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Introduction

With their paper [37] in 1945, S. Eilenberg and S. Mac Lane brought a

new way to understand algebra and mathematics in general. These were

the early days of category theory. While classical mathematics studies

sets equipped with structures (groups, monoids, sets, topological spaces,

manifolds, Banach spaces, . . . ) and their elementwise homomorphisms,

category theory is concerned with abstract morphisms and their compo-

sition.

In this elementless approach to mathematics, one is no longer inter-

ested in explicit descriptions of basic constructions but aim to provide

universal properties determining them. As a standard example, one can

cite the product of two sets A and B. While classical mathematics de-

scribes A × B as the cartesian product {(a, b) | a ∈ A, b ∈ B}, category
theory de�nes it as the unique (up to isomorphism) object equipped with

morphisms

A×B
πA

{{

πB

##
A B

such that any such span factorises uniquely through it. As simply as the

above universal property, one can express much more evolved classical

mathematical constructions. For instance, the free product of two groups

G and H is categorically described as the unique (up to isomorphism)

7



8 Introduction

pair of group homomorphisms

G

ιG ##

H

ιH{{
G+H

through which any such cospan factors uniquely, whereas its classical

de�nition using elements is quite long and much more complicated.

The similarity between the two universal properties described above

is striking. It is made precise by a crucial concept illuminated by cate-

gory theory: duality. The simple fact that one can reverse arrows of a

category to get a new category has powerful consequences. If one proves

a statement for all categories, its dual happens to be also true for every

category. As obvious as it seems to be, this duality principle would not

come to someone's mind without a categorical way of thinking.

Moreover, the high level of generality o�ered by category theory en-

ables one to unify concepts which apparently look very di�erent. For

example, there is now a way to think of the free product of two groups,

the supremum of two elements in a poset, the disjoint union of two sets

or the direct sum of two abelian groups as di�erent instances of the same

construction: these are all binary coproducts.

This elegant and fundamental way of doing mathematics has an ap-

parent cost: proofs can be much longer in this language. These `di�-

culties' can be overcome using the technique of generalised elements. If

we �x an object X in a category C, each object A of C can be thought

to have C(X,A) as underlying set. Each morphism f : A → B now

becomes a function − ◦ f : C(X,A) → C(X,B). With this analogy,

the categorical product A × B corresponds to the cartesian product

C(X,A×B) ∼= C(X,A)×C(X,B). This can be formalised via the Yoneda

embedding. Each small category C admits a full and faithful embedding

Y : C ↪−→ SetC
op

A 7−→ C(−, A)

where Set denotes the category of sets. Moreover, this embedding pre-
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serves limits. With that in mind, many categorical statements about

small limits can be reduced to be shown in powers of Set to prove they

hold in every category. Since small limits are computed componentwise

in functor categories SetP , it su�ces to prove these statements in Set,

which is much easier in view of the description of its small limits.

It would be a mistake to think that category theory then comes down

to the study of Set. On one hand, the Yoneda embedding does not pre-

serve colimits. Even if statements about colimits follow by duality from

the corresponding properties of limits, there is no way to study interac-

tions between limits and colimits restricting our attention to the category

Set via the Yoneda embedding. On the other hand, this technique does

not provide a satisfactory way to prove and understand (limit) categor-

ical statements which hold only for a given class of categories.

Such an important class of categories has been introduced in the

�fties [81, 25, 52] and is known nowadays as abelian categories. This

notion captures the categorical properties of abelian groups (or more

generally of modules over a ring) and is considered as one of the �rst

categorical algebraic properties ever studied. It has been considered for

a long time as the right level of generality in which to develop homo-

logical algebra. In addition of its own duality principle (the dual of any

abelian category is abelian), �nite limits are very close to �nite colimits

in abelian categories (e.g. the binary product A×B is isomorphic to the

coproduct A + B). One can then hope having an embedding theorem

for abelian categories preserving both �nite limits and �nite colimits.

Moreover, the hom-sets C(A,B) in an abelian category are equipped

with an abelian group structure, so that one can replace the category

Set with the category Ab of abelian groups in Yoneda's embedding the-

orem. Using these ideas, Lubkin showed in [80] that each small abelian

category C admits a faithful conservative embedding C ↪→ Ab which pre-

serves �nite limits and �nite colimits. Besides, Mitchell constructed for

a small abelian category C, a ring R and a full and faithful embedding

C ↪→ ModR which preserves �nite limits and �nite colimits (where ModR

is the category of right R-modules), see [93, 42].

On the logic side, Barr [9] introduced regular categories as �nitely

complete categories with coequalisers of kernel pairs and pullback stable
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regular epimorphisms. The idea behind this de�nition is that `regular

categories are categories in which regular epimorphisms and �nite limits

act as they do in Set'. This idea has been made precise in [10] where he

proved that each small regular category admits a fully faithful embed-

ding C ↪→ SetP in a power of the category of sets which preserves �nite

limits and regular epimorphisms. One can thus reduce the proof of many

statements about �nite limits and regular epimorphisms in an arbitrary

regular category to the particular case of Set. For such applications, one

does not need fullness of such an embedding, but only its faithfulness

and the fact it re�ects isomorphisms (i.e., its conservativeness). For that

reason, by an embedding, we mean here a faithful conservative functor.

One can thus also use Z. Janelidze's variant of Barr's embedding theo-

rem in which fullness is weakened to conservativeness but the category

P is now known to be the discrete category (i.e., set) of subobjects of the

terminal object in C. In particular, it vanishes if the embedded category

is pointed.

The notion of an abelian category separates the categories Ab and

ModR from other algebraic categories as Set, Mon (the category of

monoids) and Gp (the category of groups). One can then ask how to

distinguish these latter categories. Or in other words, which categorical

properties does Gp have that Mon or Set do not? This question, which

goes back to [81], is the essence of non-abelian categorical algebra. In

some sense, the notion of a regular category does not provide a satisfac-

tory answer because every `algebraic category' is regular. In the nineties,

many such exactness properties were introduced, which brought a new

life for non-abelian categorical algebra. We refer the reader to the in-

troduction of [62] for more historical developments and references on the

subject.

Mal'tsev categories were de�ned in [29] (as a generalisation of reg-

ular Mal'tsev categories from [28]) as �nitely complete categories in

which each binary relation is difunctional. It is equivalent to the condi-

tion that each re�exive relation is an equivalence relation. In a regular

context, this is further equivalent to the condition that the composi-

tion of equivalence relations R and S on a same object is commutative:

R ◦S = S ◦R. Their name comes from the mathematician Mal'tsev who
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characterised [87] (one-sorted �nitary) algebraic categories in which this

last property holds as the ones whose corresponding theory has a ternary

operation p(x, y, z) satisfying the axioms p(x, y, y) = x = p(y, y, x). In

addition to abelian categories, Gp is a Mal'tsev category in view of the

term p(x, y, z) = xy−1z, while Set and Mon are not.

As another example of a non-abelian categorical algebraic property,

one can mention unital categories introduced by Bourn [18] as pointed

�nitely complete categories in which the cospan

X
(1X ,0)// X × Y Y

(0,1Y )oo

is jointly strongly epimorphic for each pair of objects X and Y . Unital

(one-sorted �nitary) algebraic categories are characterised by the pres-

ence in the theory of a unique constant term 0 and a Jónsson-Tarski op-

eration, i.e., a binary operation u(x, y) such that u(x, 0) = x = u(0, x).

This property now separates Mon and Gp which are unital from the

category of pointed sets Set∗ that is pointed but not unital.

As a last example, let us cite protomodular categories, also intro-

duced by Bourn [17] as categories in which a non-pointed version of

the Split Short Five Lemma holds. Due to this notion, one can de�ne

homological (pointed regular protomodular [15]) and semi-abelian (ho-

mological exact with binary coproducts [62]) categories providing more

general contexts than abelian categories in which to develop homological

algebra.

Up to now, there were no embedding theorems for all those non-

abelian algebraic categorical properties. The main aim of this thesis is

to provide such embedding theorems.

Of course, to have a `good' embedding theorem for a class of cat-

egories, one has to �rst �nd a `representative' in that class and then

embed each category belonging to this class in (a power of) this chosen

representative. The embedding should moreover preserve and re�ect the

important objects involved in the de�nition of the property character-

ising those categories (like �nite limits or regular epimorphisms). The

�rst major problem one encounters to prove such a theorem, e.g., for

Mal'tsev categories, is the fact that, for a Mal'tsev category C, hom-sets
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C(X,Y ) are not equipped with a Mal'tsev operation p(x, y, z). Since we

use the Yoneda embedding to prove embedding theorems, it then seems

hard to �nd a particular Mal'tsev category in which every other embeds.

This problem was `approximatively' solved by Bourn and Z. Janelidze

in [21] in a regular context. More precisely, they showed that in a reg-

ular Mal'tsev category with binary coproducts, considering the pullback

square below

W (X)
pX //

dX

��

3X(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

X
(ι1,ι2)

// (2X)2

where ι1, ι2 : X → 2X are the coproduct injections, the morphism dX is

a regular epimorphism. This does not provide C(X,Y ) with a Mal'tsev

operation but only with an approximate one. Indeed, pX induces an

operation

ρ : C(X,Y )3 −→C(W (X), Y )

(f, g, h) 7−→
(
f
g
h

)
pX

while dX induces an injection (an approximation)

α : C(X,Y ) ↪−→C(W (X), Y )

f 7−→ fdX .

This operation ρ satis�es Mal'tsev axioms up to the approximation α,

i.e., ρ(x, y, y) = α(x) = ρ(y, y, x).

This was an important step towards an embedding theorem for regu-

lar Mal'tsev categories. One can then think the representative category

one has to choose is that of approximate Mal'tsev algebras, i.e., pairs of

sets A, B together with an approximation α : A ↪→ B and an operation

ρ : A3 → B satisfying the Mal'tsev axioms up to the approximation α.

However, this category, containing Set, is not a Mal'tsev category. It

can therefore not be considered as the `representative regular Mal'tsev

category'.
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To solve this problem, we use in this thesis essentially algebraic cat-

egories from [4, 3]. As in the algebraic case, objects in these categories

are S-sorted sets A ∈ SetS (for a �xed set S) endowed with operations∏
i∈I Asi → As satisfying some given equations. The di�erence is that

some of these operations can be only partially de�ned (and de�ned ex-

actly for I-tuples satisfying some totally de�ned equations). Since this

is a central notion of this thesis, we devote Chapter 1 recalling it in de-

tail. In addition, this chapter exposes di�erent treatments of universal

algebra as Birkho�'s approach [13], Lawvere theories [76], monadic cat-

egories [38], locally presentable categories [44] (which are nothing else

but essentially algebraic categories). Contrary to algebraic categories,

essentially algebraic categories are not regular in general and we give

a syntactic characterisation of the ones which are. By `syntactic', we

mean here a characterisation in terms of operations and axioms. In the

same way it is done for algebraic categories [40], we also describe T -
enrichments of an essentially algebraic category for a Lawvere theory T .

Another issue with using approximate co-operations is the assump-

tion about the existence of coproducts. Since we do not want to require

such an assumption in our embedding theorem, we �rst need to embed

each (small) regular Mal'tsev category in a regular Mal'tsev category

with binary coproducts. This can be achieved using the free co�ltered

limit completion of C, given by the Yoneda embedding

i : C ↪→ Lex(C, Set)op = C̃

where Lex(C, Set) denotes the category of �nite limit preserving functors

C → Set. This category C̃ is complete, cocomplete and i preserves colim-

its and �nite limits. Moreover, we describe in Chapter 3 some exactness

properties preserved under this completion, in the sense that if C sat-

is�es them, then so does C̃. These properties are called `unconditional

exactness properties' since they are of the form: given a diagram of a

�xed �nite shape in C, if we build some �nite (co)limits from it, then

some speci�ed �nite (co)cones are also (co)limits. As examples of such

exactness properties, we have: being pointed, regular, normal, regular

Mal'tsev, regular unital, linear, additive, semi-abelian, abelian and so
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forth. In this way, we thus have embedded each small regular Mal'tsev

category C in the cocomplete regular Mal'tsev category C̃. Moreover,

Barr showed as a preliminary step of his embedding theorem [10] that if

C is a small regular category, then C̃ (which is also regular) admits a C-
projective covering. This is used to prove that the embedding preserves

regular epimorphisms and we thus also need to use it. This result goes

back to Grothendieck [52] in the abelian case. Grothendieck actually

constructed a C-projective covering in a functorial way which Barr did

not. To complete this result we prove functoriality in the regular case in

Section 4.2.

Preservation of unconditional exactness properties under the free

co�ltered limit completion has another application. If one wants to show

the statement P ⇒ Q holds in a �nitely complete category C where P is

an unconditional exactness property, it is often allowed to suppose that

C has some colimits, without loss of generality. Indeed, if C satis�es P ,

then so does C̃. We then prove that C̃ satis�es also Q which, depending

on the nature of Q, often implies that C does. Such an application is

given in detail in Chapter 3. In addition, to be able to use this, we �rst

need to decide whether some category generated by a �nite conditional

graph is �nite. An algorithm to do so is presented also in Chapter 3.

Once this preliminary work is done, we set out to prove an embed-

ding theorem for regular Mal'tsev categories. We �rst need to construct

our representative regular Mal'tsev categoryM. As announced earlier,

this is an essentially algebraic category. In Chapter 2, we characterise

those categories which are Mal'tsev as the ones whose theory contains,

for each sort s ∈ S, a term p : s3 → s such that both terms p(x, y, y) and

p(y, y, x) are de�ned in any model A for any x, y ∈ As and satisfying the

usual axioms p(x, y, y) = x = p(y, y, x). In view of the syntactical char-

acterisation of regularity, our representative regular Mal'tsev essentially

algebraic categoryM is quite technical to construct. However, in order

to use it in practise, the only thing one has to remember is that regular

epimorphisms behave well, and for each sort s, we have totally de�ned
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operations ρs, αs and a partial operation πs as picture below

s3 ρs // (s, 0)

πsuus

αs
<<

such that πs(αs(x)) is everywhere-de�ned, and satisfying the axioms

ρs(x, y, y) = αs(x) = ρs(y, y, x) and πs(αs(x)) = x. In particular αs is

injective and it thus gives rise to an approximate Mal'tsev algebra. Of

course, the sort (s, 0) also has its own operation ρ(s,0) which does not

necessarily agree with ρs on s3. This construction of our representative

regular Mal'tsev category M is done in Chapter 4. Once it is con-

structed, we prove that each small regular Mal'tsev category C admits

a faithful embedding C ↪→ MSub(1) which preserves and re�ects �nite

limits, isomorphisms and regular epimorphisms (Sub(1) being the set of

subobjects of the terminal object of C). Due to this embedding theo-

rem, for many statements about �nite limits and regular epimorphisms

in regular Mal'tsev categories, it is now equivalent to prove them only

in M using elements and approximate Mal'tsev operations. Moreover,

in practise, a proof in the algebraic category of sets equipped with a

Mal'tsev operation p can often be translated into a proof inM.

The di�erent techniques and the embedding theorem described above

for regular Mal'tsev categories can be immediately transposed to the

case of regular unital, regular strongly unital, regular subtractive and

n-permutable categories. In order to prove them for all those properties

at the same time, we use their general treatment using matrices devel-

oped by Z. Janelidze in [64, 67] and recalled in Chapter 2. There, for a

�xed matrix condition, we syntactically characterise essentially algebraic

categories satisfying it. We also extend the result concerning approxi-

mate co-operations (as in the Mal'tsev case explained above) from the

simple matrix conditions proved in [68] to the more general matrices of

the form developed in [67]. In Chapter 4, we construct our correspond-

ing representative essentially algebraic category and prove its embedding

theorem. As applications of those embedding theorems, concrete exam-

ples of proofs using elements and operations are given. We also show
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that these matrix conditions are preserved under the exact completion

of a regular category [77, 98, 73], giving rise to analogous embedding

theorems in the exact context.

A thesis on embedding theorems for non-abelian algebraic categorical

properties could not be complete without a word on protomodularity [17].

For now, there are no matrix conditions inducing protomodularity, and

we thus treat this case separately in Section 4.4. Similarly, we give

a syntactic characterisation of protomodular essentially algebraic cat-

egories and construct our representing such. As it is done for matrix

conditions, we also have a corresponding embedding theorem for regular

protomodular categories and homological categories. Since these condi-

tions are not known to be unconditional exactness properties as such, we

need to further assume that the categories we want to embed have binary

coproducts. Again, using the exact completion of a regular category, we

get an embedding theorem for semi-abelian categories.

Weakly Mal'tsev categories have been introduced by Martins-Ferreira

in [91]. While Mal'tsev categories are characterised [18] as �nitely com-

plete categories in which, for all pullbacks of split epimorphisms,

P // //

����

Y
rYqq

����
X // //

lX

MM

Zmm

QQ

the induced morphisms lX and rY are jointly strongly epimorphic, weakly

Mal'tsev categories are de�ned by the condition that lX and rY are

jointly epimorphic. As an example, we show in Section 4.5 that the cat-

egory of sets equipped with a partial Mal'tsev operation p(x, y, z) (i.e.,

at least p(x, y, y) and p(y, y, x) are de�ned and equal to x) is weakly

Mal'tsev. We then prove that each small weakly Mal'tsev category ad-

mits a full and faithful embedding in a power of this category of partial

Mal'tsev algebras which preserves and re�ects �nite limits. The main

di�erence with the essentially algebraic regular Mal'tsev categoryM is

that, now, monomorphisms do not re�ect triples in which p is de�ned.

This means that, if f is a monomorphism of partial Mal'tsev algebras,

p(f(x), f(y), f(z)) might be de�ned whereas p(x, y, z) is not. This phe-
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nomenon does not occur with essentially algebraic categories since the

domain of de�nition of partial operations is the solution set of some to-

tally de�ned equations. Again, in order to encompass more examples

such as weakly unital categories [90], we do this in the context of simple

matrix conditions.

As we said, we present in this work embedding theorems for regular

Mal'tsev categories and weakly Mal'tsev categories. One can wonder if

these techniques could lead to such a theorem for Mal'tsev categories

which lie in between. In our opinion, it seems there is a major obstruc-

tion to this. Indeed, being regular Mal'tsev can be characterised, using

coproducts, by the condition that dX : W (X) → X de�ned above is a

regular epimorphism. In other words, if an element f ∈ C(W (X), A) sat-

is�es fr1 = fr2 where (r1, r2) is the kernel pair of dX , there is a unique

element g ∈ C(X,A) such that gdX = f . Besides, weakly Mal'tsev cat-

egories are characterised by the condition that lX and rY as above are

jointly epimorphic. This means that for any elements f, g ∈ C(P,A),

if flX = glX and frY = grY , then f = g. These two properties look

very `algebraic' and can easily be expressed in terms of generalised ele-

ments. On the contrary, to characterise Mal'tsev categories we need that

some morphism(s) are (jointly) strongly epimorphic. Since it requires to

quantify over all monomorphisms in the category, this seems very hard

to state via elements of hom-sets and does not look algebraic any more.

Maybe in some sense `being a Mal'tsev category' is not an algebraic

property while `being regular Mal'tsev' and `being weakly Mal'tsev' are.

The last chapter of this thesis is not immediately related with em-

bedding theorems. There, we describe the bicategory of fractions with

respect to weak equivalences between internal groupoids in CT for a mo-

nad T on a regular category C where the Axiom of Choice holds. Weak

equivalences between internal groupoids in a regular category D are es-

sentially surjective full and faithful functors. If the Axiom of Choice

holds (i.e., every regular epimorphism splits) in D, these are exactly the

equivalences. In general this is a weaker notion and the bicategory of

fractions for them is the universal solution for the problem to �nd a

pseudo-functor Grpd(D) → B that sends weak equivalences to equiva-

lences. In the case where D = Gp, it su�ces to de�ne B as the 2-category
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of internal groupoids in Gp and monoidal functors [102]. A similar de-

scription is also given in [102] for the case of Lie algebras. We generalise

those two cases in Chapter 5 de�ning T-monoidal functors between in-

ternal groupoids in the Eilenberg-Moore category CT where T is a monad

on C. If C is a regular category where the Axiom of Choice holds, this

gives the bicategory of fractions for weak equivalences in Grpd(CT).



Chapter 1

Di�erent approaches to

universal algebra

Universal algebra can be seen as the study of categories of sets equipped

with some operations satisfying some equations and maps preserving

these operations. There are plenty of examples of such categories in the

literature: the category Set∗ of pointed sets, Mon of monoids, ComMon

of commutative monoids, Gp of groups, Ab of abelian groups, Rng of

rings, Vectk of vector spaces over a �eld k, RGraph of re�exive graphs,∨
-Lat of complete lattices and sup-preserving maps or even TorsFreeAb

of torsion free abelian groups or Cat of small categories. Many di�erent

approaches have been developed to unify those categories and we recall

in this chapter �ve of them.

We start with Birkho�'s work [13] which is actually the �rst one to

appear historically. His idea is somehow the most intuitive: to de�ne a

theory, we have to list the operations and the equations.

We then quickly describe Lawvere's general treatment of `algebraic-

like categories' [76], which, using category theory, is much more elegant:

a theory is a small category with �nite products and an algebra is a �nite

product preserving functor from the theory to the category Set of sets.

With the two previous approaches, if we want to have a large number

of operations and equations, we will quickly have some set-theoretical

sizes problems. A conceptually simple way to avoid these problems is

to describe universal algebra using monads and monadic categories, as

19
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recalled in Section 1.5.

If we replace the words `�nite products' by `�nite limits' in Lawvere's

work, we get the notion of a locally �nitely presentable category intro-

duced by Gabriel and Ulmer in [44]. The main di�erence is that, now,

operations can be partial. We treat this subject in Section 1.6.

The notion of a sketch introduced by Ehresmann [36] is a way to

unify categories of �nite product preserving functors (Lawvere's work)

and of �nite limit preserving functors (Gabriel-Ulmer's work). The idea

is that a theory (called a sketch) is now a small category together with

a speci�ed set of cones (and cocones) which have to be sent to (co)limits

by the models. This is the topic of our Section 1.7.

Since the main results in this thesis are about embedding theorems,

we will be careful about sizes and set-theoretical issues from the begin-

ning. We thus devote the �rst section of this chapter to quickly recall

the Axiom of Universes.

1.1 Grothendieck universes

The system of axioms used in this work is the so called `ZFCU', although

almost every result also holds for other foundations. ZF stands for the

axiomatic system of set theory named `Zermelo-Fraenkel', see [41] for a

detailed treatment of it. To obtain ZFC, we add the Axiom of Choice

to ZF.

Axiom of Choice. Each surjective function f : x� y has a section,

i.e., a function s : y → x such that fs = 1y.

It may be stated in many other equivalent forms. For example it is

equivalent to Zorn's lemma, the well-ordering theorem or the compara-

bility theorem (see again [41] and the references therein).

Finally, to obtain ZFCU, we need to add the Axiom of Universes.

De�nition 1.1. [7] A Grothendieck universe (or universe in short) is a

set U satisfying the following properties.

1. if x ∈ y and y ∈ U , then x ∈ U ,

2. if x, y ∈ U , then {x, y} ∈ U ,
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3. if x ∈ U , the power set P(x) ∈ U ,

4. if I ∈ U and xi ∈ U for each i ∈ I, then
⋃
i∈I xi ∈ U ,

5. N ∈ U .

Axiom 5 was not in the original de�nition. We add it here to avoid

too small universes. To �x notations, N denotes the set {0, 1, . . . } of

natural numbers.

The idea of a universe is that you can do all usual operations of

set theory to its elements and still get an element of the universe. For

example, we have the following proposition.

Proposition 1.2. [7] The following properties hold for a universe U .

1. If x ⊆ y and y ∈ U , then x ∈ U .

2. If x, y ∈ U , then x ∪ y, x× y and xy are also in U .

3. If I ∈ U and xi ∈ U for each i ∈ I, then
∏
i∈I xi ∈ U .

4. If there exists a surjective function f : x � y with x ∈ U and

y ⊆ U , then y ∈ U .

We now add to ZFC the Axiom of Universes in order to get the

system of axioms ZFCU we will work with.

Axiom of Universes. For every set x, there exists a universe U
such that x ∈ U .

For a universe U , we call an element x ∈ U a U-small set and a

subset y ⊆ U a U-class. Accordingly, a U-group is a group for which the

underlying set is U-small, and so on with other mathematical structures

on a set. A U-category is a category C for which each hom-set C(A,B)

is U-small and the objects form a U-class ob(C). If moreover ob(C) is a

U-small set, we say that C is a U-small category. We can therefore speak

about U-Set, the U-category of U-small sets. A particular instance of

the Axiom of Universes implies the following classical proposition.

Proposition 1.3. Let U be a universe and C a U-category. There exists
a universe V such that C is a V-small category.
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Proof. By the Axiom of Universes, consider a universe V such that U ∈ V.
It thus contains each hom-set C(A,B) and ob(C).

Convention 1.4. We now �x a universe U throughout this thesis. For

the sake of brevity, we will call a U-small set just a set, a U-group a

group, a U-class a class, a U-category a category, a U-small category a

small category and so forth. Notice that this implies that our categories

are locally small. We will then write Set for the category of sets and

Cat for the category of small categories as usual. The word cardinal

stands then to mean the cardinal of a U-small set. If we need to consider

another universe, notations will be made explicit.

1.2 Regular and exact categories

Homomorphisms in `algebraic-like categories' can often be factorised as

a surjective homomorphism followed by an inclusion. This property can

be stated in a categorical context and is a key property of regular and

exact categories introduced by Barr in [9]. Before recalling some general

treatments of universal algebra, we devote a section to these notions. The

reader may consult for instance the second section of the second volume

of [14] for a more detailed treatment of regular and exact categories.

De�nition 1.5. A morphism q in a category is a regular epimorphism

if it is the coequaliser of two parallel morphisms.

De�nition 1.6. [9] A category C is said to be regular if it satis�es the

following conditions:

1. it has �nite limits,

2. every kernel pair has a coequaliser,

3. the pullback of a regular epimorphism along any morphism is again

a regular epimorphism.

Example 1.7. The categories Set, Set∗, Mon, Gp, Ab, RGraph,
∨

-Lat

and TorsFreeAb are regular. In these categories, regular epimorphisms

are exactly the surjective homomorphisms. The categories Top of topo-

logical spaces and Cat are not regular.
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The notion of a `good functor' between regular categories is the fol-

lowing one.

De�nition 1.8. A functor F : C → D between the regular categories C
and D is said to be regular if it preserves �nite limits and regular epi-

morphisms.

Let us stress the fact that if moreover F re�ects isomorphisms, `it

re�ects what C has and F preserves'. This is made precise in Lemma 1.10.

De�nition 1.9. A functor F : C → D is said to be conservative if it re-

�ects isomorphisms, i.e., if, for any morphism f in C, f is an isomorphism

if and only if F (f) is.

Lemma 1.10. Let F : C → D be a regular conservative functor between

regular categories. Then F is faithful and re�ects �nite limits and regular

epimorphisms.

As announced above, there is a factorisation system in each regular

category.

De�nition 1.11. [43] In a category C, the morphism e : A→ B is said

to be orthogonal to the morphism m : C → D (denoted e ⊥ m) if any

commutative square ge = mf admits a unique diagonal d such that

de = f and md = g.

A
e //

f

��

B

g

��d~~
C m

// D

De�nition 1.12. [43] A factorisation system on a category C is a pair

(E ,M) where both E andM are classes of morphisms of C such that

1. every isomorphism belongs to both E andM,

2. both E andM are closed under composition,

3. for each e ∈ E and each m ∈M, e is orthogonal to m,

4. every morphism f ∈ C can be factorised as f = me with e ∈ E and

m ∈M.
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By a (regular epi, mono)-factorisation system in a category C, we
mean a factorisation system (E ,M) where E is the class of all regular

epimorphisms andM the class of all monomorphisms in C.

Proposition 1.13. Every regular category C admits a (regular epi,

mono)-factorisation system.

In a regular category, regular epimorphisms coincide with other kinds

of epimorphisms.

De�nition 1.14. An epimorphism f in a category is said to be extremal

if, given f = ip with i a monomorphism, i is necessarily an isomor-

phism. The epimorphism f is said to be strong if it is orthogonal to any

monomorphism.

Proposition 1.15. In any category C,

1. every regular epimorphism is strong,

2. every strong epimorphism is extremal,

3. the composition of two strong epimorphisms is a strong epimor-

phism,

4. if a composite gf is a strong (resp. extremal) epimorphism, so is g,

5. a morphism which is both a monomorphism and an extremal epi-

morphism is an isomorphism.

If C has �nite limits,

6. if a morphism f is such that f = ip with i a monomorphism implies

that i is an isomorphism, then f is an epimorphism and so an

extremal epimorphism,

7. if f is orthogonal to any monomorphism, then f is an epimorphism

and so a strong epimorphism,

8. strong epimorphisms coincide with extremal epimorphisms.

If moreover C is a regular category,
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9. regular epimorphisms coincide with strong epimorphisms,

10. if f : A� B and g : C � D are regular epimorphisms, their prod-

uct f × g : A× C � B ×D is also a regular epimorphism.

We can characterise regular categories without mentioning regular

epimorphisms but only strong ones.

Proposition 1.16. A category C is regular if and only if it satis�es the

following conditions:

1. �nite limits exist,

2. every morphism f can be factorised as f = ip with i a monomor-

phism and p a strong epimorphism,

3. the pullback of a strong epimorphism along any morphism is again

a strong epimorphism.

Regular categories provide a good context for the calculus of rela-

tions. We recall here the de�nition of a relation and how to compose

binary ones in a regular category.

De�nition 1.17. A subobject of an object A in a category C is the

isomorphism class [m] of a monomorphism m : I � A. We write Sub(A)

for the class of subobjects of A. It is actually a preordered class if we

consider that [n] 6 [m] if n factors through m. If, for each object A in C,
Sub(A) is actually a set, we say that C is well-powered.

We will often refer to a subobject [m] by one of its representative

monomorphism m.

Example 1.18. As in a regular category, the factorisation of a morphism

f : A→ B as a regular epimorphism p followed by a monomorphism i is

unique up to isomorphism, the subobject of B represented by i depends

only on f . It is called the image of f and is denoted by Im(f).

De�nition 1.19. Let n > 1 be a natural number and C a category

with �nite products. An n-ary relation in C is a subobject r : R �

A1 × · · · ×An of an n-ary product.
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We will often denote this relation by R (if there is no ambiguity about

the subobject [r]). If C is a regular category and (r1, r2) : R � A × B
and (s1, s2) : S � B × C are two binary relations in C, the composite

relation S ◦ R = SR is given by the image of (r1p1, s2p2) : P → A × C,
where (P, p1, p2) is the pullback of s1 along r2.

P
p1

��

p2

��
R

r1

��

r2

��

S
s1

��

s2

��
A B C

This composition is associative, i.e., T ◦ (S ◦ R) = (T ◦ S) ◦ R if T

is another binary relation T � C × D. Moreover, if ∆A denotes the

diagonal relation (1A, 1A) : A� A×A, we have R ◦∆A = R = ∆B ◦R.
We will also write Rop for the dual relation (r2, r1) : R� B × A and if

(r′1, r
′
2) : R′� A×B is another binary relation, R∩R′� A×B denotes

their intersection given by their pullback.

To conclude this section, let us recall the notion of an exact category

from [9]. In order to do so, we �rst need the notion of an equivalence

relation.

De�nition 1.20. Let (r1, r2) : R� A×A be a binary relation on A in

the �nitely complete category C.

1. We say that R is a re�exive relation if there exists a morphism

δ : A→ R satisfying the identities r1 ◦ δ = 1A = r2 ◦ δ. This means

∆A 6 R.

2. The relation R is said to be symmetric if there exists a morphism

σ : R → R such that r1 ◦ σ = r2 and r2 ◦ σ = r1. This means

Rop 6 R which implies Rop = R.

3. We say that R is transitive if there exists a morphism τ : P → R

such that r1 ◦ τ = r1 ◦ p1 and r2 ◦ τ = r2 ◦ p2 where (P, p1, p2) is
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the pullback of r1 along r2.

P
p2 //

p1

��

R

r1
��

R r2
// A

If C is regular, this means RR 6 R.

4. An equivalence relation on A is a binary relation on A which is

re�exive, symmetric and transitive.

Example 1.21. If f : A→ B is a morphism in a �nitely complete cate-

gory, its kernel pair (r1, r2) : R� A×A is an equivalence relation on A.

Such equivalence relations are said to be e�ective.

De�nition 1.22. [9] A category C is said to be exact if it is regular and

such that every equivalence relation is e�ective.

Example 1.23. The categories Set, Set∗, Mon, Gp, Ab and RGraph

are exact. The category TorsFreeAb is regular but not exact.

1.3 Birkho�'s approach

The study of universal algebra originates in the thirties when Birkho�

proposed in [13] an intuitive way to unify `algebraic structures'. His

idea was to �x a set of operation symbols of prescribed arity (the sig-

nature) together with a set of equations built up from these operation

symbols. An algebra is then nothing but a set A equipped with an oper-

ation σA : An → A for each operation symbol σ of arity n satisfying the

required equations. This presentation has the advantage to be very in-

tuitive as it immediately describes what we have in mind when we think

of an `algebraic-like category'. However, since it appears before [37], it

does not make an explicit use of category theory, which can simplify the

presentation, as it was done by Lawvere in [76] and recalled in the next

section.

Birkho� considered only the one-sorted �nitary case. Since further

we will need the many-sorted in�nitary case, we immediately describe
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this more general setting. As good references for the subject, one can

cite [4] and [5].

De�nition 1.24. Let S be a set. An S-sorted signature of algebras is a

set Σ together with an arity function assigning to each σ ∈ Σ a collection

(si ∈ S)i<n for some cardinal n, and an element s ∈ S.

We then denote the arity of σ by
∏
i<n si → s (or σ : 1→ s if n = 0).

The elements of S are called sorts and those of Σ operation symbols.

De�nition 1.25. Let S be a set of sorts and Σ an S-sorted signature

of algebras. A Σ-algebra is an S-sorted set A (i.e., an object of SetS)

equipped with an operation

σA :
∏
i<n

Asi → As

for each operation symbol σ ∈ Σ of arity
∏
i<n si → s. If B is also a

Σ-algebra, a Σ-homomorphism f : A → B is an S-sorted function such

that, for each σ :
∏
i<n si → s in Σ and each family (ai ∈ Asi)i<n, the

identity

fs(σ
A(ai)) = σB(fsi(ai))

holds. We get in this way the category Σ-Alg and its forgetful functor

UΣ : Σ-Alg→ SetS .

For the sake of brevity, when there is no ambiguity, we will sometimes

write f instead of fs for the s-component of an S-sorted function f .

These Σ-algebras are S-sorted sets equipped with operations. To

de�ne monoids, groups and so forth, we need to require these operations

to satisfy some equations. To de�ne such equations, we now describe the

left adjoint of UΣ.

If X is an S-sorted set, we denote by FrΣ(X) the smallest S-sorted

set satisfying the following conditions:

1. for each s ∈ S, Xs ⊆ FrΣ(X)s,

2. for each σ :
∏
i<n si → s in Σ and each family (ti ∈ FrΣ(X)si)i<n,

the formal expression σ((ti)i<n) belongs to FrΣ(X)s.
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The fact that σ((ti)i<n) is a formal expression means that the two ele-

ments σ((ti)i<n) and σ′((t′i)i<n′) are equal if and only if n = n′, si = s′i
and ti = t′i for all i < n, and σ = σ′. Elements of FrΣ(X)s are called

terms of sort s in the variables from X. If I is the disjoint union
⊔
s∈S Xs

and if, for each i ∈ I, si denotes the corresponding sort, we may write

t :
∏
i∈I si → s for a term t of sort s. This S-sorted set FrΣ(X) is

equipped with the obvious Σ-algebra structure and we consider the S-

sorted inclusion X ↪→ UΣ FrΣ(X). This is the re�ection of X along UΣ

so that we have an adjunction FrΣ a UΣ.

De�nition 1.26. Let S be a set of sorts and Σ an S-sorted signature

of algebras. An equation in Σ is a pair (t1, t2) of terms of the same sort

s in the variables from an S-sorted set X. We also write t1 = t2 for the

equation (t1, t2). A Σ-algebra A is said to satisfy the equation (t1, t2) if

for any S-sorted function f : X → UΣ(A), the unique Σ-homomorphism

f : FrΣ(X)→ A extending f

X �
� //

f ""

UΣ FrΣ(X)

fxx
UΣ(A)

is such that fs(t1) = f s(t2).

De�nition 1.27. An algebraic theory is a triple (S,Σ, E) where S is a

set of sorts, Σ an S-sorted signature of algebras and E a set of equations

for Σ. It is one-sorted if S is a singleton and we often denote it by (Σ, E)

in this case.

We can now de�ne algebraic categories.

De�nition 1.28. Let (S,Σ, E) be an algebraic theory. An (S,Σ, E)-

algebra is a Σ-algebra which satis�es all equations of E. The full subcat-

egory of Σ-Alg given by (S,Σ, E)-algebras is denoted by (S,Σ,E)-Alg

with U(S,Σ,E) : (S,Σ,E)-Alg → SetS the forgetful functor. A category

which is equivalent to a category of the form (S,Σ,E)-Alg is called an

algebraic category. We say it is S-sorted if S is speci�ed. For example,

it is a one-sorted algebraic category if (S,Σ, E) is one-sorted.
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Before giving some examples of algebraic categories, let us de�ne

�nitary ones (or more generally λ-ary ones).

De�nition 1.29. An in�nite cardinal λ is called regular if, for any set I

with #I < λ and any family of sets (Xi)i∈I with #Xi < λ for each i ∈ I,
we have #

⋃
i∈I Xi < λ.

De�nition 1.30. An algebraic theory (S,Σ, E) is said to be λ-ary for

a regular cardinal λ if

1. λ is larger than n for any operation symbol σ :
∏
i<n si → s of Σ,

2. #
⊔
s∈S Xs < λ for any equation (t1, t2) of E in the variables from

the S-sorted set X.

In particular, it is called �nitary if it is ℵ0-ary for the regular cardi-

nal ℵ0 = #N. A category which is equivalent to a category of the

form (S,Σ,E)-Alg for a λ-ary (resp. �nitary) algebraic theory (S,Σ, E)

is called a λ-ary (resp. �nitary) algebraic category.

Note that due to the following classical theorem of set theory (see

e.g. [54]), for any algebraic theory, one can �nd a regular cardinal λ for

which it is λ-ary.

Theorem 1.31. Given a set (λi)i∈I of cardinals, there exists a regular

cardinal λ such that λi < λ for each i ∈ I.

Example 1.32. The category Mon is a one-sorted �nitary algebraic

category. Indeed, consider S to be the singleton {∗} and Σ = {0,+}
with 0: 1 → ∗ and +: ∗2 → ∗. The expression (y + x) + (0 + y),

technically written +(+(y, x),+(0(), y)), is an example of a term of Σ in

the variables from {x, y}. The set of equations E is given by

E = {x+ 0 = x, 0 + x = x, (x+ y) + z = x+ (y + z)}

where the �rst two equations are in the variables from {x} and the last

one from {x, y, z}. Similarly, Set, Set∗, Gp, Ab, Rng and VectR are

�nitary one-sorted algebraic categories. RGraph is a two-sorted �nitary

algebraic category, where two-sorted has the meaning #S = 2. The



1.3. Birkho�'s approach 31

category
∨

-Lat might be thought of as algebraic, but it is a priori not

because we need an operation for each cardinality (taking the join of a

subset is an operation which depends on the cardinality of this subset).

Therefore, in this case, Σ will not be a set.

Let us now give some basic properties of algebraic categories. For that

we need to introduce the notion of a λ-�ltered colimit, which appeared

for the �rst time in [7] in the �nitary case.

De�nition 1.33. Let λ be a regular cardinal. A small category C is said
to be λ-�ltered if the following conditions hold:

1. C is not empty,

2. given a set I with #I < λ and a family of objects (Ai ∈ C)i∈I ,
there exists an object A of C and morphisms fi : Ai → A for each

i ∈ I,

3. given a set I with #I < λ and a family of parallel morphisms

(fi : A→ B)i∈I in C, there exists a morphism g : B → C such that

gfi = gfj for all i, j ∈ I.

If λ = ℵ0, we say that C is �ltered. The dual notions are respectively

called λ-co�ltered categories and co�ltered categories.

In what follows, by a λ-limit , we mean a limit over a diagram of

shape D with # ar(D) < λ, where ar(D) denotes the set of arrows of the

small category D.

Theorem 1.34. Let (S,Σ, E) be a λ-ary algebraic theory for a regu-

lar cardinal λ. Then (S,Σ,E)-Alg is complete, cocomplete, exact and

its λ-limits commute with its λ-�ltered colimits. The forgetful functor

U(S,Σ,E) : (S,Σ,E)-Alg→ SetS has a left adjoint, is regular conservative

and preserves λ-�ltered colimits.

In particular, regular epimorphisms in (S,Σ,E)-Alg coincide with the

componentwise surjective Σ-homomorphisms. The left adjoint Fr(S,Σ,E) :

SetS → (S,Σ,E)-Alg of U(S,Σ,E) can be described using the notion of a

theorem.
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De�nition 1.35. Let (S,Σ, E) be an algebraic theory and (t1, t2) an

equation in Σ. We say that t1 = t2 is a theorem of (S,Σ, E) if every

(S,Σ, E)-algebra satis�es the equation (t1, t2).

To construct the free (S,Σ, E)-algebra Fr(S,Σ,E)(X) on the S-sorted

set X, we let Fr(S,Σ,E)(X)s be the set of equivalence classes of terms of

sort s in the variables from X, where two terms t1, t2 are identi�ed if

and only if t1 = t2 is a theorem of (S,Σ, E). The structure of (S,Σ, E)-

algebra on Fr(S,Σ,E)(X) and the re�ection X → U(S,Σ,E)(Fr(S,Σ,E)(X))

are constructed in the obvious way.

Let us conclude this section with some characterisations of algebraic

categories. To be able to state them, we need to recall some classical

de�nitions (see e.g. [14]).

De�nition 1.36. An object P in a category C is said to be a strong

projective object (or projective object in short) if, for any morphism

g : P → B and strong epimorphism f : A� B, there exists a morphism

h : P → A such that fh = g.

P
h

��
g

��
A

f
// // B

Example 1.37. In an algebraic category (S,Σ,E)-Alg, the free algebras

Fr(S,Σ,E)(X) are projective objects.

De�nition 1.38. Let λ be a regular cardinal. We say that an object P

in a category C is λ-presentable if the representable functor C(P,−) : C →
Set preserves λ-�ltered colimits. If λ = ℵ0, P is said in that case to be

�nitely presentable.

As examples of λ-presentable objects, let us give their classical char-

acterisation in λ-ary algebraic categories.

Proposition 1.39. Let (S,Σ, E) be a λ-ary algebraic theory for a reg-

ular cardinal λ. The λ-presentable objects in (S,Σ,E)-Alg are exactly

the (S,Σ, E)-algebras P which can be expressed as a coequaliser

Fr(S,Σ,E)(X) // // Fr(S,Σ,E)(Y ) // // P
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where X and Y are S-sorted sets such that #
⊔
s∈S Xs < λ and

#
⊔
s∈S Ys < λ.

Example 1.40. In view of the above proposition, for a regular cardinal

λ, a set X is λ-presentable in Set if and only if #X < λ.

De�nition 1.41. A set G of objects in a category C is said to be a set of

generators if for any pair of parallel morphisms f, g : A⇒ B with f 6= g,

there exists a G ∈ G and a morphism h : G → A such that fh 6= gh. If

G is the singleton {G}, we then say that G is a generator.

De�nition 1.42. A set G of generators in a category C is called strong

if, given any morphism g : A → C, any monomorphism m : B � C and

any family of morphisms (hf : G→ B)G∈G, f∈C(G,A) satisfying mhf = gf

for each G ∈ G and each f : G → A, there exists a (unique) morphism

d : A→ B such that md = g. If G is the singleton {G}, we then say that

G is a strong generator.

G
f //

hf
��

A

g

��d~~
B // m

// C

Proposition 1.43. Let G be a set of objects in a category C with small

coproducts. For an object A ∈ C, we consider the unique morphism

γA :
∐
G∈G

f∈C(G,A)

dom(f) −→ A

satisfying γA ◦ ιf = f for any G ∈ G and any f : G→ A, where ιf is the

coproduct injection. Then, G is a set of generators if and only if γA is

an epimorphism for each object A ∈ C. It is a strong set of generators if

and only if γA is a strong epimorphism for each object A.

Example 1.44. Let (S,Σ, E) be an algebraic theory. For a sort s ∈ S,
we denote by Gs the free (S,Σ, E)-algebra on the S-sorted set X de�ned

by Xs = {∗} and Xs′ = ∅ for s′ 6= s. The set G = {Gs | s ∈ S} is a

strong set of generators in (S,Σ,E)-Alg.

We can now give the classical abstract characterisation of algebraic

categories. The �nitary one-sorted case was proved by Lawvere in [76].
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Theorem 1.45. Let λ be a regular cardinal. The following conditions

are equivalent for a category C:

1. C is a λ-ary algebraic category,

2. (a) C is exact,

(b) C has a strong set of generators G such that each object of G
is projective and λ-presentable,

(c) for each set X and function f : X → G, the coproduct∐
x∈X f(x) exists in C.

Let us write its one-sorted version.

Theorem 1.46. Let λ be a regular cardinal. The following conditions

are equivalent for a category C:

1. C is a one-sorted λ-ary algebraic category,

2. (a) C is exact,

(b) C has a projective λ-presentable strong generator G,

(c) for each set X, the copower
∐
X G exists in C.

And to conclude, here is the famous Birkho� Variety Theorem.

Theorem 1.47. [13, 6] Let S be a set of sorts and Σ an S-sorted sig-

nature of algebras. The following conditions on a full subcategory C of

Σ-Alg are equivalent:

1. there exists a set E of equations of Σ such that C is the category

(S,Σ,E)-Alg,

2. (a) C is closed under small products, i.e., if I is a set and (Ai)i∈I

a family of objects in C, then the product
∏
i∈I Ai in Σ-Alg

is actually in C,

(b) C is closed under subobjects, i.e., if f : A� B is a monomor-

phism in Σ-Alg with B ∈ C, then A ∈ C,

(c) C is closed under quotients, i.e., if f : A � B is a regular

epimorphism in Σ-Alg with A ∈ C, then B ∈ C.
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1.4 Lawvere theories

Birkho�'s presentation of universal algebra does not use the categorical

point of view. In his thesis [76], Lawvere proposed an equivalent, but

much more elegant approach using category theory. In this presentation,

a theory is now a small category with �nite products and an algebra for

this theory is a �nite product preserving functor. A homomorphism

is then nothing but a natural transformation. Lawvere considered in

his PhD thesis only the �nitary one-sorted case, but it is not hard to

generalise it to the other cases (see e.g. [5]). We only brie�y recall the

original case here.

De�nition 1.48. [76] A Lawvere theory T is a category whose set

of objects is N, n being the n-th power of 1 with �xed projections

p1, . . . , pn : n→ 1 and such that p1 = 11 if n = 1.

De�nition 1.49. [76] Let T be a Lawvere theory. A T -algebra is a �nite

product preserving functor A : T → Set. A homomorphism of T -algebras
(or T -homomorphism) f : A → B is a natural transformation A ⇒ B.

This gives rise to the category T -Alg.

This category of T -algebras comes equipped with the faithful and

conservative functor UT : T -Alg → Set of evaluation at 1. We thus

consider that a T -algebra A is a structure on its underlying set A(1)

(by abuse of notation, also sometimes denoted A) and that a T -homo-

morphism f : A → B is a function f : A(1) → B(1) satisfying some

properties. This forgetful functor has a left adjoint FrT : Set → T -Alg.

The re�ection of the set {1, . . . , n} for a natural number n ∈ N is given

by the T -algebra T (n,−) : T → Set.

Now, for each �nitary one-sorted algebraic theory (Σ, E), one can

construct a Lawvere theory T(Σ,E) in the following way: For natural

numbers n,m ∈ N, T(Σ,E)(n,m) is the set

(Σ,E)-Alg(Fr(Σ,E)({1, . . . ,m}),Fr(Σ,E)({1, . . . , n})).

Composition and identities in T(Σ,E) are computed as in the dual category

(Σ,E)-Algop, while the chosen projections are the images of the n maps
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{1} → {1, . . . , n} under Fr(Σ,E). We can then construct an equivalence

of categories between (Σ,E)-Alg and T(Σ,E)-Alg making the triangle

(Σ,E)-Alg
∼ //

U(Σ,E) %%

T(Σ,E)-Alg

UT(Σ,E)yy
Set

commute.

Conversely, given a Lawvere theory T , we can construct a �nitary

one-sorted algebraic theory (ΣT , ET ) as follows: The set of operation

symbols of arity n (i.e., ∗n → ∗) is given by T (n, 1). To each n-ary term

t of ΣT (let us say in the variables from {x1, . . . , xn}), we associate an

operation symbol t : n→ 1 recursively:

� xi is the chosen projection pi : n→ 1 for each 1 6 i 6 n,

� if t1, . . . , tm have been de�ned and if σ : m → 1 is an m-ary

operation symbol, then σ(t1, . . . , tm) is de�ned as the composite

σ ◦ (t1, . . . , tm).

n
(t1,...,tm) // m

σ // 1

We then de�ne ET as the set of equations t = t(x1, . . . , xn) for each n ∈ N
and each n-ary term t of ΣT . One can easily prove that the Lawvere

theory T(ΣT ,ET ) is isomorphic to T (with the same chosen projections).

