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Introduction

CAT(0) spaces, introduced by Alexandrov in the 1950’s, were given prominence by
M. Gromov, who showed that a great deal of the theory of manifolds of non-positive
sectional curvature could be developed without using much more than the CAT(0)
condition (see [BGS85]). Since then, CAT(0) spaces have played a central role in geo-
metric group theory, opening a gateway to a form of generalized differential geometry
encompassing non-positively curved manifolds as well as large families of singular spaces
such as trees, Euclidean or non-Euclidean buildings, and many other cell complexes of
non-positive curvature.

Excellent introductions on CAT(0) spaces may be found in the literature, e.g. in
the books [Bal95] and [BH99]. The goal of these lectures is to present some material
not covered by those references. While rigidity of (usually discrete) group actions on
non-positively curved space is a standard theme of study in geometric group theory,
the main idea we would like to convey is that, in the locally compact case, the spaces
themselves turn out to be much more rigid than one might expect as soon as they admit
a reasonable amount of isometries. This phenomenon will be highlighted by placing a
special emphasis on the full isometry group of a proper CAT(0) space. Taking into
account the fact the this isometry group is naturally endowed with a locally compact
group topology which is possibly non-discrete, many structural (and especially rigid-
ity) properties of the underlying space can be derived by combining results on locally
compact groups with (mostly elementary) geometric arguments. A number of results
obtained with this approach are presented in this course. In the final lecture, we will
come back to discrete groups and present some results whose proof relies heavily on the
preceding study of non-discrete group actions.

Although some of the very basics on CAT(0) spaces will be recalled, a famil-
iarity with the aforementioned standard references is recommended. We have cho-
sen to present the results not always in their most general form, but rather in a
way that makes their statement simpler and hopefully more enlightening. More gen-
eral statements, detailed arguments and further results may be found in the papers
[CM09a,CM09b,CM12a,CZ12]. All the original results presented here have been ob-
tained in collaboration with Nicolas Monod or with Gašper Zadnik.
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LECTURE I

Leading examples

1. The basics

Let (X, d) be a metric space. A geodesic map is an isometric map ρ : I → X
of a convex subset I ⊆ R to X, where the real line R is endowed with the Euclidean
distance. The map ρ is called a geodesic segment (resp. ray, line) if I is a closed
interval (resp. I is a half-line, I = R). It should be noted that the notion of geodesic
introduced here is a global one, as opposed to the corresponding notion in differential
geometry.

A geodesic metric space is a metric space (X, d) in which any two points are
joined by a geodesic segment.

Examples I.1.
• The Euclidean space (Rn, dEucl) is a geodesic metric space.
• More generally, a Riemannian manifold, viewed as a metric space with its

canonical distance function, is a geodesic metric space provided it is complete.
An incomplete Riemannian manifold need not be a geodesic metric space.

• A metric graph, with all edges of length one, is a geodesic metric space.

Let (X, d) be a geodesic metric space. Given a triple (x, y, z) ∈ X3, a Euclidean
comparison triangle for (x, y, z) is a triple (x̂, ŷ, ẑ) of points of the Euclidean plane
R2 such that d(x, y) = dEucl(x̂, ŷ), d(y, z) = dEucl(ŷ, ẑ) and d(z, x) = dEucl(ẑ, x̂). Notice
that any triple in X admits some Euclidean comparison triangle.

A CAT(0) space is a geodesic metric space all of whose triple of points (x, y, z) ∈
X3 satisfy the following condition: given a Euclidean comparison triangle (x̂, ŷ, ẑ) in R2,
any point p ∈ X which belongs to some geodesic segment joining y to z in X satisfies
the inequality

d(x, p) ≤ dEucl(x̂, p̂),
where p̂ ∈ R2 is the unique point of R2 such that d(y, p) = dEucl(ŷ, p̂) and d(p, z) =
dEucl(p̂, ẑ).

The following fundamental properties of CAT(0) spaces are straightforward to de-
duce from the definition.

Proposition I.2. Let (X, d) be a CAT(0) space. Then:
(i) (X, d) is uniquely geodesic, i.e. any two points are joined by a unique geodesic

segment.
(ii) X is contractible.

Examples I.3. • The Euclidean space (Rn, dEucl) is a CAT(0) space. So is
any pre-Hilbert space.

• A complete simply connected Riemannian manifold M , endowed with its canon-
ical distance function, is a CAT(0) space if and only if M has non-positive
sectional curvature. See [BH99, Theorem 1.A.6]. So is in particular the real
hyperbolic space Hn.

• A metric graph X is a CAT(0) space if and only if X is a tree.
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This short list of examples already illustrates that the category of CAT(0) spaces
encompasses both smooth and singular objects. The singular character expresses itself
by the fact that geodesics may branch, i.e. two distinct geodesic segments may share
a common sub-segment of positive length.

There are several ways to construct new examples of CAT(0) spaces from known
ones.

A subset Y of a CAT(0) space (X, d) is called convex if the geodesic segment joining
any two points of Y is entirely contained in Y . Clearly, a convex subset of a CAT(0)
space is itself a CAT(0) space when endowed with the induced metric.

Another key feature of the CAT(0) condition is its stability under Cartesian prod-
ucts. The proof is left as an exercise.

Proposition I.4. Let (X1, d1) and (X2, d2) be CAT(0) spaces. Then the Cartesian
product X = X1 ×X2, endowed with the metric d defined by d2 = d2

1 + d2
2, is a CAT(0)

space.

Various more exotic constructions, like gluing two CAT(0) spaces along an isometric
convex subset, also preserve the CAT(0) condition. We close this section with the
following noteworthy facts, for which we refer to Cor. II.3.10 and II.3.11 in [BH99].

Proposition I.5.
(i) The Cauchy completion of a CAT(0) space is itself CAT(0).
(ii) An ultraproduct of CAT(0) spaces is itself CAT(0). In particular, the asymptotic

cones of a CAT(0) space are CAT(0).

2. The Cartan–Hadamard theorem

A fundamental feature of the CAT(0) condition is that it is a local condition, as
is the condition of being non-positively curved in the realm of Riemannian geometry.
This matter of fact is made precise by the following basic result, for which we refer to
[Bal95, Theorem I.4.5] and [BH99, Theorem II.4.1].

Theorem I.6 (Cartan–Hadamard). Let (X, d) be a complete connected metric space.
If every point of X admits some neighbourhood which is CAT(0) when endowed

with the appropriate restriction of d (we then say that (X, d) is locally CAT(0)), then
there is a unique distance function d̃ on the universal cover X̃ such that following two
conditions hold:

• the covering map X̃ → X is a local isometry;
• (X̃, d̃) is a CAT(0) space.

The metric d̃ coincides with the length metric (also called inner metric) induced
by d on X̃. We refer to [Bal95, §1.1] and [BH99, §I.3] for detailed treatments of those
notions. At this point, let us just observe that a non-convex subset of a CAT(0) space
may very well be CAT(0) provided it is endowed with the induced length metric.

The Cartan–Hadamard theorem yields a wealth of further examples of CAT(0)
spaces constructed as universal covers of compact metric spaces that are locally CAT(0).
A typical situation is that of a finite piecewise Euclidean cell complex X, endowed
with the length metric d induced by the Euclidean metric on each cell. The Cartan–
Hadamard theorem ensures that the universal covering cell complex X̃ is naturally a
CAT(0) space provided (X, d) is locally CAT(0). Verifying that a given finite piecewise
Euclidean cell complex is locally CAT(0) is usually highly non-trivial (although, in the-
ory, it can be done algorithmically, see [EM04]). There are only two special cases where
this question can be decided by means of an easy combinatorial criterion, as described
in the following (see [BH99, §II.5] and the lectures by M. Sageev).
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Theorem I.7. Let X be a connected piecewise Euclidean cell complex endowed with
the length metric d induced by the Euclidean metric on each cell. If any of the following
conditions holds, then (X, d) is locally CAT(0), and hence (X̃, d̃) is a CAT(0) space:

(i) X is two-dimensional, and for each vertex v ∈ X(0) and each sequence
(σ1, σ1, . . . , σn) of pairwise distinct 2-faces such that σi ∩ σi+1 is an edge con-
taining v for all i ∈ Z/nZ, the sum over all i of the interior angles of the faces σi

at the vertex v is at least 2π.
(ii) Each cell in X is a Euclidean cube with edge length one, and the link of every

vertex is a flag complex.

The CAT(0) spaces constructed as in Theorem I.7(ii), which are called CAT(0)
cube complexes, are endowed with a rich combinatorial structure which provides an
important addition tool in their study. This explains why results known about CAT(0)
cube complexes are usually much finer than those describing more general classes of
CAT(0) spaces. Nevertheless, it turns out that CAT(0) cube complexes are much more
ubiquitous that one might think at a first sight. We refer to the lectures by M. Sageev
for more information.

From now on, a metric space (X, d) will simply be denoted by its underlying set of
points X, the distance function being by default denoted by the letter d, unless explicitly
mentioned otherwise.

3. Proper cocompact spaces

The class of all CAT(0) spaces is vast and wild; it is not a realistic goal to understand
it exhaustively. In the rest of the course, we shall frequently impose that the spaces
under consideration satisfy (some of) the following conditions:

• Properness. A metric space is called proper if all of its closed balls are
compact. In particular such a space is locally compact.

• Cocompactness. A metric space X is called cocompact if its full isometry
group Is(X) acts cocompactly, i.e. if the orbit space Is(X)\X is compact.

