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Abstract
Let (W,S) be a Coxeter system of �nite rank (i.e. |S| is �nite) and let A be the associated

Coxeter (or Davis) complex. We study chains of pairwise parallel walls in A using Tits'
bilinear form associated to the standard root system of (W,S). As an application, we prove
the strong parallel wall conjecture of G. Niblo and L. Reeves [NR03]. This allows to prove
�niteness of the number of conjugacy classes of certain one-ended subgroups of W , which
yields in turn the determination of all co-Hop�an Coxeter groups of 2-spherical type.

1 Introduction
1.1 Conjugacy of 2-spherical subgroups
A group Γ is called 2-spherical if it possesses a �nite generating set T such that any pair
of elements of T generates a �nite subgroup. By [Ser77, �6.5, Corollaire 2], a 2-spherical group
enjoys Serre's property (FA); in particular, it follows from Stalling's theorem that it is one-ended.

In the literature, a Coxeter group W is called 2-spherical if it has a Coxeter generating set
S with the property that any pair of elements of S generates a �nite subgroup. If W has a
Coxeter generating set S such that some pair of elements of S generates an in�nite subgroup,
then it is easy to see that W splits non-trivially as an amalgamated product of standard parabolic
subgroups, and hence W does not have Serre's property (FA). This shows that for Coxeter groups,
the usual notion of 2-sphericity coincides with the notion introduced above.

A theorem stated by M. Gromov [Gro87, 5.3, C′] and proved by E. Rips and Z. Sela [RS94,
Theorem 7.1] asserts that a hyperbolic group contains only �nitely many conjugacy classes of sub-
groups isomorphic to a given �nitely generated torsion-free one-ended group Λ. Another related
result, stated in [Gro87] and proved by T. Delzant [Del91], is that a torsion-free hyperbolic group
Γ has �nitely many conjugacy classes of one-ended two-generated subgroups. Furthermore, it was
shown by I. Kapovich and R. Weidmann [KW04, Corollary 1.5] that if Γ is locally quasiconvex,
then Γ has �nitely many conjugacy classes of one-ended l-generated subgroups for each l ≥ 1.
Results of this kind corroborate somehow the abundance of free subgroups in hyperbolic groups.
Comparing Coxeter groups, the abundance of free subgroups is also an established fact (more
precisely: Coxeter groups are either virtually abelian or virtually map onto non-abelian free
groups [MV00, Corollary 2]) and it is desirable to complement this fact with a precise �niteness
property. In this direction, we obtain the following:

Theorem A. We have:

(i) W contains �nitely many conjugacy classes of 2-spherical subgroups if and only if W has
no parabolic subgroup of irreducible a�ne type and rank ≥ 3.

(ii) W contains �nitely many conjugacy classes of 2-spherical re�ection subgroups Γ such that
Γ has no nontrivial free abelian normal subgroup (equivalently: Γ has no direct component
of a�ne type).
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(iii) W contains �nitely many conjugacy classes of 2-spherical subgroups Γ such that Γ has no
nontrivial free abelian normal subgroup and Z-rk(Γ) ≥ Z-rk(W )− 1.

(iv) Assume that the centralizer of every irreducible a�ne parabolic subgroup of rank ≥ 3 is
�nite. Then W contains �nitely many conjugacy classes of 2-spherical subgroups Γ such
that Γ is not in�nite virtually abelian.

By a re�ection subgroup, we mean a subgroup generated by re�ections; see Sect. 2.5 below
for more information on re�ection subgroups. Here Z-rk(Γ) denotes the maximal rank of a free
abelian subgroup of Γ. Note that the condition on the centralizer of an a�ne parabolic subgroup
in (iv) is immediate to check in the Coxeter diagram of (W,S) (see Lemma 22 below): the
condition holds whenever for each irreducible a�ne subdiagram D of rank ≥ 3, the subdiagram
induced on the set D⊥ consisting of those vertices which are not connected D is of spherical
type.

The existence of homotheties in Euclidean space implies that any Coxeter group of a�ne
type is isomorphic to a proper re�ection subgroup. From this fact, it is easy to deduce that if
W has a re�ection subgroup W0 of a�ne type, then W has in�nitely many conjugacy classes
of re�ection subgroups of the same type as W0. This explains why the number of conjugacy
classes of 2-spherical subgroups of W necessarily depends on a�ne parabolic subgroups of W ,
as it appears in Theorem A. However, a�ne parabolic subgroups are not the only source of free
abelian subgroups in Coxeter groups; in particular, many non-hyperbolic Coxeter groups possess
no parabolic subgroup of irreducible a�ne type and rank ≥ 3.

A group which is not isomorphic to any of its proper subgroups (resp. quotients) is called
co-Hop�an (resp. Hop�an). By a theorem of Mal'cev, any �nitely generated residually �nite
group is Hop�an; hence Coxeter groups are Hop�an. By [RS94, Theorem 3.1], rigid hyperbolic
groups are co-Hop�an. We have just seen that a�ne Coxeter groups are not co-Hop�an. As a
consequence of Theorem A, one obtains the following:

Corollary B. Suppose that (W,S) is of 2-spherical type. Then W is co-Hop�an if and only if W
has no nontrivial free abelian normal subgroup or, equivalently, if the Coxeter diagram of (W,S)
has no connected component of a�ne type.

The proof of Theorem A makes an essential use of the CAT(0) cube complex X constructed by
G. Niblo and L. Reeves [NR03]. More precisely, one associates a cube of X to every 2-spherical
subgroup of W in such a way that the problem of counting conjugacy classes of 2-spherical
subgroups in W becomes a matter of counting orbits of cubes in X . In particular, if W acts co-
compactly on X , then there are �nitely many orbits of cubes and this implies immediately that
W possesses �nitely many conjugacy classes of 2-spherical subgroups. However, it is known that
the W -action on X is not always co-compact: as shown in [CM05], it is co-compact if and only if
W has no parabolic subgroup of irreducible a�ne type and rank ≥ 3. In fact, Theorem A(i) can
be viewed as a signi�cant generalization of [CM05, Theorem 1.1], but the somewhat lengthy case-
by-case discussions of [loc. cit.] are here completely avoided. The problem of counting orbits of
cubes in the general case (i.e. when X /W is not compact) is settled here by Theorem 27 below,
whose proof leads naturally to consider nested sequences of half-spaces of A . Such sequences
are submitted to a strong alternative described in Theorem D below.

1.2 Separation of parallel walls
A well-known result on Coxeter groups is the so-called parallel wall theorem: it asserts that any
point of the Davis complex, which is su�ciently far apart from a given wall, is separated from
this wall by another wall. This was �rst proved by B. Brink and R. Howlett [BH93, Theorem 2.8].
Here, we obtain the following:
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Theorem C. There exists a constant Q = Q(W,S), depending only on the Coxeter system
(W,S), such that the following holds. Given two walls µ1, µ2 of A such that the distance from
µ1 to µ2 is at least Q, there exists a wall m which separates µ1 from µ2.

This was stated in [NR03] as the strong parallel wall conjecture. As noted by G. Niblo and
L. Reeves, it implies the existence of a universal bound on the size of the link of a vertex in the
CAT(0) cube complex X constructed in [loc. cit.]. In fact, the latter corollary can be viewed as
an immediate consequence of the more general fact, due to F. Haglund and D. Wise [HW06],
that the cube complex of any �nitely generated Coxeter group embeds virtually equivariantly in
the Davis complex of a right-angled Coxeter group; the proof of this result relies in an essential
way on Theorem C.

The proof of this theorem can be outlined as follows. Any two points of A which are far
apart, are separated by a large set of pairwise parallel walls. In particular, two parallel walls
which are far apart yield a large set of pairwise parallel walls. Each of these walls is a separator-
candidate. If it turns out that none of these candidates indeed separates the original pair of
walls, then one constructs a con�guration of nested triangles of walls. The existence of such a
con�guration is severely restricted by Theorem 8 below.

1.3 Chains of roots
As mentioned in the preceding subsections, a common feature of the proofs of Theorem A and
Theorem C is that they both lead one to consider at some point sequences of pairwise parallel
walls. In order to study these sequences, we use the standard root system Φ = Φ(W,S). Recall
that the set of roots Φ is a discrete subset of some �nite-dimensional real vector space V , which
is endowed with a W -action leaving Φ invariant. This action also preserves a bilinear form (·, ·),
called Tits bilinear form (see [Bou81] and Sect. 2.1 below).

This root system is a useful supplement of the Davis complex A , which is a complete CAT(0)-
space [Dav98], on which W acts properly discontinuously and co-compactly. This complex is a
thickened version of the Cayley graph of (W,S); in fact this Cayley graph is nothing but the
1-skeleton of A . Walls of A are �xed point sets of re�ections of W . Every wall cuts A into two
open convex subsets, the closure of which are called half-spaces. The set of all half-spaces (resp.
walls) is denoted by Φ(A ) (resp. M (A )).

Although di�erent in nature, the root system and the Davis complex are closely related as
follows. Once the identity 1 ∈ W has been chosen as a base vertex of A , one has a canonical
W -equivariant bijection Φ → Φ(A ), which maps Π to the set of those half-spaces containing
the vertex 1 but not its neighbors (see Lemma 3 below for more details). For the rest of this
introduction, we identify Φ and Φ(A ) by means of this bijection; thus the words `root' and
`half-space' become synonyms.
Theorem D. There exists a non-decreasing sequence (rn)n∈N of positive real numbers, tending
to +∞ with n, such that r1 > 1, which depends only on the Coxeter system (W,S) and such
that the following property is satis�ed. Given any chain of half-spaces α0 ( α1 ( · · · ( αn with
n > 0, exactly one of the following alternatives holds:
(1) (α0, αn) ≥ rn.

(2) (α0, αn) = 1, the group 〈rαi | i = 0, . . . , n〉 is in�nite dihedral and it is contained in a
parabolic subgroup of irreducible a�ne type of W .

Theorem D may be viewed as summing up the technical heart of this paper. We will �rst
establish a weak version of this theorem (Proposition 7), which is su�cient to obtain Theorem C.
The latter result is then used to deduce Theorem D in its full strength (Sect. 6). This in turn is
an essential tool in the proof of Theorem A.
Acknowledgement. The author is supported by a fellowship of `Aspirant' from the F.N.R.S.
(Fonds National de la Recherche Scienti�que � Belgium).

3



2 Preliminaries
2.1 Root bases
A root basis is a triple E = (V, (·, ·),Π) consisting of a real vector space V , a symmetric bilinear
form (·, ·) on V and a set Π ⊂ V which satis�es the following conditions:

(RB1) For all α ∈ Π, one has (α, α) = 1.

(RB2) For all α 6= β ∈ Π, one has

(α, β) ∈ {− cos(
π

m
)|m ∈ Z≥2} ∪ (−∞,−1].

(RB3) There exists a linear form x ∈ V ∗ such that x(α) > 0 for all α ∈ Π.

The most important example is standard root basis of a Coxeter matrix M = (mij)i,j∈I .
Recall from [Bou81] that this root basis EM := (VM , (·, ·)M ,ΠM ) is constructed as follows: set
VM :=

⊕
i∈I Rei, ΠM := {ei | i ∈ I} and for all i, j ∈ I, set (ei, ej)M := − cos( π

mij
) (= −1 if

mij = ∞).
Let now E = (V, (·, ·),Π) be any root basis. For each α ∈ V , de�ne rα ∈ GL(V ) by

rα : x 7→ x− 2(x, α)α.

We make the following de�nitions:

• S(E ) := {rα| α ∈ Π},
• W (E ) := 〈S(E )〉 ⊂ GL(V ),

• Φ(E ) := {w.α| w ∈ W (E ), α ∈ Π},
• Φ(E )+ := {φ ∈ Φ(E )| φ ∈ ∑

π∈ΠR+π}.
The elements of Φ(E ) are called roots; the roots contained in Φ(E )+ are called positive.

The following lemma collects the basic facts on root bases which we will need in the sequel:

Lemma 1. One has the following:

(i) Given E = (V, (·, ·), Π) a root basis, the pair (W (E ), S(E )) is a Coxeter system and Φ(E )
is a discrete subset of V .

(ii) Conversely, if E is the standard root basis associated with a given a Coxeter system (W,S),
then there is a canonical isomorphism W → W (E ) mapping S onto S(E ).

(iii) For all w ∈ W (E ) and all α ∈ Φ(E ), one has wrαw−1 = rw.α.

(iv) For all φ ∈ Φ(E ), either φ ∈ Φ(E )+ or −φ ∈ Φ(E )+.

Proof. See [Bou81, Theorem IV.1.1]. The proof given in loc. cit. deal only with standard root
bases, but they apply without modi�cation to any root basis.

The type of the root basis E is the type of the Coxeter system (W (E ), S(E )), i.e. the Coxeter
matrix M(E ) := (mαβ)α,β∈Π, where mαβ is the order of rαrβ ∈ W (E ). The following lemma,
whose proof is straightforward, recalls the relationship between two root bases of the same type:

Lemma 2. Let M = (mij)i,j∈I be a Coxeter matrix, let EM := (VM , (·, ·)M , {ei| i ∈ I}) be the
standard root basis of type M and let E = (V, (·, ·), {αi| i ∈ I}) be any root basis of type M such
that (αi, αj) = − cos(π/mij) for all i, j ∈ I with mij < ∞. Let ϕ : W (EM ) → W (E ) be the
unique isomorphism such that ϕ : rei 7→ rαi for all i ∈ I. We have the following:
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(i) There is a unique ϕ�equivariant bijection f : Φ(EM ) → Φ(E ) such that f : ei 7→ αi for all
i ∈ I.

