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Abstract. Given a complete CAT(0) space X endowed with a geometric action of a
group Γ, it is known that if Γ contains a free abelian group of rank n, then X contains a
geometric �at of dimension n. We prove a converse of this statement in the special case
where X is a convex subcomplex of the CAT(0) realization of a Coxeter group W , and
Γ is a subgroup of W . In particular a convex cocompact subgroup of a Coxeter group
is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2.
Our result also provides an explicit control on geometric �ats in the CAT(0) realization
of arbitrary Tits buildings.

Introduction
Let X be a complete CAT(0) space and Γ be a group acting properly discontinuously

and cocompactly on X. It is a well known consequence of the so called �at torus theorem
(see [BH99, Corollary II.7.2]) that:

(Zn ⇒ En): if Γ contains a free abelian group of rank n, then X contains a geometric
�at of dimension n.

Recall that a (geometric) �at of dimension n, also called (geometric) n��at, is a
closed convex subset of X which is isometric to the Euclidean n-space. One may wonder
whether a converse of this statement does hold, that is to say, whether the presence of a
geometric n��at in X is re�ected in Γ by the existence of a free abelian group of rank n.
This question goes back at least to Gromov [Gro93, �6.B3].

In the case n = 2, in view of the �at plane theorem (see [BH99, Corollary III.H.1.5]),
this question can be stated as follows:

If X is not hyperbolic, does Γ contains a copy of Z× Z?
The answer is known to be positive in the following cases:
• Γ is the fundamental group of a closed aspherical 3-manifold, see [KK04].
• X is a square complex satisfying certain technical conditions, see [Wis05].

A combinatorially convex subcomplex of the Davis complex |W |0 of a Coxeter
group W is an intersection of closed half-spaces of |W |0. The following result shows that,
if X is a such a combinatorially convex subcomplex of |W |0, and if Γ ⊂ W acts cellularly,
then the converse of the property (Zn ⇒ En) above holds for all n:
Theorem A. Let X be a combinatorially convex subcomplex of the Davis complex |W |0
of a Coxeter group W . Let Γ be a subgroup of W which preserves X and whose induced
action on X is cocompact. If X contains a geometric n��at, then Γ contains a free abelian
group of rank n.

Since half-spaces are CAT(0)-convex, combinatorially convex subcomplexes are CAT(0)-
convex as well. We do not know if the theorem above is still true when X is only assumed
to be a CAT(0)-convex subset of |W |0. We note that in general the intersection X̄ of the
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closed half-spaces of |W |0 containing X is not cocompact under Γ. Yet Γ is still co�nite
on the set of walls separating X (or X̄), and perhaps this is enough.

Corollary B. Let X be a CAT(0) convex subcomplex of the Davis complex |W |0 of a
Coxeter group W . Let Γ be a subgroup of W which preserves X and whose induced action
on X is cocompact. If X contains a geometric n��at, then Γ contains a free abelian group
of rank n.

Proof. The Corollary follows by Theorem A because, since X is a subcomplex, the in-
tersection of the closed half-spaces of |W |0 containing X is a combinatorially convex
Γ-cocompact subcomplex X̄.

We sketch the argument. The key-point is that X0 is convex for the combinatorial
distance. First, any two vertices x, y of X may be joined by a combinatorial geodesic (x0 =
x, . . . , xn = y) all of whose vertices belong to the smallest subcomplex of |W |0 containing
the CAT(0) geodesic between x ad y (see [HP98, Lemme 4.9]). Since X is a CAT(0) convex
subcomplex, it follows that x0, . . . , xn belong to X0. Now any combinatorial geodesic
between x, y may be joined to (x0, . . . , xn) by a sequence of geodesics, two consecutive of
which di�er by replacing half the boundary of some polygon of |W |0 by the other half.
Since X is a CAT(0) convex subcomplex it contains a polygonal face of |W |0 as soon as it
contains two consecutive edges of the boundary. It follows that X0 contains the vertices
of any combinatorial geodesic joining two of its points.

For any edge e with endpoints x ∈ X, y 6∈ X we claim that the geometric wall m
separating x from y does not separate x from any other vertex z of X. Indeed any vertex
separated from x by m can be joined to x by a combinatorial geodesic through y. So by
combinatorial convexity X would contain y, contradiction. This shows that X is contained
in the intersection X̃ of closed half-spaces whose boundary wall separates an edge with
one endpoint in X and the other one outside.

We claim that X̃ contains no vertex outside X. Indeed let v 6∈ X0 denote some vertex.
Choose a vertex w ∈ X0 such that the combinatorial distance d(v, w) is minimal. Consider
any geodesic from w to v. Then the �rst edge e of this geodesic ends at a vertex y 6∈ X,
and the wall separating w from y does not separate y from v. Thus v 6∈ X̃. Since
X0 ⊂ X̄ ⊂ X̃ and X̃ is the union of chambers with center in X0, it follows that X̄ = X̃.
Since Γ is co�nite on X0 by assumption it follows that Γ is cocompact on X̄, and we may
apply Theorem A. ¤

The algebraic �at rank of a group Γ, denoted alg-rk(Γ), is the maximal Z-rank
of abelian subgroups of Γ. The geometric �at rank of a CAT(0) space X, denoted
rk(X), is the maximal dimension of isometrically embedded �ats in X. As an immediate
consequence of Theorem A combined with the �at torus theorem, one obtains:

Corollary C. Let X and Γ be as in Theorem A. Then rk(X) = alg-rk(Γ). In particular,
one has rk(|W |0) = alg-rk(W ).

It is an important result of Daan Krammer [Kra94, Theorem 6.8.3] that the algebraic
�at rank of W can be easily computed in the Coxeter diagram of (W,S).

The equality between the algebraic �at rank of W and the geometric �at rank of |W |0
was conjectured in [BRW05]. Actually, it is shown in loc. cit. that this equality allows
to compute very e�ciently the so called (topological) �at rank of certain automorphism
groups of locally �nite buildings whose Weyl group is W . The groups in question carry a
canonical structure of locally compact totally discontinuous topological groups; further-
more they are topologically simple [Rém04]. The topological �at rank mentioned above is
a natural invariant of the structure of topological group (see [BRW05] for more details).
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The class of pairs (X, Γ) satisfying the assumptions of Theorem A is larger than one
might expect. Assume for example that Γ acts geometrically by cellular isometries on a
CAT(0) cubical complex X, and that Γ acts in a `special' way on hyperplanes:

(1) for any hyperplane H of X and any element g ∈ Γ, either gH = H, or H and gH
have disjoint neighbourhoods

(2) for any two distinct, intersecting hyperplanes H,H ′ of X and any element g ∈ Γ,
either gH ′ intersects H, or H and gH ′ have disjoint neighbourhoods

Such `special' actions are studied in [HW06], where it is proved that in the above situation
there exists a right-angled Coxeter group W , an embedding Γ → W and an equivariant
cellular isometric embedding X → |W |0. Thus Corollary B applies to groups acting
geometrically and specially on CAT(0) cubical complexes. When the action is free we
obtain:
Corollary D. The fundamental group of a compact non positively curved special cube
complex is hyperbolic i� it does not contain Z× Z.

The fundamental groups of the �clean� (V H-)square complexes studied in [Wis05] are
examples of virtually special groups (by Theorem 5.7 of [HW06]). Thus our Theorem A
provides in this case a new proof of the equivalence between hyperbolicity and absence
of Z × Z. Note that Wise's result applies to malnormal or cyclonormal V H-complexes,
which are a priori more general than the virtually clean ones. But in [Wis05] Wise asks
explicitly wether malnormal or cyclonormal implies virtually clean; and he proved already
this converse implication for many classes of V H-complexes.

Not surprisingly, Theorem A also provides a control on geometric �ats isometrically
embedded in the CAT(0) realization of arbitrary Tits buildings. More precisely, we have:
Theorem E. Let (W,S) be a Coxeter system and B be a building of type (W,S). Every
geometric �at of the CAT(0) realization |B|0 of B is contained in an apartment. In
particular, one has rk(|B|0) = alg-rk(W ).

Note that in [BRW05] the authors had established the equality rk(|B|0) = rk(|W |0).
Finally, we recall from [Kle99, Theorem B] that if X is a locally compact complete

CAT(0) space on which Isom(X) acts cocompactly, then the geometric �at rank of X
coincides with �ve other quantities, among which the following ones:

• The maximal dimension of a quasi��at of X.
• sup{k | Hk−1(∂T X) 6= {0}}, where ∂T X denotes the Tits boundary of X.
• The geometric dimension of any asymptotic cone of X.