• Geodesic completeness. A geodesic metric space X is called geodesically
complete (one also says that X has extendible geodesics) if every geodesic
segment can be prolonged to a (potentially non-unique) bi-infinite geodesic
line.

As in Riemannian geometry, the notions of properness, completeness and geodesic
completness are related in the case of locally compact spaces:

Theorem I.8 (Hopf–Rinow). Let X be a locally compact CAT(0) space.

(i) X is proper if and only if it is complete.
(ii) If X is geodesically complete, then it is proper.

Proof. See [Bal95, Theorem I.2.4] and [BH99, Proposition I.3.7]. �

Among all proper cocompact CAT(0) spaces, there are two leading families of exam-
ples, namely symmetric spaces and Euclidean buildings. Those are the spaces naturally
associated with semi-simple Lie groups or semi-simple linear algebraic groups over local
fields. We shall now briefly recall the basic definitions.
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4. Symmetric spaces

A symmetric space is a Riemannian manifold M such that the geodesic symmetric
σx centered at each point x ∈ M is a global isometry. Equivalently, for each x ∈ M
there is an isometry σx ∈ Is(M) fixing x, whose differential is the central symmetry of
TxM .

Basic examples are provided by the sphere Sn, the Euclidean space Rn and the real
hyperbolic space Hn. As the example of the sphere shows, a symmetric space can be
positively curved. A symmetric space is said to be of non-compact type if it has
non-positive sectional curvature and no non-trivial Euclidean factor.

Any such space M is thus a CAT(0) space which is proper, cocompact (in fact
homogeneous!) and geodesically complete. It can be constructed as a coset space
M = G/K, where G is a non-compact, connected semi-simple Lie group and K < G is
a maximal compact subgroup. The metric on G/K comes from the Killing form of the
Lie algebra of G.

A prominent example is provided by the case G = SLn(R) and K = SO(n). The
coset space M = G/K can be identified with the collection of scalar products on Rn for
which the unit ball has the same volume as the unit ball with respect to the standard
Euclidean metric dEucl. A description of the symmetric space M may be consulted in
[BH99, §II.10]; the discussion below is an alternative approach.

The distance function on M can be defined as follows. Given two scalar products
x1 = (·, ·)1 and x2 = (·, ·)2 on Rn, it is a standard fact (see e.g. [HJ90, Th. 7.6.4]) that
there exists some basis of Rn with respect to which both products are represented by
a diagonal Gram matrix, say diag(λ1, . . . , λn) and diag(µ1, . . . , µn). The distance from
x1 to x2 is then defined by

(4.1) d(x1, x2) =

√√√√ n∑
i=1

(
log

λi

µi

)2

.

It then turns out that (M, d) is a CAT(0) space (this is however non-trivial to verify,
see Exercise I.4). The following key feature of that space is easy to deduce from the
definition given above.

Proposition I.9. Let (M, d) be the symmetric space associated with SLn(R). Then
any two points of M are contained in a common flat of dimension n − 1.

A flat of dimension k in a CAT(0) space is a subset isometric to the Euclidean space
Rk. The rank of a symmetric space is the maximal dimension of a flat. The above
property is a special instance of a general property: in a symmetric space of rank r, any
two points are contained in a common r-flat.

5. Euclidean buildings

Let W ≤ Is(Rn) be a discrete reflection group, i.e. a discrete subgroup generated
by orthogonal reflections through hyperplanes.

The discreteness of W implies that the collection H of all hyperplanes associated
with reflections in W is locally finite, i.e. every ball meets only finitely many hyper-
planes in H. In fact, the pattern determined by H defines a cellular decomposition of
Rn, which is called a Euclidean Coxeter complex. A chamber in that complex
is defined as a connected component of the space Rn −

∪
H∈H H. The group W acts

sharply transitively on the set of chambers. The top-dimensional cells in a Coxeter
complex coincide with the closures of the chambers, which may be non-compact. Any
lower dimension cell is the intersection of a closed chambers with a set of hyperplanes
in H.
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A Euclidean building is a cell complex ∆ satisfying the following two conditions:
(1) Any two cells are contained in a common subcomplex, called an apartment, which

is (combinatorially) isomorphic to a Euclidean Coxeter complex.
(2) Given any two apartments A1 and A2 in ∆, there is an isomorphism φ : A1 → A2

fixing the intersection A1 ∩ A2 pointwise.

A Euclidean building is thus primarily a combinatorial object. It always possesses
a CAT(0) metric realization:

Proposition I.10. Let ∆ be a Euclidean building. Then ∆ has a metric realisation
(|∆|, d) such that for each apartment A ⊂ ∆, the restriction of d to |A| is the Euclidean
metric. The metric space (|∆|, d) is a complete CAT(0) space.

Proof. Axiom (2) implies that all apartments are combinatorially isomorphic. Fix
a Euclidean metric on one of them, and transport this metric to all the others via the
isomorphisms provided by (2). The axioms imply that this yields a geometric realisation
|∆| endowed with a well defined map d : |∆| × |∆| → R+ whose restriction to each
apartment is the Euclidean metric. One may then verify that (|∆|, d) is a metric space
which satisfies the CAT(0) condition. The fact that it is geodesic is immediate from
(1). See [AB08, Theorem 1.16] for details. �

The simplest example of a building is when W is the infinite dihedral group acting
properly on the real line. In that case, the corresponding Coxeter complex is the simpli-
cial line, and a Euclidean building having that Coxeter complex as type of apartments
is a simplicial tree without vertex of valency one. Conversely any simplicial tree without
vertex of valency one is a Euclidean building. Likewise, if W is a product of n copies
of the infinite dihedral groups acting properly on Rn, the corresponding buildings are
products of n trees.

Euclidean buildings are the natural ‘discrete’ analogues of symmetric spaces. In
fact, to any semi-simple linear algebraic group over a local field (e.g. SLn(Qp)), one
may associate a Euclidean building on which the group acts isometrically, transitively
on the chambers. This is part of the Buhat–Tits theory [BT72]. Let us merely mention
here that the key feature of symmetric spaces pointed out in Proposition I.9 is shared
by Euclidean buildings:

Proposition I.11. In the CAT(0) realization of a Euclidean building of dimension
n, any two points are contained in a common n-flat. �

The fact that the rank coincides with the dimension is of course peculiar to buildings;
the symmetric space associated with SLn(R) has rank n − 1 and dimension (n−1)(n+2)

2 .
In fact, one has the following characterization of Euclidean buildings among locally
compact CAT(0) spaces:

Theorem I.12 (Kleiner). Let X be a locally compact CAT(0) space of geometric
dimension n. If any two points are contained in a common n-flat, then X is the metric
realization of a Euclidean building.

The notion of geometric dimension was introduced by B. Kleiner [Kle99]. It
can be defined as the supremum over all compact subsets K ⊂ X of the topological
dimension of K. If X is a piecewise Euclidean cell complex, the geometric dimension
coincides with the maximal dimension of a cell. For further information and alternative
characterizations, see [Kle99].

A more detailed introduction on Euclidean buildings can be found in [Bro89]. See
also [AB08] for a comprehensive account. The Euclidean buildings defined above are
sometimes called discrete Euclidean buildings, in order to distinguish them within a
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more general class of objects, called R-buildings (or non-discrete Euclidean build-
ings). Those generalize discrete buildings in the same way as R-trees generalize sim-
plicial trees; they appear naturally in the Bruhat–Tits theory of reductive groups over
fields with a non-discrete valuation. They also pop up as asymptotic cones of symmetric
spaces of non-compact type, as proved by Kleiner and Leeb (see [KL97], as well as the
lectures by M. Kapovich).

6. Rigidity

Symmetric spaces and Euclidean buildings should be considered as leading examples
of CAT(0) spaces. This is not only justified by the fact that their features serve as a
basis for the intuition in the study of more general CAT(0) spaces, but also because
these spaces (especially in rank > 1) seem to be the most rigid among all proper CAT(0)
spaces. We finish this first lecture by mentioning some instances of this matter of fact.

Products of symmetric spaces and Euclidean buildings arise naturally in the study of
arithmetic groups (see the lectures by T. Gelander and by D. Morris). The prototypical
example is Γ = SLn(Z[ 1

p1...pr
]), with p1, . . . , pr distinct primes. Indeed the diagonal

embedding of Γ in G = SLn(R)×SLn(Qp1)× · · ·×SLn(Qpr) is a lattice embedding. In
particular the discrete group Γ acts properly on the model CAT(0) space of G, which
is the product

X = M × ∆p1 × · · · × ∆pr

of the symmetric space M of SLn(R) with the Euclidean buildings ∆pi of SLn(Qpi).
The following result highlights a strong rigidity property of the arithmetic group Γ.

Theorem I.13 ([CM09a, Th. 1.14 and 1.15]). Let Γ = SLn(Z[ 1
p1...pr

]), with n ≥ 3
and r ≥ 0, act by isometries on a proper cocompact CAT(0) space Y . Assume that
Γ acts minimally in the sense that it does not preserve any non-empty closed convex
subset Z ( Y .

Then Y is a product of symmetric spaces and Euclidean buildings, which is a sub-
product of the model space X.

Notice that no properness assumption is made on the action of Γ on Y . The theorem
shows that Γ admits only few minimal actions on proper cocompact CAT(0) spaces: all
of them occur as projections of the Γ-action on the model space X on a subproduct. In
particular, when the model space has only one factor, i.e. when Γ = SLn(Z), it follows
that any minimal action of Γ on a proper cocompact CAT(0) space is either trivial, or
proper and coincides with the standard Γ-action on the symmetric space SLn(R)/SO(n).