We thus also have an equivalence of categories between (ΣT ,ET )-Alg

and T -Alg making the triangle

(ΣT ,ET )-Alg
∼ //

U(ΣT ,ET ) &&

T -Alg

UT{{
Set

commutative. A �nitary one-sorted algebraic category is thus a category

which is equivalent to T -Alg for some Lawvere theory T . We can thus

see a T -algebra A as the structure of a (ΣT , ET )-algebra over the set

A(1) and a T -homomorphism f : A → B as a function f : A(1) → B(1)

preserving these structures.
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In view of this, we will call a term t of ΣT a term of T . It gives rise
to a morphism t : n→ 1 in T and so to the n-ary operation

tA : A(1)n
∼= // A(n)

A(t) // A(1)

for any T -algebra A. If (Σ, E) is a �nitary one-sorted algebraic theory

such that T(Σ,E) is isomorphic to T (with the same chosen projections),

each such map f : n→ 1 in T is associated to a morphism Fr(Σ,E)({1})→
Fr(Σ,E)({1, . . . , n}), thus to (an equivalent class of) an n-ary term f̃ of

Σ. If (t1, t2) is an equation of ΣT , we say that t1 = t2 is a theorem of T
if one (thus all) equivalent conditions bellow is satis�ed:

1. t1 = t2 is a theorem of (ΣT , ET ),

2. each T -algebra A : T → Set satis�es A(t1) = A(t2),

3. for each T -algebra A, tA1 = tA2 ,

4. t1 = t2,

5. t̃1 = t̃2 is a theorem of (Σ, E) for a (Σ, E) as above.

We conclude this section with the notion of a morphism of Lawvere

theories and its associated algebraic functor.

De�nition 1.50. A morphism T → R between the Lawvere theories T
and R is a �nite product preserving functor F : T → R such that for

each n ∈ N, F (n) = n and for each 1 6 i 6 n, F (pTi ) = pRi ∈ R(n, 1) for

the chosen projections pTi and pRi .

Such a morphism associates to each n-ary operation symbol σ of ΣT

(i.e., a map n → 1 in T ) an n-ary operation symbol σι of ΣR. Hence,

each term t of T is interpreted as a term tι of R.
Let us denote by Th[Set] (resp. Th[Set∗]) the Lawvere theory cor-

responding to Set (resp. Set∗), i.e., T(Σ,E) for (Σ, E) given by Σ = ∅
(resp. Σ = {0: 1 → ∗}) and E = ∅. Analogously, we write Th[Ab]

(resp. Th[ComMon]) for the Lawvere theory corresponding to Ab (resp.

ComMon). Note that these are unambiguously de�ned since if T and
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T ′ are two Lawvere theories with an equivalence between the categories

T -Alg and T ’-Alg making the triangle

T -Alg
∼ //

UT ##

T ’-Alg

UT ′zz
Set

commutative, there is an isomorphism of Lawvere theories T ∼= T ′.

Proposition 1.51. The theory Th[Set] is an initial object in the cate-

gory of Lawvere theories and their morphisms.

Each morphism of Lawvere theories induces an algebraic functor.

De�nition 1.52. Let T and R be two Lawvere theories. A functor

G : R-Alg→ T -Alg is said to be algebraic if there exists a morphism of

Lawvere theories F : T → R such that G is naturally isomorphic to the

functor F ∗ given by precomposition with F .

F ∗ : R-Alg −→ T -Alg

A 7−→AF

They have an easy characterisation (see e.g. [14]).

Theorem 1.53. Let G : R-Alg → T -Alg be a functor where T and R
are Lawvere theories. Then G is an algebraic functor if and only if UR
is naturally isomorphic to UT ◦G. In this case, G has a left adjoint.

R-Alg
G //

UR ##

∼=

T -Alg

UT{{
Set

For a morphism of Lawvere theories F : T → R, the left adjoint to

F ∗ is denoted by FrF : T -Alg→ R-Alg.

1.5 Monadic categories

One slogan on monadic categories could be `monadic categories over

SetS are categories of algebras for which we allow an arbitrary large
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number of operations and equations, provided that free algebras exist'.

We will then recover the previous examples of algebraic categories but

also the category
∨

-Lat of complete lattices which have a proper class of

operations as we said in Example 1.32. Classical references for monads

and monadic categories are [11] (where a monad is called a triple), [82]

and the second volume of [14].

De�nition 1.54. A monad T on a category C is a triple (T, η, µ) where

T : C → C is an endofunctor and η : 1C ⇒ T , µ : TT ⇒ T are natural

transformations such that the equalities

µ ◦ (η ? 1T ) = 1T = µ ◦ (1T ? η)

and

µ ◦ (µ ? 1T ) = µ ◦ (1T ? µ)

hold.

T
η?1T //

1T !!

TT

µ

��

T
1T ?ηoo

1T}}
T

TTT
µ?1T //

1T ?µ

��

TT

µ

��
TT µ

// T

The main example of a monad is given by adjunctions.

Example 1.55. Let C
F ++ D
G

kk ⊥ be an adjunction with unit η : 1C ⇒ GF

and counit ε : FG ⇒ 1D. This gives rise to a monad (T, η, µ) on C by

setting T = GF and µ = 1G ? ε ? 1F .

Example 1.56. The powerset functor P : Set→ Set together with the

natural transformations η : 1Set ⇒ P and µ : PP ⇒ P given by

ηX : X −→P(X) and µX : PP(X) −→P(X)

x 7−→{x} {Ai|i ∈ I} 7−→
⋃
i∈I

Ai

for each set X gives rise to the powerset monad P = (P, η, µ) on Set.

De�nition 1.57. [38] Let T = (T, η, µ) be a monad on the category C.
A T-algebra is pair (A,α) where A is an object of C and α : T (A) → A
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a morphism satisfying the identities α ◦ ηA = 1A and α ◦ T (α) = α ◦ µA.

A
ηA //

1A !!

T (A)

α
��
A

TT (A)
T (α) //

µA
��

T (A)

α

��
T (A) α

// A

A homomorphism f : (A,α) → (B, β) of T-algebras (or T-homomor-

phism) is a morphism f : A→ B in C such that β ◦ T (f) = f ◦ α.

T (A)
T (f) //

α
��

T (B)

β
��

A
f

// B

This forms the Eilenberg-Moore category CT for the monad T.

Example 1.58. A P-algebra for the powerset monad P can be seen as a

complete lattice. The morphism α : P(A)→ A sends a subset S ⊆ A to

its join
∨
S. A homomorphism of P-algebras is a map which preserves

arbitrary joins. The Eilenberg-Moore category SetP is thus equivalent to

the category
∨

-Lat of complete lattices and sup-preserving maps.

Next proposition describes free T-algebras and tells us that any mo-

nad is in fact induced by an adjunction as in Example 1.55.

Proposition 1.59. [38] Let T = (T, η, µ) be a monad on the category C.
The forgetful functor UT : CT → C and the free algebra functor

FT : C −→CT

A 7−→ (T (A), µA)

f 7−→T (f)

form an adjunction FT a UT which induces, as in Example 1.55, the

monad T. The functor UT is faithful, conservative, preserves, creates

and re�ects limits which exist in C.

This Eilenberg-Moore adjunction can actually be seen as the terminal

adjunction giving rise to the monad T.
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Proposition 1.60. [38] Let C
F ++ D
G

kk ⊥ be an adjunction inducing the

monad T on C. There exists a unique functor K : D → CT such that

UTK = G and KF = FT.

D K //

G

��

CT

UT
��C

F

__ ??
FT

De�nition 1.61. A functor G : D → C is said to be monadic if it has a

left adjoint F : C → D and the functorK : D → CT from Proposition 1.60

is an equivalence of categories.

By abuse of notations, we will sometimes write that the category D
is monadic over C if it is unambiguous which functor D → C we consider.
As we said in the introduction of this section, monadic categories over

SetS can be thought of as `algebraic-like categories' for which we allow

an arbitrary large number of operations and equations, in such a way

that free algebras exist. With Example 1.58 in mind, we already know

that the category
∨

-Lat (with its forgetful functor) is monadic over Set.

We can also prove that algebraic categories are monadic over SetS for

some set S (see Theorem 1.66). Moreover, it is proved in [95] that the

forgetful functor CompHaus→ Set from the category of compact Haus-

dor� spaces is also monadic. On the other hand, the forgetful functor

U : (
∨∧

)-Lat → Set from the category (
∨∧

)-Lat of complete lattices

and maps preserving arbitrary suprema and in�ma is not monadic be-

cause it does not have a left adjoint (the `free complete lattice' on {x, y, z}
is not a set but a proper class). For more details, we refer the reader

to [88, 2]. Let us now give some properties of monadic categories over

SetS and their characterisation.

Theorem 1.62. Let S be a set and U : C → SetS a monadic functor.

Then C is exact, complete and cocomplete and U is regular and conser-

vative.

Theorem 1.63. [35] For a category C, the following conditions are equiv-
alent:
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1. there exists a monadic functor U : C → Set,

2. (a) C is exact,

(b) C has a projective strong generator P ,

(c) the copower
∐
X P exists for every set X.

And here is its many-sorted version.

Theorem 1.64. For a category C, the following conditions are equiva-

lent:

1. there exists a set S and a monadic functor U : C → SetS ,

2. (a) C is exact,

(b) C has a strong set of generators G such that each object of G
is projective,

(c) for each set X and function f : X → G, the coproduct∐
x∈X f(x) exists in C.

The analogy with Theorem 1.45 is striking. Here is the reason why.

De�nition 1.65. Let λ be a regular cardinal and T = (T, η, µ) a monad

on a category C. We say that T is a λ-ary monad if the functor T : C →
C preserves λ-�ltered limits. A monadic functor G : D → C is λ-ary

monadic if the monad induced by the adjunction F a G is λ-ary.

Theorem 1.66. Let λ be a regular cardinal and S a set. The following

conditions on a category C are equivalent:

1. C is an S-sorted λ-ary algebraic category,

2. there exists a λ-ary monadic functor U : C → SetS .

We conclude this section with a lemma about monadic categories

over regular categories which will be useful in Chapter 5. It has been

stated without proof in [101] and proved in [61].

Lemma 1.67. Let C be a regular category and T = (T, η, µ) a monad

on it. Then,
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1. T preserves regular epimorphisms if and only if UT : CT → C does,

2. if T preserves regular epimorphisms, UT re�ects them. In this case,

CT is regular.

Proof. 1. Firstly, suppose UT preserves regular epimorphisms. Since

T = UTFT, T preserves regular epimorphisms since UT and FT do.

Conversely, suppose T preserves regular epimorphisms. Let f : (A,α)→
(B, β) be a morphism in CT. Then, f factors as

A
f //

p �� ��

B

I
?? m

??

in C, with p a regular epimorphism and m a monomorphism. So, T (p)

is a regular epimorphism and there exists a unique morphism ι making

the following diagram commutative.

T (A)
T (p) // //

pα

��

T (I)

ι
{{

βT (m)
��

I B//
m

//

Since m is a monomorphism and (B, β) a T-algebra, (I, ι) is also a T-
algebra and p and m are T-homomorphisms. Now, if we suppose f

to be a regular epimorphism in CT, m will also be. But since it is a

monomorphism, it is an isomorphism in CT and so in C. Thus, f is a

regular epimorphism in C.
2. Since UT creates �nite limits, CT has them. Now, let f : (A,α)→

(B, β) be a T-homomorphism such that f : A � B is a regular epimor-

phism in C. We denote by

(R, ρ)
r1 //
r2
// (A,α)

the kernel pair of f in CT. Since UT preserves limits, it is also its kernel

pair in C. So, f is the coequaliser of the pair (r1, r2) in C. Using this

and the fact that T (f) is an epimorphism in C, one easily proves that
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f is the coequaliser of (r1, r2) also in CT. Therefore, UT re�ects regular

epimorphisms. Moreover, since UT preserves and re�ects regular epimor-

phisms and since they are stable under pullbacks in C, they are also in

CT. Finally, considering the construction done in Point 1, the kernel pair

of f is also the kernel pair of p, which is a regular epimorphism in CT. It
is thus the coequaliser of its kernel pair, which proves that each kernel

pair in CT has a coequaliser.

1.6 Essentially algebraic categories

Gabriel and Ulmer de�ned in [44] locally presentable categories as co-

complete categories which have a strong set of generators formed by

λ-presentable objects for some regular cardinal λ. They characterised

them as categories of λ-limit preserving functors from a small category

with λ-limits to Set. Compared with Lawvere theories, the important

di�erence is that products have been replaced by limits. The idea is thus

that we are now allowed to consider operations de�ned not from An but

from a regular subobject of it, i.e., a solution set of some given n-ary

equations. This idea has been made precise in [4, 3]. These categories

are not regular in general and we give here a syntactic characterisation

when they are.

1.6.1 De�nition, characterisations and free models

De�nition 1.68. [44] Let λ be a regular cardinal. We say that the

category C is locally λ-presentable if it is cocomplete and has a strong

set of generators G such that each G ∈ G is λ-presentable. If λ = ℵ0,

we say in that case that C is locally �nitely presentable. If C is locally λ-
presentable for some regular cardinal λ, C is said to be locally presentable.

Before giving some examples, let us give two of their characterisa-

tions. In what follows, if λ is a regular cardinal and D a small category

with λ-limits, we will denote by λ-Lex(D, Set) the category of λ-limit pre-

serving functors from D to Set and natural transformations. If λ = ℵ0,

we will denote it simply by Lex(D, Set).
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Theorem 1.69. [44] Let λ be a regular cardinal. For a category C, the
following conditions are equivalent:

1. C is locally λ-presentable,

2. C is equivalent to λ-Lex(D, Set) for some small category D with

λ-limits.

In that case, D can be chosen to be equivalent to the dual of the full

subcategory of C of λ-presentable objects.

We now describe them in terms of algebras with partial operations.

De�nition 1.70. [4] An essentially algebraic theory is a quintuple Γ =

(S,Σ, E,Σt,Def) where

1. (S,Σ, E) is an algebraic theory,

2. Σt is a subset of Σ,

3. Def is a function assigning to each operation symbol σ :
∏
i<n si →

s in Σ \ Σt a set Def(σ) of equations of Σt in the variables from

X, the S-sorted set de�ned by Xs′ = {xi | i < n, si = s′} for each
s′ ∈ S.

De�nition 1.71. [4] Let λ be a regular cardinal. The essentially alge-

braic theory Γ is said to be λ-ary if

1. (S,Σ, E) is λ-ary,

2. for each σ ∈ Σ \ Σt, # Def(σ) < λ.

If λ = ℵ0, we say in this case that Γ is a �nitary essentially algebraic

theory.

De�nition 1.72. [4] Let Γ be an essentially algebraic theory. A Γ-

model is an S-sorted set A together with, for each operation symbol

σ :
∏
i<n si → s in Σ, a partial function σA :

∏
i<nAsi → As such that:

1. for each σ ∈ Σt, σA is de�ned everywhere,
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2. given σ :
∏
i<n si → s in Σ \ Σt and a family (ai ∈ Asi)i<n,

σA((ai)i<n) is de�ned if and only if the elements ai's satisfy all

equations of Def(σ) in A,

3. A satis�es the equations of E wherever they are de�ned.

We can easily give a precise meaning to when some elements of A

satisfy a given equation and when a term is de�ned at some elements

using the recursive de�nition of a term (see page 28). This is left to the

reader.

De�nition 1.73. [4] Let Γ be an essentially algebraic theory and A, B

two Γ-models. A Γ-homomorphism f : A → B is an S-sorted function

such that, given σ :
∏
i<n si → s in Σ and a family (ai ∈ Asi)i<n such

that σA((ai)i<n) is de�ned, the identity

fs(σ
A(ai)) = σB(fsi(ai)) (1)

holds.

Notice that if (1) holds for all σ ∈ Σt, then for each σ′ ∈ Σ \ Σt,

σ′B(fsi(ai)) is de�ned if σ′A(ai) is, while the converse does not hold in

general. The category of Γ-models and their homomorphisms is denoted

by Mod(Γ). A category which is equivalent to some model category

Mod(Γ) for an essentially algebraic theory Γ is called essentially alge-

braic. The notions of λ-ary and �nitary essentially algebraic categories

are de�ned in the obvious way.

Theorem 1.74. [44, 4, 3] A category C is locally presentable if and only

if it is essentially algebraic. More precisely, if λ is a regular cardinal, C
is locally λ-presentable if and only if it is λ-ary essentially algebraic.

Example 1.75. Of course, every algebraic category is essentially al-

gebraic. As another example, one can say that Cat is locally �nitely

presentable. Indeed, the only partial operation de�ning small categories

is the composition law. This is an operation A2 → A (where A denotes

the set of arrows) and it is de�ned on the set {(f, g) ∈ A2 | c(f) = d(g)}
where d and c are the domain and codomain maps. Note that this solu-

tion set is nothing but the pullback of c along d.
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If ℵ1 denotes the successor cardinal of ℵ0, the category Ban of (real)

Banach spaces and linear mappings L of norm ||L|| 6 1 is locally ℵ1-

presentable [86, 4, 14].

To give another family of examples, we need a few de�nitions.

De�nition 1.76. Let S be a set of sorts and Σ an S-sorted signature of

algebras. An implication in Σ∧
i∈I

(ti = t′i)⇒ (t = t′)

is the collection of an S-sorted set X, an equation (t = t′) in Σ in the

variables from X, a set I and for each i ∈ I, an equation (ti = t′i) in Σ in

the variables from X. A Σ-algebra A satis�es this implication when, for

any S-sorted function f : X → UΣ(A), if the unique Σ-homomorphism

f : FrΣ(X) → A extending f satis�es f(ti) = f(t′i) for each i ∈ I, then
f(t) = f(t′).

Note that an equation can be seen as an implication with I = ∅.

De�nition 1.77. A category C is said to be a quasivariety if there

exists a set S of sorts, an S-sorted signature of algebras Σ and a set

of implications in Σ such that C is equivalent to the full subcategory of

Σ-Alg of Σ-algebras satisfying the given implications.

Example 1.78. The category TorsFreeAb is a quasivariety. Indeed, an

object in it is an abelian group satisfying the implications

x+ x = 0 =⇒ x = 0

x+ x+ x = 0 =⇒ x = 0

...

for each element x.

Proposition 1.79. [4] Every quasivariety is essentially algebraic.

Let us go back to essentially algebraic categories.
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Proposition 1.80. Let Γ be an essentially algebraic theory. The cat-

egory Mod(Γ) is complete, cocomplete and the forgetful functor UΓ :

Mod(Γ)→ SetS is conservative and has a left adjoint.

The fact that UΓ has a left adjoint implies it preserves limits so that

small limits in Mod(Γ) are computed in each component as in Set. To

describe this left adjoint FrΓ : SetS → Mod(Γ), we need to introduce the

notion of an everywhere-de�ned term.

De�nition 1.81. Let Γ be an essentially algebraic theory and t1, t2 :∏
i∈I si → s two terms of Σ. We say that t1 = t2 is a theorem of Γ if,

given a Γ-model A and a family (ai ∈ Asi)i∈I such that t1((ai)i∈I) and

t2((ai)i∈I) are both de�ned, the equality t1((ai)i∈I) = t2((ai)i∈I) holds

in As.

De�nition 1.82. Let Γ be an essentially algebraic theory and X an S-

sorted set. A term of Σ in the variables from X is said to be everywhere-

de�ned if it belongs to the smallest S-subset Y of FrΣ(X) satisfying the

following conditions:

1. for each s ∈ S, Xs ⊆ Ys,

2. if σ :
∏
i<n si → s is in Σ and (ti ∈ Ysi)i<n is a family such that

either σ ∈ Σt or σ ∈ Σ\Σt and for each equation (u1, u2) ∈ Def(σ),

u1((ti)i<n) = u2((ti)i<n) is a theorem of Γ, then the term σ((ti)i<n)

belongs to Ys.

Intuitively, everywhere-de�ned terms are terms which are everywhere

de�ned in any Γ-model. We can now describe the left adjoint FrΓ to UΓ

as follows. If X is an S-sorted set, for each s ∈ S, FrΓ(X)s is the

set of equivalence classes of everywhere-de�ned terms of sort s in the

variables from X, where we identify the two terms t1 and t2 if and only

if t1 = t2 is a theorem of Γ. Notice that this is an equivalence relation

since we only consider everywhere-de�ned terms. The Γ-model structure

on FrΓ(X) and the S-sorted function X → UΓ FrΓ(X) are de�ned in the

obvious way. This is the re�ection of X along UΓ and this describes the

announced adjunction FrΓ a UΓ.
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1.6.2 Regular essentially algebraic categories

Essentially algebraic categories are in general not regular. For instance,

Cat is locally �nitely presentable (Example 1.75) but not regular (Ex-

ample 1.7). However, we still have a (strong epi, mono)-factorisation

system in those categories. By that we of course mean a factorisation

system (E ,M) where E is the class of all strong epimorphisms and M
the class of all monomorphisms.

De�nition 1.83. Let A be a Γ-model for an essentially algebraic the-

ory Γ. A submodel of A is a Γ-model B included in A for which the

inclusion B ↪→ A is a Γ-homomorphism.

Proposition 1.84. Let Γ be an essentially algebraic theory. The cate-

gory Mod(Γ) has a (strong epi, mono)-factorisation system.

Proof. Properties 1, 2 and 3 of De�nition 1.12 are true in any category

for the above cited classes E andM. For the last one, if we have a ho-

momorphism f : A→ B of Γ-models, we can factorise it in the following

way. We consider the submodel I of B de�ned by

Is =
{
t((fsi(ai))i∈I) | t :

∏
i∈I

si → s is a term of Σ and (ai ∈ Asi)i∈I a

family such that t((fsi(ai))i∈I) is de�ned in B
}

for each sort s ∈ S. I is the smallest submodel of B for which fs(a) ∈ Is
for all s ∈ S and a ∈ As. This means that the corestriction p : A� I of

f to I is an extremal epimorphism (and so a strong one since Mod(Γ) is

complete) and f factors as f = ip with i the inclusion I ↪→ B.

As usual, we will refer to I = Im(f) as the image of f . Notice

that in the case where Γ is �nitary, we could have considered in the

de�nition of Im(f)s only �nitary terms t :
∏n
i=1 si → s in the variables

from a �nite S-sorted set X (i.e., #
⊔
s∈S Xs < ℵ0). We also remark

that t((fsi(ai))i∈I) could not have been written as fs(t((ai)i∈I)) (as we

do in the algebraic case) since t((ai)i∈I) might not be de�ned in A.

In [30], regular locally �nitely presentable categories Lex(D, Set) have

been characterised in terms of the corresponding theory D.
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De�nition 1.85. [30] A category C is said to be weakly regular if any

commutative square

A
f //

h
��

B

k
��

C g
// // D

with g a regular epimorphism can be factorised in a commutative diagram

as

A
l

  

f

��

h

!!

A′
g′ // //

k′

��

B

k
��

C g
// // D

where g′ is a regular epimorphism.

Of course, any regular category is weakly regular.

Theorem 1.86. [30] Let D be a �nitely complete small category. The

following conditions are equivalent:

1. Lex(D,Set) is regular,

2. Dop is weakly regular.

Such characterisations in terms of the corresponding category D have

been called `syntactic' in [30]. However, it does not seem easy to derive

from Theorem 1.86 a characterisation of those (�nitary) Γ for which

Mod(Γ) is regular. It is this second type of characterisations that we

will call `syntactic' in this thesis. We provide now such a syntactic char-

acterisation of essentially algebraic theories for which the category of

models is regular. The �nitary case has been proved in [55].

Lemma 1.87. Let Γ be an essentially algebraic theory and t :
∏
i∈I si →

s a term of Σ. If (ai ∈ Asi)i∈I are elements of a Γ-model A, we can �nd

a strong epimorphism q : A � B in Mod(Γ) such that t((q(ai))i∈I) is

de�ned in B and if f : A→ C is a homomorphism such that t((f(ai))i∈I)

is de�ned in C, then f factors uniquely through q.
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Proof. We are going to prove this lemma by induction on the number of

steps used in the construction of the term t. If t is a projection (or any

everywhere-de�ned term), 1A is the homomorphism we are looking for.

Now, suppose t uses the operation symbols or projections

σj ∈ Σ ∪ {pk :
∏
i∈I

si → sk | k ∈ I}

for each j ∈ J as �rst step of its construction. Thus, t can be written as

t = t′((σj((xi)i∈I))j∈J)

where t′ :
∏
j∈J s

′
j → s uses less steps than t to be constructed. Let R be

the smallest submodel of A × A which contains (u((ai)i∈I), u
′((ai)i∈I))

for each j ∈ J such that σj ∈ Σ\Σt and each equation (u, u′) ∈ Def(σj).

Let q1 be the coequaliser of r1 and r2

R
r1 //
r2
// A

q1 // // B1

where ri = πir with r the inclusion R ↪→ A × A and π1 and π2 the

projections. Thus, in B1, all σj((q1(ai))i∈I) are de�ned. Now, we use

the induction hypothesis on t′ to build a universal strong epimorphism

q2 : B1 � B such that

t′((q2(σj((q1(ai))i∈I)))j∈J) = t′((σj((q2q1(ai))i∈I))j∈J)

= t((q2q1(ai))i∈I)

is de�ned. Let us prove that q2q1 is the strong epimorphism we are

looking for. Let f : A → C be a homomorphism such that t((f(ai))i∈I)

is de�ned. Since the kernel pairR[f ] of f contains (u((ai)i∈I), u
′((ai)i∈I))

for all j such that σj ∈ Σ\Σt and all equations (u, u′) ∈ Def(σj), we have

R ⊆ R[f ] and fr1 = fr2. Therefore, f factors through q1 as f = gq1.

Finally, g factors through q2 since

t((f(ai))i∈I) = t((gq1(ai))i∈I)

= t′((σj((gq1(ai))i∈I))j∈J)

= t′((g(σj((q1(ai))i∈I)))j∈J)
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is de�ned.

Theorem 1.88. Let Γ be an essentially algebraic theory. Then Mod(Γ)

is a regular category if and only if, for each term t :
∏
i∈I si → s of Σ,

there exists in Γ

� a term π :
∏
j∈J s

′
j → s,

� for each j ∈ J , an everywhere-de�ned term αj : s→ s′j ,

� for each j ∈ J , an everywhere-de�ned term µj :
∏
i∈I si → s′j

such that

1. π((αj(x))j∈J) is an everywhere-de�ned term s→ s,

2. π((αj(x))j∈J) = x is a theorem of Γ,

3. αj(t((xi)i∈I)) = µj((xi)i∈I) is a theorem of Γ for each j ∈ J .

Proof. Since Mod(Γ) is complete and has a (strong epi, mono) factori-

sation system, by Proposition 1.16, it is regular if and only if strong

epimorphisms are pullback stable. So, let us suppose the condition in

the statement holds in Γ and consider a pullback square

P
p′ //

f ′

��

B

f

��
A p

// // C

in Mod(Γ) with p a strong epimorphism. We have to prove that Im(p′) =

B. So, let b ∈ Bs for some s ∈ S. Since p is a strong epimorphism, there

exists a term t :
∏
i∈I si → s of Σ and a family (ai ∈ Asi)i∈I such that

t((p(ai))i∈I) is de�ned and equal to f(b) (see the description of Im(p)

from Proposition 1.84). Let π, αj 's and µj 's be the terms given by the

assumption for this t. For each j ∈ J ,

f(αj(b)) = αj(f(b))

= αj(t((p(ai))i∈I))

= µj((p(ai))i∈I)

= p(µj((ai)i∈I))
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since αj and µj are everywhere-de�ned. But small limits in Mod(Γ) are

computed in each sort as in Set. Hence, dj = (µj((ai)i∈I), αj(b)) ∈ Ps′j
with

b = π((αj(b))j∈J) = π((p′(dj))j∈J).

Therefore, b ∈ Im(p′)s and p′ is a strong epimorphism.

Conversely, we assume that Mod(Γ) is regular and consider a term

t :
∏
i∈I si → s of Σ. Let X and Y be the S-sorted sets de�ned by

Xs′ = {xi | i ∈ I, si = s′} for each s′ ∈ S, Ys = {y} and Ys′ = ∅ for all

s′ 6= s ∈ S. We consider also the strong epimorphism q : FrΓ(X) � B

given by Lemma 1.87, for the term t and the elements xi ∈ FrΓ(X)si .

Thus t((q(xi))i∈I) is de�ned. Let f : FrΓ(Y ) → B be the unique map

such that f(y) = t((q(xi))i∈I) and consider the pullback of q along f .

P
p // //

��

FrΓ(Y )

f

��
FrΓ(X) q

// // B

Since Mod(Γ) is regular, p is also a strong epimorphism. So, y ∈ Im(p)s

which means that there exists a term π :
∏
j∈J s

′
j → s and elements

dj ∈ Ps′j for each j ∈ J such that π((p(dj))j∈J) is de�ned and equal

to y. Using the descriptions of P , FrΓ(X) and FrΓ(Y ), it implies that,

for each j ∈ J , there exist everywhere-de�ned terms αj : s → s′j and

µj :
∏
i∈I si → s′j such that dj = (µj , αj). Thus, the equalities

y = π((p(dj))j∈J)

= π((αj(y))j∈J)
(2)

hold in FrΓ(Y )s and for each j ∈ J , we have

µj((q(xi))i∈I) = q(µj((xi)i∈I))

= f(αj(y))

= αj(f(y))

= αj(t((q(xi))i∈I))

(3)

in Bs′j . Equalities (2) mean that π((αj(x))j∈J) is everywhere-de�ned
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and π((αj(x))j∈J) = x is a theorem of Γ. With the universal properties

of FrΓ(X) and q, equalities (3) mean that αj(t((ai)i∈I)) = µj((ai)i∈I)

holds in any Γ-model A as soon as t((ai)i∈I) is de�ned. Indeed, if it is so,

let g : FrΓ(X)→ A be the unique Γ-homomorphism such that g(xi) = ai

for all i ∈ I. Since t((g(xi))i∈I) is de�ned, g factors through q as g = hq

and

αj(t((ai)i∈I)) = αj(t((hq(xi))i∈I))

= h(αj(t((q(xi))i∈I)))

= h(µj((q(xi))i∈I))

= µj((hq(xi))i∈I)

= µj((ai)i∈I).

Using the remark after Proposition 1.84, if Γ is �nitary, we are allowed

to only consider �nitary terms t :
∏n
i=1 si → s.

Theorem 1.89. [55] Let Γ be a �nitary essentially algebraic theory.

Then Mod(Γ) is a regular category if and only if, for each �nitary term

t :
∏n
i=1 si → s of Σ, there exists in Γ:

� a �nitary term π :
∏m
j=1 s

′
j → s,

� for each 1 6 j 6 m, an everywhere-de�ned term αj : s→ s′j ,

� for each 1 6 j 6 m, an everywhere-de�ned term µj :
∏n
i=1 si → s′j

such that

1. π(α1(x), . . . , αm(x)) is an everywhere-de�ned term s→ s,

2. π(α1(x), . . . , αm(x)) = x is a theorem of Γ,

3. αj(t(x1, . . . , xn)) = µj(x1, . . . , xn) is a theorem of Γ for each

1 6 j 6 m.

1.7 Sketches

In this section we deal with the concept of a sketch, introduced by Ehres-

mann in a slightly di�erent form (see e.g. [36] or the second volume
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of [14]). We can get in this way a common framework for the notions of

algebraic and essentially algebraic categories.

De�nition 1.90. A sketch S is a triple (S,P, I) where:

1. S is a small category,

2. P is a set of cones on functors F : D → S, de�ned on small cate-

gories D,

3. I is a set of cocones on functors F : D → S, de�ned on small

categories D,

and we consider the two cones λ : ∆X ⇒ F and λ′ : ∆X ⇒ F ′ equal if

there exists an isomorphism i : D → D′ of categories such that F ′i = F

and λD = λ′i(D) for each D ∈ D (and similarly for cocones). A morphism

of sketches F : S → S′ is a functor F : S → S ′ which maps each cone in

P on a cone in P ′ and each cocone in I on a cocone in I ′. This gives

the category Sk of sketches.

Remark 1.91. Each small category C can be viewed as a sketch in

several ways. Firstly, I(C) = (C,∅,∅) is the indiscrete sketch on C. This
gives rise to the adjunction

Sk

U

22 Cat

I
ss

⊥

where U is the forgetful functor. Besides, D(C) = (C,P, I) is the discrete

V-sketch on C where P (resp. I) is the class of all small limit cones (resp.

all small colimit cocones) in C (for a bigger universe V 3 U). As an

intermediate step, we also have FD(C) = (C,P, I), the �nitely discrete

sketch on C where P (resp. I) is the set of all �nite limit cones (resp.

�nite colimit cocones) in C.

De�nition 1.92. [36] Let S = (S,P, I) be a sketch. An S-model is a

functor A : S → Set which sends each cone in P (resp. each cocone in

I) to a limit (resp. a colimit) in Set. A homomorphism f : A→ B of S-
models is a natural transformation A⇒ B. The corresponding category

is denoted by Mod(S).
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The following characterisation is the idea behind Lawvere's work [76].

Theorem 1.93. For a category C, the following conditions are equiva-

lent:

1. C is an algebraic category,

2. C is equivalent to a category of the form Mod(S) for a sketch S =

(S,P,∅) where cones in P are cones over discrete diagrams.

Its essentially algebraic version is the idea behind Gabriel-Ulmer's

work [44].

Theorem 1.94. For a category C, the following conditions are equiva-

lent:

1. C is locally presentable,

2. C is equivalent to a category of the form Mod(S) for a sketch S =

(S,P,∅).

1.8 Internal algebras and T -enrichments

Replacing the category Set by an arbitrary category C (with enough

products), we get the notion of an internal algebra.

De�nition 1.95. Let λ be a regular cardinal, (S,Σ, E) a λ-ary algebraic

theory and C a category with λ-products. An internal (S,Σ, E)-algebra

A in C is a collection of objects (As ∈ C)s∈S together with, for each

σ :
∏
i<n si → s in Σ, a morphism σA :

∏
i<nAsi → As such that they

satisfy the equations of E. A homomorphism f : A → B of internal

(S,Σ, E)-algebras is a collection of morphisms (fs : As → Bs)s∈S such

that, for each σ :
∏
i<n si → s in Σ, the square

∏
i<nAsi

σA //

∏
i<n fsi

��

As

fs

��∏
i<nBsi σB

// Bs
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commutes. The corresponding category is denoted by (S,Σ,E)-Alg(C)
and the forgetful functor by U(S,Σ,E) : (S,Σ,E)-Alg(C)→ CS .

The sentence `they satisfy the equations of E' has to be understood

in the obvious sense: To each term t :
∏
i∈I si → s in Σ in less than λ

variables, we associate a morphism tA :
∏
i∈I Asi → As recursively by:

1. to the variable xj of sort sj for j ∈ I, we associate the j-th projec-

tion πj = xAj :
∏
i∈I Asi → Asj ,

2. if for the terms tj :
∏
i∈I si → s′j (j < n), the morphisms tAj have

been de�ned and if σ :
∏
j<n s

′
j → s is in Σ, we associate the

morphism

∏
i∈I Asi

(tAj )j<n
//
∏
j<nAs′j

σA // As

to the term σ((tj)j∈J).

Then, A satis�es the equation (t1, t2) if tA1 = tA2 .

The situation is easier for Lawvere theories.

De�nition 1.96. Let T be a Lawvere theory and C a category with

�nite products. An internal T -algebra in C is a �nite product preserving
functor A : T → C. A homomorphism f : A → B of internal T -algebras
is a natural transformation A ⇒ B. This gives rise to the category

T -Alg(C) and the functor UT : T -Alg(C)→ C of evaluation at 1.

As in the classical case, we have the following equivalences.

Proposition 1.97. Let C be a category with �nite products.

1. If (Σ, E) is a one-sorted �nitary algebraic theory, there is an equiva-

lence between the categories (Σ,E)-Alg(C) and T(Σ,E)-Alg(C) mak-

ing the triangle

(Σ,E)-Alg(C) ∼ //

U(Σ,E) %%

T(Σ,E)-Alg(C)

UT(Σ,E)yyC

commute.
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2. If T is a Lawvere theory, there is an equivalence between the cat-

egories (ΣT ,ET )-Alg(C) and T -Alg(C) making the triangle

(ΣT ,ET )-Alg(C) ∼ //

U(ΣT ,ET ) &&

T -Alg(C)

UTzzC

commute.

Example 1.98. In a category C with �nite products, an internal group

is an object G together with morphisms 0: 1 → G, +: G2 → G and

− : G→ G satisfying the usual axioms for groups.

Without going into the details here, it is possible to de�ne internal Γ-

models in a complete category for an essentially algebraic theory Γ. For

example, this leads to the notion of an internal category in a category

C with �nite limits. This is the collection of two objects A0 and A1

together with morphisms

A1 ×c,d A1
m // A1

d //
c
// A0

e

dd

satisfying the well-known axioms for categories, where A1 ×c,d A1 is the

pullback of c along d.

A1 ×c,d A1
π2 //

π1

��

A1

d
��

A1 c
// A0

Similarly, an internal groupoid is an internal category A together with an

additional morphism i : A1 → A1 which satis�es the axioms for inverses.

Let us now get back to the case of a Lawvere theory T .

De�nition 1.99. [72] Let T be a Lawvere theory. A T -enriched category
(or T -category in short) is a category C equipped with a factorisation
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Hom of the hom functor through UT .

T -Alg

UT
��

Cop × C
hom

//

Hom
99

Set

Such a factorisation is called a T -enrichment of C. A T -enriched functor

(or T -functor in short) between the T -enriched categories C and D is a

functor F : C → D such that for all objects A,B ∈ C,

F : HomC(A,B)→ HomD(F (A), F (B))

is a homomorphism of T -algebras. Small T -categories and T -functors
form the category T -Cat.

If C has �nite products, a T -enrichment of C can be de�ned in an

equivalent way as a section for the forgetful functor UT : T -Alg(C)→ C.
In order words, it is the assignment of an internal T -algebra structure on
each object of C in such a way that every morphism is a homomorphism

of internal T -algebras. Given a factorisation Hom as in De�nition 1.99,

one gets an internal T -algebra structure on A ∈ C with

tA = t(π1, . . . , πn) : An → A

for each n-ary term t, where the πi's are the product projections. Con-

versely, given a section of UT , one gets the Hom factorisation letting

t(f1, . . . , fn) be the map

A
(f1,...,fn) // Bn tB // B

for each n-ary term t and morphisms f1, . . . , fn : A→ B.

It is easy to see that a T -enrichment of a category C induces a T -
enrichment on every functor category CP for a small category P, looking
componentwise (and so on every power CS for a set S). We can also notice

that T -enrichments on a category C are in one-to-one correspondence

with T -enrichments on its dual Cop. Hence, if C has �nite coproducts,

it gives rise to an internal T -algebra structure on every object of Cop,



60 1. Di�erent approaches to universal algebra

which is called an internal T -co-algebra in C. We thus have a morphism

tA,op = t(ι1, . . . , ιn) : A→ nA

for each n-ary term t of T , where ι1, . . . , ιn are the coproduct injections.

Example 1.100. A Th[Set]-category is nothing but a usual category.

A Th[Set∗]-category is also called a pointed category. If C has a terminal

object 1, there is at most one Th[Set∗]-enrichment of C. It exists if and
only if 1 is also a initial object, called in that case a zero object. Then, for

A,B ∈ C, the morphism 0: A→ B is the unique morphism A→ 0→ B

which factors through the zero object 1 = 0.

A Th[Ab]-category is also called a preadditive category. If C has �nite
products, there is at most one Th[Ab]-enrichment of C. If it exists, we

say that C is an additive category.

We would like now to describe T -enrichments of algebraic categories.

De�nition 1.101. Let s (resp. t) be an m-ary (resp. n-ary) term of a

Lawvere theory T . We say that s and t commute if

t(s(x11, . . . , xm1), . . . , s(x1n, . . . , xmn))

= s(t(x11, . . . , x1n), . . . , t(xm1, . . . , xmn))

is a theorem of T . If s : m → 1 and t : n → 1 are the corresponding

morphisms in T , this means that the square

m · n sn //

t
m

��

n

t
��

m
s
// 1

commutes.

De�nition 1.102. Amorphism F : T → R of Lawvere theories is central

if for each term t of T , its interpretation as a term tι of R induced by F

commutes with each term of R.

Proposition 1.103. [40] Let T and R be two Lawvere theories. T -
enrichments ofR-Alg are in one-to-one correspondence with central mor-

phisms T → R.
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As a consequence, we have a characterisation of commutative theo-

ries.

De�nition 1.104. [79] A Lawvere theory T is commutative if the iden-

tity morphism T → T is central, i.e., if any two terms of T commute.

Example 1.105. The Lawvere theories Th[Set], Th[Set∗], Th[ComMon]

and Th[Ab] are commutative.

Proposition 1.106. [79] The following conditions on a Lawvere theory

T are equivalent:

1. T is commutative,

2. T -Alg has a T -enrichment de�ned as follows: given two T -algebras
A andB, an n-ary term t of T and n T -homomorphisms f1, . . . , fn :

A→ B, the function t(f1, . . . , fn) : A→ B de�ned by

t(f1, . . . , fn)(a) = tB(f1(a), . . . , fn(a))

for every a ∈ A extends to a T -homomorphism which is the value

of the action of t on (f1, . . . , fn).

Let us now focus on T -enrichments of Mod(Γ) for an essentially alge-

braic theory Γ = (S,Σ, E,Σt,Def). We view T as T(Σ′,E′) for a �nitary

one-sorted algebraic theory (Σ′, E′). By an operation symbol (resp. an

axiom) of T we thus mean an element of Σ′ (resp. E′). Suppose we

have a T -enrichment on Mod(Γ) and let τ be an n-ary operation sym-

bol of T . For a given s ∈ S, we consider the S-sorted set X such that

Xs = {x1, . . . , xn} and Xs′ = ∅ for s′ 6= s. The T -algebra structure on

FrΓ(X) gives rise to an interpretation of τ into an everywhere-de�ned

term τ s : sn → s of Γ (τ s = (τFrΓ(X))s(x1, . . . , xn) ∈ FrΓ(X)s). Given

any Γ-model A and a1, . . . , an ∈ As, let f : FrΓ(X) → A be the unique

Γ-homomorphism such that fs(xi) = ai for each 1 6 i 6 n. Then, since

f is also a T -homomorphism, the square

FrΓ(X)n
τFrΓ(X)

//

fn

��

FrΓ(X)

f
��

An
τA

// A
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commutes. This implies that (τA)s(a1, . . . , an) = τ s(a1, . . . , an). Hence,

these interpretations turn axioms of T into theorems of Γ, in the sense

that ts1 = ts2 is a theorem of Γ for each axiom t1 = t2 of T where ts1
and ts2 are de�ned in the obvious way. Moreover, since τA : An → A is a

Γ-homomorphism for any Γ-model A,

τ s(σ((x1i)i<m), . . . , σ((xni)i<m)) = σ((τ si(x1i, . . . , xni))i<m) (4)

is a theorem of Γ for each operation symbol σ :
∏
i<m si → s of Σ. These

observations lead to the following proposition.

Proposition 1.107. Let Γ be an essentially algebraic theory and T a

Lawvere theory. T -enrichments of Mod(Γ) are in one-to-one correspon-

dence with assignments, for each n-ary operation symbol τ of T and sort

s ∈ S, of an everywhere-de�ned term τ s : sn → s of Γ such that

1. these interpretations turn axioms of T into theorems of Γ at each

sort s ∈ S,

2. for any operation symbols σ of Σ and τ of T , σ commutes with the

interpretations of τ , i.e., (4) is a theorem of Γ.

Proof. We proved above that each T -enrichment gives rise to such an

assignment. On the other hand, given such an assignment, we de�ne an

internal T -algebra on every Γ-model A by letting (τA)s = τ s : (An)s =

(As)
n → As for all operation symbols τ of T and s ∈ S. It is routine

veri�cations to check that this yields a Γ-homomorphism τA : An → A,

that this gives rise to a T -enrichment on Mod(Γ) and that these two

applications are reciprocal inverses.

If T = Th[Set∗], this reduces to the following corollary.

Corollary 1.108. Let Γ be an essentially algebraic theory. The category

Mod(Γ) is pointed if and only if, for each s ∈ S, there exists a unique

(up to theorems) everywhere-de�ned constant term 0s of sort s such that,

for each operation symbol σ :
∏
i<n si → s in Σ, σ((0si)i<n) = 0s is a

theorem of Γ.
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Notice that the above conditions imply in particular that σ((0si)i<n)

is always de�ned since, if σ ∈ Σ \Σt, for each equation (t1, t2) ∈ Def(σ),

t1((0si)i<n) = 0s
′

= t2((0si)i<n).

We would like now to describe the link between T -categories and

R-categories for a morphism T → R of Lawvere theories.

Proposition 1.109. Each morphism of commutative Lawvere theories

F : T → R gives rise to an adjunction between R-Cat and T -Cat.

R-Cat

F ∗
22 T -Cat

FrFrr
⊥

Proof. Let D be a small R-category. We de�ne F ∗(D) by ob(F ∗(D)) =

ob(D) and F ∗(D)(A,B) = F ∗(D(A,B)) for all A,B ∈ D. Composition

and identities are de�ned as in D since F ∗ commutes with the forgetful

functors R-Alg → Set and T -Alg → Set. We extend F ∗ to a functor in

the obvious way.

Let now C be a small T -category. We are going to construct a re-

�ection of C along F ∗. Let ob(FrF (C)) = ob(C) and FrF (C)(A,B) =

FrF (C(A,B)) for all A,B ∈ C. We denote by f̃ the image of f ∈
C(A,B) under the re�ection C(A,B) → F ∗(FrF (C(A,B))). For such

an f , we de�ne − ◦ f̃ : FrF (C(B,C)) → FrF (C(A,C)) as the unique R-
homomorphism such that g̃ ◦ f̃ = g̃f for each g ∈ C(B,C). Now, we

de�ne

− ◦ − : FrF (C(A,B)) −→ R-Alg(FrF (C(B,C)),FrF (C(A,C)))

as the unique R-homomorphism such that −◦ f̃ is the one de�ned above

for each f ∈ C(A,B). Note that this can be done sinceR is commutative.

Together with the assignment 1A = 1̃A, this makes FrF (C) anR-category
and the obvious map C → F ∗ FrF (C) a T -functor. The fact that this is
the re�ection of C along F ∗ also follows from the universal property of

FrF : T -Alg→ R-Alg.

Corollary 1.110. Let T be a commutative Lawvere theory. Then, the
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forgetful functor UT : T -Cat→ Cat has a left adjoint.

T -Cat

UT

22 Cat

FrTrr
⊥

Proof. Let FrT be FrF for F the unique morphism of Lawvere theories

Th[Set]→ T .

The same occurs with sketches.

De�nition 1.111. Let T be a Lawvere theory. A T -enriched sketch

(or T -sketch in short) is a sketch S together with a T -enrichment on

the underlying category. A morphism of T -sketches is a morphism of

sketches which is a T -functor. The corresponding category is denoted

by T -Sk.

Proposition 1.112. Let F : T → R be a morphism of commutative

Lawvere theories. Then, the adjunction

R-Cat

F ∗
22 T -Cat

FrFrr
⊥

of Proposition 1.109 gives rise to an adjunction between R-Sk and T -Sk.

R-Sk

F ∗
22 T -Sk .

FrF
rr

⊥

Proof. If S = (S,P, I) is an R-sketch, let F ∗(S) = (F ∗(S),P, I) and if

S′ = (S ′,P ′, I ′) is a T -sketch, we de�ne

FrF (S′) = (FrF (S ′), ηS′(P ′), ηS′(I ′))

where ηS′ : S ′ → F ∗ FrF (S ′) is the unit and ηS′(P ′) is the set of cones

1ηS′ ? λ : ∆ηS′ (X) ⇒ ηS′G

where λ : ∆X ⇒ G runs through P ′ (and similarly for ηS′(I ′)). The rest
of the proof follows easily from Proposition 1.109.
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The above results have their counter-part in 2-dimensional category

theory. Without going into too much detail here, let us just recall the

de�nition of a 2-category and cite T -Cat and T -Sk as examples.

De�nition 1.113. A 2-category consists of

� a category C,

� for each A,B ∈ C, a small category whose set of objects is C(A,B),

� for all morphisms A
f //
f ′
// B

g //
g′
// C , an application

C(A,B)(f, f ′)× C(B,C)(g, g′) −→C(A,C)(gf, g′f ′)

(α, β) 7−→β ? α

satisfying the following axioms

1. 1g ? 1f = 1gf for any diagram A

f
))

f

55 B

g
))

g
55 C1f��

1g
�� ,

2. α?11A = α = 11B ?α for any diagram A

1A **

1A

44 A

f
))

f ′
55 B

1B **

1B

44 Bα
��

11A
�
11B
� ,

3. (γ?β)?α = γ?(β?α) for any diagram A

f
))

f ′
55 B

g
))

g′
55 C

h ))

h′
55 Dα

�� β��
γ
�� ,

4. (δ?β)◦(γ?α) = (δ◦γ)?(β◦α) for any diagram A

f

��
f ′ //

f ′′

HH
B

g

��
g′ //

g′′

HH
C

α
��

β
��

γ

��

δ
��

.

We call a morphism in the underlying category C a 1-cell and a

morphism in any category C(A,B) a 2-cell. An invertible 2-cell is called

a 2-isomorphism. If f : A→ B is a 1-cell and C ∈ C an object, we write



66 1. Di�erent approaches to universal algebra

C(C, f) for the composition functor

C(C, f) : C(C,A) −→C(C,B)

g 7−→ fg

α 7−→ 1f ? α

and C(f, C) : C(B,C)→ C(A,C) for the analogous functor.

Example 1.114. Each category C can be turned into a 2-category,

thinking of each hom-set C(A,B) as a discrete category. Small cate-

gories, functors and natural transformations organise themselves in a

2-category, also denoted by Cat. More generally, if T is a Lawvere the-

ory, small T -categories, T -functors and natural transformations form

the 2-category T -Cat, while T -sketches, morphisms of T -sketches and

natural transformations form the 2-category T -Sk.



Chapter 2

Matrix conditions

Now that we gave some de�nitions of categories of algebras and their

general characterisations, we would like to study categorical properties

that distinguish one from the others. Which properties does Gp have

and not Set? What are the di�erences and common properties of Gp

and Ab? The notion of an abelian category [81, 25, 52] gives one of the

�rst answers: it contains Ab, ModR (the category of modules over the

ring R) and the categories of sheaves of abelian groups on a site, but these

are essentially the only examples. We thus want to study less restrictive

algebraic categorical conditions, in order to encompass categories such

as Gp, Mon and LieAlgk (the category of Lie algebras over a �eld k).

This is what we call `non-abelian categorical algebra'.

