possibility’, Journal of Philosophical
Logic 2 (1973): 418-446; reprinted in Donald Hockney et al., Con-
temporary Research in Philosophical Logic and Linguistic Semantics
(D. Reidel: Dordrecht, 1975); Italian translation by Claudio Pizzi
published as ‘Controfattuali e possibilitdi comparativa’, in Claudio
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Pizzi, Leggi di natura, modalita, ipotesti (Feltrinelli: Milano, 1978);
reprinted in W. L. Harper et al., Ifs (D. Reidel: Dordrecht, 1981);
reprinted in David Lewis, Philosophical Papers, Volume II.

For the most part, the article is a summary presentation of material
from this book. But also I mention two extensions: (1) a selection-
function treatment in which the Limit Assumption is ensured by sup-
plementing the genuine worlds with artificially constructed impossible
limit worlds; and (2) a kind of quantitative counterfactual, intermediate
between ‘would’ and ‘might’ counterfactuals, which holds iff, roughly,
the consequent holds throughout a certain fraction of the closest
antecedent-worlds.

‘Semantic Analyses for Dyadic Deontic Logic’, in Séren Stenlund,
Logical Theory and Semantic Analysis: Essays Dedicated to Stig Kanger
on His Fiftieth Birthday (D. Reidel: Dordrecht, 1974).

I compare several treatments of conditional obligation and permis-
sibility similar to the one given in this book, attempting to separate sub-
stantive differences from differences between equivalent formulations.

‘Intensional Logics Without Iterative Axioms’, Journal of Philosophical
Logic 3(1974): 457-466.

I present an easy method for proving the completeness and decidability
of any sentential intensional logic which can be axomatized without the
iteration of intensional operators. The method applies inter alia to all
the V-logics considered here except for those with axioms U or A.

‘The Paradoxes of Time Travel’, American Philosophical Quarterly 13
(1976): 145-152; reprinted in Fred D. Miller, Jr., and Nicholas D. Smith,
Thought Probes (Prentice-Hall: Englewood Cliffs, N.J., 1981); re-
printed in David Lewis, Philosophical Papers, Volume 1.

In the course of a general defense of the possibility of time travel, 1
consider the question what would have happened if a time traveler
visiting the past had succeeded in killing his grandfather. I reply that if
so, the killer would not after all have been the time-traveling grandson
of his victim.

‘Probabilities of Conditionals and Conditional Probabilities’, Philo-
sophical Review 85 (1976): 297-315; reprinted in W. L. Harper et al.,
Ifs (D. Reidel: Dordrecht, 1981); reprinted with an added postscript
in David Lewis, Philosophical Papers, Volume I1.

I ask whether we can interpret — so as to guarantee an equality be-
tween the probability P(é —¢) of a conditional and the revised probabil-
ity P4(¢) of the consequent, where Py is the result of revising probability
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function P so as to make the antecedent certain. If the revision of
probability works by conditionalizing whenever possible, then it cannot
be done (except in certain trivial cases). However it can be done if — is
the Stalnaker conditional and P4 comes from P by a process of ‘imaging’
in which each world’s original share of probability is shifted to the
closest ¢-world.

‘Possible-World Semantics for Counterfactual Logics: A Rejoinder’,
Journal of Philosophical Logic 6 (1977): 359-363.

I discuss an article by Brian Ellis, Frank Jackson, and Robert
Pargetter,* in which they had suggested that no sort of possible-world
semantics for counterfactuals could validate the inference from ‘If x or
i, it would be that ¢’ to ‘If ¢, it would be that ¢’. I reply that the problem
can be solved in various ways within possible-world semantics. But any
solution will involve treating counterfactuals with disjunctive antece-
dents as a special case, not covered directly by my treatment in this
book.

‘Truth in Fiction’, American Philosophical Quarterly 15 (1978): 37-46;
reprinted with added postscripts in David Lewis, Philosophical Papers,
Volume I (Oxford University Press, 1983).

I treat operators of truth in fiction as if they were counterfactual
suppositions, so that ‘In fiction f; ¢’ means roughly that ¢ holds at the
closest f~worlds. The f-worlds are those worlds where the fiction f
really is what here it only purports to be—truthful history, perhaps.
‘Closeness’ of these f~-worlds may be closeness to actuality; or alter-
natively it may be closeness to the collective belief-worlds of the
community wherein fiction f originated. Inconsistent fictions pose extra
problems, which may be addressed by considering what is true in
the various consistent corrections or fragments of the original fiction.

‘Reply to McMichael’, Analysis 38 (1978): 85-86.

I discuss an article by Alan McMichael, in which he had shown that
the treatment of conditional obligation in Section 5.1, combined with a
utilitarian measure of the goodness of worlds, would yield the un-
welcome conclusion that ordinary statements of conditional obligation
are seldom true. I reply that this is due to the peculiarity of the utilitarian
measure, not the treatment of conditional obligation.

* * An Objection to Possible-World Semantics for Counterfactual Logics’, Journal
of Philosophical Logic 6 (1977): 355-357.

t *Too Much of a Good Thing: A Problem in Deontic Logic’, Analysis 38 (1978):
83-84.
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‘Counterfactual Dependence and Time’s Arrow’, Noiis 13 (1979): 455-
476; reprinted with added postscripts in David Lewis, Philosophical
Papers, Volume I1.