This applies of course to the Davis complex |W |0, but also to many locally �nite build-
ings of arbitrary type, including all locally �nite Kac-Moody buildings. In particular,
Corollary C and Theorem E above, combined with Daan Krammer's computation of
alg-rk(W ), provide a very e�cient way to compute all these quantities for these exam-
ples.

In Section 1, we �rst recall basic facts on the Davis�Moussong geometric realization of
Coxeter groups. In particular we introduce the walls, the half-spaces and the chambers.

In Section 2 we de�ne combinatorial convex subsets of the Davis�Moussong geometric
realization, and we establish an important Lemma.

In Section 3 we present the main technical tools of this article. If a family of walls
behaves as if it was contained in a Euclidean triangle subgroup, then in fact it generates
a Euclidean triangle subgroup (see Lemmas 3.1 and 3.4 for precise statements).

In Section 4 we describe completely the combinatorial structure of the set of walls
separating a given �at. The re�ections along these walls generate a subgroup that we also
describe.

In Section 5 we explain how to get a rank n free abelian group out of a rank n �at.
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And in Section 6 we explain how to deduce the statement on buildings from the state-
ment on Coxeter complexes.

1. Preliminaries
Let (W,S) be a Coxeter system with S �nite. The Davis complex associated with

(W,S), denoted |W |0, is a CAT(0) cellular complex equipped with a faithful, properly
discontinuous, cocompact action of W (see [Dav98]).

Recall that a re�ection of W is, by de�nition, any conjugate of an element of S. The
�xed point set of a re�ection in |W |0 is called a wall. Note that a wall is a closed convex
subset of |W |0. A fundamental property is that every wall separates |W |0 into two open
convex subsets, whose respective closures are called half-spaces. If a is a half-space, its
boundary is a wall which is denoted by ∂a. If x ∈ |W |0 is a point which is not contained
in any wall, then the intersection of all half-spaces containing x is compact; this compact
set is called a chamber of |W |0. The W -action on the chambers of |W |0 is free and
transitive.

Let x, y denote two non-empty convex subsets of |W |0. We say that a wall m separates
x from y whenever x is contained in one of the half-spaces delimited by m, y is contained
in the other half-space, and neither x nor y are contained in m.

We will use the following notation. Given a wall m of |W |0, the unique re�ection �xing
m pointwise is denoted by rm. For any set M of walls, we set W (M) := 〈rm| m ∈ M〉.
Recall that W (M) is itself a Coxeter system on a certain set of re�ections (rν)ν∈N , where
each wall ν ∈ N is of the form ν = wµ for some w ∈ W (M) and some µ ∈ M (see
[Deo89]). Such a subgroup will be called a re�ection subgroup.

Finally, given two points (resp. two convex subsets) x, y of |W |0, we denote by M (x, y)
the set of all walls which separate x from y. Two chambers c, c are said to be adjacent
whenever M (c, c′) is empty, or consists in a single wall m (in which case rm(c) = c′). A
gallery (of length n) is a sequence (c0, c1, . . . , cn) of chambers such that ci and ci+1 are
adjacent chambers for i = 0, . . . , n− 1. The gallery de�nes a unique sequence of walls it
crosses (this sequence might be empty if the gallery is a constant sequence).

We get a (discrete) distance on the set of chambers by considering the in�mum of the
length of all galleries from the �rst chamber to the second. Using the simple transitive
action of W on the chambers, this gallery distance is identi�ed with the word metric on
(W,S).

It is well known that for two chambers c, c′ the gallery distance dgal(c, c
′) is the cardi-

nality of M (c, c′), and that a gallery from c to c′ has length dgal(c, c
′) if and only if the

sequence of walls it crosses has no repetition. Furthermore for any gallery from c to c′ the
set of walls separating c from c′ is the set of walls appearing an odd number of times in
the sequence of walls that the gallery crosses.

The following basic lemmas are well known; their proofs are easy exercises.

Lemma 1.1. Let x, y be two points of |W |0. There are two chambers cx, cy such that
x ∈ cx, y ∈ cy and M (x, y) = M (cx, cy). ¤

Lemma 1.2. Let x, y ∈ |W |0. There exists γ ∈ W (M (x, y)) such that x and γ.y are
contained in a common chamber. ¤

2. Combinatorial convexity
A subset F ⊂ |W |0 is called combinatorially convex if either F = |W |0 or F coincides

with the intersection of all half-spaces containing it. The combinatorial convex closure
of a subset F ⊂ |W |0 will be denoted by Conv(F ). Hence Conv(F ) is either the whole
|W |0 (if F is not contained in any half-space) or the intersection of all half-spaces of |W |0
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containing F . Since half-spaces are subcomplexes of the �rst barycentric subdivision of
|W |0 we note that combinatorially convex subsets are subcomplexes as well.

Since half-spaces are CAT(0) convex, combinatorially convex subcomplexes are CAT(0)
convex, but we will rather use the following elementary combinatorial convexity property:
all chambers of a geodesic gallery from a chamber c to a chamber c′ belong to Conv(c∪c′).
Lemma 2.1. Let x, y ∈ |W |0 and assume that the set M (x, y) possesses a subset M such
that for all m ∈ M and µ ∈ M = M (x, y)\M , the re�ections rm and rµ commute. Then
the combinatorial convex closure of {x, y} contains a point z such that M (y, z) = M and
M (x, z) = M .
Proof. Let cx, cy be chambers such that x ∈ cx, y ∈ cy and M (x, y) = M (cx, cy) (see
Lemma 1.1). We prove that there exists a chamber cz such that M (cy, cz) = M and
M (cx, cz) = M (note that such a chamber necessarily lies in the combinatorial convex
closure of cx ∪ cy).

This implies the desired result. Indeed since M (x, y) = M (cx, cy) we have Conv({x, y}) =
Conv(cx∪cy). Furthermore since M (y, cy) = ∅ we have M (cz, y) ⊂ M (cz, cy). Conversely
if m ∈ M (cz, cy) then m does not separate cz from cx � otherwise cz would not be inside
Conv(cx ∪ cy). Thus m separates cy from cx, and so m ∈ M (x, y). In particular y 6∈ m.
Thus in fact m ∈ M (cz, y). Consequently M (cz, y) = M (cz, cy) (= M), and similarly
M (cz, x) = M (cz, cx) (= M). We then de�ne z to be any point in the interior of the
chamber cz.

It remains to prove the statement for chambers. To this end, we argue by induction on
the cardinality n of M (cx, cy). We may assume n > 0.

Consider some geodesic gallery (c0 = cx, . . . , cn−1, cn = cy). Let µ denote the unique
wall separating cn−1 from cn. By induction there is a chamber d such that M (cx, d) =
M \ {µ},M (d, cn−1) = M \ {µ}. We then have M (d, cy) = M (d, cn−1) ∪ {µ}.

If µ ∈ M , then the chamber d satis�es M (cx, d) = M and M (d, cy) = M , so we are
done.

Assume now that µ ∈ M , so M = M (d, cn−1). Consider a gallery from d to cn−1 of
minimal length. If this gallery has length 0 then M = ∅ and we take cz = cy. Otherwise let
m ∈ M denote the last wall that the gallery crosses. Let d′ denote the chamber rmrµ(cn−1).
Then d′ is adjacent to cn−2, and d′ is also adjacent to cn because rmrµ = rµrm. It follows
that there exists a gallery of minimal length from cx to cy whose last crossed wall is m.
So in fact we are back to the �rst case, and thus we are done. ¤

Note that the corresponding statement (for vertices) is true in an arbitrary CAT(0)
cubical complex X. Indeed for any two vertices x, y of X such that the set M (x, y) of
hyperplanes of X separating x from y may be written M (x, y) = M tM so that every
hyperplane of M is perpendicular to every hyperplane of M , there exists a vertex z such
that M (z, y) = M and M (z, x) = M . Clearly z is on some combinatorial geodesic from
x to y, thus z is in the convex hull of {x, y}.

3. The Euclidean triangle lemmas
In what follows, aEuclidean triangle subgroup of the Coxeter group W is a re�ection

subgroup which is isomorphic to one of the three possible irreducible Coxeter groups
containing Z× Z as a �nite index subgroup. We say that a set P of walls is Euclidean
whenever there exists a wall m such that P ∪{m} generates a Euclidean triangle subgroup
of W . We will be mainly interested in the case when P is a set of pairwise disjoint walls.

The following lemma relates the combinatorial con�guration of a certain set of walls
M of |W |0 with the algebraic structure of W (M). This provides the key ingredient which
allows to understand the walls of a geometric �at of |W |0, see Proposition 4.9 below.
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Lemma 3.1. There exists a constant L, depending only on the Coxeter system (W,S),
such that the following property holds. Let a, b, h0, h1, . . . , hn be a collection of half-spaces
of |W |0 such that:

(1) ∅ 6= a ∩ b ( h0 ( h1 ( · · · ( hn,
(2) ∅ 6= ∂a ∩ ∂b ⊂ ∂h0,
(3) ∂a and ∂b both meet ∂hi for each i = 1, . . . , n.

