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Abstract. Seeking for a converse to a well-known theorem by Borel–Tits, we address the
question whether the group of rational points G(k) of an anisotropic reductive k-group can
admit a split spherical BN-pair. We show that if k is a perfect field or a local field, then such a
BN-pair must be virtually trivial. We also consider arbitrary compact groups and show that the
only abstract BN-pairs they can admit are spherical, and even virtually trivial provided they
are split.

Dedicated to Jacques Tits in honour of his 80th birthday

1. Introduction

In a seminal paper [5], Armand Borel and Jacques Tits established — amongst other things
— that the group G(k) of k-rational points of a (connected) reductive linear algebraic k-group
G always possesses a canonical BN-pair, where k is an arbitrary ground field. More precisely,
they showed that if P is a minimal parabolic k-subgroup of G, and if N is the normalizer in G
of some maximal k-split torus contained in P , then (P (k), N(k)) is a BN-pair for G(k). This
result constitutes a cornerstone in understanding the abstract group structure of the group of
k-rational points G(k). As an application, it yields for example the celebrated simplicity result
of Tits [19]. Of course, the aforementioned BN-pair is trivial when G is anisotropic over k.
(Abusing slightly the standard conventions, we shall say that G is anisotropic if it has no proper
k-parabolic subgroup, i.e. if P = G. As is well-known, this definition coincides with the standard
one in case G is semi-simple (see [4, 11.21])). In fact, the abstract group structure of G(k) remains
intriguing and mysterious to a large extent in the anisotropic case. In this context, we propose
the following.

Conjecture (Converse to Borel–Tits). Let G be a reductive algebraic k-group which is anisotropic
over k. Then every split spherical BN-pair for G(k) is virtually trivial.

Recall that a BN-pair (B, N) for a group G is called spherical if the associated Weyl group
W := N/T is finite, where T := B ∩ N . It is said to be split if it is saturated (i.e. T =∩

w∈W wBw−1), and if there exists a nilpotent normal subgroup U ▹B such that B ∼= U oT . This
implies that the associated building enjoys the Moufang property (see e.g. [11]). The BN-pair is
called virtually trivial if the associated building is finite or, equivalently, if B has finite index in
G. The BN-pair (P (k), N(k)) for G(k) described above is always split ([4, 14.19]). It is virtually
trivial if and only if either k is finite or G is k-anisotropic. In particular, over infinite ground fields
the conjecture can really be thought as a converse to the Borel–Tits theorem.

Besides the natural search for a converse to Borel–Tits, a motivation to consider the above
conjecture is provided by the recent work of Peter Abramenko and Ken Brown [1], who constructed
Weyl transitive actions on trees for certain anisotropic groups over global function fields. We refer
to [2, Ch. 6] for more details on the relations and distinctions between BN-pairs, strong transitivity
and Weyl transitivity.

Our first contribution concerns the special case when the ground field k is a local field. The
k-anisotropy of G is then equivalent to the compactness of G(k) (see [13]). In fact, our first step

Date: August 2009.
*Supported by the Fund for Scientific Research–F.N.R.S., Belgium.

1



2 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUIS

will be to establish the following two results, which concern arbitrary compact topological groups
(not necessarily associated with algebraic groups).

Theorem 1. Let G be a compact group. Then every BN-pair for G is spherical.

Theorem 2. Let G be a compact group. Then every split spherical BN-pair for G is virtually
trivial.

We emphasize that the BN-pairs appearing in these statements are abstract : The corresponding
subgroups B and N are not supposed to be closed in G. Specializing to anisotropic groups over
local fields, we deduce the following immediate corollary.

Theorem 3. Let k be a local field and G be a connected semi-simple algebraic k-group which is
anisotropic over k. Then:
(1) Every BN-pair for G(k) is spherical.
(2) Every split spherical BN-pair G(k) is virtually trivial.

Finally, we consider the case of perfect ground fields.

Theorem 4. Let k be a perfect field and G be a reductive algebraic k-group which is anisotropic
over k. Then every split spherical BN-pair for G(k) is virtually trivial.

Notice that Theorems 3 and 4 are logically independent, since there exist local fields which are
not perfect and vice-versa.

It would be very interesting to sharpen the conclusion of Theorems 3 and 4, that is, to show
that, under suitable assumptions, the BN-pair must be trivial, and not only virtually trivial.
However, we expect this to be quite difficult, since it is closely related to a conjecture due to
Andrei Rapinchuk and Gopal Prasad (see [14]), which may be stated as follows: “Let G be a
reductive k-group which is anisotropic over k. Then, every finite quotient of G(k) is solvable.”
As of today, this conjecture was confirmed only when G is the multiplicative group of a finite
dimensional division algebra (see [15]). We now sketch informally how these two problems are
related.