I seek to explain an asymmetry of counterfactual dependence: subject
to several qualifications, it seems that if the present were different, then
the future but not the past would also be different. I argue that we should
not build the asymmetry into the analysis of counterfactuals, or into the
weighting of respects of comparison that we bring to an analysis in
terms of similarity of worlds, since that would give us the asymmetry in
too unqualified a form. I show how a symmetric analysis, and symmetric
standards of similarity, can join with de facto temporal asymmetries in
the world to explain the asymmetry of counterfactual dependence.

In discussing the asymmetry for the indeterministic case (in a post-
script) I change what I say about ‘might’ counterfactuals. Besides the
‘not-would-not’ sense that I admit in this book, I find reason to admit
also a ‘would-be-possible’ sense, which holds iff each of the closest
antecedent worlds is one where the objective chance of the consequent
is positive. I argue that ‘If it were that ¢, it would be that not ¢’ is com-
patible with ‘If it were that ¢, there would have been some chance that
¢’ and hence with ‘If it were that ¢, it might have been that ¢’ taken in
the ‘would-be-possible’ sense; for instance, if the antecedent is ‘The
coin was fair and fell heads’ and the consequent is ‘The coin fell tails’.

‘Veridical Hallucination and Prosthetic Vision’, Australasian Journal of
Philosophy 58 (1980): 239-249; reprinted with an added postscript in
David Lewis, Philosophical Papers, Volume I11.

I propose that what distinguishes vision from other cases in which the
scene before the eyes causes matching visual experience is the existence
of a suitable pattern of counterfactual dependence whereby any one of a
wide range of alternative scenes would have caused matching visual
experience.

‘Causal Decision Theory’, Australasian Journal of Philosophy 59 (1981):
5-30; reprinted with an added postscript in David Lewis, Philosophical
Papers, Volume II.

I take it that Newcomb’s problem (in its down-to-earth forms)
teaches us that we must formulate decision theory in terms of the causal
dependence of outcomes upon the agent’s actions. I define expected
utility in terms of dependency hypotheses: conjunctions of counter-
factuals about the objective chance distributions that would follow if
the agent were to take one or another of his alternative narrowest
options. I argue that, despite superficial differences, my proposal is
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in essential agreement with proposals of Gibbard and Harper, Skyrms,
and Sobel.*

‘Ordering Semantics and Premise Semantics for Counterfactuals’,
Journal of Philosophical Logic 10 (1981): 217-234.

I compare ordering semantics—Ilike my treatment in Section 2.3 of
this book, but generalized to permit similarity orderings of worlds to
be merely partial—with Kratzer’s treatment of counterfactuals.t
According to Kratzer, we have for each world a certain set of premises
true at that world; and (in the simple finite case) a counterfactual holds
at a world iff, whenever S is a subset of the given premise set, and S is
consistent with the antecedent, and S is a maximal such set, then S and
the antecedent imply the consequent. Ordering semantics and premise
semantics turn out to be equivalent: to any system of orderings there
corresponds a system of premise sets, and to any system of premise sets
there corresponds a system of orderings, such that the two systems make
the same counterfactuals true.

The two approaches face parallel choices about how to respond to
the threat that the Limit Assumption might fail; and here a complication
in Kratzer’s premise semantics corresponds to a complication in my
ordering semantics, and to a worse complication when provision for
failure of the Limit Assumption is combined with provision for merely
partial orderings.

I note also that there is little difference between supposing we have
one determinate partial ordering and supposing instead that we have
indeterminacy between several disagreeing total orderings.

‘Are We Free to Break the Laws?’, Theoria 47 (1981): 113-121; re-
printed in David Lewis, Philosophical Papers, Volume 11.

On behalf of compatibilism, I deny that a free agent in a deterministic
world is able to break the laws of nature. For we should distinguish
between ‘If I had raised my hand, some law of nature would have been
broken’, which is true if the world is deterministic and I didn’t raise my
hand, and ‘If I had raised my hand, some act of mine would have been,
or would have caused, a law-breaking event’, which is false.

* Allan Gibbard and William Harper, ‘Counterfactuals and Two Kinds of
Expected Utility’, in C. A. Hooker et al., Foundations and Applications of Decision
Theory, volume I (D. Reidel: Dordrecht, 1978); Brian Skyrms, ‘The Role of Causal
Factors in Rational Decision’, in Skyrms, Causal Necessity (Yale University Press:
New Haven, 1980); and Jordan Howard Sobel, Probability, Chance and Choice:
A Theory of Rational Agency (unpublished).

t Angelika Kratzer, ‘Partition and Revision: The Semantics of Counterfactuals’,
Journal of Philosophical Logic 10 (1981): 201-216.
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On the Plurality of Worlds (Blackwell: Oxford, 1986).

I defend realism about possible worlds, and make various objections
against the plan of using abstract representations in place of genuine
worlds. However, I retract some of the arguments given in Section 4.1
of this book, as follows.

(1) T had argued (page 85) that mathematical consistency could not
be characterized without quantifying over worlds, since a deductive
characterization would be inadequate; but I accept the reply that we
can somehow make reference to ‘intended’ models and therefore a
model-theoretic characterization is adequate.

(2) I had argued (page 86) that if I took maximal consistent sets of
sentences as ersatz possible worlds, I would have to believe that I and
all my surroundings are a set of sentences ; but surely part of the ersatzer’s
plan will be to distinguish the world itself from the actualized ersatz
world that correctly represents it.

(3) I had argued (page 90n.) that there are not enough maximal
consistent sets of sentences to cover all possibilities without omitting
or conflating some, since there are more possibilities than there are
finite strings over a finite alphabet; but there is no reason why the
ersatzer’s worldmaking language should be finite either in its alphabet
or in the length of its sentences.
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