One of the �rst major steps in that direction has been realised using

Mal'tsev's result which characterises �nitary one-sorted algebraic cate-

gories in which the equality RS = SR holds for any congruences (i.e.,

equivalence relations in the sense of De�nition 1.20) R and S on a same

object as the ones whose theory has a ternary term p(x, y, z) satisfying

the axioms p(x, y, y) = x and p(x, x, y) = y [87]. This property of com-

mutativity of equivalence relations can be stated in any regular category

and is what de�nes Mal'tsev categories among them [28]. It is equivalent

to the condition that each binary relation is difunctional, a property that

can be stated in any category with �nite limits and that distinguishes

Mal'tsev categories among them [29].

Another property studied in non-abelian categorical algebra is uni-

67
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tality [18]. A pointed �nitely complete category is said to be unital if,

for any objects X and Y , the morphisms

X
(1X ,0)// X × Y Y

(0,1Y )oo

are jointly strongly epimorphic. A Lawvere theory has a unital category

of algebras if and only if it has a unique nullary term 0 and a binary

term u(x, y) such that u(x, 0) = x and u(0, x) = x are theorems.

Many other such properties have been de�ned in categorical alge-

bra and often have a characterisation of the �nitary algebraic cate-

gories which satisfy it. Among them, one can cite: strongly unital cate-

gories [18], subtractive categories [63], n-permutable categories [27] and

protomodular categories [17].

In [64], Z. Janelidze proposed a way to unify many of these categorical

properties. Given a matrix of terms in a Lawvere theory T (often Th[Set]

or Th[Set∗]), we can consider those T -categories in which relations satisfy
a property described by the columns of the given matrix. In this way,

we recover the examples of Mal'tsev, (strongly) unital and subtractive

categories. Finitary one-sorted algebraic categories which satisfy such an

exactness property are characterised by the existence of a term satisfying

some axioms given by the lines of the matrix. We provide in this chapter

a generalisation of this result characterising such essentially algebraic

categories.

An extension of these matrix conditions introduced in [67] encom-

passes in the regular context some more examples such as n-permutabi-

lity. These matrices are also recalled in Section 2.2.

2.1 Categories with M-closed relations

2.1.1 De�nitions and algebraic characterisations

Let us start by recalling simple matrix conditions in general; examples

will be provided in the next subsection.

De�nition 2.1. [64] Let T be a Lawvere theory. A simple extended
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matrix of terms in T is a matrix

M =


t11 · · · t1b u1

...
...

...

ta1 · · · tab ua

 (5)

where the tij 's and the ui's are k-ary terms of T (in the variables from

a �nite set X such that #X = k) with a > 1, b > 0 and k > 0.

De�nition 2.2. [64] Let M be a simple extended matrix of terms in

the Lawvere theory T as in (5) and C a T -category with �nite products.

We say that the a-ary relation r : R � Aa in C is M -closed when, for

each object Y in C and all morphisms y1, . . . , yk : Y → A, if, for each

j ∈ {1, . . . , b}, the morphism

(t1j(y1, . . . , yk), . . . , taj(y1, . . . , yk)) : Y → Aa

factors through r, then so does the morphism

(u1(y1, . . . , yk), . . . , ua(y1, . . . , yk)) : Y → Aa.

De�nition 2.3. [64] LetM be a simple extended matrix of terms in the

Lawvere theory T as in (5) and C a T -category with �nite products. We

say that the a-ary relation r : R� A1×· · ·×Aa in C is strictly M -closed

when, for any object Y in C and any family of morphisms

(yii′ : Y → Ai)i∈{1,...,a},i′∈{1,...,k},

if, for each j ∈ {1, . . . , b}, the morphism

(t1j(y11, . . . , y1k), . . . , taj(ya1, . . . , yak)) : Y → A1 × · · · ×Aa

factors through r, then so does the morphism

(u1(y11, . . . , y1k), . . . , ua(ya1, . . . , yak)) : Y → A1 × · · · ×Aa.

Here is the link between M -closedness and strict M -closedness.

Theorem 2.4. [64] Let T be a Lawvere theory, M a simple extended
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matrix of terms in T as in (5) and C a �nitely complete T -category.
Then, the following conditions are equivalent:

1. every relation r : R� Aa in C is M -closed,

2. every relation r : R� A1 × · · · ×Aa in C is strictly M -closed.

If the above conditions are satis�ed, we say that C has M -closed

relations. With this matrix notation, we have an easy characterisation

of algebraic categories with M -closed relations.

Theorem 2.5. [64] Let F : T → R be a central morphism of Lawvere

theories. Let also M be a simple extended matrix of terms in T as

in (5). Then, the T -enriched category R-Alg (induced by F ) has M -

closed relations if and only if there exists a b-ary term p in R such that

p(tιi1(x1, . . . , xk), . . . , t
ι
ib(x1, . . . , xk)) = uιi(x1, . . . , xk)

is a theorem of R for each i ∈ {1, . . . , a}, where tι denotes the interpre-
tation in R induced by F of the term t in T .

We now generalise this result to essentially algebraic categories.

Theorem 2.6. Let Γ be an essentially algebraic theory, T a Lawvere

theory and M a simple extended matrix of terms in T as in (5). Given

a T -enrichment on Mod(Γ) (as in Proposition 1.107), Mod(Γ) has M -

closed relations if and only if, for each s ∈ S, there exists a term ps : sb →
s of Γ such that

1. for each i ∈ {1, . . . , a}, ps(tsi1(x1, . . . , xk), . . . , t
s
ib(x1, . . . , xk)) is an

everywhere-de�ned term sk → s,

2. for each i ∈ {1, . . . , a},

ps(tsi1(x1, . . . , xk), . . . , t
s
ib(x1, . . . , xk)) = usi (x1, . . . , xk)

is a theorem of Γ.

Proof. Notice �rstly that a relation r : R � A1 × · · · × Aa in Mod(Γ)

can be seen as a submodel of A1 × · · · × Aa. We suppose that terms as
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in the statement exist in Γ and we are going to prove Mod(Γ) has M -

closed relations. So let R be a submodel of Aa and y1, . . . , yk : Y → A

homomorphisms such that

(t1j(y1, . . . , yk), . . . , taj(y1, . . . , yk)) : Y → Aa

factors through R for every j ∈ {1, . . . , b}. We have to prove that

(u1(y1, . . . , yk), . . . , ua(y1, . . . , yk)) : Y → Aa

also factors through R. In other words, we must show that, for each

s ∈ S and each x ∈ Ys,

(us1(y1(x), . . . , yk(x)), . . . , usa(y1(x), . . . , yk(x)))

belongs to Rs. But we know that

(ts1j(y1(x), . . . , yk(x)), . . . , tsaj(y1(x), . . . , yk(x))) ∈ Rs

for every j ∈ {1, . . . , b}. Thus

(us1(y1(x), . . . , yk(x)), . . . , usa(y1(x), . . . , yk(x)))

= (ps(ts11(y1(x), . . . , yk(x)), . . . , ts1b(y1(x), . . . , yk(x))), . . .

. . . , ps(tsa1(y1(x), . . . , yk(x)), . . . , tsab(y1(x), . . . , yk(x))))

= ps((ts11(y1(x), . . . , yk(x)), . . . , tsa1(y1(x), . . . , yk(x))), . . .

. . . , (ts1b(y1(x), . . . , yk(x)), . . . , tsab(y1(x), . . . , yk(x))))

∈ Rs

since R is closed under the operation ps.

Conversely, suppose Mod(Γ) has M -closed relations and let s ∈ S be

a sort. We denote by X the S-sorted set de�ned by Xs = {x1, . . . , xk}
and Xs′ = ∅ if s′ 6= s. Let R be the smallest submodel of FrΓ(X)a such

that

(ts1j(x1, . . . , xk), . . . , t
s
aj(x1, . . . , xk)) ∈ Rs

for each j ∈ {1, . . . , b}. It is not hard to prove that R is actually given
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by

Rs′ =
{

(q(ts11(x1, . . . , xk), . . . , t
s
1b(x1, . . . , xk)), . . .

. . . , q(tsa1(x1, . . . , xk), . . . , t
s
ab(x1, . . . , xk))) |

q : sb → s′ is a term of Γ such that

q(tsi1(x1, . . . , xk), . . . , t
s
ib(x1, . . . , xk)) : sk → s′

is everywhere-de�ned for all i ∈ {1, . . . , a}
}

for each s′ ∈ S. Let now Y be the S-sorted set de�ned by Ys = {y}
and Ys′ = ∅ if s′ 6= s. For l ∈ {1, . . . , k}, we consider the unique

Γ-homomorphism yl : FrΓ(Y )→ FrΓ(X) which sends y on xl. The mor-

phism

(t1j(y1, . . . , yk), . . . , taj(y1, . . . , yk)) : FrΓ(Y )→ FrΓ(X)a

factors through R for each j ∈ {1, . . . , b} since its image at y belongs

to Rs. But Mod(Γ) has M -closed relations, so we can say that the

morphism

(u1(y1, . . . , yk), . . . , ua(y1, . . . , yk)) : FrΓ(Y )→ FrΓ(X)a

factors through R. Evaluated at y, this means

(us1(x1, . . . , xk), . . . , u
s
a(x1, . . . , xk)) ∈ Rs.

In view of the description of Rs, this gives the expected term ps.

2.1.2 Examples

We now give some examples of categorical properties induced by simple

extended matrices.

Example 2.7. We consider T = Th[Set], M =

(
x y y x

x x y y

)
and

C a �nitely complete category. A binary relation R � A × B is said

to be difunctional when it is strictly M -closed. Explicitly, this means

that, given morphisms y11, y12 : Y ⇒ A and y21, y22 : Y ⇒ B in C such
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that (y11, y21), (y12, y21) and (y12, y22) : Y → A × B factor through R,

then (y11, y22) also factors through R. This is of course equivalent to R

being strictly

(
x y y x

u u v v

)
-closed. If C = Set, we can view a relation

R � A × B as a classical relation R ⊆ A × B. It is difunctional when

the implication

a1Rb1 ∧ a2Rb1 ∧ a2Rb2 ⇒ a1Rb2

holds for all a1, a2 ∈ A and b1, b2 ∈ B. A �nitely complete category C is
then called a Mal'tsev category when it has M -closed relations [29].

As a particular case of Theorem 2.5, we have the following Mal'tsev's

result.

Corollary 2.8. [87, 75] Let R be a Lawvere theory. R-Alg is a Mal'tsev

category if and only if R contains a ternary term p(x, y, z) such that

p(x, y, y) = x and p(x, x, y) = y are theorems of R.

Such a ternary term p(x, y, z) is called a Mal'tsev operation.

Example 2.9. Gp is a Mal'tsev category. A Mal'tsev operation p is

obtained as p(x, y, z) = xy−1z. The categories Heyt of Heyting algebras,

TopGp of topological groups, Ab and Setop are also a Mal'tsev categories

but Set, Mon and Top are not.

Here are some characterisations of Mal'tsev categories.

Theorem 2.10. [29] Let C be a �nitely complete category. The following

statements are equivalent.

1. C is a Mal'tsev category,

2. any relation r : R� A×B in C is difunctional,

3. any relation r : R� A×A in C is difunctional,

4. any re�exive relation in C is an equivalence relation,

5. any re�exive relation in C is symmetric,

6. any re�exive relation in C is transitive.
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In a regular context, we have even more characterisations.

Theorem 2.11. [28] Let C be a regular category. The following state-

ments are equivalent.

1. C is a Mal'tsev category,

2. the composite of two equivalence relations on the same object is

an equivalence relation,

3. if R and S are equivalence relations on the same object, then the

equality RS = SR holds.

We now focus on unital categories.

Example 2.12. [18, 64] Let T = Th[Set∗], M =

(
x 0 x

0 x x

)
and C

be a �nitely complete pointed category. When C has M -closed relations,

we say it is unital.

Let us again give the corresponding particular case of Theorem 2.5.

Corollary 2.13. Let R be a Lawvere theory. R-Alg is unital if and only

if R has a unique (up to theorems) constant term 0 and a binary term

u(x, y) such that u(x, 0) = x and u(0, x) = x are theorems of R.

A direct proof of this fact can be found in [15]. A binary term u(x, y)

satisfying such axioms is called a Jónsson-Tarski operation [71].

Example 2.14. The categories Mon, Gp, Ab and Setop
∗ are unital but

Set∗ is not.

In order to recover the usual de�nition of unital categories, let us

generalise the notion of strong and extremal epimorphisms.

De�nition 2.15. Let I be a set and (fi : Ai → B)i∈I a family of mor-

phisms with a common codomain in a category C. We say that these

morphisms are jointly epimorphic if, for any pair of parallel arrows

g, h : B ⇒ C, gfi = hfi for each i ∈ I implies g = h. Such jointly

epimorphic morphisms are said to be jointly extremaly epimorphic if any

monomorphism m : C � B through which each fi factors is necessarily
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an isomorphism. Jointly epimorphic morphisms (fi)i∈I are said to be

jointly strongly epimorphic if, given any monomorphism m : C � D,

any family (gi : Ai → C)i∈I and any morphism h : B → D such that

hfi = mgi for each i ∈ I, there exists a morphism d : B → C such that

md = h (and dfi = gi for each i ∈ I).

Ai
fi //

gi
��

B

h
��d~~

C //
m
// D

This terminology is consistent with the previously de�ned one in the

following sense.

Proposition 2.16. Let I be a set and (fi : Ai → B)i∈I a family of

morphisms in a category C in which the coproduct
∐
i∈I Ai exists. Let

also f :
∐
i∈I Ai → B be the morphism induced by the fi's. Then, these

morphisms (fi)i∈I are jointly epimorphic (resp. jointly extremaly epimor-

phic, resp. jointly strongly epimorphic) if and only if f is an epimorphism

(resp. an extremal epimorphism, resp. a strong epimorphism).

As in the classical case, it gets simpler with �nite limits.

Proposition 2.17. In a category C with �nite limits, jointly extremaly

epimorphic families of morphisms coincide with jointly strongly epimor-

phic ones. Moreover, if I is a set and (fi : Ai → B)i∈I a family of

morphisms in C such that, if they factor through a common monomor-

phism m, this m is an isomorphism, then this family (fi)i∈I is jointly

epimorphic and so jointly strongly epimorphic.

We can now give the classical characterisation of unital categories.

Proposition 2.18. [18] The following conditions on a �nitely complete

pointed category C are equivalent:

1. C is unital,

2. for each objects X,Y in C, the morphisms (1X , 0) and (0, 1Y ) are

jointly strongly epimorphic,

X
(1X ,0)// X × Y Y

(0,1Y )oo
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3. for each object X in C, the morphisms (1X , 0) and (0, 1X) are

jointly strongly epimorphic.

X
(1X ,0)// X ×X X

(0,1X)oo

Let us now say a word on strongly unital categories.

Example 2.19. [18, 64] Let T = Th[Set∗] and M =

(
x 0 0 x

x x y y

)
.

A �nitely complete pointed category C with M -closed relations is called

a strongly unital category.

Example 2.20. The category Gp is strongly unital. Although Mon is

unital, it is not strongly unital.

Proposition 2.21. [18, 15] The following conditions on a �nitely com-

plete pointed category C are equivalent:

1. C is strongly unital,

2. in C, for every diagram

A
s // C
f
oo

g
// B

too

where fs = 1A, gt = 1B and ft = 0, the factorisation

(f, g) : C → A×B

is a strong epimorphism.

Our last example is about subtractive categories.

Example 2.22. [63] We consider T = Th[Set∗] andM =

(
x 0 x

x x 0

)
.

A �nitely complete pointed category with M -closed relations is called a

subtractive category.

Let us particularise Theorem 2.5 one more time.

Corollary 2.23. [100, 63] Let R be a Lawvere theory. R-Alg is sub-

tractive if and only if R has a unique (up to theorems) constant term
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0 and a binary term u(x, y) such that u(x, 0) = x and u(x, x) = 0 are

theorems of R.

Such a binary term u is called a subtraction.

Here is how these properties are linked to each other.

Proposition 2.24. [18, 15, 63] Let C be a �nitely complete pointed

category. The following implications hold:

1. if C is a Mal'tsev category, it is strongly unital,

2. C is strongly unital if and only if it is unital and subtractive.

In order to stress another link between those properties, we recall the

construction of the category of points.

De�nition 2.25. [17] A point in a category C is a pair of morphisms

(p : A� I, s : I � A) such that ps = 1I . A morphism of points (p, s)→
(p′, s′) is a pair of morphisms (u : A→ A′, v : I → I ′) such that vp = p′u

and us = s′v.

A
u //

p
����

A′

p′
����

I v
//

s

OO

I ′

s′

OO

This forms the category Pt(C) of points of C.

Together with this category, we have a forgetful functor

π : Pt(C) −→ C

A
p
// // I

soo 7−→ I

(u, v) 7−→ v.

Proposition 2.26. [17] Let C be a category with pullbacks of split epi-

morphisms along arbitrary morphisms. The functor π : Pt(C) → C is a

�bration.

This �bration is called the �bration of points of C. The �bre over

I ∈ C of this �bration is denoted by PtI(C) and is a pointed category

(the zero object is (1I , 1I)). If v : J → I is a morphism of C, the change
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of base functor v∗ : PtI(C)→ PtJ(C) sends (p, s) to (q, t), where (B, q, u)

is the pullback of p along v

B
u //

q
����

A

p
����

J v
//

t

OO

I

s

OO

and t is the unique morphism such that qt = 1J and ut = sv. If

f : (p, s)→ (p′, s′) is a morphism in the �bre PtI(C),

A
f //

p �� ��

A′

p′

����
I

s

__

s′

??

the corresponding morphism v∗(f) : (q, s) → (q′, s′) is the unique mor-

phism satisfying q′v∗(f) = q and u′v∗(f) = fu.

Looking at these �bres leads to the following characterisations of

Mal'tsev categories.

Theorem 2.27. [18, 63] Let C be a �nitely complete category. The

following statements are equivalent:

1. C is a Mal'tsev category,

2. for each I ∈ C, PtI(C) is a Mal'tsev category,

3. for each I ∈ C, PtI(C) is unital,

4. for each I ∈ C, PtI(C) is strongly unital,

5. for each I ∈ C, PtI(C) is subtractive.

A generalisation of the previous theorem using the matrix presenta-

tion can be found in [65]. The equivalence between points 1 and 3 can

be stated in the following way (see also Proposition 2.18).

Theorem 2.28. [18] A �nitely complete category C is a Mal'tsev cate-
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gory if and only if, for any pullback of split epimorphisms,

P
f ′
// //

g′����

Y

g
����

rYoo

X
f // //

lX

OO

Z
s

oo

t

OO

the induced morphisms lX and rY (de�ned by g′lX = 1X , f ′lX = tf ,

g′rY = sg and f ′rY = 1Y ) are jointly strongly epimorphic.

2.1.3 Approximate co-operations

We have seen that Mal'tsev �nitary one-sorted algebraic categories are

characterised by the presence of a Mal'tsev operation p(x, y, z) (see Cor-

ollary 2.8). Of course, in a general category, such a characterisation does

not exist any more. D. Bourn and Z. Janelidze showed however that in

the regular context (with binary coproducts), an approximate Mal'tsev

co-operation still exists [21]. Approximate stands here for the fact that

it is not a map Y → 3Y but instead p : Z → 3Y with an approximation

d : Z → Y . This co-operation p satis�es the Mal'tsev axioms, up to

the approximation d. Mal'tsev categories are then characterised by the

condition that such a couple (p, d) can be found with d being a regular

epimorphism. Z. Janelidze generalised this with his matrix presentation

in [68]. Let us �rst recall the Mal'tsev case and then the more general

matrix case.

De�nition 2.29. [21] Let C be a �nitely complete category with binary

coproducts and Y an object of C. An approximate Mal'tsev co-operation

on Y is a morphism p : Z → 3Y together with an approximation d : Z →
Y such that the square

Z
p //

d

��

3Y(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

Y
(ι1,ι2)

// (2Y )2

commutes, where ι1 and ι2 are the coproduct injections.

For each object Y , one can build the universal approximate Mal'tsev
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co-operation on Y , denoted (pY , dY ), by considering the following pull-

back.

W (Y )
pY //

dY

��

3Y(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

Y
(ι1,ι2)

// (2Y )2

Theorem 2.30. [21] Let C be a regular category with binary coproducts.
The following statements are equivalent:

1. C is a Mal'tsev category,

2. for each Y ∈ C, there is an approximate Mal'tsev co-operation on

Y for which the approximation d is a regular epimorphism,

3. for each Y ∈ C, the universal approximate Mal'tsev co-operation

on Y is such that dY is a regular epimorphism.

Let us now discuss its generalisation appearing in [68].

De�nition 2.31. [68] Let T be a Lawvere theory and M a simple ex-

tended matrix of terms in T as in (5). Let also C be a �nitely complete

T -category with �nite coproducts and Y one of its objects. An approx-

imate co-solution for M on Y is a morphism p : Z → bY together with

an approximation d : Z → Y such that the square

Z
p //

d

��

bY
tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


��

Y
(uY,op

1 ,...,uY,op
a )

// (kY )a

commutes.

For each object Y , one can build the universal approximate co-so-

lution for M on Y , denoted (pY , dY ), by considering the following pull-
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back square.

W (Y )
pY //

dY

��

bY
tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


��

Y
(uY,op

1 ,...,uY,op
a )

// (kY )a

And here is the generalisation of Theorem 2.30.

Theorem 2.32. [68] Let T be a Lawvere theory and M a simple ex-

tended matrix of terms in T . The following conditions on a regular

T -category C with �nite coproducts are equivalent:

1. C has M -closed relations,

2. for each Y ∈ C, there is an approximate co-solution for M on Y

for which the approximation d is a regular epimorphism,

3. for each Y ∈ C, the universal approximate co-solution for M on Y

is such that dY is a regular epimorphism.

2.1.4 Categories with M-closed strong relations

Considering only strong relations instead of all relations, one gets the no-

tion of a category with M -closed strong relations. If M is the Mal'tsev

matrix of Example 2.7, we recover weakly Mal'tsev categories introduced

in [91], while if M is the matrix de�ning unital categories (see Exam-

ple 2.12), we get the notion of a weakly unital category [90]. In both

cases, the idea is to replace `jointly strongly epimorphic' by `jointly epi-

morphic' in their respective characterisations.

Strong monomorphisms are dual to strong epimorphisms, i.e., these

are the monomorphisms m for which e ⊥ m for every epimorphism e. In

addition to the dual properties of those in Proposition 1.15, one also has

the following.

Proposition 2.33. In a category with pullbacks, a morphism m such

that any epimorphism is orthogonal to it is necessarily a monomorphism,
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and thus a strong monomorphism. Moreover, the pullback of a strong

monomorphism along an arbitrary morphism is again a strong monomor-

phism.

De�nition 2.34. Let C be a category with �nite limits and a > 1 a

natural number. An a-ary strong relation in C is a relation r : R �

A1 × · · · ×Aa which is also a strong monomorphism.

Theorem 2.35. Let T be a Lawvere theory,M a simple extended matrix

of terms in T as in (5) and C a �nitely complete T -category. Then, the
following conditions are equivalent:

1. every strong relation r : R� Aa in C is M -closed,

2. every strong relation r : R� A1×· · ·×Aa in C is strictlyM -closed.

Proof. 2 ⇒ 1 being trivial, let us prove 1 ⇒ 2. So, let us consider a

strong relation r : R� A1×· · ·×Aa in C. Since r is strong, its pullback
s along π1 × · · · × πa is also strong, where πi : A1 × · · · ×Aa → Ai is the

i-th projection.

S //
��

s
��

R
��
r
��

(A1 × · · · ×Aa)a π1×···×πa
// A1 × · · · ×Aa

We conclude the proof by Proposition 1.9 in [64] which says that r is

strictly M -closed if and only if s is M -closed.

If the above conditions are satis�ed, we say that C has M -closed

strong relations. In view of the following examples, we could also have

written that C is `weakly with M -closed relations'.

Example 2.36. [91, 69] Let T = Th[Set], M =

(
x y y x

x x y y

)
and C

be a �nitely complete category. When C has M -closed strong relations,

we say it is weakly Mal'tsev.

The reader should compare the above example and following propo-

sition with Example 2.7 and Theorem 2.28.
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Proposition 2.37. [91, 69] A �nitely complete category C is weakly

Mal'tsev if and only if, for any pullback of split epimorphisms,

P
f ′
// //

g′����

Y

g
����

rYoo

X
f // //

lX

OO

Z
s

oo

t

OO

the induced morphisms lX and rY (de�ned by g′lX = 1X , f ′lX = tf ,

g′rY = sg and f ′rY = 1Y ) are jointly epimorphic.

Example 2.38. Of course, every Mal'tsev category is weakly Mal'tsev.

The category of commutative monoids with cancellation is a weakly

Mal'tsev category but not a Mal'tsev one (this is due to G. Janelidze,

see [91]). Topop is also a weakly Mal'tsev category (see [92]). This

example can be generalised to other topological contexts using (T, V )-

categories (see [92, 32, 84] for more details).

Example 2.39. Let T = Th[Set∗], M =

(
x 0 x

0 x x

)
and C be a

�nitely complete pointed category. If C has M -closed strong relations, it

is called weakly unital [90].

Proposition 2.40. The following conditions on a pointed category C
with �nite limits are equivalent:

1. C is weakly unital,

2. for all objects X and Y in C, the product injections

X
(1X ,0)// X × Y Y

(0,1Y )oo

are jointly epimorphic,

3. for any object X in C, the product injections

X
(1X ,0)// X ×X X

(0,1X)oo

are jointly epimorphic.
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Proof. We �rst prove 1 ⇒ 2. Let f, g : X × Y ⇒ Z be morphisms

such that f(1X , 0) = g(1X , 0) and f(0, 1Y ) = g(0, 1Y ). Their equaliser

e : E � X × Y is a strong relation through which (pX , 0) and (0, pY ) :

X × Y → X × Y factor. Thus, by assumption, 1X×Y = (pX , pY ) :

X×Y → X×Y also factors through it, so that e is an isomorphism and

f = g.

2 ⇒ 3 being trivial, it remains to prove 3 ⇒ 1. So, given a strong

relation r : R � A2 and a morphism x : X → A such that (x, 0) and

(0, x) : X → A2 factor through r, we have to prove that (x, x) also factors

through r. Let us consider the pullback s of r along x2.

S //
��

s
��

R
��
r
��

X2

x2
// A2

The relation s is strong, (1X , 0) and (0, 1X) : X → X2 factor through it

and we only have to prove that (1X , 1X) also factors through s. But since

(1X , 0) and (0, 1X) are supposed to be jointly epimorphic, s is an epimor-

phism. Together with the fact that it is also a strong monomorphism, s

is an isomorphism and so (1X , 1X) factors through it.

Again, compare this with Example 2.12 and Proposition 2.18.

2.2 Categories with (M,X)-closed relations

In order to encompass also the example of n-permutable categories [27],

we present in this section a more general type of matrices [67] which, in

a regular context, also give rise to conditions on categories.

De�nition 2.41. [67] Let T be a Lawvere theory. An extended matrix

(M,X) of terms in T is given by a matrix

M =


t11 · · · t1b u11 · · · u1b′

...
...

...
...

ta1 · · · tab ua1 · · · uab′

 (6)
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with a > 1, b > 0, b′ > 0 and where the uij 's are k-ary terms of T in the

variables from a �nite set X ′ with #X ′ = k and the tij 's are l-ary terms

of T in the variables from X ′′ ⊆ X ′ with #X ′′ = l and X = X ′ \X ′′.

For simplicity, we will often think of X ′′ as {x1, . . . , xl} and X

as {xl+1, . . . , xk}.

De�nition 2.42. [67] Let T be a Lawvere theory, (M,X) an extended

matrix of terms in T as in (6) and C a regular T -category. An a-ary

relation r : R� Aa in C is said to be (M,X)-closed if, when we consider

the pullbacks

P
f ′ //

��

f

��

Rb
��

rb

��
Al  tA11 ··· tA1b...

...
tAa1 ··· tAab


// (Aa)b

Q
g′ //

��

g

��

Rb
′

��

rb
′

��
Ak 

uA11 ··· uA1b′...
...

uAa1 ··· uAab′


// (Aa)b

′

and

T // t′ //

t

��

Q
��
g

��
Ak ∼= Al ×Ak−l

π1=(p1,...,pl)
��

P //
f

// Al

then t is a regular epimorphism (or, in other words, f factors through the

image of π1g). Here, pj : Ak → A is the j-th projection for 1 6 j 6 k.

We also have a description of (M,X)-closedness in terms of gener-

alised elements as in the following proposition.

Proposition 2.43. Let (M,X) be an extended matrix of terms in the

Lawvere theory T as in (6). Let also r : R� Aa be an a-ary relation in

the regular T -category C. Then, R is (M,X)-closed if and only if, for
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each morphism y = (y1, . . . , yl) : Y → Al in C such that

(t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl)) : Y → Aa

factors through r for each j ∈ {1, . . . , b}, there exists a regular epimor-

phism p : Z � Y and morphisms zl+1, . . . , zk : Z → A such that the

map Z → Aa

(u1j(y1p, . . . , ylp, zl+1, . . . , zk), . . . , uaj(y1p, . . . , ylp, zl+1, . . . , zk))

factors through r for each j ∈ {1, . . . , b′}.

Proof. For the `if part', it su�ces to consider, using the notations of

De�nition 2.42, y = f . We then get a regular epimorphism p : Z � P

and morphisms zl+1, . . . , zk : Z → A such that, for each j ∈ {1, . . . , b′},
the morphism Z → Aa

(u1j(p1fp, . . . , plfp, zl+1, . . . , zk), . . . , uaj(p1fp, . . . , plfp, zl+1, . . . , zk))

factors as rwj . Considering the morphisms

(w1, . . . , wb′) : Z → Rb
′

and

(p1fp, . . . , plfp, zl+1, . . . , zk) : Z → Ak,

we get a morphism z : Z → Q such that

gz = (p1fp, . . . , plfp, zl+1, . . . , zk)

which implies π1gz = fp. Therefore, p factors through t and so t is a

regular epimorphism.

For the `only if part', let vj : Y → R be the unique morphism such

that

rvj = (t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl))

for each j ∈ {1, . . . , b}. Then, let h : Y → P be the unique morphism

such that fh = (y1, . . . , yl) and f ′h = (v1, . . . , vb). Eventually, we con-
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struct p as the pullback of t along h

Z
p′ //

p
����

T

t
����

Y
h
// P

and zj = pjgt
′p′ for each j ∈ {l + 1, . . . , k}. It remains to see that

uij(y1p, . . . , ylp, zl+1, . . . , zk)

= uij(p1fhp, . . . , plfhp, pl+1gt
′p′, . . . , pkgt

′p′)

= uij(p1ftp
′, . . . , plftp

′, pl+1gt
′p′, . . . , pkgt

′p′)

= uij(p1gt
′p′, . . . , pkgt

′p′)

= uij(p1, . . . , pk)gt
′p′

= uAijgt
′p′

for all 1 6 i 6 a and 1 6 j 6 b′, and so

(u1j(y1p, . . . , ylp, zl+1, . . . , zk), . . . , uaj(y1p, . . . , ylp, zl+1, . . . , zk))

= (uA1j , . . . , u
A
aj)gt

′p′

= rpjg
′t′p′

factors through r for each j ∈ {1, . . . , b′}.

De�nition 2.44. Let T be a Lawvere theory and (M,X) an extended

matrix of terms in T as in (6). We say that the regular T -category
C has (M,X)-closed relations if every a-ary relation R � Aa in C is

(M,X)-closed.

Matrices from Section 2.1 are particular examples of extended ma-

trices.

Example 2.45. If M is a simple extended matrix of terms in the Law-

vere theory T , it gives rise to the extended matrix (M,∅) of terms in T .
In this case, b′ = 1 and l = k.

Proposition 2.46. [67] Let T be a Lawvere theory,M a simple extended

matrix of terms in T as in (5) and C a regular T -category. An a-ary
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relation R� Aa in C isM -closed if and only if it is (M,∅)-closed. Thus

C has M -closed relations if and only if it has (M,∅)-closed relations.

Let us now discuss the case of n-permutable categories. If R� X×Y
and S � Y × X are two binary relations in a regular category, and

n > 1 a natural number, we denote by (R,S)n the relation given by the

composite

(R,S)n = RSR · · ·

which contains exactly n occurrences of R or S. If R = S and X = Y ,

we write as usual (R,R)n = Rn.

De�nition 2.47. [27] Let n > 2 be a natural number. A regular cate-

gory C is said to be n-permutable if, given two equivalence relations R

and S on a same object, the identity

(R,S)n = (S,R)n

holds.

Example 2.48. In view of Theorem 2.11, a 2-permutable category is

nothing else than a regular Mal'tsev category. A 3-permutable category

is also called a Goursat category [27].

Theorem 2.49. [27, 70] Let n > 2 be a natural number and C a regular
category. The following conditions are equivalent:

1. C is n-permutable,

2. (R,S)n = (S,R)n for any two e�ective equivalence relations R and

S on the same object,

3. (P, P op)n+1 6 (P, P op)n−1 for any binary relation P ,

4. (E,Eop)n−1 is an equivalence relation for any re�exive relation E,

5. Eop 6 En−1 for any re�exive relation E.

Example 2.50. We consider here the case T = Th[Set] and

(M,X) =

((
x y y x z1 z2 · · · zn−2

x x y z1 z2 · · · zn−2 y

)
, {z1, . . . , zn−2}

)
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for a natural number n > 2. We can prove that a regular category has

(M,X)-closed relations if and only if it is n-permutable, but it would be

very long to do it directly. We will instead prove it as an application of

Barr's Embedding Theorem 4.2 (see Proposition 4.6).

As for simple extended matrices, we can nicely characterise �nitary

one-sorted algebraic categories with (M,X)-closed relations.

Theorem 2.51. [67] Let F : T → R be a central morphism of Law-

vere theories. Let also (M,X) be an extended matrix of terms in T as

in (6). Then, the regular T -enriched category R-Alg (induced by F ) has

(M,X)-closed relations if and only if there exist b-ary terms p1, . . . , pb′

and l-ary terms q1, . . . , qk−l in R such that

pj(t
ι
i1(x1, . . . , xl), . . . , t

ι
ib(x1, . . . , xl))

= uιij(x1, . . . , xl, q1(x1, . . . , xl), . . . , qk−l(x1, . . . , xl))

is a theorem of R for each i ∈ {1, . . . , a} and each j ∈ {1, . . . , b′}, where
tι denotes the interpretation in R induced by F of the term t in T .

We now prove a similar characterisation of essentially algebraic cate-

gories with (M,X)-closed relations. Since images in those categories are

a bit harder to describe than in the algebraic case, we need more terms

here.

Theorem 2.52. Let Γ be an essentially algebraic theory such that

Mod(Γ) is regular, T a Lawvere theory and (M,X) an extended ma-

trix of terms in T as in (6). Given a T -enrichment of Mod(Γ) (as in

Proposition 1.107), Mod(Γ) has (M,X)-closed relations if and only if,

for each s ∈ S, there exists in Γ

� a term πs :
∏
u∈U su → s,

� for every v ∈ {1, . . . , k} and u ∈ U , an everywhere-de�ned term

quv : sl → su,

� for every j ∈ {1, . . . , b′} and u ∈ U , a term puj : sb → su

such that
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1. the term

puj (tsi1(x1, . . . , xl), . . . , t
s
ib(x1, . . . , xl)) : sl → su

is everywhere-de�ned for all i ∈ {1, . . . , a}, j ∈ {1, . . . , b′} and

u ∈ U ,

2. the theorem

puj (tsi1(x1, . . . , xl), . . . , t
s
ib(x1, . . . , xl))

= usuij (qu1 (x1, . . . , xl), . . . , q
u
k (x1, . . . , xl))

holds in Γ for all i ∈ {1, . . . , a}, j ∈ {1, . . . , b′} and u ∈ U ,

3. the term

πs((quv (x1, . . . , xl))u∈U ) : sl → s

is everywhere-de�ned for each v ∈ {1, . . . , l},

4. the theorem

πs((quv (x1, . . . , xl))u∈U ) = xv

holds in Γ for each v ∈ {1, . . . , l}.

Proof. Suppose �rstly that such terms are given. Let R ⊆ Aa be an

a-ary relation on A in Mod(Γ). Let also P and Q be as in the de�nition

of (M,X)-closedness. We have to prove that f : P � Al factors through

the image of π1g : Q → Al. Let s ∈ S and (a1, . . . , al) ∈ Ps ⊆ Als. We

know that

(ts1j(a1, . . . , al), . . . , t
s
aj(a1, . . . , al)) ∈ Rs

for each j ∈ {1, . . . , b}. So, for each j ∈ {1, . . . , b′} and u ∈ U ,(
usu1j (q

u
1 (a1, . . . , al), . . . , q

u
k (a1, . . . , al)), . . .

. . . , usuaj (q
u
1 (a1, . . . , al), . . . , q

u
k (a1, . . . , al))

)
=
(
puj (ts11(a1, . . . , al), . . . , t

s
1b(a1, . . . , al)), . . .

. . . , puj (tsa1(a1, . . . , al), . . . , t
s
ab(a1, . . . , al))

)
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= puj ((ts11(a1, . . . , al), . . . , t
s
a1(a1, . . . , al)), . . .

. . . , (ts1b(a1, . . . , al), . . . , t
s
ab(a1, . . . , al)))

∈ Rsu

since R is a submodel of Aa. This means that

bu = (qu1 (a1, . . . , al), . . . , q
u
k (a1, . . . , al)) ∈ Qsu ⊆ Aksu

for all u ∈ U . Therefore,

(a1, . . . , al) = (πs((qu1 (a1, . . . , al))u∈U ), . . . , πs((qul (a1, . . . , al))u∈U ))

= πs(((qu1 (a1, . . . , al), . . . , q
u
l (a1, . . . , al)))u∈U )

= πs((π1g(bu))u∈U )

∈ Im(π1g)s

and R is (M,X)-closed.

Conversely, let us suppose that Mod(Γ) has (M,X)-closed relations.

Let s ∈ S and Y be the S-sorted set such that Ys = {y1, . . . , yl} and
Ys′ = ∅ for s′ 6= s. We denote by R the smallest a-ary homomorphic

relation on FrΓ(Y ) such that

(ts1j(y1, . . . , yl), . . . , t
s
aj(y1, . . . , yl)) ∈ Rs

for each j ∈ {1, . . . , b}. It is easy to prove that for each s′ ∈ S,

Rs′ =
{
a-tuple of everywhere-de�ned terms

(t(ts11(y1, . . . , yl), . . . , t
s
1b(y1, . . . , yl)), . . .

. . . , t(tsa1(y1, . . . , yl), . . . , t
s
ab(y1, . . . , yl))) |

t : sb → s′ is a term of Γ
}

⊆ FrΓ(Y )as′ .

Let P and Q be as in the de�nition of (M,X)-closedness for R. Since

(y1, . . . , yl) ∈ Ps and R is (M,X)-closed, (y1, . . . , yl) ∈ Im(π1g)s. There-

fore, there exists a term πs :
∏
u∈U su → s and an element qu ∈ Qsu for
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each u ∈ U such that

πs((π1g(qu))u∈U ) = (y1, . . . , yl).

So, for each u ∈ U , using the description of Qsu , there exist everywhere-

de�ned terms qu1 , . . . , q
u
k : sl → su such that

(usu1j (q
u
1 , . . . , q

u
k ), . . . , usuaj (q

u
1 , . . . , q

u
k )) ∈ Rsu

for any j ∈ {1, . . . , b′} and the term

πs((quv (y1, . . . , yl))u∈U )

is everywhere-de�ned and equal to yv for each v ∈ {1, . . . , l}. The above
description of Rsu gives the terms puj : sb → su for every u ∈ U and

j ∈ {1, . . . , b′} with the required properties.

Of course, using the remark after Proposition 1.84, if Γ is �nitary,

we can consider that πs is a �nitary term
∏m
u=1 su → s. This case has

been proved in [59]. If we consider the matrix from Example 2.50, we get

in this way a syntactic characterisation of n-permutable locally (�nitely)

presentable categories. Another characterisation of regular n-permutable

categories of the form Lex(D, Set) for a small �nitely complete category

D is proved in [47] in terms of D. Since �nitely presentable objects in the

category Mod(Γ) are hard to understand, it does not seem obvious how

to lift the characterisation from [47] to the above syntactic one. More-

over, with our Theorem 2.6, we described Mal'tsev locally presentable

categories with no assumption of regularity.

Let us conclude this chapter with a generalisation of approximate co-

solutions for M (De�nition 2.31 and Theorem 2.32) from the previous

section to the extended matrices (M,X). The n-permutable case appears

in [97] while the general case is from [59]. In view of Theorem 2.51, we

now need several approximate co-operations.

De�nition 2.53. [59] Let T be a Lawvere theory and (M,X) an ex-

tended matrix of terms in T as in (6). Let also C be a regular T -category
with �nite coproducts and Y an object of C. An approximate co-solution
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for (M,X) on Y is a span

Z
(q1,...,qk−l)

##
d

��

(p1,...,pb′ )

||
(bY )b

′
Y (lY )k−l

satisfying  tY,op
i1...
tY,op
ib

 pj = uij(ι1d, . . . , ιld, q1, . . . , qk−l) : Z → lY

for all i ∈ {1, . . . , a} and j ∈ {1, . . . , b′}, where ι1, . . . , ιl : Y → lY are

the coproduct injections.

For any object Y in C, there is a universal such. Let L be the following

product,

L = (bY )b
′ × Y × (lY )k−l

(q′1,...,q
′
k−l)

))
d′

��

(p′1,...,p
′
b′ )

vv
(bY )b

′
Y (lY )k−l

consider the equaliser

W (Y ) //
e // L



tY,op
i1...
tY op
ib

p′j

i∈{1,...,a}
j∈{1,...,b′} //

(uij(ι1d′,...,ιld′,q′1,...,q′k−l)) i∈{1,...,a}
j∈{1,...,b′}

// (lY )a×b
′

and let dY = d′e, (qY1 , . . . , q
Y
k−l) = (q′1e, . . . , q

′
k−le) and (pY1 , . . . , p

Y
b′ ) =

(p′1e, . . . , p
′
b′e). Then

W (Y )

(qY1 ,...,q
Y
k−l)

$$
dY

��

(pY1 ,...,p
Y
b′ )

zz
(bY )b

′
Y (lY )k−l
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is the universal approximate co-solution for (M,X) on Y in the sense

that any other factorises uniquely through it.

Theorem 2.54. [59] Let T be a Lawvere theory and (M,X) an extended

matrix of terms in T . The following conditions on a regular T -category C
with �nite coproducts are equivalent:

1. C has (M,X)-closed relations,

2. for each Y ∈ C, there is an approximate co-solution for (M,X) on

Y for which d is a regular epimorphism,

3. for each Y ∈ C, the universal approximate co-solution for (M,X)

on Y is such that dY is a regular epimorphism.

Proof. 3⇒ 2 is obvious and 2⇒ 3 follows from the universality ofW (Y ).

Let us prove 1 ⇒ 2. So, let Y ∈ C and consider the pullbacks

P
f ′ //

f

��

(bY )b


tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


b

��
(lY )l  tlY11 ··· tlY1b...

...
tlYa1 ··· tlYab


// ((lY )a)b

Q
g′ //

g

��

(bY )b
′


tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


b′

��
(lY )k 

ulY11 ··· ulY1b′...
...

ulYa1 ··· ulYab′


// ((lY )a)b

′
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and

T
t′ //

t

��

Q

g

��
(lY )k ∼= (lY )l × (lY )k−l

π1

��
P

f
// (lY )l.

Since the image of

bY


tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


// (lY )a

is an (M,X)-closed relation, t is a regular epimorphism. In addition, the

diagram

Y
(ι1,...,ιb) //

(ι1,...,ιl)

��

(bY )b


tY,op
11 ··· tY,op

a1...
...

tY,op
1b ··· tY,op

ab


b

��
(lY )l  tlY11 ··· tlY1b...

...
tlYa1 ··· tlYab


// ((lY )a)b

commutes and so (ι1, . . . , ιl) factors through f . Hence, if we consider the

pullback

Z
d′ //

d

����

Q

g

��
(lY )k ∼= (lY )l × (lY )k−l

π1

��
Y

(ι1,...,ιl)
// (lY )l

the morphism d : Z � Y , being a pullback of t, is a regular epimorphism.

Therefore, we have the expected approximate co-solution for (M,X)
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on Y :

Z
π2gd′

##
d
����

g′d′

||
(bY )b

′
Y (lY )k−l

It is actually an approximate co-solution for (M,X) on Y since, for each

i ∈ {1, . . . , a} and each j ∈ {1, . . . , b′}, by de�nition of the pullback Q,

we know that tY,op
i1...
tY,op
ib

 p′jg
′d′ = ulYij gd

′

= uij(p
′′
1, . . . , p

′′
k)gd

′

= uij(p
′′
1gd
′, . . . , p′′kgd

′)

= uij(ι1d, . . . , ιld, p
′′
l+1gd

′, . . . , p′′kgd
′)

where p′1, . . . , p
′
b′ : (bY )b

′ → bY and p′′1, . . . , p
′′
k : (lY )k → lY are the prod-

uct projections.

It remains thus to prove 3 ⇒ 1. Let r : R� Aa be an a-ary relation

in C. We are going to use Proposition 2.43 to prove that R is (M,X)-

closed. So, we consider a morphism y = (y1, . . . , yl) : Y → Al such that

(t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl)) : Y → Aa

factors through r for each j ∈ {1, . . . , b}. By assumption, we have a

regular epimorphism dY : W (Y )� Y and a morphism

zv =

( y1...
yl

)
qYv−l : W (Y )→ A

for each v ∈ {l + 1, . . . , k}. Now, for each j ∈ {1, . . . , b′},

(u1j(y1d
Y , . . . , yld

Y , zl+1, . . . , zk), . . . , uaj(y1d
Y , . . . , yld

Y , zl+1, . . . , zk))

=

(( y1...
yl

)
u1j(ι1d

Y , . . . , ιld
Y , qY1 , . . . , q

Y
k−l), . . .

. . . ,

( y1...
yl

)
uaj(ι1d

Y , . . . , ιld
Y , qY1 , . . . , q

Y
k−l)

)
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=

( y1...
yl

) tY,op
11...
tY,op
1b

 pj , . . . ,

( y1...
yl

) tY,op
a1...
tY,op
ab

 pj


=

(
t11(y1,...,yl) ··· ta1(y1,...,yl)...

...
t1b(y1,...,yl) ··· tab(y1,...,yl)

)
pj

which factors through r by assumption on y1, . . . , yl. This proves that R

is (M,X)-closed.





Chapter 3

Unconditional exactness

properties

The free co�ltered limit completion of a small �nitely complete cate-

gory C is obtained as the Yoneda embedding C ↪→ Lex(C, Set)op [7, 44].

One of the crucial part of Barr's proof for his embedding theorem [10]

is the fact that, if C is regular, then so is Lex(C, Set)op. Since we will

need the same `preservation' if C has (M,X)-closed relations for our em-

bedding theorems, we are going to study in this chapter such properties

which are `preserved' under this completion.

We thus devote the �rst section of this chapter to precisely de�ne

what we call an `unconditional exactness property'. Roughly speaking,

this is a property which can be stated as `if we start with a �nite diagram

of a given shape in C and add to it some �nite (co)limits, then some �nite

(co)cones are also (co)limits'. This is called unconditional to contrast

with properties of the kind: `if some (co)cones are (co)limits, then some

others are as well'. Many properties can be expressed as unconditional

exactness properties: regularity, having (M,X)-closed relations, being

Mal'tsev exact, abelian, and so forth (see Examples 3.15, 3.16 and 3.17).

We then prove in Section 3.2 that these unconditional exactness prop-

erties are `preserved' under the free co�ltered limit completion. This gen-

eralises many already existing theorems (but not all), see Remark 3.22.

As we said above, this will be used as a crucial tool in our embedding

theorems. In addition, it will be shown in Subsection 3.2.2 how this

99
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preservation property can be used to remove an assumption on the exis-

tence of some colimits in a theorem.

3.1 De�nition and examples

Since we would like to have as example of unconditional exactness prop-

erties the one of having (M,X)-closed relations for an extended matrix

(M,X) of terms in a commutative Lawvere theory T , we will actually

de�ne T -unconditional exactness properties. Roughly speaking, it is the

collection of

� a shape of diagram E0,

� an algorithm of construction of some �nite (co)limits from this

diagram (and some factorisations induced by them),

� some speci�ed �nite (co)cones in the resulting diagram.

In this language, a T -category C satis�es it if, when we start with a dia-

gram of shape E0 in C and when we add to it the �nite (co)limits speci�ed

by the algorithm, then the speci�ed �nite (co)cones are (co)limits. This

is equivalent to ask that some speci�ed morphisms are isomorphisms.

In order to de�ne them properly, we need to recall the notion of a

conditional graph (see for instance the �rst volume of [14]). Graph theory

was invented by Euler [39] in 1736, see e.g. [99] for recent developments.

De�nition 3.1. The category Graph of graphs is the two-sorted alge-

braic category Σ-Alg where Σ is the S-sorted signature of algebras with

S = {∗A, ∗O} de�ned by Σ = {d, c : ∗A → ∗O}. As usual, ifG is the graph

d, c : A⇒ O, A = ar(G) is the set of arrows of G, O = ob(G) is the set

of objects of G and an arrow f ∈ A is represented as f : d(f)→ c(f).

De�nition 3.2. Let G be a graph. A path in G is a non-empty �nite

sequence p = (A1, f1, A2, f2, . . . , An) alternating objects Ai and arrows

fi, the �rst and the last item being objects and each fi is an arrow

Ai → Ai+1. In this case we write p : A1 → An.

De�nition 3.3. A commutativity condition on a graph G is a pair of

paths ((A1, f1, . . . , An), (B1, g1, . . . , Bm)) with A1 = B1 and An = Bm.
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De�nition 3.4. A conditional graph is a graph G together with a set of

commutativity conditions. Amorphism F : G→ G′ of conditional graphs

is a morphism of graphs such that, for each commutativity condition

((A1, f1, . . . , An), (B1, g1, . . . , Bm)) of G,

((F (A1), F (f1), . . . , F (An)), (F (B1), F (g1), . . . , F (Bm)))

is a commutativity condition of G′. This gives rise to the category

CondGraph.