(ii) If M is 2�spherical (i.e. mij < ∞ for all i, j ∈ I), then one has (α, β)M = (f(α), f(β))
for all α, β ∈ Φ(EM ).

2.2 Convention
From now on and until the end of the paper, we �x a root basis E = (V, (·, ·), Π) and we set

(W,S) := (W (E ), S(E )). Moreover, given s ∈ S, we denote the unique element α of Π such that
s = rα by αs.

2.3 The Davis complex
Suppose that the set S is �nite. The Davis complex A associated with (W,S) is a piecewise
Euclidean CAT(0) cell complex whose 1�skeleton is the Cayley graph of W with respect to the
generating set S. The action of W on this Cayley graph induces naturally an action on A ;
this action is properly discontinuous and cocompact. By de�nition, a wall of A is the �xed
point set of a re�ection of W . Hence a wall is a closed convex subset of A . A fundamental
fact is that every wall cuts A into two convex open subsets, whose respective closures are called
half-spaces. Hence the boundary ∂h of a half-space h is a wall. The set of all half-spaces is
denoted by Φ(A ).

Given a point x ∈ A which does not lie on any wall (e.g. x is a vertex of A ), the intersection
C(x) ⊂ A of all half-spaces containing x is compact. The set C(x) is called a chamber. Every
chamber contains exactly one vertex of A . Hence the W�action on A is simply transitive on
the chambers. Given two chambers C1, C2, we de�ne the numerical distance from C1 to C2

as the number of walls which separate C1 from C2. If w ∈ W is the unique element such that
w.C1 = C2, then this distance equals the word length `(w) of w.

Since the 1�skeleton of A is the Cayley graph of (W,S), the edges of A are labelled by the
elements of S. Given s ∈ S, two chambers are called s�adjacent if they contain vertices which
are joined by an edge labelled by s.

Lemma 3. Let C ⊂ A be a chamber. For each s ∈ S, let hs be the half-spaces containing C but
not the chamber of A di�erent from C and s-adjacent to C. Then one has the following:

(i) There exists a unique W -equivariant bijection ζC : Φ(E ) → Φ(A ) which maps αs to hs for
all s ∈ S. The positive roots are mapped onto the half-spaces containing C.

(ii) Let α, β ∈ Φ(E ). If |(α, β)| < 1 then the walls ∂ζC(α) and ∂ζC(β) meet. Conversely, if the
walls ∂ζC(α) and ∂ζC(β) meet, then |(α, β)| ≤ 1 and equality occurs if and only if α = ±β.

(iii) For all α, β ∈ Φ(E ), one has (α, β) ≥ 1 if and only if ζC(α) ⊂ ζC(β) or ζC(β) ⊂ ζC(α).

(iv) For all α, β ∈ Φ(E ), one has (α, β) ≤ 0 if and only if ζC(α)∩ζC(β) ⊂ ζC(rα(β))∩ζC(rβ(α)).

Proof. Assertion (i) follows from the fact that the Cayley graph of (W,S) (and even the whole
Davis complex) can be embedded in the Tits cone of the root basis E , see [Kra94, Appendix B.4]
for details. For (ii) and (iii), see [Kra94, Proposition 1.4.7]. Assertion (iv) follows also by the
Tits cone.

2.4 The cube complex of G. Niblo and L. Reeves
Maintain the assumption that S is �nite. In [NR03], G. Niblo and L. Reeves used the structure
of wall space of the Cayley graph (or the Davis complex) of (W,S) to construct a CAT(0)
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cube complex X endowed with a properly discontinuous W -action. We brie�y recall here the
construction and basic properties of X for later reference.

Vertices of this cube complex are mappings v : M (A ) → Φ(A ) which satisfy the following
two conditions:

• For all m ∈ M (A ), we have ∂(v(m)) = m.

• For all m,m′ ∈ M (A ), if m and m′ are parallel then either v(m) ⊂ v(m′) or v(m′) ⊂ v(m).

By de�nition, two distinct vertices are adjacent if and only if the subset of M (A ) on which they
di�er is a singleton. Note that the Cayley graph of (W,S) is a subgraph of the so-obtained graph.
By de�nition, the 1-skeleton of X is the connected component of this graph which contains the
Cayley graph of (W,S). The cubes are de�ned by `�lling in' all the cubical subgraphs of the 1-
skeleton. It is shown in [NR03] that the cube complex X is �nite-dimensional, locally �nite, and
the canonical W -action is properly discontinuous, but not always co-compact. In fact [CM05],
the W -action on X is co-compact if and only if W has no parabolic subgroup of irreducible
a�ne type and rank ≥ 3. We refer to Sect. 7 for more precise information on the W -orbits of
cubes in X .

As it is the case for any CAT(0) cube complex (see [Sag95]), the space X is endowed with
a collection M (X ) of walls (resp. a collection Φ(X ) of half-spaces), which is by construction
in canonical one-to-one correspondence with M (A ) (resp. Φ(A )). More precisely, a wall is an
equivalence class of edges, for the equivalence relation de�ned as the transitive closure of the
relation of being opposite edges in some square. Thus every edge de�nes a wall which separates
its two extremities. Given an equivalence class of edges, the corresponding wall can be realized
geometrically as the convex closure of the set of midpoints of edges in this class. In this way,
every wall becomes a closed convex subset of X which separates X into two convex subsets,
called half-spaces. Note that a wall is itself a CAT(0) cube complex, which is a subcomplex of
the �rst barycentric subdivision of X .

2.5 Re�ection subgroups
A re�ection subgroup of W is a subgroup generated by some set of re�ections. The following
basic fact is well-known:

Lemma 4. Let H be a subgroup of W generated by a set R of re�ections. Then there exists a
unique set Π′ ⊂ Φ(E )+ such that E ′ = (V, (·, ·), Π′) is a root basis and W (E ′) = H. Moreover
one has |Π′| ≤ |R|.
Proof. See [Deo89] or [Dye90].

By de�nition, the type (resp. rank) of the re�ection group H is the type (resp. rank) of
the Coxeter system (H,S(E ′)) (see Lemma 1(i)). The re�ection group H is called standard
parabolic if S(E ′) ⊂ S. Let S(E ′) = S1 ∪ · · · ∪ Sk be the �nest partition of S(E ′) into non-
empty mutually centralizing subsets. The subgroups 〈Si〉 ⊂ H, i = 1, . . . , k, are called the direct
components of H.

3 Chains of roots
Throughout this section, we �x a base chamber C ⊂ A .

6



3.1 A partial ordering on the set of roots
Transforming the relation of inclusion ⊂ on Φ(A ) by the bijection ζC of Lemma 3(i), one obtains
a partial ordering on Φ(E ) which we also denote by ⊂. By Lemma 3, two roots α, β are orderable
by ⊂ if and only if (α, β) ≥ 1.

Before stating the next lemma, we need to introduce a constant κ which is de�ned as follows:

κ = sup{|(α, β)| : α, β ∈ Φ(E ), |(α, β)| < 1}.

By Lemma 3(ii), the condition |(α, β)| < 1 implies that the group 〈rα, rβ〉 is �nite. Since W has
�nitely many conjugacy classes of �nite subgroups, it follows in particular that κ < 1. Important
to us will be the following:

Lemma 5. Let α, β, γ ∈ Φ(E ) be roots such that α ⊂ β ⊂ γ. Then the following holds:

(i) One has
(α, γ) ≥ max{(α, β), (β, γ)}.

(ii) If moreover (rβ(α), γ) > −1, then

(α, γ) ≥ 2 (α, β)− κ.

(iii) If (rβ(α), γ) ≤ −1, then β ⊂ −rβ(α) ⊂ γ or α ⊂ −rβ(γ) ⊂ β.

Proof. For (i), see [Kra94, Corollary 6.2.3]. Since β ⊂ γ, Lemma 3(iii) yields (β, γ) ≥ 1. There-
fore, one has:

(α, γ)− 2 (α, β) ≥ (α, γ)− 2 (α, β)(β, γ)
= (α− 2 (α, β)β, γ)
= (rβ(α), γ).

Moreover, if (rβ(α), γ) > −1, then (rβ(α), γ) ≥ −κ by de�nition. This implies (ii). Assertion (iii)
is a consequence of Lemma 3(ii) and (iii).

3.2 An `a�ne vs. non-a�ne' alternative for chains of roots
In this section, we establish Proposition 7, which is a �rst approximation of Theorem D.

Let α1, α2 ∈ Φ(E ) be roots and let hi = ζC(αi) for i = 1, 2. Suppose that α1 ⊂ α2. The set

Φ(α1; α2) := {β ∈ Φ(E ) | α1 ⊂ β ⊂ α2}

is �nite. Indeed, its cardinality is bounded by the combinatorial distance from a vertex contained
in h2 to a vertex contained in the complement of h1.

A set of roots Φ ⊂ Φ(E ) is called convex if for all α1, α2 ∈ Φ and all β ∈ Φ(E ), one has
β ∈ Φ whenever α1 ⊂ β ⊂ α2. A set of roots Φ ⊂ Φ(E ) is called a chain if it is totally ordered
by ⊂. In view of the preceding paragraph, it is easy to see that any chain is contained in a
convex chain. This convex chain need not be unique, and it is in general properly contained in
the convex closure of the initial chain. A chain of roots α0 ( α1 ( · · · ( αn is called maximally
convex if for all chain β0 ( β1 ( · · · ( βk such that β0 = α0 and βk = αn, one has k ≤ n. Note
that a maximally convex chain is convex.

As a �rst consequence of Lemma 5, we have:

Lemma 6. Let α, β ∈ Φ(E ) be such that α ( β. If (α, β) = 1, then the group 〈rφ | φ ∈ Φ(α; β)〉
is in�nite dihedral; in particular Φ(α; β) is a chain.
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Proof. Recall from Lemma 3(iii) that for all φ, ψ ∈ Φ(E ), if φ ⊂ ψ then (φ, ψ) ≥ 1.
Choose a chain α = α0 ( α1 ( · · · ( αk = β of maximal possible length; this is possible

since Φ(α;β) is �nite. Moreover, the maximality of the chain (αi) implies that this chain is
convex. By Lemma 5(i) we have (αi, αj) = 1 for all i, j = 0, 1, . . . , k. By Lemma 5(ii), we
have (rαi+1(αi), αi+2) ≤ −1 since (αi, αi+2) = 1 for each i. Hence, by Lemma 5(iii), one has
αi+1 ⊂ −rαi+1(αi) ⊂ αi+2 or αi ⊂ −rαi+1(αi+2) ⊂ αi+1. By the convexity of the chain (αi), we
deduce in both cases that rαi+1(αi) = −αi+2 since αi 6= αi+1 6= αi+2. Since i was arbitrary, it
follows from Lemma 1(iii) that the group 〈rαi | i = 0, 1, . . . , k〉 is actually generated by the pair
{rα0 , rα1}; in particular this group is in�nite dihedral.

Let now φ be any element of Φ(α; β). We have −rα(β) ( −rα(α1) ( α0 = α ⊂ φ ⊂ β. Since
(α, β) = 1, it follows that (−rα(β), β) = 1. Hence, by Lemma 5(i) we have (−rα(α1), φ) = 1.
Therefore, the restriction of the bilinear form (·, ·) to the subspace spanned by {−rα(α1), α, φ} is
positive semi-de�nite and that its radical is of codimension 1. By Lemma 4 and [Bou81, Ch. VI,
�4.3, Th. 4], this implies that the re�ection subgroup generated by {rα, rα1 , rφ} is in�nite dihedral.
By the above, the latter group contains rαi for each i. Therefore the wall ∂ζC(φ) is parallel to
∂ζC(αi) for each i. By the maximality of the chain (αi)i≤k, this implies that φ = αj for some
j ∈ {0, 1, . . . , k}. In other words, we have Φ(α; β) = {α0, α1, . . . , αk}, which completes the
proof.

A posteriori, the preceding lemma can be viewed as a consequence of Theorem D; however,
the proof of the latter relies on Lemma 6 in an essential way.

The constant κ appearing in the next proposition was de�ned in Sect. 3.1.

Proposition 7. Let α0 ( α1 ( · · · ( αn be a maximally convex chain of roots and let j ∈
{1, . . . , n}. We have the following:

(i) Assume that (α0, αj−1) = 1. Then either (α0, αj) = 1 or (α0, αj) ≥ j(1− κ).

(ii) Assume that (α0, αj) = 1 + ε for some ε > 0. Then (α0, αn) > 1 + n
2j ε.

Proof. (i). If j = 1, there is nothing to prove. Thus we assume j > 1. By Lemma 6 and by
convexity of the chain (αi), the group 〈rαi | i ∈ {0, 1, . . . , j − 1}〉 is in�nite dihedral, generated
by the pair {rαj−2 , rαj−1}. Let β = rαj−1(αj−2).

Assume �rst that (β, αj) ≤ −1. Then Lemma 5(iii) implies β = −αj and, hence, rαj ∈
〈rαi | i ∈ {0, 1, . . . , j − 1}〉. An easy computation using Lemma 1(iii) yields (α0, αj) = 1.