If n ≥ L, then the group generated by the re�ections through the walls ∂a, ∂b, ∂h0,
∂h1, . . . , ∂hn is a Euclidean triangle subgroup.

Proof. See [Cap06, Theorem A]. ¤

A set P of walls of |W |0 is called a chain of walls if there exists a set A of half-spaces
of |W |0 such that A is totally ordered by inclusion and P = {∂a, a ∈ A} (for short we
write P = ∂A). There are three kinds of chains of walls. We say that P is a segment of
walls if it is a �nite chain of walls. We say that P is a line of walls if P = ∂A, with A
a set of half-spaces such that the ordered set (A,⊂) is isomorphic to (Z,≤). And we say
that P is a ray of walls if P = ∂A, with A a set of half-spaces such that the ordered set
(A,⊂) is isomorphic to (N,≤).

Lemma 3.2. Let P denote a nonempty set of walls which are all disjoint from a given
wall µ. Assume that P ∪ {µ} is Euclidean. Then P ∪ {µ} is a chain and W (P ∪ {µ}) is
in�nite dihedral.

Proof. Let µ′ denote some wall such that W (P ∪{µ, µ′}) is a Euclidean triangle subgroup.
Represent W (P ∪ {µ, µ′}) as a group of isometries of the Euclidean plane (in such a way
that the abstract re�ections act as geometric re�ections).

Let m,m′ denote two walls of P ∪ {µ}. Note that m ∩m′ = ∅ if and only if the order
of rmrm′ is in�nite. In the geometric representation we have m∩m′ = ∅ if and only if the
Euclidean lines L(m), L(m′) �xed pointwise by m and m′ are parallel. Since we assume
m∩ µ = ∅ or m = µ, we deduce that L(m) is parallel to L(µ). Similarly L(m′) is parallel
to L(µ). Thus L(m) and L(m′) are parallel, which implies that m = m′ or m ∩m′ = ∅.

Thus P ∪ {µ} is a set of pairwise disjoint walls (of cardinality ≥ 2). By looking at the
geometric representation we deduce that W (P∪{µ}) is in�nite dihedral. Note that the set
of walls associated with all the re�ections of any in�nite dihedral re�ection subgroup is a
line of walls (this can be seen by considering a generating set consisting of two re�ections;
the associated walls cut |W |0 into three pieces, one of which is a fundamental domain for
the re�ection subgroup that we consider). It follows that P ∪ {µ} is a chain. ¤

Let T denote any subset of the generating set S. Then any conjugate of the subgroup
W (T ) is called a parabolic subgroup. The parabolic closure of any subgroup Γ ⊂ W

is the intersection of all parabolic subgroups of W containing Γ; we denote it by Γ̃. With
this terminology, we have:

Lemma 3.3. Let P be a set of pairwise disjoint walls of |W |0. Assume that there exists
a wall m such that W (P ∪ {m}) is a Euclidean triangle subgroup. Then the parabolic
closure W̃ (P ) satis�es the following conditions:

(1) W̃ (P ) is isomorphic to an irreducible a�ne Coxeter group.
(2) For all walls µ, µ′, µ′′, if µ separates µ′ from µ′′ and if rµ′ and rµ′′ both belong to

W̃ (P ), then rµ also belongs to W̃ (P ).
(3) For any line of walls P ′ and any wall µ, if W (P ′) ≤ W̃ (P ) and if W (P ′ ∪ {µ}) is

a Euclidean triangle subgroup, then rµ belongs to W̃ (P ).
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Proof. Point (1) follows from a theorem of D. Krammer which appears in [CM05, Theo-
rem 1.2] (see also Theorem 3.3 in loc. cit.); (2) and (3) follow from (1) using convexity
arguments, see [Cap06, Lemma 8] for details. ¤

We may now deduce an other useful result of the same kind as Lemma 3.1:
Corollary 3.4. Let P be a set of pairwise disjoint walls of |W |0 and let m be a wall
such that W (P ∪ {m}) is a Euclidean triangle subgroup. Then W possesses a Euclidean
triangle subgroup, denoted by W (P ∪ {m}), containing W (P ∪ {m}) and such that rµ ∈
W (P ∪ {m}) for each wall µ satisfying either of the following conditions:

(1) There exist µ′, µ′′ ∈ P such that µ separates µ′ from µ′′.
(2) µ is disjoint from m and moreover W (P ∪ {µ}) is a Euclidean triangle subgroup.

Proof. Let W̃ (P ) ≤ W be the irreducible a�ne Coxeter group provided by Lemma 3.3.
By Lemma 3.3(3) we have rm ∈ W̃ (P ). Let P ′ be the set consisting of all those walls p′

such that rp′ ∈ W̃ (P ) and that there exists p ∈ P ∪ {m} which does not meet p′. De�ne
W (P ∪ {m}) := W (P ′ ∪ P ∪ {m}). The group W (P ∪ {m}) is a Euclidean triangle
subgroup, because it is a subgroup of an a�ne Coxeter group generated by re�ections
corresponding to two directions of hyperplanes. Given a wall µ satisfying (1) or (2), we
obtain successively rµ ∈ W̃ (P ) by Lemma 3.3 and then µ ∈ P ′ by the de�nition of P ′. ¤

4. The walls of a geometric flat
Let F be a geometric �at which is isometrically embedded in the Davis complex |W |0

of W . Let M (F ) denote the set of all walls which separate points of F :
M (F ) :=

⋃
x,y∈F

M (x, y).

Lemma 4.1. For all µ ∈ M (F ), the set µ ∩ F is a Euclidean hyperplane of F .
Proof. Let x, y be points of F which are separated by µ. We know that µ ∩ F is a closed
convex subset of F which separates F into two open convex subsets. Thus the result will
follow if we prove that the geodesic segment [x, y] joining x to y meets µ in a single point.
This is a local property, which can easily be checked in a single (Euclidean) cell of |W |0
(see [NV02, Lemma 3.4] for details). ¤
Lemma 4.2. Let µ be a wall which meets F . Assume that F contains a Euclidean half-
space F+ such that F+ ∩ µ 6= ∅ and F+ is contained in a ε�neighborhood of µ for some
ε > 0. Then F ⊂ µ.
Proof. Let d be the distance function of the Davis complex |W |0. Since µ is a closed convex
subset, the function dµ : |W |0 → R+ : x 7→ inf{d(x, y)| y ∈ µ} is convex (see [BH99,
�II.2]). By assumption, the restriction dµ|F+ of dµ to F+ is bounded. Therefore dµ|F+

must be constant, as it is the case for any bounded convex function on an unbounded
convex domain. Since µ meets F+ by hypothesis, we have dµ|F+ = 0, that is to say,
F+ ⊂ µ. By Lemma 4.1, this implies F ⊂ µ. ¤

Two elements µ, µ′ of M (F ) will be called F�parallel if their respective traces on F
are parallel in the Euclidean sense. In symbols, this writes:

µ‖F µ′ ⇔ µ ∩ F = µ′ ∩ F or µ ∩ F ∩ µ′ = ∅.
The relation of F�parallelism is an equivalence relation on M (F ).

Besides the relation of F�parallelism, there is an other relation of global parallelism
on the walls of F de�ned by

µ‖µ′ ⇔ µ = µ′ or µ ∩ µ′ = ∅.
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Clearly µ‖µ′ ⇒ µ‖F µ′. Given µ ∈ M (F ), we set PF (µ) := {m ∈ M (F ) | m‖µ}.
Thus PF (µ) is contained in the F�parallel class of µ. Note that, in contrast with the
F�parallelism, the relation of global parallelism is not transitive in general: two distinct
walls of PF (µ) may have non trivial intersection.

Any large set of walls contains two non-intersecting ones (see [NR03, Lemma 3]). Con-
sequently, the set of F�parallel classes is �nite. Since chambers are compact and F is
unbounded, it follows that some F�parallel class must be in�nite. Actually, all of them
are, as follows from the following:

Lemma 4.3. Given any µ ∈ M (F ), there exist two rays of walls M+(µ), M−(µ) ⊂ M (F )
such that µ separates any element of M+(µ) from any element of M−(µ). In particular, µ
does not meet any element of M+(µ)∪M−(µ), and PF (µ) contains a line of walls (passing
through µ).