Each small category C has of course an underlying graph. But it has

also an underlying conditional graph, considering the set of all commu-

tativity conditions ((A1, f1, . . . , An), (B1, g1, . . . , Bm)) such that

fn−1 ◦ · · · ◦ f1 = gm−1 ◦ · · · ◦ g1

(where the left hand side is considered as 1A1 if n = 1 and similarly for

the right hand side). We thus have a forgetful functor

U : Cat→ CondGraph .

Proposition 3.5. The forgetful functor U : Cat → CondGraph has a

left adjoint Path: CondGraph→ Cat.

The construction of Path can be found in [14]. It goes as follows: For

a conditional graph G, let D be the category de�ned by ob(D) = ob(G)

and for A,B ∈ ob(G), D(A,B) is the set of paths A→ B. Composition

is the concatenation of paths and 1A is the path (A). Then, let R be the

smallest subcategory of D ×D which satis�es the conditions

1. ob(R) = {(A,A) | A ∈ D},

2. for any A,B ∈ D, R(A,B) contains the commutativity conditions

of G made of parallel paths A→ B,

3. R(A,B) ⊆ D(A,B) × D(A,B) is an equivalence relation for any

A,B ∈ D

where, for the sake of brevity, we denoted R((A,A), (B,B)) by R(A,B).

We then set ob(Path(G)) = ob(G) and for any objects A,B ∈ G,
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Path(A,B) is the quotient of D(A,B) by R(A,B). Composition and

identities are computed as in D. The unit G → U(Path(G)) is the

identity on objects and sends f : A→ B to [(A, f,B)].

We now need to prove a few lemmas which deal with other universal

constructions.

Lemma 3.6. [58] Let T be a Lawvere theory and C a T -category. Sup-
pose we have, for all A,B ∈ C, a subset S(A,B) ⊆ C(A,B) × C(A,B).

Let S =
⋃
A,B∈C S(A,B). Then, there exists a unique (up to isomor-

phism) T -functor Q : C → D satisfying Q(f) = Q(g) for all (f, g) ∈ S
and such that, for any T -functor F : C → D′ satisfying F (f) = F (g) for

each (f, g) ∈ S, there exists a unique T -functor F : D → D′ such that

FQ = F .

C Q //

∀F ��

D

∃! F~~
D′

Proof. By a T -subcategory of a T -category E , we mean a subcategory

E ′ ⊆ E such that t(f1, . . . , fn) ∈ E ′(A,B) for all f1, . . . , fn ∈ E ′(A,B)

and n-ary term t of T . Let now R be the smallest T -subcategory of

C × C such that

1. ob(R) = {(A,A) | A ∈ C},

2. S(A,B) ⊆ R(A,B),

3. R(A,B) ⊆ C(A,B) × C(A,B) is an equivalence relation for any

A,B ∈ C

where, for the sake of brevity, we denoted R((A,A), (B,B)) by R(A,B).

Now, let ob(D) = ob(C) and D(A,B) = C(A,B)/R(A,B) for all objects

A,B ∈ C. D is a T -category where the identities, the composition and

the T -enrichment are induced by the ones in C. Moreover, the quotient

map Q : C → D is a T -functor such that Q(f) = Q(g) for each (f, g) ∈ S.
If we have a T -functor F : C → D′ satisfying F (f) = F (g) for every

(f, g) ∈ S, to prove the existence of F , it su�ces to consider the T -
subcategory R′ of C × C such that ob(R′) = {(A,A) | A ∈ C} and

R′(A,B) = {(f, g) ∈ C(A,B) × C(A,B) | F (f) = F (g)}. By de�nition
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of R, R ⊆ R′, and we can construct F with the universal property of

the quotient. Uniqueness follows easily.

We will denote this T -category D by C/S. The notations UT , FrT ,

U and Path in the next lemma come from Corollary 1.110 and Proposi-

tion 3.5.

Lemma 3.7. [58] Let T be a commutative Lawvere theory, C a small

T -category and F : UUT (C) → G a morphism of conditional graphs.

Then, there exists a unique (up to isomorphism) morphism of condi-

tional graphs F̂ : G → UUT (D) with D a small T -category such that

F̂F : C → D is a T -functor and satisfying the following universal prop-

erty: if H : G → UUT (D′) is a morphism of conditional graphs with D′

a small T -category such that HF : C → D′ is a T -functor, there exists a
unique T -functor H : D → D′ such that UUT (H)F̂ = H.

UUT (C) F // G
F̂ //

∀H ##

UUT (D)

xx
∃! UUT (H)

UUT (D′)

Moreover, the analogous property also holds if D′ is a (not necessarily

small) T -category.

Proof. Let F̂ be the composite

G
F1 // U(Path(G))
U(F2)

ss
U(UT (FrT (Path(G))))

UUT (F3)
// U(UT (FrT (Path(G))/S))

where

S(A,B) ={(t(F2F1F (h1), . . . , F2F1F (hn)), F2F1F (t(h1, . . . , hn))) |

t is an n-ary term of T and h1, . . . , hn ∈ C(A,B)}.

The result then follows from the universal properties involved in the

construction. Since the construction of F̂ does not change if we consider



104 3. Unconditional exactness properties

a bigger universe V 3 U , the universal property also holds if D′ is not
small.

This small T -category D will be denoted by T -Path(F ). Next def-

inition describes how to formally add a (co)cone in a T -sketch (or an

induced morphism). In order to shorten notations, if there is no ambi-

guity, we will not always write the functors U and UT when we apply

them.

De�nition 3.8. [58] Let T be a commutative Lawvere theory and S =

(S,P, I) a T -sketch. A universal augmentation of S is a morphism of

T -sketches F : S→ S′ = (S ′,P ′, I ′) which can be built up from S by one

of these four operations:

a. Choose a diagram G : D → S with D a �nite category. Then, de�ne

the conditional graph S as follows:

• the set of objects of S is

ob(S) = ob(S) t {L},

• the set of arrows of S is

ar(S) = ar(S) t { L λD // G(D) |D ∈ D},

• the commutativity conditions on S are the ones from UUT (S)

and

((L, λD1 , G(D1), G(d), G(D2)), (L, λD2 , G(D2)))

for any map d : D1 → D2 in D.

Then, de�ne F : S → S ′ to be the composite

S ↪→ S → T -Path(S ↪→ S),

P ′ to be induced by P and λ : ∆L ⇒ G and I ′ to be induced by I.

b. Choose a diagram G : D → S with D a �nite category. Then, de�ne

the conditional graph S as follows:
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• the set of objects of S is

ob(S) = ob(S) t {C},

• the set of arrows of S is

ar(S) = ar(S) t { G(D)
λD // C |D ∈ D},

• the commutativity conditions on S are the ones from UUT (S)

and

((G(D1), λD1 , C), (G(D1), G(d), G(D2), λD2 , C))

for any map d : D1 → D2 in D.

Then, de�ne F : S → S ′ to be the composite

S ↪→ S → T -Path(S ↪→ S),

P ′ to be induced by P and I ′ to be induced by I and λ : G⇒ ∆C .

c. Choose a cone λ : ∆L ⇒ G in P and any cone µ : ∆X ⇒ G over

G : D → S. De�ne the conditional graph S as follows:

• the objects of S are the same as the ones of S,

• the set of arrows of S is

ar(S) = ar(S) t { X m // L },

• the commutativity conditions on S are the ones from UUT (S)

and

((X,µD, G(D)), (X,m,L, λD, G(D)))

for any object D ∈ D.

Then, de�ne F : S → S ′ to be the composite

S ↪→ S → T -Path(S ↪→ S),

P ′ to be induced by P and I ′ to be induced by I.
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d. Choose a cocone λ : G ⇒ ∆C in I and any cocone µ : G ⇒ ∆X

over G : D → S. De�ne the conditional graph S as follows:

• the objects of S are the same as the ones of S,

• the set of arrows of S is

ar(S) = ar(S) t { C m // X },

• the commutativity conditions on S are the ones from UUT (S)

and

((G(D), λD, C,m,X), (G(D), µD, X))

for any object D ∈ D.

Then, de�ne F : S → S ′ to be the composite

S ↪→ S → T -Path(S ↪→ S),

P ′ to be induced by P and I ′ to be induced by I.

De�nition 3.9. Let T be a Lawvere theory and E a T -category. We say

that E has �nitely presentable hom-algebras if, for all A,B ∈ E , E(A,B)

is a �nitely presentable object in T -Alg.

Note that a better name would have been `locally �nitely present-

able', but this terminology is already used (De�nition 1.68). In view of

Example 1.40, if T = Th[Set] or T = Th[Set∗], a category E has �nitely

presentable hom-algebras if and only if E(A,B) is a �nite set for each

pair of objects A,B ∈ E . We are now able to de�ne T -unconditional
exactness properties.

De�nition 3.10. [58] Let T be a commutative Lawvere theory. A

basic T -unconditional exactness property is a morphism of T -sketches
e : I(E0) → E1 where E0 is a small T -category with �nitely presentable

hom-algebras and e is the composite of

I(E0) = S0
// S1

// . . . // Sn
1Sn // E1

where each Si → Si+1 is a universal augmentation of Si = (Si,Pi, Ii) and
E1 is (Sn,P, I) with P ⊇ Pn and I ⊇ In containing only (co)cones over
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�nite diagrams. A T -unconditional exactness property is a class of basic

T -unconditional exactness properties.

De�nition 3.11. [58] Let T be a commutative Lawvere theory. We

say that a T -category C satis�es the basic T -unconditional exactness
property e : I(E0) → E1 if, for any T -functor H : E0 → C, there exists a
morphism of V-T -sketches (for some bigger universe V 3 U) H : E1 →
FD(C) such that He = H.

I(E0)
e //

∀H ##

E1

∃ H||
FD(C)

We say that a T -category C satis�es a T -unconditional exactness prop-
erty P if it satis�es all basic ones in P .

Note that this de�nition does not depend on the bigger universe V
we choose. In the next lemma, we also choose any bigger universe V 3 U
and, for the sake of brevity, we denote the V-2-category V-T -Sk of V-T -
sketches simply by SK.

Lemma 3.12. [58] Let T be a commutative Lawvere theory and e :

I(E0) → E1 a basic T -unconditional exactness property. Then, the fol-

lowing statements hold:

1. If C is a T -category, the composition functor

SK(e,FD(C)) : SK(E1,FD(C))→ SK(I(E0),FD(C))

is full and faithful. Thus, each natural transformation α : H ⇒ H ′

between T -functors E0 ⇒ C with extensions H,H ′ : E1 ⇒ FD(C)
extends uniquely as β : H ⇒ H ′ with β ? 1e = α.

I(E0)
e //

H

##
H′ ##

α~�

E1

H

||
H′||

β �!

FD(C)
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2. A T -category C satis�es e if and only if

SK(e,FD(C)) : SK(E1,FD(C))→ SK(I(E0),FD(C))

is essentially surjective on objects. This means that for each T -
functor H : E0 → C, there exists a morphism of V-T -sketches H :

E1 → FD(C) such that He is isomorphic to H.

I(E0)
e //

∀H ##

E1

∃ H||

∼=

FD(C)

3. If a T -category C satis�es e, the extension H of H is unique up to

isomorphism.

4. If H : C � D : K is an equivalence of T -categories (with H and K

T -functors), C satis�es e if and only if D does.

Proof. 1. SK(1Sn ,FD(C)) : SK(E1,FD(C)) → SK(Sn,FD(C)) is ob-

viously full and faithful. So, it remains to prove the same for

SK(F,FD(C)) for a universal augmentation

F : S ↪→ S→ T -Path(S ↪→ S) = S′.

Faithfulness follows from the fact that each object of S′ which does

not come from S is sent to a (co)limit by H ′. Besides, fullness

follows from the universal property of those (co)limits and the fact

that each morphism of S′ is on the form

t(f11 · · · f1m1 , . . . , fn1 · · · fnmn)

where t is an n-ary term of T and the fij 's come from S.

2. The `only if part' is trivial. Let us prove the `if part'. A morphism

of V-T -sketches Sn → FD(C) extends to E1 if it does only up to iso-

morphism. Indeed, both statements mean that some diagrams in C
are (co)limits. Similarly, a morphism of V-T -sketches Si → FD(C)
extends to Si+1 if it does only up to isomorphism. Indeed, both
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statements mean that some diagram in C has a limit (Operation a

in De�nition 3.8), or some diagram in C has a colimit (Operation b)

or are trivial (Operations c and d). The result follows then from

Point 1 in which we proved that SK(F,FD(C)) is conservative for

each universal augmentation F .

3. It follows directly from Point 1.

4. Direct consequence of Point 2.

The notion of a T -unconditional exactness property is self-dual.

Proposition 3.13. [58] Let T be a commutative Lawvere theory and

e : I(E0) → E1 a basic T -unconditional exactness property. Then, the

dual morphism

eop : I(Eop
0 ) −→ Eop

1 = (Sop
n , Iop,Pop)

is also a basic T -unconditional exactness property. Moreover, a T -
category C satis�es e if and only if Cop satis�es eop.

Proof. The conditions on Eop
0 and Eop

1 hold since they do for E0 and E1.

Then, it su�ces to notice that F : Si → Si+1 is a universal augmentation

if and only if F op : Sop
i → Sop

i+1 is. Indeed, Path(Gop) ∼= (Path(G))op for

a conditional graph G, FrT (Dop) ∼= (FrT (D))op for a small category D
and Cop/Sop ∼= (C/S)op for a small T -category C and sets S(A,B) ⊆
C(A,B) × C(A,B). Thus, Operations a and b are dual to each other

as well as Operations c and d. The second part of the statement is

obvious.

Before giving some examples of T -unconditional exactness properties,
let us prove they interact well with morphisms of Lawvere theories.

Proposition 3.14. [58] Let F : T → R be a morphism of commutative

Lawvere theories and e : I(E0) −→ E1 a basic T -unconditional exactness
property. Then,

FrF (e) : FrF (I(E0)) −→ FrF (E1)
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is a basic R-unconditional exactness property. Moreover, an R-category
C satis�es FrF (e) if and only if the T -category F ∗(C) satis�es e.

Proof. By construction, FrF (I(E0)) = I(FrF (E0)). Since FrF : T -Alg →
R-Alg preserves coequalisers, in view of Proposition 1.39, it sends �nitely

presentable T -algebras to �nitely presentable R-algebras. So, FrF (E0)

is a small R-category with �nitely presentable hom-algebras. Also by

construction, FrF (E1) has only �nite speci�ed (co)cones. To prove that

FrF (e) is a basic R-unconditional exactness property, it remains to show

that, if G : S → S′ is a universal augmentation of the T -sketch S, then
FrF (G) : FrF (S)→ FrF (S′) is a universal augmentation of the R-sketch
FrF (S). In order to do so, we �rst remark that a (co)cone over D → S
gives rise to a (co)cone over D → S → FrF (S) as in Proposition 1.112.

With this in mind, we can construct, for each operation of De�nition 3.8,

two morphisms of conditional graphs H and K such that the following

diagram in CondGraph (where we omit to write U , UT and F ∗)

S G //

ηS

��

%%

S ′

ηS′

��

S

H

��

99

FrF (S)
FrF (G)

//

$$

FrF (S ′)

FrF (S)

K

99

commutes and H and FrF (S) → FrF (S) are jointly epimorphic (using

notations of De�nition 3.8). The universal properties involved in this

construction imply that FrF (S ′) = R-Path(FrF (S) → FrF (S)), which

proves that FrF (G) is a universal augmentation of FrF (S).

For the second part of the statement, we remark that F ∗(FD(C)) =

FD(F ∗(C)). The result is then a straightforward consequence of the

universal property of FrF .

In view of Proposition 1.51, the above result says in particular that

each Th[Set]-unconditional exactness property can be considered as a
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T -unconditional exactness property for each commutative Lawvere the-

ory T . Let us now conclude this section with some examples of uncon-

ditional exactness properties.

Example 3.15. One can express regularity as a Th[Set]-unconditional

exactness property. Indeed, having equalisers can be expressed via the

morphism I(E0) → S1 where E0 is the category •A ⇒ •B and S1 is

obtained via Operation a representing the equaliser. One can do analo-

gously with the properties of having a terminal object and binary prod-

ucts. For the coequalisers of kernel pairs, we can proceed as follows: E0

is the arrow category •A → •B. We then construct S1 using Operation a

for the kernel pair of the arrow and S2 is constructed using Operation b

for the corresponding coequaliser. We still need to express the condition

that regular epimorphisms are stable under pullbacks. This property

can be rephrased as follows: for each pair of arrows f, g with the same

codomain, the map p′ (constructed as in the diagram bellow) is the co-

equaliser of s1 and s2.

R[p′]
s1 //
s2

// A×I (I ×B C)

g′′

��

p′

''

C

g

��

I ×B C

g′

��

i′
;;

R[f ]
r1 //
r2

// A
f

//

'' ''
coeq(r1,r2)=p

B

I
∃! i

;;

Therefore, to express this property as a Th[Set]-unconditional exactness

property, we can start with E0 given by

•C
g

��
•A

f
// •B.



112 3. Unconditional exactness properties

Then, we use an Operation a to create •R
r1 //
r2
// •A , an Operation b

to have p : •A → •I , an Operation d to get i : •I → •B, and so forth.

Hence, we construct S6 in this way. Eventually, to construct E1, we add

a cocone which encodes the information that p′ is the coequaliser of s1

and s2.

Example 3.16. Let now T be any commutative Lawvere theory and

(M,X) an extended matrix of terms in T . Using Proposition 3.14,

we know that being a regular T -category is an T -unconditional exact-
ness property. On the other hand, for a regular T -category, to have

(M,X)-closed relations it is equivalent to consider any morphism r =

(r1, . . . , ra) : R→ Aa and require that t constructed as in De�nition 2.42

is a regular epimorphism. This can be expressed as a T -unconditional
exactness property in a analogous way than above (but much longer),

starting with E0 = FrT (E ′0) where E ′0 is the �nite category below.

•R
r1 //... //
ra
// •A

In view of Proposition 1.39, E0 has �nitely presentable hom-algebras.

Example 3.17. In addition to the above examples, we can also say that

1. having limits of shape D for a �nite category D,

2. having colimits of shape D for a �nite category D,

3. being a groupoid,

4. being a preorder,

5. being pointed,

6. being exact Mal'tsev

are Th[Set]-unconditional exactness properties and

7. being additive,

8. being abelian
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are Th[Set∗]-unconditional exactness properties.

In view of Proposition 3.13, their dual properties are also Th[Set]

(resp. Th[Set∗])-unconditional exactness properties.

3.2 Preservation under C ↪→ Lex(C, Set)op

3.2.1 The theorem

The aim of this subsection is to prove that if a small �nitely complete

T -category C satis�es some T -unconditional exactness property, then so

does its free co�ltered limit completion Lex(C, Set)op. For the sake of

brevity, let us denote Lex(C,Set)op by C̃ and the full Yoneda embedding

C ↪→ C̃ by i. We will often identify C and i(C) = C(C,−) for an object

C ∈ C, and thus consider C as a full subcategory of C̃. To �x notations,

let us recall the de�nition of comma categories.

De�nition 3.18. Let F : C → D be a functor andD an object in D. The
comma category (D ↓ F ) has pairs (C, d) as objects where C is an object

of C and d : D → F (C) a morphism in D. A morphism (C, d)→ (C ′, d′)

in (D ↓ F ) is a map c : C → C ′ in C such that F (c)d = d′. We write D↓

for the forgetful functor (D ↓ F )→ C.

Next theorem sums up some important properties of C̃. Point 1

has already been stated (Proposition 1.80) since the dual of C̃ is locally

�nitely presentable (Theorem 1.69).

Theorem 3.19. [7, 44] The following statements hold for a small �nitely

complete category C:

1. C̃ is complete and cocomplete,

2. in C̃, co�ltered limits commute with limits and �nite colimits,

3. the embedding i : C ↪→ C̃ preserves all colimits and �nite limits,

4. for all A ∈ C̃, (A, (c)(C,c)∈(A↓i)) is the co�ltered limit of the functor

(A ↓ i) A↓ // C �
� i // C̃.



114 3. Unconditional exactness properties

5. i : C ↪→ C̃ is the free co�ltered limit completion of C, in the sense

that, for any functor F : C → D to a category D with co�ltered

limits, there exists a unique (up to isomorphism) functor F : C̃ → D
preserving co�ltered limits and such that Fi is isomorphic to F .

C �
� i //

∀F ��

∼=

C̃

∃! F��
D

Now, if C is a small �nitely complete T -category for a Lawvere theory
T , we want to construct a T -enrichment on C̃ in order to make i a T -
functor. Since C and C̃ have �nite products, this can be done in the

following way. For each object A ∈ C̃ and n-ary term t of T , we set tA

to be the unique morphism making the square

An
tA //

cn

��

A

c

��
Cn

tC
// C

commute for each (C, c) ∈ (A ↓ i). There is a unique such morphism ac-

cording to Point 4 of the above theorem. This makes C̃ a T -category and

i : C → C̃ a T -functor. Moreover, this extends Gabriel-Ulmer's result.

Proposition 3.20. Let T be a Lawvere theory and C a small �nitely

complete T -category. The embedding i : C ↪→ C̃ is the free co�ltered

limit T -completion of C, meaning the following properties hold:

1. i is a T -functor and C̃ has co�ltered limits,

2. for any T -functor F : C → D where D is a T -category with co�l-

tered limits, there exists a unique (up to isomorphism) T -functor
F : C̃ → D preserving co�ltered limits and such that Fi is isomor-

phic to F .

C �
� i //

∀F ��

∼=

C̃

∃! F��
D
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Proof. Point 1 follows from the construction of the T -enrichment of C̃.
For Point 2, by Theorem 3.19.5, it su�ces to prove that F is a T -functor
knowing that F is. So let t be an n-ary term of T and f1, . . . , fn : A→ B

morphisms in C̃. We denote by α : Fi ⇒ F the given natural isomor-

phism. We have to prove the equality

F (t(f1, . . . , fn)) = t(F (f1), . . . , F (fn))

holds. Since F preserves co�ltered limits and in view of Theorem 3.19.4,

we only have to show that

F (c)F (t(f1, . . . , fn)) = F (c)t(F (f1), . . . , F (fn))

for any morphism c : B → C with C ∈ C. It then su�ces to compute:

F (c)F (t(f1, . . . , fn))

= F (t(cf1, . . . , cfn))

= F (t(π1, . . . , πn))F ((cf1, . . . , cfn))

= α−1
C F (t(π1, . . . , πn))αCnF ((cf1, . . . , cfn))

= α−1
C t(F (π1), . . . , F (πn))αCnF ((cf1, . . . , cfn))

= t(α−1
C F (π1)αCn , . . . , α

−1
C F (πn)αCn)F ((cf1, . . . , cfn))

= t(F (π1), . . . , F (πn))F ((cf1, . . . , cfn))

= t(F (cf1), . . . , F (cfn))

= F (c)t(F (f1), . . . , F (fn))

where π1, . . . , πn : Cn → C are the product projections.

We can now prove our main theorem about T -unconditional exact-
ness properties.

Theorem 3.21. [58] Let T be a commutative Lawvere theory and P

a T -unconditional exactness property. If a small �nitely complete T -
category C satis�es P , then C̃ = Lex(C, Set)op also satis�es P .

Proof. We can of course suppose without loss of generality that P is a

basic T -unconditional exactness property e : I(E0) → E1. Let V be a
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bigger universe such that U ∈ V. For the sake of brevity, let us write SK

for the V-2-category V-T -Sk, E0 for I(E0), E1 for E1, C for FD(C) and

C̃ for FD(C̃) in SK.

By Lemma 3.12, we know that SK(e, C) : SK(E1, C) → SK(E0, C)

is an equivalence of categories and we have to prove that SK(e, C̃) :

SK(E1, C̃) → SK(E0, C̃) is essentially surjective on objects. Moreover,

Theorem 3.19.4 tells us that for each A ∈ C̃, (A, (b)(B,b)∈(A↓i)) is the

co�ltered limit of i ◦A↓ : (A ↓ i)→ C̃.

If E ∈ SK has only �nite speci�ed (co)cones, SK(E, C̃) has co�l-

tered limits and they are computed componentwise, meaning they are

preserved and jointly re�ected by the evaluation functors

evK : SK(E, C̃)→ C̃

for K ∈ E. Indeed, if G : D → SK(E, C̃) is a co�ltered diagram, let L

be its componentwise limit in the V-category of V-functors from U(E)

to C̃. Then L is actually a morphism of V-T -sketches since all G(D) are,

L is computed componentwise and by Theorem 3.19.2. Therefore it is

the limit of G.

In addition, if g : E0 → C̃ is a morphism in SK, the comma category

(g ↓ SK(E0, i)) is co�ltered. Indeed, it is small since E0 and C are and it

has �nite limits since C (and so the category of T -functors from E0 to C)
has and i preserves them by Theorem 3.19.3.

Finally, let us prove that for each K ∈ E0, the evaluation functor

evK : SK(E0, C) → C has a right adjoint. This proof follows the ideas

of [72]. Since E0 = I(E0), SK(E0, C) is just T -Cat(E0, C). So, let B ∈ C
and let us construct its core�ection R : E0 → C along evK . Let K ′ ∈ E0.

Since E0 has �nitely presentable hom-algebras, E0(K ′,K) can be seen as

the coequaliser in T -Alg

FrT ({1, . . . ,mK′})
h //
k
// FrT ({gK′1 , . . . , gK

′
nK′
}) // // E0(K ′,K)

where h(j) (resp. k(j)) is the nK′-ary term hK
′

j (resp. kK
′

j ) of T for each
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j ∈ {1, . . . ,mK′}. Let DK′ be the �nite category de�ned by

ob(DK′) = {Y,Z1, . . . , ZmK′}

and

ar(DK′) = {1W |W ∈ ob(DK′)} ∪ { Y
yj //
zj
// Zj | 1 6 j 6 mK′}.

Then, we consider the functor F : DK′ → C de�ned by

F ( Y
yj //
zj
// Zj ) = BnK′

(hK
′

j )B
//

(kK
′

j )B
// B

for each j ∈ {1, . . . ,mK′}. Since C is �nitely complete, we can consider

its limit (R(K ′), (sK
′

W )W∈DK′ ). This construction gives us, for all B′ ∈ C,
an isomorphism of T -algebras

C(B′, R(K ′)) ∼= T -Alg(E0(K ′,K), C(B′, B))

f 7→ (f̂ : E0(K ′,K)→ C(B′, B) : [gK
′

i ] 7→ πi ◦ sK
′

Y ◦ f)

where πi : BnK′ → B is the i-th projection. Let us denote by sK
′

:

E0(K ′,K) → C(R(K ′), B) the morphism 1̂R(K′). This is the unique

morphism such that sK
′
([gK

′
i ]) = πi ◦ sK

′
Y for each 1 6 i 6 nK′ . Now, if

k : K1 → K2 is an arrow in E0, R(k) is the morphism R(K1) → R(K2)

corresponding to the T -homomorphism

E0(K2,K)→ C(R(K1), B) : g 7→ sK1(gk).

In other words, it is the unique morphism R(K1) → R(K2) such that

sK2(g)R(k) = sK1(gk) for each g : K2 → K. This makes R into a T -
functor E0 → C, and together with the map sK(1K) : R(K) → B, the

expected core�ection of B. Indeed, if R′ is another T -functor E0 → C
and x : R′(K)→ B a morphism in C, we have to prove there is a unique

natural transformation α : R′ ⇒ R such that sK(1K)αK = x. Naturality

of α imposes that, for each K ′ ∈ E0 and each 1 6 i 6 nK′ ,

πis
K′
Y αK′ = sK

′
([gK

′
i ])αK′
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= sK(1K)R([gK
′

i ])αK′

= sK(1K)αKR
′([gK

′
i ])

= xR′([gK
′

i ]).

This implies that such an α is unique. To prove the existence, the equal-

ity above de�nes αK′ in view of the de�nition of R(K ′). Then, the

equality sK
′
(g)αK′ = xR′(g) holds for any g : K ′ → K since it does

for the generators [gK
′

i ]. This implies sK(1K)αK = x. Moreover, if

k : K1 → K2 is a morphism in E0, one has

πis
K2
Y αK2R

′(k) = xR′([gK2
i ]k)

= sK1([gK2
i ]k)αK1

= sK2([gK2
i ])R(k)αK1

= πis
K2
Y R(k)αK1

for each 1 6 i 6 nK2 , which prove the naturality of α. Therefore, we

have constructed a core�ection of B along evK : SK(E0, C) → C which

proves this evaluation functor has a right adjoint.

Since we can apply the same construction to C̃ and since i : C ↪→ C̃
preserves �nite limits, the evaluation functors evK : SK(E0, C̃)→ C̃ also
have right adjoints and the square

SK(E0, C)
evK
//

SK(E0,i)
��

C>��

i

��

SK(E0, C̃)
evK
// C̃>��

satis�es the Beck-Chevalley condition, meaning that the rightward and

leftward squares commute and i (resp. SK(E0, i)) maps the counit (resp.

the unit) of the �rst adjunction to the counit (resp. the unit) of the

second one.

We have now all the ingredients to prove that

SK(e, C̃) : SK(E1, C̃)→ SK(E0, C̃)

is essentially surjective on objects and conclude the proof. So let g :
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E0 → C̃ be a morphism in SK and consider, for each K ∈ E0, the

comma categories (g ↓ SK(E0, i)) and (g(K) ↓ i). Since the construction
of comma categories is functorial, the Beck-Chevalley condition above

induces an adjunction such that the rightward and leftward squares below

commute.

(g ↓ SK(E0, i))

g↓

��

// (g(K) ↓ i)

g(K)↓

��

>��

SK(E0, C)
evK

//

SK(E0,i)
��

C>yy

i

��

SK(E0, C̃)
evK

// C̃>yy

Since g(K) is the limit of i ◦ g(K)↓, the top adjunction implies that

g(K) is also the limit of evK ◦ SK(E0, i) ◦ g↓. In addition, we know that

(g ↓ SK(E0, i)) is co�ltered and such limits are jointly re�ected by the

evaluation functors evK : SK(E0, C̃)→ C̃. This means that g is the limit

of SK(E0, i) ◦ g↓.

By assumption, we know that SK(e, C) is an equivalence of cate-

gories. Let us write

T : SK(E0, C)→ SK(E1, C)

for its pseudo-inverse. We thus have the following diagram, in which the

rightward square commutes.

(g ↓ SK(E0, i))

g↓

��
SK(E1, C)

SK(E1,i)
��

SK(e,C)
// SK(E0, C)

SK(E0,i)
��

T
tt

SK(E1, C̃)
SK(e,C̃)

// SK(E0, C̃)

Since it exists, we denote the co�ltered limit of SK(E1, i)◦T ◦g↓ by l ∈
SK(E1, C̃). We would like to prove SK(e, C̃)(l) = le ∼= g. To see this, we

are actually going to prove that le is also the limit of SK(E0, i)◦g↓. Since
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the evaluation functors evK : SK(E0, C̃) → C̃ jointly re�ect co�ltered

limits, it is enough to show that le(K) is the limit of evK ◦ SK(E0, i)◦g↓.
But l is the limit of SK(E1, i) ◦ T ◦ g↓ and eve(K) : SK(E1, C̃) → C̃
preserves it. Therefore, le(K) is the limit of

eve(K) ◦ SK(E1, i) ◦ T ◦ g↓ = evK ◦ SK(e, C̃) ◦ SK(E1, i) ◦ T ◦ g↓

= evK ◦ SK(E0, i) ◦ SK(e, C) ◦ T ◦ g↓

∼= evK ◦ SK(E0, i) ◦ g↓

which concludes the proof.

Remark 3.22. In the literature, particular cases of Theorem 3.21 have

already been proved, for the following T -unconditional exactness prop-
erties:

� regularity (for T = Th[Set]) (Theorem 2.2 in [10]),

� coregularity (for T = Th[Set]) (Section 1 in [33]),

� additivity (for T = Th[Set∗]) (Proposition 2.5 in [34]),

� abelianness (for T = Th[Set∗]) (Proposition 2.12 in [34]),

� being exact Mal'tsev with pushouts (for T = Th[Set]) (Proposi-

tion 3.2 in [16]),

� being coregular co-Mal'tsev (for T = Th[Set]) (Corollary 2.6

in [47]).

Analogous results have also been proved for properties which might

not be some T -unconditional exactness properties. Without giving de�-

nitions here, we can cite:

� being a pretopos (Theorem 2.4 in [10]),

� being co-extensive (Theorem 5 in [30]),

� being extensive (Theorem 8 in [30]),

� being co-(cartesian closed) (Proposition 2.8 in [34]).
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In [16] and [30], it is also shown that one needs more conditions on

a small co-exact category C in order to have C̃ co-exact (without going

into details, C needs to be co-pro-exact). Exactness is thus not a Th[Set]-

unconditional exactness property.

Let us �nally say that, in the particular case where E0 is of the form

FrT (E ′0) for some �nite category E ′0, one could also have used Lemma 5.1

in [85] to prove Theorem 3.21.

3.2.2 An application

Theorem 3.21 will be used as a crucial tool in our embedding theorems.

We explain in this subsection another of its applications. The idea is

quite simple: suppose P and Q are `exactness properties' involving �nite

limits with P being an unconditional one. If we can prove that, for each

�nitely complete category with �nite colimits, the implication P ⇒ Q

holds, then we can often (depending on the nature of Q) prove this

implication also holds for any �nitely complete category (without the

assumption on colimits).

Indeed, let C be such a category satisfying P . Up to a change of

universe, we can suppose it is small. By Theorem 3.21, C̃ also satis�es

P . It thus satis�es Q since it is cocomplete. In view of the embedding

i : C ↪→ C̃, it often implies that C satis�es Q too. We provide such an

example here.

Moreover, in order to apply Theorem 3.21 in the case T = Th[Set],

we need to check that some category E0 has its hom-sets E0(A,B) �nite.

This is not always obvious and we provide an algorithm which makes it

easier.

As explained above, we are going to use Theorem 3.21 in order to

get a characterisation of n-permutable categories. We are actually going

to prove only one direction here, the complete theorem will be proved

in Chapter 4 (see Theorem 4.11). So, for a natural number n > 3, we
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consider in a regular category the diagram

L
p1

rr

p2

yy
p3





pn−2

��

pn−1

��

λ //U ×W V

q2

�� ��

q1

yyyy
X γ

//

f

�� ��

U

h

�� ��

99

X

f

�� ��

g
~~~~

Y

s

XX

t

>>

β
** **

X
g
~~~~ · · ·Y

s

XX

t

>>

β ** **

· · ·
X

f

�� ��

X
g
~~~~

δ // V

VV

k
~~~~

Y

s

XX

t

>>

β

.

.

.

// //W

u

XX

i
kk

i′

kk

v

>>

(7)

in which the equalities

fs = gt = 1Y , βi = βi′ = kv = hu = 1W , βg = βf = hγ = kδ,

γs = uβ, δt = vβ, ft = iβ, gs = i′β, q1λ = γp1 and q2λ = δpn−1

hold, the square

U ×W V
q2 // //

q1
����

V

k
����

U
h
// //W

is a pullback and (L, p1, . . . , pn−1) is the limit of the zig-zag formed by

the alternating split epimorphisms f and g. The following proposition

is due to D. Rodelo in [60].

Proposition 3.23. [60] Let n > 3 be a natural number and C a regular

category with �nite coproducts. If, for each diagram (7) in C for which

γ and δ are regular epimorphisms, the morphism λ turns out to be a

regular epimorphism as well, then C is n-permutable.

Proof. The particular case of Theorem 2.54 for the extended matrix of

Example 2.50 already appears in [97]. It tells us it is enough to construct,
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for each object Y in C, a commutative diagram

Y
ι1

ss

ι2

++
2Y 2Y

Z

d

OOOO

p′1

ss p′2

~~
p′3

��

p′n−2

  

p′n−1

++
3Y

1Y +∇Y

OO

∇Y +1Y
��

3Y

∇Y +1Y

OO

1Y +∇Y
��

2Y 3Y
1Y +∇Y
oo

��

3Y
∇Y +1Y

// 2Y

2Y 3Yoo
· · ·

where d is a regular epimorphism, ι1, ι2 : Y → 2Y the coproduct in-

jections and ∇Y : 2Y → Y the codiagonal
(

1Y
1Y

)
. In order to do so, we

consider diagram (7), with f = δ = ∇Y +1Y , s = ( ι2ι3 ), g = γ = 1Y +∇Y ,
t = ( ι1ι2 ), β = k = h = ∇Y , v = i = ι1 and u = i′ = ι2. Since γ and δ

are split epimorphisms, by assumption, the unique λ satisfying the con-

ditions is a regular epimorphism. We then consider the kernel pair of

∇Y , the induced morphism j

Y

ι1

##

ι2

!!

j

""
R[∇Y ]

q2 //

q1
��

2Y

∇Y
��

2Y
∇Y

// Y

and its pullback j′ along the regular epimorphism λ.

Z
λ′ // //

j′

��

Y

j

��
L

λ
// // R[∇Y ]
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We get in this way the expected commutative diagram

Y
ι1

ss

ι2

++
2Y 2Y

Z

λ′

OOOO

p1j′

ss p2j′

~~
p3j′

��

pn−2j′

  

pn−1j′

++
3Y

1Y +∇Y

OO

∇Y +1Y
��

3Y

∇Y +1Y

OO

1Y +∇Y
��

2Y 3Y
1Y +∇Y
oo

��

3Y
∇Y +1Y

// 2Y

2Y 3Yoo
· · ·

where λ′ is a regular epimorphism.

We would like now to remove the coproduct assumption in the previ-

ous proposition. For that purpose, we �rst need to transform the prop-

erty of being regular and satisfying

P : for any diagram (7), if γ and δ are regular epimorphisms, then so

is λ

into a Th[Set]-unconditional exactness property. In a regular context,

this property is equivalent to the following one:

P ′: For any diagram (7), let γ = mp and δ = m′p′ be the (regular

epi, mono)-factorisations of γ and δ (which are constructed via the

coequaliser of their kernel pairs). Then, considering the pullback

of hm along km′,

I ×W J
q4 //

q3
��

J

km′

��
I

hm
//W

the unique morphism λ : L → I ×W J such that q3λ = pp1 and

q4λ = p′pn−1 is a regular epimorphism.
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L

p1

��

pn−1

��

λ // I ×W J

q3

��

q4

��

// U ×W V

q1

��

q2

��

X p
// // I // m

// U

X
p′

// // J //
m′

// V

This Property P ′ is implied by P since we get a new diagram (7) replacing

U by I and V by J (u factors through m as u = mpsi and v through m′

as v = m′p′ti). The converse implication is obvious.

To prove the above property is a Th[Set]-unconditional exactness

property, it remains to show the diagram we start with to build (7) is of

the form D : E0 → C for some �nite category E0. In order to do that, we

are going to prove a lemma about the �niteness of Path(G) for a �nite

conditional graph G (i.e., with ob(G) and ar(G) �nite). If X is an object

of G, we denote by G \X the conditional graph constructed from G by

removing X and all arrows from or to X. We consider the biggest set of

commutativity conditions on G \X such that the composite

G \X ↪→ G→ U(Path(G))

is a morphism of conditional graphs. Intuitively, we consider as commu-

tativity conditions any pair of parallel paths in G \X inducing the same

composite in the category generated by G.

Lemma 3.24. [60] Let G be a �nite conditional graph and X one of its

objects. Suppose that for any pair of arrows f : Y → X and g : X → Z

in G, there exists a path (A1, h1, . . . , hn−1, An) : Y → Z in G \X such

that the composites g ◦f and hn−1 ◦ · · · ◦h1 are equal in Path(G). Then,

Path(G) is �nite if and only if Path(G \X) is �nite.

Proof. Firstly, we can suppose without loss of generality that all com-

mutativity conditions of G \X are also in G. Indeed, we can add them

to the ones of G keeping Path(G) the same. Thus G \ X ↪→ G is a

morphism of conditional graphs.
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This inclusion morphism G \X ↪→ G gives rise to a faithful functor

Path(G \X)→ Path(G).

Indeed, suppose that two parallel paths of G \ X are equalised by the

composite

G \X → U(Path(G \X))→ U(Path(G)).

Since the natural square

G \X �
� //

��

G

��
U(Path(G \X)) // U(Path(G))

commutes, they are also equalised by G \X ↪→ G→ U(Path(G)). This

means it is a commutativity condition on G \X and so they correspond

to the same arrow in Path(G \X). This shows the `only if' part.

Let us now prove the `if part'. If Path(G \X) is �nite, there exists

a N ∈ N such that any morphism of Path(G \X) can be represented by

a path of at most N arrows of G \X. Consider a path (A1, f1, . . . , An)

in G. By the assumption on X, we know that this path is equal in

Path(G) to a path (B1, h1, . . . , Bm) where h2, . . . , hm−2 are in G \ X.

We can thus suppose m − 3 6 N , which proves that Path(G) is �nite

since ob(Path(G)) = ob(G) = ob(G \X) ∪ {X} is and

# ar(Path(G)) 6 # ob(G) +
N+2∑
i=1

# ar(G)i < ℵ0.

This lemma gives us an easy way to prove that some category gen-

erated by a �nite conditional graph is �nite. In what follows, for the

sake of brevity, we write fn−1 · · · f1 = gm−1 · · · g1 for the commutativ-

ity condition ((A1, f1, . . . , An), (B1, g1, . . . , Bm)) and G \ {X1, . . . , Xn}
is de�ned recursively as (G \ {X1, . . . , Xn−1}) \Xn. Remark that

G \ {X1, . . . , Xn} = G \ {Xσ(1), . . . , Xσ(n)}

for any permutation σ of {1, . . . , n}. Let us apply Lemma 3.24 here with
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the conditional graph G given by

X

f
++

g //

δ

��
γ

��

Ysoo

t

kk

β

��
V

k //W
v

oo

i

OO

i′

TT

uqqU

h

88

where the commutativity conditions are

fs = gt = 1Y , βi = βi′ = kv = hu = 1W , βg = βf = hγ = kδ,

γs = uβ, δt = vβ, ft = iβ and gs = i′β.

Notice that Property P ′ is built up from a diagram of shape Path(G) by

adding some �nite (co)limits to it. Due to the equalities hγ = βf and

hu = 1W , Path(G) is �nite if and only if Path(G\{U}) is. Since kδ = βg

and kv = 1W , we only have to prove that the category Path(G \ {U, V })
is �nite. Then, with the equalities ft = iβ and gs = i′β, it is enough to

show that Path(G \ {U, V,W}) is �nite. Since fs = gt = 1Y , if we add

some formal arrows y, y′ : Y ⇒ Y and the conditions ft = y and gs = y′,

we only have to show that the category generated by the graph

Yy
&&

y′
xx

and the commutativity conditions coming from Path(G) is �nite. But

this is obvious since yy = ftft = iβiβ = iβ = y, yy′ = y, y′y = y′ and

y′y′ = y′.

We are now able to remove the coproduct assumption from Proposi-

tion 3.23.

Proposition 3.25. [60] Let n > 3 be a natural number and C a regular

category. If, for each diagram (7) in C for which γ and δ are regular

epimorphisms, the morphism λ turns out to be a regular epimorphism

as well, then C is n-permutable.
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Proof. Up to a change of universe, we can suppose C to be small. Since

the property of being regular and satisfying P is equivalent to the one of

being regular and satisfying P ′, which is a Th[Set]-unconditional exact-

ness property by the discussion above, we know from Theorem 3.21 that

C̃ is also a regular category which satis�es P . Since it has small colimits,

we deduce from Proposition 3.23 that C̃ is n-permutable. Finally, since

the embedding C ↪→ C̃ is full, faithful and preserves �nite limits and

colimits, this implies that C is also n-permutable.

The converse of this proposition will be proved in the next chapter

using our embedding theorem for n-permutable categories (see Theo-

rem 4.11).



Chapter 4

Embedding theorems

The idea behind embedding theorems is to provide a representative el-

ement among a collection of categories, such that each category in that

collection has a `nice' embedding in the representative category (or one

of its powers). Probably the most famous one is the Yoneda embedding

which embeds any small category C in SetC
op
with a full and faithful func-

tor which preserves and re�ects small limits. Another such embedding

theorem has been proved by Barr [10]: for any small regular category,

one can build a small category P and a full and faithful embedding

C ↪→ SetP which preserves and re�ects �nite limits and regular epimor-

phisms. Such theorems have a very practical consequence: if one has

to prove a statement about small limits in any small category (or about

�nite limits and regular epimorphisms in any small regular category), it

is enough to prove this statement in the powers of Set. If the statement

is `componentwise', it can be further restricted to show it only in Set. Up

to a change of universe, one can also remove the smallness assumption

in this technique.

For such applications, notice that we actually do not need the embed-

ding to be full but only faithful and conservative. Indeed, looking at the

components, fullness only tells us that it re�ects isomorphisms. In other

words, the fullness of an embedding C ↪→ SetP can not be easily stated

in terms of the functors C ↪→ SetP → Set, while the re�ection of isomor-

phisms simply means that these functors jointly re�ect isomorphisms.

With this idea in mind, Z. Janelidze proposed another version of Barr's

129
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embedding theorem: any small regular category has a faithful conserva-

tive embedding in SetSub(1) which preserves and re�ects �nite limits and

regular epimorphisms (here 1 is the terminal object of the category being

embedded). This phenomenon already occurred with abelian categories:

Lubkin proved in [80] that each small abelian category admits a faith-

ful conservative functor C ↪→ Ab which preserves �nite limits and �nite

colimits, while Mitchell showed that any small abelian category has a

full and faithful embedding which also preserves �nite limits and �nite

colimits in a category of modules ModR for a ring R (see [93, 42]).

After recalling Yoneda and Barr's embedding theorems in Sections 4.1

and 4.2 respectively, we turn our attention in Section 4.3 to the case of

categories with (M,X)-closed relations for an extended matrix (M,X)

of terms in a commutative Lawvere theory T . There, using characterisa-
tions 1.88 and 2.51, we construct a regular essentially algebraic category

Mod(Γ) with (M,X)-closed relations and prove that any small regular

T -category with (M,X)-closed relations admits a faithful conservative

T -enriched embedding in Mod(Γ)Sub(1) which preserves and re�ects �nite

limits and regular epimorphisms. A similar result is proved for proto-

modular categories in Section 4.4, but we need there an assumption on

the existence of some colimits.

The last section of this chapter is devoted to an embedding theorem

for categories with M -closed strong relations for a simple extended ma-

trix M . In that case, the embedding is full, faithful and preserves �nite

limits. It is actually a factorisation of the Yoneda embedding through

PartC
op

M where objects in PartM are also de�ned using partial operations.

One of the major di�erences with essentially algebraic categories is that,

for monomorphisms f : A� B in PartM (which are not strong), the fact

that p(f(a1), . . . , f(am)) is de�ned does not imply that p(a1, . . . , am) is.

4.1 Yoneda embedding

As detailed in [83], Mac Lane learned about the Yoneda lemma in 1954

in a café at the Gare du Nord at Paris from Yoneda himself. We explain

in this section how the embedding derived from it can be used to reduce

proofs about limits to the particular category Set, or T -Alg in the T -
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enriched case.

If C is a small category, the Yoneda embedding is given by

Y : C −→ SetC
op

C 7−→C(−, C).

This functor Y is full and faithful (and so conservative), preserves limits

and re�ects small limits.

Now, consider a statement of the form P ⇒ Q where P and Q are

conjunctions of properties which can be expressed as

1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. some morphism is a monomorphism,

4. some morphism is an isomorphism,

5. some morphism factors through a given monomorphism.

Then, this statement P ⇒ Q is valid in all V-categories (for all uni-

verses V) if and only if it is valid in V-Set (for all universes V). The

`only if part' being obvious, let us prove the `if part'. Let C be a V-
category. Up to a change of universe, it is a W-small category. Then,

every part of the statement P ⇒ Q is preserved and re�ected by the

Yoneda embedding C ↪→ W-SetC
op
. Indeed, f being a monomorphism

can be expressed as the fact that its kernel pair (r1, r2) is such that

r1 = r2, and the fact that f factors through the monomorphism m is

equivalent to say that the pullback of m along f is an isomorphism. It

is thus enough to prove P ⇒ Q in W-SetC
op
. But each part of this

statement can be reduced `componentwise' to W-Set, which concludes

the proof.

Of course, since the choice of our base universe U is arbitrary, this

roughly means that the statement P ⇒ Q is valid in all categories if and

only if it is valid in Set. Let us give an example.

Proposition 4.1. Every re�exive difunctional binary relation in a �ni-

tely complete category is an equivalence relation.
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Proof. Let M be the Mal'tsev matrix of Example 2.7. A relation is M -

closed if and only if it (M,∅)-closed (Proposition 2.46). Since k = l in

this case, in view of De�nition 2.42, this only means that a morphism

factors through another monomorphism. Being an equivalence relation

can also be expressed in such a way. In view of the discussion above,

it su�ces thus to prove the statement in Set. In this category, for a

relation R ⊆ A × A, being re�exive, symmetric or transitive has the

classical meaning. We recall that being difunctional means

a1Ra
′
1 ∧ a2Ra

′
1 ∧ a2Ra

′
2 ⇒ a1Ra

′
2

for all a1, a
′
1, a2, a

′
2 ∈ A. A re�exive difunctional relation is thus sym-

metric since

aRa′ ⇒ a′Ra′ ∧ aRa′ ∧ aRa⇒ a′Ra

for all a, a′ ∈ A and it is transitive since

aRa′ ∧ a′Ra′′ ⇒ aRa′ ∧ a′Ra′ ∧ a′Ra′′ ⇒ aRa′′

for all a, a′, a′′ ∈ A.

We conclude this section with the T -enriched version of the Yoneda

embedding. If T is a commutative Lawvere theory and C a small T -
category, the Yoneda embedding Y factors as

T -AlgC
op

UC
op

T
��

C
Y
//

YT

;;

SetC
op

where UC
op

T is the functor which acts by composition with UT . This T -
enriched Yoneda embedding YT is a full and faithful T -functor which also
preserves and re�ects small limits. In the same way as above, with this

embedding, one can reduce proofs about �nite limits from T -categories
to T -Alg:

Let T be a commutative Lawvere theory. Suppose we are given

a statement of the form P ⇒ Q where P and Q are conjunctions of

properties which can be expressed as
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1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. the equality t(f1, . . . , fn) = g holds for an n-ary term t of T and

parallel morphisms f1, . . . , fn, g,

4. some morphism is a monomorphism,

5. some morphism is an isomorphism,

6. some morphism factors through a given monomorphism.