Assume now that (β, αj) > −1. Clearly this implies (β, αj) ≥ −κ. Using Lemma 1(iii), one
easily computes that (β, αj−1) = −1 and that α0 = j.αj−1 + (j − 1).β. Therefore, we deduce

(α0, αj) = j.(αj−1, αj) + (j − 1).(β, αj)
≥ j − (j − 1)κ
= j(1− κ) + κ.

(ii). By Lemma 5(i), we have (α0, αn) ≥ (α0, αj). Thus we may assume n ≥ 2j, otherwise there
is nothing to prove. Clearly αj ( −rαj (α0). Let

k = max{i | αi ( −rαj (α0)}.

Thus k ≥ j.
Assume that k ≥ 2j, namely that α2j ( −rαj (α0). Then one would have a chain

α0 ( −rαj (α2j) ( −rαj (α2j−1) ( · · · ( −rαj (αj+1) ( αj

contradicting the fact that the sequence (αi)i≤n, and hence (αi)i≤j , is maximally convex. Thus
k < 2j. Let us now consider the ordered triple α0 ( αj ( αk+1.
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Suppose �rst that (rαj (α0), αk+1) ≤ −1. Then Lemma 5(iii) implies that −rαj (α0) ⊂ αk+1

or αk+1 ⊂ −rαj (α0). On the other hand, the de�nition of k implies that αk ( −rαj (α0) and that
αk+1 is not properly contained in −rαj (α0). Therefore, by the convexity of the chain (αi)i≤n,
we have rαj (α0) = −αk+1 in this case. We deduce that

(α0, αk+1) = (α0,−rαj (α0))
= 2(α0, αj)2 − 1
= 1 + 4ε + 2ε2

> 1 + 2ε.

Suppose now that (rαj (α0), αk+1) > −1. Then Lemma 5(ii) implies that (α0, αk+1) ≥
2(α0, αj)− κ > 1 + 2ε.

In both cases, we obtain (α0, α2j) > 1+2ε by Lemma 5(i) because k+1 ≤ 2j. An immediate
induction now yields (α0, α2xj) > 1 + 2xε for all positive integer x such that 2xj ≤ n. Since
the maximal such integer is blog2(

n
j )c, we deduce, again from Lemma 5(i), that (α0, αn) >

1 + 2xε with x = blog2(
n
j )c. The desired inequality follows because blog2(

n
j )c > log2(

n
j ) − 1 =

log2(
n
2j ).

4 Nested triangles of walls
When studying Coxeter groups, it is often useful to relate the combinatorics of walls in the
Davis complex with the algebraic properties of the subgroup generated by the corresponding
re�ections. A typical well-known result of this kind is the basic fact that two walls meet if and
only if the corresponding re�ections generate a �nite group. The purpose of this section is prove
the following:

Theorem 8. There exists a constant L = L(W,S), depending only on the Coxeter system (W,S),
such that the following property holds. Let µ, µ′,m0,m1, . . . ,mn be walls of the Davis complex
A such that:

(1) ∅ 6= µ ∩ µ′ ⊂ m0;

(2) For all 0 ≤ i < j < k ≤ n, the wall mj separates mi from mk;

(3) For each i = 1, . . . , n, the wall mi meets both µ and µ′.

If n > L, then the group generated by the re�ections through the walls µ, µ′, m0, m1, . . . , mn is
isomorphic to a Euclidean triangle group. Moreover, it is contained in a parabolic subgroup of
irreducible a�ne type.

By a Euclidean triangle group, we mean an a�ne Coxeter group of rank 3, or equivalently,
the automorphism group of one of the three (types of) regular tessellations of the Euclidean plane
by triangles.

Theorem 8 has also proved essential in studying Euclidean �ats isometrically embedded in
the Davis complex [CH06]. In this paper, it is an essential ingredient in the proof of Theorem C.

4.1 Nested Euclidean triangles
Given a set of walls M , we denote by W (M) the re�ection subgroup of W generated by all
re�ections associated to elements of M .

Lemma 9. Let µ, µ′,m0,m1, . . . , mn be walls of the Davis complex A which satisfy conditions
(1), (2) and (3) of Theorem 8. Assume that W ({µ, µ′,m0,mn}) is a Euclidean triangle subgroup.
Then we have the following:
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(i) The group W ({µ, µ′,m0,m1, . . . , mn}) is a Euclidean triangle subgroup, which is contained
in a parabolic subgroup of a�ne type of W ; in particular W ({m0,m1, . . . , mn}) is in�nite
dihedral.

(ii) For any point x ∈ µ′ ∩ mn, there exist k = bn
2 c pairwise parallel walls m′

1,m
′
2, . . . ,m

′
k

which separate x from µ, and such that W ({m′
1,m

′
2, . . . , m

′
k}) ⊂ W ({µ, µ′,m0,mn}); in

particular W ({µ,m′
1,m

′
2, . . . , m

′
k}) is in�nite dihedral.

Proof. (i). By a theorem of D. Krammer which is recalled in Proposition 16 below, the group
W ({µ, µ′,m0, mn}) is contained in a parabolic subgroup W0 of irreducible a�ne type of W . The
Davis complex of this parabolic subgroup is contained in A as a residue ρ0; in other words, there
is a chamber C0 such that the union ρ0 =

⋃
w∈W0

w.C0 is a closed convex subset of A , whose
stabilizer in W coincides with W0. Since the re�ection rm0 belongs to W (µ, µ′) by condition (1),
it follows that rm0 and rmn both stabilize ρ0. In particular, the walls m0 and mn both meet ρ0.
Since ρ0 is convex, it follows that every wall which separates m0 from mn meets ρ0. Since ρ0 is
a residue, every re�ection associated to a wall which meets ρ0 must stabilize ρ0. It follows that
rmi ∈ StabW (ρ0) = W0 for all i = 1, . . . , n, as desired. Finally, it is an easy observation that
any subgroup of an a�ne Coxeter group generated by re�ections through pairwise parallel walls
is in�nite dihedral.

(ii). We have just seen that any wall m which separates m0 from mn meets ρ0 and, hence,
belongs to W0. Such a wall is parallel to mi for each i because parallelism of walls in an a�ne
Coxeter group is an equivalence relation. This shows that we may assume, without loss of
generality, that every wall which separates m0 from mn is one of the mi's.

By assumption (1) the re�ection rµ and rµ′ do not commute. Therefore, by considering each
of the three types of a�ne triangle groups separately, it is easily seen that for each i = 1, . . . , k =
bn

2 c, there exists a wall m′
i which is parallel to µ and such that m2i ∩µ′ ⊂ m′

i. Choose any point
y on µ ∩ µ′ and consider a geodesic path joining x to y. This path is completely contained in µ′

by convexity, and meets each mi by assumption (2). Since m2i ∩ µ′ ⊂ m′
i, it follows that this

path crosses m′
i for each i = 1, . . . , k. Since m′

i is parallel to µ, this means precisely that µ′i
separates x from µ.

4.2 Critical bounds for hyperbolic triangles
Before stating the next lemma, we introduce an additional constant λfin which is de�ned as
follows:

λfin = sup{x ∈ R | α = x.φ + y.ψ, α, φ, ψ ∈ Φ(E ), |(φ, ψ)| < 1}.
(By convention, we set λfin = 1 if |(φ, ψ)| ≥ 1 for all φ, ψ ∈ Φ.) Note that the conditions
α = x.φ + y.ψ and |(φ, ψ)| < 1 imply that the group 〈rα, rφ, rψ〉 is a �nite dihedral group. Since
W has �nitely many conjugacy classes of �nite subgroups, it follows that the constant λfin is
�nite; thus λfin is a positive real number.

Lemma 10. Let φ, φ′, α0, α1 ∈ Φ(E ) be roots such that α0 ( α1 and that the walls µ = ∂φ, µ′ =
∂φ′, m0 = ∂α0 and m1 = ∂α1 satisfy conditions (1) and (3) of Theorem 8. If W (µ, µ′,m0,m1)
is not a Euclidean triangle subgroup, then one has

1 + ε ≤ (α0, α1) ≤ 2κλfin,

where ε = ε(W,S) > 0 is a positive constant which depends only on (W,S) and κ is the constant
de�ned in Sect. 3.1.

It is well-known that, in the situation of the preceding lemma, if W (µ, µ′,m1) is a Euclidean
triangle subgroup, then (α0, α1) = 1 (see the �rst lines of the proof of Proposition 14(ii) below).
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Proof. Condition (1) implies that W (µ, µ′, m0) is a �nite dihedral group. In particular we have
α0 = λ0.φ + µ0.φ

′ for some λ0, µ0 ∈ R. We have

(α0, α1) = λ0.(φ, α1) + µ0.(φ′, α1) ≤ κ(λ0 + µ0) ≤ 2κλfin.

Clearly the group W (µ, µ′,m0, m1) is in�nite because the walls m0 and m1 are parallel.
Since W (µ, µ′,m0) is a �nite dihedral group, it follows from Lemma 4 that the re�ection group
W (µ, µ′,m0,m1) is in�nite of rank 3. Since it is not of a�ne type by hypothesis, it must
be a hyperbolic triangle group, namely it is isomorphic to the automorphism group of a reg-
ular tessellation of the hyperbolic plane by triangles. Furthermore condition (3) implies that
W (µ, µ′,m0,m1) is compact hyperbolic, i.e. the tiles of the above tessellation are compact tri-
angles. We view this tessellation as a geometric realization of the Coxeter complex associated to
W (µ, µ′,m0,m1).

In this realization, the walls ∂α0 and ∂α1 are realized by parallel geodesic lines. It is known
[BP92, Corollary A.5.8] that, if one writes (α0, α1) = 1

2(x + x−1) for some x ≥ 1, then the
hyperbolic distance between these lines in H2 is log(x) (see also Lemma 2(ii)). In view of this
formula, we have (α0, α1) > 1 because parallel walls do not meet in H2 ∪ ∂H2 in a regular
tessellation by compact triangles.

It remains to show that (α0, α1) stays bounded away from 1 when φ, φ′, α0 and α1 vary in
Φ(E ). First, we note that, by the formula above and the fact that W (µ, µ′,m0,m1) is transitive
on pairs of parallel walls at small distances (see Lemma 15 below), the scalar (α0, α1) stays
bounded away from 1 when φ, φ′, α0 and α1 vary in such a way that the group W (µ, µ′,m0,m1)
remains in the same isomorphism class. Now, the desired result follow because W (µ, µ′,m0,m1)
is a 2-spherical re�ection subgroup of rank 3 of W , and W has �nitely many types of such
re�ection subgroups: indeed, the type of a such a subgroup is a Coxeter matrix of size 3, all of
whose entries divide some entry of the Coxeter matrix of (W,S). This concludes the proof.

Remark 1. Proposition 14(ii) below, which relies on the preceding lemma through Theorems 8
and C, may be viewed as a generalization of the �rst inequality of Lemma 10.
Remark 2. It turns out that the positive constant ε which appears in Lemma 10 can be made
`universal', i.e. independent of (W,S). This is done by expressing the minimal hyperbolic
distance between two walls of a regular tessellation of H2 by compact triangles, as a monotonic
function of the area of the fundamental tile T . This tile is a triangle whose angles are of the form
(π

k , π
l ,

π
m) for some k, l,m ∈ N. Thus the area of T is π − π

k − π
l − π

m , and it is not di�cult to
compute that this area has a global minimum, which is reached for (k, l, m) = (2, 3, 7). However,
the universality of ε is not relevant to our purposes.

4.3 Proof of Theorem 8
We will show that the constant L can be de�ned by

L = max
{

2,
2κλfin

1− κ
,

8κ2λ2
fin − 4κλfin

ε(1− κ)

}
.

Let φ, φ′, α0, α1, . . . , αn ∈ Φ(E ) be roots such that α0 ( α1 ( · · · ( αn and that the walls
µ = ∂φ, µ′ = ∂φ′ and mi = ∂αi for i = 0, 1, . . . , n satisfy conditions (1), (2) and (3) of
Theorem 8. Suppose moreover that n > L.

By Lemma 9, we may assume that W (µ, µ′,m0,mn) is not a Euclidean triangle subgroup,
otherwise we are done. Therefore, Lemma 10 yields 1 + ε ≤ (α0, αn) ≤ 2κλfin.

We now make another estimate of the value of (α0, αn). To this end, note �rst that every
wall which separates m0 = ∂α0 from mn = ∂αn must meet µ = ∂φ and µ′ = ∂φ′ because µ
and µ′ are convex, as are all walls. Thus, after replacing the sequence (αi)i≤n by a maximally
convex chain of roots whose extremities are α0 and αn, one obtains a new set of roots which
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satis�es again conditions (1), (2) and (3) of the theorem. We henceforth assume without loss of
generality that the sequence (αi)i≤n is maximally convex.

Let j = min{i | (α0, αi) > 1}. Thus (α0, αj−1) = 1 and Proposition 7(i) yields (α0, αj) ≥
j(1− κ). By Lemma 5(i), we have (α0, αj) ≤ (α0, αn) and, hence, we deduce that j ≤ 2κλfin

1−κ .
We now apply Proposition 7(ii). This yields (α0, αn) > 1 + n

2j ε. Since n > L we have

n

2j
≥ n(1− κ)

4κλfin
>

2κλfin − 1
ε

.

We deduce that (α0, αn) > 2κλfin, a contradiction. This shows that W (µ, µ′, m0,mn) is a
Euclidean triangle subgroup and, hence, the desired result follows from Lemma 9.