Proof. Consider a line of F which meets orthogonally the F -hyperplane µ ∩ F . Using
Lemma 4.2 we see that when a point p goes at in�nity on the line, its distance to µ must
tend to in�nity. Now by the so called parallel wall theorem (see [BH93, Theorem 2.8])
any point at large distance from a given wall in |W |0 is separated from that wall by some
other wall of |W |0. The Lemma follows. ¤

Remarks 4.4. For µ ∈ M (F ), any subset P ⊂ PF (µ) of pairwise disjoint walls is a chain
of walls. Indeed for three distinct walls p1, p2, p3 ∈ P we have pi‖F µ, thus p1, p2, p3 are
mutually F�parallel. The Euclidean hyperplanes pi ∩ F are pairwise disjoint, so we may
assume that p2 ∩ F separates p1 ∩ F from p3 ∩ F . It follows that p2 separates p1 from p3.
Hence {p1, p2, p3} is a segment of walls. Since any 3�subset of P is a chain, it follows that
P itself is a chain.

We will see in Proposition 4.7 below that the restriction of the relation of global paral-
lelism to a certain subset MEucl(F ) of M (F ) is an equivalence.

By de�nition, the subset MEucl(F ) ⊂ M (F ) consists of all those walls µ ∈ M (F ) which
satisfy the following property:
There exists a wall µ′ ∈ M (F ) such that W (PF (µ) ∪ {µ′}) is a Euclidean triangle sub-
group.

Applying Lemmas 3.2 and 4.3, we get the following:

Lemma 4.5. Assume µ ∈ MEucl(F ), and more precisely that W (PF (µ) ∪ {µ′}) is a
Euclidean triangle subgroup for some µ′ ∈ M (F ). Then:

(i) PF (µ) is a line of walls.
(ii) For all m ∈ PF (µ), one has PF (µ) ⊂ PF (m). In particular PF (µ) = PF (m)

provided m ∈ MEucl(F ).
(iii) W (PF (µ)) is an in�nite dihedral subgroup of W , and is a maximal one.
(iv) rµ′ does not centralize W (PF (µ)). ¤

The following lemma outlines the main combinatorial properties of the set MEucl(F ).

Lemma 4.6. We have the following:
(i) Let P ⊂ M (F ) be a line of walls. If there exists m ∈ M (F ) such that the group

W (P ∪ {m}) is a Euclidean triangle subgroup, then P ⊂ MEucl(F ).
(ii) Let m ∈ M (F ). If m 6∈ MEucl(F ), then m meets every element of MEucl(F ).
(iii) Let m,m′ ∈ M (F ). If the re�ections rm and rm′ do not commute and if m and

m′ are not F�parallel, then m ∈ MEucl(F ).
(iv) Let m,m′ ∈ M (F ). If the re�ections rm and rm′ do not commute and if m′ ∈

MEucl(F ), then m ∈ MEucl(F ).
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Before proving the lemma, it is convenient to introduce the following additional ter-
minology. A set P of walls of |W |0 is said to be convex whenever the following holds:
for each wall m of |W |0 separating two walls of P , we have m ∈ P . For example, for all
x, y ∈ |W |0 the set M (x, y) is convex; moreover, the set M (F ) is convex as well.

Proof of Lemma 4.6(i). Let µ ∈ P . Since P ⊂ M (F ) is a line of walls we have P ⊂ PF (µ).
There are �nitely many walls separating two disjoint walls of |W |0. The line of walls P may
be written as a union of segments of walls {µn, µn+1} (n ∈ Z) so that no m ∈ P separates
µn from µn+1. Choose then a segment of walls Pn ⊂ PF (µ) such that Pn∩P = {µn, µn+1}
and any wall m ∈ Pn \ {µn, µn+1} separates µn from µn+1 and moreover Pn is maximal
with respect to these properties. Set P̄ = ∪kPk. Then P ⊂ P̄ ⊂ PF (µ), P̄ is a line and
for every wall m′ of PF (µ) \ P̄ the set P̄ ∪ {m′} is not a line anymore.

By construction for every p ∈ P̄ there exist p′, p′′ ∈ P such that p separates p′ from
p′′. Therefore, since W (P ∪ {m}) is a Euclidean triangle subgroup, we have W (P̄ ∪
{m}) ⊂ W (P ∪ {m}) by Corollary 3.4. In particular, W (P̄ ∪{m}) is a Euclidean triangle
subgroup. Hence we are done if we show that P̄ = PF (µ). This is what we do now.

Let m′ denote a wall separating two walls p′, p′′ of P̄ . Then m′ ∈ M (F ) and by
Corollary 3.4 the subset P̄ ∪ {m′} is still Euclidean. By Lemma 3.2 P̄ ∪ {m′} is a line,
and by the maximality of P̄ we have m′ ∈ P̄ . Thus P̄ is a convex set of walls.

Assume by contradiction that there exists m′ ∈ PF (µ)\P̄ . By the maximality of P̄ , the
set P̄ ∪ {m′} is not a line anymore. By Remark 4.4 this implies that m′ meets at least
one element of P̄ . Let P̄ ′ denotes the (nonempty) subset of P̄ consisting of all those walls
which meet m′. Note that by the de�nition of P̄ ′, for all p ∈ P̄ , if there exist p′, p′′ ∈ P̄ ′

such that p separates p′ from p′′, then p ∈ P̄ ′. Since P̄ is convex, this shows in particular
that P̄ ′ is convex.

If P̄ ′ is �nite, it is a segment of the line P̄ and there exist p′, p′′ ∈ P̄ such that m′

separates p′ from p′′. Since P̄ is convex, this implies that m′ ∈ P̄ , a contradiction.
Hence P̄ ′ is in�nite. Since µ 6∈ P̄ ′ and P̄ ′ is convex, we see that P̄ ′ is a ray of walls

(contained in P̄ , and not containing µ).
By Lemma 3.2 the group W (P̄ ) is in�nite dihedral. Since P̄ is a line of walls, the wall

π of any re�ection rπ of W (P̄ ) separates two walls p′, p′′ of P̄ . By convexity we then
have π ∈ P̄ : the re�ections of W (P̄ ) are precisely the re�ections along walls of P̄ . We
note two consequences of that. Firstly P̄ is invariant under W (P̄ ). Secondly we have
W (P̄ ) = W (P̄0) for any convex subset P̄0 ⊂ P̄ of cardinality at least 2. In particular we
have W (P̄ ) = W (P̄ ′).

The re�ection rm′ does not centralize W (P̄ ′), otherwise it would centralize W (P̄ ) and,
hence, m′ would meet µ. Consequently rm′ does not centralize W (P̄ ′

0) for all convex subset
P̄ ′

0 ⊂ P̄ ′ of cardinality at least 2. Hence there are in�nitely many walls p̄′ in the ray P̄ ′

such that the re�ections rm′ and rp do not commute. Let p̄′ ∈ P̄ ′ denote some wall such
that the re�ections rm′ and rp̄′ do not commute, and that the collection of all walls of P̄ ′

which separate p̄′ from µ is of cardinality greater than the constant L(≥ 1) of Lemma 3.1.
Let m′′ := rp̄′(m

′). Let {p̄1, . . . , p̄k} denote the segment of walls of P̄ ′ which separate
µ from p̄′ (we have k ≥ L). Then the walls m̄i = rp̄′(p̄i) belong to the ray P̄ ′ by
convexity (remember that rp̄′(µ) ∈ P̄ ). Hence each of them meets m′. By construction
each of them also meets m′′. By Lemma 3.1 we deduce that W (m′,m′′, m̄1, . . . , m̄k, p̄

′) =
W (m′, m̄1, . . . , m̄k, p̄

′) is a Euclidean triangle subgroup. Since {m̄1, . . . , m̄k, p̄
′} is a convex

subsegment of P̄ containing at least two walls we see that W (P̄ ∪ {m′}) is a Euclidean
triangle subgroup. Since µ ∈ P̄ and m′ ∩ µ = ∅, this contradicts Lemma 3.2, thereby
completing the proof of the desired assertion. ¤
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Proof of Lemma 4.6(ii). Let m ∈ M (F ). Assume that there exists µ ∈ MEucl(F ) which
does not meet m. In other words m ∈ PF (µ). By Lemma 4.6(i), µ ∈ MEucl(F ) implies
PF (µ) ⊂ MEucl(F ). Thus m ∈ MEucl(F ).

¤

Proof of Lemma 4.6(iii). Let M be the F�parallel class of m and let m′′ := rm(m′). Since
m and m′ are not F�parallel, there are points x, y on m ∩ F which are separated by m′.
Thus m′′ separates x from y as well. It follows that m′′ ∈ M (F ).