On one side, if G(k) possesses a BN-pair with finite associated building ∆, and if K :=
ker(G(k) y ∆) is the kernel of the corresponding action, then G(k)/K is a finite group whose
action on ∆ is faithful, and thus G(k)/K is a finite group which possesses a faithful BN-pair. But
these groups have been classified: they are simple Chevalley groups, and in particular are not
solvable (up to two exceptions). Thus, if the BN-pair for G(k) were nontrivial, there would exist
(modulo these two exceptions) a non-solvable finite quotient of G(k).

Conversely, suppose that G(k) possesses a nontrivial and non-solvable finite quotient F ′ :=
G(k)/K. Let R � F ′ be the solvable radical of F ′, that is, its largest solvable normal subgroup.
Going to the quotient F := F ′/R, we thus know that G(k) surjects onto a nontrivial finite
group with trivial solvable radical (namely, F ). Let now M be a minimal normal subgroup of
F . Then M is a direct product of non-Abelian simple groups which are pairwise isomorphic, say
M ∼= S1 × · · · × Sk with Si

∼= S for all i ∈ {1, . . . , k}. By the classification of finite simple groups,
S is very likely to be a Chevalley group. Such a group possesses a root datum, and thus also
a nontrivial BN-pair whose associated (finite) building is in bijection with S/B. Repeating this
construction for each Si, we then get a finite building ∆ = ∆1×· · ·×∆k on which M = S1×· · ·×Sk

acts strongly transitively. Finally, the action of Aut(M) on the set of p-Sylow subgroups of M
(where p = char k) induces an action of Aut(M) on ∆ making the diagram

F
α−−−−−−→ Aut(M)

ι

x y
M −−−−−−−→

strongly tr.
Aut(∆)

commute, where α(f) denotes the conjugation by f for all f ∈ F . In particular, we get a strongly
transitive action of F , and thus also of G(k), on the finite building ∆. This yields a nontrivial
and virtually trivial BN-pair for G(k).
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General conventions. All algebraic groups considered here are supposed to be affine, all topo-
logical groups are assumed Hausdorff and all BN-pairs have finite rank.

2. Proof of Theorem 1

2.1. Heuristic sketch. Let G be a compact group and let (B, N) be a BN-pair for G. Let also
∆ be the associated building. We consider the Davis realization of ∆, noted |∆|CAT(0) in this
paper, and which is a complete CAT(0) space, as well as a simplicial complex, on which G acts
by simplicial isometries. The key step in the proof of Theorem 1 is to establish that this action
is elliptic (Theorem 2.5 below). To do so, we use a result of Martin Bridson stating that such an
action is always semi-simple, and we then argue by contradiction, assuming that G possesses an
element with no fixed point. Such an element would then generate a subgroup Q of G which acts
by translations on |∆|CAT(0). Moreover, the structure of simplicial complex of |∆|CAT(0) implies
that the set of translation lengths of the elements of Q is discrete at 0. The contradiction now
comes from divisibility properties of compact and procyclic groups, which we apply to Q.

2.2. Procyclic groups. Let G be a profinite group. Recall that G is said to be procyclic if there
exists a g ∈ G such that the subgroup generated by g is dense in G, that is, G = ⟨g⟩. Moreover G
is said to be pro-p for some prime p if every finite Hausdorff quotient of G is a p-group.

The following basic properties of procyclic groups can be found in [16, 2.7]. The symbol P
denotes the set of all primes.

Proposition 2.1. Let G be a procyclic group. Then,
(i) G is the direct product G =

∏
p∈P Gp of its p-Sylow subgroups, and each Gp is a pro-p

procyclic group.
(ii) G is, in a unique way, a quotient of Ẑ :=

∏
p∈P Zp. If G is pro-p for some p ∈ P, then it is

a quotient of Zp.

2.3. Divisible groups. Recall that an element g ∈ G is said to be n-divisible for some n ∈ N
if there exists an h ∈ G such that hn = g. We say that g is divisible if it is n-divisible for each
n ≥ 1. The group G is called n-divisible (respectively divisible) when all its elements are.

Now, every prime q different from p is invertible in Zp since its p-adic valuation is zero. Hence,
the additive group Zp is q-divisible for each q ∈ P\{p}. In particular, Proposition 2.1 implies that
if a procyclic group G has trivial q-Sylow subgroups, then G is q-divisible.

We conclude this paragraph by stating the following characterization of divisibility for compact
groups (see [12, Corollaire 2]).