Theorem I.13 can be viewed as a rigidity property of the arithmetic group
SLn(Z[ 1

p1...pr
]). The following result should rather be interpreted as a rigidity prop-

erty of its model space X. We recall the isometries of a CAT(0) fall into three families,
called elliptic, hyperbolic and parabolic respectively. Elliptic isometries are those
which fix points. Hyperbolic isometries are those which preserve some geodesic line and
act non-trivially along it. Parabolic isometries are all the others; they can have transla-
tion length zero or not, and should be viewed as the wilder type of isometries, especially
when the ambient space is not locally compact. See [Bal95, §II.3] and [BH99, §II.6].

Theorem I.14 ([CM09b, Th. 1.5]). Let X be a locally compact, geodesically com-
plete, cocompact CAT(0) space. Assume that the full isometry group Is(X) contains a
lattice Γ which is finitely generated, residually finite, and indecomposable in the sense
that it does not split non-trivially as a direct product, even virtually.

If X admits some parabolic isometry, then X is a product of symmetric spaces and
Euclidean buildings.



7. EXERCISES 7

The hypothesis that Γ < Is(X) be a finitely generated lattice is automatically sat-
isfied if Γ is a discrete group acting properly and cocompactly on X.

The content of this course includes some of the main ingredients coming into the
proofs of Theorems I.13 and I.14.

We finish this section by mentioning a conjecture geometric characterization of sym-
metric spaces and Euclidean buildings, independent of any discrete group action. To this
end, let us denote by (Pn) the property that any two points are contained in a common
n-flat. Clearly, a CAT(0) space satisfies (P1) if and only if it is geodesically complete.
We have seen that for all n, symmetric spaces of rank n and Euclidean buildings of
dimension n satisfy (Pn). Moreover, one has the following easy observation:

Lemma I.15. Let X = X1 × X2 be a CAT(0) product space. If X1 and X2 satisfy
(Pn1) and (Pn2) respectively, then X satisfies (Pn1+n2).

We have thus three sources of CAT(0) spaces satisfying (Pn) with n > 1: symmetric
spaces, Euclidean buildings, and products of geodesically complete spaces. It is an
important question to determine to what extent these are the only sources:

Conjecture I.16 (Ballmann–Buyalo [BB08]). Let X be a proper cocompact CAT(0)
space. If X satisfies (Pn) for some n ≥ 2, then X is a symmetric space, or a Euclidean
building, or a (non-trivial) CAT(0) product space.

This conjecture is closely related to the the phenomenon called Rank Rigidity. It
is known in case X is a manifold of non-positive curvature, see [Bal95] and references
therein. It has also been verified when X is a CAT(0) cell complex of dimension 2 or
3 by Ballmann and Brin [BB95, BB00]. It is true if X has dimension n by Kleiner’s
theorem (Theorem I.12 above). It is moreover true when X is a CAT(0) cube complex
of arbitrary dimension, see [CS11] as well as M. Sageev’s lecture notes in this volume.

7. Exercises

Exercise I.1. Let X be a proper metric space and let G ≤ Is(X).
Show that the orbit space G\X is compact if and only if there is a ball in X which
meets every G-orbit.

Exercise I.2. Let (X1, d1) and (X2, d2) be CAT(0) spaces. Given p ∈ [1,∞), let
dp be the metric on the cartesian product X = X1 ×X2 defined by dp = dp

1 + dp
2. Show

that (X, dp) is a CAT(0) space if and only if p = 2.

Exercise I.3. (i) Let X = X1 ×X2 be a CAT(0) product space. Show that X is
geodesically complete if and only if X1 and X2 are both so.

(ii) Show that every CAT(0) space embeds as a convex subset in some geodesically
complete CAT(0) space.

(iii) Show that Theorem I.8(ii) fails for spaces that are not locally compact.

Exercise I.4. Let M = SLn(R)/SO(n) and d : M × M → R be the map defined
by (4.1).

(i) Show that d is well defined, i.e. it does not depend on the choice of a diagonalizing
basis.

(ii) Given a positive definite n × n matrix A, we denote by λ(A) the vector formed
by its eigenvalues put in non-increasing order. A result by Lidskii (see [Bha97])
asserts that for A,B positive definite, one has log(λ(AB)) ≺ log λ(A) + log λ(B).
The expression (x1, . . . , xn) ≺ (y1, . . . , yn) for two non-increasing sequences means
that the latter sequence majorizes the former, i.e.

∑k
i=1 xi ≤

∑k
i=1 yi for all k,

and
∑n

i=1 xi =
∑n

i=1 yi.

Use Lidskii’s result to show that (M, d) is a metric space.
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(iii) (Open problem) Find a direct proof that (M, d) is a CAT(0) space, without using
differential geometry.



LECTURE II

Geometric density

1. A geometric relative of Zariski density

Let X be a CAT(0) space and G < Is(X) be a group of isometries. The G-action
is called minimal if G does not preserve any non-empty closed convex subset X ′ ( X.
The group G is called geometrically dense if G acts minimally and without a fixed
point at infinity on X. (For a brief recap on points at infinity, see §2 below.)

This notion can be viewed as coarsely related to Zariski density in the case of linear
groups. Indeed, if X is a symmetric space of non-compact type, then any geometrically
dense subgroup G < Is(X) is Zariski dense. This can be deduced from the Karpelevic–
Mostow theorem. If in addition X is irreducible of rank ≥ 2, the converse holds by a
theorem of Kleiner and Leeb [KL06]. In rank one symmetric spaces, there exist Zariski
dense subgroups which do not act minimally (see Exercise II.10).

A CAT(0) space is called irreducible if it does not split as a CAT(0) product space
in a non-trivial way. The symmetric space associated with a simple Lie group is always
irreducible, as is the Euclidean building associated with a simple algebraic group over a
local field. The following property of the full isometry group of a proper CAT(0) space
could be viewed as some very weak form of ‘simplicity’.

Theorem II.1 ([CM09a, Th. 1.10]). Let X be a proper CAT(0) space which is
irreducible, not isometric to the real line, and has finite-dimensional visual boundary
∂X.

Given a geometrically dense subgroup G < Is(X), any normal subgroup N � G is
either trivial or geometrically dense.

If X = R is the real line, a non-trivial normal subgroup N � G still acts minimally
on X, but may obviously fix the two elements of ∂X.

The notion of dimension referred to in the theorem and appearing frequently in the
rest of these notes, is Kleiner’s geometric dimension defined in the previous lecture.
The condition that X has finite-dimension visual boundary ∂X is automatic if X is
cocompact (see [Kle99, Th. C]), or if X itself is finite-dimensional (see [CL10, Prop. 2.1]).

2. The visual boundary

The visual boundary of X is the set of asymptotic classes of geodesic rays. It is
denoted by ∂X. The visual boundary ∂X comes equipped with two different natural
topologies, which are both preserved by Is(X):

• The cone topology, which is defined by viewing X ∪ ∂X as the space of
all geodesic segments and rays issuing from some fixed base point, endowed
with the topology of uniform convergence on bounded subsets. That topology
is independent of the choice of a base point. Moreover, when X is proper,
the space X ∪ ∂X is compact by the Arzela–Ascoli theorem, the subset X
is open and dense, and ∂X is closed, hence compact. In particular X ∪ ∂X
with the cone topology is a compactification of X, usually called the visual
compactification.

9
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• The topology induced by the angular metric. The angle between two points
ξ, η ∈ ∂X is defined by

∠(ξ, η) = sup
x∈X

∠x(ξ, η),

where ∠x(ξ, η) denotes the Alexandrov angle at x between the unique geodesic
rays issuing from x and pointing to ξ and η respectively. The angular metric is
indeed a metric, and the associated topology is finer (and often strictly finer)
than the cone topology.

For a detailed treatment of the visual boundary, see [BGS85, §3–4], [Bal95, § II.1–
II.4] and [BH99, §II.8–II.9]. A fundamental fact is that if X is complete, then the
metric space (∂X, ∠) is a complete CAT(1) space, see [BH99, Th. II.9.20]. Here we
shall content ourselves with mentioning a few facts needed in the sequel.

It is a well known fact that a bounded subset Z of a complete CAT(0) space X
admits a unique circumcenter, i.e. a unique point c such that Z is contained in the
closed ball B(c,R) of radius R around c, where c is defined as c = infx∈X{r ∈ R | Z ⊂
B(x, r)}. The number r is called the circumradius of Z. In CAT(1) geometry, a
similar statement holds provided the subset Z is assumed to have circumradius < π/2,
see [BH99, Prop. II.2.7]. The following important result, due to Balser and Lytchak,
shows that this can be extended to sets of circumradius ≤ π/2 provided the set Z is
convex and finite-dimensional:

Theorem II.2 ([BL05, Prop. 1.4]). Let Z be a finite-dimensional complete CAT(1)
space. If Z has circumradius π/2, then the set of circumcenters of Z has circumradius <
π/2. In particular the full isometry group Is(Z) fixes a point in Z. �

We emphasize that Theorem II.2 fails without the finite-dimensionality assumption,
see Exercise II.3. The typical situation in which we shall apply Theorem II.2 is the
following: the space Z will be a closed convex subset of the visual boundary ∂X of
a proper CAT(0) space X. As mentioned above, the finite-dimensionality hypothesis
is automatically satisfied if X is cocompact, since the full visual boundary ∂X is then
finite-dimensional. It should be noted that the circumradius of Z as a subset of X may be
smaller than the intrinsic circumradius of Z, defined by infz∈Z{r ∈ R | Z ⊂ B(z, r)}.
It is of course the intrinsic circumradius that has to be used when applying Theorem II.2
to a closed convex subset Z ⊆ ∂X. In the situations we shall encounter, the upper bound
of π/2 on the circumradius will be deduced from the following observation.