5 Separation of parallel walls
5.1 On the walls of an in�nite dihedral subgroup
Note that if a set M of walls is such that the group W (M) is in�nite dihedral, then the elements
of M are pairwise parallel.

Lemma 11. Let M be a set of walls such that the group W (M) is in�nite dihedral. Let m be a
wall which meets at least 8 elements of M in A . Then m meets all elements of M and either
the re�ection rm through m centralizes W (M) or W (M ∪{m}) is a Euclidean triangle subgroup.

Proof. By Lemma 4, we may � and shall � assume, without loss of generality, that W = W (M ∪
{m}). Since W is in�nite, it is of rank ≥ 2. Moreover W is not in�nite dihedral otherwise the
walls in M ∪{m} would be pairwise parallel, in contradiction with the hypotheses. Thus W is of
rank > 2. On the other hand, it is generated by a re�ection together with a dihedral re�ection
group; hence it has a generating set consisting of 3 re�ections. By Lemma 4, this shows that W
is of rank 3.

If W is of reducible type, then the re�ection rm through m must centralize W (M) and, hence,
the wall m meets every element of M . Thus we are done in this case, and we assume from now
on that W is of irreducible type. A Coxeter group of irreducible type and rank 3 is either a
Euclidean triangle subgroup, or a hyperbolic triangle subgroup, i.e. a group isomorphic to the
automorphism group of a regular tessellation of the hyperbolic plane H2 by triangles.

If W is a Euclidean triangle subgroup, then m meets every element of M , since parallelism of
walls is an equivalence relation in Euclidean geometry. Thus we are done in this case as well, and
it remains to deal with the case when W is a hyperbolic triangle subgroup. In particular W is
Gromov-hyperbolic. We consider the regular tessellation of H2 by triangles whose automorphism
group is isomorphic to W , and view this tessellation as a geometric realization of (W,S). In
particular the walls are geodesic lines in H2.

Up to enlarging M if necessary, we may assume that for each wall µ, if rµ ∈ W (M) then
µ ∈ M . We �rst prove that m meets only �nitely many elements of M . Suppose the contrary
in order to obtain a contradiction. Choose a chain of half-spaces · · · ( h−1 ( h0 ( h1 ( . . .
such that M = {∂hi | i ∈ Z} and that for each i ∈ Z, the set hi ∩m contains a geodesic ray.
This is possible because m crosses in�nitely many ∂hi's. Note that the intersection

⋂
i∈Z hi is a

single point ξ of the visual boundary ∂H2, which must be an endpoint of m by the above. Thus
ξ is �xed by rm and by the translation subgroup of W (M). But the stabilizer of ξ in Isom(H2)
is solvable. Hence, given a nontrivial translation t ∈ W (M), the group 〈t, rmtrm〉 is solvable,
whence virtually abelian of Z-rank 1. This shows that rmtrm �xes both of the two points at
in�nity �xed by t, hence so does rm. Furthermore, the pair consisting of these two points is
stabilized by W (M), which �nally shows that W = W (M ∪ {m}) stabilizes a pair of points of
∂H2. This is absurd because W is not virtually solvable. Thus m meets �nitely many elements
of M .
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The next step is to show that rm commutes with at most one re�ection in W (M). Indeed,
if µ and µ′ are two distinct elements of M such that rm centralizes 〈rµ, rµ′〉 then m meets every
translate of µ under 〈rµ, rµ′〉, but there are in�nitely many such translates, which all belong to
M . This is absurd, because we have just seen that m meets �nitely many elements of M .

We now consider again a chain of half-spaces · · · ( h−1 ( h0 ( h1 ( . . . such that M =
{∂hi | i ∈ Z}. We assume moreover that the numbering of the hi's is such that the set of all those
j's such that m meets ∂hj is {−k′, . . . , 0, . . . , k} for some integers k, k′ with k′ + 1 ≥ k ≥ k′ ≥ 0.

We have seen that the angle between m and ∂hj equals π
2 for at most one j ∈ Z. By the

choice of numbering of the hi's made above, this means in particular that the only possible j
such that m is perpendicular to ∂hj is j = 0. In particular the wall m1 = r∂h1(m) is di�erent
from m. Since m∩ ∂hj 6= ∅ for all j ∈ {−k′, . . . , 0, . . . , k} and since r∂h1(∂hi) = h2−i for all i, it
follows that m1 ∩ ∂hj 6= ∅ for all j ∈ {2− k, . . . , 2 + k′}. This means that the walls m,m1 and
∂hk′′ form a compact geodesic triangle T in H2, where k′′ = min{k, 2 + k′}. Since k ≤ k′ + 1,
we have k′′ = k. Furthermore, the triangle T is cut by ∂hj for all j ∈ {2, . . . , k − 1}. Now,
the triangular tessellation of H2 by chambers induces a Coxeter decomposition of T by triangles,
namely a tessellation of T by triangles such that two triangles sharing an edge are switched by the
orthogonal re�ection through that edge. But all Coxeter decomposition of hyperbolic triangles
are classi�ed [Fel98, �5.1]. Using this classi�cation, together with the fact that the angle between
m and ∂hj is < π

2 for all j ∈ {1, . . . , k}, one deduces easily that k ≤ 3. In particular, we have
also k′ ≤ 3. This shows that m meets at most 7 elements of M .

5.2 On walls which separate a vertex from its projection
Lemma 12. Let φ ∈ Φ(A ) be a half-space, x ∈ A be a vertex not contained in φ and y be
a vertex contained in φ and at minimal combinatorial distance from x. Let ψ be a half-space
containing x but not y, such that ∂φ 6= ∂ψ. Then we have the following:

(i) φ ∩ ψ ⊂ rφ(ψ) 6= ψ.

(ii) x, y 6∈ rφ(ψ).

(iii) If moreover ∂φ meets ∂ψ then ∂rφ(ψ) meets every wall which separates x from ∂ψ and
which meets ∂φ.

Proof. For any half-space h we denote by −h the other half-space bounded by ∂h.
If φ∩ψ = ∅, then the walls ∂φ and ∂ψ are parallel and rφ(ψ) is properly contained in φ. We

deduce that x 6∈ rφ(ψ). By the minimality assumption on y, it follows that −φ contains a vertex
y′ neighboring y. Note that y′ = rφ(y). Since ∂φ is the only wall separating y from y′ we have
y′ ∈ −ψ, which yields y = rφ(y′) ∈ rφ(−ψ) = −rφ(ψ), or equivalently y 6∈ rφ(ψ).

Thus we may assume that φ ∩ ψ is nonempty. This implies that the walls ∂φ and ∂ψ meet,
otherwise φ would be contained in ψ which is impossible since y ∈ φ ∩ (−ψ) by assumption.
Therefore 〈rφ, rψ〉 is a �nite dihedral group.

For any two half-spaces α, β such that 〈rα, rβ〉 is a �nite dihedral group, it is straightforward
to check the following observations (see also Lemma 3):

(1) α ∩ β ⊂ rα(β) ⇔ α ∩ β ⊂ rβ(α).

(2) α ∩ β ⊂ rα(β) ⇔ (−α) ∩ (−β) ⊂ −rα(β).

(3) α ∩ β 6⊂ rα(β) ⇒ (−α) ∩ β ⊂ rα(β).

Assume now that φ ∩ ψ 6⊂ rφ(ψ) in order to obtain a contradiction. By (3), this yields
(−φ) ∩ ψ ⊂ rφ(ψ). Since x ∈ (−φ) ∩ ψ, we deduce from (1) that x ∈ −rψ(φ); similarly, since
y ∈ φ ∩ (−ψ), we deduce from (1) and (2) that y ∈ rψ(φ).
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Figure 1: Proof of Lemma 12

Consider now a minimal combinatorial path γ : x = x0, x1, . . . , xn = y joining x to y in the
1-skeleton of A (see Figure 5.2). We �rst show that the re�ections rφ and rψ do not commute.
If they commuted, we would have rψ(φ) = φ and hence, the vertex rψ(y) would belong to φ. On
the other hand, the path γ crosses ∂ψ, namely there exists i ∈ {1, . . . , n} such that ψ contains
xi−1 but not xi. Thus the path x0, . . . , xi−1 = rψ(xi), rψ(xi+1), . . . , rψ(y), which is of length
n − 1, joins x to a vertex of φ, which contradicts the minimality assumption on y. This shows
that rφ and rψ do not commute and, hence, that ∂rψ(φ) 6= ∂φ.

Note that, by the minimality assumption on y, we must have xn−1 ∈ −φ. We have seen
that both ∂ψ and ∂rψ(φ) separate x from y. Since ∂rψ(φ) 6= ∂φ and since ∂φ is the only wall
which separates xn−1 from y, it follows that the restricted path γ′ : x0, x1, . . . , xn−1 crosses both
∂ψ and ∂rψ(φ), but it does not cross ∂φ. On the other hand we have (−φ) ∩ ψ ⊂ −rψ(φ)
by (1), which implies that γ′ crosses �rst ∂ψ and then ∂rψ(φ). In other words, there exist
i < j ∈ {1, . . . , n− 1} such that ψ contains xi−1 but not xi and rψ(φ) contains xj but not xj−1.
Now, the path x0, . . . , xi−1 = rψ(xi), rψ(xi+1), . . . , rψ(xj−1), rψ(xj) is of length j < n and joins
x = x0 to rψ(xj) ∈ φ. Again, this contradicts the minimality assumption on y. This proves (i).

Note that xn−1 ∈ (−φ) ∩ (−ψ) ⊂ −rφ(ψ) by (2). Since ∂φ is the only wall which separates
y from xn−1 and since ∂φ 6= ∂rφ(ψ), we deduce y 6∈ rφ(ψ). Assume in order to obtain a
contradiction that x ∈ rφ(ψ). We may then apply (i) to the half-space rφ(ψ), which yields
φ∩ rφ(ψ) ⊂ ψ. Transforming by rφ yields (−φ)∩ψ ⊂ rφ(ψ). By (i), we have also φ∩ψ ⊂ rφ(ψ)
and we deduce ψ = (φ∩ψ)∪ ((−φ)∩ψ) ⊂ rφ(ψ), whence ψ = rφ(ψ). This means that rφ and rψ

commute, and we have seen above that it is not the case. This shows that x, y 6∈ rφ(ψ), whence
(ii).

It remains to prove (iii). Let thus α be a half-space containing x and entirely contained in ψ,
and suppose that ∂α meets ∂φ. We must prove that ∂α meets ∂rφ(ψ). Let m be the midpoint
of the edge joining y to xn−1; thus m lies on ∂φ. By hypothesis, the half-space α contains x but
not y; therefore, the geodesic path joining x to m must meet the wall ∂α in a point a. Let also
a′ be a point lying on ∂φ ∩ ∂α. Consider the geodesic triangle whose vertices are m, a, a′. Since
∂ψ separates m from a′ and since ∂ψ ∩ ∂φ = ∂φ ∩ ∂rφ(ψ), it follows that ∂rφ(ψ) separates m
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from a′. By (ii), it follows that ∂rφ(ψ) does not separate m from a. Therefore, the wall ∂rφ(ψ)
separates a from a′. Since both a and a′ lie on ∂α and since walls are convex, we deduce that
∂α meets ∂rφ(ψ). This �nishes the proof.

5.3 Existence of pairs of parallel walls
Lemma 13. Suppose that S is �nite. Then there exists a constant N = N(W,S) such that any
set of more than N walls contains a pair of parallel walls.

Proof. See [NR03, Lemma 3].

5.4 Proof of Theorem C
Note that A is quasi-isometric to its 1-skeleton, which is the Cayley graph of (W,S). Therefore, if
su�ces to show the existence of a constant Q such that any pair of parallel walls, at combinatorial
distance greater than Q from one another, is separated by another wall. This is what we prove
now; for convenience we denote by V (A ) the vertex set of A and by d the combinatorial distance
on V (A ).

By Lemma 13 combined with Ramsey's theorem, there exists a constant Q such that any
set of more than Q walls contains a subset of 4l + 1 pairwise parallel walls, where l = inf{n ∈
N | n > L, n ≥ 8} and L is the constant of Theorem 8.

Let α, β ∈ Φ(A ) be half-spaces such that α ∩ β = ∅ and let

d(α, β) = min{d(x, y) | x, y ∈ V (A ), x ∈ α, y ∈ β}.

Assume that d(α, β) > Q and let x, y ∈ V (A ), x ∈ α, y ∈ β such that d(x, y) = d(α, β). We
must prove that there is a wall m which separates ∂α from ∂β; equivalently m must separate x
from y, and be parallel to, but distinct from, ∂α and ∂β.

The set M (x, y) consisting of all walls which separate x from y is of cardinality d(x, y). Thus
it contains a subset M of cardinality 4l + 1 consisting of pairwise parallel walls. If ∂α and ∂β
both belong to M then we are done. Hence we may assume without loss of generality that
∂β 6∈ M . There are two cases to consider: either ∂α 6∈ M or ∂α ∈ M . If ∂α is parallel to all
elements of M , we may replace M by M ∪ {∂α} and we are reduced to the case when ∂α ∈ M .