Proposition 2.2. Let G be a compact topological group. Then, G is divisible if and only if it is
connected.

2.4. Semi-simple actions on CAT(0) spaces. Let G be a group acting on a metric space (X, d).
For every g ∈ G, we define the translation length of g by |g| := inf{d(x, g · x) | x ∈ X} ∈ [0,∞)
and the minimal set of g by Min(g) := {x ∈ X | d(x, g · x) = |g|}. An element g ∈ G is said to
be semi-simple when Min(g) is nonempty. In that case, we say that g is elliptic if it fixes some
point, that is, if |g| = 0; otherwise, if |g| > 0, we call g hyperbolic.

A geodesic line (respectively, geodesic segment) in X is an isometry f : R → X (respec-
tively, f : [0; 1] → X); by abuse of language, we will identify f with its image in X.

The following lemma follows from Proposition 2.4 in [6].

Lemma 2.3. Let (X, d) be a complete CAT(0) metric space, and let C be a closed convex nonempty
subset of X. Then:

(i) For every x ∈ X, there is a unique y ∈ C such that d(x, y) = d(x, C), where d(x,C) :=
infz∈C d(x, z). We call y the projection of x on C and we write y = projC x.

(ii) For all x1, x2 ∈ X, we have d(projC x1, projC x2) ≤ d(x1, x2).

Suppose now that (X, d) is a cell complex. We then say that G acts by cellular isometries
on X if it preserves the metric, as well as the cell decomposition of X.

The following result is due to Martin Bridson [7].
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Proposition 2.4. Let X be a locally Euclidean CAT(0) cell complex with finitely many isometry
types of cells, and G be a group acting on X by cellular isometries. Then every element of G is
semi-simple. Moreover, inf{|g| ̸= 0 | g ∈ G} > 0.

We now establish the following result, which is the key ingredient for the proof of Theorem 1:

Theorem 2.5. Let X be a locally Euclidean CAT(0) cell complex with finitely many isometry
types of cells, and G be a compact group acting on X by cellular isometries (not necessarily
continuously). Then every element of G is elliptic.

Proof. Suppose for a contradiction there exists a g ∈ G without fixed point. Proposition 2.4 then
implies that g is hyperbolic. Let Q = ⟨g⟩ be the closure of the subgroup generated by g in G. So,
Q is compact.

Claim 1: Q is Abelian.

This is clear since it contains a dense Abelian (in fact cyclic) subgroup.

Claim 2: For every h ∈ Q, the minimal set Min(h) is a closed convex subset of X which is stabilized
by Q.

This follows from [6, Proposition II.6.2].

Claim 3: For every h ∈ Q and every nonempty closed convex subset C of X stabilized by Q, the
set C ∩ Min(h) is nonempty.

Note first that Min(h) is nonempty by Proposition 2.4. Let x ∈ Min(h) and consider the projections
y := projC x and z := projC hx provided by Lemma 2.3. Since hC = C, we then obtain

d(x, y) = inf
c∈C

d(x, c) = inf
c∈C

d(hx, hc) = inf
c∈C

d(hx, c) = d(hx, z).

Hence d(hx, hy) = d(x, y) = d(hx, z), and so z = hy = projC hx by uniqueness of projections.
Since in addition d(y, z) ≤ d(x, hx) = |h| by Lemma 2.3, we finally get d(y, hy) = |h| and therefore
y ∈ C ∩ Min(h).

Claim 4: For all h1, h2 ∈ Q, the set Min(h1) ∩ Min(h2) is nonempty.

As Min(h1) and Min(h2) are nonempty by Proposition 2.4, the claim follows from Claims 2 and 3.

Claim 5: Let h ∈ Q and let C be a nonempty closed convex subset of X stabilized by Q. We may
thus consider the action of h on C. Denote by |h|C the translation length of h for this action.
Then, h is semi-simple in C and |h| = |h|C .

Claim 3 yields that if x ∈ Min(h), then y := projC x ∈ Min(h). Since Min(h) is nonempty by
Proposition 2.4, the claim follows.

Claim 6: For every h ∈ Q and n ≥ 1, we have |hn| = n|h|.

By Claim 4, we may choose an x ∈ Min(h) ∩ Min(hn). Note that h is elliptic (respectively
hyperbolic) if and only if hn is so (see [6, II.6.7 and II.6.8]). In particular, if h is hyperbolic, then
x belongs to some h-axis, which is also an hn-axis. In any case, we obtain d(x, hnx) = nd(x, hx),
whence |hn| = d(x, hnx) = nd(x, hx) = n|h|.

Claim 7: Every divisible element of Q is elliptic.