We now show that m′′ is not F�parallel to m. To this end, �rst note that m′′ contains
m ∩m′ ∩ F which is nonempty. Hence, if m′′ were F -parallel to m, then we would have
m ∩ F = m′′ ∩ F . This yields successively m ∩ F = rm(m′) ∩ F and then m ∩ rm(F ) =
m′ ∩ rm(F ). Since m ∩ F is pointwise �xed by rm, we have m ∩ F ⊂ m ∩ rm(F ), whence
�nally m ∩ F ⊂ m′, which contradicts the fact that m and m′ are not F -parallel. This
shows that m′′ is not F�parallel to m and it follows that m′ and m′′ both meet every
element of the F�parallel class M .

By Lemma 4.3, M contains a line P containing m. In particular P is in�nite. By
Lemma 3.1, the group W (P ∪ {m′}) is a Euclidean triangle subgroup. Therefore, we
deduce from Lemma 4.6(i) that m ∈ MEucl(F ). ¤

Proof of Lemma 4.6(iv). Let m ∈ M (F ) and m′ ∈ MEucl(F ) be such that the re�ections
rm and rm′ do not commute. By Lemma 4.6(i), we have PF (m′) ⊂ MEucl(F ). Let
P ′ := PF (m′). Hence P ′ is a line of walls and for all µ′ ∈ P ′, we have PF (µ′) = P ′.

By Lemma 4.6(ii) we may assume that m meets every element of P ′, and in fact that
every element of PF (m) meets every element of P ′, otherwise m ∈ MEucl(F ) and we are
done. By Lemma 4.3, PF (m) contains a line of walls P which contains m.

Let C (resp. C ′) denote the set of walls of P (resp. P ′) which meet m′′ := rm(m′).
Assume that C ′ is �nite. Then there exists a (convex) segment of walls (p+, p1, . . . , pn, p−)

contained in P ′ such that C ′ = {p1, . . . , pn} and m′′ is disjoint from p+ and p−. We let
x+, x− denote points lying on m∩ p+,m∩ p− respectively. Since m′ separates p+ from p−
and m\m′′ = m\m′ we deduce that m′′ separates x+ from x−. Thus m′′ separates p+ from
p−. It follows that m′′ ∈ M (F ), and in fact m′′ ∈ PF (p+). By hypothesis m′ ∈ MEucl(F ),
whence PF (p+) = PF (m′). Since m′′ meets m′, this implies m′ = m′′ from which it follows
that the re�ections rm and rm′ commute, a contradiction. Thus C ′ is in�nite.

By Lemma 3.1, it follows that W (C ′∪{m}) is a Euclidean triangle subgroup. Since P ′ is
Euclidean, we have W (P ′) = W (P ′

0) for any convex chain P ′
0 ⊂ P ′ of cardinality at least 2

(see Lemma 3.2). Since C ′ is in�nite and convex, we deduce W (P ′) ⊂ W (C ′∪{m}). Since
rm′′ belongs to the Euclidean triangle subgroup W (C ′ ∪ {m}) and rm′′rµ′ has �nite order
for every µ′ ∈ C ′, we see that rm′′rµ′ has �nite order for every µ′ ∈ P ′. Thus C ′ = P ′.
Moreover for all µ′ ∈ P ′, the re�ections rµ′ does not commute with rm.

Let µ be any element of P di�erent from m. Let a denote the half-space bounded by m
such that µ∩a = ∅. Let h0 denote the half-space bounded by m′ such that a∩h0 ⊂ rm(h0).
Extend h0 to a chain of half-spaces (hi)i∈Z such that hi ⊂ hi+1 for all i ∈ Z and that
{∂hi| i ∈ Z} = P ′. Since W (P ′∪{m}) is a Euclidean triangle subgroup it follows that the
relation a∩ hi ⊂ rm(hi) holds for every i ∈ Z. For each i ∈ Z, choose a point yi ∈ µ∩ ∂hi

and a point y′i ∈ ∂hi in the interior of a. Then yi ∈ ∂hi and y′i ∈ ∂hi are separated by
m. Since rm and r∂hi

do not commute it follows that yi and y′i are separated by rm(∂hi).
Since y′i ∈ a∩hi we deduce that yi 6∈ rm(hi) for all i ∈ Z. Now choose a point xi ∈ m∩∂hi

for each i ∈ Z. We have

x0 ∈ m ∩ ∂h0 ⊂ rm(∂h0) ⊂ rm(h0) ⊂ rm(h1) ⊂ rm(h2) ⊂ . . .



ON GEOMETRIC FLATS IN CAT(0) TITS BUILDINGS 11

Since M (x0, y0) is �nite and since y0 6∈ rm(h0), there exists j > 0 such that y0 ∈ rm(hj).
Thus the wall rm(∂hi) separates y0 from yi for all i ≥ j. Since y0 and yi both lie on the
wall µ, it follows that ∂hi meets µ for all i ≥ j.

This argument holds for any µ ∈ P\{m}. In particular, if we choose µ such that m
and µ are separated by at least L elements of P , where L is the constant of Lemma 3.1,
we deduce from this lemma that W ({m,µ, ∂hj}) is a Euclidean triangle subgroup. By
Corollary 3.4, we obtain r∂hi

∈ W ({m,µ, ∂hj}) for all i ≥ j. As before, this implies that
W (P ′) < W ({m,µ, ∂hj}) and, in particular, that m′′ = rm(m′) = rm(∂h0) meets µ. Thus
we have µ ∈ C.

Since this holds for all walls µ ∈ P which are su�ciently far apart from m, and since C
is convex, we �nally deduce that C = P . By Lemma 3.1 this implies that W (P ∪ {m′})
is a Euclidean triangle subgroup. By Lemma 4.6(i), we have P ⊂ MEucl(F ) whence
m ∈ MEucl(F ). ¤

The main results of this section are the following two propositions.

Proposition 4.7. The group W (MEucl(F )) is isomorphic to a direct product of �nitely
many irreducible a�ne Coxeter groups.

Proof. We claim that for all m,m′ ∈ MEucl(F ), either PF (m) = PF (m′) or the groups
W (PF (m)) and W (PF (m′)) centralize each other or W (PF (m) ∪ PF (m′)) is a Euclidean
triangle subgroup.

We �rst deduce the desired result from the claim. We know that W (MEucl(F )) is
isomorphic to a Coxeter group. Let W (MEucl(F )) = W1×· · ·×Wk be the decomposition
of W (MEucl(F )) in its direct components. Hence Wi is an irreducible Coxeter group for
each i = 1, . . . , k. Let Mi denote the set of walls m ∈ MEucl(F ) such that rm ∈ Wi. We
note that MEucl(F ) = M1 t · · · tMk and Wi = W (Mi).

We must prove that Wi is a�ne. We record the following easy observations which follow
from the fact that the Wi's are the irreducible components of W (MEucl(F )):

(1) If m ∈ MEucl(F ) is a wall such that rm ∈ Wi, then W (PF (m)) ≤ Wi.
(2) If m,m′ ∈ MEucl(F ) are two walls such that PF (m) 6= PF (m′) and that rm and rm′

both belong to Wi, then there exists a sequence of walls m = m0,m1, . . . ,m` = m′

such that for each j, one has mj ∈ Mi, rmj
∈ Wi and rmj

does not commute with
rmj−1

(a priori the order of rmj
rmj−1

might be in�nite).
We show that, in view of the claim above, these two observations imply that for any

wall m ∈ MEucl(F ) such that rm ∈ Wi, one has

W (PF (m)) ≤ Wi ≤ ˜W (PF (m)),

where ˜W (PF (m)) is the irreducible a�ne Coxeter group provided by Lemma 3.3.
By the �rst observation we just have to check that Wi ≤ ˜W (PF (m)). Since Wi = W (Mi)

it is enough to show that rm′ ∈ ˜W (PF (m)) for any m′ ∈ Mi. For such an m′ we have
a sequence of walls m = m0,m1, . . . , m` = m′ such that for each j, one has mj ∈ Mi

and rmj
does not commute with rmj−1

. We are going to show by induction that for each
µ ∈ PF (mi) we have rµ ∈ ˜W (PF (m)), which implies in particular rm′ ∈ ˜W (PF (m)).

This is clearly true for i = 0. Assume this is true for PF (mi−1), with i > 0. Either
mi ∈ PF (mi−1), thus PF (mi) = PF (mi−1) and we have nothing to prove. Or, by the initial
claim, rmi

rmi−1
has �nite order > 2 and W (PF (mi−1) ∪ PF (mi)) is a Euclidean triangle

subgroup. Since rmi
and rmi−1

do not commute it follows that W (PF (mi−1) ∪ {mi}) is a
Euclidean triangle subgroup. Thus by Lemma 3.3 we have rmi

∈ ˜W (PF (m)). In fact the
same argument applies to any wall µ ∈ PF (mi), which ends the proof.
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The inclusion Wi ≤ ˜W (PF (m)), is now established. In particular Wi is an in�nite
re�ection subgroup of an irreducible a�ne Coxeter group; hence it must be itself an a�ne
Coxeter group, as desired.