We henceforth assume that ∂α 6∈ M and that some element of M meets ∂α. In fact, we may
assume that each element of M meets ∂α or ∂β, otherwise we are done. Up to exchanging α and
β, we may therefore assume that at least 2l+1 elements of M meet ∂α. Let φ0 ( φ1 ( · · · ( φ2l

be half-spaces containing y but not x, such that ∂φi ∈ M meets ∂α for each i, see Figure 5.4.
We have ∅ 6= ∂α∩ ∂φ2l = ∂α∩ ∂rα(φ2l) ⊂ ∂φ2l. We apply Lemma 12(iii) with the half-spaces α
and φ2l: this shows that ∂rα(φ2l) meets ∂φi for each i = 0, 1, . . . , 2l. Therefore, the hypotheses
of Theorem 8 are satis�ed; this shows that 〈rα, rφi | i = 0, 1, . . . , 2l〉 is a Euclidean triangle
subgroup. Hence, we may apply Lemma 9(ii) which yields a set M ′ of l pairwise parallel walls
which separate ∂α from any point on ∂φ0 ∩ ∂rα(φ2l); furthermore the group W (M ′ ∪ {∂α}) is
in�nite dihedral.

We now show that M ′ ⊂ M (x, y). To this end, let y′ be the last vertex belonging to φ0, on
a geodesic path in V (A ) joining y to x, and let x′ be any point on ∂α ∩ ∂φ0, see Figure 5.4.
By Lemma 12(ii), the points x and y′ lie on the same side of ∂rα(φ2l). Moreover, since ∂φ2l

separates x from x′ and since ∂α ∩ ∂φ2l = ∂α ∩ ∂rα(φ2l), it follows that ∂rα(φ2l) separates x
from x′. Therefore ∂rα(φ2l) also separates x′ from y′. Hence, the geodesic path joining x′ to the
CAT(0) projection of y′ on ∂φ0 meets ∂rα(φ2l) in a point z. We have seen above that the elements
of M ′ separate z from ∂α; in particular they separate z from x and, hence, they separate y′ from
x because any geodesic segment crosses every wall at most once. Since M (x, y′) ⊂ M (x, y), it
follows that M ′ ⊂ M (x, y) as desired.

15



rα(φ2l)

x y

y′

α

β

φ0

φ2l−1

φ2l

Figure 2: Proof of Theorem C

Thus all elements of M ′ are parallel to ∂α and separate x from y. If any element of M ′ is
parallel to ∂β, then we are done. We henceforth assume that all elements of M ′ meet ∂β. Since
M ′ is of cardinality l ≥ 8 and since W (M ′ ∪ {∂α}) is in�nite dihedral, Lemma 11 implies that
∂α meets ∂β, which is absurd.

It remains to deal with the case when ∂α ∈ M . If any element of M distinct from ∂α is
parallel to β, then we are done. Thus we may assume that all other elements of M meet ∂β.
Repeating the same arguments as above appealing to Theorem 8 and Lemma 9(ii), we obtain a
set M ′′ ⊂ M (x, y), of cardinality 2l, consisting of pairwise parallel walls, which all separate ∂β
from x and such that W (M ′′ ∪ {∂β}) is in�nite dihedral. Once again, if any element of M ′′ is
parallel to ∂α then we are done. Otherwise, we deduce from Lemma 11 that ∂β meets ∂α, a
contradiction.

6 The parabolic closure of a dihedral re�ection subgroup
A basic fact on Coxeter groups is that any intersection of parabolic subgroups is itself a parabolic
subgroup. This allows to de�ne the parabolic closure Pc(R) of a subset R ⊂ W : it is the
smallest parabolic subgroup of W containing R.

Given two roots α, β ∈ Φ(E ) such that α 6= ±β, it a well-known consequence of Lemma 3
that the dihedral group 〈rα, rβ〉 is in�nite if and only if |(α, β)| ≥ 1. The main result of this
section is the following:

Proposition 14. Assume that E is the standard root basis. Let α, β ∈ Φ(E ) be such that α 6= ±β.
Then there exists a constant ε > 0, depending only on the Coxeter system (W,S), such that the
following assertions hold:

(i) If |(α, β)| = 1, then the parabolic closure of 〈rα, rβ〉 is of irreducible a�ne type; in partic-
ular, it is virtually abelian.
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(ii) If |(α, β)| > 1, then |(α, β)| ≥ 1 + ε and the parabolic closure of 〈rα, rβ〉 is not of a�ne
type; in particular, it contains a free subgroup of rank 2.

The proof of Theorem D of the introduction, which is given in Sect. 6.4 below, is a combination
of Propositions 7 and 14.

6.1 Orbits of pairs of walls
Since W has �nitely many conjugacy classes of re�ections, it follows that W has �nitely many
orbits of walls in A . More generally, we have the following:

Lemma 15. For any r ∈ R+, the group W has �nitely many orbits of pairs of walls {m,m′}
such that d(m,m′) ≤ r.

Proof. If two walls meet, then the corresponding re�ections generate a �nite subgroup. Since
W has �nitely many conjugacy classes of �nite subgroups, it follows immediately that W has
�nitely many orbits of pairs of intersecting walls. Therefore, it su�ces to consider orbits of pairs
of parallel walls, or equivalently, pairs of disjoint half-spaces.

As in the proof of Theorem 8, we will consider only the combinatorial distance on V (A ),
which we denote again by d. To every pair of disjoint half-spaces {α, β}, we associate an oriented
combinatorial path γ(α;β) in the 1-skeleton A0 as follows: Choose x, y ∈ V (A ) such that x ∈ α,
y ∈ β and d(x, y). Since α and β are disjoint, the walls ∂α and ∂β both belong to M (x, y) and,
hence, there exists a geodesic path joining x to y in A0, whose �rst edge crosses ∂α and whose last
edge crosses ∂β. We de�ne γ(α;β) to be any such geodesic path. Clearly the length of γ(α; β)
equals d(α, β) and moreover, if {α′, β′} is a pair of disjoint roots such that w.γ(α′; β′) = γ(α; β)
for some w ∈ W , then w.α′ = α and w.β′ = β. Therefore, in order to prove the desired �niteness
property, it su�ces to show that W has �nitely many orbits on oriented combinatorial paths of
length ≤ r. This is true because W is transitive on V (A ) and A is locally �nite.

6.2 On the parabolic closure
By de�nition of the Davis complex A , the stabilizer of any point of A in W is a �nite parabolic
subgroup. Since any �nite subgroup of W �xes a point of A , it follows that any �nite subgroup
is contained in a �nite parabolic subgroup; in other words, if a subgroup of W is �nite, then so
is its parabolic closure. This is well-known. A fundamental result, due to D. Krammer, is that
this is also true for a�ne re�ection subgroups:

Proposition 16. Given any re�ection subgroup R, if R is of irreducible a�ne type and rank ≥ 3,
then so is its parabolic closure.

Proof. Notice �rst that if a re�ection subgroup is of irreducible type, then so is its parabolic
closure. Therefore, the desired assertion follows from [CM05, Theorem 3.3], which builds upon
the results of [Kra94, Chapter 6].

The following lemma provides useful criterions ensuring that a given re�ection belongs to a
certain parabolic closure:

Lemma 17. Let M be a set of cardinality at least 2, consisting of pairwise parallel walls and let
m be any wall. Assume that any of the following conditions hold:

(1) m separates two elements of M .

(2) W (M ∪ {m}) is in�nite dihedral.

(3) W (M ∪ {m}) is a Euclidean triangle subgroup.
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Then the re�ection rm belongs to the parabolic closure Pc(W (M)).

Proof. (1) follows from the same convexity arguments as in the proof of Lemma 9(i).
(2). The hypotheses imply that W (M) is in�nite dihedral. Let t be a nontrivial translation

of W (M) and let µ ∈ M . Since W (M ∪ {m}) is in�nite dihedral, there exists a nonzero integer
n ∈ Z such that m separates µ from tn.µ. By (1), this yields rm ∈ Pc(W (µ, tn.µ)). On the other
hand, we have clearly W (µ, tn.µ) ⊂ W (M), whence Pc(W (µ, tn.µ)) ⊂ Pc(W (M)).

(3). By Proposition 16, the parabolic subgroup Pc(W (M ∪{m})) is of irreducible a�ne type.
On the other hand W (M) ⊂ W (M ∪ {m}) and hence Pc(W (M)) ⊂ Pc(W (M ∪ {m})). Since
any proper parabolic subgroup of a parabolic of irreducible a�ne type if �nite while W (M) is
in�nite, we deduce that Pc(W (M)) = Pc(W (M ∪ {m})).

6.3 Proof of Proposition 14
In order to simplify notation, we assume that a base chamber C ⊂ A has been �xed and we
identify Φ(E ) with Φ(A ) be means of the bijection ζC of Lemma 3(i), and we note Φ = Φ(E ) =
Φ(A ).

Proof of Proposition 14(i). Let α, β ∈ Φ be such that α 6= ±β and |(α, β)| = 1. We must prove
that Pc(rα, rβ) is of irreducible a�ne type. Since 〈rα, rβ〉 is in�nite and since every proper
parabolic subgroup of a Coxeter group of irreducible a�ne type is �nite, it su�ces to prove that
rα and rβ are contained in a common parabolic subgroup of irreducible a�ne type.

Up to replacing α or β by its opposite, we may assume without loss of generality that α ⊂ β,
whence (α, β) = 1 by Lemma 3(iii).

Let x, y ∈ V (A ) be vertices such that x ∈ α, y ∈ −β and d(x, y) = d(α,−β). Let Φ(x, y) be
the set of all half-spaces containing x but not y. By Lemma 6, the set Φ(α; β) is a chain. We
denote it by

α = α0 ( α1 ( · · · ( αk = β.

Moreover, Lemma 6 implies that the group W (Φ(α;β)) = 〈rαi | i = 0, . . . , k〉 is in�nite dihedral,
generated by {rα0 , rα1}.

Let t = rαrβ . A straightforward computation shows that (α, tn.β) = 1 for all n ∈ Z.
Moreover, we have rβ ∈ Pc(〈rα, rtn.β〉) for all n 6= 0 by Lemma 17. Therefore, up to replacing β
by tn.β with n su�ciently large, we may assume without loss of generality that k ≥ 8.

Assume �rst that Φ(α; β) = Φ(x, y). Then, considering a geodesic path joining x to y in
the 1-skeleton of A , we see that there is a combinatorial path of length 2 crossing successively
the walls ∂α0 and ∂α1. This means that the in�nite dihedral group W (Φ(α; β)) = 〈rα0 , rα1〉
is a parabolic subgroup of rank 2. Thus it is of irreducible a�ne type and it contains rβ since
β ∈ Φ(α;β). Hence we are done in this case.

Assume now that Φ(α; β) is properly contained in Φ(x, y) and let γ ∈ Φ(x, y)\Φ(α; β). By
the de�nition of Φ(α; β), it follows that ∂γ must meet ∂α or ∂β. Without loss of generality, we
assume that ∂γ meets ∂β. Let

Φ0(γ) = {φ ∈ Φ(α; β) | ∂φ meets ∂γ}.

Since walls are convex, it follows that if αi, αi′ ∈ Φ0(γ), then αj ∈ Φ0(γ) for all i ≤ j ≤ i′.
Note that for each φ ∈ Φ(x, y), the re�ections rβ and rφ do not commute, otherwise we would

have x ∈ φ = rβ(φ), in contradiction with Lemma 12(ii).
Suppose that |Φ0(γ)| > 7; this happens whenever α ∈ Φ0(γ). Since W (Φ(α;β)) is in�nite

dihedral, this implies by Lemma 11 that either rγ centralizes W (Φ(α; β)) or that W (Φ(α; β))
is contained in a Euclidean triangle subgroup. We have just seen rγ does not centralize rβ ∈
W (Φ(α;β)), so W (Φ(α;β)) is contained in a Euclidean triangle subgroup. By Proposition 16,
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a Euclidean triangle subgroup is contained in a parabolic subgroup of irreducible a�ne type,
hence we are done in this case.

Similarly, if the wall ∂rβ(γ) meets the boundary of more than 7 elements of Φ(α;β), it follows
also that W (Φ(α; β)) is contained in a Euclidean triangle group, because rrβ(γ) = rβrγrβ does
not commute with rβ since rγ does not. Hence we are done in this case as well.

It remains to consider the case when ∂α meets neither ∂γ nor ∂rβ(γ). This yields α ⊂ γ and
α ⊂ −rβ(γ), whence (α, γ) ≥ 1 and (α, rβ(γ)) ≤ −1 by Lemma 3(iii). Therefore we obtain

2 ≤ 1 + (α, γ) ≤ 2(α, β)(β, γ).

By Lemma 3(iv) and Lemma 12(i), we have (β, γ) > 0. Thus we obtain

(α, β) ≥ 1
(β, γ)

.

On the other hand (β, γ) < 1 by Lemma 3(ii), because ∂β meets ∂γ. This contradicts the fact
that (α, β) = 1, thereby proving that this last case does not occur.

Proof of Proposition 14(ii). If (W,S) is of irreducible a�ne type, then Tits bilinear form is pos-
itive semi-de�nite [Bou81, Ch. VI, �4.3, Th. 4]. Therefore, for all α, β ∈ Φ we have |(α, β)| ≤√

(α, α)(β, β) = 1 by Cauchy-Schwarz. This shows that if (W,S) is arbitrary and if Pc(rα, rβ)
is of irreducible a�ne type, then |(α, β)| ≤ 1.

It remains to prove that ε > 0, where

ε = −1 + inf{(α, β) | α, β ∈ Φ, (α, β) > 1}.