Let h ∈ Q be divisible and suppose for a contradiction it is not elliptic. Then h is hyperbolic
by Proposition 2.4. For each natural number n ≥ 1, choose an hn ∈ Q such that hn

n = h. In
particular, all hn are hyperbolic. Moreover, |hn

n| = n|hn| by Claim 6. Therefore, we obtain a
sequence (hn) of elements of Q such that |hn| = |h|/n > 0, contradicting the second part of
Proposition 2.4.

We now establish the desired contradiction to the hyperbolicity of g. First note that the
component group P := Q/Q0 of Q is a profinite group. In fact, it is even procyclic, since the
subgroup generated by the projection of g in P is dense in P , the natural mapping π : Q → Q/Q0

being continuous. In particular, it follows from Proposition 2.1 that P is the product of its p-Sylow
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subgroups Pp. Moreover, each Pp is a pro-p group and is therefore q-divisible for every q ∈ P\{p}.
For each p ∈ P, let Qp be the subgroup of Q which is the pre-image of Pp under π.

Claim 8: If h, a, d ∈ Q with ha = dn for some n ≥ 1 and a is elliptic, then |h| = n|d|.
Write C := Min(h) ∩ Min(a). Then C is nonempty by Claim 4. Since dn stabilizes C, Claim 5
implies that it is semi-simple in C with translation length |dn|C = |dn|. Thus, |dn|C = |dn| = n|d|
by Claim 6. Note also that ha is semi-simple in C with translation length |ha|C = |h|. Therefore,
|h| = |ha|C = |dn|C = n|d|, as desired.

Claim 9: Let h ∈ Q be hyperbolic. Suppose that hai = dni
i for all i ≥ 1, where ai, di ∈ Q, each ai

is elliptic and where ni ≥ 1. Then the set {ni | i ≥ 1} is bounded.

Indeed, by Claim 8, the sequence (di) of elements of Q is such that |di| = |h|/ni > 0. The claim
now follows from the second part of Proposition 2.4.

Claim 10: Let p ∈ P. Then all elements of Qp are elliptic.

Suppose for a contradiction there exists an h ∈ Qp which is not elliptic, and is thus hyperbolic
by Proposition 2.4. Let q ∈ P \ {p}. Since Pp = π(Qp) is q-divisible, there exists an hq ∈ Q such
that hq

qQ
0 = hQ0. Let a ∈ Q0 such that ha = hq

q. By Proposition 2.2, since Q0 is compact and
connected, it is divisible, and so a is elliptic by Claim 7. Since the set of natural prime numbers
distinct from p is unbounded, the desired contradiction now comes from Claim 9.

Let now gQ0 = (gp)p∈P be the decomposition of π(g) in P =
∏

p∈P Pp (that is, each gp ∈ Pp).
Let q ∈ P, and choose an aq ∈ Qp such that π(aq) = g−1

q . Then π(gaq) has no component in the
q-Sylow of P , and is therefore q-divisible in P . Hence, there exist an hq ∈ Q and an a ∈ Q0 such
that gaqa = hq

q. By Claim 10, we know that aq is elliptic. But so is a, and hence the product
a′ := aqa is also elliptic by Claim 4. Since q is an arbitrary prime, Claim 9 again yields the desired
contradiction. �

2.5. The Davis realization of a building. We recall from [10] that any building ∆ admits a
metric realization, denoted by |∆|CAT(0), which is a locally Euclidean CAT(0) cell complex with
finitely many types of cells. Moreover any group of type-preserving automorphisms of ∆ acts
in a canonical way by cellular isometries on |∆|CAT(0). Finally, the cell supporting any point of
|∆|CAT(0) determines a unique spherical residue of ∆. In particular, an automorphism of ∆ which
fixes a point in |∆|CAT(0) must stabilize the corresponding spherical residue in ∆.

Here is a reformulation of Theorem 1.

Theorem 2.6. Let G be a compact group acting strongly transitively by type-preserving automor-
phisms on a thick building ∆. Then, ∆ is spherical.

Proof. Let (W,S) be the Coxeter system associated to ∆, and let Σ be the fundamental apartment
of ∆. Then, the action of the stabilizer in G of Σ can be identified with the action of W on this
apartment ([20, 2.8]).

Claim 1: |Σ|CAT(0) is a closed convex subset of |∆|CAT(0).