Proposition II.3. Let X be a proper CAT(0) space, and (Yi)i∈I be a descending
chain of closed convex subsets.

If
∩

i∈I Yi is empty, then
∩

i∈I ∂Yi is a non-empty closed convex subset of ∂X, whose
circumradius is at most π/2.

Proof. Pick x ∈ X and let yi be its orthogonal projection to Yi. If the set (yi)i∈I

is bounded, then
∩

i∈I Yi is non-empty. Assume that this is not the case. We can then
extract a countable chain (Yi(n))n≥0 such that the sequence (yi(n)) converges to some
boundary point ξ ∈ ∂X with respect to the cone topology. In particular

∩
n Yi(n) is

empty and Z =
∩

n ∂Yi(n) =
∩

i Yi. Notice moreover that ξ belongs to Z.
It remains to show that for each η ∈ Z, we have ∠(ξ, η) ≤ π/2. To this end,

observe that there is a sequence y′n ∈ Yi(n) converging to η in the cone topology.
We have π/2 ≤ ∠yi(n)

(x, y′n) by the properties of the projection [BH99, Prop. II.2.4],
and ∠yi(n)

(x, y′n) ≤ ∠yi(n)
(x, y′n) by the CAT(0) condition, where ∠ denotes the an-

gle in a Euclidean comparison triangle. It follows that ∠x(yi(n), y
′
n) ≤ π/2. By

[BH99, Prop. II.9.16], this implies that ∠(ξ, η) ≤ π/2, as desired. �
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3. Convexity

A map f : X → R is called convex if for each geodesic ρ : I → X, the composed
map f ◦ ρ : I → R is convex. In that case, sublevel sets of f are convex subsets of X.
Here are a few examples:

• Given a point p ∈ X, the distance to p, namely

dp : X → R : x 7→ d(x, p)

is convex: this follows right away from the CAT(0) condition. Its sublevel sets
are nothing but balls around p.

• Given a complete convex subset Y ⊂ X, the distance to Y , namely

dY : X → R : x 7→ d(x, Y ) = inf
y∈Y

d(x, y)

is convex, see [BH99, Cor. II.2.5]. Its sublevel sets are called tubular neigh-
bourhoods of Y and denote by Nr(Y ) = f−1([0, r]).

• Given a geodesic ray ρ : [0,∞) → X, the function bρ : X → R defined by

bρ(x) = lim
t→∞

d(x, ρ(t)) − t

is well defined, convex and 1-Lipschitz, see Exercise II.7. It is called the Buse-
mann function associated with ρ. Its sublevel sets are called horoballs
centered at the endpoint ξ = ρ(∞). If ρ′ is another geodesic ray having ξ as
endpoint, then the Busemann functions bρ and bρ′ differ by a constant, so that
the collection of horoballs centered at ξ does not depend on the choice of a
geodesic ray pointing to ξ.

• Given an isometry g ∈ Is(X), its displacement function dg : X → R defined
by dg(x) = d(x, g.x) is convex and 2-Lipschitz, see Exercise II.5. The infimum
of the displacement function is called the translation length, and is denoted
by |g|. The sublevel set f−1([0, |g|]) = f−1(|g|), which is thus closed and
convex, is denoted by Min(g). It is non-empty if and only if g is not parabolic.

The existence of isometries with a constant displacement function witnesses the
presence of a Euclidean factor:

Proposition II.4 ([BH99, Th. II.6.5]). A CAT(0) space X admits a non-trivial
isometry with constant displacement function if and only if X splits as a product X ∼=
R × X ′. �

We record the following consequence:

Corollary II.5. Let X be a CAT(0) space without non-trivial Euclidean factor.
For any group G < Is(X) acting minimally on X, the centraliser ZIs(X)(G) is trivial.

In particular so is the center Z (G).

Proof. Let g ∈ ZIs(X)(G). Then the displacement function dg is G-invariant in
the sense that dg is constant on each G-orbit. In particular G preserves all sublevel sets
of dg, which are closed and convex. By minimality, it follows that dg has no non-trivial
sublevel set; in other words dg is constant, and Proposition II.4 concludes the proof. �

Here is another straightforward application of convexity.

Lemma II.6. Let X be a complete CAT(0) space. Given G < Is(X) and two points
y, z ∈ X, we have ∂Conv(G.y) = ∂Conv(G.z), where Conv(Y ) denotes the convex hull
of Y , and G.y the G-orbit of y.
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Proof. Set Y = Conv(G.y) and Z = Conv(G.z). Then Y and Z are both G-
invariant. Setting r = d(Y, z), we obtain G.z ⊆ Nr(Y ). Since Nr(Y ) is closed and
convex, this yields Z ⊆ Nr(Y ). Similarly Y ⊆ Nr(Z), and hence Y and Z are a
bounded Hausdorff distance apart. Therefore ∂Y = ∂Z, see Exercise II.1. �

Lemma II.6 allows one to associate a canonical subset ∆G ⊆ ∂X to the group G,
defined as the visual boundary of the closed convex hull of some (arbitrarily chosen)
orbit. We call ∆G the convex limit set of G. It contains (generally as a proper subset)
the usual limit set ΛG, which is defined as the intersection with the visual boundary
∂X of the closure of some G-orbit in the union X∪∂X, endowed with the cone topology.
Notice that the convex limit set is defined as the visual boundary of a complete CAT(0)
subspace of X, and is thus a CAT(1) space. In other words, it is closed and convex in
∂X.

4. A product decomposition theorem

Let X be a complete CAT(0) space and ℓ be a geodesic line in X. It is then a
standard fact (see [BH99, Th. II.2.14]) that the union P(ℓ) of all geodesic lines having
the same endpoints as ℓ in the visual boundary, is a closed convex subset of X, which
splits as a CAT(0) product P (ℓ) ∼= R × C. This fact is actually the key point in the
proof of Proposition II.4. Our next task is to extend that statement to more general
subspaces than lines. To this end, we need an additional piece of terminology.

A closed convex subset Y ⊆ X is called boundary-minimal if for every closed
convex subset Z ( Y , we have ∂Z ( Y . For instance, a geodesic line is boundary-
minimal while a geodesic ray is not.

Theorem II.7 ([CM09a, Prop. 3.6]). Let X be a proper CAT(0) space and let ∆ ⊆
∂X. Set

C∆ = {Y ⊆ X | Y is boundary-minimal and ∂Y = ∆}.
Then the union

∪
C∆ is a closed convex subset which splits as a CAT(0) product

∪
C∆

∼=
Y × C. Moreover C∆ coincides with the set of fibers

{
Y × {c} | c ∈ C

}
.

Proof. We shall only prove the key point, namely the fact that for any two sets
Z1, Z2 ∈ C∆, the distance function to Z1, denoted by dZ1 , is constant on Z2.

Let Z ′
2 ⊆ Z2 be a non-empty sublevel set of the restriction of dZ1 to Z2. Thus there

is some r > 0 such that Z ′
2 = {z ∈ Z2 | dZ1(z) ≤ r}, and Z ′

2 is closed and convex.
Let then ξ ∈ ∆ and pick any p ∈ Z ′

2. Let also ρ : [0,∞) → X be the geodesic ray
issuing from p and pointing to ξ. Since ξ ∈ ∆ = ∂Z2 and since Z2 is closed and convex,
it follows that the point ρ(t) belongs to Z2 for all t. Since ξ also belongs to ∂Z1, the
ray ρ([0,∞)) is entirely contained in a tubular neighbourhood of Z1. It follows that the
map t 7→ dZ1(ρ(t)) is bounded convex function. It must therefore be non-increasing.
Since ρ(0) = p ∈ Z ′

2, it follows that ρ(t) ∈ Z ′
2 for all t. In particular ξ belongs to ∂Z ′

2.
This proves that ∂Z ′

2 = ∂Z2. Since Z2 is boundary-minimal, we deduce that Z ′
2 = Z2

which proves that the function dZ1 is constant on Z2, as claimed.
The rest of the proof of the theorem uses the Sandwich Lemma [BH99, Ex. II.2.12],

and is similar to the special case of the parallel set of a geodesic line mentioned above.
Further details are provided in [CM09a, Prop. 3.6]. �

Remark that the set C∆ is potentially empty.

5. Geometric density of normal subgroups

We are now in a position to complete the proof of geometric density for normal
subgroups.
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Proof of Theorem II.1. Let N � G be a non-trivial normal subgroup and ∆ =
∆N be its convex limit set.

If ∆ is empty, then the N -orbits are bounded and the fixed point set XN of N
is thus a non-empty closed convex G-invariant subset. By minimality, we must have
XN = X, whence N is trivial.

We assume henceforth that ∆ is non-empty and consider the set C∆.
Suppose now that C∆ is empty. Then by Zorn’s lemma, there exists a chain of

closed convex subspaces (Yi)i∈I such that ∂Yi = ∆ for all i, and
∩

i Yi = ∅. By
Proposition II.3, it follows that ∆ has intrinsic circumradius at most π/2. Since ∆ is
G-invariant, Theorem II.2 implies that G fixes a point in ∂X, a contradiction.