To this end, we de�ne P0 to be the set of all ordered pairs (α;β) ∈ Φ× Φ such that

(1) α ⊂ β,

(2) (α, β) > 1,

(3) For all γ ∈ Φ such that α ⊂ γ ⊂ β, one has γ ∈ {α, β}.
We also de�ne P1 to be the set of all ordered pairs (α;β) ∈ Φ×Φ satisfying (1) and (2) but not
(3). In view of Lemma 3(iii), we have

1 + ε = inf{(α, β) | (α;β) ∈ P0 ∪ P1}.

In other words, we have ε = min{ε0, ε1}, where 1 + εi = inf{(α, β) | (α;β) ∈ Pi} for i = 0, 1.
Condition (3) means that the walls ∂α and ∂β, which are parallel, are not separated by any

wall. By Theorem C, this implies that the distance from ∂α to ∂β is at most Q. Therefore, the
group W has �nitely many orbits in P0 by Lemma 15. In particular the set {(α, β) | (α;β) ∈ P0}
is �nite and, hence, we have ε0 > 0.

Let now (α;β) ∈ P1. The set Φ(α;β) = {φ ∈ Φ | α ⊂ φ ⊂ β} is �nite. Since (α; β) 6∈ P0,
there exists γ ∈ Φ(α; β) distinct from α and β. Among all such γ's, we choose one which
is minimal for ⊂. In particular, the pair (α; γ) satis�es condition (3). Since α ⊂ γ we have
(α, γ) ≥ 1 by Lemma 3(iii). There are two cases.

First, assume that (α, γ) > 1. In that case we have (α; γ) ∈ P0 whence (α, γ) ≥ 1 + ε0. By
Lemma 15(i), this yields (α, β) ≥ 1 + ε0.

Assume now that (α, γ) = 1. Choose γ′ ∈ Φ(α; β) such that (α, γ′) = 1 and such that γ′

is maximal (for ⊂) with respect to these properties. By Lemma 6, the set Φ(α; γ′), which is
contained in Φ(α; β), is a chain. Let γ′′ be the maximal element of Φ(α; γ′)\{γ′} and consider
rγ′(γ′′). Using Lemma 6, it is immediate to compute that (α, rγ′(γ′′)) = −1; in particular, by
maximality of γ′ we have −rγ′(γ′′) 6∈ Φ(α; β), or in other words −rγ′(γ′′) 6⊂ β. Similarly, if
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β ⊂ −rγ′(γ′′), then Lemma 5(i) yields (α, β) ≤ (α,−rγ′(γ′′)) = 1, contradicting (2). Therefore,
Lemma 5(iii) implies that (rγ′(γ′′), β) > −1. Using Lemma 5(i) and (ii), this yields successively

(α, β) ≥ (γ′′, β) ≥ 2(γ′, β)− κ ≥ 2− κ.

The preceding two paragraphs show that for all (α; β) ∈ P1, we have (α, β) ≥ max{1+ε0, 2−
κ}, whence ε1 = min{ε0, 1 − κ}. Recall from Sect. 3.1 that κ < 1; furthermore, we have seen
above that ε0 > 0. This shows �nally that ε > 0, as desired.

6.4 Proof of Theorem D
Let α0 ( α1 ( · · · ( αn be a sequence of roots. If (α0, αn) = 1, then one is in the alternative (2)
of the theorem by Lemmas 6, 17 and Proposition 14(i). Thus we may assume that (α0, αn) > 1
and we must show that (α0, αn) is bounded from below by a non-decreasing function of n.

In order to estimate (α0, αn), we choose a maximally convex chain β0 ( · · · ( βm such that
β0 = α0 and βm = αn. By de�nition, we have m ≥ n. Let j = min{i ≥ 0 | (β0, βi) > 1}. Thus
j > 0. By Proposition 7, we have (β0, βm) > max{j(1− κ), 1 + m

2j ε}, where ε is the constant of
Proposition 14(ii). One easily computes that

j(1− κ) ≥ 1 +
m

2j
ε ⇔ j ≥ −1 +

√
1 + 2ε(1− κ)m
1− κ

.

Therefore, one has

(β0, βm) >
√

1 + 2ε(1− κ)m− 1 if j ≥ −1 +
√

1 + 2ε(1− κ)m
1− κ

and
(β0, βm) > 1 +

ε(1− κ)m
−2 + 2

√
1 + 2ε(1− κ)m

otherwise.

Set r0 = 1 and for all positive integer k, de�ne

rk = min
{
− 1 +

√
1 + 2ε(1− κ)k, 1 +

ε(1− κ)k
−2 + 2

√
1 + 2ε(1− κ)k

}
.

Note that (rk)k≥1 is a non-decreasing sequence with r1 > 1, which tends to +∞ with k. We have
seen above that (β0, βm) ≥ rm. Since β0 = α0 and βm = αn and m ≥ n, this yields (α0, αn) ≥ rn,
and we are in the alternative (1) of the theorem. This �nishes the proof.

7 Conjugacy of 2-spherical subgroups
The purpose of this section is to prove Theorem A and its corollary. As mentioned in the
introduction, this �rst requires to study in details some aspects of the CAT(0) cube complex X
of G. Niblo and L. Reeves; see Proposition 24 and Theorem 27 below for speci�c statements.

7.1 Pairwise intersecting walls
Any n-dimensional cube c of a CAT(0) cube complex determines a unique n-tuple of walls,
denoted by M(c), consisting of the walls which contain the center of that cube. The following
basic fact is an important property:

Lemma 18. Let c, c′ be cubes of a CAT(0) cube complex such that every wall in M(c) meets
every wall in M(c′). Let d be the combinatorial distance from c to c′. Then there exists a cube
c′′ at combinatorial distance at most d from c, such that M(c′′) = M(c) ∪M(c′).
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Proof. See [Sag95, Theorem 4.14]. The estimate of the distances follow from an easy induction.

The only cube complex we will need to consider here is the CAT(0) complex X . We have
seen in Sect. 2.4 that the walls and hyperplanes of X are in canonical one-to-one correspondence
with those of A . In order to simplify notation, we identify M (A ) with M (X ) (resp. Φ(A )
with Φ(X )). A fundamental di�erence between A and X is that a re�ection of W �xes a wall
of A pointwise, while in X a re�ection acts mostly non-trivially on the wall it stabilizes. This
explains why the property of Lemma 18 cannot hold in A , unless (W,S) is right-angled in which
case A = X . However, pairs of walls behave always similarly in A and in X :

Lemma 19. Two walls meet in A if and only if they meet in X . Two half-spaces are nested
(resp. have empty intersection) in A if only if they are nested (resp. have empty intersection)
in X .

Proof. This is a straightforward consequence of the construction of X , see Sect. 2.4 and [NR03]
for more details.

Note that the corresponding statement fails for triples of walls. Indeed, every triple of pairwise
intersecting walls has nonempty intersection in X by Lemma 18, but this is obviously false in
A : any Euclidean or hyperbolic triangle group provides a counterexample.

As above, for any set of walls M , we denote by W (M) the subgroup of W generated by all
re�ections through elements of M .

Lemma 20. Let M be a set of pairwise intersecting walls. Then W (M) is of 2-spherical type.

Proof. By Lemma 19, if two walls meet in X , then they meet in A and, hence, the corresponding
re�ections generate a �nite subgroup. This shows that W (M) is 2-spherical in the sense of
Sect. 1.1. We have seen in this this section that 2-spherical Coxeter groups are precisely those
Coxeter groups of 2-spherical type, in the usual sense. This means that W (M) is of 2-spherical
type as a re�ection subgroup.

7.2 On standard parabolic subgroups
Recall that a standard parabolic subgroup of W is a subgroup generated by some subset of
S, and a subgroup is parabolic if it is conjugate to a standard parabolic subgroup. In some
situations, it is useful to keep track of an element of W which conjugates a given parabolic
subgroup to a standard parabolic one. This motivates the following de�nition: given a vertex v0

(or a chamber) of A and a set M0 of walls such that each element of M0 separates v0 from a
neighboring vertex, we say that the parabolic subgroup W (M0) is standard with respect to
v0. Thus a standard parabolic subgroup is a parabolic subgroup which is standard with respect
to the base chamber of A (i.e. the chamber which corresponds to the identity 1 ∈ W in the
Cayley graph).

Lemma 21. Let M be a set of pairwise parallel walls, of cardinality > 7, such that the parabolic
closure P = Pc(W (M)) is of a�ne type. Let v0 be a vertex of A . Assume that, given any wall
m, if m separates v0 from some wall in M , then m ∈ M . Then the parabolic subgroup P is
standard with respect to v0.

Proof. Given a parabolic subgroup W0 of W and a chamber c of A such that W0 is standard
with respect to c, then the union of the W0-orbit of c is a closed convex subset of A , which
we call a W0-residue. Clearly, the parabolic subgroup W0 is standard with respect to a given
chamber if and only if this chamber is contained in some W0-residue.

Let c0 be the unique chamber of A containing v0 and let ρ0 be the W0-residue at minimal
combinatorial distance from c0. We must prove that c0 ⊂ ρ0. Assume the contrary in order to
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obtain a contradiction. Let c′ be the chamber of ρ0 at minimal combinatorial distance from c0,
let c′′ be a chamber adjacent to c′ and closer to c0 than c′. Finally, let m be the wall which
separates c′ from c′′.

The re�ection rm does not belong to P . Indeed, if rm ∈ P , then rm would stabilize ρ0 which
would imply that c′′ = rm(c′) be contained in ρ0, in contradiction with the de�nition of c′. It
follows in particular that the wall m separates c0 from ρ0: otherwise m would separate two
adjacent chambers contained in ρ0 and hence rm would swap these chambers, but, on the other
hand, the only element of W swapping these chambers belongs to P .

Since rm 6∈ P we have m 6∈ M . Moreover, any wall m′ ∈ M meets ρ0 because the re�ection
rm′ ∈ P stabilizes ρ0 which is closed and convex. Therefore, the wall m meets m′ otherwise m
would separate v0 from m′ which is excluded by hypothesis. Thus m meets each element of M .

Since M has at least 8 elements, it follows from Lemma 11 that either rm centralizes W (M)
or that W (M ∪ {m}) is a Euclidean triangle subgroup. The second case is impossible by
Lemma 17(3) because rm 6∈ P = Pc(W (M)). Thus rm centralizes W (M) and, hence, normalizes
the parabolic closure P of W (M).

The set rm(ρ0) is a (rmPrm)-residue and, hence, a P -residue by the preceding paragraph.
Since rm(ρ0) contains the chamber c′′ = rm(c′), we obtain a contradiction with the minimality
assumption we made on ρ0. This �nishes the proof.

7.3 The normalizer of an a�ne parabolic subgroup
The following fact is well-known; it is more generally true for any in�nite parabolic subgroup of
irreducible type.

Lemma 22. Let P ⊂ W be a parabolic subgroup of irreducible a�ne type. Then the normalizer
of P in W splits as a direct product: NW (P ) = P × CW (P ). In particular, any re�ection which
normalizes P either belongs to P or centralizes P .

Proof. See [Deo82, Proposition 5.5].

7.4 Free abelian normal subgroups in Coxeter groups
The following statement of independent interest is a consequence of the work of Daan Krammer
[Kra94, Sect.6.8] on free abelian subgroups of Coxeter groups:

Lemma 23. The group W possesses a nontrivial free abelian normal subgroup if and only if the
Coxeter diagram of (W,S) has a connected component of irreducible a�ne type.

Proof. If (W,S) has a connected component of a�ne type, then the translation subgroup of
the corresponding a�ne parabolic subgroup is a nontrivial free abelian normal subgroup. Thus
the `if' part is clear. Conversely, let H be a nontrivial free abelian normal subgroup of W .
Let W = W1 × . . .Wk be the decomposition of W into its direct components and let pri be
the canonical projection of W onto Wi. By Selberg's lemma W has a �nite index torsion free
subgroup. In particular H has a �nite index subgroup H ′ such that pri(H ′) is torsion free for
all i. Since H is free abelian, we may assume without loss of generality that H ′ is normalized by
W . In particular pri(H ′) is a free abelian normal subgroup of Wi for each i. This shows that, in
order to �nish the proof, it su�ces to show that an irreducible Coxeter group which possesses a
nontrivial free abelian normal subgroup must be of a�ne type.

We assume henceforth that (W,S) is irreducible, but not of a�ne type otherwise we are done.
Since H is normal in W , so is its parabolic closure Pc(H). Since a parabolic subgroup is normal
if and only if it is a direct component, it follows that Pc(H) = W since (W,S) is irreducible.
This is true even after replacing H by a �nite index subgroup normalized by W . Therefore,
[Kra94, Theorem 6.8.3] implies that H is of rank one because (W,S) is not of a�ne type. In
particular the centralizer of H in W is of index at most 2. On the other hand H is of �nite index
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in its centralizer by [Kra94, Corollary 6.3.10]. This shows that H is of �nite index in W . Since
W is not of a�ne type, it follows that W must be �nite and, hence, that H is trivial. This is a
contradiction.

7.5 The cubical chamber
Recall from Sect. 2.4 that the Cayley graph of (W,S) is equivariantly embedded in the 1-skeleton
X (1) of X . We denote this subgraph by X0. Given a vertex v ∈ X0, let Ψ(v) be the set of those
half-spaces which contain v but not its neighbors in X0. The set

⋂
ψ∈Ψ(v) ψ, viewed as a subset

of X , is called the cubical chamber containing v. Given two points x, y ∈ X we denote by
M (x, y) the set of walls which separate x from y.