A basic fact about buildings is the existence, for each pair (Σ, C) consisting of an apartment
Σ and of a chamber C ∈ Σ, of a retraction of ∆ onto Σ centered at C, that is, of a simplicial
map ρ = ρΣ,C : ∆ → Σ preserving minimal galleries from C and such that ρ|Σ = id|Σ. The
induced mapping ρ : |∆|CAT(0) → |Σ|CAT(0) then maps every geodesic segment of |∆|CAT(0) onto
a piecewise geodesic segment of |Σ|CAT(0) of same length. In particular, the mapping ρ is distance
decreasing (see [10, Lemme 11.2]). Hence, if x and y are two points in |Σ|CAT(0), then the geodesic
segment from x to y is entirely contained in |Σ|CAT(0) since its image by ρ is also a geodesic from x
to y. This proves that |Σ|CAT(0) is convex. To see it is closed, it suffices to note that it is complete
as a metric space since it is precisely the Davis realization of the building Σ.

Claim 2: If g ∈ G is elliptic in X = |∆|CAT(0) and stabilizes |Σ|CAT(0), then g is also elliptic in
|Σ|CAT(0).

This follows from Claim 5 in the proof of Theorem 2.5.
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Theorem 2.5 now implies that the induced action of W on |Σ|CAT(0) is elliptic, that is, every
w ∈ W is elliptic. Notice that the W -action on |Σ|CAT(0) is proper, since by construction, it is
cellular and the stabilizer of every point is a spherical (in particular finite) parabolic subgroup of
W . Recalling now that every infinite finitely generated Coxeter group contains elements of infinite
order (in fact, so do all finitely generated infinite linear groups by a classical result of Schur [17];
in the special case of Coxeter groups, a direct argument may be found in [2, Proposition 2.74]),
we deduce that W is finite. In other words ∆ is spherical. �

3. Proof of Theorem 2

3.1. Heuristic sketch. Let G be a compact group possessing a split spherical BN-pair, and let
∆ be the associated building. We first establish Theorem 2 when G acts continuously on ∆. In
that case, 2-transitive actions (which are closely related to strongly transitive actions) of G on
subspaces X of ∆ are easily seen to be possible only for finite X. The second step is then to show
that the action of G on ∆ has to be continuous. This uses the fact that buildings arising from
split spherical BN-pairs are Moufang (see Proposition 3.3 below).

3.2. Continuous actions on buildings. Recall that a topological space X is said to satisfy the
T1 separation axiom when all its singletons are closed. The following is probably well-known.

Lemma 3.1. Let G be a compact group. If G admits a continuous 2-transitive action on a T1

topological space X, then X is finite.

Proof. Define Y := {(x, y) ∈ X × X | x ̸= y} ⊂ X × X, and fix x, y ∈ X with x ̸= y. Since the
orbit map αx : G → X : g 7→ g · x is continuous, so is αx ×αy : G → X ×X : g 7→ (g · x, g · y). By
2-transitivity, we get Y = (αx × αy)(G), and so Y is compact.

Note also that the mapping f : X × X → X × X : (a, b) 7→ (x, b) is continuous. Setting
Z := X \ {x}, we then get Z ×{x} = f−1({(x, x)})∩Y , so that Z ×{x} is closed in Y , and hence
compact. It follows that Z is compact, being the image of Z × {x} by the projection on the first
factor X × X → X, which is of course continuous.

In particular, Z is closed, and hence {x} is open. It follows that X is discrete, and therefore
finite since X = αx(G) is compact. �

Let ∆ be a building of type (W,S), and denote by Ch∆ the set of its chambers. Consider
the chamber system Γ of ∆, which is the labelled graph with vertex set Ch∆ and with an edge
labelled by s ∈ S for each pair of s-adjacent chambers of ∆ (see [8, Ch.I Appendix D]). Let J ⊂ S.
A J-gallery in Γ between two chambers x and y of ∆ is a sequence (x = x0, x1, . . . , xl = y) of
chambers of ∆ such that for each i ∈ {1, . . . , l}, there exists an s ∈ J such that xi−1 is s-adjacent
to xi. The natural number l is called the length of the gallery. A minimal gallery is a gallery of
minimal length. The distance in ∆ between two chambers x, y ∈ Ch∆ is the length of a minimal
gallery joining x to y. The diameter of Γ is the supremum (in N∪{∞}) of the distances between
its vertices.

Let J ⊂ S. The J-residue R = RJ(x) of some chamber x ∈ Ch ∆ is the set of chambers of ∆
which are connected to x by a J-gallery. When J has cardinality 1, we call R a panel.

In this paper, we will say that a group G acts continuously on ∆ if the stabilizers of the
residues of ∆ are closed in G. Note that we can of course restrict our attention to the maximal
proper residues, the others being obtained as intersections of those.

Lemma 3.2. Let G be a compact group acting continuously and strongly transitively by type-
preserving automorphisms on a spherical thick building ∆. Then ∆ is finite.