Then, this statement P ⇒ Q is valid in all V-T -categories (for all uni-
verses V) if and only if it is valid in V-T -Alg (for all universes V).

4.2 Barr's embedding

In this section, we state Barr's embedding theorem, prove Z. Janelidze's

variant in which the power is replaced by the set Sub(1) of subobjects of

the terminal object 1 (but loosing fullness) and give some applications

of this embedding.

Theorem 4.2. [10] Let C be a small regular category. There exists a

small category P and a full and faithful regular embedding C ↪→ SetP .

An enriched version of this theorem can be found in [31]. A crucial

tool in Barr's proof is the free co�ltered limit completion C ↪→ C̃. He

�rst showed that if C is regular, then so is C̃ (which is also a consequence

of Theorem 3.21 and Example 3.15). The next step was to construct a

C-projective covering in C̃.

De�nition 4.3. Let C be a small regular category. An object P ∈ C̃ is

said to be C-projective if, for any regular epimorphism f : A � B in C
and morphism g : P → B in C̃, there exists a morphism h : P → A such

that fh = g.

P

g

��

h

��
A

f∈C
// // B
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Using the Yoneda embedding, this exactly means that the functor

P : C → Set preserves regular epimorphisms (compare with De�nition

1.36). Barr constructed a regular epimorphism X̂ � X for each X ∈ C̃
such that X̂ is a C-projective object. This argument goes actually back

to [52] in the case of an abelian category. In this context, Grothendieck

constructed such a C-projective covering in a functorial way. This func-

torial part was omitted by Barr since he did not need it. In order to

complete this result, we provide here the functorial construction in the

regular context.

Theorem 4.4. Let C be a small regular category. Then C̃ is regular and
there exists a functor (̂) : C̃ → C̃ and a natural transformation e : (̂)⇒ 1C̃
such that, for every object X ∈ C̃, X̂ is C-projective and eX : X̂ � X is

a regular epimorphism.

Proof. As mentioned above, C̃ is regular in view of Theorem 3.21 and

Example 3.15. Now, for X ∈ C̃, let us describe Barr's construction of the

regular epimorphism eX : X̂ � X. We are going to recursively construct

some regular epimorphisms

· · · // // X [n] en // // X [n−1] // // · · · // // X [1] e1 // // X [0] = X

such that, if we have morphisms

X [i+1] ei+1
// // X [i]

g

��
C

f
// // C ′

with C,C ′ ∈ C, f a regular epimorphism and i ∈ N, there exists a

morphism h : X [i+1] → C such that fh = gei+1. We suppose

X [n] en // // X [n−1]

has been de�ned and we are going to construct

X [n+1] en+1
// // X [n]
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with the required properties. We well-order (using the Axiom of Choice)

the set of diagrams

X [n]

g

��
C

f
// // C ′

(8)

where C,C ′ ∈ C, f is a regular epimorphism and g does not factor

through en (if n > 1). Then, we construct with a trans�nite recursion a

sequence (indexed by ordinals) of regular epimorphisms

· · · // // X
[n]
ω+1

enω+1 // // X
[n]
ω

// // · · · // // X
[n]
1

en1 // // X
[n]
0 = X [n] (9)

in the following way:

Firstly, X [n]
0 = X [n]. Then, if α is a limit ordinal, X [n]

α is the limit

of (9) for theX [n]
β with β < α. For such an ordinal β, the leg enα,β : X

[n]
α �

X
[n]
β of this limit is a regular epimorphism. Indeed, if we consider the

following commutative diagram on the right,

R[enα,β]

����

· · · R[enβ+1e
n
β+2]

����

// R[enβ+1]

����

// X
[n]
β

����

// · · · // X
[n]
1

����

// X
[n]
0

����

X
[n]
α

enα,β

��

· · · X
[n]
β+2

enβ+1e
n
β+2
����

enβ+2 // // X
[n]
β+1

enβ+1
����

enβ+1 // // X
[n]
β

1
����

// // · · · // // X
[n]
1

en1 // //

1
����

X
[n]
0

1
����

X
[n]
β · · · X

[n]
β 1

// // X
[n]
β 1

// // X
[n]
β

// // · · · // // X
[n]
1 en1

// // X
[n]
0

X
[n]
α is by de�nition the limit of the middle row and X

[n]
β the limit of

the stationary third row. The top row is formed by the kernel pair of

the downward morphisms. Since limits commute with limits, its limit is

the kernel pair of enα,β . The downward morphisms being regular epimor-

phisms, they are the coequaliser of they kernel pairs. Since co�ltered

limits commute in C̃ with �nite colimits, enα,β is the coequaliser of its

kernel pair, and so a regular epimorphism.

Finally, suppose we have de�ned X [n]
α and let us de�ne X [n]

α+1. Con-

sider the α-th diagram of shape (8) and de�ne enα+1 as in the following
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pullback.

X
[n]
α+1

enα+1 // //

kX,f,g

��

X
[n]
α

����
X [n]

g

��
C

f
// // C ′

We stop this process when we run through all diagrams of shape (8).

We then take X [n+1] as the limit of (9) with en+1 : X [n+1] � X [n] the

corresponding leg. By construction, it satis�es the required properties.

We have thus constructed a sequence (indexed by N) of regular epi-
morphisms

· · · // // X [2] e2 // // X [1] e1 // // X [0] = X

with the stated properties. We �nally write X̂ for its limit with eX,n :

X̂ � X [n] the corresponding leg and eX = eX,0.

Now, let us construct, for each pair of morphisms (f, g) as in the

diagram

X̂

g

��
C

f
// // C ′

where C,C ′ ∈ C and f is a regular epimorphism, a canonical morphism

c(f, g) : X̂ → C such that f ◦ c(f, g) = g. By the Yoneda lemma, g is

represented by an element of X̂(C ′). But, by duality, X̂ is the �ltered

colimit of

X = X [0] // // X [1] // // X [2] // // · · ·

in Lex(C, Set). Moreover, �ltered colimit in Lex(C, Set) are computed as

in SetC , so componentwise. Hence, there exists an n ∈ N such that g

factors through eX,n. Consider the least such n and

X [n] h(g) // C ′
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the unique map such that h(g)eX,n = g. Suppose now that

X [n]

h(g)

��
C

f
// // C ′

is the α-th diagram of shape (8). Then, we construct c(f, g) canonically

as kX,f,h(g)eX,n,α+1, where eX,n,α and dX,n,α are the canonical projections

as pictured below.

X̂

eX,n,α+1

����

c(f,g)

��

eX,n,α

�� ��

X
[n]
α+1

enα+1 // //

kX,f,h(g)

��

X
[n]
α

dX,n,α
����

X [n]

h(g)

��
C

f
// // C ′

Thus,

f ◦ c(f, g) = h(g) ◦ eX,n = g

and X̂ is C-projective.

We extend now this construction functorialy on arrows. Let f : X →
Y be a morphism in C̃. Let us suppose by recursion that we have written

feX as dY,nfn, where, again, dY,n is the projection as below.

X̂
eX // //

fn

))

X

f

��
Ŷ // // Y [n+1] // // Y [n]

dY,n
// // Y

Let us extend it to Y [n+1]. We are going to extend it to Y [n]
α , for every

α, by a trans�nite recursion. The 0-th step is already done and we do it

for limit ordinals in a unique way by de�nition of a limit. Now, suppose
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we have written fn as dY,n,αfn,α. So, we can draw the diagram

X̂

��

c(f ′,gfn)

��

fn,α

��

Y
[n]
α+1

enα+1 // //

kY,f ′,g

��

Y
[n]
α

dY,n,α
����

Y [n]

g

��
C

f ′
// // C ′

where f ′ and g forms the α-th diagram of shape (8). We then de�ne

fn,α+1 as the unique arrow X̂ → Y
[n]
α+1 which makes commute this dia-

gram. We can thus extend those fn,α's uniquely to Y [n+1], de�ning fn+1.

Eventually, we extend those fn's uniquely to Ŷ and de�ne f̂ .

It remains to prove that this construction is functorial. If we started

with f = 1X , we have to prove by induction that (1X)n is the canonical

projection eX,n : X̂ � X [n]. It is obviously true if n = 0. Let us suppose

it is true for n. In order to prove it for n+ 1, let us show by trans�nite

induction that (1X)n,α is the canonical projection eX,n,α : X̂ � X
[n]
α . It is

obviously true for 0 and the limit ordinals. If we suppose it for α, we have

to prove it for α+1. We denote by (f ′, g) the α-th diagram of shape (8).

We know that enα+1(1X)n,α+1 = (1X)n,α = eX,n,α = enα+1eX,n,α+1 and

kX,f ′,g(1X)n,α+1 = c(f ′, geX,n). But g = h(geX,n) since g does not factor

through en. Thus, kX,f ′,g(1X)n,α+1 = c(f ′, geX,n) = kX,f ′,geX,n,α+1 and

(1X)n,α+1 = eX,n,α+1 by de�nition of a pullback.

Finally, let us consider f : X → Y and g : Y → Z in C̃. We want

to show that ĝf = ĝf̂ . With the same inductions as above, we only

have to prove that if eZ,nĝf = eZ,nĝf̂ and eZ,n,αĝf = eZ,n,αĝf̂ , then

eZ,n,α+1ĝf = eZ,n,α+1ĝf̂ . In order words, we know that (gf)n = gnf̂

and (gf)n,α = gn,αf̂ and we want to show (gf)n,α+1 = gn,α+1f̂ . We

already know it is true if we compose it by enα+1. So, it remains to prove

that kZ,f ′,g′(gf)n,α+1 = kZ,f ′,g′gn,α+1f̂ where (f ′, g′) is the α-th diagram
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of shape (8). Since kZ,f ′,g′gn,α+1f̂ = c(f ′, g′gn)f̂ , let us suppose that

Y [n′]

h(g′gn)

��
C

f ′
// // C ′

is the β-th diagram of shape (8). Thus,

kZ,f ′,g′gn,α+1f̂ = c(f ′, g′gn)f̂

= kY,f ′,h(g′gn)eY,n′,β+1f̂

= kY,f ′,h(g′gn)fn′,β+1

= c(f ′, h(g′gn)fn′).

But we know that

h(g′gn)fn′ = h(g′gn)eY,n′ f̂ = g′gnf̂ = g′(gf)n

by assumption. Therefore,

kZ,f ′,g′gn,α+1f̂ = c(f ′, h(g′gn)fn′) = c(f ′, g′(gf)n) = kZ,f ′,g′(gf)n,α+1

which concludes the proof.

We are able to prove a variant of Barr's embedding theorem, for which

the power P is now known to be the set (or discrete category) Sub(1).

However, this embedding is not full but only conservative. These changes

are due to Z. Janelidze. We recall from Lemma 1.10 that a regular

conservative functor between regular categories is faithful, preserves and

re�ects �nite limits and regular epimorphisms.

Theorem 4.5. Let C be a small regular category with 1 as terminal ob-

ject. Then, there exists a regular conservative embedding C ↪→ SetSub(1).

Proof. Let e : (̂) ⇒ 1C̃ be the natural transformation given by Theo-

rem 4.4. If I is a subobject of 1, let I? be the coproduct in C̃ of the Ĉ's

for all C ∈ C such that the image of the unique morphism C → 1

is I. Then, if I ∈ Sub(1) and C ∈ C, we de�ne φ(C)I as the set
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C̃(I?, C). If f : C → C ′ is an arrow in C, we set φ(f)I to be the map

f ◦ − : φ(C)I → φ(C ′)I acting by composition with f . This de�nes a

functor φ : C → SetSub(1). Let us check it satis�es the required proper-

ties.

Firstly, to prove φ preserves �nite limits, it is enough to show that

φ(−)I : C → Set preserves them for each I ∈ Sub(1). By the Yoneda

lemma, φ(−)I is isomorphic to I? : C → Set which preserves �nite limits

by de�nition.

We see it preserves regular epimorphisms in a similar way. Indeed, we

must show φ(−)I (or equivalently I?) preserves them for any I ∈ Sub(1).

In order words, we have to prove I? ∈ C̃ is a C-projective object, which

follows directly from the fact it is the coproduct of C-projective objects.

It remains to show φ is conservative. For each object C ′ ∈ C, we
consider the image factorisation of the unique morphism C ′ → 1.

C ′
p // // I // // 1

For each C ′′ ∈ C such that I is also the image of C ′′ → 1, since Ĉ ′′ is

C-projective, there exists a morphism gC′′ : Ĉ ′′ → C ′ making the square

Ĉ ′′

gC′′

��

eC′′ // // C ′′

����
C ′ p

// // I // // 1

commute. In particular, we choose gC′ = eC′ . This gives an induced

morphism g : I? � C ′ which is a regular epimorphism since eC′ = gιC′ is.

Now, if f : C → C ′ is a morphism in C such that φ(f)I is surjective, there

exists a morphism h : I? → C in C̃ satisfying fh = g, which implies that

f is a regular epimorphism. Therefore, φ re�ects regular epimorphisms

and it remains to prove it re�ects monomorphisms.

So let f : C → D be a morphism in C such that φ(f)I is injective for

any I ∈ Sub(1). If we are given two morphisms h, k : C ′ ⇒ C in C such

that fh = fk, we consider I and g : I? � C ′ de�ned as above. We thus

know that fhg = fkg which implies hg = kg by assumption on f . Since

g is a regular epimorphism, this means h = k and f is a monomorphism.
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Hence, φ re�ects monomorphisms and isomorphisms.

In the same way we explained in Section 4.1, Theorems 4.2 and 4.5

allow us to reduce the proof of statements about �nite limits and regular

epimorphisms in regular categories to Set: Suppose we are given a state-

ment of the form P ⇒ Q where P and Q are conjunctions of properties

which can be expressed as

1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. some morphism is a monomorphism,

4. some morphism is a regular epimorphism,

5. some morphism is an isomorphism,

6. some morphism factors through a given monomorphism.

Then, this statement P ⇒ Q is valid in all regular V-categories (for all
universes V) if and only if it is valid in V-Set (for all universes V).

As an application of this theorem, we can now prove in a quicker

way the characterisation of n-permutable categories in terms of a matrix

condition we left unproven in Example 2.50.

Proposition 4.6. [60] Let n > 2 be a natural number, (M,X) the

extended matrix

(M,X) =

((
x y y x z1 z2 · · · zn−2

x x y z1 z2 · · · zn−2 y

)
, {z1, . . . , zn−2}

)

of terms in Th[Set] and C a regular category. Then the following condi-

tions are equivalent:

1. C is n-permutable,

2. (∆X ∩R)Rop(∆X ∩R) 6 Rn−1 for any binary relation R� X×X
in C,

3. C has (M,X)-closed relations.
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Proof. Let us �rst prove that a binary relation R� X ×X is (M,X)-

closed if and only if

(∆X ∩R)Rop(∆X ∩R) 6 Rn−1.

In view of De�nition 2.42 and the construction of the composition, dual

and intersection of relations, it is enough to prove these implications

only in Set. So let R ⊆ X2 be a relation in Set. With the notations of

De�nition 2.42,

P = {(x, x′) ∈ X2 |xRx, x′Rx, x′Rx′}

and

Q = {(x, x′, x1, . . . , xn−2) ∈ Xn |xRx1, x1Rx2, . . . , xn−2Rx
′}.

Thus, R is (M,X)-closed if and only if, for each (x, x′) ∈ P , there exist
x1, . . . , xn−2 ∈ X such that (x, x′, x1, . . . , xn−2) ∈ Q. On the other

hand, x(∆X ∩ R)Rop(∆X ∩ R)x′ exactly means that xRx, x′Rx and

x′Rx′, while xRn−1x′ holds if and only if there exist x1, . . . , xn−2 ∈ X
such that xRx1, x1Rx2, . . . , xn−2Rx

′. This already proves 2 ⇔ 3.

The implication 2⇒ 1 follows directly from Point 5 of Theorem 2.49

since for any re�exive relation E on X, the equalities

Eop = ∆XE
op∆X = (∆X ∩ E)Eop(∆X ∩ E)

hold.

It remains to prove the implication 1⇒ 2, which is due to D. Rodelo

in [60]. Let r : R� X ×X be a binary relation in C. We treat the case

n = 2k − 1 is odd �rst. In that case, we de�ne, for each 1 6 i 6 k, the

relation si via the pullback

Si //
��

si
��

R
��
r

��
Xk ×Xk

πi×πi
// X ×X

where π1, . . . , πk : Xk → X are the product projections. We also de�ne
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for each 1 6 j 6 k − 1 the relation tj via the pullback

Tj //

��
tj
��

R
��
r

��
Xk ×Xk

πj+1×πj
// X ×X

tw
// X ×X

where tw is the twisting isomorphism. We then write P � Xk ×Xk for

the intersection of all these relations s1, . . . , sk, t1, . . . , tk−1 (formed via

a �nite limit). By Theorem 2.49, we know that

(P, P op)n+1 6 (P, P op)n−1.

Now that all the constructions have been done, it remains to prove that

this implies the required inequality. By Barr's embedding theorem, it

su�ces to do it in Set. There, the relation P ⊆ Xk ×Xk is de�ned by

(a1, . . . , ak)P (b1, . . . , bk) if and only if{
aiRbi, for each 1 6 i 6 k

bjRaj+1, for each 1 6 j 6 k − 1.

Let x, y ∈ X be such that xRx, yRx and yRy. We have to show xRn−1y.

From the relations

(x, . . . , x) P (x, . . . , x)

(y, x, . . . , x) P (x, . . . , x)

(y, x, . . . , x) P (y, x, . . . , x)

(y, y, x . . . , x) P (y, x, . . . , x)

...

(y, . . . , y, x) P (y, . . . , y, x)

(y, . . . , y) P (y, . . . , y, x),

we get (x, . . . , x)(P, P op)2k=n+1(y, . . . , y). By assumption, we conclude

that (x, . . . , x)(P, P op)n−1(y, . . . , y), i.e.,

(x, . . . , x) P (z11, . . . , z1k)
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(z21, . . . , z2k) P (z11, . . . , z1k)

(z21, . . . , z2k) P (z31, . . . , z3k)

(z41, . . . , z4k) P (z31, . . . , z3k)

...

(zn−3,1, . . . , zn−3,k) P (zn−2,1, . . . , zn−2,k)

(y, . . . , y) P (zn−2,1, . . . , zn−2,k),

for some (zi1, . . . , zik) ∈ Xk, 1 6 i 6 n − 2. From these relations,

we get xRz11, z11Rz22, z22Rz32, z32Rz43,. . . , zn−3,k−1Rzn−2,k−1 and

zn−2,k−1Ry, which implies xRn−1y.

It remains to treat the case n = 2k is even. In a similar way, we de�ne

the relation P , suppose we have (P, P op)n+1 6 (P, P op)n−1 and prove

the required inequality in the particular case C = Set. So let x, y ∈ X be

such that xRx, yRx and yRy and we want to show that xRn−1y. Again,

the relations

(x, . . . , x) P (x, . . . , x)

(y, x, . . . , x) P (x, . . . , x)

(y, x, . . . , x) P (y, x, . . . , x)

(y, y, x . . . , x) P (y, x, . . . , x)

...

(y, . . . , y, x) P (y, . . . , y, x)

(y, . . . , y) P (y, . . . , y, x)

(y, . . . , y) P (y, . . . , y),

tell us that (x, . . . , x)(P, P op)2k+1=n+1(y, . . . , y). From this, it follows

that (x, . . . , x)(P, P op)n−1(y, . . . , y), which means

(x, . . . , x) P (z11, . . . , z1k)

(z21, . . . , z2k) P (z11, . . . , z1k)

(z21, . . . , z2k) P (z31, . . . , z3k)
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(z41, . . . , z4k) P (z31, . . . , z3k)

...

(zn−2,1, . . . , zn−2,k) P (zn−3,1, . . . , zn−3,k)

(zn−2,1, . . . , zn−2,k) P (y, . . . , y),

for some (zi1, . . . , zik) ∈ Xk, 1 6 i 6 n−2. This implies in particular that

xRz11, z11Rz22, z22Rz32, z32Rz43,. . . , zn−3,k−1Rzn−2,k and zn−2,kRy.

Therefore, xRn−1y which concludes the proof.

Note that some equivalences similar to 1⇔ 2 were already mentioned

in [70].

4.3 Embedding for categories with (M,X)-closed

relations

Putting together Theorems 2.54, 3.21 and 4.4, we are now going to prove

an embedding theorem for regular T -categories with (M,X)-closed re-

lations. As a �rst step, we construct a �nitary essentially algebraic the-

ory Γ(M,X) for which the category of models Mod(Γ(M,X)) will be our

`representative category'. By that we mean Mod(Γ(M,X)) is a regular T -
category with (M,X)-closed relations and every small regular T -category
with (M,X)-closed relations admits a regular conservative T -enriched
embedding in Mod(Γ(M,X))

Sub(1). We will conclude this section with a

similar embedding theorem for exact T -categories with (M,X)-closed re-

lations, using the exact completion (introduced in [77], see also [98, 73])

of the regular category Mod(Γ(M,X)).

4.3.1 Construction of Γ(M,X)

Firstly, if Γ and Γ′ are two essentially algebraic theories, we will write

Γ ⊆ Γ′ to mean S ⊆ S′, Σ ⊆ Σ′, E ⊆ E′, Σt ⊆ Σ′t, Σ \ Σt ⊆ Σ′ \ Σ′t and

Def(σ) = Def ′(σ) for all σ ∈ Σ \ Σt. In this case, we have a forgetful

functor U : Mod(Γ′)→ Mod(Γ).

Let now T be a commutative Lawvere theory. We will see it as T(Σ,E)

for a �nitary one-sorted algebraic theory (Σ, E). By an operation symbol
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(resp. an axiom) of T , we thus mean an element of Σ (resp. E). For the

sake of brevity, for each natural number r, we denote by ΣTr the set of

r-ary operation symbols of T . Let also

(M,X) =




t11 · · · t1b u11 · · · u1b′

...
...

...
...

ta1 · · · tab ua1 · · · uab′

 , X


be an extended matrix of terms in T . We are going to construct recur-

sively a series of �nitary essentially algebraic theories

Γ0 ⊆ ∆1 ⊆ · · · ⊆ Γn ⊆ ∆n+1 ⊆ · · ·

and a T -enrichment on the Mod(Γn)'s and Mod(∆n)'s. Let us �rst de�ne

Γ0 = (S0,Σ0, E0,Σ0
t ,Def0):

� S0 = {?},

� Σ0 = Σ0
t = {τ? : ?r → ? | r ∈ N, τ ∈ ΣTr },

� E0 = {all axioms from T for the τ?'s}.

We consider the obvious T -enrichment on Mod(Γ0) ∼= T -Alg (see Propo-

sition 1.107). Now, let us suppose we have de�ned

Γ0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ Γn

and the T -enrichment on Mod(Γn) (with Γn = (Sn,Σn, En,Σn
t ,Defn)).

We are going to construct

∆n+1 = (S
′n+1,Σ

′n+1, E
′n+1,Σ

′n+1
t ,Def

′n+1)

�rst (below S
0

= S0 and S
n

= Sn \ Sn−1 if n > 1):

S
′n+1 = Sn ∪ {(s, 0), (s, 1) | s ∈ Sn} ∼= Sn t Sn t Sn,

Σ
′n+1
t = Σn

t ∪ {τ (s,0) : (s, 0)r → (s, 0) | r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,1) : (s, 1)r → (s, 1) | r ∈ N, τ ∈ ΣTr , s ∈ S
n}
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∪ {αs : s→ (s, 0) | s ∈ Sn}

∪ {ρs1, . . . , ρsb′ : sb → (s, 0) | s ∈ Sn}

∪ {κs1, . . . , κsk−l : sl → (s, 0) | s ∈ Sn}

∪ {ηs, εs : (s, 0)→ (s, 1) | s ∈ Sn},

Σ
′n+1 = Σn ∪ Σ

′n+1
t ∪ {πs : (s, 0)→ s | s ∈ Sn},

E
′n+1 =

En ∪ {u(s,0)
ij (αs(x1), . . . , αs(xl), κ

s
1(x1, . . . , xl), . . . , κ

s
k−l(x1, . . . , xl))

= ρsj(t
s
i1(x1, . . . , xl), . . . , t

s
ib(x1, . . . , xl)) |

1 6 i 6 a, 1 6 j 6 b′, s ∈ Sn}

∪ {ηs(αs(x)) = εs(αs(x)) | s ∈ Sn}

∪ {πs(αs(x)) = x | s ∈ Sn}

∪ {αs(πs(x)) = x | s ∈ Sn}

∪ {all axioms from T for the τ (s,0)'s and the τ (s,1)'s | s ∈ Sn}

∪ {τ (s,0)(αs(x1), . . . , αs(xr)) = αs(τ s(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,0)(ρsj(x11, . . . , x1b), . . . , ρ
s
j(xr1, . . . , xrb))

= ρsj(τ
s(x11, . . . , xr1), . . . , τ s(x1b, . . . , xrb)) |

1 6 j 6 b′, r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,0)(κsv(x11, . . . , x1l), . . . , κ
s
v(xr1, . . . , xrl))

= κsv(τ
s(x11, . . . , xr1), . . . , τ s(x1l, . . . , xrl)) |

1 6 v 6 k − l, r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,1)(ηs(x1), . . . , ηs(xr)) = ηs(τ (s,0)(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,1)(εs(x1), . . . , εs(xr)) = εs(τ (s,0)(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ s(πs(x1), . . . , πs(xr)) = πs(τ (s,0)(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , s ∈ S
n}
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and {
Def

′n+1(σ) = Defn(σ) if σ ∈ Σn \ Σn
t

Def
′n+1(πs) = {ηs(x) = εs(x)} for s ∈ Sn.

Hence, we have Γn ⊆ ∆n+1 and we consider the obvious T -enrichment on

Mod(∆n+1). Let now Tn+1 be the set of �nitary terms θ :
∏m
i=1 si → s

of Σ
′n+1 which are not terms of Σ

′n (where we consider Σ
′0 = ∅). We

then de�ne Γn+1 as:

Sn+1 = S
′n+1 ∪ {sθ, s′θ | θ ∈ Tn+1} ∼= S

′n+1 t Tn+1 t Tn+1,

Σn+1
t = Σ

′n+1
t ∪ {τ sθ : srθ → sθ | r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s′θ : (s′θ)
r → s′θ | r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {αθ : s→ sθ | θ :

m∏
i=1

si → s ∈ Tn+1}

∪ {µθ :

m∏
i=1

si → sθ | θ :

m∏
i=1

si → s ∈ Tn+1}

∪ {ηθ, εθ : sθ → s′θ | θ ∈ Tn+1},

Σn+1 = Σ
′n+1 ∪ Σn+1

t ∪ {πθ : sθ → s | θ :

m∏
i=1

si → s ∈ Tn+1},

En+1 =

E
′n+1 ∪ {ηθ(αθ(x)) = εθ(αθ(x)) | θ ∈ Tn+1}

∪ {πθ(αθ(x)) = x | θ ∈ Tn+1}

∪ {αθ(πθ(x)) = x | θ ∈ Tn+1}

∪ {αθ(θ(x1, . . . , xm)) = µθ(x1, . . . , xm) | θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {all axioms from T for the τ sθ 's and the τ s
′
θ 's | θ ∈ Tn+1}

∪ {τ sθ(αθ(x1), . . . , αθ(xr)) = αθ(τ
s(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ :
m∏
i=1

si → s ∈ Tn+1}
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∪ {τ sθ(µθ(x11, . . . , x1m), . . . , µθ(xr1, . . . , xrm))

= µθ(τ
s1(x11, . . . , xr1), . . . , τ sm(x1m, . . . , xrm)) |

r ∈ N, τ ∈ ΣTr , θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {τ s′θ(ηθ(x1), . . . , ηθ(xr)) = ηθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s′θ(εθ(x1), . . . , εθ(xr)) = εθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s(πθ(x1), . . . , πθ(xr)) = πθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ :

m∏
i=1

si → s ∈ Tn+1}

and {
Defn+1(σ) = Def

′n+1(σ) if σ ∈ Σ
′n+1 \ Σ

′n+1
t

Defn+1(πθ) = {ηθ(x) = εθ(x)} for θ ∈ Tn+1.

Thus, we have ∆n+1 ⊆ Γn+1 and we consider the obvious T -enrichment

on Mod(Γn+1). In this way, the expected series

Γ0 ⊆ ∆1 ⊆ Γ1 ⊆ · · ·

has been constructed. We then set Γ(M,X) to be the union of these �ni-

tary essentially algebraic theories. By that we obviously mean S(M,X) =⋃
n∈N S

n, Σ(M,X) =
⋃
n∈N Σn, E(M,X) =

⋃
n∈NE

n, Σt,(M,X) =
⋃
n∈N Σn

t

and Def(M,X)(σ) = Defn(σ) for all n ∈ N and σ ∈ Σn \ Σn
t . We provide

Mod(Γ(M,X)) with the T -enrichment coming from the T -enrichments on

the Mod(Γn)'s. Remark that for each π : s′ → s ∈ Σ(M,X) \ Σt,(M,X),

there are three corresponding operation symbols in Σt,(M,X), these are

α : s→ s′ and η, ε : s′ ⇒ s′′.

Proposition 4.7. [59] Let T be a commutative Lawvere theory and

(M,X) an extended matrix of terms in T . Then the T -enriched category

Mod(Γ(M,X)) is regular with (M,X)-closed relations.

Proof. It is the `Γ ingredient' of the construction which makes the cate-

gory Mod(Γ(M,X)) regular. Indeed, each �nitary term θ of Σ(M,X) is in
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Tn+1 for some n ∈ N, which makes the conditions of Theorem 1.89 hold.

On the other hand, the `∆ part' of the construction ensures that

Mod(Γ(M,X)) has (M,X)-closed relations. To see that, it su�ces to use

Theorem 2.52 with the terms πs : (s, 0)→ s,

αs ◦ p1, . . . , α
s ◦ pl, κs1, . . . , κsk−l : sl → (s, 0)

(where p1, . . . , pl : s
l → s are the projections), and

ρs1, . . . , ρ
s
b′ : s

b → (s, 0).

4.3.2 Proof of the embedding theorem

Let us now prove our embedding theorem. The Mal'tsev case already

appears in [55].

Theorem 4.8. [59] Let T be a commutative Lawvere theory, (M,X) an

extended matrix of terms in T and C a small regular T -category with

(M,X)-closed relations. Let 1 be the terminal object in C. Then, there
exists a regular conservative T -enriched embedding

φ : C ↪→ Mod(Γ(M,X))
Sub(1).

Moreover, for each morphism f : C → C ′ in C, each I ∈ Sub(1) and each

s ∈ S(M,X),

(Imφ(f)I)s = {(φ(f)I)s(x) |x ∈ (φ(C)I)s}.

Proof. By Theorem 3.21 and Examples 3.15 and 3.16, we know that C̃ is a
regular T -category with (M,X)-closed relations. In what follows, we de-

note by e : (̂)⇒ 1C̃ the natural transformation given by Theorem 4.4. If

C ∈ C and P ∈ Sub(1), we are going to construct φ(C)P ∈ Mod(Γ(M,X)).

More precisely, we are going to construct a Γ(M,X)-model φ(C)P satisfy-

ing the following conditions:

1. For each s ∈ S(M,X), (φ(C)P )s = C̃(Ps, C) for some C-projective
object Ps ∈ C̃.
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2. For each s ∈ S(M,X) and r-ary operation symbol τ of T ,

τ s : C̃(Ps, C)r −→ C̃(Ps, C)

is the operation τ coming from the T -enrichment of C̃.

3. For each π : s′ → s ∈ Σ(M,X) \ Σt,(M,X) and its corresponding

α : s→ s′, there is a given regular epimorphism

Ps′
lα // // Ps

in C̃ such that

α : C̃(Ps, C) −→C̃(Ps′ , C)

f 7−→ flα

and

π : C̃(Ps′ , C) −→ C̃(Ps, C)

g 7−→ the unique f such that flα = g

where π is de�ned if and only if such an f exists. For the corre-

sponding operation symbols η, ε : s′ ⇒ s′′, we consider the kernel

pair (v, w) of lα.

R̂
eR // // R

v //
w
// Ps′

lα // // Ps

We require then Ps′′ = R̂,

η : C̃(Ps′ , C) −→ C̃(Ps′′ , C)

g 7−→ gveR

and

ε : C̃(Ps′ , C) −→ C̃(Ps′′ , C)

g 7−→ gweR.
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4. For each sort s ∈ S(M,X), we consider the universal approximate

co-solution for (M,X) on Ps

Ŵ (Ps)

eW (Ps)

����
W (Ps)

(qPs1 ,...,qPsk−l)

%%
dPs
����

(pPs1 ,...,pPs
b′ )

zz
(bPs)

b′ Ps (lPs)
k−l

where dPs is a regular epimorphism by Theorem 2.54. We require

then P(s,0) = Ŵ (Ps),

ρsj : C̃(Ps, C)b −→ C̃(P(s,0), C)

(f1, . . . , fb) 7−→

(
f1...
fb

)
pPsj eW (Ps)

for each j ∈ {1, . . . , b′} and

κsv : C̃(Ps, C)l −→ C̃(P(s,0), C)

(f1, . . . , fl) 7−→

(
f1...
fl

)
qPsv eW (Ps)

for each v ∈ {1, . . . , k − l}.

5. For each �nitary term θ :
∏m
i=1 si → s of Σ(M,X), there is a given

morphism lµθ : Psθ → Ps1 + · · ·+ Psm such that

µθ : C̃(Ps1 , C)× · · · × C̃(Psm , C) −→ C̃(Psθ , C)

(f1, . . . , fm) 7−→

(
f1...
fm

)
lµθ .

Since Γ(M,X) is the union of the series

Γ0 ⊆ ∆1 ⊆ Γ1 ⊆ · · ·

of essentially algebraic theories, to construct a Γ(M,X)-model φ(C)P , it
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is enough to construct recursively a Γn-model for each n ∈ N such that

they agree on the common sorts and operations.

Firstly, to de�ne a Γ0-model, we set P? to be the coproduct in C̃
of the Ĉ ′'s for all C ′ ∈ C such that the image of the unique morphism

C ′ → 1 is P ∈ Sub(1). P? is C-projective since it is the coproduct of

C-projective objects. The Γ0-structure is then imposed by conditions 1

and 2.

Now, we suppose we have de�ned a Γn-model satisfying the above

conditions. We are going to extend it to a Γn+1-model with the same

properties. Firstly, we extend it to a ∆n+1-model. Let s ∈ Sn. Condi-

tion 4 above imposes the constructions of P(s,0), the ρ
s
j 's and the κsv's.

Moreover, condition 3 with lαs = dPseW (Ps) from condition 4 de�nes

αs, πs, P(s,1), η
s and εs and condition 2 forces the construction of the

τ (s,0)'s and the τ (s,1)'s. It follows then from the de�nitions that this

gives a ∆n+1-model which satis�es conditions 1�5. Indeed, to see that

the operations τ s for τ ∈ ΣTr commute with the other ones, it su�ces to

use the fact that, in a T -category with �nite coproducts, if we are given

morphisms (xij : X → Y )i∈{1,...,r},j∈{1,...,r′}, then the equality

τ

(( x11...
x1r′

)
, . . . ,

( xr1...
xrr′

))
=

(
τ(x11,...,xr1)

...
τ(x1r′ ,...,xrr′ )

)

holds, which can be seen by composing with the coproduct injections.

We can also compute for f1, . . . , fl : Ps → C, 1 6 i 6 a and 1 6 j 6 b′,

ρsj(t
s
i1(f1, . . . , fl), . . . , t

s
ib(f1, . . . , fl))

=

(
ti1(f1,...,fl)...
tib(f1,...,fl)

)
pPsj eW (Ps)

=

(
f1...
fl

)(
ti1(ι1,...,ιl)...
tib(ι1,...,ιl)

)
pPsj eW (Ps)

=

(
f1...
fl

)
uij(ι1d

Ps , . . . , ιld
Ps , qPs1 , . . . , qPsk−l)eW (Ps)
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= uij(f1d
PseW (Ps), . . . , fld

PseW (Ps),(
f1...
fl

)
qPs1 eW (Ps), . . . ,

(
f1...
fl

)
qPsk−leW (Ps))

= u
(s,0)
ij (αs(f1), . . . , αs(fl), κ

s
1(f1, . . . , fl), . . . , κ

s
k−l(f1, . . . , fl)).

It remains to extend it to a Γn+1-model. In order to simplify the

proof, we are going to construct Psθ , lµθ and lαθ for each �nitary term

θ :
∏m
i=1 si → s of Σ

′n+1 such that it matches the previous construction if

θ is actually a term of Σ
′n. Then, condition 3 will force the construction

of αθ, πθ, Ps′θ , ηθ and εθ, condition 2 will de�ne the τ sθ and τ s
′
θ 's, and

condition 5 will impose the de�nition of µθ. We are going to do it

recursively in such a way that the equality

αθ(θ(f1, . . . , fm)) = µθ(f1, . . . , fm)

holds for any cospan (fi : Psi → C)i∈{1,...,m} such that θ(f1, . . . , fm) is

de�ned.

Firstly, let θ = pj :
∏m
i=1 si → sj be a projection (1 6 j 6 m). In

this case, we de�ne Psθ = Psj , lµθ = ιj : Psj → Ps1 + · · · + Psm and

lαθ = 1Psj . Obviously, one has

αθ(θ(f1, . . . , fm)) = fj =

(
f1...
fm

)
ιj = µθ(f1, . . . , fm)

for any cospan (fi : Psi → C)i∈{1,...,m}.

Secondly, let θ :
∏m
i=1 si → s′ be a �nitary term of Σ

′n+1 for which

lµθ and lαθ have been constructed. If π : s′ → s ∈ Σ
′n+1 \ Σ

′n+1
t has

corresponding α : s → s′, we de�ne Psπ(θ)
= Psθ , lαπ(θ)

= lαlαθ and

lµπ(θ)
= lµθ .

Psπ(θ)
= Psθ

lµπ(θ)
=lµθ //

lαθ ����

lαπ(θ)

%% %%

Ps1 + · · ·+ Psm

Ps′ lα
// // Ps

If the cospan (fi : Psi → C)i∈{1,...,m} is such that θ(f1, . . . , fm) : Ps′ → C
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is de�ned, we know from the previous step in the recursion that

θ(f1, . . . , fm)lαθ = αθ(θ(f1, . . . , fm)) = µθ(f1, . . . , fm).

If moreover π(θ(f1, . . . , fm)) : Ps → C is de�ned, we have

π(θ(f1, . . . , fm))lα = θ(f1, . . . , fm).

In this case,

απ(θ)(π(θ(f1, . . . , fm))) = π(θ(f1, . . . , fm))lαπ(θ)

= π(θ(f1, . . . , fm))lαlαθ

= θ(f1, . . . , fm)lαθ

= µθ(f1, . . . , fm)

= µπ(θ)(f1, . . . , fm).

Eventually, let us suppose σ :
∏r
i=1 s

′
i → s ∈ Σ

′n+1
t is an operation

symbol and for each 1 6 j 6 r, θj :
∏m
i=1 si → s′j is a �nitary term

of Σ
′n+1 for which lµθj and lαθj have been de�ned. We already have a

corresponding morphism lσ : Ps → Ps′1 + · · ·+ Ps′r such that

σ : C̃(Ps′1 , C)× · · · × C̃(Ps′r , C)→ C̃(Ps, C)

(f1, . . . , fr) 7→

(
f1...
fr

)
lσ

(if σ = τ s for some τ ∈ ΣTr , we have lτs = τ(ι1, . . . , ιr) : Ps → rPs). Let

us consider the following diagram where the square is a pullback.

Psθ = Û
eU // // U

u2

����

u1 // Psθ1 + · · ·+ Psθr

lαθ1
+···+lαθr����


lµθ1...
lµθr


// Ps1 + · · ·+ Psm

Ps
lσ
// Ps′1 + · · ·+ Ps′r

Denoting the term σ(θ1, . . . , θr) :
∏m
i=1 si → s by θ, we de�ne Psθ = Û ,
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lαθ = u2eU and

lµθ =

 lµθ1...
lµθr

u1eU .

Then, if the cospan (fi : Psi → C)i∈{1,...,m} is such that θj(f1, . . . , fm) :

Ps′j → C is de�ned for each 1 6 j 6 r,

αθ(θ(f1, . . . , fm)) = σ(θ1(f1, . . . , fm), . . . , θr(f1, . . . , fm))lαθ

=

(
θ1(f1,...,fm)

...
θr(f1,...,fm)

)
lσu2eU

=

(
θ1(f1,...,fm)

...
θr(f1,...,fm)

)
(lαθ1 + · · ·+ lαθr )u1eU

=

(
αθ1 (θ1(f1,...,fm))

...
αθr (θr(f1,...,fm))

)
u1eU

=

(
µθ1 (f1,...,fm)

...
µθr (f1,...,fm)

)
u1eU

=

(
f1...
fm

) lµθ1...
lµθr

u1eU

= µθ(f1, . . . , fm)

using the previous steps in the recursion.

This ends the construction of Psθ , lαθ and lµθ for each �nitary term

θ of Σ
′n+1. Similarly as above, this de�nes a Γn+1-model which satis�es

conditions 1�5. This concludes the recursive construction of our Γn-

model for each n ∈ N. Considering them all together, we get a Γ(M,X)-

model φ(C)P .

Now, if f : C → C ′ ∈ C and P ∈ Sub(1), we de�ne a morphism

φ(f)P : φ(C)P → φ(C ′)P by

(φ(f)P )s : C̃(Ps, C) −→ C̃(Ps, C ′)

g 7−→ fg

for all s ∈ S(M,X). By conditions 2�5, φ(f)P is a Γ(M,X)-homomorphism.

This de�nes the expected functor φ : C → Mod(Γ(M,X))
Sub(1).



4.3. Embedding for categories with (M,X)-closed relations 157

To prove φ is a T -enriched functor, we only need to show that

φ(−)P is T -enriched for all P ∈ Sub(1) since the T -enrichment on

Mod(Γ(M,X))
Sub(1) is computed componentwise. We thus have to prove

that given τ ∈ ΣTr , parallel morphisms f1, . . . , fr : C → C ′ in C, P ∈
Sub(1) and s ∈ S(M,X), (φ(τ(f1, . . . , fr))P )s = τ(φ(f1)P , . . . , φ(fr)P )s.

This holds due to condition 2, since given g ∈ C̃(Ps, C),

(φ(τ(f1, . . . , fr))P )s(g) = τ(f1, . . . , fr)g

= τ(f1g, . . . , frg)

= τ s(f1g, . . . , frg)

= τ s((φ(f1)P )s(g), . . . , (φ(fr)P )s(g))

= τ(φ(f1)P , . . . , φ(fr)P )s(g).

Similarly as we described for Barr's Embedding Theorem 4.5, φ pre-

serves �nite limits and regular epimorphisms since for each P ∈ Sub(1)

and each s ∈ S(M,X), Ps : C → Set preserves them. Note that if a ho-

momorphism f of Γ(M,X)-models is such that fs is surjective for each

s ∈ S(M,X), it is a strong epimorphism and so a regular epimorphism.

Again, in the same way we did for Theorem 4.5, if f : C → C ′ ∈ C is
such that (φ(f)P )s is surjective (resp. injective) for each P ∈ Sub(1) and

each s ∈ S(M,X) (or even just for s = ?), then f is a regular epimorphism

(resp. a monomorphism). This implies that φ is conservative.

It remains to check that, for f : C → C ′ ∈ C, P ∈ Sub(1) and

s ∈ S(M,X),

(Imφ(f)P )s = {(φ(f)P )s(x) |x ∈ (φ(C)P )s}.

Consider π : s′ → s ∈ Σ(M,X) \ Σt,(M,X) and x ∈ C̃(Ps′ , C) such that

π((φ(f)P )s′(x)) is de�ned. So, there exists g : Ps → C ′ making the

square

Ps′
x //

lα
����

C

f

��
Ps g

// C ′

commute (with α : s → s′ corresponding to π). Let f = iq be the
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image factorisation of f . Since lα is a strong epimorphism, there exists

a g′ : Ps → Im(f) such that ig′ = g. Since Ps is C-projective, there
exists a morphism y : Ps → C such that qy = g′. Thus, fy = g and

(φ(f)P )s(y) = g = π((φ(f)P )s′(x)). Therefore, in view of the description

of images in categories of Γ-models given in Proposition 1.84 for any

essentially algebraic theory Γ, this concludes the proof.

The reader may have noticed we actually de�ned in this proof, for

each P ∈ Sub(1), an internal Γ(M,X)-co-model in C̃.

4.3.3 Applications

As we previously explained for Yoneda and Barr's embedding theorems,

Theorem 4.8 gives a way to reduce the proof of statements about �nite

limits and regular epimorphisms in regular T -categories with (M,X)-

closed relations to the particular case of Mod(Γ(M,X)). With more de-

tails, let (M,X) be an extended matrix of terms in the commutative

Lawvere theory T and suppose we are given a statement of the form

P ⇒ Q where P and Q are conjunctions of properties which can be

expressed as

1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. the equality t(f1, . . . , fn) = g holds for an n-ary term t of T and

parallel morphisms f1, . . . , fn, g,

4. some morphism is a monomorphism,

5. some morphism is a regular epimorphism,

6. some morphism is an isomorphism,

7. some morphism factors through a given monomorphism.

Then, this statement P ⇒ Q is valid in all regular V-T -categories with
(M,X)-closed relations (for all universes V) if and only if it is valid in

V-Mod(Γ(M,X)) (for all universes V).
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Remark 4.9. At a �rst glance, one could think this technique will be

hard to use in practice, in view of the di�cult de�nition of Mod(Γ(M,X)).

However, due to the additional property in Theorem 4.8, we can suppose

that the homomorphisms f : A → B considered in the given statement

have an easy description of their images in Mod(Γ(M,X)), i.e.,

(Im f)s = {fs(a) | a ∈ As}

for each s ∈ S(M,X) (compare with the one given in Proposition 1.84). In

particular, if f is a regular epimorphism, fs will be a surjective function

for each s ∈ S(M,X). Therefore, in practice, it seems we will never have

to use the operations αθ, µθ, ηθ, εθ and πθ. They were built only to

make Mod(Γ(M,X)) a regular category.

We now show on concrete examples how to use this embedding theo-

rem to prove some results using elements and operations. We recall that,

for the sake of brevity, we sometimes write f instead of fs for the s-th

component of an S-sorted function f . Firstly, we give an example in the

regular subtractive context.

Lemma 4.10. [24] Let C be a regular subtractive category and d an

approximate subtraction (i.e., a morphism d : A × A → B such that

d(1A, 1A) = 0).

A
0

##
(1A,1A)

��
A×A

d
// B

Let also x, y, z, w : C → A be four morphisms in C such that d(x, y) =

d(z, t). Then d(x, z) = d(y, t).

Proof. By our Embedding Theorem 4.8, it is enough to prove this lemma

in Mod(Γ(M,X)) with (M,X) =

((
x 0 x

x x 0

)
,∅

)
. So, let s ∈ S(M,X)

and c ∈ Cs. We can compute:

αs(d(x(c), z(c))) = ρs1(d(x(c), z(c)), 0s)

= ρs1(d(x(c), z(c)), d(z(c), z(c)))
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= d(ρs1((x(c), z(c)), (z(c), z(c))))

= d(ρs1(x(c), z(c)), ρs1(z(c), z(c)))

= d(ρs1(x(c), z(c)), 0(s,0))

= d(ρs1(x(c), z(c)), ρs1(y(c), y(c)))

= d(ρs1((x(c), y(c)), (z(c), y(c))))

= ρs1(d(x(c), y(c)), d(z(c), y(c)))

= ρs1(d(z(c), t(c)), d(z(c), y(c)))

= d(ρs1(z(c), z(c)), ρs1(t(c), y(c)))

= d(ρs1(y(c), y(c)), ρs1(t(c), y(c)))

= ρs1(d(y(c), t(c)), d(y(c), y(c)))

= ρs1(d(y(c), t(c)), 0s)

= αs(d(y(c), t(c))).

Since πs(αs(x)) is everywhere-de�ned and πs(αs(x)) = x is a theorem

of Γ(M,X), α
s : Bs → B(s,0) is injective. We can thus deduce from the

above calculation that d(x(c), z(c)) = d(y(c), t(c)).

As announced above, we now prove the converse implication of Propo-

sition 3.25. For a natural number n > 3, we are going to use the diagram

below in a regular category C, of which (7) is a particular case:

L
p1

rr

p2

yy
p3





pn−2

��

pn−1

��

λ //U ×W V

q2

�� ��

q1

yyyy
X γ

//

f

�� ��

U

h

�� ��

99

X

f

�� ��

g
~~~~

Y

s

XX

t

>>

β1

**

X
g
~~~~ · · ·Y

s

XX

t

>>

β2 **

· · ·
X

f

�� ��

X
g
~~~~

δ // V

VV

k
~~~~

Y

s

XX

t

>>

βn−2

.

.

.

//W

u

XX

i2
jj

.

.

.

in−2

jj

v

>>

(10)
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in which the equalities

fs = gt = 1Y , kv = hu = 1W , hγ = β1f, γs = uβ1, kδ = βn−2g,

δt = vβn−2, q1λ = γp1, q2λ = δpn−1 and βjij = 1W ,

βjf = βj−1g, ft = ijβj−1 for each 2 6 j 6 n− 2

hold, (U ×W V, q1, q2) is the pullback of k along h and (L, p1, . . . , pn−1)

is the limit of the zig-zag formed by the alternating split epimorphisms

f and g.

Theorem 4.11. [60] Let n > 3 be a natural number and C a regular

category. The following statements are equivalent:

1. C is n-permutable,

2. for each diagram (7) in C, if γ and δ are regular epimorphisms,

then λ is also a regular epimorphism,

3. for each diagram (10) in C, if γ and δ are regular epimorphisms,

then λ is also a regular epimorphism.

Proof. 2 ⇒ 1 being the content of Proposition 3.25 and 3 ⇒ 2 being

trivial, it remains to prove 1 ⇒ 3. Due to our Embedding Theorem 4.8,

it is enough to prove it in Mod(Γ(M,X)) for

(M,X) =

((
x y y x z1 z2 · · · zn−2

x x y z1 z2 · · · zn−2 y

)
, {z1, . . . , zn−2}

)
.