It remains to prove the claim. Let m,m′ ∈ MEucl(F ).
Suppose that PF (m) 6= PF (m′). Then by Lemma 4.5 m meets m′.
If there exists m′′ ∈ PF (m) ∩ PF (m′) then, by Lemma 4.6(i), we have m′′ ∈ MEucl(F )

which implies that the elements of PF (m′′) are pairwise disjoint (see Lemma 4.5). Since
m′′ ∈ PF (m)∩PF (m′), we have {m,m′} ⊂ PF (m′′) and, hence, m = m′ because m meets
m′. This contradicts the fact that PF (m) 6= PF (m′), thereby showing that PF (m)∩PF (m′)
is empty. In other words, m meets every element of PF (m′) and m′ meets every element
of PF (m).

For all µ ∈ PF (m) we have µ ∈ MEucl(F ) by Lemma 4.6(i) and, hence, PF (m) = PF (µ)
by Lemma 4.5. Similarly, for all µ′ ∈ PF (m′), we have PF (m′) = PF (µ′). Therefore, we
deduce from the previous paragraph that every element of PF (m) meets every element of
PF (m′).

Suppose moreover that W (PF (m)) does not centralize W (PF (m′)). Then there exist
p ∈ PF (m) and p′ ∈ PF (m′) such that rp and rp′ do not commute. Let p′′ := rp(p

′).
Suppose p′′ meets only �nitely elements of the line of walls PF (m). Then there is a

segment of walls (p−, p1, p2, . . . , pn, p
+) inside PF (m) such that {p1, p2, . . . , pn} is the set

of walls of PF (m) which meet p′′, and p′′ is disjoint from p− and p+. We let x−, x+ denote
points in p′ ∩ p−, p′ ∩ p+ respectively. Since p separates p− from p+ and p′ \ p = p′ \ p′′ we
deduce that p′′ separates x− from x+. Thus p′′ separates p− from p+. In particular since
p− and p+ meet F we have p′′ ∈ M (F ) and clearly p′′ ∈ PF (p−). As we have already
observed we have PF (p−) = PF (m) = PF (p). Thus p′′ ∈ PF (p), contradiction.

Thus in fact p′′ meets in�nitely many elements of PF (m). By Lemma 3.1, this shows
that W (PF (m) ∪ {p′}) is a Euclidean triangle subgroup. Similarly W (PF (m′) ∪ {p}) is
a Euclidean triangle subgroup. The order of the product rprn′ is thus independent of
the wall n′ chosen in the line of walls PF (m′). It follows that for each n′ ∈ PF (m′) the
re�ections rp and rn′ do not commute. Then by Lemma 3.1 the subgroup W (PF (m) ∪
{n′}) is also a Euclidean triangle subgroup. By Corollary 3.4 we now deduce that rn′ ∈
W (PF (m) ∪ {p′}). Thus W (PF (m′)) ⊂ W (PF (m) ∪ {p′}), and in particular the group
W (PF (m) ∪ PF (m′)) is a Euclidean triangle subgroup, which proves the claim. ¤
Corollary 4.8. For all m ∈ MEucl(F ) and γ ∈ W (MEucl(F )), if γ.m ∩ m = ∅ then
γ.m ∈ MEucl(F ).
Proof. By assumption, the group 〈rm, rγ.m〉 is an in�nite dihedral group which is contained
in W (MEucl(F )). Therefore, since W (MEucl(F )) is an a�ne Coxeter group by Proposi-
tion 4.7, the group W (PF (m)∪{γ.m}) is an in�nite dihedral group and, by Lemma 4.5(iii),
we have rγ.m ∈ W (PF (m)). Since PF (m) is a convex line of walls, we deduce �nally that
γ.m ∈ PF (m) ⊂ MEucl(F ). ¤
Proposition 4.9. One the following assertions holds:

(i) There exists an in�nite subset M ⊂ M (F ) which satis�es the following conditions:
• For all m, m′ ∈ M , either m ∩ F = m′ ∩ F or m ∩ F ∩m′ = ∅;
• The groups W (M) and W (M (F )\M) centralize each other.

(ii) The group W (M (F )) is isomorphic to an a�ne Coxeter group.
Proof. Assume �rst that MEucl(F ) = M (F ). Then by Proposition 4.7 property (ii) holds.

Assume now there exists m ∈ M (F )\MEucl(F ). Let M be the set of all those ele-
ments of M (F ) which do not belong to MEucl(F ) and which are F�parallel to m. By
Lemma 4.6(ii), we have PF (m) ⊂ M ; in particular M is in�nite. Let m′ ∈ M (F )\M . If
m′ is not F�parallel to m then rm′ centralizes W (M) by Lemma 4.6(iii). If m′ is F�parallel
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to m, then m′ ∈ MEucl(F ) since m′ 6∈ M . In view of Lemma 4.6(iv), this implies that rm′

centralizes W (M). This shows that the groups W (M) and W (M (F )\M) centralize each
other. Thus property (i) holds. ¤

5. From geometric flats to free abelian groups
Let X be a combinatorially convex subcomplex of the Davis complex |W |0, and Γ be

a subgroup of W which stabilizes X and whose induced action on X is cocompact. The
distance function on |W |0 is denoted by d.
Lemma 5.1. Let ρ ⊂ X be any unbounded subset through a given point x, and let M (ρ) :=⋃

y,z∈ρ M (y, z) be the set of walls which separate points of ρ. There exists a constant K

(depending on ρ and Γ) with the following property: given any positive real number r,
there exists a chamber c at distance at most K from x and an element γ ∈ Γ∩W (M (ρ))
such that c and γ.c both meet ρ, and that d(c, γ.c) > r.
Proof. Recall that a combinatorially convex subcomplex is a (CAT(0) convex) union of
chambers.

Let C(ρ) denote the set of chambers of X meeting ρ: thus ρ is covered by the chambers
of C(ρ). Recall that Γ has �nitely many orbits on the set of all chambers of X. Since ρ
is unbounded, the set C(ρ) is in�nite and it follows that there exists a chamber c ∈ C(ρ)
such that Γ.c ∩ C(ρ) is in�nite.

We write Γ.c ∩ C(ρ) = {γ0.c, γ1.c, . . . , γi.c, . . . } (with γ0 = 1). We pick a point xi in
each intersection ρ ∩ γi.c. By Lemma 1.2 there exists gi ∈ W (M (x0, xi)) such that gix0

and xi lie in a common chamber. Thus gi
−1γi is an element of W sending c to a chamber

meeting c. There are �nitely many such elements.
Thus up to extracting a subsequence we may suppose that the sequence (gi

−1γi)i≥1 is
constant. Then for each i the element γ′i = γiγ1

−1 belongs to Γ ∩W (M (ρ)). And also
γ′i sends the chamber γ1c to the chamber γic. The Lemma follows because the set of
chambers (γic)i≥1 is in�nite. ¤

As before, let M (F ) denote the set of all walls which separate points of F . Theorem A
of the introduction is a straightforward consequence of the following:
Theorem 5.2. Let F be a geometric �at which is isometrically embedded in X; let n
denote its dimension. Then the intersection Γ ∩W (M (F )) contains a free abelian group
of rank n.
Proof. By Selberg's lemma, the group Γ has a �nite index subgroup which is torsion free.
Since Γ is cocompact on X, any �nite index subgroup of Γ is cocompact as well, hence
we may assume without loss of generality that Γ is torsion free.

The proof works by induction on the dimension n of the �at F . We may assume that
n > 0.

Suppose �rst that M (F ) possesses a subset M which satis�es the conditions (i) of
Proposition 4.9. Let then m be any element of M and set F ′ := F ∩m. By Lemma 4.1,
F ′ is a geometric �at of dimension n− 1.

Let ρ denote any geodesic ray of F meeting transversally in�nitely many walls of M .
Let x denote the origin of ρ, and let xn denote the unique point of ρ with d(x, xn) = n.
By Lemma 2.1 there exists a point zn ∈ X such that M (x, xn) = M (x, zn) tM (zn, xn),
with M (x, zn) = M (x, xn) ∩ M . Observe that the cardinality of M (x, zn) tends to
in�nity with n, and thus d(x, zn) → +∞. There is a subsequence (znk

)k≥0 such that the
geodesic segment [x, znk

] ⊂ X converges to a geodesic ray ρ′ ⊂ X (with origin x). Note
that for every y ∈ ρ′ we have M (x, y) ⊂ M (x, znk

) for k large enough. In particular
M (x, y) ⊂ M . Thus M (ρ′) ⊂ M .