Thus C∆ is non-empty. By Theorem II.7, the union
∪

C∆ is then a non-empty closed
convex subset splitting as a product of the form Y ×C with all fibers Y ×{c} belonging
to C∆. Since C∆ is G-invariant and since the G-action on X is minimal, it follows that
X =

∪
C∆. Since X is irreducible, the product decomposition X ∼= Y × C must be

trivial. Thus either Y or C is reduced to a singleton. The former case is impossible,
since it would mean that the elements of C∆ are singletons, which is absurd since they
have a non-empty visual boundary. Thus X ∼= Y × {c}, which implies that X belongs
to C∆. Thus X is boundary-minimal. It follows that N -acts minimally on X. Indeed,
given a non-empty closed convex N -invariant subset Z ( X, we have ∆N ⊆ ∂Z ⊆ ∂X.
Since ∆N = ∂X, we have ∂Z = ∂X, whence Z = X since X is boundary-minimal.

This proves that any non-trivial normal subgroup N � G acts minimally on X. It
remains to show that N does not fix any point at infinity. Suppose on the contrary that
N fixes some ξ ∈ ∂X. Then the commutator subgroup [N, N ] annihilates the Busemann
character centered at ξ (see Exercise II.7) and therefore stabilises each horoball around ξ.
In particular it does not act minimally on X. But N being normal in G, its commutator
subgroup [N,N ] is also normal in G, and is thus trivial by the first part of the proof.
Thus N is abelian. This is absurd, since a group acting minimally on CAT(0) space
without Euclidean factor must be center-free by Corollary II.5. �

Remark that the finite-dimensionality of ∂X was only used through the application
of Theorem II.2. It is an interesting question to determine whether Theorem II.1 holds
if X is a proper CAT(0) space with infinite-dimensional visual boundary.

Clearly Theorem II.1 can be bootstrapped, thereby giving information on subnormal
subgroups:

Corollary II.8. Let X be a proper cocompact CAT(0) space which is irreducible,
and not isometric to the real line. Let G < Is(X) be a geometrically dense subgroup and
H < G be a non-trivial subnormal subgroup. Then H is still geometrically dense; in
particular:

(i) ZG(H) = 1,
(ii) H does not split non-trivially as a direct product,
(iii) H is not soluble,
(iv) H does not have fixed points in X.

Proof. That H is geometrically dense is immediate from an iterated application
of Theorem II.1, and (iv) follows right away. Part (i) is a consequence of Corollary II.5,
Part (ii) follows from (i). Part (i) also implies that a subnormal subgroup cannot be
abelian, which implies (iii). �

6. Exercises

Exercise II.1. Let X be a CAT(0) space and Y, Z ⊆ X be two convex subsets.
Show that if Y and Z are a bounded Hausdorff distance apart, then ∂Y = ∂Z. The
converse does not hold in general.
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Exercise II.2. Construct an example of a proper cocompact CAT(0) space X whose
full isometry group is minimal, but not geometrically dense.

Exercise II.3. Show that Theorem II.2 fails if Z is infinite-dimensional. (Hint: a
counterexample may be constructed as a closed convex subset of the unit sphere in a
Hilbert space).

Exercise II.4. Let X be a proper CAT(0) space and let G < Is(X).
(i) Show that if G does not fix any point in ∂X, then G stabilises a non-empty closed

convex subset X ′ ⊆ X on which its action is minimal. This minimal G-invariant
subspace X ′ need not be unique, even if G acts without fixed point in X.

(ii) Show that if G acts cocompactly on X, then the same conclusions hold.
(iii) Show that if X is geodesically complete and G acts cocompactly, then G acts

minimally.

Exercise II.5. Show that the displacement function of an isometry of a CAT(0)
space is convex and 2-Lipschitz.

Exercise II.6. Let X be a metric space and G < Is(X). A function f : X → R is
called G-invariant if f is constant on G-orbits, namely f(g.x) = f(x) for all x ∈ X
and g ∈ G. A function f : X → R is called G-quasi-invariant if for all g ∈ G, the
map X → R : x 7→ f(g.x) − f(x) is constant. Assuming this is the case, we denote the
difference by c(g). Show that the map

G → R : g 7→ c(g)

is a homomorphism.

Exercise II.7. Let X be a CAT(0) space.
(i) Show that Busemann functions associated with geodesic rays in X are well defined,

convex and 1-Lipschitz.
(ii) Show that any Busemann function associated with a geodesic ray pointing to ξ ∈ X

is quasi-invariant under the stabiliser Gξ of ξ in the full isometry group G = Is(X).
(iii) Show that the corresponding homomorphism Gξ → R defined as in Exercise II.6

depends only on ξ. This homomorphism is called the Busemann character at
ξ.

Exercise II.8. Let X be a complete CAT(0) space and G < Is(X).
(i) Show that if X is geodesically complete, then every bounded convex function is

constant.
(ii) Show that if X is boundary-minimal, then every bounded convex function is con-

stant.
(iii) Show that G acts minimally on X if and only if every continuous G-invariant

convex function is constant.
(iv) Show that G is geometrically dense if and only if every continuous G-quasi-

invariant convex function is constant.

Exercise II.9. An action of a group G on a topological space Z by homeomorphism
is called (topologically) minimal1 if G does not preserve any non-empty closed subset
Z ′ ( Z. Equivalently, the G-action is minimal if and only if every G-orbit is dense in
Z.

Let M denote the symmetric space of G = SLn(R). Show that the G-action on the
visual boundary ∂M is minimal if and only if n = 2.

1This standard notion of minimality in topological dynamics should not be confused with the notion
of minimality introduced above in the realm of CAT(0) geometry.
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Exercise II.10. Let G = SL2(R).
(i) Show that a subgroup Γ < G is Zariski dense if and only if Γ is not virtually

soluble.
(ii) Show that G contains Zariski dense subgroups that are not geometrically dense as

isometry groups of the hyperbolic plane H2.

Exercise II.11. Let X be a proper CAT(0) space.
(i) Show that if X is boundary-minimal, then ∂X has circumradius > π/2.
(ii) Show that if X has finite-dimensional boundary and if Is(X) acts minimally, then

X is boundary-minimal.





LECTURE III

The full isometry group

1. Locally compact groups

Our strategy in studying the full isometry group of a proper CAT(0) space is to
combine geometric arguments with information arising from the structure theory of
locally compact groups. The following classical fact shows that locally compact groups
pop up naturally in our setting:

Theorem III.1. Let X be a proper metric sapce. Then the full isometry group Is(X),
endowed with the compact open topology, is a locally compact (Hausdorff) topological
group, and the natural action of Is(X) on X is continuous and proper.

Proof. See Exercise III.1. �
The continuity of the action of G = Is(X) on X means that the map G×X → X

is continuous. The properness of the action means that for each ball B in X, the set
{g ∈ G | g.B ∩ B ̸= ∅} has compact closure in G.

A deep result in the theory of locally compact groups which we shall invoke is the
following:

Theorem III.2 (Gleason; Montgomery–Zippin [MZ55, Th. IV.4.6]). Let G be a
connected locally compact group. Then any identity neighbourhood in G contains a
compact normal subgroup K � G such that G/K is a Lie group.

2. The isometry group of an irreducible space

Combining the results obtained thus far yields the following.

Corollary III.3. Let X be a proper CAT(0) space with finite-dimensional bound-
ary, such that X is irreducible and Is(X) is geometrically dense.

Then Is(X) is either a virtually connected simple Lie group, or Is(X) is totally
disconnected (potentially discrete).

Proof. Let G = Is(X). Thus G is a locally compact group by Theorem III.1.
The connected component of the identity G◦ is a closed normal subgroup of G. By
Theorem III.1, any compact subgroup of G has a bounded orbit, hence a fixed point in
X. Corollary II.8(iv) thus ensures that G the only compact subnormal subgroup of G
is trivial. In particular G◦ has no non-trivial compact normal subgroup, and must thus
be a connected Lie group by Theorem III.2.

Corollary II.8(iii) implies that the solvable radical, as well as the center, of G◦ is
trivial, hence G◦ is a center-free semi-simple Lie group. It is thus a product of simple
groups, which can have at most one non-trivial factor by Corollary II.8(ii). This shows
that G◦ is a centerfree simple Lie group.

A consequence of the classification of simple Lie groups is that the outer automor-
phism group Out(G◦) is finite. The conjuation action of G on G◦ yields a continuous
map φ : G → Out(G◦), whose kernel is thus a closed normal subgroup of G of finite
index. Notice that Ker(φ) = G◦ · ZG(G◦). By Corollary II.8(i), either G◦ or its cen-
traliser must be trivial. In the former case, the group G is totally disconnected. In the

17
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latter case, the identity component G◦ has finite index in G, so that G is virtually a
connected simple Lie group. �

It is not surprising that, in the Lie group case of Corollary III.3, much finer infor-
mation on X can be extracted from the structure theory of simple Lie groups. Each
maximal compact subgroup K < G = Is(X) fixes a point in X, and we thus get an
equivariant embedding of the symmetric space M = G/K into X. Notice however that
this embedding need not be isometric, even up to scaling. Explicit examples of this phe-
nomenon have recently been constructed by Monod and Py [MP12] with G = SO(n, 1)
acting cocompactly on a proper CAT(0) space X, containing no isometric (and even ho-
mothetic) copy of the hyperbolic space Hn. Of course, the cocompactness of the action
implies that X is quasi-isometric to the symmetric space of G. That X is genuinely
isometric to the symmetric space is however true if one imposes in addition that X be
geodesically complete:

Theorem III.4 ([CM09a, Th. 7.4]). Let X be a locally compact geodesically complete
CAT(0) space and G be a virtually connected semi-simple Lie group acting continuously,
properly and cocompactly on X by isometries.