Moreover, using Remark 4.9, we can suppose without loss of generality

that γ and δ are surjective in each sort. So, let s′ ∈ S(M,X) (to avoid

clashes of notations with the section s of f), a ∈ Us′ and b ∈ Vs′ be such
that h(a) = k(b). We must prove that (a, b) is in the image of λ. Since

γs′ and δs′ are surjective, there exist x, x′ ∈ Xs′ such that γ(x) = a and

δ(x′) = b. This implies the equalities

β1f(x) = hγ(x) = h(a) = k(b) = kδ(x′) = βn−2g(x′) (11)
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hold. Let us also compute the following identities:

γ(sg)n−2(x′) = γsg(sg)n−3(x′)

= uβ1g(sg)n−3(x′)

= uβ2f(sg)n−3(x′)

= uβ2fsg(sg)n−4(x′)

= uβ2g(sg)n−4(x′)

= · · · (12)

= uβn−3g(sg)1(x′)

= uβn−2fsg(x′)

= uβn−2g(x′)

(11)
= uβ1f(x)

= γsf(x)

and

δ(tf)n−2(x) = δtf(tf)n−3(x)

= vβn−2f(tf)n−3(x)

= vβn−3g(tf)n−3(x)

= vβn−3gtf(tf)n−4(x)

= vβn−3f(tf)n−4(x)

= · · · (13)

= vβ2f(tf)1(x)

= vβ1gtf(x)

= vβ1f(x)

(11)
= vβn−2g(x′)

= δtg(x′).

For 2 6 j 6 n− 2, we also �nd

ftg(sg)n−j−1(x′) = ijβj−1g(sg)n−j−1(x′)

= ijβjf(sg)n−j−1(x′)
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= ijβjfsg(sg)n−j−2(x′)

= ijβjg(sg)n−j−2(x′)

= · · ·

= ijβn−3g(sg)1(x′)

= ijβn−2fsg(x′) (14)

= ijβn−2g(x′)

(11)
= ijβ1f(x)

= ij(βj−1ij−1)(βj−2ij−2) · · · (β2i2)β1f(x)

= (ijβj−1)(ij−1βj−2)(ij−2 · · ·β2)(i2β1)f(x)

= (ft)j−1f(x)

= f(tf)j−1(x).

Now, we de�ne

x1 = ρs
′

1 (x, sf(x), (sg)n−2(x′)) ∈ X(s′,0)

and for 2 6 j 6 n− 1,

xj = ρs
′
j ((tf)j−1(x), tg(sg)n−j−1(x′), (sg)n−j−1(x′)) ∈ X(s′,0).

We can compute the following identities:

f(x1) = ρs
′

1 (f(x), fsf(x), f(sg)n−2(x′))

= ρs
′

1 (f(x), f(x), g(sg)n−3(x′))

= κs
′

1 (f(x), g(sg)n−3(x′))

= ρs
′

2 (f(x), g(sg)n−3(x′), g(sg)n−3(x′))

= ρs
′

2 (gtf(x), gtg(sg)n−3(x′), g(sg)n−3(x′))

= g(x2)

and for each 2 6 j 6 n− 2,

f(xj) = ρs
′
j (f(tf)j−1(x), ftg(sg)n−j−1(x′), f(sg)n−j−1(x′))

(14)
= ρs

′
j (f(tf)j−1(x), f(tf)j−1(x), f(sg)n−j−1(x′))
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= κs
′
j (f(tf)j−1(x), f(sg)n−j−1(x′))

= ρs
′
j+1(f(tf)j−1(x), f(sg)n−j−1(x′), f(sg)n−j−1(x′))

= ρs
′
j+1(g(tf)j(x), g(sg)n−j−2(x′), g(sg)n−j−2(x′))

= g(xj+1).

This exactly means that (x1, . . . , xn−1) ∈ L(s′,0). Moreover, the equali-

ties

γ(x1) = ρs
′

1 (γ(x), γsf(x), γ(sg)n−2(x′))

(12)
= ρs

′
1 (γ(x), γsf(x), γsf(x))

= αs
′
(γ(x))

= αs
′
(a)

and

δ(xn−1) = ρs
′
n−1(δ(tf)n−2(x), δtg(x′), δ(x′))

(13)
= ρs

′
n−1(δtg(x′), δtg(x′), δ(x′))

= αs
′
(δ(x′))

= αs
′
(b)

hold. This implies that

λ(x1, . . . , xn−1) = (αs
′
(a), αs

′
(b)) = αs

′
(a, b)

and

(a, b) = πs
′
(αs

′
(a, b))

= πs
′
(λ(x1, . . . , xn−1))

∈ Im(λ)s′

which concludes the proof.

The particular case n = 3 of the above theorem (i.e., for Goursat

categories) already appears in [49]. For the case n = 2 (i.e., Mal'tsev

categories), a similar characterisation also exists: We now consider the
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following digram in C

X ×Y Z

p1

����

p2

&&

λ // U ×W V

q1

����

q2

&&
Z

g

����

δ // V

k

����

X

OO

f &&

γ // U

OO

h
&&

Y

t

OO

β
//W

v

OO

(15)

in which the equalities gt = 1Y , kv = 1W , hγ = βf , kδ = βg, δt = vβ,

q1λ = γp1 and q2λ = δp2 hold, (X×Y Z, p1, p2) is the pullback of g along

f and (U ×W V, q1, q2) is the pullback of k along h.

Theorem 4.12. [48] The following conditions on a regular category C
are equivalent:

1. C is a Mal'tsev category,

2. for any diagram (15) in C, if γ and δ are regular epimorphisms,

then λ is also a regular epimorphism.

Proof. In order to illustrate Theorem 4.8, we are only going to prove the

implication 1⇒ 2 here. Using this embedding theorem, it is thus enough

to prove it in Mod(Γ(M,X)) for

(M,X) =

((
x y y x

x x y y

)
,∅

)

supposing that γ and δ are surjective in each sort. So, let s ∈ S(M,X),

a ∈ Us and b ∈ Vs be such that h(a) = k(b) and let us prove that

(a, b) ∈ Im(λ)s. By assumption, we can �nd x ∈ Xs and z ∈ Zs such

that γ(x) = a and δ(z) = b. Let z′ = ρs1(tf(x), tg(z), z) ∈ Z(s,0). Since

the equalities

g(z′) = ρs1(f(x), g(z), g(z)) = αs(f(x)) = f(αs(x))
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hold, we can consider (αs(x), z′) ∈ (X ×Y Z)(s,0). Moreover, since

δ(z′) = ρs1(δtf(x), δtg(z), δ(z))

= ρs1(vhγ(x), vkδ(z), δ(z))

= ρs1(vh(a), vk(b), b)

= ρs1(vk(b), vk(b), b)

= αs(b),

we know that λ(αs(x), z′) = (γ(αs(x)), δ(z′)) = (αs(a), αs(b)) = αs(a, b).

Therefore, (a, b) = πs(αs(a, b)) = πs(λ(αs(x), z′)) ∈ Im(λ)s.

Our last example is the proof of the implication 1 ⇒ 3 in Theo-

rem 2.49 for the particular case of Goursat categories (i.e., n = 3).

Lemma 4.13. [27] Let R � A × B be a binary relation in a regular

Goursat category C. Then, RRopRRop 6 RRop.

Proof. Our embedding theorem again tells us it is enough to prove this

lemma in Mod(Γ(M,X)) with

(M,X) =

((
x y y x z

x x y z y

)
, {z}

)
.

With Remark 4.9 in mind, we can assume without loss of generality that

(RRop)s = {(b, b′) ∈ Bs ×Bs | ∃a ∈ As such that aRb, aRb′}

for each s ∈ S(M,X). In the same way, we can assume without loss of

generality that

(RRopRRop)s = {(b, b′′) ∈ Bs ×Bs | ∃a, a′ ∈ As, b′ ∈ Bs
such that aRb, aRb′, a′Rb′, a′Rb′′}

for each s ∈ S(M,X). So, let s ∈ S(M,X), (b, b′′) ∈ (RRopRRop)s and we

want to prove that (b, b′′) ∈ (RRop)s. Since (a, b) ∈ Rs, (a, b′) ∈ Rs and
(a′, b′) ∈ Rs (for some a, a′, b′), we know that

(ρs1(a, a, a′), ρs1(b, b′, b′)) = (κs1(a, a′), αs(b)) ∈ R(s,0).
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Moreover, since (a, b′) ∈ Rs, (a′, b′) ∈ Rs and (a′, b′′) ∈ Rs, we also know
that

(ρs2(a, a′, a′), ρs2(b′, b′, b′′)) = (κs1(a, a′), αs(b′′)) ∈ R(s,0).

Therefore,

αs(b, b′′) = (αs(b), αs(b′′)) ∈ (RRop)(s,0)

which implies

(b, b′′) = πs(αs(b, b′′)) ∈ (RRop)s.

4.3.4 The exact case

The aim of this subsection is to prove a similar result to Theorem 4.8 in

the exact context. Since Mod(Γ(M,X)) is a priori not an exact category,

we need to turn it into an exact one. This can be realised with the exact

completion of a regular category, introduced in [77] (see also [98, 73]).

Let us recall it here. Let C be a well-powered regular category. We de�ne

its exact completion Cex / reg as the following category:

� objects of Cex / reg are pairs (A,R) where A is an object of C and R
an equivalence relation on A,

� a morphism T : (A,R)→ (B,S) is a relation T � A×B satisfying

1. STR = T

2. TT op 6 S

3. R 6 T opT

� the identity on (A,R) is R itself,

� composition is the composition of relations.

We then get a functor

i : C −→ Cex / reg

A 7−→ (A,∆A)

f : A→ B 7−→ (1A, f) : A� A×B.
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Proposition 4.14. [77] Let C be a well-powered regular category. Then,

Cex / reg is exact and i : C ↪→ Cex / reg is full, faithful and regular. It is the

exact completion of C in the sense that, for each regular functor F : C →
D to an exact category D, there exists a unique (up to isomorphism)

regular functor F : Cex / reg → D such that Fi is isomorphic to F .

C �
� i //

∀F ��

∼=

Cex / reg

∃!F{{
D

Now, if we consider a T -enrichment on C for a Lawvere theory T , we
can build one on Cex / reg. Indeed, for each n-ary term t of T and object

(A,R) of Cex / reg, we consider the map

(A,R)n = (An, Rn)
R ◦ (1An ,t

A) // (A,R)

where Rn denotes here the equivalence relation given by the product

R× · · · ×R� A2 × · · · ×A2 ∼= An ×An.

One can prove this de�nes a T -enrichment on Cex / reg such that i : C ↪→
Cex / reg is a T -functor. Moreover, this makes Cex / reg the exact T -com-

pletion of C, in the sense that, with the notations of Proposition 4.14,

if D and F are T -enriched, F is also T -enriched. We now need a few

results in order to get our embedding theorem in the exact context.

Lemma 4.15. [59] Let (M,X) be an extended matrix of terms in the

Lawvere theory T as in (6). Let also r : R� Aa be an a-ary relation in

the regular T -category C. If p : B � A is a regular epimorphism and if

we consider the pullback

S
q // //

��
s
��

R
��
r
��

Ba
pa
// // Aa

then R is (M,X)-closed if and only if S is (M,X)-closed.

Proof. We are going to use Proposition 2.43. Let us �rst suppose that
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R is (M,X)-closed and let (y1, . . . , yl) : Y → Bl be such that

(t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl)) = svj : Y → Ba

for some v1, . . . , vb : Y → S. Thus,

(t1j(py1, . . . , pyl), . . . , taj(py1, . . . , pyl))

= pa(t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl))

= pasvj

= rqvj

factors through r. Since R is (M,X)-closed, there is a regular epimor-

phism p′ : Z � Y and morphisms zl+1, . . . , zk : Z → A such that

(u1j(py1p
′, . . . , pylp

′, zl+1, . . . , zk), . . . , uaj(py1p
′, . . . , pylp

′, zl+1, . . . , zk))

= rwj

for some w1, . . . , wb′ : Z → R. Now, we consider the pullback

Z ′
(z′l+1,...,z

′
k)
//

q′

����

Bk−l

pk−l
����

Z
(zl+1,...,zk)

// Ak−l

and we prove that the required property is satis�ed with the regular

epimorphism p′q′ : Z ′ � Y and the morphisms z′l+1, . . . , z
′
k : Z ′ → B. In

view of the de�nition of s, we only have to notice that

pa(u1j(y1p
′q′, . . . , ylp

′q′, z′l+1, . . . , z
′
k), . . .

. . . , uaj(y1p
′q′, . . . , ylp

′q′, z′l+1, . . . , z
′
k))

= (u1j(py1p
′q′, . . . , pylp

′q′, zl+1q
′, . . . , zkq

′), . . .

. . . , uaj(py1p
′q′, . . . , pylp

′q′, zl+1q
′, . . . , zkq

′))

= rwjq
′

factors through r for each j ∈ {1, . . . , b′}.

Conversely, let us suppose S is (M,X)-closed and consider a mor-
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phism (y1, . . . , yl) : Y → Al such that

(t1j(y1, . . . , yl), . . . , taj(y1, . . . , yl)) = rvj : Y → Aa

for some v1, . . . , vb : Y → R. We also consider the following pullback.

Y ′
(y′1,...,y

′
l) //

q′

����

Bl

pl
����

Y
(y1,...,yl)

// Al

Since

pa(t1j(y
′
1, . . . , y

′
l), . . . , taj(y

′
1, . . . , y

′
l))

= (t1j(y1q
′, . . . , ylq

′), . . . , taj(y1q
′, . . . , ylq

′))

= rvjq
′

factors through r, the morphism

(t1j(y
′
1, . . . , y

′
l), . . . , taj(y

′
1, . . . , y

′
l))

factors through s for each j ∈ {1, . . . , b}. But S is (M,X)-closed, so

there exists a regular epimorphism p′ : Z � Y ′ and some morphisms

zl+1, . . . , zk : Z → B such that

(u1j(y
′
1p
′, . . . , y′lp

′, zl+1, . . . , zk), . . . , uaj(y
′
1p
′, . . . , y′lp

′, zl+1, . . . , zk))

= swj

for some w1, . . . , wb′ : Z → S. Now, the required property is satis-

�ed with the regular epimorphism q′p′ : Z � Y and the morphisms

pzl+1, . . . , pzk : Z → A. Indeed,

(u1j(y1q
′p′, . . . , ylq

′p′, pzl+1, . . . , pzk), . . .

. . . , uaj(y1q
′p′, . . . , ylq

′p′, pzl+1, . . . , pzk))

= pa(u1j(y
′
1p
′, . . . , y′lp

′, zl+1, . . . , zk), . . . , uaj(y
′
1p
′, . . . , y′lp

′, zl+1, . . . , zk))
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= paswj

= rqwj

factors through r for each j ∈ {1, . . . , b′}.

Lemma 4.16. [59] Let (M,X) be an extended matrix of terms in the

Lawvere theory T as in (6). Let also r : R � Aa be an a-ary relation

in the well-powered regular T -enriched category C. This gives an a-ary
relation i(r) : i(R)� i(Aa) ∼= i(A)a in Cex / reg. Then, R is (M,X)-closed

if and only if i(R) is (M,X)-closed.

Proof. This comes from the fact that i : C ↪→ Cex / reg is T -enriched, con-
servative and regular.

It is proved in [46] that if C is a regular well-powered Mal'tsev cate-

gory, then its exact completion Cex / reg is also a Mal'tsev category. We

now generalise this result for matrix conditions.

Proposition 4.17. [59] Let n be a natural number and (M1, X1),. . . ,

(Mn, Xn) and (M,X) be extended matrices of terms in the Lawvere the-

ory T with the same number a of lines. Let also C be a well-powered reg-

ular T -category. If every a-ary relation in C which is (Mi, Xi)-closed for

each i ∈ {1, . . . , n} is also (M,X)-closed, then the same occurs in Cex / reg.

Proof. Let r : R� Aa be an a-ary relation in Cex / reg which is (Mi, Xi)-

closed for each i ∈ {1, . . . , n}. It is proved in [98] that there exists an

object B ∈ C and a regular epimorphism p : i(B)� A in Cex / reg. So, we

can consider the following pullback.

• // //
��

��

R
��
r
��

i(B)a
pa
// // Aa

Moreover, it is also shown in [98], that with the embedding i : C ↪→
Cex / reg, C is closed under subobjects in Cex / reg (up to isomorphism).



172 4. Embedding theorems

Hence, we have the following pullback

i(S)
q // //

��
i(s)
��

R
��
r
��

i(Ba)
pa
// // Aa

for some a-ary relation s : S � Ba in C. Now, by Lemma 4.15, i(S) is

(Mi, Xi)-closed for each i ∈ {1, . . . , n}. By Lemma 4.16, S is (Mi, Xi)-

closed for each i ∈ {1, . . . , n}. Thus, by the assumption on C, S is

(M,X)-closed. Again by Lemma 4.16, i(S) is (M,X)-closed and �nally

by Lemma 4.15, R is (M,X)-closed.

Corollary 4.18. [59] Let T be a commutative Lawvere theory and

(M,X) an extended matrix of terms in T . Then Mod(Γ(M,X))ex / reg

is an exact T -category with (M,X)-closed relations.

Proof. Since subobjects of Mod(Γ(M,X)) are represented by its submod-

els, it is well-powered. Then Mod(Γ(M,X))ex / reg is exact from Proposi-

tion 4.14 and has (M,X)-closed relations by Propositions 4.7 and 4.17.

With this in mind, we can state our embedding theorem in the exact

context.

Theorem 4.19. [59] Let T be a commutative Lawvere theory, (M,X)

an extended matrix of terms in T and C a small exact T -category with

(M,X)-closed relations. Let 1 be the terminal object of C. Then, there
exists a regular conservative T -enriched embedding

φ : C ↪→ (Mod(Γ(M,X))ex / reg)Sub(1)

which preserves coequalisers of equivalence relations.

Proof. We just have to compose the embedding of Theorem 4.8 with the

embedding iSub(1) : Mod(Γ(M,X))
Sub(1) ↪→ (Mod(Γ(M,X))ex / reg)Sub(1).

Notice that an equivalence relation is the kernel pair of its coequaliser in
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an exact category. This implies that the embedding preserves coequalis-

ers of equivalence relations since it preserves kernel pairs and regular

epimorphisms.

Remark 4.20. Theorem 4.19 is stated in a way which characterises

exact T -categories with (M,X)-closed relations among small T -cate-
gories with �nite limits and coequalisers of equivalence relations. In

an analogous way, Theorem 4.8 characterises regular T -categories with
(M,X)-closed relations among small T -categories with �nite limits and

coequalisers of kernel pairs.

4.4 Embedding for protomodular categories

Protomodular categories have been introduced by D. Bourn in [17] as cat-

egories whose change of base functors v∗ : PtI(C)→ PtJ(C) of the �bra-
tion of points are conservative (see for instance [15] for a detailed account

on the topic). As we will see, it is a key property to de�ne homologi-

cal [15] and semi-abelian [62] categories which are known to provide good

contexts to develop homological algebra. In this section, we recall some

well-known characterisations of protomodular categories and syntacti-

cally describe protomodular essentially algebraic categories. We then

prove an embedding theorem for regular protomodular categories, in a

similar way we did for regular T -categories with (M,X)-closed relations.

However, in order to prove protomodularity is a Th[Set]-unconditional

exactness property, we need to assume the existence of some colimits,

which will then be a hypothesis in our embedding theorem.

4.4.1 Protomodular categories

De�nition 4.21. [17] A protomodular category is a category C with

pullbacks of split epimorphisms along arbitrary morphisms such that, for

each morphism v : J → I in C, the change of base functor v∗ : PtI(C)→
PtJ(C) of the �bration of points is conservative.

Example 4.22. The categories Gp, Ab, LieAlgk (for a �eld k), Heyt

and Setop are protomodular, while Mon and Set are not.
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Proposition 4.23. [17] Let C be a pointed category with �nite limits.

Then C is protomodular if and only if the Split Short Five Lemma holds

in C. This means for any diagram

0 // K

f

��

// k // A

g

��

q // // Q

h
��

s
ii // 0

0 // K ′ //
k′
// A′

q′ // // Q′

s′
jj // 0

in C where gk = k′f , hq = q′g, gs = s′h, qs = 1Q, q′s′ = 1Q′ and k (resp.

k′) is the kernel of q (resp. q′), if f and h are isomorphisms, then so is g.

In a regular context, this is even equivalent to the Regular Short Five

Lemma.

De�nition 4.24. [15] A homological category is a pointed regular pro-

tomodular category.

Theorem 4.25. [15] A pointed regular category C is homological if and

only if the Regular Short Five Lemma holds in C. This means that, given

a commutative diagram

0 // K

f

��

// k // A

g

��

q // // Q

h
��

// 0

0 // K ′ //
k′
// A′

q′
// // Q′ // 0

in C where q and q′ are regular epimorphisms with k and k′ their respec-

tive kernel, if f and h are isomorphisms, then so is g.

The above characterisations do not help to `make protomodularity

look like a Th[Set]-unconditional exactness property'. The following one

gets it closer.

Proposition 4.26. [19] Let C be a �nitely complete category. Then C
is protomodular if and only if, for each morphism (u, v) : (p, s)→ (p′, s′)
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in Pt(C) for which the square p′u = vp is a pullback,

A
u //

p
����

A′

p′
����

I v
//

s

OO

I ′

s′

OO

the morphisms u and s′ are jointly strongly epimorphic.

If C has binary coproducts, this is equivalent to saying that the mor-

phism ( us′ ) : A + I ′ → A′ is a strong epimorphism. Or, if the pushout

of s along v exists and if q denotes the factorisation of the pair (u, s′)

through it, then this pair is jointly strongly epimorphic if and only if q

is a strong epimorphism.

A
u //

��

A′

Q

q

??

B v
//

s

OO

B′

s′

OO

__

Indeed, q factors through a subobject of A′ if and only if u and s′ simul-

taneously do. If moreover C is regular, this means in both cases that a

morphism is required to be a regular epimorphism. This discussion leads

us to the following proposition.

Proposition 4.27. Being `regular protomodular with binary coprod-

ucts' and `regular protomodular with pushouts along split monomor-

phisms' are Th[Set]-unconditional exactness properties.

Let us now give a syntactic characterisation of essentially algebraic

categories. We �rst recall the one-sorted �nitary algebraic case.

Theorem 4.28. [20] Let T be a Lawvere theory. Then T -Alg is proto-

modular if and only if there exist in T , for some natural number n > 0,

� n nullary terms w1, . . . , wn,

� for each 1 6 i 6 n, a binary term di(x, y) such that di(x, x) = wi

is a theorem of T ,



176 4. Embedding theorems

� an (n + 1)-ary term π such that π(d1(x, y), . . . , dn(x, y), y) = x is

a theorem of T .

Theorem 4.29. [57] Let Γ be an essentially algebraic theory. Then

Mod(Γ) is protomodular if and only if, for each s ∈ S, there exists in Γ

� a term πs :
(∏

i∈I si
)
× s→ s,

� for each i ∈ I, an everywhere-de�ned term di : s2 → si,

� for each i ∈ I, an everywhere-de�ned constant term wi of sort si

such that

1. di(x, x) = wi is a theorem of Γ for each i ∈ I,

2. the term s2 → s

πs((di(x, y))i∈I , y)

is everywhere-de�ned,

3. the theorem

πs((di(x, y))i∈I , y) = x

holds in Γ.

Proof. Firstly, let us suppose that the conditions in the statement hold

in Γ, and let us prove Mod(Γ) is protomodular. So, we consider a mor-

phism f in PtB(Mod(Γ)). This yields a diagram

A
f //

p �� ��

A′

q~~~~
B

t
__

u
>>

with pt = 1B = qu, qf = p and ft = u. We also consider a morphism

v : B′ → B such that the image f ′ of f by the change of base functor v∗

A×p,v B′
f ′ //

p′ $$ $$

A′ ×q,v B′

q′zzzz
B′

t′
dd

u′
::
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is an isomorphism. We have to prove that f is also an isomorphism. Let

us �rst prove it is a monomorphism. So, let s ∈ S and a, a′ ∈ As be such
that f(a) = f(a′). We also consider the terms given in the statement

for s. For each i ∈ I, we have

p(di(a, a
′)) = q(di(f(a), f(a′)))

= q(di(f(a), f(a)))

= q(wi)

= wi

and (di(a, a
′), wi) ∈ (A×p,v B′)si . Moreover,

f ′(di(a, a
′), wi) = (f(di(a, a

′)), wi)

= (di(f(a), f(a′)), wi)

= (wi, wi)

= f ′(wi, wi)

and di(a, a′) = wi = di(a
′, a′) since f ′si is injective. Therefore, we have

a = πs((di(a, a
′))i∈I , a

′)

= πs((di(a
′, a′))i∈I , a

′)

= a′

and fs is injective. Now, we show that Im(f)s = A′s. So, let c ∈ A′s. For
each i ∈ I, we know that

q(di(c, ftq(c))) = di(q(c), qftq(c))

= di(q(c), q(c))

= wi

from which (di(c, ftq(c)), wi) ∈ (A′ ×q,v B′)si . Since f ′si is bijective,

there exists an element ai ∈ Asi such that (ai, wi) ∈ (A ×p,v B′)si (i.e.,
p(ai) = wi) and f(ai) = di(c, ftq(c)). Therefore, we can say that

c = πs((di(c, ftq(c)))i∈I , ftq(c))
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= πs((f(ai))i∈I , ftq(c))

∈ Im(f)s

and f is an isomorphism.

Conversely, let us suppose Mod(Γ) is protomodular and let s ∈ S.

Let alsoX and Y be the S-sorted sets de�ned byXs = {x1, x2}, Ys = {y}
and Xs′ = ∅ = Ys′ for each s′ 6= s. We consider the diagram

FrΓ(X)×p,! FrΓ(∅)
p2 //

p1

��

vvvv

FrΓ(∅)

!

��

Im(p1)
((

((
FrΓ(X)

p
// // FrΓ(Y )

too

where the square is a pullback and p and t are de�ned by p(x1) = p(x2) =

y and t(y) = x2. Since pt = 1FrΓ(Y ), t is a monomorphism and we can

see FrΓ(Y ) as a submodel of FrΓ(X). We write Im(p1) ∨ FrΓ(Y ) for

the smallest submodel of FrΓ(X) which contains Im(p1) ∪ FrΓ(Y ). It is

routine to prove it is described by

(Im(p1) ∨ FrΓ(Y ))s′ ={
τ((p1(zi))i∈I , x2) | τ :

(∏
i∈I

si

)
× s→ s′ is a term in Γ,

zi ∈ (FrΓ(X)×p,! FrΓ(∅))si

and τ((p1(zi))i∈I , x2) is de�ned in FrΓ(X)
}

for each s′ ∈ S. We have thus a morphism of points in the �bre over

FrΓ(Y ) in Mod(Γ):

Im(p1) ∨ FrΓ(Y ) �
� i //

pi '' ''

FrΓ(X)

pyyyy
FrΓ(Y )

t
gg

t
99

By construction, its image by the change of base functor along the unique
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morphism ! : FrΓ(∅)→ FrΓ(Y ) is the pullback of i along p1, which is an

isomorphism since p1 factors through i. Mod(Γ) being protomodular, i

is an isomorphism as well and x1 ∈ (Im(p1) ∨ FrΓ(Y ))s. In view of the

description of (Im(p1) ∨ FrΓ(Y ))s, we have a term

πs :

(∏
i∈I

si

)
× s→ s

and elements zi ∈ (FrΓ(X)×p,! FrΓ(∅))si (for i ∈ I) such that

πs((p1(zi))i∈I , x2)

is de�ned in FrΓ(X) and equal to x1. Now, considering the description

of FrΓ(X)×p,! FrΓ(∅), there exist, for each i ∈ I, two everywhere-de�ned
terms di : s2 → si and wi : 1 → si such that zi = (di, wi) and p(di) =

!(wi). We thus got all the terms and theorems we were looking for.

Let us make the above theorem explicit in the case where Mod(Γ) is

pointed (see Corollary 1.108).

Corollary 4.30. Let Γ be an essentially algebraic theory such that

Mod(Γ) is pointed. Then Mod(Γ) is protomodular if and only if, for

each s ∈ S, there exists a term πs :
(∏

i∈I si
)
× s→ s in Γ and, for each

i ∈ I, an everywhere-de�ned term di : s
2 → si such that

1. di(x, x) = 0si is a theorem of Γ for each i ∈ I,

2. the term πs((di(x, y))i∈I , y) is everywhere-de�ned,

3. πs((di(x, y))i∈I , y) = x is a theorem of Γ.

Again, if Γ is �nitary, the term πs from Theorem 4.29 and Corol-

lary 4.30 can be supposed to be �nitary.

Analogously to the case of (M,X)-closed relations, we can charac-

terise protomodularity using approximate co-operations. The pointed

case has been proved in [22] while the general case is from [23].

Theorem 4.31. [23] Let C be a �nitely complete category with �nite

coproducts. Then C is protomodular if and only if, for each Y ∈ C, the
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morphism (
dY
ι2

)
: W (Y ) + Y → Y + Y

is a strong epimorphism where the square

W (Y )
dY //

wY

��

Y + Y(
1Y
1Y

)
��

0
!

// Y

is a pullback, 0 the initial object and ι2 : Y → Y +Y the second coproduct

injection.

4.4.2 Construction of ΓTproto

As we did for matrix conditions, we now construct a �nitary essentially

algebraic theory whose category of models will be our `representative

regular protomodular category'. In order to encompass at the same time

the homological case, we do it in the T -enriched context. So let T be

a commutative Lawvere theory. As before, we suppose it is of the form

T(Σ,E) for some one-sorted �nitary algebraic theory (Σ, E). An operation

symbol (resp. an axiom) of T is thus an element of Σ (resp. E). If r is

a natural number, we denote by ΣTr the set of r-ary operation symbols

of T . We are going to construct recursively a series of �nitary essentially

algebraic theories

Γ0 ⊆ ∆1 ⊆ · · · ⊆ Γn ⊆ ∆n+1 ⊆ · · ·

and a T -enrichment on the corresponding categories of models. Let us

�rst de�ne Γ0 = (S0,Σ0, E0,Σ0
t ,Def0):

� S0 = {?},

� Σ0 = Σ0
t = {τ? : ?r → ? | r ∈ N, τ ∈ ΣTr },

� E0 = {all axioms from T for the τ?'s}.
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We consider the obvious T -enrichment on Mod(Γ0) ∼= T -Alg. Now, let

us suppose we have de�ned

Γ0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ Γn

and the T -enrichment on Mod(Γn) (with Γn = (Sn,Σn, En,Σn
t ,Defn)).

We are going to construct

∆n+1 = (S
′n+1,Σ

′n+1, E
′n+1,Σ

′n+1
t ,Def

′n+1)

�rst (below S
0

= S0 and S
n

= Sn \ Sn−1 if n > 1):

S
′n+1 = Sn ∪ {(s, 0), (s, 1) | s ∈ Sn} ∼= Sn t Sn t Sn,

Σ
′n+1
t = Σn

t ∪ {τ (s,0) : (s, 0)r → (s, 0) | r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,1) : (s, 1)r → (s, 1) | r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {δs : s2 → (s, 0) | s ∈ Sn}

∪ {ω(s,0) constant operation symbol on (s, 0) | s ∈ Sn}

∪ {ηs, εs : (s, 0)× s→ (s, 1) | s ∈ Sn},

Σ
′n+1 = Σn ∪ Σ

′n+1
t ∪ {πs : (s, 0)× s→ s | s ∈ Sn},

E
′n+1 =

En ∪ {δs(x, x) = ω(s,0) | s ∈ Sn}

∪ {ηs(δs(x, y), y) = εs(δs(x, y), y) | s ∈ Sn}

∪ {πs(δs(x, y), y) = x | s ∈ Sn}

∪ {δs(πs(x, y), y) = x | s ∈ Sn}

∪ {all axioms from T for the τ (s,0)'s and the τ (s,1)'s | s ∈ Sn}

∪ {τ (s,0)(δs(x1, y1), . . . , δs(xr, yr))

= δs(τ s(x1, . . . , xr), τ
s(y1, . . . , yr)) | r ∈ N, τ ∈ ΣTr , s ∈ S

n}

∪ {τ (s,0)(ω(s,0), . . . , ω(s,0)) = ω(s,0) | r ∈ N, τ ∈ ΣTr , s ∈ S
n}

∪ {τ (s,1)(ηs(x1, y1), . . . , ηs(xr, yr))

= ηs(τ (s,0)(x1, . . . , xr), τ
s(y1, . . . , yr))| r ∈ N, τ ∈ ΣTr , s ∈ S

n}
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∪ {τ (s,1)(εs(x1, y1), . . . , εs(xr, yr))

= εs(τ (s,0)(x1, . . . , xr), τ
s(y1, . . . , yr)) | r ∈ N, τ ∈ ΣTr , s ∈ S

n}

∪ {τ s(πs(x1, y1), . . . , πs(xr, yr))

= πs(τ (s,0)(x1, . . . , xr), τ
s(y1, . . . , yr)) | r ∈ N, τ ∈ ΣTr , s ∈ S

n}

and {
Def

′n+1(σ) = Defn(σ) if σ ∈ Σn \ Σn
t

Def
′n+1(πs) = {ηs(x) = εs(x)} for s ∈ Sn.

Hence, we have Γn ⊆ ∆n+1 and we consider the obvious T -enrichment

on Mod(∆n+1).

Let now Tn+1 be the set of �nitary terms θ :
∏m
i=1 si → s of Σ

′n+1

which are not terms of Σ
′n (where we consider Σ

′0 = ∅). We then de�ne

Γn+1 as:

Sn+1 = S
′n+1 ∪ {sθ, s′θ | θ ∈ Tn+1} ∼= S

′n+1 t Tn+1 t Tn+1,

Σn+1
t = Σ

′n+1
t ∪ {τ sθ : srθ → sθ | r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s′θ : (s′θ)
r → s′θ | r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {αθ : s→ sθ | θ :

m∏
i=1

si → s ∈ Tn+1}

∪ {µθ :

m∏
i=1

si → sθ | θ :

m∏
i=1

si → s ∈ Tn+1}

∪ {ηθ, εθ : sθ → s′θ | θ ∈ Tn+1},

Σn+1 = Σ
′n+1 ∪ Σn+1

t ∪ {πθ : sθ → s | θ :

m∏
i=1

si → s ∈ Tn+1},

En+1 =

E
′n+1 ∪ {ηθ(αθ(x)) = εθ(αθ(x)) | θ ∈ Tn+1}

∪ {πθ(αθ(x)) = x | θ ∈ Tn+1}

∪ {αθ(πθ(x)) = x | θ ∈ Tn+1}
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∪ {αθ(θ(x1, . . . , xm)) = µθ(x1, . . . , xm) | θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {all axioms from T for the τ sθ 's and the τ s
′
θ 's | θ ∈ Tn+1}

∪ {τ sθ(αθ(x1), . . . , αθ(xr)) = αθ(τ
s(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {τ sθ(µθ(x11, . . . , x1m), . . . , µθ(xr1, . . . , xrm))

= µθ(τ
s1(x11, . . . , xr1), . . . , τ sm(x1m, . . . , xrm)) |

r ∈ N, τ ∈ ΣTr , θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {τ s′θ(ηθ(x1), . . . , ηθ(xr)) = ηθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s′θ(εθ(x1), . . . , εθ(xr)) = εθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ ∈ Tn+1}

∪ {τ s(πθ(x1), . . . , πθ(xr)) = πθ(τ
sθ(x1, . . . , xr)) |

r ∈ N, τ ∈ ΣTr , θ :
m∏
i=1

si → s ∈ Tn+1}

and {
Defn+1(σ) = Def

′n+1(σ) if σ ∈ Σ
′n+1 \ Σ

′n+1
t

Defn+1(πθ) = {ηθ(x) = εθ(x)} for θ ∈ Tn+1.

Thus, we have ∆n+1 ⊆ Γn+1 and we consider the obvious T -enrichment

on Mod(Γn+1). This ends the recursive de�nition of the series

Γ0 ⊆ ∆1 ⊆ Γ1 ⊆ · · ·

and we set ΓTproto to be the union of these �nitary essentially algebraic

theories. We provide Mod(ΓTproto) with the T -enrichment coming from

the T -enrichments on the Mod(Γn)'s. Since they will be the most impor-

tant cases, we denote Γ
Th[Set]
proto simply by Γproto and Γ

Th[Set∗]
proto by Γhomo.

Proposition 4.32. [57] Let T be a commutative Lawvere theory. The

T -category Mod(ΓTproto) is regular and protomodular.
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Proof. The `∆ part' of the construction makes Mod(ΓTproto) protomod-

ular. Indeed, considering πs : (s, 0) × s → s, d1 = δs and w1 = ω(s,0),

ΓTproto satis�es the conditions of Theorem 4.29.

On the other hand, the `Γ ingredient' of the construction ensures that

Mod(ΓTproto) is a regular category since each �nitary term θ of ΣTproto is

in Tn+1 for some n ∈ N, which makes the conditions of Theorem 1.88

hold.

4.4.3 Proof of the embedding theorem

This subsection is devoted to the proof of our embedding theorem for

protomodular categories. Since it is similar to the one for categories with

(M,X)-closed relations, we only sketch it.

Theorem 4.33. [57] Let T be a commutative Lawvere theory and C a

small regular protomodular T -category with binary coproducts. Let 1

be the terminal object of C. Then, there exists a regular conservative

T -enriched embedding φ : C ↪→ Mod(ΓTproto)Sub(1). Moreover, for each

morphism f : C → C ′ in C, each I ∈ Sub(1) and each s ∈ STproto,

(Imφ(f)I)s = {(φ(f)I)s(x) |x ∈ (φ(C)I)s}.

Proof. By Proposition 4.27 and Theorem 3.21, C̃ is regular and proto-

modular. The proof is very similar to the one of Theorem 4.19, up to two

di�erences. Borrowing its notations and the ones from Theorem 4.31, we

now de�ne, for s ∈ Sn, P(s,0) as Ŵ (Ps).

P(s,0) = Ŵ (Ps)
eW (Ps)// //W (Ps)

dPs //

wPs

��

Ps + Ps(
1Ps
1Ps

)
��

0
!

// Ps

We also de�ne

δs : C̃(Ps, C)2 −→ C̃(P(s,0), C)

(f, g) 7−→
(
f
g

)
dPseW (Ps)



4.4. Embedding for protomodular categories 185

and ω(s,0) ∈ C̃(P(s,0), C) is the composite

P(s,0) = Ŵ (Ps)
eW (Ps)// //W (Ps)

wPs // 0
! // C.

By Theorem 4.31, we can consider the regular epimorphism

ps : P(s,0) + Ps
eW (Ps)+1Ps // //W (Ps) + Ps

(
dPs
ι2

)
// // Ps + Ps

and de�ne

πs : C̃(P(s,0), C)× C̃(Ps, C) −→ C̃(Ps, C)

(f, g) 7−→ hι1

where h : Ps+Ps → C is the unique morphism such that hps =
(
f
g

)
(i.e.,

hdPseW (Ps) = f and hι2 = g). We de�ne this πs if and only if such an

h exists. In order to construct P(s,1), we consider the kernel pair (r1, r2)

of ps:

P(s,1) = R̂
eR // // R

r1 //
r2
// P(s,0) + Ps

ps // // Ps + Ps

and set P(s,1) = R̂. We then de�ne

ηs : C̃(P(s,0), C)× C̃(Ps, C) −→ C̃(P(s,1), C)

(f, g) 7−→
(
f
g

)
r1eR

and

εs : C̃(P(s,0), C)× C̃(Ps, C) −→ C̃(P(s,1), C)

(f, g) 7−→
(
f
g

)
r2eR.

The second di�erence with the proof of Theorem 4.19 is the follow-

ing. If πs : (s, 0) × s → s ∈ Σ
′n+1 \ Σ

′n+1
t and θ1 :

∏m
i=1 si → (s, 0),

θ2 :
∏m
i=1 si → s are �nitary terms of Σ

′n+1 for which lµθ1 , lµθ2 , lαθ1 and

lαθ2 have been constructed, we de�ne lµθ and lαθ for the term

θ = πs(θ1, θ2) :
m∏
i=1

si → s
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as follows. We consider the diagram below where the rectangle is a

pullback.

Psθ = Û
eU // // U

u1 //

u2

����

Psθ1 + Psθ2

lαθ1
+ lαθ2����

(
lµθ1
lµθ2

)
// Ps1 + · · ·+ Psm

P(s,0) + Ps

ps
����

Ps ι1
// Ps + Ps

We then set Psθ = Û , lαθ = u2eU and

lµθ =

(
lµθ1
lµθ2

)
u1eU .

Let us prove it satis�es the equality

αθ(θ(f1, . . . , fm)) = µθ(f1, . . . , fm)

for any cospan (fi : Psi → C)i∈{1,...,m} for which θ(f1, . . . , fm) is de-

�ned, assuming the similar property for θ1 and θ2. Thus, for such a

cospan, θ1(f1, . . . , fm) : P(s,0) → C and θ2(f1, . . . , fm) : Ps → C are de-

�ned. Therefore,

θ1(f1, . . . , fm)lαθ1 = αθ1(θ1(f1, . . . , fm))

= µθ1(f1, . . . , fm)

=

(
f1...
fm

)
lµθ1

and

θ2(f1, . . . , fm)lαθ2 = αθ2(θ2(f1, . . . , fm))

= µθ2(f1, . . . , fm)

=

(
f1...
fm

)
lµθ2 .
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Moreover, since πs(θ1(f1, . . . , fm), θ2(f1, . . . , fm)) is de�ned, there exists

h : Ps + Ps → C such that

hps =
(
θ1(f1,...,fm)
θ2(f1,...,fm)

)
.

It remains to compute

αθ(θ(f1, . . . , fm)) = πs(θ1(f1, . . . , fm), θ2(f1, . . . , fm))lαθ

= hι1u2eU

= hps(lαθ1 + lαθ2 )u1eU

=
(
θ1(f1,...,fm)
θ2(f1,...,fm)

)
(lαθ1 + lαθ2 )u1eU

=

(
θ1(f1,...,fm)lαθ1
θ2(f1,...,fm)lαθ2

)
u1eU

=

(
f1...
fm

)(
lµθ1
lµθ2

)
u1eU

=

(
f1...
fm

)
lµθ

= µθ(f1, . . . , fm).

The rest of the proof goes as before.

The assumption about binary coproducts in Theorem 4.33 is only

used to prove that C̃ is also protomodular. If one has another condi-

tion on the small regular protomodular T -category C which also implies

that C̃ is protomodular, such an embedding will also exist. In view of

Proposition 4.27, we thus also have the following theorem.

Theorem 4.34. [57] Let T be a commutative Lawvere theory and

C a small regular protomodular T -category with pushouts along split

monomorphisms. Let 1 be the terminal object of C. Then, there exists

a regular conservative T -enriched embedding φ : C ↪→ Mod(ΓTproto)Sub(1).

Moreover, for each morphism f : C → C ′ in C, each I ∈ Sub(1) and each

s ∈ STproto,

(Imφ(f)I)s = {(φ(f)I)s(x) |x ∈ (φ(C)I)s}.
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4.4.4 The semi-abelian case

Since for a pointed regular category C, Sub(0) is reduced to the singleton,

one gets from Theorem 4.33 the following corollary.

Corollary 4.35. [57] Let C be a small homological category with bi-

nary coproducts. Then, there exists a regular conservative embedding

C ↪→ Mod(Γhomo).

Proof. Let T = Th[Set∗] in Theorem 4.33.

This corollary is very close to being an embedding theorem for semi-

abelian categories. The only missing part is the exactness, which can be

brought in via the exact completion as in Subsection 4.3.4.

De�nition 4.36. [62] A semi-abelian category is an exact homological

category with binary coproducts.

Theorem 4.37. [57] The category Mod(Γhomo)ex / reg is exact and homo-

logical. Moreover, each small semi-abelian category C admits a regular

conservative embedding C ↪→ Mod(Γhomo)ex / reg.

Proof. It is shown in [46] that the exact completion of a regular well-

powered protomodular category is also protomodular. Therefore, the

category Mod(Γhomo)ex / reg is protomodular. In the pointed context,

this can be proved using Proposition 4.17: We know from [66] that a

�nitely complete pointed category is protomodular if and only if each

binary relation which is

(
x x

y x

)
-closed and

(
0 y

y 0

)
-closed is also(

x y

y x

)
-closed. Proposition 4.17 implies thus that Mod(Γhomo)ex / reg

is protomodular and so it is exact and homological.

Then, to prove such an embedding exists, it su�ces to compose the

embedding C ↪→ Mod(Γhomo) from Corollary 4.35 with the full embed-

ding i : Mod(Γhomo) ↪→ Mod(Γhomo)ex / reg given by the exact comple-

tion.

However, this is not yet a good embedding theorem for semi-abelian

categories since we do not know if Mod(Γhomo)ex / reg has binary coprod-

ucts.
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4.5 Embedding for categories with M-closed

strong relations

In this section we prove that the category of sets equipped with a partial

Mal'tsev operation is a weakly Mal'tsev category. Moreover, for each

small �nitely complete weakly Mal'tsev category, the Yoneda embedding

fully embeds it into a power of this category of partial Mal'tsev algebras.

On one hand, as usual, this implies it is enough to prove some statements

about �nite limits in this category in order to prove them for any weakly

Mal'tsev category. Moreover, as we will see, this technique also works to

prove results which are true for Mal'tsev categories (but not necessarily

for weakly Mal'tsev categories).

On the other hand, this embedding theorem better explains a fun-

damental di�erence between regular Mal'tsev and weakly Mal'tsev cat-

egories. For the former, they embed in a power of a category of partial

algebras in which the Mal'tsev term p = πs ◦ ρs1 : s3 → s is de�ned for

triples satisfying an everywhere-de�ned equation. Therefore, for each

monomorphism f , if p(f(x), f(y), f(z)) is de�ned, then so is p(x, y, z).

On the contrary, not all monomorphisms satisfy this property in the

category of partial algebras used in the embedding theorem for weakly

Mal'tsev categories (but strong monomorphisms do).

Mal'tsev categories sit somewhere between weakly Mal'tsev and reg-

ular Mal'tsev categories. It would then be a major step in the under-

standing of Mal'tsev categories to know `exactly where' by proving a

corresponding embedding theorem. However, as far as we know now, a

`representing Mal'tsev category' leading to such an embedding theorem

looks very hard to �nd. The reason is that `being Mal'tsev' seems to

be not `as algebraic as being weakly or regular Mal'tsev'. Indeed, the

weakly Mal'tsev property can be characterised (see Proposition 2.37) by

the condition that a pair (l, r) of morphisms is jointly epimorphic. This

can be written as

(∀x)(∀y)(xl = yl ∧ xr = yr ⇒ x = y).

The regular Mal'tsev property (with binary coproducts) is charac-
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terised by the condition that a morphism d is a regular epimorphism

(see Theorem 2.30). Denoting (r1, r2) its kernel pair, this can be repre-

sented as

(∀x)(xr1 = xr2 ⇒ (∃! y)(yd = x)).

These two properties already look very much algebraic. On the con-

trary, Mal'tsev categories are characterised using a pair of morphisms

(l, r) which should be jointly strongly epimorphic. This last property

is (for now) far from being algebraic since it can not be expressed us-

ing `generalised elements' in an algebraic way. This is the reason why

we do not think our present knowledge and understanding of Mal'tsev

categories can lead to an embedding theorem for them.

As before, for the sake of generality, we develop this section in the

context of categories with M -closed strong relations for a simple ex-

tended matrix of terms in a commutative Lawvere theory.

4.5.1 The category of partial M-algebras

De�nition 4.38. [56] Let T be a commutative Lawvere theory and

M =


t11 · · · t1b u1

...
...

...

ta1 · · · tab ua


a simple extended matrix of terms in T . A partial M -algebra is a T -
algebra A equipped with a partial operation p : Ab → A such that

1. for each i ∈ {1, . . . , a} and all a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tib(a1, . . . , ak))

is de�ned and

p(ti1(a1, . . . , ak), . . . , tib(a1, . . . , ak)) = ui(a1, . . . , ak);

2. for any n ∈ N, any n-ary term t of T and any family of elements

(aj
′

j ∈ A)j∈{1,...,b},j′∈{1,...,n} such that p(aj
′

1 , . . . , a
j′

b ) is de�ned for

each j′ ∈ {1, . . . , n}, p(t(a1
1, . . . , a

n
1 ), . . . , t(a1

b , . . . , a
n
b )) is de�ned



4.5. Embedding for categories with M -closed strong relations 191

and the equality

p(t(a1
1, . . . , a

n
1 ), . . . , t(a1

b , . . . , a
n
b ))

= t(p(a1
1, . . . , a

1
b), . . . , p(a

n
1 , . . . , a

n
b ))

holds. Note that if T is on the form T(Σ,E) for some �nitary one-

sorted algebraic theory (Σ, E), it is equivalent to require it only for

simple terms as σ(x1, . . . , xn) where σ ∈ Σ.

A homomorphism f : A→ B of partial M -algebras is a T -homomor-

phism such that, for all a1, . . . , ab ∈ A for which p(a1, . . . , ab) is de�ned

in A, p(f(a1), . . . , f(ab)) is de�ned in B and

p(f(a1), . . . , f(ab)) = f(p(a1, . . . , ab)).

We denote by PartM the corresponding category.

We have a T -enrichment on PartM : if t is an n-ary term of T and

f1, . . . , fn : A→ B are homomorphisms of partial M -algebras, we de�ne

t(f1, . . . , fn) : A→ B by

t(f1, . . . , fn)(a′) = t(f1(a′), . . . , fn(a′))

for all a′ ∈ A. Since T is commutative, this is a homomorphism of

T -algebras. Moreover, if a1, . . . , ab ∈ A are such that p(a1, . . . , ab) is

de�ned, for each j′ ∈ {1, . . . , n}, p(fj′(a1), . . . , fj′(ab)) is also de�ned.

This implies

p(t(f1, . . . , fn)(a1), . . . , t(f1, . . . , fn)(ab))

= p(t(f1(a1), . . . , fn(a1)), . . . , t(f1(ab), . . . , fn(ab)))

is de�ned as well and equal to

t(p(f1(a1), . . . , f1(ab)), . . . , p(fn(a1), . . . , fn(ab)))

= t(f1(p(a1, . . . , ab)), . . . , fn(p(a1, . . . , ab)))

= t(f1, . . . , fn)(p(a1, . . . , ab))

in view of the second condition in the de�nition of partial M -algebras.
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This proves t(f1, . . . , fn) is indeed a homomorphism of partial M -alge-

bras.