14 P.-E. CAPRACE AND F. HAGLUND

We now apply Lemma 5.1 to the ray ρ′ for some (large) positive real number r > 0. We
then get a nontrivial element γ ∈ Γ ∩W (M). Observe that γ must be of in�nite order
since Γ is torsion free.

It follows from the de�nition of M that γ centralizes W (M (F ′)). Furthermore, since
W (M (F ′)) is isomorphic to a Coxeter group and since the center of any Coxeter group is a
torsion group (this is well known and is a straightforward consequence of [Hum90, Exercise
1, p.132]), the intersection W (M (F ′))∩〈γ〉 is trivial. We deduce that the group generated
by W (M (F ′)) together with γ is isomorphic to the direct product W (M (F ′))×〈γ〉. The
desired result follows by induction.

Suppose now that assertion (ii) of Proposition 4.9 holds. Let µ1 be any element of
M (F ). Again by Lemma 4.1 the intersection µ1 ∩ F is a geometric �at of dimension
n − 1. Note that any �at Φ of dimension ≥ 1 is unbounded and thus has M (Φ) 6= ∅.
Thus for each i = 2, . . . , n we may choose successively

µi ∈ M (
( i−1⋂

j=1

µj

) ∩ F ).

In view of Lemma 4.1, the set
( ⋂n

i=1 µi

)∩F consists of a single point x of F and for each
i ∈ {1, . . . , n}, the set

λi :=
( ⋂

j∈{1,...,n}\{i}
µj

) ∩ F

is a geodesic line of F .
We need the following auxiliary result:

Lemma 5.3. Γ has a �nite index subgroup Γ′ such that for any wall m and any chamber
c meeting m, if γ ∈ Γ′ sends c to a chamber meeting m, then γm = m.
Proof. It is enough to prove the Lemma when Γ = W . Recall that the stabilizer of a wall
m is the centralizer of the involution rm. Since W is residually �nite the centralizer Z(rm)
is a separable subgroup, that is to say Z(rm) is an intersection of �nite index subgroups.
(In any residually �nite group W the centralizer of any element g is separable. Indeed,
for x /∈ C = ZW (g), we have [x, g] 6= 1, thus there is a �nite quotient φ : W → Ḡ such
that [φ(x), φ(g)] 6= 1. Then φ(x) /∈ ZḠ(φ(g)) and the �nite index subgroup φ−1ZḠ(φ(g))
separates x from C.)

We �x some wall m and claim that there is a �nite index subgroup Wm ⊂ W such that
for any chamber c meeting m, if γ ∈ Wm sends c to a chamber meeting m, then γm = m.
The lemma will follow since we may assume that Wm is normal, and there are only �nitely
many orbits of walls under W .

Let Bm be the subset of W consisting of all those elements γ ∈ W such that there
exists a chamber c such that m and γ.c both meet m. Note that Bm is invariant by
left- and right-multiplication under Z(rm). In fact it is a �nite union of double classes:
Bm = Z(rm)tZ(rm)γ1Z(rm)t· · ·tZ(rm)γkZ(rm), where γ1, . . . , γk do not belong to Z(rm)
(the �niteness follows from the fact that Z(rm) acts co-�nitely on the set of chambers
meeting m, and from the local compactness of the Davis complex). The claim follows if
we take for Wm any �nite index subgroup of W containing the separable subgroup Z(rm)
but none of the elements γ1, . . . , γk. ¤

By Lemma 5.3 we may assume that for any wall m and any chamber c meeting m, if
γ ∈ Γ sends c to a chamber meeting m, then γm = m. Note that this implies in particular
that if γm intersects m, then γm = m.

Let r be any positive real number. For each i we choose one of the two rays con-
tained in λi with origin x, and denote it by ρi. For each i ∈ {1, . . . , n}, Lemma 5.1
provides a chamber ci at distance at most Ki of x, and an element γi(r) ∈ W (M (λi))∩Γ
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(⊂ W (M (F )) ∩ Γ), such that ci ∩ ρi and γi(r).ci ∩ ρi are both nonempty, and that
d(ci, γi(r).ci) > r. Here ci and γi(r) depend on r, but Ki depends only on ρi. Note that
γi(r) is of in�nite order because Γ is torsion free.

It immediately follows from the fact that ρi ⊂ µj that each γi(r) preserves µj (j 6= i).
Since x ∈ ρi∩µi but ρi 6⊂ µi, it follows from Lemma 4.2 that there is a constant ri such

that, given any point y of ρi, if y is at distance at least ri from x, then y is at distance
larger than Ki + D from µi, where D is the diameter of a chamber. Therefore, for each
r ≥ ri, we have d(x, γi(r).ci) ≥ d(ci, γi(r).ci) > r and hence any point on γi(r).ci∩ ρi is at
distance larger than Ki + D from µi. Thus γi(r).ci is at distance larger than Ki from µi.
On the other hand γi(r).ci is at distance at most Ki from γi(r)µi, from which it follows
that γi(r)µi 6= µi for all r ≥ ri. By the above, this yields γi(r)µi ∩ µi = ∅ for all r ≥ ri.

Let ai be the half-space bounded by µi and containing ρi. We de�ne an element γi as
follows.

If γi(ri)ai ⊂ ai we set γi = γi(ri).
If not, then we choose r > ri as follows. Note that γi(r)µi ∈ MEucl(F ) for all r by

Corollary 4.8. In particular γi(ri)µi meets ρi, but ρi 6⊂ γi(ri)µi because x ∈ ρi ∩ µi and
µi ∩ γi(ri)µi = ∅. Thus, by Lemma 4.2, every point of ρi su�ciently far away from x is
also far way from γi(ri)µi. Repeating the arguments used to de�ne the constant ri, we
obtain a constant r > ri such that γi(r)µi 6= γi(ri)µi.

Now, if γi(r)ai ⊂ ai we set γi = γi(r). Otherwise we set γi = γi(r)
−1γi(ri). Let us check

that, in the latter case, we have also γiai ⊂ ai. The walls µi, γi(ri)µi and γi(r)µi belong
to MEucl(F ) by Corollary 4.8 and are pairwise disjoint by construction. Thus they form
a chain and it follows that γi(ri)ai ⊂ γi(r)ai whence γiai ⊂ ai. Therefore, for all m > 0,
we have γm

i ai ⊂ ai and hence γm
i µi ∩ µi = ∅ while γm

i µj = µj for j 6= i.
Choose integers m1, . . . , mn divisible enough so that each γ′i := γi

mi belongs to the
translation subgroup of the a�ne Coxeter group W (M (F )). Thus the γ′i's generate an
abelian group. In view of the action of each γ′i on the walls µ1, . . . , µn, the intersection
〈γ′i〉∩〈γ′j| j 6= i〉 is trivial for all i. This implies that the γ′i's generate a free abelian group
of rank n. ¤

We note that the complete proof of Theorem 5.2 is much shorter when (W,S) is assumed
to be right-angled (in this case MEucl(F ) is empty).

6. Geometric flats in Tits buildings
The purpose of this section is to prove Theorem E of the introduction.
As before, let (W,S) be a Coxeter system of �nite rank. Let B = (C(B), δ) be a

building of type (W,S). Recall that C(B) is a set whose elements are called chambers,
and that δ : C(B) × C(B) → W is a mapping, called W -distance, which satis�es the
following conditions, where x, y ∈ C(B) and w = δ(x, y):

Bu1: w = 1 if and only if x = y;
Bu2: if z ∈ C(B) is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws, and if,

furthermore, l(ws) = l(w) + 1, then δ(x, z) = ws;
Bu3: if s ∈ S, there exists z ∈ C(B) such that δ(y, z) = s and δ(x, z) = ws.

For example the map W × W → W sending (x, y) to x−1y satis�es the above. An
apartment of the building B is a subset C(A ) ⊂ C(B) such that there exists a bijection
f : C(A ) → W satisfying δ(x, y) = f(x)−1f(y).

The composed map ` ◦ δ : C(B) × C(B) → N, where ` is the word metric on W with
respect to S, is called the numerical distance of B. It is a discrete metric on C(B).