Then X is equivariantly isometric to the symmetric space of G (up to an appropriate
scaling of each irreducible factor).

The same conclusion holds under the slightly weaker hypotheses that the action is
minimal with full limit set, and that the boundary of X is finite-dimensional.

One should next analyze the totally disconnected case of Corollary III.3. Since that
case includes the situation that Is(X) be discrete, conclusions in the same vein as those
of Theorem III.4 cannot be expected. The following useful facts can however be derived
under the hypothesis of geodesic completeness:

Theorem III.5 ([CM09a, §6]). Let X be a locally compact geodesically complete
CAT(0) space and G be a totally disconnected locally compact group acting continuously
and properly on X by isometries. Then:

(i) The action is smooth in the sense that the pointwise stabiliser of every open set
is open in G.

(ii) Every G-orbit is discrete.
(iii) If the G-action is cocompact, then G does not contain parabolic isometries.
(iv) If the G-action is cocompact, then X admits a locally finite G-equivariant decom-

position into convex pieces, such that the piece σ(x) supporting a point x ∈ X is
defined as the fixed-point-set of the stabiliser Gx.

Remark that if X is geodesically complete, any group acting cocompactly automat-
ically acts minimally (see Exercise II.4). Therefore, the following dichotomy follows
immediately by combining the previous three results.

Corollary III.6. Let X be a locally compact, geodesically complete, irreducible
CAT(0) space such that Is(X) acts cocompactly without a fixed point at infinity. Then
either Is(X) acts transitively on X, or Is(X) has discrete orbits.

It should be emphasized that this dichotomy no longer holds without the hypothesis
that Is(X) has no fixed point at infinity. Concrete examples illustrating this matter of
fact are provided by the millefeuille spaces constructed in [CCMT12, §7].
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3. de Rham decomposition

In the previous section, we focused on irreducible CAT(0) spaces. One should next
show that the general case reduces to the irreducible one. This will require to impose
suitable assumptions, since a ‘de Rham decomposition theorem’ cannot be expected in
full generality for CAT(0) spaces, due to the possible presence of infinite-dimensional
pieces. This happens even for locally compact spaces: a CAT(0) space can even be com-
pact and infinite-dimensional, as is easily seen by considering compact convex subsets
of a Hilbert space.

The following remarkable result, due to Foertsch and Lytchak, shows that infinite-
dimensionality is the only obstruction to a ‘de Rham decomposition’ at a very broad
level of generality:

Theorem III.7 (Foertsch–Lytchak [FL08]). Let X be a finite-dimensional geodesic
metric space. Then X admits a canonical product decomposition

X ∼= Rn × X1 × · · · × Xp,

where n, p ≥ 0, and where each factor Xi is irreducible, and neither reduced to a sin-
gleton, nor isometric to the real line (the right-hand side is given the ℓ2-metric). Every
isometry of X preserves the decomposition, up to a permutation of possibly isometric
factors among the Xi. In particular Is(Rn) × Is(X1) × · · · × Is(Xp) is a finite-index
normal subgroup of Is(X).

In the case of CAT(0) spaces, we have the following analogue:

Theorem III.8 ([CM09a, Cor. 5.3]). Let X be a proper CAT(0) space with finite-
dimensional visual boundary ∂X, and such that Is(X) acts minimally.

Then X admits a canonical CAT(0) product decomposition, with the same properties
as in Theorem III.7.

The latter statement cannot be deduced directly from Theorem III.7, since the
hypotheses do not imply in general that X itself be finite-dimensional. A detailed proof
of Theorem may be found in [CM09a, §5.A]. An alternative approach in case X is
cocompact can be taken using the following.

Proposition III.9. Let Z be a finite-dimensional, complete CAT(1) space. Then
Z admits a canonical decomposion as a join

Z ∼= Sn ◦ Z1 ◦ · · · ◦ Zp,

where Sn is the Euclidean n-sphere and each Zi is not a sphere and does not decompose
non-trivially as a join for all i. Every isometry of Z preserves the decomposition, up to
a permutation of possibly isometric factors among the Zi.

Proof. Let X be the Euclidean cone over Z, defined as in [BH99, Def. I.5.6]. By
Berestovskii’s theorem [BH99, Th. II.3.14], the space X is a CAT(0) space, which is
finite-dimensional since Z is so. (However X is not locally compact in general.) Every
isometry of Z extends to an isometry of the cone X. The conclusion now follows by
applying Theorem III.7 to X. �

One may now conclude the proof of Theorem III.8 as follows.

Proof of Theorem III.8. By Exercise II.11, the space X is boundary-minimal.
It follows that for every product decomposition X ∼= Y1 × · · · × Yq, each factor Yi

is unbounded (see Exercise II.1) and thus has a non-empty visual boundary ∂Yi. In
other words, every product decomposition of X determines a join decomposition of the
visual boundary ∂X, the factors in both decompositions being canonically in one-to-one
correspondence. From Proposition III.9, it follows that X admits at least one product
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decomposition X ∼= Rn×X1×· · ·×Xq with a maximal Euclidean factor Rn and finitely
many irreducible non flat factors.

At this point, we know that X admits at least one decomposition as a product of flat
and irreducible factors, and that each such decomposition corresponds to some regroup-
ing of factors in the canonical join decomposition of ∂X afforded by Proposition III.9.
The desired result now follows from Proposition III.10 below, which implies that the
visual boundary of an irreducible factor of X does not admit any non-trivial join de-
composition. Indeed, this shows that the various factors in the maximal decompositions
of X and ∂X are canonically in one-to-one correspondence, so that the canonicity of
the decomposition of X follows from that of ∂X. �

Proposition III.10. Let X be a proper CAT(0) space such that Is(X) acts cocom-
pactly and minimally.

Then X admits a non-trivial product decomposition X = X1 ×X2 if and only if ∂X
admits a join decomposition ∂X = ∆1 ◦ ∆2 with ∆i = ∂Xi.

Proof. (See [BH99, Th. II.9.24] for the case when X is geodesically complete.) The
‘only if’ part is clear. We assume henceforth that ∂X = ∆1 ◦∆2. Since X is cocompact,
it follows from [GO07] that every point ξ in ∂X admits some opposite ξ′, i.e. ξ′ is such
that ξ and ξ′ are the endpoints of some geodesic line. Moreover, given ξ ∈ ∆i, any point
ξ′ opposite ξ also belongs to ∆i. By intersecting two horoballs respectively centered at ξ
and ξ′, one constructs closed convex subsets of X whose visual boundary is exactly ∆3−i

(see [CM09a, Lem. 3.5]). From Exercise II.11, we infer that X is boundary-minimal,
and hence that each factor ∆i must have radius > π/2. Therefore, the set C∆i from
Theorem II.7 is non-empty by Proposition II.3. Theorem II.7 then provides a product
decomposition X = X1 × X2 such that ∂Xi = ∆i, as desired. �

The possibility that Is(X) may fix a point at infinity is not excluded in Theorem III.8,
and does indeed occur sometimes (see Exercise II.2). However, assuming that the full
isometry group is geometrically dense, the results obtained thus far assemble to yield
the following, which already sheds some light on the conclusions of Theorem I.14.

Corollary III.11. Let X be a locally compact geodesically complete CAT(0) space.
Assume that Is(X) acts cocompactly without a fixed point at infinity. Then X admits a
canonical product decomposition

X ∼= M1 × · · · × Mp × Rn × Y1 × · · · × Yq,

which is preserved by all isometries upon permutations of isomorphic factors, where Mi

is an irreducible symmetric space of non-compact type, and Yj has a totally disconnected
isometry group, which acts smoothly and does not contain any parabolic isometry.

Proof. Since X is geodesically complete, any cocompact group action is minimal
(see Exercise II.4). Theorem III.8 provides a canonical product decomposition for X,
and the various properties of the irreducible non Euclidean factors were established in
Corollary III.3 and Theorems III.4 and III.5. �

4. Exercises

Exercise III.1. Let X be a proper metric space and let Is(X)p.o. denote the full
isometry group of X endowed with the point-open topology. Let also φ : Is(X) → XX

be the natural embedding of Is(X) in the space XX of all maps from X to X, endowed
with the product topology.

(i) Show that φ(Is(X)) is closed in XX .
(ii) Show that φ : Is(X)p.o. → XX is a homeomorphism onto its image.
(iii) Deduce from (i) and (ii) that Is(X)p.o. is locally compact.
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(iv) Show that the point-open and the compact-open topology on Is(X) coincide.
(v) Conclude the proof of Theorem III.1.

Exercise III.2. Let G be a locally compact group acting by isometries on a proper
metric space X.

(i) Show that the following conditions are equivalent:
(a) the G-action is continuous,
(b) the orbit maps G → X : g 7→ g.x are continuous for all x ∈ X,
(c) the homomorphism α : G → Is(X) induced by the action is continuous.

(ii) Assuming that the G-action is continuous, show that the following conditions are
equivalent:
(a) the G-action is proper,
(b) the homomorphism α : G → Is(X) induced by the action is continuous is

proper.
If in addition G is separable, then those conditions are also equivalent to:
(c) Ker(α) is compact and α(G) is closed in Is(X).