Let us now describe small limits in PartM . For that purpose, we

consider a small diagram G : D → PartM . Let

(λD : L→ UTG(D))D∈D

be the limit of UTG in T -Alg, where UT : PartM → T -Alg is the forgetful

functor. So L is given by

L = {(aD)D∈D ∈
∏
D∈D

G(D) |G(d)(aD) = aD′ ∀d : D → D′ ∈ D}

with

t((a1
D)D∈D, . . . , (a

n
D)D∈D) = (t(a1

D, . . . , a
n
D))D∈D

for each n-ary term t of T . Now, for (a1
D)D∈D, . . . , (a

b
D)D∈D ∈ L, we

de�ne p((a1
D)D∈D, . . . , (a

b
D)D∈D) if and only if p(a1

D, . . . , a
b
D) is de�ned

for each D ∈ D. In this case, we set

p((a1
D)D∈D, . . . , (a

b
D)D∈D) = (p(a1

D, . . . , a
b
D))D∈D.

This makes L a partial M -algebra. Indeed, for each i ∈ {1, . . . , a} and
each (a1

D)D∈D, . . . , (a
k
D)D∈D ∈ L,

p(ti1((a1
D)D∈D, . . . , (a

k
D)D∈D), . . . , tib((a

1
D)D∈D, . . . , (a

k
D)D∈D))

= p((ti1(a1
D, . . . , a

k
D))D∈D, . . . , (tib(a

1
D, . . . , a

k
D))D∈D)

is de�ned since p(ti1(a1
D, . . . , a

k
D), . . . , tib(a

1
D, . . . , a

k
D)) is for each D ∈ D

and it is equal to

(p(ti1(a1
D, . . . , a

k
D), . . . , tib(a

1
D, . . . , a

k
D)))D∈D

= (ui(a
1
D, . . . , a

k
D))D∈D

= ui((a
1
D)D∈D, . . . , (a

k
D)D∈D).

We check the second condition analogously: Let t be an n-ary term of

T and, for each j′ ∈ {1, . . . , n}, (a1,j′

D )D∈D, . . . , (a
b,j′

D )D∈D elements of L

such that p((a1,j′

D )D∈D, . . . , (a
b,j′

D )D∈D) is de�ned (i.e., p(a1,j′

D , . . . , ab,j
′

D )
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is de�ned for each D ∈ D). This implies

p(t(a1,1
D , . . . , a1,n

D ), . . . , t(ab,1D , . . . , ab,nD ))

is de�ned and equal to

t(p(a1,1
D , . . . , ab,1D ), . . . , p(a1,n

D , . . . , ab,nD ))

for each D ∈ D. Thus

p(t((a1,1
D )D∈D, . . . , (a

1,n
D )D∈D), . . . , t((ab,1D )D∈D, . . . , (a

b,n
D )D∈D))

= p((t(a1,1
D , . . . , a1,n

D ))D∈D, . . . , (t(a
b,1
D , . . . , ab,nD ))D∈D)

is also de�ned in L and equal to

(t(p(a1,1
D , . . . , ab,1D ), . . . , p(a1,n

D , . . . , ab,nD )))D∈D

= t(p((a1,1
D )D∈D, . . . , (a

b,1
D )D∈D), . . . , p((a1,n

D )D∈D, . . . , (a
b,n
D )D∈D)),

which shows that L is a partial M -algebra. Moreover, given a cone

(µD : A→ G(D))D∈D over G, let f be the unique T -homomorphism

f : A −→L

a′ 7−→ (µD(a′))D∈D

such that λDf = µD for each D ∈ D. If a1, . . . , ab ∈ A are such that

p(a1, . . . , ab) is de�ned in A, p(µD(a1), . . . , µD(ab)) is de�ned in G(D)

for each D ∈ D. Thus, p(f(a1), . . . , f(ab)) is also de�ned and equal to

p((µD(a1))D∈D, . . . , (µD(ab))D∈D) = (p(µD(a1), . . . , µD(ab)))D∈D

= (µD(p(a1, . . . , ab)))D∈D

= f(p(a1, . . . , ab)),

which proves that f is a homomorphism of partial M -algebras and the

cone (λD : L→ G(D))D∈D the limit of G. Therefore, PartM is complete

and UT : PartM → T -Alg preserves small limits, but it does not re�ect

them in general. Indeed, one could have de�ned p on a smaller subset

of Lb in order to make L a partial M -algebra, but this would not have
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made it a limit in PartM . This means UT is not conservative in general.

Here is a simple counterexample.

Counterexample 4.39. Let T = Th[Set∗] and M =

(
x 0 x

0 x x

)
.

Let A be the pointed set {0, x} endowed with the structure of a partial

M -algebra given by p(0, 0) = 0, p(x, 0) = x = p(0, x) and p(x, x) unde-

�ned. Let also B be the partialM -algebra on {0, x} given by p(0, 0) = 0

and p(x, 0) = x = p(0, x) = p(x, x). Then, the identity map A→ B is a

bijective homomorphism but not an isomorphism in PartM .

We turn now our attention to strong monomorphisms in PartM . In

order to understand them better, we need to construct a left adjoint to

the forgetful functor U : PartM → Set. As an intermediate step, we

consider the category b-Part where objects are sets X equipped with a

partial b-ary operation p : Xb → X and morphisms are functions f : X →
Y such that if p(x1, . . . , xb) is de�ned for some x1, . . . , xb ∈ X, then

p(f(x1), . . . , f(xb)) is also de�ned and equal to f(p(x1, . . . , xb)). The

forgetful functor U : PartM → Set thus factors as PartM → b-Part →
Set.

Proposition 4.40. [56] Let T be a commutative Lawvere theory andM

a simple extended matrix of terms in T as in (5). The forgetful functor

U ′ : PartM → b-Part has a left adjoint.

Proof. Let X be an object of b-Part. Let us add the constant operation

symbols cx for all x ∈ X to the algebraic theory (ΣT , ET ) to form the

algebraic theory (Σ′, E′) and the corresponding Lawvere theory T ′ =

T(Σ′,E′). We denote by I the set

I = {1, . . . , a} t {(x1, . . . , xb) ∈ Xb | p(x1, . . . , xb) is de�ned}

= {1, . . . , a} t dom(p)

and, for each i = (x1, . . . , xb) ∈ dom(p), tij(y1, . . . , yk) is the k-ary term

cxj of T ′ for each j ∈ {1, . . . , b} and ui(y1, . . . , yk) the k-ary term cp(i)

of T ′. Let Q be the quasivariety of T ′-algebras satisfying, for all n-ary
(resp. n′-ary) terms τ and τ ′ of T and all indices i1, . . . , in, i′1, . . . , i

′
n′
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in I, the following implication: if, for each j ∈ {1, . . . , b},

τ(ti1j(y11, . . . , y1k), . . . , tinj(yn1, . . . , ynk))

= τ ′(ti′1j(y
′
11, . . . , y

′
1k), . . . , ti′

n′j
(y′n′1, . . . , y

′
n′k))

then

τ(ui1(y11, . . . , y1k), . . . , uin(yn1, . . . , ynk))

= τ ′(ui′1(y′11, . . . , y
′
1k), . . . , ui′

n′
(y′n′1, . . . , y

′
n′k)).

For an object A in Q, we de�ne p in A via the equalities

p(τ(ti11(a11, . . . , a1k), . . . , tin1(an1, . . . , ank)), . . .

. . . , τ(ti1b(a11, . . . , a1k), . . . , tinb(an1, . . . , ank)))

= τ(ui1(a11, . . . , a1k), . . . , uin(an1, . . . , ank))

for all n-ary terms τ of T , all indices i1, . . . , in ∈ I and all families of

elements (aj′i′ ∈ A)j′∈{1,...,n},i′∈{1,...,k}. We do not de�ne p for any other

elements of Ab. In view of the implications de�ning Q, this partial op-
eration p is well-de�ned. We see that the �rst condition de�ning partial

M -algebras is satis�ed by choosing τ to be the identity term τ(y) = y.

The second condition is also satis�ed: Let t be an n-ary term of T , τ j′

an rj
′
-ary term of T for each j′ ∈ {1, . . . , n}, ij

′

j′′ ∈ I an index for each

j′ ∈ {1, . . . , n} and each j′′ ∈ {1, . . . , rj′}, and aj
′

j′′i′ an element of A for

all j′ ∈ {1, . . . , n}, j′′ ∈ {1, . . . , rj′} and i′ ∈ {1, . . . , k}. Then,

p((t((τ j
′
((t

ij
′
j′′j

(aj
′

j′′1, . . . , a
j′

j′′k))
rj
′

j′′=1))nj′=1))bj=1)

is de�ned in view of the (r1 + · · ·+ rn)-ary term

t(τ1(y11, . . . , y1r1), . . . , τn(yn1, . . . , ynrn))

of T . Moreover, it is equal to

t((τ j
′
((u

ij
′
j′′

(aj
′

j′′1, . . . , a
j′

j′′k))
rj
′

j′′=1))nj′=1)

= t((p((τ j
′
((t

ij
′
j′′j

(aj
′

j′′1, . . . , a
j′

j′′k))
rj
′

j′′=1))bj=1))nj′=1)
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as required. So A has been endowed with a structure of partial M -

algebra. We consider the function

f : X −→U ′(A)

x 7−→ cx.

It is a morphism in b-Part. Indeed, if i = (x1, . . . , xb) ∈ dom(p), choosing

τ to be the identity term τ(y) = y and i1 = i, we have

p(f(x1), . . . , f(xb)) = p(cx1 , . . . , cxb)

= p(ti1(a1, . . . , ak), . . . , tib(a1, . . . , ak))

= ui(a1, . . . , ak)

= cp(i)

= f(p(x1, . . . , xb)).

If g : A → A′ is a morphism in Q, it can be considered as a homomor-

phism of partial M -algebras making the triangle

X
f //

f ′ ""

U ′(A)

g

��
U ′(A′)

commutative. Indeed, the above triangle commutes since g is a T ′-
homomorphism and when

p(τ(ti11(a11, . . . , a1k), . . . , tin1(an1, . . . , ank)), . . .

. . . , τ(ti1b(a11, . . . , a1k), . . . , tinb(an1, . . . , ank)))

is de�ned in A,

p(g(τ(ti11(a11, . . . , a1k), . . . , tin1(an1, . . . , ank))), . . .

. . . , g(τ(ti1b(a11, . . . , a1k), . . . , tinb(an1, . . . , ank))))

= p(τ(ti11(g(a11), . . . , g(a1k)), . . . , tin1(g(an1), . . . , g(ank))), . . .

. . . , τ(ti1b(g(a11), . . . , g(a1k)), . . . , tinb(g(an1), . . . , g(ank))))
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is de�ned in A′ and equal to

τ(ui1(g(a11), . . . , g(a1k)), . . . , uin(g(an1), . . . , g(ank)))

= g(τ(ui1(a11, . . . , a1k), . . . , uin(an1, . . . , ank))).

We have thus de�ne a functor F ′ : Q → (X ↓ U ′).
On the other hand, if f : X → U ′(A) is an object of (X ↓ U ′), A

admits a T ′-algebra structure considering cx = f(x) for each x ∈ X.

Moreover, for each i ∈ I and a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tib(a1, . . . , ak)) = ui(a1, . . . , ak).

So, if τ is an n-ary term of T , i1, . . . , in ∈ I and aj′i′ ∈ A for each

j′ ∈ {1, . . . , n} and each i′ ∈ {1, . . . , k},

p(τ(ti11(a11, . . . , a1k), . . . , tin1(an1, . . . , ank)), . . .

. . . , τ(ti1b(a11, . . . , a1k), . . . , tinb(an1, . . . , ank)))

= τ(ui1(a11, . . . , a1k), . . . , uin(an1, . . . , ank))

since A is a partial M -algebra. Hence, A satis�es the implications de�n-

ing Q and this makes G′ : (X ↓ U ′)→ Q a functor.

Since the equality above holds in A for any object f : X → U ′(A) of

(X ↓ U ′), the identity map on A de�nes a morphism εf : F ′G′(f) → f

in (X ↓ U ′). This gives a natural transformation ε : F ′G′ ⇒ 1(X↓U ′).

Moreover, G′F ′ = 1Q and we have constructed an adjunction F ′ a G′.
But Q is a quasivariety, so it is locally presentable (see Proposition 1.79)

and has an initial object. Therefore, (X ↓ U ′) has also an initial object

which is the re�ection of X along U ′.

To construct the re�ection of the set X along the forgetful functor

b-Part → Set is much easier. It su�ces to consider the identity map

1X : X → X where the partial operation p on X is nowhere de�ned.

This gives a left adjoint Set → b-Part. Composed with the left adjoint

b-Part → PartM given by the above proposition, we have constructed

the left adjoint F : Set → PartM to the forgetful functor U : PartM →
Set. We remark that in the particular case X = ∅, the quasivariety Q
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described above is the quasivarietyQM of T -algebras satisfying, for all n-
ary (resp. n′-ary) terms τ and τ ′ of T and all indices i1, . . . , in, i′1, . . . , i

′
n′

in {1, . . . , a}, the following implication: if

τ(ti1j(a11, . . . , a1k), . . . , tinj(an1, . . . , ank))

= τ ′(ti′1j(a
′
11, . . . , a

′
1k), . . . , ti′

n′j
(a′n′1, . . . , a

′
n′k))

for each j ∈ {1, . . . , b}, then

τ(ui1(a11, . . . , a1k), . . . , uin(an1, . . . , ank))

= τ ′(ui′1(a′11, . . . , a
′
1k), . . . , ui′

n′
(a′n′1, . . . , a

′
n′k)).

The functor F ′ : Q → (X ↓ U ′) is then nothing but the left adjoint

QM → PartM to the forgetful functor PartM → QM . The left adjoint

F : Set → PartM can thus be also obtained by composing F ′ : QM →
PartM with the free functor Set→ QM .

We now consider the case X = {1, . . . , b + 1} with p de�ned only

by p(1, . . . , b) = b + 1. We denote by X → U ′(FM ) its re�ection along

U ′ : PartM → b-Part and g its restriction g : {1, . . . , b} ↪→ X → U(FM ).

The function g is such that p(g(1), . . . , g(b)) is de�ned in FM and uni-

versal with that property, i.e., if h : {1, . . . , b} → U(A) is a function to

a partial M -algebra A where p(h(1), . . . , h(b)) is de�ned, there exists

a unique homomorphism of partial M -algebras h : FM → A such that

U(h) ◦ g = h.

{1, . . . , b} g //

∀h %%

U(FM )

∃!U(h)zz
U(A)

Since U : PartM → Set preserves kernel pairs, monomorphisms in

PartM are exactly the injective homomorphisms. Let now f : A � B

be a strong monomorphism in PartM . Consider also the homomorphism

e : F ({1, . . . , b})→ FM given by the universal property of F ({1, . . . , b})
and the function g : {1, . . . , b} → U(FM ). If h, k : FM ⇒ C are homo-

morphisms of partial M -algebras such that he = ke, then hg = kg and

h = k. Thus e is actually an epimorphism in PartM . If a1, . . . , ab ∈ A
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are such that p(f(a1), . . . , f(ab)) is de�ned, we can construct a commu-

tative square as below with k(j) = aj and h(g(j)) = f(aj) for each

j ∈ {1, . . . , b}.
F ({1, . . . , b}) e // //

k
��

FM

h
��xx

A //
f

// B

Since f is supposed to be a strong monomorphism, h factors through f .

Hence, p(a1, . . . , ab) is de�ned as well. Therefore, strong monomorphisms

in PartM re�ect the b-tuples where p is de�ned, i.e., if p(f(a1), . . . , f(ab))

is de�ned, then so is p(a1, . . . , ab).

De�nition 4.41. [53] Let T be a commutative Lawvere theory and

M a simple extended matrix of terms in T as in (5). A homomor-

phism f : A → B in PartM is said to be closed if, given a1, . . . , ab ∈ A,
p(a1, . . . , ab) is de�ned in A if and only if p(f(a1), . . . , f(ab)) is de�ned

in B.

Such homomorphisms are also called `strong' in [51]. The above

discussion leads us to the following proposition.

Proposition 4.42. [56] Let T be a commutative Lawvere theory and

M a simple extended matrix of terms in T . Strong monomorphisms in

PartM are closed.

The homomorphism from Counterexample 4.39 is an example of a

bijective homomorphism of partialM -algebras which is not closed. Note

that isomorphisms in PartM are exactly the bijective closed homomor-

phisms. Indeed, in view of the next lemma, closedness of a bijective

homomorphism f : B → C is exactly what we need to prove the inverse

map f−1 : C → B is a homomorphism of partial M -algebras.

Lemma 4.43. Let T be a commutative Lawvere theory andM a simple

extended matrix of terms in T . Let also g : A→ B be a function between

partial M -algebras and f : B� C a closed monomorphism in PartM . If

fg is a homomorphism of partial M -algebras, then so is g.
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Proof. Let t be an n-ary term of T and a1, . . . , an ∈ A. Since

f(g(t(a1, . . . , an))) = t(fg(a1), . . . , fg(an))

= f(t(g(a1), . . . , g(an)))

and f is injective, g is a T -homomorphism.

Besides, if a1, . . . , ab ∈ A are such that p(a1, . . . , ab) are de�ned in A,

p(fg(a1), . . . , fg(ab)) is de�ned in C and p(g(a1), . . . , g(ab)) is de�ned

in B since f is closed. We can also compute

f(p(g(a1), . . . , g(ab))) = p(fg(a1), . . . , fg(ab))

= fg(p(a1, . . . , ab)),

which implies

p(g(a1), . . . , g(ab)) = g(p(a1, . . . , ab))

since f is injective.

We now want to prove that, for some M , closed monomorphisms in

PartM are exactly the strong monomorphisms. To achieve this, we need

to study the properties of closed monomorphisms.

Proposition 4.44. Let T be a commutative Lawvere theory and M a

simple extended matrix of terms in T . Closed monomorphisms in PartM

are stable under pullbacks.

Proof. We consider a closed monomorphism f : A� B in PartM and its

pullback along g : C → B.

P // f
′
//

��

C

g

��
A //

f
// B

If (a1, c1), . . . , (ab, cb) ∈ P , p((a1, c1), . . . , (ab, cb)) is de�ned if and only

if p(a1, . . . , ab) and p(c1, . . . , cb) are de�ned. But if p(c1, . . . , cb) is de-

�ned, p(g(c1), . . . , g(cb)) = p(f(a1), . . . , f(ab)) is also de�ned. Since f
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is closed, this further implies p(a1, . . . , ab) and so p((a1, c1), . . . , (ab, cb))

are de�ned. Thus, f ′ is a closed monomorphism.

Let us recall the following well-known proposition, which will be used

in the particular case C = PartM and R the class of closed monomor-

phisms.

Proposition 4.45. Let R be a class of monomorphisms in the �nitely

complete category C which is stable under pullbacks and contains regular

monomorphisms (i.e., equalisers). A morphism e in C is orthogonal to

all elements of R if and only if, when e factors as fg with f ∈ R, then
f is an isomorphism. In this case, e is an epimorphism.

Proposition 4.46. [56] Let T be a commutative Lawvere theory and

M a simple extended matrix of terms in T . If R denotes the class of

closed monomorphisms in PartM and

R⊥ = {e ∈ ar(PartM ) | e ⊥ m∀m ∈ R}

its orthogonal class, (R⊥,R) is a factorisation system.

Proof. Since R contains regular monomorphisms, is stable under pull-

backs and closed under composition, it remains to prove that each ho-

momorphism f : A → B of partial M -algebras factors as an element of

R⊥ followed by a closed monomorphism. Let C be the smallest subset

of B satisfying the conditions:

� f(a′) ∈ C for each a′ ∈ A,

� C is a sub-T -algebra of B (in the sense of De�nition 1.83),

� if c1, . . . , cb ∈ C are such that p(c1, . . . , cb) is de�ned in B, then

p(c1, . . . , cb) ∈ C.

We consider the unique structure of partial M -algebra on C making

the inclusion i : C ↪→ B a closed monomorphism. Then, f factors as if ′

with f ′ : A→ C a homomorphism of partialM -algebras by Lemma 4.43.

Moreover, if f ′ = f ′′g with f ′′ a closed monomorphism, the image of f ′′

contains C by de�nition of C. Thus f ′′ is surjective and so an isomor-

phism. By Proposition 4.45, this means f ′ ∈ R⊥.
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Epimorphisms in PartM thus factor as an epimorphism orthogonal

to closed monomorphisms followed by a closed monomorphism (which

is also an epimorphism). Therefore, to prove that epimorphisms are

orthogonal to closed monomorphisms (i.e., that closed monomorphisms

are strong monomorphisms), it su�ces to prove that closed epimorphisms

are surjective. Indeed, in that case, this would imply that the only

epimorphisms which are closed monomorphisms are the isomorphisms.

This will be true for some particular M 's.

Proposition 4.47. [56] Let M be a simple extended matrix of terms in

Th[Set∗]. Closed epimorphisms in PartM are surjective.

Proof. Firstly, we notice that all partial M -algebras with one element

are isomorphic (since p(0, . . . , 0) has to be de�ned). If this partial M -

algebra is the unique one, the result is trivial. Hence, we suppose that

there exists a partial M -algebra C with a non-zero element c ∈ C. Now,
we also suppose we have a closed epimorphism f : A � B in PartM

which is not surjective. Let Im(f) be the set-theoretical image of f and

D = D′ = B \ Im(f) 6= ∅. Notice that 0 ∈ Im(f). We de�ne a partial

b-ary operation p on

Im(f) tD tD′

in the following way:

1. p(ti1(x1, . . . , xk), . . . , tib(x1, . . . , xk)) is de�ned as ui(x1, . . . , xk) for

all i ∈ {1, . . . , a} and all x1, . . . , xk ∈ Im(f) tD tD′,

2. p restricted on (Im(f)tD)b is de�ned as in B via the isomorphism

of pointed sets Im(f) tD ∼= B,

3. p restricted on (Im(f)tD′)b is de�ned as in B via the isomorphism

of pointed sets Im(f) tD′ ∼= B,

4. p is de�ned nowhere else than required by one of the above condi-

tions.

Let us prove this p is well-de�ned. There is no problem with con-

dition 1 alone. Indeed, let us suppose by contradiction there exist
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i, i′ ∈ {1, . . . , a} and x1, . . . , xk, x
′
1, . . . , x

′
k ∈ Im(f) t D t D′ satisfy-

ing tij(x1, . . . , xk) = ti′j(x
′
1, . . . , x

′
k) for each j ∈ {1, . . . , b}, whereas

ui(x1, . . . , xk) 6= ui′(x
′
1, . . . , x

′
k). Without loss of generality, we can sup-

pose ui(x1, . . . , xk) 6= 0. We consider any morphism of pointed sets

g : Im(f)tDtD′ → C which sends ui(x1, . . . , xk) to c and ui′(x′1, . . . , x
′
k)

to 0. Then,

tij(g(x1), . . . , g(xk)) = ti′j(g(x′1), . . . , g(x′k))

for each j ∈ {1, . . . , b} and therefore

c = g(ui(x1, . . . , xk))

= ui(g(x1), . . . , g(xk))

= p(ti1(g(x1), . . . , g(xk)), . . . , tib(g(x1), . . . , g(xk)))

= p(ti′1(g(x′1), . . . , g(x′k)), . . . , ti′b(g(x′1), . . . , g(x′k)))

= ui′(g(x′1), . . . , g(x′k))

= g(ui′(x
′
1, . . . , x

′
k))

= 0,

which is a contradiction.

Since B is a (well-de�ned) partial M -algebra, there is no problem

with condition 2 alone nor with condition 3 alone. The cohabitation of

conditions 2 and 3 does not cause any problem neither. Indeed, the only

way it could, is to have x1, . . . , xb ∈ Im(f) such that p(x1, . . . , xb) is

de�ned but does not belong to Im(f). If we write xi = f(ai) for some

ai ∈ A, this means p(f(a1), . . . , f(ab)) is de�ned. But since f is closed,

it implies p(a1, . . . , ab) is de�ned and

p(x1, . . . , xb) = p(f(a1), . . . , f(ab)) = f(p(a1, . . . , ab)) ∈ Im(f).

By symmetry, it remains to check there is no problem with the co-

habitation of conditions 1 and 2. If there is one, it means there exist

x1, . . . , xk ∈ Im(f) tD tD′ and i ∈ {1, . . . , a} such that

tij(x1, . . . , xk) ∈ Im(f) tD
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for each j ∈ {1, . . . , b}, but p(ti1(x1, . . . , xk), . . . , tib(x1, . . . , xk)) de�ned

as in B (via Im(f) tD ∼= B) is not ui(x1, . . . , xk). We denote by

q : Im(f) tD tD′ → Im(f) tD

the homomorphism of pointed sets which coequalises the two copies ofD.

This implies

tij(x1, . . . , xk) = q(tij(x1, . . . , xk)) = tij(q(x1), . . . , q(xk))

for each j ∈ {1, . . . , b}. Since we have already shown there is no problem

with condition 1 alone, we can write using this condition

ui(x1, . . . , xk) = p(ti1(x1, . . . , xk), . . . , tib(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tib(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).

But since B is a partial M -algebra, if we compute using condition 2, we

also get

p(ti1(x1, . . . , xk), . . . , tib(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tib(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).

This discussion proves p is well de�ned.

The �rst condition of De�nition 4.38 is satis�ed by Im(f)tDtD′ in
view of condition 1. In the case T = Th[Set∗], the second one resumes to

p(0, . . . , 0) = 0 which is true since it holds in B. Thus Im(f)tDtD′ is a
partialM -algebra. Now, we consider the two obvious homomorphisms of

partial M -algebras g1, g2 : B ⇒ Im(f)tD tD′. They satisfy g1f = g2f

but g1 6= g2 since D = D′ 6= ∅. This is a contradiction since f was

supposed to be an epimorphism.

If T = Th[Set], there are two partial M -algebras with at most one

element, i.e., the empty partial M -algebra and the singleton one {?} (in
which p(?, . . . , ?) has to be de�ned since a > 1). Therefore, the �rst
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argument in the previous proof does not hold if we replace Th[Set∗] by

Th[Set]. For instance, if M =
(
x y

)
, the category PartM is equiva-

lent to the arrow category 0 → 1. With this M , the unique homomor-

phism of partialM -algebras ∅→ {?} is an injective closed epimorphism,

but not an isomorphism. However, ifM is such that there exists a partial

M -algebra with at least two elements, the same proof can be repeated

to get the following proposition.

Proposition 4.48. [56] Let M be a simple extended matrix of terms

in Th[Set] such that there exists a partial M -algebra with at least two

elements. Closed epimorphisms in PartM are surjective.

Counterexample 4.49. If T = Th[ComMon] and M is the trivial

matrix
(
x x

)
, PartM is isomorphic to the category ComMon of com-

mutative monoids. There, the inclusion N ↪→ Z is an injective closed

epimorphism but not an isomorphism.

As explained above, Propositions 4.47 and 4.48 admit the following

corollary.

Corollary 4.50. [56] If M is the simple extended matrix of Exam-

ple 2.7, 2.12, 2.19 or 2.22, then closed monomorphisms coincide with

strong monomorphisms in PartM .

We now prove that PartM has M -closed strong relations.

Proposition 4.51. [56] Let T be a commutative Lawvere theory andM

a simple extended matrix of terms in T as in (5). Every a-ary relation

r : R � A1 × · · · × Aa which is a closed monomorphism in PartM is

strictly M -closed. In particular, PartM has M -closed strong relations.

Proof. Consider a family of morphisms (yii′ : Y → Ai)i∈{1,...,a},i′∈{1,...,k}

in PartM for which the morphism

(t1j(y11, . . . , y1k), . . . , taj(ya1, . . . , yak)) : Y → A1 × · · · ×Aa
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factors as rwj for each j ∈ {1, . . . , b}.

R
��
r
��

Y

wj

22

(t1j(y11,...,y1k),...,taj(ya1,...,yak))
// A1 × · · · ×Aa

We know that, for each y ∈ Y and each i ∈ {1, . . . , a},

p(ti1(yi1(y), . . . , yik(y)), . . . , tib(yi1(y), . . . , yik(y)))

is de�ned and equal to ui(yi1(y), . . . , yik(y)). Using the description of

small products in PartM , we can say that p(rw1(y), . . . , rwb(y)) is de�ned

for any y ∈ Y and equal to

(u1(y11(y), . . . , y1k(y)), . . . , ua(ya1(y), . . . , yak(y))).

Since r is closed, p(w1(y), . . . , wb(y)) is de�ned in R and we can consider

the function w : Y → R : y 7→ p(w1(y), . . . , wb(y)) which satis�es

rw = (u1(y11, . . . , y1k), . . . , ua(ya1, . . . , yak)).

Finally, Lemma 4.43 tells us w is a homomorphism of partialM -algebras

since rw is and r is a closed monomorphism, which concludes the proof.

4.5.2 Proof of the embedding theorems

As announced at the beginning of this section, we can prove an embed-

ding theorem for small categories with M -closed strong relations, but

we also have one for small categories with M -closed relations (which is

however not as good since PartM does not have M -closed relations in

general). In order to prove both at the same time, we are going to use a

set of monomorphisms, closed under composition, stable under pullbacks

and which contains regular monomorphisms.

Theorem 4.52. [56] Let T be a commutative Lawvere theory and M a

simple extended matrix of terms in T as in (5). Let also R be a set of
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monomorphisms in the small �nitely complete T -category C such that R
is closed under composition, stable under pullbacks and contains regular

monomorphisms. Suppose also that all a-ary relations R � Aa in R
are M -closed in C. Then, there exists a full and faithful T -enriched
embedding φ : C ↪→ PartC

op

M which preserves and re�ects �nite limits.

Moreover, for each monomorphism f : A� B in R and each X ∈ Cop,

φ(f)X is a closed monomorphism in PartM .

Proof. We would like to factorise the T -enriched Yoneda embedding

YT : C → T -AlgC
op

through PartC
op

M .

PartC
op

M

UC
op

T
��

C
YT
//

φ
;;

T -AlgC
op

In order to do so, let us provide C(X,Y ) with a structure of partial

M -algebra, for all objects X,Y ∈ C. Thus, let f1, . . . , fb : X → Y be

morphisms in C. We de�ne p(f1, . . . , fb) if and only if there exist mor-

phisms x1, . . . , xk : X →W , a relation r : Z �W a in R, and morphisms

g1, . . . , gb : X → Z and f : Z → Y such that, for each j ∈ {1, . . . , b},
fgj = fj and rgj = (t1j(x1, . . . , xk), . . . , taj(x1, . . . , xk)).

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
gj

��

fj

��
W a Zoor
oo

f
// Y

In this case, since r isM -closed, there exists a unique morphism h : X →
Z such that rh = (u1(x1, . . . , xk), . . . , ua(x1, . . . , xk)) and we de�ne

p(f1, . . . , fb) = fh.

Z
��
r
��

X

∃!h
44

(u1(x1,...,xk),...,ua(x1,...,xk))
//W a

Let us �rst prove the independence of the choices. Given x′1, . . . , x
′
k :
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X → W ′, r′ : Z ′ � W ′a, g′1, . . . , g
′
b : X → Z ′, f ′ : Z ′ → Y and h′ : X →

Z ′ which also satisfy the above conditions, let us prove fh = f ′h′. We

consider the following pullback

Z1
q1 //

��
r1
��

Z
��
r
��

(W ×W ′)a
πa1

//W a

where π1 : W ×W ′ → W is the �rst projection. We also consider the

unique morphisms l11, . . . , l
b
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , taj((x1, x

′
1), . . . , (xk, x

′
k)))

for each j ∈ {1, . . . , b}. Let also h1 : X → Z1 be the unique morphism

such that q1h1 = h and

r1h1 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , ua((x1, x

′
1), . . . , (xk, x

′
k))).

Similarly, we de�ne Z2, r2, q2, l12, . . . , l
b
2 and h2 using the pullback of r′

along πa2 where π2 : W ×W ′ → W ′ is the second projection. Since R is

stable under pullbacks, r1, r2 ∈ R. We also construct their intersection,

P
��

r4
��

// r3 // Z2
��
r2
��

Z1
//
r1
// (W ×W ′)a

the unique morphism h3 : X → P such that r3h3 = h2 and r4h3 = h1

and, for each j ∈ {1, . . . , b}, the unique morphism lj3 : X → P such that

r3l
j
3 = lj2 and r4l

j
3 = lj1. Again, r3, r4 ∈ R. Finally, we consider the

following equaliser diagram.

E // e // P
fq1r4 //
f ′q2r3

// Y

For each j ∈ {1, . . . , b}, lj3 factors as elj4 = lj3 since

fq1r4l
j
3 = fq1l

j
1 = fgj = fj = f ′g′j = f ′q2l

j
2 = f ′q2r3l

j
3.
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Hence, for each such j, the morphism

(t1j((x1, x
′
1), . . . , (xk, x

′
k)), . . . , taj((x1, x

′
1), . . . , (xk, x

′
k)))

factors as r1r4el
j
4. But since the relation r1r4e : E � (W ×W ′)a is in R,

it is M -closed and so there exists a unique morphism l5 : X → E such

that

r1r4el5 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , ua((x1, x

′
1), . . . , (xk, x

′
k))).

The equalities r1r4h3 = r1h1 = r1r4el5 imply that h3 = el5 and it

remains to compute

fh = fq1h1 = fq1r4h3 = fq1r4el5

= f ′q2r3el5 = f ′q2r3h3 = f ′q2h2

= f ′h′.

Now that we have shown p is well-de�ned, let us prove it makes

C(X,Y ) a partial M -algebra. If i ∈ {1, . . . , a} and x1, . . . , xk ∈ C(X,Y ),

we can set W = Y , r = 1Y a ,

gj = (t1j(x1, . . . , xk), . . . , taj(x1, . . . , xk)),

f = πi : Y
a → Y the i-th projection and

h = (u1(x1, . . . , xk), . . . , ua(x1, . . . , xk)).

This shows that p(ti1(x1, . . . , xk), . . . , tib(x1, . . . , xk)) is de�ned and equal

to fh = ui(x1, . . . , xk).

Let now t be an n-ary term of T with n > 0 and

(f j
′

j ∈ C(X,Y ))j∈{1,...,b},j′∈{1,...,n}

be families of morphisms such that p(f j
′

1 , . . . , f
j′

b ) is de�ned for each
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j′ ∈ {1, . . . , n} using the diagrams below.

X

��

(t1j(x
j′
1 ,...,x

j′
k ),...,taj(x

j′
1 ,...,x

j′
k ))

gj
′
j
��

fj
′
j

��
(Wj′)

a Zj′oo
rj
′

oo
fj
′
// Y

Zj′
��

rj
′

��
X

hj
′

44

(u1(xj
′

1 ,...,x
j′
k ),...,ua(xj

′
1 ,...,x

j′
k ))

// (Wj′)
a

We consider the pullbacks

Sj′
qj
′

//
��

sj
′

��

Zj′
��

rj
′

��
(W1 × · · · ×Wn)a

πa
j′

// (Wj′)
a

where πj′ : W1 × · · · ×Wn → Wj′ is the j′-th projection as usual. We

denote by lj
′

j the unique morphism X → Sj′ such that qj
′
lj
′

j = gj
′

j and

sj
′
lj
′

j = (t1j(x1, . . . , xk), . . . , taj(x1, . . . , xk))

where xi′ is the factorisation (x1
i′ , . . . , x

n
i′) : X →W1×· · ·×Wn. Let also

hj
′

1 : X → Sj′ be the unique morphism satisfying qj
′
hj
′

1 = hj
′
and

sj
′
hj
′

1 = (u1(x1, . . . , xk), . . . , ua(x1, . . . , xk)).

We now consider the intersection of the sj
′
's

Zww
v1

ww

''
vn

''
S1
''

s1 ''

. . . Snww

snww
(W 1 × · · · ×Wn)a
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and the unique morphisms lj , h : X → Z such that vj
′
lj = lj

′

j and vj
′
h =

hj
′

1 . Since this intersection can be built using pullbacks and compositions,

s1v1 = · · · = snvn ∈ R. Thus, we end up with the commutative diagrams

X

vv

(t1j(x1,...,xk),...,taj(x1,...,xk))

lj

��

t(f1
j ,...,f

n
j )

%%
(W 1 × · · · ×Wn)a Zoo

s1v1
oo

t(f1q1v1,...,fnqnvn)
// Y

and

Z
��
s1v1

��
X

h

33

(u1(x1,...,xk),...,ua(x1,...,xk))
// (W 1 × · · · ×Wn)a

proving that p(t(f1
1 , . . . , f

n
1 ), . . . , t(f1

b , . . . , f
n
b )) is de�ned and equal to

t(f1q1v1h, . . . , fnqnvnh) = t(p(f1
1 , . . . , f

1
b ), . . . , p(fn1 , . . . , f

n
b )).

If n = 0, we also have p(t, . . . , t) = t. To see it, we can use for instance

the commutative diagram below.

X
(t1j(1X ,...,1X),...,taj(1X ,...,1X))

�� ��

t

��
Xa Xaoo

1Xa
oo

t
// Y

We have therefore provided C(X,Y ) with a structure of partial M -

algebra.

In view of the de�nition of a T -enrichment, if x : X ′ → X and y : Y →
Y ′ are morphisms in C,

− ◦ x : C(X,Y )→ C(X ′, Y )

and

y ◦ − : C(X,Y )→ C(X,Y ′)

are homomorphisms of T -algebras. Let us prove they are actually ho-

momorphisms of partial M -algebras. So let f1, . . . , fb : X → Y be mor-
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phisms of C such that p(f1, . . . , fb) is de�ned via the following diagrams.

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
gj

��

fj

��
W a Zoor
oo

f
// Y

Z
��
r
��

X

h

44

(u1(x1,...,xk),...,ua(x1,...,xk))
//W a

Thus, in view of the commutative diagrams

X ′
(t1j(x1x,...,xkx),...,taj(x1x,...,xkx))

��
gjx
��

fjx

��
W a Zoor
oo

f
// Y

and

Z
��
r
��

X ′

hx

33

(u1(x1x,...,xkx),...,ua(x1x,...,xkx))
//W a

p(f1x, . . . , fbx) is de�ned and equal to

fhx = p(f1, . . . , fb)x,

which shows that − ◦ x is a homomorphism of partial M -algebras. Be-

sides, since the diagram

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
gj

��

yfj

��
W a Zoor
oo

yf
// Y ′

commutes, p(yf1, . . . , yfb) is de�ned and equal to

yfh = yp(f1, . . . , fb),
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which proves that y ◦ − is a homomorphism of partial M -algebras. We

have thus constructed a functor φ : C → PartC
op

M as announced.

PartC
op

M

UC
op

T
��

C
YT
//

φ
;;

T -AlgC
op

This φ preserves T -enrichment since YT and UT do and UT is faithful.

It is full and faithful since YT is full and faithful and UT is faithful.

Since φ is full and faithful, it re�ects isomorphisms. Thus, it will

re�ect �nite limits if it preserves them. So, let (λD : L→ G(D))D∈D be

the limit of G : D → C with D a �nite category. We would like to prove

that, for each X ∈ C,

(φ(λD)X : C(X,L)→ C(X,G(D)))D∈D

is a limit in PartM . But since YT preserves limits, and in view of

the description of small limits in PartM , we only have to prove that,

if f1, . . . , fb : X → L are such that p(λDf1, . . . , λDfb) is de�ned for every

D ∈ D, then p(f1, . . . , fb) is also de�ned.

Thus, to prove that φ preserves the terminal object, we have to show

that p(!, . . . , !) is de�ned where ! is the unique morphism X → 1. This

is obvious in view of the diagram below.

X
(t1j(!,...,!),...,taj(!,...,!))

��
!
��

!

��
1a = 1 1oo

11

oo
11

// 1

Moreover, φ preserves the binary product Y × Y ′.

Y × Y ′
π1

{{

π2

##
Y Y ′

Indeed, suppose f1, . . . , fb : X → Y and f ′1, . . . , f
′
b : X → Y ′ are such that
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p(f1, . . . , fb) and p(f ′1, . . . , f
′
b) are de�ned using the following diagrams.

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
gj

��

fj

��
W a Zoor
oo

f
// Y

X
(t1j(x

′
1,...,x

′
k),...,taj(x

′
1,...,x

′
k))

��
g′j
��

f ′j

��
W ′a Z ′oo

r′
oo

f ′
// Y ′

We consider again the pullback

Z1
q1 //

��
r1
��

Z
��
r
��

(W ×W ′)a
πa1

//W a

and the unique morphisms l11, . . . , l
b
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , taj((x1, x

′
1), . . . , (xk, x

′
k)))

for each j ∈ {1, . . . , b}. We de�ne similarly Z2, r2, q2 and l12, . . . , l
b
2. We

also consider the intersection

P
��

r4
��

// r3 // Z2
��
r2
��

Z1
//
r1
// (W ×W ′)a

and the unique morphisms l13, . . . , l
b
3 : X → P such that r4l

j
3 = lj1 and

r3l
j
3 = lj2 for each j ∈ {1, . . . , b}. Then, since the diagram below is

commutative,

X

yy

(t1j((x1,x′1),...,(xk,x
′
k)),...,taj((x1,x′1),...,(xk,x

′
k)))

lj3
��

(fj ,f
′
j)

##
(W ×W ′)a Poor1r4

oo
(fq1r4,f ′q2r3)

// Y × Y ′



4.5. Embedding for categories with M -closed strong relations 215

p((f1, f
′
1), . . . , (fb, f

′
b)) is also de�ned and φ preserves �nite products.

Finally, to prove that φ preserves equalisers, it is enough to show

that φ(e)X = e ◦ − : C(X,Y )→ C(X,Y ′) is a closed homomorphism for

each X ∈ Cop and each regular monomorphism e : Y � Y ′. To conclude

the proof, we are going to prove the more general fact that φ(e)X is a

closed homomorphism for each e : Y � Y ′ in R and each X ∈ Cop. So,

let f1, . . . , fb : X → Y be such that p(ef1, . . . , efb) is de�ned using the

diagram below.

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
gj

��

efj

��
W a Zoor
oo

f
// Y ′

We consider the pullback of e along f

Z ′
f ′ //

��
r′
��

Y
��
e
��

Z
f
// Y ′

and the unique morphisms g′1, . . . , g
′
b : X → Z ′ satisfying f ′g′j = fj and

r′g′j = gj for each j ∈ {1, . . . , b}. Then, considering the diagram

X
(t1j(x1,...,xk),...,taj(x1,...,xk))

��
g′j
��

fj

��
W a Z ′oo

rr′
oo

f ′
// Y

we see that p(f1, . . . , fb) is de�ned, which concludes the proof.

TakingR to be the whole set of monomorphisms in C, we immediately

get the following corollary.

Corollary 4.53. [56] Let T be a commutative Lawvere theory and M

a simple extended matrix of terms in T . Let also C be a small �nitely

complete T -category with M -closed relations. There exists a full and

faithful T -enriched embedding φ : C ↪→ PartC
op

M which preserves and re-

�ects �nite limits. Moreover, for each monomorphism f : A � B and
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each X ∈ Cop, φ(f)X is a closed monomorphism in PartM .

And now with R the set of strong monomorphisms.

Corollary 4.54. [56] Let T be a commutative Lawvere theory and M

a simple extended matrix of terms in T . Let also C be a small �nitely

complete T -category with M -closed strong relations. There exists a full

and faithful T -enriched embedding φ : C ↪→ PartC
op

M which preserves and

re�ects �nite limits. Moreover, for each strong monomorphism f : A�

B and each X ∈ Cop, φ(f)X is a closed monomorphism in PartM .

Remark 4.55. Notice that Corollaries 4.53 and 4.54 characterise cat-

egories with M -closed relations (resp. with M -closed strong relations)

among all small �nitely complete T -categories. Indeed, if we have such
an embedding, to prove that a (strong) relation r : R � Aa in C is M -

closed, it is enough to show that φ(r)X is M -closed in PartM for each

X ∈ Cop, which is true by Proposition 4.51.

4.5.3 Applications

As usual, the Embedding Theorem 4.54 gives a way to use elements

and partial operations to prove statements about �nite limits in �nitely

complete T -categories with M -closed strong relations. Suppose we are

given a commutative Lawvere theory T , a simple extended matrix M

of terms in T and a statement of the form P ⇒ Q where P and Q are

conjunctions of properties which can be expressed as

1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. the equality t(f1, . . . , fn) = g holds for an n-ary term t of T and

parallel morphisms f1, . . . , fn, g,

4. some morphism is a monomorphism,

5. some morphism is an isomorphism,

6. some morphism factors through a given monomorphism.
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Then, this statement P ⇒ Q is valid in all �nitely complete V-T -
categories with M -closed strong relations (for all universes V) if and

only if it is valid in V-PartM (for all universes V).

Moreover, due to Corollary 4.53, if we have to prove this statement

P ⇒ Q in all �nitely complete T -categories with M -closed relations, it

is enough to prove it in V-PartM (for a bigger universe V 3 U) supposing
that each monomorphism considered in the given statement is closed.

To conclude this chapter, we illustrate those two techniques in con-

crete examples. The �rst one takes place in the `weakly strongly uni-

tal context', i.e., for pointed �nitely complete categories with M -closed

strong relations where

M =

(
x 0 0 x

x x y y

)

(see Example 2.19). This lemma has been proved in [15] in the strongly

unital case, we now slightly improve it.

Lemma 4.56. Consider the following diagram in a pointed �nitely com-

plete category with

(
x 0 0 x

x x y y

)
-closed strong relations

X ×R
1X×r1

��
1X×r2
��

R

r1

��
r2

��
X

(1X ,0) //

h

((

X × Y
ψ
��

Y
(0,1Y )oo

f
ww

Z
g

hhhh

where ψ(1X , 0) = h, ψ(0, 1Y ) = f , gh = 1X , gf = 0 and (r1, r2) is the

kernel pair of f . Then (1X × r1, 1X × r2) is the kernel pair of ψ.

Proof. The above discussion tells us it is enough to prove it in PartM for

M =

(
x 0 0 x

x x y y

)
. First of all, let us compute, for all x ∈ X and
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all y ∈ Y ,

ψ(x, y) = ψ(p(x, 0, 0), p(0, 0, y))

= ψ(p((x, 0), (0, 0), (0, y)))

= p(ψ(x, 0), ψ(0, 0), ψ(0, y))

= p(h(x), 0, f(y))

which is always de�ned. Next, let x, x′ ∈ X and y, y′ ∈ Y be such that

ψ(x, y) = ψ(x′, y′). We have

x = p(x, 0, 0) = p(gh(x), 0, gf(y)) = g(ψ(x, y))

= g(ψ(x′, y′)) = p(gh(x′), 0, gf(y′)) = p(x′, 0, 0)

= x′

and

f(y) = ψ(0, y) = ψ(p(x, x, 0), p(y, 0, 0))

= ψ(p((x, y), (x, 0), (0, 0))) = p(ψ(x, y), ψ(x, 0), ψ(0, 0))

= p(ψ(x′, y′), ψ(x′, 0), ψ(0, 0)) = ψ(p(x′, x′, 0), p(y′, 0, 0))

= ψ(0, y′) = f(y′).

Then,

X ×R = {(x, y1, y2) ∈ X × Y × Y | f(y1) = f(y2)}

in which p is de�ned componentwise. For an element (x, y1, y2) in X×R,
we thus have

ψ(x, y1) = p(h(x), 0, f(y1))

= p(h(x), 0, f(y2))

= ψ(x, y2).

The kernel pair of ψ is given by

{(x, y, x′, y′) ∈ X × Y ×X × Y |ψ(x, y) = ψ(x′, y′)}

in which p is also de�ned componentwise. It is thus isomorphic to X×R
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via the mutually inverse homomorphisms (x, y1, y2) 7→ (x, y1, x, y2) and

(x, y, x′, y′) 7→ (x, y, y′).

To conclude, we prove a well-known fact in Mal'tsev categories.

Proposition 4.57. [29] In a Mal'tsev category, every internal category

can be extended to a groupoid.

Proof. If

A = ( A1 ×c,d A1
m // A1

d //
c
// A0

e

dd
)

is an internal category in any �nitely complete category C, we can con-

struct its object of isomorphisms Iso(A) via the �nite limit below.

Iso(A)

λ1

~~

λ2

  

λ3

��

λ4

��

A1

d

��

c

��

A1 ×c,d A1

π1

55

π2

))
m

��

A1 ×c,d A1

π2

ii

π1

uu
m

��

A1

c
{{ d ##

A1 A0e
oo A0 e

// A1

Then, λ4 : Iso(A)� A1 is a monomorphism and A extends to a groupoid

if and only if λ4 is an isomorphism (with i = λ3λ
−1
4 : A1 → A1). More-

over, there is at most one way to extend A to a groupoid. All these state-

ments can be easily proved in Set and generalised to C by the Yoneda

embedding.

Now, if C is a Mal'tsev category, we have to prove λ4 is always an

isomorphism. This is thus enough to prove it in PartM with

M =

(
x y y x

x x y y

)
.
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Let us �rst prove that

A1 ×c,d A1
(π2,m)// A1 ×A1

is a monomorphism. So let

X
f //
f ′
// Y

g // Z

be morphisms in A such that m(f, g) = m(f ′, g). Then

f = m(f, 1Y )

= m(p(f, 1Y , 1Y ), p(g, g, 1Y ))

= p(m(f, g),m(1Y , g),m(1Y , 1Y ))

= p(m(f ′, g),m(1Y , g),m(1Y , 1Y ))

= f ′

and (π2,m) is a monomorphism. We can therefore suppose it is a closed

homomorphism (using the last part in Corollary 4.53).

Let us now prove that every map f : X → Y in A is invertible (i.e.,

that λ4 is surjective). We know that

p((1Y , 1Y ), (f, 1Y ), (1X , f)) ∈ A1 ×c,d A1

is de�ned since p(1Y , 1Y , f) and p(1Y , f, f) are and (π2,m) is a closed

monomorphism. Thus, applying π1, we deduce that p(1Y , f, 1X) is de-

�ned. It remains to compute

d(p(1Y , f, 1X)) = p(Y,X,X) = Y,

c(p(1Y , f, 1X)) = p(Y, Y,X) = X,

m(f, p(1Y , f, 1X)) = m(p(f, 1X , 1X), p(1Y , f, 1X))

= p(m(f, 1Y ),m(1X , f),m(1X , 1X))

= p(f, f, 1X)

= 1X
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and similarly for m(p(1Y , f, 1X), f) = 1Y . Therefore, λ4 is bijective and

can also be supposed to be closed. This means it is an isomorphism.