Proposition 24. Let v0 be a vertex of X0 and let x be a vertex of X belonging to the cubical
chamber containing v0. Let M ⊂ M (v0, x) be a set of pairwise parallel walls. There exists a
constant K = K(W,S) such that if M has more than K elements, then W (M) is in�nite dihedral
and its parabolic closure Pc(W (M)) is of irreducible a�ne type and rank ≥ 3.

Proof. De�ne a constant λmax as follows:

λmax = sup{λ ∈ R+ | λ is a coe�cient of some φ ∈ Φ(E )+min in the basis Π},

where
Φ(E )+min = {α ∈ Φ(E )+ | φ ∈ Φ(E )+, φ ⊂ α ⇒ φ = α}.

It follows from the parallel wall theorem [BH93, Theorem 2.8] that the set Φ(E )+min is �nite.
Therefore, the constant λmax is a well-de�ned positive real number.

Let also r = |S| be the rank of (W,S) and κ be the constant de�ned in Sect. 3.1. We will
show that the desired constant K can be de�ned as K = min{n ∈ N | rn > rκλmax}, where
(rn)n∈N is the sequence of Theorem D.

Let Φ(x, v0) be the set of those half-spaces which contain x but not v0. The set Φ(x, v0)
contains a nested sequence φ0 ( φ1 ( · · · ( φl of half-spaces such that M ⊂ {∂φi | i =
0, 1, . . . , l}. Without loss of generality, we may � and shall � assume that (φi)i≤l is a maximal
nested sequence contained in Φ(x, v0): since Φ(x, v0) is �nite, any nested sequence contained in
Φ(x, v0) can be completed in order to obtain a maximal nested sequence. Note that if (φi)i≤l is
maximal, then no wall separates v0 from ∂φl, because if such a wall existed, we could lengthen
the nested sequence (φi)i≤l of one unit by adding the half-space containing x and determined by
this extra wall.

Let Ψ be the set of those half-spaces which contain v0 but not its neighbors in X0 and let
Ψ0 = {ψ ∈ Ψ | φ0 6⊂ ψ}. Note that every half-space contains a vertex of X0. Furthermore,
it follows from the de�nition of Ψ that the only vertex of X0 which is contained in

⋂
ψ∈Ψ ψ is

v0. Therefore, we deduce that for each φ ∈ Φ(x, v0), there exists ψ ∈ Ψ such that φ 6⊂ ψ. In
particular, the set Ψ0 is nonempty. Since the sequence (φi)i≤l is nested, we deduce that φi 6⊂ ψ
for all i = 0, 1, . . . , l and all ψ ∈ Ψ0.

Note that for all i ∈ {0, 1, . . . , l} and all ψ ∈ Ψ0, the vertex x is contained in φi ∩ψ while the
vertex v0 is contained in ψ but not in φi. Since φi 6⊂ ψ and since v0 belongs to an edge crossed
by ∂ψ, it then follows that the walls ∂φi and ∂ψ meet for all i ∈ {0, 1, . . . , l} and all ψ ∈ Ψ0.

Let us choose as base chamber C ⊂ A the unique chamber containing the vertex v0. Once
this chamber has been �xed, we know by Lemma 3(i) that the sets Φ(E ) and Φ(A ) are in
canonical W -equivariant bijection. In order to simplify notation, we omit to write the function
ζC which realizes this bijection and identify thereby the sets Φ(E ) and Φ(A ). In this way, the set
Π of the root basis E is identi�ed with Ψ, the set Φ(E )+ is identi�ed with the set of half-spaces
containing v0 and the set Φ(E )+min with the set of those half-spaces h which contain v0 and such
that no wall separates v0 from ∂h.
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We claim that (φ0, φl) = 1. In order to prove the claim, we will apply Proposition 7. It
follows from the above that −φl ∈ Φ(E )+min. Write −φl =

∑
ψ∈Ψ λψψ with λψ ≥ 0. Note that

by the de�nition of Ψ0, we have φ0 ⊂ ψ, whence (φ0, ψ) ≥ 1 by Lemma 3(iii), for all ψ ∈ Ψ\Ψ0.
Moreover, we have seen that ∂φ0 meets ∂ψ, whence |(φ0, ψ)| ≤ κ, for each ψ ∈ Ψ0. Therefore,
we have:

(φ0, φl) = (−φ0,−φl)
=

∑
ψ∈Ψ λψ(−φ0, ψ)

≤ ∑
ψ∈Ψ0

λψ(−φ0, ψ)
≤ ∑

ψ∈Ψ0
κλmax

= |Ψ0|κλmax

≤ rκλmax.

Since l ≥ K, we have rl ≥ rK > rκλmax and, therefore, we deduce from Theorem D that
(φ0, φl) = 1. Moreover, the group 〈rφi | i = 0, . . . , l〉 is in�nite dihedral and its parabolic closure
P is of irreducible a�ne type. By Lemma 17, we have P = Pc(W (M)).

It remains to show that P is of rank at least 3. By Lemmas 3(iv) and 12(i), there exists ψ ∈ Ψ
such that (ψ, φ0) < 0. We have seen above that if ψ 6∈ Ψ0 then (ψ, φ0) ≥ 1. Thus there exists
ψ ∈ Ψ0 such that (ψ, φ0) < 0. We have seen that ∂ψ meets ∂φi for each i = 0, 1, . . . , l. Since
l ≥ 8, we deduce from Lemma 11 that either the re�ection rψ centralizes 〈rφi | i = 0, 1, . . . , l〉 or
〈rψ, rφi | i = 0, 1, . . . , l〉 is a Euclidean triangle subgroup. But rψ does not commute with rφ0 .
Thus by Lemma 17 P contains a Euclidean triangle subgroup and, hence, it is of rank ≥ 3.

Remark. Note that a cubical chamber contains �nitely many vertices if and only if the W -action
on X is co-compact. Thus Proposition 24 implies that if the W -action is not co-compact then
W possesses a parabolic subgroup of irreducible a�ne type and rank ≥ 3. Conversely, if W
has such a parabolic subgroup, then it is easily seen that some, whence any, cubical chamber
contains in�nitely many vertices. Therefore, we recover the characterization of all those Coxeter
groups acting co-compactly on X ; this was �rst established in [CM05].

Combining the preceding proposition with Lemma 21, one obtains the following useful pre-
cision:

Corollary 25. Let v0 be a vertex of X0 and let x be a vertex of X belonging to the cubical
chamber containing v0. Let M ⊂ M (v0, x) be a set of pairwise parallel walls of cardinality
greater than K + 8, where K is the constant of Proposition 24. Then the parabolic subgroup
Pc(W (M)) is standard with respect to v0.

Proof. Up to enlarging M is necessary, we may � and shall � assume that M is a maximal subset
of M (v0, x) consisting of pairwise parallel walls. By Proposition 24, the group W (M) is in�nite
dihedral and its parabolic closure P is of irreducible a�ne type (note that enlarging M does not
change P ).

Consider a wall m which separates v0 from some m′ ∈ M . Let M0 be the subset of all those
elements of M0 which meet m. By Lemma 11, the set M0 has at most 7 elements. Therefore,
the set M\M0 ∪ {m} is a set of pairwise parallel walls contained in M (v0, x), to which we may
apply Proposition 24. In particular the group W (M\M0 ∪ {m}) is in�nite dihedral.

Since the set M\M0 contains at least two elements, it follows that W (M\M0) is in�nite.
Therefore, we have Pc(W (M\M0)) = P because W (M\M0) ⊂ P and any proper parabolic
subgroup of a parabolic subgroup of irreducible a�ne type is �nite. In view of the preceding
paragraph, we deduce from Lemma 17(2) that rm ∈ P . Since P is of a�ne type and since m
is parallel to some element of M , it follows that m is parallel to all elements of M . By the
maximality of M , this yields m ∈ M . The desired assertion now follows from Lemma 21.

Knowing that a parabolic subgroup is standard with respect to v0 will be relevant for the
following reason:
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Lemma 26. Let P be a parabolic subgroup of W , which is standard with respect to some vertex
v0 of the Cayley graph. Let M0 be a set of walls such that W (M0) is a �nite subgroup of P .
Then there exists a cube c0 ⊂ X and an element w ∈ P such that w.c0 contains v0 and that
M(c0) = M0.

Proof. Since W (M0) is �nite, so is its parabolic closure P0 = Pc(W (M0)). Clearly, it su�ces to
prove the lemma for the set M0 consisting of all those walls m such that rm ∈ P0.

Since P0 ⊂ P and P is standard with respect to v0, there exists w ∈ P such that wP0w
−1

is standard with respect to v0. Let M be the set of those walls m such that rm ∈ wP0w
−1.

Since P0 is �nite, the elements of M meet pairwise by Lemma 19. For each n ∈ N, let Mn be
the subset of M consisting of the walls at combinatorial distance n from v0 in the Cayley graph
X0; by convention a vertex is at distance 1 from a wall if that wall separates the vertex from
one of its neighbors. Note that W (M1) = wP0w

−1 because wP0w
−1 is standard with respect

to v0. In particular M1 is nonempty. By Lemma 18, there exists a cube c1 containing v0 such
that M(c1) = M1. Applying Lemma 18 inductively, one obtains a nested sequence of cubes
c1 ⊂ c2 ⊂ . . . such that M(cn) =

⋃n
i=1 Mi. Since M is �nite, the set Mn is empty for n large

enough. Therefore the union c′0 =
⋃

n cn is a cube containing v0 and such that M(c′0) = M . Now
the cube c0 = w−1.c′0 has the desired property.

7.6 Tuples of walls which meet far away from the Cayley graph
Theorem A of the introduction will be deduced from the following result:

Theorem 27. There exists a constant A = A(W,S) such that the following property holds. Let
M be a set of walls such that the intersection

⋂
m∈M m is nonempty in X . If the distance from

X0 to
⋂

m∈M m is at least A, then W (M) has a direct component of a�ne type and rank ≥ 3;
in particular, it has a free abelian normal subgroup of rank ≥ 2.

Proof. By Lemma 13 combined with Ramsey's theorem, there exists a constant K ′ such that any
set of at least K ′ walls contains a subset of more than K + 8 pairwise parallel walls, where K is
the constant of Proposition 24. We choose A ∈ R+ large enough so that the ball of combinatorial
radius K ′ centered at some vertex of X0 is properly contained in the ball of radius A centered
at that same vertex. Since W acts transitively on the vertices of X0, the so-de�ned constant A
does not depend on the chosen vertex.

By Lemma 18 there exists a cube c ⊂ X such that M(c) = M . In order to prove the
theorem, it su�ces to show that if every such cube is at combinatorial distance at least K ′ from
X0, then W (M) has a direct component of a�ne type and rank ≥ 3.

Let thus c be a cube such that M(c) = M and that c is at minimal combinatorial distance
from X0. Let d be this distance, let x be a vertex of c and v0 be a vertex of X0 at combinatorial
distance d from x and assume that d > K ′.

Let Ψ be the set of those half-spaces which contain v0 but not its neighbors in X0. Assume
that that x 6∈ ψ for some ψ ∈ Ψ. Given any minimal path from x to v0, this path crosses the
wall ∂ψ. Since ∂ψ separates v0 from one of its neighbors, say v, it follows that there exists a
minimal path from x to v0 whose last edge crosses ∂ψ. Thus the distance from x to v is one less
than the distance from x to v0. This contradicts the de�nition of v0 since, by the de�nition of
the elements of Ψ, the vertex v belongs to X0. This shows that x belongs to the cubical chamber
containing v0.

The cardinality of M (x, v0) coincides with the combinatorial distance from x to v0. By the
de�nition of K ′, it follows that M (x, v0) contains a subset M ′ of pairwise parallel walls and of
cardinality greater than K + 8. Up to enlarging M ′ is necessary, we may � and shall � assume
that M ′ is a maximal subset of pairwise parallel walls contained in M (v0, x). By Proposition 24,
the group W (M ′) is in�nite dihedral and its parabolic closure, which we denote by P , is of
irreducible a�ne type.
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Let x′ be a vertex of the cube c neighboring x and let m ∈ M be the wall which separates x
from x′. By de�nition, the combinatorial distance from x′ to X0 is at least d. This implies that
the combinatorial distance from v0 to x′ is d + 1 and, hence, that M (v0, x

′) = M (v0, x) ∪ {m}.
We now show that the re�ection rm normalizes the parabolic subgroup P .

Assume �rst that m = ∂ψ for some ψ ∈ Ψ. In that case, the wall m must meet every element
of M ′ otherwise m would be separated from ∂ψ by some element of M ′, which is absurd since
m = ∂ψ. By Lemma 11, this implies that either rm centralizes W (M ′) or that W (M ′ ∪ {m}) is
a Euclidean triangle subgroup. In the �rst case, the re�ection rm normalizes P ; in the second
one, we have rm ∈ P by Lemma 17.

Assume now that m 6∈ {∂ψ | ψ ∈ Ψ}. Equivalently, this means that x′ belongs to the cubical
chamber containing v0.

Suppose that m does not meet any element of M ′. Then M ′∪{m} is a set of pairwise parallel
walls to which we may apply Proposition 24. This proves that W (M ′ ∪ {m}) is in�nite dihedral
and, hence, the re�ection rm through m belongs to P by Lemma 17.