Proof. The stabilizer H in G of a panel P of ∆ is a closed and thus compact subgroup of G.

Claim 1: H acts 2-transitively on Ch(P ).

Indeed, let C be a chamber of P and let B := StabG(C) ⊂ H. We first show that B, and thus
also H, is transitive on the set C = P \ {C}. Let C1, C2 ∈ C and let Σ1 (respectively, Σ2) be an
apartment containing C and C1 (respectively, C and C2). By strong transitivity, B is transitive
on the set of apartments containing C, and so there exists a b ∈ B such that bΣ1 = Σ2. Hence
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bC1 = C2. It now remains to show that H is transitive on P . But if C1, C2 ∈ P , then since ∆ is
thick, we may choose a chamber C in P different from C1, C2. The stabilizer B′ of C in G is then
contained in H and is transitive on P \ {C} by the previous argument.

Now, identifying ∆ with ∆(G,B), so that H = B∪BsB for some generator s of the correspond-
ing Weyl group, we get a 2-transitive, continuous action by left translation of the compact group
H on the topological space H/B. Moreover, this space is T1 since B is closed in G by hypothesis.
Lemma 3.1 then implies that P is finite. In other words, as P was arbitrary, the building ∆ is
locally finite, that is, every panel is finite. The following observation now allows us to conclude:

Claim 2: Every locally finite spherical building is finite.

Indeed, let Γ = Ch ∆ be the graph whose vertices are the chambers of ∆, and such that two
chambers of ∆ are adjacent if they share a common panel. Since ∆ is locally finite, so is Γ. Hence,
fixing a vertex x ∈ Γ, each ball in Γ centered at x with radius n (n ∈ N) possesses a finite number
of vertices. Moreover, as ∆ is spherical, the diameter of ∆ is finite ([8, Ch.IV, 3]), and hence the
diameter of Γ is also finite. Thus Γ is contained in such a ball, and is therefore finite. �

3.3. Moufang buildings. Let ∆ = ∆(G,B) be the building associated to a split spherical BN-
pair (B = T n U,N) of type (W,S). It is well-known (see the main result of [11]) that the
existence of a splitting for the above BN-pair is equivalent to the fact that the building ∆ enjoys
the Moufang property, as defined in [20, Chapter 11].

Two chambers x, y ∈ Ch∆ are called opposite if they are at maximal distance in the chamber
system of ∆. Similarly, one can define opposite residues (see for instance [2, 5.7]). The set of
chambers (respectively, residues) of ∆ which are opposite to a given chamber C (respectively,
residue R) will be denoted by Cop (respectively, Rop).

Proposition 3.3. Let P = BWJB be a proper standard parabolic subgroup of ∆ = ∆(G,B) for
some proper subset J of S, let C be the fundamental chamber (i.e. the unique chamber fixed by
B) and let R be the unique J-residue containing C. Define the subgroup V :=

∩
p∈P pUp−1 of G.

Then V acts simply transitively on Rop.

Proof. Let Σ be an apartment containing C. By [20, 9.11], there exists a minimal galery γR′ , one
for each residue R′ ∈ Rop, beginning at C and ending at a chamber C ′ in R′ such that the type
of γR′ is independent of the choice of R′ and C = projR C ′. Let R′ ∈ Rop be the unique residue
of Σ opposite R and let C ′ be the last chamber of γR′ . Let also α be a root of Σ containing C
but not C ′. By [20, 8.21], R ∩ Σ ⊂ α. By [20, 9.7], therefore, R is fixed pointwise by the root
group Uα. Since P maps R to itself, we have C ∈ R ⊂ αp and hence p−1Uαp ⊂ U for all p ∈ P by
the definition of root subgroups (see [20, 11.1]) and the fact that the ‘radical’ U does not depend
on the choice of the apartment Σ (see [20, Proposition 11.11(iii)]). Thus Uα ⊂ V . Now, as in [2,
7.67], one shows that the subgroup of V generated by all Uα’s of the latter form acts transitively
on the set {γR′′ | R′′ ∈ Rop}, and hence also on Rop.

Suppose h ∈ V maps R′ ∈ Rop to itself. Then h acts trivially on R. Since the restriction of
projR′ to R is a bijection from R to R′ (by [20, 9.11] again), it follows that h acts trivially on R′.
By [20, 9.8], therefore, h fixes two opposite chambers of Σ and hence h fixes Σ. By [20, 9.7] again,
we conclude that h = 1. �

In particular, we have the following (compare [8, Ch.IV, 5]).