Chapter 5

Bicategory of fractions for

weak equivalences

Let F : A → B be an internal functor between internal groupoids in

Gp and U(F ) : U(A) → U(B) its underlying ordinary functor. If F is

a weak equivalence (i.e., essentially surjective, full and faithful), U(F )

is also a weak equivalence and so it is an equivalence. Moreover, its

pseudo-inverse U(F )∗ : U(B)→ U(A) is a monoidal functor with respect

to the tensor product given by the group laws in A, but in general it

fails to be an internal functor in Gp. Denoting by MON the 2-category

of internal groupoids in Gp, monoidal functors and monoidal natural

transformations, this phenomenon can be formalised [102] as the fact

that the inclusion

Grpd(Gp) ↪→ MON

is the bicategory of fractions of Grpd(Gp) with respect to weak equiv-

alences. A similar result has also been proved in [102] if we replace the

category Gp by LieAlgk for a �eld k and MON by its analogue for Lie

algebras. Both Gp and LieAlgk are monadic over regular categories (Set

and Vectk respectively) in which the Axiom of Choice holds (i.e., every

regular epimorphism admits a section). As a generalisation, in [61], for

any monad T on a regular category C satisfying the Axiom of Choice,

223
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T-monoidal functors are de�ned and the corresponding inclusion

Grpd(CT) ↪→ T-MON

is proved to be the bicategory of fractions with respect to weak equiva-

lences.

To get an idea on how T-monoidal functors are de�ned, we can �rst

restrict our attention to the case where the functor part T : C → C of the
monad preserves pullbacks. In that case, T induces a pseudo-monadT on

Grpd(C) whose 2-category Alg(T) of strict algebras and strict morphisms

is isomorphic to Grpd(CT). Then, we de�ne the 2-category T-MON as

the 2-category T-MON of strict algebras and pseudo-morphisms of T.

In the case where T does not preserve pullbacks, such a pseudo-

monad T does not exist because T destroys the internal composition of

an internal groupoid A, so that T(A) is a re�exive graph but not an

internal groupoid. Nevertheless, we can still de�ne pseudo-morphisms

since, for doing that, only internal natural transformations of the form

T(A)
++
33 Bα

��

are needed, and, to express the naturality of α, one uses the internal

composition in B, not in T(A).

This last chapter is devoted to the de�nition of T-MON, its con-

nections with the theory of pseudo-monads and the proof that it is the

announced bicategory of fractions. We also compare it to the already

known cases C = Gp and C = LieAlgk from [102]. Observe that, since

Gp and LieAlgk are semi-abelian categories, the bicategories of fractions

of Grpd(Gp) and of Grpd(LieAlgk) with respect to weak equivalences

can also be described using `butter�ies', see [94] and [1].

5.1 2-dimensional category theory

In this section, we recall many de�nitions of 2-dimensional category the-

ory we need in this chapter. The reader may consult [12, 74] or [14]

for a more detailed account on the topic. We start with bicategories,

a generalisation of 2-categories introduced by Bénabou [12]. Roughly
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speaking, these are `categories for which the axioms are satis�ed up to

isomorphisms'.

De�nition 5.1. [12] A bicategory C consists of

� a class of objects,

� for each pair A,B of objects, a small category C(A,B) (whose

objects f : A→ B are called 1-cells, and morphisms 2-cells),

� for any objects A,B,C, a composition law

C(A,B)× C(B,C) −→C(A,C)

(f, g) 7−→ g ◦ f = gf,

� for any 1-cells A
f //
f ′
// B

g //
g′
// C , a horizontal composition

C(A,B)(f, f ′)× C(B,C)(g, g′) −→C(A,C)(gf, g′f ′)

(α, β) 7−→β ? α,

� for each object A, a 1-cell 1A : A→ A,

� for each 1-cell f : A → B, two invertible 2-cells, natural in f ,

lf : 1B ◦ f ⇒ f and rf : f ◦ 1A ⇒ f ,

� for any 1-cells f : A→ B, g : B → C and h : C → D, an invertible

2-cell, natural in f , g and h, ah,g,f : (hg)f ⇒ h(gf)

satisfying

1. 1g ? 1f = 1gf for all 1-cells f : A→ B and g : B → C,

2. (δ ? β)(γ ? α) = (δγ) ? (βα) for any diagram A

f

��
f ′ //

f ′′

HH
B

g

��
g′ //

g′′

HH
C

α
��

β
��

γ

��

δ
��

,



226 5. Bicategory of fractions for weak equivalences

3. the Pentagon Axiom: (1k ?ah,g,f )ak,hg,f (ak,h,g ?1f ) = ak,h,gfakh,g,f

for any 1-cells A
f // B

g // C
h // D

k // E ,

4. the Triangle Axiom: (1g ?lf )ag,1B ,f = rg ?1f for any 1-cells f : A→
B and g : B → C.

As for 2-categories, an invertible 2-cell is called a 2-isomorphism.

Besides the horizontal composition, the composition of 2-cells in a cat-

egory C(A,B) is called the vertical composition. The bicategory is said

to be small if there is only a set of objects. Homomorphisms between

bicategories (as named in [12]) are called pseudo-functors in [14].

De�nition 5.2. [12] Let C and D be bicategories. A pseudo-functor

F : C → D consists of:

� for each object A ∈ C, an object F (A) ∈ D,

� for any pair A,B of objects, a functor

F : C(A,B)→ D(F (A), F (B)),

� for each object A ∈ C, a 2-isomorphism ϕFA : 1F (A) ⇒ F (1A),

� for any 1-cells f : A→ B and g : B → C, a 2-isomorphism, natural

in f and g, ϕFg,f : F (g)F (f)⇒ F (gf)

such that

1. ϕFh,gf (1F (h) ? ϕ
F
g,f )aF (h),F (g),F (f) = F (ah,g,f )ϕFhg,f (ϕFh,g ? 1F (f)) for

any 1-cells A
f // B

g // C
h // D ,

2. F (rf )ϕFf,1A(1F (f) ?ϕ
F
A) = rF (f) and F (lf )ϕF1B ,f (ϕFB ? 1F (f)) = lF (f)

for any 1-cell f : A→ B.

Small bicategories and pseudo-functors form a category which we

denote by BiCat.

Example 5.3. A bicategory where all the isomorphisms ah,g,f , lf and

rf are identities is exactly a 2-category. A pseudo-functor F : C → D
between 2-categories for which all the isomorphisms ϕFA and ϕFf,g are

identities is called a 2-functor.
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Example 5.4. A bicategory C with one object ∗ can be seen as a small

monoidal category when looking at the category C(∗, ∗). A pseudo-

functor between one-object-bicategories is then nothing but a monoidal

functor.

We now recall the notions of a pseudo-natural transformation, a mod-

i�cation and a biequivalence.

De�nition 5.5. Let F,G : C ⇒ D be pseudo-functors between bicate-

gories. A pseudo-natural transformation θ : F ⇒ G consists of

� for each object A ∈ C, a 1-cell θA : F (A)→ G(A) in D,

� for each 1-cell f : A → B in C, a 2-isomorphism, natural in f ,

τ θf : G(f)θA ⇒ θBF (f)

such that

1. τ θ1A(ϕGA ? 1θA) = (1θA ? ϕ
F
A)r−1

θA
lθA for each object A ∈ C,

2. for any 1-cells f : A→ B and g : B → C in C,

(1θC ? ϕ
F
g,f )aθC ,F (g),F (f)(τ

θ
g ? 1F (f))a

−1
G(g),θB ,F (f)(1G(g) ? τ

θ
f )

= τ θgf (ϕGg,f ? 1θA)a−1
G(g),G(f),θA

.

If C and D are 2-categories, F and G 2-functors and if τ θf is the

identity for each f , θ is then called a 2-natural transformation. It is

thus a natural transformation between the underlying functors such that

1θB ? F (α) = G(α) ? 1θA for each 2-cell A

f
))

g
55α�� B .

De�nition 5.6. Let F,G : C ⇒ D be pseudo-functors between bicate-

gories and θ, ψ : F ⇒ G two pseudo-natural transformations. A modi�-

cation Ξ: θ  ψ is a family of 2-cells (ΞA : θA ⇒ ψA)A∈C in D such that

for each 2-cell A

f
))

g
55 Bα

�� in C, (ΞB ? F (α))τ θf = τψg (G(α) ? ΞA).

A modi�cation Ξ for which ΞA is a 2-isomorphism for each object

A ∈ C is called an isomodi�cation. If C and D are bicategories with
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C small, pseudo-functors C → D, pseudo-natural transformations and

modi�cations form a bicategory denoted by PsFunct(C,D).

De�nition 5.7. A pseudo-functor F : C → D between bicategories is a

biequivalence if there exists

� a pseudo functor G : D → C,

� four pseudo-natural transformations θ1 : GF ⇒ 1C , θ2 : 1C ⇒ GF ,

θ3 : FG⇒ 1D and θ4 : 1D ⇒ FG,

� four isomodi�cations Ξ1 : θ1θ2  11C , Ξ2 : θ2θ1  1GF , Ξ3 : θ3θ4  

11D and Ξ4 : θ4θ3  1FG.

We can also de�ne equivalences internally to a bicategory.

De�nition 5.8. Let C be a bicategory. A 1-cell f : A → B in C is an

equivalence if there exists a 1-cell g : B → A and two 2-isomorphisms

η : 1A ⇒ gf and ε : fg ⇒ 1B.

If such 2-isomorphisms exist, one can always choose them such that

they satisfy the triangular identities (ε ? 1f )a−1
f,g,f (1f ? η)r−1

f = l−1
f and

(1g ? ε)ag,f,g(η ? 1g)l
−1
g = r−1

g .

In [96], Pronk de�ned bicategories of fractions as the 2-dimensional

analogue to the categories of fractions introduced by Gabriel and Zisman

in [45]. The idea is to universally send some 1-cells to equivalences.

De�nition 5.9. [96] Let C be a bicategory and W a class of 1-cells in C.
A bicategory of fractions of C with respect to W is a bicategory C[W−1]

together with a pseudo-functor PW : C → C[W−1] satisfying the following

conditions

1. PW (w) is an equivalence for each w ∈W ,

2. for any bicategory D, the V-pseudo-functor (for a bigger universe

V 3 U)

− ◦ PW : PsFunct(C[W−1],D)→ PsFunctW (C,D)

acting by precomposition with PW is a biequivalence, where

PsFunctW (C,D) is the V-bicategory of pseudo-functors C → D
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which sends elements of W to equivalences, pseudo-natural trans-

formations and modi�cations.

This de�nition is independent of the bigger universe V we choose.

Moreover, the bicategory of fractions is unique up to biequivalence. In

the same way, admitting a right calculus of fractions for a class of 1-cells

in a bicategory is the 2-dimensional version of the 1-dimensional case.

De�nition 5.10. [96] Let C be a bicategory and W a class of 1-cells

in C. We say that W admits a right calculus of fractions if it satis�es

the following conditions:

1. all equivalences are in W ,

2. W is stable by composition,

3. W is closed under 2-isomorphisms,

4. if w : A → B is in W and f : C → B is a 1-cell of C, there exists

a 1-cell h : D → A of C and an element v : D → C of W such that

wh is 2-isomorphic to fv,

5. if f, g : A ⇒ B are 1-cells of C, w : B → C an element of W and

α : wf ⇒ wg a 2-cell (resp. a 2-isomorphism) of C, there exists

v : D → A in W and a 2-cell (resp. a 2-isomorphism) β : fv ⇒ gv

such that aw,g,v(α ? 1v) = (1w ? β)aw,f,v. If (v : D → A, β : fv ⇒
gv) and (v′ : D′ → A, β′ : fv′ ⇒ gv′) are two such pairs, we also

require the existence of 1-cells u : E → D, u′ : E → D′ and a

2-isomorphism ε : vu⇒ v′u′ in C such that vu ∈W and

a−1
g,v′,u′(1g ? ε)ag,v,u(β ? 1u) = (β′ ? 1u′)a

−1
f,v′,u′(1f ? ε)af,v,u.

Proposition 5.11. [96] Let C be a bicategory and W a class of 1-

cells in C which admits a right calculus of fractions. Then, the bicat-

egory of fractions C → C[W−1] exists. Moreover, consider a pseudo-

functor F : C → D which sends elements of W to equivalences and let

F : C[W−1]→ D be its extension. Suppose the following conditions hold.

1. F is essentially surjective on objects (i.e., for each object D ∈ D,
there exists an object A ∈ C and an equivalence F (A)→ D),
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2. F is full and faithful on 2-cells (i.e., each functor F : C(A,B) →
D(F (A), F (B)) is full and faithful),

3. for each 1-cell f : F (A)→ F (B) in D, there exist 1-cells g : C → B

in C and w : C → A inW such that F (g) is 2-isomorphic to fF (w).

Then, F is a biequivalence and F : C → D the bicategory of fractions of

C with respect to W .

We end this section by recalling the notion of a strong homotopy-

pullback.

De�nition 5.12. The diagram

P
πC //

πA
��

C

g

��
A

f
//

ω

;C

∼

B

in a bicategory C (where ω : fπA ⇒ gπC is a 2-isomorphism) is a strong

homotopy-pullback if

1. for any diagram

X
k //

h
��

C

g

��
A

f
//

θ

:B

∼

B

with θ : fh⇒ gk being a 2-isomorphism, there exists a unique 1-cell

l : X → P such that πAl = h, πC l = k and ag,πC ,l(ω?1l) = θaf,πA,l,

2. given two 1-cells l, l′ : X ⇒ P and two 2-cells (resp. two 2-isomor-

phisms) α : πAl⇒ πAl
′, β : πC l⇒ πC l

′ satisfying

a−1
g,πC ,l′

(1g ? β)ag,πC ,l(ω ? 1l) = (ω ? 1l′)a
−1
f,πA,l′

(1f ? α)af,πA,l,

there exists a unique 2-cell (resp. 2-isomorphism) γ : l ⇒ l′ such

that 1πA ? γ = α and 1πC ? γ = β.

When only condition 1 is satis�ed, P is usually called a homotopy-

pullback. Compare for example with [50], or with [102] where bipullbacks
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are considered. Note also that strong homotopy-pullbacks are unique up

to equivalence.

5.2 Weak equivalences

With classical categories, a functor is an equivalence if and only if it is

essentially surjective, full and faithful. This is not the case any more with

internal categories. These functors are then called weak equivalences.

De�nition 5.13. Let C be a category with �nite limits and A and B two

internal categories (resp. internal groupoids) in C. An internal functor

F : A → B is given by two morphisms F0 : A0 → B0 and F1 : A1 → B1

such that the downward squares

A1 ×c,d A1
m //

F1×c,dF1

��

A1
d //
c
//

F1

��

A0

F0

��

e

dd

B1 ×c,d B1 m
// B1

d //
c
// B0

e

dd

commute.

In the case where A and B are groupoids, this implies that F1i = iF1.

Example 5.14. If C = Gp, internal categories in Gp can be seen as

particular cases of monoidal categories, where the tensor product is given

by the group laws on the sets of objects and of arrows. Then, internal

functors can also be seen as particular cases of monoidal functors. While

internal functors A → B preserve the group structures of A0 and A1, a

monoidal functor F : A → B preserves the group structure of A0 only

up to (coherent) isomorphisms. This means that for each pair of objects

X,Y ∈ A0, we have an isomorphism F (X) + F (Y ) ∼= F (X + Y ) in B
satisfying some commutativity axioms. When these isomorphisms are

identities, the monoidal functor is actually an internal functor.

De�nition 5.15. Let C be a category with �nite limits and F,G : A⇒ B
two internal functors in C. An internal natural transformation α : F ⇒ G
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is given by a morphism α : A0 → B1 making the diagrams

A0

F0

��

α

~~
B1

d
// B0

A0

G0

��

α

~~
B1 c

// B0

A1
(F1,αc) //

(αd,G1)

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

commutative.

Together with 1F = eF0, βα = m(α, β) : A0 → B1 for α : F ⇒ G,

β : G⇒ H and α′ ?α = m(F ′1α, α
′G0) : A0 → C1 for A

F
((

G

66 B
F ′ ))

G′
55 Cα

�� α′�� ,

this forms the 2-categories Cat(C) and Grpd(C) of internal categories

(resp. internal groupoids) in C, internal functors and internal natural

transformations. Note that every 2-cell in Grpd(C) is a 2-isomorphism.

De�nition 5.16. [26] Let C be a category with �nite limits and F : A→
B an internal functor between internal groupoids in C.

� We say that F is full and faithful if the diagram

A1

d

vv
F1

��

c

((
A0

F0   

B1

d~~
c
  

A0

F0~~
B0 B0

is a limit in C.

Moreover, if C is regular,

� F is said to be essentially surjective if

A0 ×F0,d B1
t2 // B1

c // B0
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is a regular epimorphism, where t2 is the pullback of F0 along d.

A0 ×F0,d B1
t2 //

t1
��

B1

d
��

A0
F0

// B0

� F is a weak equivalence if it is essentially surjective, full and faith-

ful.

We notice that if C = Set, this corresponds to the usual notion of a

fully faithful and essentially surjective functor between small groupoids.

In general, one needs the Axiom of Choice in C to build an inverse to

those functors.

De�nition 5.17. The Axiom of Choice holds in a regular category when

every regular epimorphism is a split epimorphism.

Lemma 5.18. [102] Let C be a �nitely complete category. An internal

functor F : A → B between internal groupoids in C is an equivalence if

and only if it is full and faithful and the morphism

A0 ×F0,d B1
t2 // B1

c // B0

from De�nition 5.16 is a split epimorphism.

This lemma immediately implies the following proposition.

Proposition 5.19. [102] An internal functor F : A→ B between inter-

nal groupoids in a regular category where the Axiom of Choice holds is

an equivalence if and only if it is a weak equivalence.

Our goal is to describe the bicategory of fractions of Grpd(C) with

respect to weak equivalences (for some monadic category C). In order to

apply Proposition 5.11, we need a right calculus of fractions.

Proposition 5.20. [102] Let C be a regular category and W the class

of weak equivalences in Grpd(C). Then W admits a right calculus of

fractions.
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It is also worthy to remark that a pullback preserving functor U : C →
D between �nitely complete categories induces a 2-functor (also denoted

U by abuse of notations)

U : Grpd(D) −→ Grpd(C)

A 7−→ U(A) = (U(A0), U(A1), U(d), U(c), U(e), U(m), U(i))

F 7−→ U(F ) = (U(F0), U(F1))

α 7−→ U(α).

Lemma 5.21. Let U : D → C be a pullback preserving functor between

�nitely complete categories. Let also F : A → B be an internal functor

between internal groupoids in D. Then,

1. if U re�ects pullbacks, F is full and faithful if and only if U(F ) is,

2. if C and D are regular and if U preserves and re�ects regular epi-

morphisms, then F is essentially surjective if and only if U(F ) is.

Proof. The `only if parts' follow from the preserving hypotheses while

the `if parts' follow from the re�ecting hypotheses.

5.3 T-monoidal functors

As already written in Example 5.14, monoidal functors F : A → B be-

tween internal groupoids in Gp can be seen as `pseudo-internal func-

tors'. Indeed, since for all X,Y ∈ A we have only an isomorphism

F (X) +F (Y ) ∼= F (X +Y ), F is not an internal functor in Gp, but only

an `internal functor up to isomorphisms'. The aim of this section is to

generalise this notion of a `pseudo-internal functor' replacing Gp by any

monadic category.

So, we are given a monad T = (T, η, µ) on a �nitely complete cat-

egory C. By Proposition 1.59, the forgetful functor UT : CT → C pre-

serves, re�ects and creates �nite limits. It thus induces a 2-functor

UT : Grpd(CT)→ Grpd(C). If A is a groupoid in CT and if the groupoid



5.3. T-monoidal functors 235

UT(A) in C is given by

A1 ×c,d A1
m // A1

d //
c
//

i

��
A0

e

dd

then A is of the form

(A1 ×c,d A1, (a1T (π1), a1T (π2)))
m // (A1, a1)

d //
c
//

i

��
(A0, a0)

e
ii

where a1 : T (A1)→ A1 and a0 : T (A0)→ A0 are T-algebras and d, c, e,
m, i are T-homomorphisms. In particular, this means that the square

T (A1 ×c,d A1)

(a1T (π1),a1T (π2))

��

T (m) // T (A1)

a1

��
A1 ×c,d A1 m

// A1

commutes since the left downward morphism is the arrow part of

(A1, a1)×c,d (A1, a1). We can now de�ne T-monoidal functors.

De�nition 5.22. [61] Let T = (T, η, µ) be a monad on a �nitely com-

plete category C. We de�ne the 2-category T-MON as follows:

� Objects are internal groupoids in CT.

� 1-cells are T-monoidal functors (F,ϕ) : A → B. These are inter-

nal functors F : UT(A) → UT(B) in C together with a morphism

ϕ : T (A0)→ B1 such that the �ve diagrams

T (A0)
ϕ //

T (F0)

��

B1

d

��
T (B0)

b0
// B0

T (A0)
ϕ //

a0

��

B1

c

��
A0

F0

// B0
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T (A1)
(b1T (F1),ϕT (c)) //

(ϕT (d),F1a1)

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

A0

ηA0 //

e

��

T (A0)

ϕ

��
A1

F1

// B1

and TT (A0)
µA0 //

(b1T (ϕ),ϕT (a0))

��

T (A0)

ϕ

��
B1 ×c,d B1 m

// B1

commute.

� 1A = (1UT(A), ea0).

� The composition of A
(F,ϕ) // B

(G,ψ) // C is (GF,m(ψT (F0), G1ϕ)).

� 2-cells α : (F,ϕ)⇒ (F ′, ϕ′) : A→ B are T-monoidal natural trans-

formations. These are internal natural transformations α : F ⇒ F ′

in C such that the square

T (A0)
(ϕ,αa0) //

(b1T (α),ϕ′)

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

commutes.

� Identities, vertical and horizontal compositions of 2-cells are com-

puted as in Grpd(C).

Using the Yoneda embedding, it is easy (but lengthy) to prove that

T-MON is actually a 2-category. Moreover, each of its 2-cells is a 2-

isomorphism since if α : (F,ϕ)⇒ (F ′, ϕ′) is T-monoidal, then so is α−1.

Diagrams involved in De�nition 5.22 might be thought as unintuitive

at a �rst glance. The example of the free group monad on Set is treated

in Section 5.5 while an explanation where these axioms come from can be

found in Section 5.7 in the context of strict algebras for a pseudo-monad.
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Remark that we have two 2-functors

I : Grpd(CT) ↪−→ T-MON and J : T-MON −→ Grpd(C)

A 7−→ A A 7−→ UT(A)

F 7−→ (UT(F ), eb0T (F0)) (F,ϕ) 7−→ F

α 7−→ UT(α) α 7−→ α.

Thus, by abuse of notation, we say that a T-monoidal functor (F,ϕ) :

A → B is internal in CT when ϕ = eb0T (F0). We will often identify an

internal functor F in CT with (UT(F ), eb0T (F0)).

It is a well-known fact that, if a monoidal functor between monoidal

categories has a pseudo-inverse, then this pseudo-inverse can be equipped

with a monoidal structure. The next proposition asserts that the same

occurs for T-monoidal functors.

Proposition 5.23. [61] Let T = (T, η, µ) be a monad on a �nitely

complete category C. A T-monoidal functor (F,ϕ) : A → B is an equiv-

alence in T-MON if and only if F : UT(A)→ UT(B) is an equivalence in

Grpd(C).

Proof. The `only if part' is clear. Let us prove the `if part'. Suppose

we have an internal functor G : B → A and internal natural isomor-

phisms α : GF ⇒ 1A and β : FG ⇒ 1B in C. With the remark after

De�nition 5.8 in mind, we can assume without loss of generality that the

triangular identities β ? 1F = 1F ? α and 1G ? β = α ? 1G hold. Since

F is full and faithful, there exists a unique ψ : T (B0) → A1 such that

dψ = a0T (G0), cψ = G0b0 and F1ψ = m(iϕT (G0),m(b1T (β), iβb0)).

This makes (G,ψ) and β T-monoidal. Moreover, since α and β satisfy

the triangular identities, α is also T-monoidal. Therefore, (F,ϕ) is an

equivalence in T-MON.

Let us notice here that, even if ϕ = eb0T (F0), this does not imply

that ψ = ea0T (G0). So, an internal functor in CT can be an equivalence

in T-MON without being an equivalence in Grpd(CT).
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5.4 T-MON as a bicategory of fractions

We show in this section that, for a regular category C where the Ax-

iom of Choice holds and a monad T on it, I : Grpd(CT) ↪→ T-MON

is the bicategory of fractions for Grpd(CT) with respect to weak equiv-

alences. As in [102], the key lemma to achieve this is the fact that

the strong homotopy-pullback of two T-monoidal functors exists and the

legs can be chosen to be in Grpd(CT). Firstly, from [102], we know that,

for a �nitely complete category C, the 2-category Grpd(C) has strong

homotopy-pullbacks, constructed as follows. Given

C
G
��

A
F
// B

in Grpd(C), we construct the pullback in C

~B1
m2 //

m1

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

and de�ne P0 and P1 to be the limits below.

P0
G′0

vv

ω

��

F ′0

((
A0

F0   

B1

d~~
c
  

C0

G0~~
B0 B0

P1

G′1

ww

ω1

��

F ′1

''
A1

F1   

~B1

π1m2~~ π2m1   

C1

G1~~
B1 B1
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It turns out we can build an internal groupoid P in C on P0 and P1 and

that

ω1 = ((ωd,G1F
′
1), (F1G

′
1, ωc)).

Finally, the strong homotopy-pullback of F and G is given by the fol-

lowing diagram.

P F ′ //

G′

��

C
G
��

A
F
//

ω

;C

B

As far as its universal property is concerned, if

X K //

H
��

C
G
��

A
F
//

θ

;C

B

is another square in Grpd(C), the unique internal functor L : X → P
satisfying the required properties is constructed using the limit de�nition

of P0 and P1 via the equalities G′L = H, F ′L = K, ωL0 = θ and

ω1L1 = ((θd,G1K1), (F1H1, θc)). Similarly, given two internal functors

L,L′ : X ⇒ P and two internal natural transformations α : G′L ⇒ G′L′

and β : F ′L⇒ F ′L′ such that m(ωL0, G1β) = m(F1α, ωL
′
0), the unique

γ : L⇒ L′ satisfying the required properties is obtained via the equalities

G′1γ = α, ω1γ = ((ωL0, G1β), (F1α, ωL
′
0)) and F ′1γ = β. Knowing that,

we can prove T-MON has strong homotopy-pullbacks.

Lemma 5.24. [61] Let T = (T, η, µ) be a monad on a �nitely complete

category C. The 2-category T-MON has strong homotopy-pullbacks.

Moreover, given T-monoidal functors (F,ϕ) : A→ B and (G,ψ) : C→ B,
it is possible to choose a strong homotopy-pullback of (F,ϕ) and (G,ψ)

P F ′ //

G′

��

C
(G,ψ)

��
A

(F,ϕ)
//

ω

;C

B

in such a way that F ′ and G′ are internal functors in CT.
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Proof. Let

P F ′ //

G′

��

C
G
��

A
F
//

ω

;C

B

be the strong homotopy-pullback in Grpd(C) described above. We now

turn P into an internal groupoid in CT in the following way. In view of

the limit de�ning P0, there exists a unique morphism p0 : T (P0) → P0

such that G′0p0 = a0T (G′0), ωp0 = m(iϕT (G′0),m(b1T (ω), ψT (F ′0))) and

F ′0p0 = c0T (F ′0). Moreover, P1 being also a limit, there exists a unique

morphism p1 : T (P1)→ P1 such that G′1p1 = a1T (G′1),

ω1p1 = ((ωp0T (d), G1c1T (F ′1)), (F1a1T (G′1), ωp0T (c)))

and F ′1p1 = c1T (F ′1). This makes P an internal groupoid in CT, F ′ and
G′ internal functors in CT and ω a T-monoidal natural transformation.

If

X
(K,k) //

(H,h)

��

C
(G,ψ)

��
A

(F,ϕ)
//

θ

;C

B

is also a square in T-MON, the unique internal functor L : X→ P (in C)
de�ned above for the square

X K //

H
��

C
G
��

A
F
//

θ

;C

B

in Grpd(C) can be turned in a T-monoidal functor. Indeed, it su�ces to

set l : T (X0) → P1 as the unique morphism such that G′1l = h, ω1l =

((ωp0T (L0), G1k), (F1h, ωL0x0)) and F ′1l = k. This is the only way it

can be done.

Finally, if (L, l), (L′, l′) : X ⇒ P are two T-monoidal functors and

α : (G′L,G′1l) ⇒ (G′L′, G′1l
′), β : (F ′L,F ′1l) ⇒ (F ′L′, F ′1l

′) two T-mo-

noidal natural transformations satisfying m(ωL0, G1β) = m(F1α, ωL
′
0),
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the unique internal natural transformation (in C) γ : L⇒ L′ as above is

also a 2-cell in T-MON. To see this, it su�ces to prove m(p1T (γ), l′) =

m(l, γx0), which can be done by composing with the legs of the limits

involved.

We are now able to prove the main theorem of this chapter.

Theorem 5.25. [61] Let C be a regular category where the Axiom of

Choice holds and T = (T, η, µ) a monad on C. The inclusion 2-functor

I : Grpd(CT) �
� // T-MON

is the bicategory of fractions of Grpd(CT) with respect to the class of

weak equivalences.

Proof. Since regular epimorphisms in C are split, T preserves them. By

Lemma 1.67, the forgetful functor UT : CT → C preserves and re�ects

regular epimorphisms and CT is regular. Let W be the class of weak

equivalences in Grpd(CT). Then, we know from Proposition 5.20 that

W admits a right calculus of fractions.

Now, let F ∈ W . By Lemma 5.21, we know that UT(F ) ∈ Grpd(C)
is a weak equivalence. Since the Axiom of Choice holds in C, Proposi-
tion 5.19 tells us UT(F ) is actually an equivalence. Thus, by Proposi-

tion 5.23, I(F ) is an equivalence and I sends elements of W to equiva-

lences.

Therefore, it remains to prove that I satis�es conditions 1, 2 and 3

of Proposition 5.11. The �rst one is obvious and the second one is the

fact that, between internal functors in CT, T-monoidal natural trans-

formations are exactly internal natural transformations in CT. Let us

prove the last one. Given (F,ϕ) : A→ B in T-MON, consider the strong

homotopy-pullback

P G //

V
��

B
1B
��

A
(F,ϕ)

//
ω

;C

B

given by Lemma 5.24, in such a way that G and V are internal functors

in CT. Thus, G ∼= (F,ϕ) ◦ V . Since strong homotopy-pullbacks preserve
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equivalences, V is an equivalence in T-MON and thus in Grpd(C). By

Lemma 5.21 again, this implies that V ∈W .

Corollary 5.26. [61] Let C be a regular category where the Axiom of

Choice holds and G : D → C a monadic functor. Denote by T = (T, η, µ)

the monad induced by the adjunction F a G on C and K : D → CT the

comparison functor given by Proposition 1.60. Then, the composite

Grpd(D)
K // Grpd(CT) �

� I // T-MON

is the bicategory of fractions of Grpd(D) with respect to the class of

weak equivalences.

Proof. Since G is monadic, K : D → CT is an equivalence and K :

Grpd(D) → Grpd(CT) a biequivalence of 2-categories. In addition,

by Lemma 5.21, F ∈ Grpd(D) is a weak equivalence if and only if

K(F ) ∈ Grpd(CT) is. Thus, IK satis�es conditions 1, 2 and 3 of Propo-

sition 5.11 since I does.

5.5 The case of groups

We study in this section the particular case of the monadic forgetful

functor UT : Gp → Set, where T is the Lawvere theory corresponding

to groups. We denote by T the corresponding monad on Set. Since

we work under the axioms ZFCU, the Axiom of Choice holds in the

regular category Set. Therefore, T-MON is the bicategory of fractions of

Grpd(Gp) with respect to W , the class of weak equivalences. In order

to explain the axioms of De�nition 5.22, we make them explicit in this

context. Let A and B be two groupoids in SetT (i.e., in Gp by the

biequivalence K). A T-monoidal functor (F,ϕ) : A → B is a functor

F : A → B between the underlying categories, together with a function

ϕ : FrT (A0)→ B1 satisfying the following axioms:

1 and 2: For all objects a1, . . . , an ∈ A0 and i1, . . . , in ∈ {−1, 1},
ϕ(ai11 · · · ainn ) is an arrow

F (a1)i1 + · · ·+ F (an)in
ϕ(a

i1
1 ···a

in
n )
// F (ai11 + · · ·+ ainn ).
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3: For all arrows f1, . . . , fn ∈ A1 (with fi : ai → a′i for each i ∈
{1, . . . , n}) and i1, . . . , in ∈ {−1, 1}, the diagram

F (a1)i1 + · · ·+ F (an)in

ϕ(a
i1
1 ···a

in
n )
��

F (f1)i1+···+F (fn)in // F (a′1)i1 + · · ·+ F (a′n)in

ϕ(a′
i1
1 ···a′

in
n )

��
F (ai11 + · · ·+ ainn )

F (f
i1
1 +···+f inn )

// F (a′i11 + · · ·+ a′inn )

commutes.

4: For each a ∈ A0, ϕ(a) = 1F (a) : F (a)→ F (a).

5: For all a11, . . . , a1n1 , . . . , ak1, . . . , aknk ∈ A0, the diagram

F (a11) + · · ·+ F (aknk)
ϕ(a11···aknk )

//

ϕ(a11···a1n1 )+···+ϕ(ak1···aknk )

��

F (a11 + · · ·+ aknk)

F (a11 + · · ·+ a1n1) + · · ·+ F (ak1 + · · ·+ aknk)

ϕ((a11+···+a1n1 )···(ak1+···+aknk ))

33

commutes (for the sake of simplicity, we only express axiom 5 with ex-

ponents 1).

The bicategory of fractions Grpd(Gp)[W−1] has another description

in [102].

De�nition 5.27. The 2-category MON is de�ned as follows:

� Objects are internal groupoids in Gp.

� 1-cells are monoidal functors (F, F2) : A → B. We recall they are

given in this case by a functor F : A → B between the underlying

groupoids in Set and a family of arrows in B

F2 = (F a,a
′

2 : F (a) + F (a′)→ F (a+ a′))a,a′∈A0

natural in a and a′ and such that the rectangle

F (a) + F (a′) + F (a′′)
1F (a)+F

a′,a′′
2 //

Fa,a
′

2 +1F (a′′)
��

F (a) + F (a′ + a′′)

Fa,a
′+a′′

2
��

F (a+ a′) + F (a′′)
Fa+a′,a′′

2

// F (a+ a′ + a′′)
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commutes for all objects a, a′, a′′ ∈ A0. The suitable morphism

F0 : 0→ F (0) is then determined uniquely.

� 2-cells are monoidal natural transformations α : (F, F2)⇒ (G,G2).

In this case, these are natural transformations α : F ⇒ G such that

the diagram

F (a) + F (a′)
Fa,a

′
2 //

αa+αa′
��

F (a+ a′)

αa+a′

��
G(a) +G(a′)

Ga,a
′

2

// G(a+ a′)

commutes for all a, a′ ∈ A0.

Theorem 5.28. [102] The inclusion 2-functor

Grpd(Gp) ↪−→ MON

is the bicategory of fractions for Grpd(Gp) with respect to weak equiv-

alences.

Since they are both the bicategory of fractions with respect to weak

equivalences of Grpd(Gp), MON and T-MON are biequivalent. This

biequivalence K̃ : MON→ T-MON makes the diagram

Grpd(Gp) �
� //MON

K̃ '
��

// Grpd(Set)

Grpd(Gp)
K

' // Grpd(SetT) �
�

I
// T-MON

J
// Grpd(Set)

commutative. Moreover, it can be described by

K̃ : MON −→ T-MON

A 7−→K(A)

A
(F,F2)// B 7−→ K(A)

(F,ϕ) // K(B)

α 7−→α

where ϕ : FrT (A0)→ B1 is de�ned on the word ai11 · · · ainn (ak ∈ A0 and
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ik ∈ {−1, 1}) to be the arrow part of the sum(
F (a1), 1F (a1), a1

)i1 + · · ·+
(
F (an), 1F (an), an

)in .
This sum is calculated in the group of triples

(b ∈ B0, f : b→ F (a), a ∈ A0)

and de�ned by

(b, f, a) + (b′, f ′, a′) =b+ b′, b+ b′
f+f ′ // F (a) + F (a′)

Fa,a
′

2 // F (a+ a′) , a+ a′

 .

5.6 The case of Lie algebras

The aim of this section is to make the link between a result in [102]

and our Corollary 5.26 for the particular monadic forgetful functor U :

LieAlgk → Vectk for a �xed �eld k. Now, T denotes the corresponding

monad on Vectk. This category is regular and the Axiom of Choice holds

in it since every vector space is free (admits a basis). Thus, we can apply

Corollary 5.26 to deduce that T-MON is the bicategory of fractions of

Grpd(LieAlgk) with respect to weak equivalences.

This bicategory of fractions has also been described as LIEk in [102].

De�nition 5.29. [8] Let k be a �eld. The 2-category LIEk is de�ned as

follows.

� Its objects are the internal groupoids in LieAlgk.

� 1-cells are homomorphisms (F, F2) : A→ B. These are given by an

internal functor F : A → B between the underlying groupoids in

Vectk and a family of morphisms in B

F2 = (F a,a
′

2 : [F (a), F (a′)]→ F ([a, a′]))a,a′∈A0

natural in a and a′, bilinear, skew-symmetric and such that the
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diagram

[F (a), [F (a′), F (a′′)]]

[1F (a),F
a,a′
2 ]

��

[[F (a), F (a′)], F (a′′)] + [F (a′), [F (a), F (a′′)]]

[Fa,a
′

2 ,1F (a′′)]+[1F (a′),F
a,a′′
2 ]

��
[F (a), F ([a′, a′′])]

F
a,[a′,a′′]
2

��

[F ([a, a′]), F (a′′)] + [F (a′), F ([a, a′′])]

F
[a,a′],a′′
2 +F

a′,[a,a′′]
2

��
F ([a, [a′, a′′]]) F ([[a, a′], a′′]) + F ([a′, [a, a′′]])

commutes for all a, a′, a′′ ∈ A0.

� 2-cells α : (F, F2) ⇒ (G,G2) are 2-homomorphisms. These are in-

ternal natural transformations α : F ⇒ G in Vectk such that the

diagram

[F (a), F (a′)]
Fa,a

′
2 //

[αa,αa′ ]
��

F ([a, a′])

α[a,a′]
��

[G(a), G(a′)]
Ga,a

′
2

// G([a, a′])

commutes for all a, a′ ∈ A0.

Theorem 5.30. [102] Let k be a �eld. The inclusion 2-functor

Grpd(LieAlgk) ↪−→ LIEk

is the bicategory of fractions for Grpd(LieAlgk) with respect to weak

equivalences.

Therefore, the 2-categories T-MON and LIEk are biequivalent. As

for groups, this biequivalence K̃ : LIEk → T-MON makes the diagram

Grpd(LieAlgk)
� � // LIEk

K̃ '
��

// Grpd(Vectk)

Grpd(LieAlgk) K

' // Grpd(VectTk ) �
�

I
// T-MON

J
// Grpd(Vectk)
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commutative. Moreover, it can be described by

K̃ : LIEk −→ T-MON

A 7−→K(A)

A
(F,F2)// B 7−→ K(A)

(F,ϕ) // K(B)

α 7−→α

where ϕ : T (A0)→ B1 is de�ned as follows. T (A0) is the free Lie algebra

of the underlying vector space of A0. It is actually the Lie subalgebra

generated by A0 of the tensor algebra

k ⊕A0 ⊕ (A0 ⊗A0)⊕ (A0 ⊗A0 ⊗A0)⊕ · · · =
⊕
n∈N

A⊗n0

(considered as a Lie algebra with [v, w] = v ·w−w · v). To each element

v ∈ T (A0), we associate a triple

ϕ̂(v) = (b ∈ B0, f : b→ F (a), a ∈ A0)

by recursion:

1. if a ∈ A0, ϕ̂(a) = (F (a), 1F (a), a),

2. if x ∈ k and v ∈ T (A0), ϕ̂(xv) = (xb, xf, xa) where (b, f, a) = ϕ̂(v),

3. if v1, v2 ∈ T (A0), ϕ̂(v1 + v2) = (b1 + b2, f1 + f2, a1 + a2) where

(bi, fi, ai) = ϕ̂(vi) for i ∈ {1, 2},

4. if v1, v2 ∈ T (A0), ϕ̂([v1, v2]) = ([b1, b2], F a1,a2
2 [f1, f2], [a1, a2]) where

(bi, fi, ai) = ϕ̂(vi) for i ∈ {1, 2}.

Then, ϕ(v) = f is the arrow part of this triple ϕ̂(v) = (b, f, a).

5.7 Pseudo-algebras

In this last section, we give some intuition where the axioms of De�-

nition 5.22 of T-monoidal functors come from. We will see that these
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axioms are actually particular cases of coherence axioms de�ning pseudo-

morphisms between strict algebras for a pseudo-monad. We adopt the

following de�nitions from [89] and [78].

De�nition 5.31. Let C be a 2-category. A pseudo-monad T on C con-

sists of

� a 2-functor T : C → C,

� two pseudo-natural transformations η : 1C ⇒ T and µ : T 2 ⇒ T ,

� three isomodi�cations m, l and r

T 3 µT //

Tµ

��

T 2

µ

��
m

~~
T 2

µ
// T

T
ηT //

1T   

T 2

µ

��

T
Tηoo

1T~~
T

l
~~

r
  

such that the two diagrams

µ µT TηT
m?1TηT //

1µ?rT $$

µ Tµ TηT

1µ?T lzz
µ

and

µ µT µT 2

1µ?mT //

m?1µ
T2

��

µ µT TµT
m?1TµT// µ Tµ TµT

1µ?Tm

��
µ Tµ µT 2

1µ?τ
µ
µ

// µ µT T
2µ

m?1T2µ

// µ Tµ T 2µ

commute.

De�nition 5.32. Let C be a 2-category and T a pseudo-monad on it.

We de�ne the 2-category PsAlg(T) as follows:

� The objects are the pseudo-algebras of T. These are quadruples

(A, a, a∗, a2) where A is an object of C, a : T (A)→ A a 1-cell and
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a∗, a2 two 2-isomorphisms

A
ηA //

1A !!

T (A)

a
��
A

a∗y�

T 2(A)
µA //

T (a)

��

T (A)

a

��
a2w�

T (A) a
// A

such that the diagrams

a µA T (ηA)
a2?1T (ηA) //

1a?rA %%

a T (a) T (ηA)

1a?T (a∗)xx
a

and

a µA µT (A)
1a?mA //

a2?1µT (A)

��

a µA T (µA)
a2?1T (µA) // a T (a) T (µA)

1a?T (a2)

��
a T (a) µT (A)

1a?τ
µ
a

// a µA T
2(a)

a2?1T2(a)

// a T (a) T 2(a)

commute.

� 1-cells (A, a, a∗, a2)→ (B, b, b∗, b2) are pseudo-morphisms between

pseudo-algebras, i.e., pairs (f, ϕ) where f : A → B is a 1-cell and

ϕ a 2-isomorphism

T (A)
T (f) //

a
��

T (B)

b
��ϕ

v~
A

f
// B

such that the diagrams

b T (f) ηA
1b?τ

η
f //

ϕ?1ηA
��

b ηB f

b∗?1f
��

f a ηA 1f?a∗
// f
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and

b T (f) µA
ϕ?1µA //

1b?τ
µ
f

��

f a µA
1f?a2 // f a T (a)

b µB T 2(f)
b2?1T2(f)

// b T (b) T 2(f)
1b?T (ϕ)

// b T (f) T (a)

ϕ?1T (a)

OO

commute.

� 2-cells α : (f, ϕ)⇒ (g, ψ) are 2-cells α : f ⇒ g such that the square

b T (f)
1b?T (α)//

ϕ

��

b T (g)

ψ

��
fa

α?1a
// ga

commutes.

Similarly to Proposition 5.23, a pseudo-morphism (f, ϕ) is an equiv-

alence in PsAlg(T) if and only if f is an equivalence in C.
We are now going to see how pseudo-morphisms are linked with T-

monoidal functors. Firstly, if T is a pseudo-monad, we de�ne T-MON

to be the full sub-2-category of PsAlg(T) whose objects are the strict al-

gebras, i.e., the pseudo-algebras (A, a, a∗, a2) with a∗ and a2 being iden-

tities. Moreover, we denote by Alg(T) the sub-2-category of T-MON

in which we only consider strict morphisms of strict algebras, i.e., the

pseudo-morphisms (f, ϕ) where ϕ is the identity.

Alg(T) ↪−→ T-MON ↪−→ PsAlg(T)

Now, suppose T = (T, η, µ) is a (1-dimensional) monad on a �nitely

complete category C. If T : C → C preserves pullbacks, then T induces

a pseudo-monad T on the 2-category Grpd(C). Moreover, T is such

that η and µ are 2-natural transformations, given by ηA = (ηA0 , ηA1)

and µA = (µA0 , µA1) for each A ∈ Grpd(C). For this pseudo-monad, we

know that the modi�cations m, l and r are identities and that the two

coherence axioms become trivial. Moreover, we have an isomorphism of
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2-categories

Grpd(CT) −→ Alg(T)

A 7−→ (UT(A), a = (a0, a1))

F 7−→ UT(F )

α 7−→ UT(α)

where ai : T (Ai) → Ai are the T-algebra structures for i ∈ {0, 1}. Note
that a = (a0, a1) is an internal functor since d, c, e,m and i are T-
homomorphisms. Notice also that the fact that UT(α) satis�es the co-

herence axiom for the de�nition of 2-cells in PsAlg(T) corresponds to

the fact that α is a T-homomorphism.

With this particular pseudo-monad on Grpd(C), we remark that, if

we extend this isomorphism, T-MON becomes the following 2-category:

� Objects are internal groupoids in CT.

� A 1-cell (F,ϕ) : A→ B consists of an internal functor F : UT(A)→
UT(B) in C together with an internal natural isomorphism

TUT(A)
T (F ) //

a

��

TUT(B)

b
��

ϕ
u}

UT(A)
F
// UT(B)

in C such that ϕ?1η
UT(A)

= 1F and ϕ?1µ
UT(A)

= (ϕ?1T (a))(1b?T (ϕ)).

b T (F ) ηUT(A)

ϕ?1η
UT(A)

��

b ηUT(B) F

F a ηUT(A) F

b T (F ) µUT(A)

ϕ?1µ
UT(A)// F a µUT(A) F a T (a)

b µUT(B) T
2(F ) b T (b) T 2(F )

1b?T (ϕ)
// b T (F ) T (a)

ϕ?1T (a)

OO
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� A 2-cell α : (F,ϕ) ⇒ (G,ψ) : A → B is an internal natural trans-

formation α : F ⇒ G in C such that the square

b T (F )

ϕ

��

1b?T (α)// b T (G)

ψ
��

F a
α?1a

// G a

commutes.

We notice that these are exactly the axioms of De�nition 5.22 of

T-MON. Indeed, the �rst three axioms de�ning a T-monoidal functor

are the fact that the 2-cell ϕ : bT (F )⇒ Fa is an internal natural transfor-

mation in C, while the last two are the above ones. In other words, if T is

the pseudo-monad on Grpd(C) induced by a pullback preserving monad

T on C (i.e., in which the functor part T of T preserves pullbacks), the

2-categories T-MON and T-MON coincide. What makes it possible to

de�ne T-MON even if the monad T does not preserve pullbacks is the fact

that, to express the naturality of ϕ : bT (F ) ⇒ Fa : TUT(A) → UT(B),

one only needs the composition in the codomain category UT(B) and not

in the domain TUT(A).

Analogously to Theorem 5.25, we are now going to prove that, under

some hypotheses, Alg(T) ↪−→ T-MON is the bicategory of fractions of

Alg(T) with respect to a certain class of 1-cellsW . The following lemma

is analogous to Lemma 5.24.

Lemma 5.33. [61] Let C be a 2-category where every 2-cell is invert-

ible and T = (T, η, µ,m, l, r) a pseudo-monad on C such that η and

µ are 2-natural transformations. If C has strong homotopy-pullbacks,

so has T-MON. In this case, given pseudo-morphisms of strict alge-

bras (f, ϕ) : (A, a) → (B, b) and (g, ψ) : (C, c) → (B, b), it is possible to

choose a strong homotopy-pullback of (f, ϕ) and (g, ψ)

(P, p)
(πC ,1πCp)

//

(πA,1πAp)

��

(C, c)

(g,ψ)
��

(A, a)
(f,ϕ)

//

ω

3;

(B, b)
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in such a way that (πA, 1πAp) and (πC , 1πCp) are strict morphisms.

Proof. Consider the strong homotopy-pullback

P
πC //

πA
��

C

g

��
A

f
//

ω

;C

B

in C. There exists a unique 1-cell p : T (P )→ P such that πAp = aT (πA),

πCp = cT (πC) and (ω ? 1p)(ϕ ? 1T (πA)) = (ψ ? 1T (πC))(1b ? T (ω)). It is

routine to check that this makes (P, p) a strict algebra and that we have

constructed the announced strong homotopy-pullback.

As for Theorem 5.25, this lemma is the key point to prove the next

proposition.

Proposition 5.34. [61] Let C be a 2-category where every 2-cell is

invertible and which has strong homotopy-pullbacks. Let also T =

(T, η, µ,m, l, r) be a pseudo-monad on C such that η and µ are 2-natural

transformations. If W is the class of 1-cells (f, 1) of Alg(T) such that f

is an equivalence in C, then

Alg(T) ↪−→ T-MON

is the bicategory of fractions of Alg(T) with respect to W .

Proof. In view of Proposition 5.2 in [102], we know that W has a right

calculus of fractions. The rest of the proof is similar to the one of The-

orem 5.25 using Lemma 5.33.
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