Exercise III.3. Let X be a locally compact geodesically complete CAT(0) space.
(i) Prove point (ii) in Theorem III.5 using point (i).
(ii) Show that if a non-discrete totally disconnected locally compact group G acts

continuously and properly on X, then some geodesics in X must branch.
(iii) Show that if Is(X) is geometrically dense and every geodesic can be prolonged into

a unique bi-infinite geodesic line, then Is(X) is a Lie group.





LECTURE IV

Lattices

1. Geometric Borel density

The phenomenon of geometric density of normal subgroups has been discussed in
Theorem II.1. We shall now present a related statement for lattices. In the light of
the analogy between geometric density and Zariski density, this could be interpreted as
a geometric version of the Borel density theorem (in fact, the classical statement can
indeed be deduced from the geometric version, see [CM09b, Prop. 2.8]).

Theorem IV.1 ([CM09b, Th. 2.4]). Let X be a proper CAT(0) space without non-
trivial Euclidean factor. Let G be a locally compact group and φ : G → Is(X) be a
continuous homormorphism.

If φ(G) is geometrically dense, then so is φ(Γ) for each lattice Γ < G (and, more
generally, for each closed subgroup of finite covolume).

The proof consists in two parts: the first is to show the absence of Γ-fixed points at
infinity, which is established by adapting an argument of Adams and Ballmann [AB98];
the second is to show that the Γ-action is minimal. Since some technicalities can be
avoided when Γ is assumed cocompact, we will content ourselves with a discussion of
the second part of the proof in that special case.

Proof of Theorem IV.1. For simplicity, we assume that Γ < G is cocompact
and only discuss the proof of Γ-minimality; for a complete proof in the general case, the
reader should consult [CM09b].

Hence we admit that the first part of the proof has already been accomplished,
namely that φ(Γ) does not fix any point in ∂X. It follows that there is a non-empty
Γ-invariant closed convex subsets Y ⊆ X on which Γ acts minimally (see Exercise II.4).

We need to show that Y = X. To this end, consider the distance function dY to Y .
Since Γ is cocompact in G, it follows that for each x ∈ X, the map G → R : g 7→ dgY (x)
is continuous and bounded. In particular the function

f : X → R : x 7→
∫

G/Γ
dgY (x)dg

is well defined. Moreover it is convex and 2-Lispschitz since dY is so. By construction,
it is G-invariant. Since G acts minimally on X, the map f must be constant. It follows
that for almost all gΓ ∈ G/Γ, the map dgY is affine, i.e. it is both convex and concave
(see Exercises IV.1 and IV.2).

We have seen that there exists g ∈ G such that dgY is affine. Since dhY = dY ◦ h−1

for all h ∈ G, we infer that dhY is affine for all h; in particular so is dY . It follows from
Exercise IV.1(ii) that the level sets of dY are all convex.

Let Y ′ be a level set of dY . Thus Y ′ is closed, convex and Γ-invariant. Since
Y is Γ-invariant and Γ-minimal, the restriction of dY ′ to Y is also constant. Using
the Sandwich Lemma [BH99, Ex. II.2.12], one may conclude that Y ′ is equivariantly
isometric to Y via the orthogonal projection. This implies that Y ′ is Γ-minimal, and
that X decomposes as a product X ∼= Y × C, so that the fibers Y × {c} are precisely
the minimal Γ-invariant closed convex subsets.

23
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If C contains two distinct points, we define m as their midpoint and consider the
fiber Y ′′ = Y × {m}. Since it is a minimal Γ-invariant subspace, the arguments above
show that dY ′′ is affine. This is impossible by Exercise IV.1(iii). Thus C is reduced to
a singleton, and hence Γ acts minimally. �

As in the case of normal subgroups, Theorem IV.1 yields algebraic restrictions on
lattices:

Corollary IV.2. Let X be a proper CAT(0) space without non-trivial Euclidean
factor, G < Is(X) be a closed subgroup which is geometrically dense and Γ be a lattice
in G. Then:

(i) ZG(Γ) = 1.
(ii) If Γ is finitely generated, then NG(Γ) is a lattice (containing Γ as a finite index

subgroup).

Proof. (i) follows from Theorem IV.1 and Corollary II.5. For (ii), observe that
the finite generation assumption implies that Aut(Γ) is countable. Hence so is NG(Γ)
by (i). Since the normaliser of a closed subgroup is closed, it follows that NG(Γ) is a
countable locally compact group, and must thus be discrete by Baire’s category theorem.
A discrete subgroup containing a lattice is itself a lattice, whence the conclusion. �

2. Fixed points at infinity

Most results obtained so far used the condition that Is(X) be geometrically dense
as a hypothesis. Our next task is to discuss how severe this restriction is.

If a group G acts cocompactly, or without a fixed at infinity, on X, then there
always exists some non-empty G-invariant closed convex subset Y ⊆ X on which G
acts minimally (see Exercise II.4). On the other hand, one cannot expect that the full
isometry group Is(X) of a proper CAT(0) space be always geometrically dense on some
minimal invariant subspace Y ⊆ X (see Exercise II.2). The next result shows that this
is however indeed the case provided the full isometry group contains a lattice.

Theorem IV.3 ([CM12a, Th. L]). Let X be a proper cocompact CAT(0) space and
assume that Is(X) acts minimally. Let Γ < Is(X) be a lattice (e.g. a discrete group
acting properly cocompactly on X).

Then the only points in the visual boundary fixed by Γ lie in the boundary of the
maximal Euclidean factor of X.

Since a locally compact group containing a lattice is unimodular, Theorem IV.3
follows by combining the following result with the geometric Borel density from the
previous section:

Theorem IV.4 ([CM12a, Th. M]). Let X be a proper cocompact CAT(0) space and
assume that Is(X) acts minimally.

If Is(X) is unimodular, then Is(X) has no fixed point at infinity.

Notice that the minimality assumption in both theorems is harmless: indeed, since
the action is assumed cocompact, we may simply replace X by some minimal Is(X)-
invariant subspace Y ⊆ X. One should however be aware that Y may admit isometries
that do not extend to X. It is thus conceivable (and it indeed happens, see Exercise IV.3)
that Is(X) fixes points at infinity, while Is(Y ) never does by Theorem IV.4.

The proof of Theorem IV.4 requires further geometric preliminaries and is thus
postponed to the next section. A weaker version of Theorem IV.3 was first proved in
[CM09b, Th. 3.14] under the additional hypothesis that Γ be finitely generated. At
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this point, let us merely present the simplest version of the argument, due to Burger–
Schroeder [BS87], under the stronger assumption that Γ is cocompact; it can be proved
directly, without invoking Theorem IV.4:

Lemma IV.5. Let X be a proper CAT(0) space and Γ be a discrete group acting
properly cocompactly on X. If a finitely generated subgroup Λ < Γ fixes some ξ ∈ ∂X,
then Λ fixes some ξ′ which is opposite ξ in the sense that {ξ, ξ′} are the endpoints of
a geodesic line.

Applying the lemma to the whole group Λ = Γ, which is finitely generated since
it is cocompact, we find an opposite pair of Γ-fixed points. Assuming in addition that
the Γ-action is minimal, the Product Decomposition Theorem (see Theorem II.7) then
yields a Γ-invariant splitting X ∼= R × X ′ such that ξ and ξ′ are the endpoints of the
line factor. Thus the conclusion of Theorem IV.3 holds in case Γ is cocompact.

3. Boundary points with a cocompact stabiliser

Let X be a proper CAT(0) space and ξ ∈ ∂X be a boundary point. We define the
following subgroup of the stabiliser Is(X)ξ of ξ:

Is(X)uξ =
{

g ∈ Is(X)ξ : lim
t→∞

d
(
g · r(t), r(t)

)
= 0 ∀ r with r(∞) = ξ

}
,

where r is a geodesic ray. One verifies that Is(X)uξ is a closed normal subgroup of Is(X)ξ

(see Exercise IV.4). Notice that Is(X)uξ is contained in the kernel of the Busemann
character βξ centered at ξ (see Exercise II.7). In fact, the subgroup Is(X)uξ may be
view as the intersection of Ker(βξ) with the kernel of the action of Is(X)ξ on some
other CAT(0) space denoted Xξ and called the transverse space at ξ. It is defined
as a completed quotient of the space of all geodesic rays pointing to ξ. We refer to
[CM12a] for details. The subgroup Is(X)uξ can be interpreted as a unipotent radical
of the stabiliser Is(X)ξ, which justifies the choice of notation. This interpretation is
motivated by a version of the Levi decomposition theorem for parabolic subgroups of
semi-simple Lie or algebraic groups, which can be established for CAT(0) spaces as soon
as the stabiliser Is(X)ξ acts cocompactly on X (see [CM12a, Th. J and Th. 3.12]).

In the present notes, we will only use the following fact, which can be deduced from
the aforementioned Levi decomposition:

Proposition IV.6. Let X be a proper CAT(0) space and G < Is(X) be a closed
subgroup. Let ξ ∈ ∂X be such that the stabiliser Gξ acts cocompactly on X.

Then the group Gu
ξ = G ∩ Is(X)uξ acts transitively on the set Opp(ξ), which is

non-empty.

It is not difficult to show that if Gξ acts cocompactly on X, then the set Opp(ξ)
is non-empty, and the group Gξ acts transitively on it. Proposition IV.6 ensures that
the smaller subgroup Gu

ξ remains transitive on Opp(ξ). This fact plays a crucial role
in excluding fixed points at infinity for cocompact actions of unimodular groups, as we
shall now see it.