Lemma 3.4. Let C be the fundamental chamber of ∆. Then U acts simply transitively on Cop.
Equivalently, U acts simply transitively on the set of apartments containing C.

Lemma 3.5. Let P = BWJB be a proper standard parabolic subgroup of ∆ = ∆(G,B) for
some proper subset J of S, let C be the fundamental chamber and let R be the unique J-residue
containing C. Then there exist two chambers in Cop which are opposite to one another. In
particular, |Rop| ≥ 2.

Proof. The first assertion holds by [2, Proposition 4.104] and the second follows since no proper
residue contains two opposite chambers. �



8 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUIS

We are now ready to complete the proof of Theorem 2.

Theorem 3.6. Let G be a compact topological group possessing a spherical split BN-pair (B =
T n U,N). Then the associated building is finite.

Proof. Let ∆ = ∆(G,B) be the building associated to (B, N), and let (W,S) be the corresponding
Coxeter system.

We start with some basic observations in the case (W,S) is not irreducible. Suppose thus that S
decomposes as S = S1⨿S2 with s1s2 = s2s1 for all s1 ∈ S1 and s2 ∈ S2. Then W splits as a direct
product W ∼= W1×W2, where Wi = ⟨Si⟩, and the building ∆ decomposes canonically as a product
∆ = ∆1 × ∆2 of buildings of type (W1, S1) and (W2, S2) respectively (see [20, Proposition 7.33]).

In particular, we obtain induced actions of G on both ∆1 and ∆2, which are obviously strongly
transitive. The corresponding BN-pairs for G may be described as follows. Since each s ∈ S can
be written as a coset nT ∈ N/T = W , we may choose, for i = 1, 2, a set N i of representatives in
N for the elements of Si. For each i = 1, 2, consider now the subgroup Ni of N generated by N i

and T , and set Bi := ⟨B ∪ N3−i⟩ = BN3−iB ≤ G. Then (Bi, Ni) is a spherical BN-pair for G,
and the associated building is nothing but ∆i = ∆(G,Bi).

We claim that the BN-pair (Bi, Ni) is split. This follows readily from the aforementioned
equivalence between splittings of BN-pairs and the Moufang property for the associated buildings.
More precisely, consider the group Ui =

∩
g∈Bi

gUg−1 which is the kernel of the U -action on ∆3−i.
Then Ui acts sharply transitively on the chambers of ∆i which are opposite the standard chamber
C, which by definition is the unique chamber fixed by Bi. Therefore we have Bi

∼= Ti n Ui, where
Ti =

∩
w∈Wi

wBiw
−1, and Ui induces a splitting of the BN-pair (Bi, Ni) as claimed.

This shows that the given split BN-pair for G yields various split BN-pairs for G corresponding
to the various irreducible components of ∆. Since Ch∆ is naturally in one-to-one correspondence
with the Cartesian product Ch∆1 × · · · × Ch∆n of the chamber sets of the various irreducible
components of ∆, the desired finiteness result readily follows provided we establish it for each
irreducible BN-pair (Bi, Ni) as above. In other words, there is no loss of generality in assuming
that the building ∆ is irreducible. We adopt henceforth this additional assumption.

Let now P denote the set of maximal proper standard parabolic subgroups of G. Pick any
P ∈ P. Thus P is of the form P = BWJB for some maximal subset J ( S, where WJ = ⟨J⟩. In
particular, P is a maximal subgroup of G (see [2, Lemma 6.43(1)]). Define the normal subgroup

V :=
∩
p∈P

pUp−1 E P

of P . As V is contained in U , it is also nilpotent. Moreover, V acts faithfully on ∆. Indeed, the
kernel ker(G y ∆) of the action of G on ∆ is obviously contained in the stabilizer of the chambers
of the fundamental apartment Σ, that is, in

∩
w∈W wBw−1 = T , and so

V ∩ ker(G y ∆) ⊆ U ∩ T = {1}.
Now, since V is normal in P , we have P ⊆ NG(V ). Moreover, as the conjugation automorphism

κg : G → G : x 7→ gxg−1 is continuous, we get NG(V ) ⊇ NG(V ) and so NG(V ) ⊇ P . Hence, by
maximality of P , we obtain that either NG(V ) = P or NG(V ) = G.

Claim: NG(V ) = P for all P ∈ P.

Assume for a contradiction that NG(V ) = G for some P ∈ P. In other words, V ▹G. In particular,
the center Z (V ) ⊆ V of V is also a normal subgroup of G. Moreover, V is nontrivial since, by
Proposition 3.3, it acts transitively on Rop and since |Rop| ≥ 2 by Lemma 3.5. As V is nilpotent,
this implies that Z (V ) is also nontrivial.