The following lemma is well known:
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Lemma 6.1. Let C(A ) be an apartment and C be a subset of C(B). Suppose that there
exists a map f : C → C(A ) such that δ(f(c), f(d)) = δ(c, d) for all c, d ∈ C. Then there
exists an apartment C(A ′) such that C ⊂ C(A ′).
Proof. Follows from [Tit81, �3.7.4]. ¤

Let T ⊂ S and let c be a chamber of the building B. The residue of type T of
c is the set ρT (c) of those chambers c′ for which δ(c, c′) ∈ W (T ). The residue is called
spherical whenever W (T ) is �nite. Given any residue ρ of B and any chamber x, there
exists a unique chamber c in ρ at minimal numerical distance from x. This chamber has
the property that δ(x, d) = δ(x, c)δ(c, d) for each chamber d of ρ. The chamber c is called
the projection of x onto ρ and is denoted by projρ(c) (see [Ron89, �Corollary 3.9]).
Lemma 6.2. Let C(A ) be an apartment of B and C ⊂ C(A ) be a set of chambers.
Suppose that there exists a residue ρ and a chamber c ∈ C such that c ∈ C(ρ) and
projρ(c

′) = c for all c′ ∈ C. Then, for any chamber d ∈ C(ρ)\{c}, there exists an
apartment C(Ad) such that C ∪ {d} is contained in C(Ad).
Proof. Let d ∈ C(ρ)\{c} and let wd := δ(c, d). Let d′ be the unique chamber of C(A )
such that δ(c, d′) = wd. For any c′ ∈ C, we have δ(c′, d) = δ(c′, c).wd = δ(c′, d′) because
projρ(c

′) = c. It follows that the function f : C ∪ {d} → C ∪ {d′}, which maps d to d′

and induces the identity on C, preserves the W -distance δ. Therefore, the existence of an
apartment C(Ad) such that C(Ad) contains C ∪ {d} follows from Lemma 6.1. ¤

Before stating the main result of this section, we need to introduce some additional
terminology and notation:

• |B|0 denotes the CAT(0)-realization of the building B, as de�ned in [Dav98]; it
is a piecewise Euclidean simplicial complex. For each chamber c ∈ B there is an
associated CAT(0)-convex subcomplex |c|0 ⊂ |B|0, which we call the associated
geometric chamber. For every subset C ⊂ C(B) we denote by |C|0 the union of
geometric chambers |c|0 associated to chambers c ∈ C. We say that a subcomplex
X ⊂ |B|0 is combinatorial whenever it is a union of geometric chambers. If A
is any apartment of B the subcomplex |A |0 is isometric to |W |0. As a simpli-
cial complex, |A |0 is isomorphic to the �rst barycentric subdivision of the Davis
complex |W |0.

• Given x ∈ |B|0, we set
ρ(x) := {c ∈ C(B)| x ∈ |c|0}

and
σ(x) :=

⋂

c∈ρ(x)

|c|0.

The set ρ(x) is a (spherical) residue. The subcomplex |ρ(x)|0 is a neighbourhood
N(x) of x in |B|0. For every chamber c ∈ C(B), the set Int(c) of points x ∈ |B|0
such that ρ(x) = {c} is an open subset of |B|0. It is the interior of |c|0 and its
closure is |c|0.

• Given E ⊂ |B|0, we set
C(E) := {c ∈ C(B)| |c|0 ⊂ E}.

For example given any x ∈ |B|0 we have C(N(x)) = ρ(x). We say that a sub-
complex A ⊂ |B|0 is a geometric apartment provided A is combinatorial and
C(A ) is an apartment of B.

• Given a geometric �at F ⊂ |B|0 and any subset E ⊂ |B|0, we denote by
dim(F ∩E) the dimension of the Euclidean subspace of F generated by E ∩F ; by
convention, the empty set is a Euclidean subspace of dimension −1.
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Let now F ⊂ |B|0 be a geometric �at of dimension n. Since the combinatorial subcom-
plexes N(x) are neighborhoods of x, we have:

∀x ∈ F, ∃ c ∈ C(B) such that x ∈ |c|0 and dim(F ∩ |c|0) = n.

And since every geometric chamber is the closure of its interior, we deduce:
∀x ∈ F, ∃ y ∈ F such that x ∈ σ(y) and dim(F ∩ σ(y)) = n.

These two basic facts will be used repeatedly in the following.

Theorem 6.3. Let F ⊂ |B|0 be a geometric �at of dimension n and let c0 be a chamber
such that dim(F ∩ c0) = n (the geometric chamber associated to c0 is also denoted by c0).
De�ne

C(F, c0) := {projρ(x)(c0) | x ∈ F}.
Then there exists a geometric apartment A such that C(F, c0) ⊂ C(A ). In particular, we
have F ⊂ A .

Proof. The proof is by induction on n, the case n = 0 being trivial. We assume now that
n > 0.

Let F0 ⊂ F be a Euclidean hyperplane such that dim(F0∩c0) = n−1. By induction, the
set C(F0, c0) is contained in the set of chambers of some apartment. In view of Lemma 6.1,
it follows from Zorn's lemma that the collection of all those subsets of C(F, c0) which
contain C(F0, c0) and which are contained in the set of chambers of some apartment, has
a maximal element.

Let C1 be such a maximal element and choose a geometric apartment A1 such that
C1 ⊂ C(A1). Set X := A1 ∩ F . Note that X is closed and convex.

Suppose by contradiction that C1 is properly contained in C(F, c0). The rest of the
proof is divided into several steps. The �nal claim below contradicts the maximality of
C1, thereby proving the theorem.

Claim 1. For all x ∈ X, we have projρ(x)(c0) ∈ C1.

Since A1 is a combinatorial subcomplex, we have σ(x) ⊂ A1. Since c0 ∈ C(A1), we
have projρ(x)(c0) ∈ C(A1). Therefore, the claim follows from the maximality of C1.

Claim 2. For all c ∈ C1, there exists x ∈ X such that projρ(x)(c0) = c.

Given c ∈ C(F, c0), there exists x ∈ F such that projρ(x)(c0) = c. If now c ∈ C1, then
σ(x) ⊂ |c|0 ⊂ A1. Thus x ∈ F ∩A1 = X.

Claim 3. dim(F ∩X) = n.

Clear since c0 ∩ F ⊂ X and dim(F ∩ c0) = n.

Claim 4. There exists a Euclidean hyperplane F1 ⊂ F which is contained in A1 and
which bounds an open half-space of F , none of whose points is contained in A1. In other
words, the hyperplance F1 is contained in the Euclidean boundary ∂X of X.

Let c ∈ C(F, c0)\C1 and let x ∈ F be such that projρ(x)(c0) = c. By Claim 1, x does
not belong to X. Given x0 ∈ c0 ∩F , we have [x0, x]∩X = [x0, y] for some y ∈ X because
X is closed and convex. Let F1 ⊂ F be the Euclidean hyperplane parallel to F0 and
containing y. We have F1 ⊂ X by convexity. Furthermore, it is clear from the de�nition
of y and F1 that any point z ∈ F\F1 on the same side of F1 as x does not belong to A1.

Claim 5. Let x1 ∈ F1 be such that dim(F1 ∩ σ(x1)) = n − 1. For all c ∈ C1, we have
projρ(x1)(c) = projρ(x1)(c0).
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Let c1 := projρ(x1)(c0). Suppose by contradiction that there exists c ∈ C1 such that
projρ(x1)(c) 6= c1. Let h be a (Coxeter) half-space of the apartment C(A1) containing c1

but not c2 := projρ(x1)(c). Thus h contains c0 but not c.
Since σ(x1) ⊂ |c1|0 ∩ |c2|0, we have σ(x1) ⊂ ∂|h|0. Therefore, since F1 ⊂ A1 (see

Claim 4) and since dim(F1 ∩ σ(x1)) = n− 1, we deduce from Lemma 4.1 that F1 ⊂ ∂|h|0.
By Claim 4, the set X, as a subset of F , is entirely contained in one of the Euclidean
half-spaces of F determined by F1. Since F1 ⊂ ∂|h|0, we deduce that X, as a subset of A1,
is entirely contained in one of the Coxeter half-spaces of A1 determined by ∂|h|0. Since
c0 ⊂ X ∩ |h|0, we obtain X ⊂ |h|0.

Since c ∈ C1, there exists x ∈ X such that projρ(x)(c0) = c by Claim 2. Since X ⊂ |h|0
and since |h|0 is a combinatorial subcomplex, we have σ(x) ⊂ |h|0 and hence projρ(x)(c0) ∈
h by the combinatorial convexity of Coxeter half-spaces. This contradicts the fact that h
does not contain c.

Claim 6. There exists d ∈ C(F, c0) and an apartment Ad such that C1 ∪ {d} ⊂ C(Ad).

Let x1 ∈ F1 be as in Claim 5. By Claim 1 we have c1 := projρ(x1)(c0) ∈ C1. Let y ∈ F\X
be such that x1 ∈ σ(y). Let d := projσ(y)(c0). Clearly d ∈ C(F, c0). Furthermore d 6∈ C1,
otherwise we would have y ∈ σ(y) ⊂ d ⊂ A1, whence y ∈ X, which is absurd. Since
σ(x1) ⊂ σ(y) ⊂ d, the claim follows from Lemma 6.2 together with Claim 5. ¤

Clearly, Theorem E of the introduction is an immediate consequence of Theorem 6.3,
combined with Corollary C.
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