Proof of Theorem IV.4. The isometry group Is(Rn) of the Euclidean space is
unimodular and acts without a fixed point at infinity. By Theorem III.8, there is thus
no loss of generality in assuming that X has no non-trivial Euclidean factor.

Assume for a contradiction that G = Is(X) fixes some point ξ ∈ ∂X. Since G
acts cocompactly on X by hypothesis, the set of opposites Opp(ξ) is non-empty (see
Exercise IV.4), and the subgroup Gu

ξ acts transitively on it by Proposition IV.6.
We claim that Gu

ξ is compact. Since G = Gξ acts minimally, this implies that the
Gu

ξ , which is normal in Gξ, must be trivial. Therefore the set Opp(ξ) is reduced to a



26 IV. LATTICES

singleton, say {ξ′}. In particular ξ′ is fixed by G, and Theorem II.7 applied to the pair
{ξ, ξ′} yields a product decomposition of X with a line factor, contradicting that the
maximal Euclidean factor of X is trivial.

In order to prove the claim, we proceed as follows. Let ℓ : R → X be a geodesic
line such that ℓ(−∞) = ξ and ℓ(+∞) = ξ′. By cocompactness, there is a sequence (gn)
in G such that d(gn.ℓ(0), ℓ(n)) is bounded.

Since G fixes ξ it follows that for each individual element g ∈ G, the sequence of
conjugates (gngg−1

n ) is bounded (i.e. relatively compact) in G. By an application of the
Baire category theorem, one deduces that for each compact subset U ⊂ G, the union∪

n gnUg−1
n has compact closure.

Consider now an element g ∈ Gu
ξ . This implies that any limit point of the sequence of

conjugate (gngg−1
n ) fixes pointwise the line ℓ. Choosing some compact neighbourhood Q

of the pointwise stabiliser of ℓ in G, we infer that gngg−1
n belongs to Q for all sufficiently

large n. This holds for any individual element g ∈ Gu
ξ , and another application of

the Baire category theorem implies that for each compact subset V ⊂ Gu
ξ , one has

gnV g−1
n ⊂ Q for all sufficiently large n.

We now fix some compact identity niehgourhood U in X. Thus 0 < vol(U) < ∞,
where vol denotes a left Haar measure on G. We have seen that the set P =

∪
n gnUg−1

n

is compact, and thus has finite volume. Now, for each compact subset V ⊂ Gu
ξ , we find

gnUV g−1
n = gnUg−1

n gnV g−1
n ⊂ PQ

for all sufficiently large n. Since PQ is compact, it has finite volume. The unimodularity
of G implies that the Haar measure is conjugacy invariant. Thus vol(UV ) < vol(PQ) <
∞. This holds for every compact subset V ⊂ Gu

ξ . Thus vol
(
UGu

ξ

)
< ∞, from which it

follows that Gu
ξ is compact, as claimed. �

4. Back to rigidity

We finally come back to Theorem I.14 and describe the main steps of its proof:
(1) Since Is(X) is cocompact and X geodesically complete, the Is(X)-action is minimal

(Exercise II.4).
(2) The existence of a lattice in Is(X) implies that Is(X) is geometrically dense by

Theorem IV.4.
(3) We are then in a position to invoke Corollary III.11, which yields a canonical de-

composition X ∼= M1 × · · · × Mp × Rn × Y1 × · · · × Yq, where Mi is an irreducible
symmetric space of non-compact type, and Yj has a totally disconnected isometry
group, which acts smoothly and does not contain any parabolic isometry. The hy-
pothesis that X has some parabolic isometry can now be re-interpreted: it simply
means that X has at least one non-trivial symmetric space factor.

(4) At this point, if the space X is irreducible, we are done. Otherwise we may as-
sume that X has several non-trivial factors. This implies that Γ may be viewed as
a lattice in a product of locally compact groups; this gives access to superrigidity
results, that are available for lattices in product groups at a high level of gener-
ality, notably through works by Burger [Bur95], Shalom [Sha00], Monod [Mon06],
Gelander–Karlsson–Margulis [GKM08].

(5) The residual finiteness assumption, combined with the indecomposability of Γ is
then used is an essential way: it is shown to imply that the Γ-action on each
irreducible factor of X. The connection between residual finiteness of the lattice and
the faithfulness of its action on the factors was first discovered by Burger and Mozes
in their work on lattices in products of trees [BM00]. It was extended to lattices
in products of CAT(0) spaces in [CM09b, Th. 4.10] (see also [CM12b, Prop. 2.4]).
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Here, we deduce that the Γ-action on the non-trivial symmetric space factor yields
in particular a faithful representation of Γ.

(6) The rest of the proof consists in using this linear representation combined with su-
perrigidity tools to establish that Γ is an S-arithmetic group; this step closely follows
the way in which Margulis deduced his arithmeticity theorems from superrigidity
(see [Mar91] and the lectures by T. Gelander).

(7) Finally, once Γ has been identified as an S-arithmetic group, further applications
of superrigidity imply that the closure of the image of Γ in the isometry group of
each irreducible factor Yj of X is a semi-simple algebraic group. That Yj must be
the model space (symmetric space or Euclidean building) for the semi-simple group
in question is finally established, using the geodesic completeness hypothesis.

5. Flats and free abelian subgroups

Some key problems on proper CAT(0) spaces, groups and lattices, remain open;
the most famous among them are perhaps the Rank Rigidity Conjecture, the Tits
alternative, the existence of infinite torsion subgroups in CAT(0) groups, or the Flat
Closing conjecture. It goes beyond the scope of these lectures to discuss all those
problems, or to present the state of the art in each case. We shall content ourselves
with a brief discussion of the latter. We start with the following well known open (and
notoriously difficult) problem.

Question IV.7. Let X be a proper CAT(0) space and Γ be a discrete group acting
properly and cocompactly on X.

Is it true that Γ is Gromov hyperbolic if and only if Γ does not contain any subgroup
isomorphic to Z2?

The ‘only if’ direction is true by a well known property of hyperbolic groups (inde-
pendent of CAT(0) geometry). Evidence for the reverse implication is provided by the
following result.

Theorem IV.8 ([BH99, Th. III.H.1.5]). Let X be a proper CAT(0) space and Γ be
a discrete group acting properly and cocompactly on X.

Then Γ is Gromov hyperbolic if and only if X does not contain any 2-flat.

In view of that theorem, answering Question IV.7 amounts to deciding whether the
existence of a 2-flat in X implies the existence of a Z2 subgroup in Γ. More generally,
one can ask the following.

Question IV.9 (Flat Closing conjecture, see [Gro93, 6.B3]). Let X be a proper
CAT(0) space and Γ be a discrete group acting properly and cocompactly on X.

Given n > 0, does the existence of an n-flat in X imply the existence of a Zn

subgroup in Γ?

For n = 1, the answer is known to be positive, due to E. Swenson [Swe99, Th. 11].
It is generally believed that the answer for n = 2 should be negative, and that examples
should be found among CAT(0) square complexes. For general n, the answer is positive
when X is a symmetric space, see the lectures by T. Gelander in this volume. When X
is a Hadamard manifold (not necessarily symmetric), the answer is also positive for all
n, due to Bangert–Schroeder [BS91], but much more delicate to establish. We finish by
mentioning a general result for CAT(0) groups in this direction.

Theorem IV.10 ([CZ12, Cor. 1]). Let X be a locally compact geodesically complete
CAT(0) space and Γ a discrete group acting properly and cocompactly on X.

If X splits non-trivially as a CAT(0) product of n factors, then Γ contains a copy
of Zn.
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Remark that if X is a non-trivial product of n factors, then each factor is unbounded
and X contains some n-flat (because X is geodesically complete). Thus the hypotheses
in Theorem IV.10 are (strictly) stronger than the existence of some n-flat in X. The
proof of Theorem IV.10 is indirect: it relies on the fundamental decomposition provided
by Corollary III.11, and then treats separately the case of symmetric spaces (where
the result is well known, as mentioned above) and the case of spaces with a totally
disconnected isometry group.

6. Exercises

Exercise IV.1. Let X be a CAT(0) space. A map f : X → R is called affine if for
each geodesic ρ : I → X, the composed map f ◦ ρ : I → R is affine.

(i) Show that f is affine if and only if f and −f are both convex.
(ii) Show that the level sets of an affine map are convex.
(iii) Suppose that X splits as a CAT(0) product X = Y × [0, 1]. Show that the distance

function to the fiber Y × {0} is affine, while the distance to Y × {1
2} is not.

Exercise IV.2. Let X be a complete CAT(0) space. Let also (Ω, µ) be a measure
space and (fω)ω∈Ω be a family of convex functions on X such that the map ω 7→ fω(x)
is integrable for all x ∈ X. Show that if the map f : x 7→

∫
Ω fω(x)dµ(ω) is constant,

then fω is affine for µ-almost all ω.

Exercise IV.3. Show that Theorem IV.4 can fail if Is(X) does not act minimally.

Exercise IV.4. Let X be a proper CAT(0) space and ξ ∈ ∂X be a boundary point.
(i) Show that Is(X)uξ is a closed normal subgroup of Is(X)ξ.
(ii) Assume that Is(X)ξ is cocompact on X. Show that Opp(ξ) is non-empty, and that

Is(X)ξ acts transitively on it.
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