Now, using again the continuity of the conjugation automorphism κh (for h ∈ G), we see that
Z (V ) = ZG(V )∩ V is contained in Z (V ) = ZG(V )∩ V . Moreover, as V acts faithfully on ∆, so
does Z (V ). This implies in particular that Z (V ), and thus also Z (V ), act nontrivially on ∆.

Tits’ transitivity Lemma (see [8, Lemma 6.61]) then guarantees that the group Z (V ) is tran-
sitive on the chambers of ∆. In fact, this action is even simply transitive. Indeed, the stabilizers
in Z (V ) of the chambers of ∆ are all conjugate by transitivity. They are thus all equal since
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Z (V ) is Abelian, and are therefore contained in the kernel ker(G y ∆) of the action of G on
∆. Since Z (V ) ⊆ Z (V ), this implies that the action of Z (V ) on Ch∆ is free. But since
Z (V ) ⊆ V ⊆ U ⊆ B, and as B stabilizes the fundamental chamber, it follows that Z (V ) acts
trivially on ∆. This contradiction establishes the Claim.

Since the normalizer of a closed subgroup is closed, we deduce from the Claim that every P ∈ P
is closed. But this means that G acts continuously on ∆, and so Lemma 3.2 ensures that ∆ is
finite, as desired. �

4. Proof of Theorem 4

Let k be a perfect field and let K = k be its algebraic closure. In what follows, we identify an
algebraic k-group G with its group of K-rational points.

The main tool for the proof of Theorem 4 is the following result due to Borel and Tits (see [3]).

Proposition 4.1. Let G be a reductive algebraic k-group and let U be a unipotent k-subgroup of
G. If k is perfect, then there exists a parabolic k-subgroup P of G whose unipotent radical Ru(P )
contains U .

In particular, if G is anisotropic over k, then U must be trivial.

Proof of Theorem 4. Suppose for a contradiction that the split spherical BN-pair (B, N) for the
reductive k-group G is such that B has infinite index in G(k). Let ∆ = ∆(G(k), B) be the
associated building, and let W be the corresponding (finite) Weyl group. Also, denote by B the
Zariski closure of B in G.

The Bruhat decomposition for G yields G =
⨿

w∈W BwB. Since G(k) is Zariski dense in G by
[4, 18.3], we have

G = G(k) =
⨿

w∈W

BwB ⊆
⨿

w∈W

BwB.

As G is connected, it cannot be written as a finite union of closed subsets in a nontrivial way.
Therefore, we deduce that BwB is dense in G for some w ∈ W . In particular, so is BwB.

Let now A := (B)0 be the identity component of B. Since A has finite index in B, it follows
that BwB is a finite union of double cosets modulo A. As before, this implies that some double
coset of the form AzA is dense in G.

Claim: B ̸= G.

Indeed, let U be the nilpotent normal subgroup of B arising from the splitting of the BN-pair,
and suppose for a contradiction that B is dense in G. Then the Zariski closure U of U in G is a
nilpotent normal subgroup of B = G ([4, 2.1]). Its identity component U

0
is thus contained in the

radical of G, which coincides with the connected center Z (G)0 ([4, 11.21]). Hence, since U
0

has
finite index in U , we get

[U : U ∩ Z (G)] ≤ [U : U ∩ U
0
] = [UU

0
: U

0
] ≤ [U : U

0
] < ∞.

Now, if u ∈ U∩Z (G), then u acts trivially on ∆ since for any chamber gB, we have ugB = guB =
gB. As U acts simply transitively on Cop by Lemma 3.4, where C = 1GB is the fundamental
chamber of ∆, this implies that u = 1: otherwise, ∆ would contain only one apartment, so that
[G(k) : B] < ∞, a contradiction. So U ∩ Z (G) = {1} and therefore U is finite. Using again
the sharp transitivity of U on Cop, we deduce that ∆ is the reunion of finitely many apartments,
hence is finite, contradicting once more our initial hypothesis. The claim stands proven.

In particular A is a proper closed connected subgroup of G such that AzA is dense in G for
some z ∈ G. The main result of [9] now implies that A is not reductive, i.e. the unipotent radical
Ru(A) is nontrivial. Moreover, since B is contained in G(k) and is dense in B, we know that
B is defined on k ([4, AG.14.4]). Hence, A is also k-defined ([4, 1.2]), and so is Ru(A) since k
is perfect ([18, 12.1.7(d)]). Thus Ru(A) is a nontrivial unipotent k-subgroup of G. As remarked
after Proposition 4.1 above, this contradicts the assumption that G is anisotropic over k. �
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