Suppose now that the subset M ′(m) of those elements of M ′ which meet m is nonempty.
Suppose �rst that M ′(m) contains less than 8 elements. Then M ′\(M ′(m)

) ∪ {m} ⊂ M (v0, x
′)

is a set of pairwise parallel walls to which we may apply Proposition 24. As in the preceding
paragraph, we obtain that rm belongs to P . Suppose now that M ′(m) contains at least 8
elements. By Lemma 11, this implies that either rm centralizes W (M ′) or that W (M ′ ∪ {m}) is
a Euclidean triangle subgroup. In the �rst case, the re�ection rm normalizes P ; in the second
one, we have rm ∈ P by Lemma 17.

In all cases, we have seen that rm normalizes P . Since every element of M separates x from
one of its neighboring vertices in c, it follows that the group W (M) is contained in the normalizer
NW (P ) of P in W . Therefore, by Lemma 22, each direct component of W (M) is either contained
in P or centralizes P .

Assume that every wall of M meets every wall of M ′. By the maximality of M ′, the set M ′

possesses an element m′ such that m′ is not separated from x by any wall. By the de�nition of
X , it follows that x belongs to an edge which is cut by the wall m′. Since every wall in M meets
m′, we deduce from Lemma 18 that c is a face of a (n + 1)-cube c′′ whose center is contained
in m′. Let c′ be the n-cube which is opposite c in c′′. Thus c and c′ are separated by m′ and
M(c) = M(c′) = M . By construction, the combinatorial distance from v0 to c′ is strictly smaller
than the combinatorial distance from v0 to c, which contradicts the de�nition of c.

Therefore M contains an element mP which does not meet all elements of M ′. By the same
arguments as above, we see that rmP belongs to P . Since P is a Coxeter group of a�ne type in
which the set M ′ corresponds to one direction of hyperplanes, it follows that mP does not meet
any element of M ′. If m ∈ M is another element of M which does not meet all elements of M ′,
then we obtain similarly that rm ∈ P and that m is parallel to all elements of M ′ ∪{mP }. Since
m meets mP because the elements of M meet pairwise, it follows that m = mP . This proves
that, with the exception of mP which meets no element of M ′, all other elements of M meet all
elements of M ′.

Let P0 be the subgroup generated by the direct components of W (M) which are contained
in P . Thus rmP ∈ P0 ⊂ P . Note that any re�ection subgroup of an a�ne Coxeter group is
either �nite or of a�ne type. Therefore, in order to �nish the proof, it su�ces to prove that P0 is
in�nite because P0 is of 2-spherical type by Lemma 20 and, hence, if it is in�nite, then its rank
is at least 3.

Let M0 = {m ∈ M | rm ∈ P0} and let M1 = M\M0. Thus W (M1) centralizes P and every
element of M1 meets every element of M ′. Recall that d denotes the combinatorial distance from
v0 to x. By Lemma 18 there is a cube c′1, containing x, such that M(c′1) = M1 ∪ {m′}. Let c1

be the face of that cube such that x 6∈ c1 and M(c1) = M1. In particular, the combinatorial
distance from c1 to v0 equals d− 1.

Assume now that P0 = W (M0) is �nite in order to obtain a contradiction. By Lemma 26,
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there exists an element w ∈ P and a cube c0 ⊂ X such that M(c0) = M0 and that w.c0

contains v0. Note that M(w.c0) = w(M(c0)) and hence W (M(w.c0)) = wW (M0)w−1 ⊂ P .
Since P , and hence w, centralizes W (M1) it follows that every wall in M1 meets every wall
in M(w.c0). Note that if c, c′ are cubes of X at combinatorial distance r from one another
and such that M(c) ⊂ M(c′), then every vertex of c is at combinatorial distance r from c′.
Therefore, by Lemma 18, there is a cube c2, at combinatorial distance at most d − 1 from v0,
such that M(c2) = M(w.c0) ∪M(c1). Since w centralizes W (M1) = W (M(c1)), if follows that
w(M(c1)) = M(c1). Therefore, the cube w−1.c2 is at combinatorial at most d − 1 from the
Cayley graph X0 and we have M(w−1.c2) = M = M(c). This contradicts the de�nition of c,
which �nishes the proof.

7.7 Proof of theorem A
Let T (W ) be the set of all subsets T ⊂ W\{1} such that each pair of elements of T generates a
�nite group. Let also C (X ) denote the union of all cubes of X . We de�ne a map σ : T (W ) →
C (X ) as follows.

Let t ∈ T . Thus t is of �nite order and, hence, its parabolic closure Pc(t) is �nite. De�ne
M(t) := {m ∈ M (A ) | rm ∈ Pc(t)}. Thus for all m,m′ ∈ M(t), the group 〈rm, r′m〉 is �nite
and, hence, the wall m meets m′. Let now t, t′ ∈ T . Since 〈t, t′〉 is �nite, so is its parabolic
closure Pc(〈t, t′〉), which contains Pc(t) and Pc(t′) by de�nition. Therefore, for any m ∈ M(t)
and m′ ∈ M(t′), the group 〈rm, rm′〉 is �nite and, hence, the wall m meets m′. This shows that
the elements of M(T ) =

⋃
t∈T M(t) meet pairwise.

By Lemma 18, there is a cube c in X such that M(c) = M(T ). Among all such cubes, choose
one which is at minimal combinatorial distance from the Cayley graph X0; we de�ne σ(T ) to be
that cube. Note that the group W acts on T (W ) by conjugation and on C (X ) via its action
on X , but the map σ is not W -equivariant because the de�nition of σ depends on an arbitrary
choice.

Now we associate to each cube c ∈ C (X ) a �nite subset T (c) ⊂ T (W ) as follows. Consider
a k-tuple of subsets M1,M2, . . . Mk ⊂ M(c) which satisfy the following conditions:

• M(c) =
⋃k

i=1 Mi;

• For all i, j ∈ {1, . . . , k}, the group W (Mi ∪Mj) is �nite.

Given such a k-tuple, choose a nontrivial element ti ∈ W (Mi) for each i = 1, . . . , k. Clearly
we have T = {ti | i = 1, . . . , k} ∈ T (W ). We denote by T (c) the set consisting of all those
elements of T (W ) which are obtained from c in this manner. Note that the construction of T
depends on some choices, but each choice has to be made between a �nite number of possibilities.
Therefore T (c) is a �nite subset of T (W ). Note also that the map T : C (X ) → 2T (W ) is
W -equivariant: for all w ∈ W we have T (w.c) = {wTw−1 | T ∈ T (c)}.

Let C0(X ) be the set of all those cubes c such that W (M(c)) has no direct component of
a�ne type and that c is at minimal combinatorial distance from X0 among all cubes c′ such that
M(c′) = M(c). Clearly the W -action on X preserves C0(X ). By Theorem 27, the distance
from X0 to any element of C0(X ) is uniformly bounded. Since X is locally �nite and W is
transitive on the vertices of X0, it follows that W has �nitely many orbits in C0(X ).

Let now T0(W ) ⊂ T (W ) be the subset consisting of all those T such that W (M(T )) has
no direct component of a�ne type. Note that W acts on T0(W ) by conjugation. We claim that
W has �nitely many orbits in T0(W ). Let {c1, . . . , ck} ⊂ C0(X ) be a set of representatives of
the W -orbits and let T ∈ T (W ). By de�nition, we have σ(T ) ∈ C0(X ) and T ∈ T (σ(T )). Let
w ∈ W such that w.σ(T ) = ci for some i. Thus wTw−1 ∈ T (ci). This shows that the �nite
subset

⋃k
i=1 T (ci) ⊂ T (W ) contains a representative of each W -orbit in T0(W ). This proves

the claim.
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Let G be any set of subgroups of W invariant under conjugation. Assume that each Γ ∈ G
possesses a generating set which belongs to T0(W ). Then, by the claim, the set G is a �nite union
of conjugacy classes. Using this observation, we now prove the desired assertions successively.

(i). The `only if' part is clear. Suppose that W has a parabolic subgroup of irreducible a�ne
type and rank ≥ 3. Then W has no re�ection subgroup of irreducible a�ne type and rank ≥ 3
by Proposition 16 and it follows that T0(W ) = T (W ). By the above, it follows that W has
�nitely many conjugacy classes of 2-spherical subgroups.

(ii). Let G1 be the set of all 2-spherical re�ection subgroups with no direct component of
irreducible a�ne type. By de�nition, every Γ ∈ G1 has a generating set T ∈ T (W ) consisting
of re�ections, and such that Γ = W (M(T )). Therefore T ∈ T0(W ) and the desired �niteness
property follows.

(iii). Let G2 be the set of all 2-spherical subgroups Γ such that Γ has no nontrivial free abelian
normal subgroup and Z-rk(Γ) ≥ Z-rk(W )− 1. Let Γ ∈ G2 and T ∈ T (W ) be a generating set of
Γ. Clearly Γ ⊂ W (M(T )). Let W (M(T )) = W1×· · ·×Wl be the decomposition of W (M(T )) into
its direct components, and assume that W1 is of a�ne type. Let T1 be the translation subgroup
W1. We have T1 ∩ Γ = {1} because T1 ∩ Γ is a free abelian normal subgroup of Γ. On the other
hand, it follows from the direct decomposition above that any free abelian subgroup of Γ has
a �nite index subgroup which centralizes T1. Moreover W (M(T )) is 2-spherical by Lemma 20;
therefore, as an in�nite 2-spherical Coxeter group, W1 is of rank ≥ 3 and hence Z-rk(T1) ≥ 2.
This shows that Z-rk(〈T1 ∪ Γ〉) ≥ Z-rk(Γ) + 2 > Z-rk(W ), a contradiction. Therefore W (M(T ))
has no direct component of a�ne type. In other words, we have T ∈ T0(W ) and the desired
�niteness property follows.

(iv). Let G3 be the set of all 2-spherical subgroups Γ such that Γ is not in�nite virtually
abelian. Let Γ ∈ G3 and T ∈ T (W ) be a generating set of Γ. Let W (M(T )) = W1 × · · · ×Wl

be the decomposition of W (M(T )) into its direct components, and assume that Wi is of a�ne
type for each i ≤ j but Wi is not for i > j. Thus for all i ≤ j < i′, the group Wi′ centralizes Wi

and, hence, normalizes its parabolic closure Pc(Wi), which is of a�ne type by Proposition 16.
Therefore, by Lemma 22, either Wi′ centralizes Pc(Wi) or Wi′ ⊂ Pc(Wi). Since the centralizer
of Pc(Wi) is �nite by hypothesis and since Wi′ is not a�ne, it follows in both cases that Wi′ is
�nite. This shows that if W (M(T )) has a component of a�ne type, then each direct component
of W (M(T )) is either a�ne or �nite. In that case W (M(T )) would be virtually abelian, which
is impossible since Γ ⊂ W (M(T )). Therefore W (M(T )) has no component of a�ne type and
T ∈ T0(W ).

7.8 Co-Hop�an Coxeter groups : proof of Corollary B
Let W = W1 × · · · ×Wl be the decomposition of W into its direct components.

If W1 is of a�ne type, then there exists a monomorphism φ1 : W1 → W1 which is not
surjective. Then the unique homomorphism φ whose restriction on W1 (resp. Wi) is φ1 (resp.
the identity for i > 1) is a monomorphism which is not surjective. Thus W is not co-Hop�an.

Assume now that for each i the group Wi is not a�ne. By Lemma 23, this implies that
W has no nontrivial free abelian normal subgroup. Therefore, the group W contains �nitely
many conjugacy classes of subgroups isomorphic to W by Theorem A(iii). By the main result of
[HRT97], the outer automorphism group of W is �nite. We deduce that W admits only �nitely
many monomorphisms into itself up to conjugation. The rest of the proof is similar to [RS94,
Proof of Theorem 3.1]; for convenience, we reproduce the details.

Let ϕ : W → W be a monomorphism and assume that ϕ is not surjective in order to obtain
a contradiction. For each n, the centralizer of ϕn(W ) in W is �nite, otherwise it would contain
an element of in�nite order γ (by Selberg's lemma, W has a torsion free subgroup of �nite index)
and the group 〈{γ} ∪ ϕn(W )〉 would be of Z-rank strictly greater than Z-rk(W ). Since W has
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�nitely many conjugacy classes of �nite subgroups, there is a �nite subgroup A which is the
centralizer of ϕn(W ) for all su�ciently large n. In particular ϕ(A) = A.

Since W admits only �nitely many monomorphisms into itself up to conjugation, there exist
arbitrarily large integers k, l and an element g ∈ W such that for all w ∈ W we have

gϕk(w)g−1 = ϕk+l(w).

Therefore, conjugating ϕk(w) by g is equivalent to transform it by ϕl, so we have:

gϕk+l(w)g−1 = ϕl(ϕk+l(w)) = ϕl(gϕk(w)g−1) = ϕl(g)ϕk+l(w)ϕl(g−1).

In particular g−1ϕl(g) ∈ A, so ϕl(g) = ga for some a ∈ A. Since ϕ(A) = A, for each m ≥ 1 we
have ϕml(g) = gam for some am ∈ A. By the pigeonhole principle, we obtain ϕm1l(g) = ϕm2l(g)
for some m1 < m2. But this shows that ϕm1l(g) ∈ ϕn(W ) for all integers n. As for all w ∈ W
we have:

ϕk+l+m1l(w) = ϕm1l(g)ϕk+m1l(w)ϕm1l(g−1)

and since moreover ϕm1l(g) ∈ ϕk+m1l(W ), it follows that ϕk+l+m1l(W ) = ϕk+m1l(W ), a contra-
diction.
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