
NON-DISTORTION OF TWIN BUILDING LATTICES
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Abstract. We show that twin building lattices are undistorted in their ambient group;
equivalently, the orbit map of the lattice to the product of the associated twin buildings is
a quasi-isometric embedding. As a consequence, we provide an estimate of the quasi-flat
rank of these lattices, which implies that there are infinitely many quasi-isometry classes of
finitely presented simple groups. Finally, we describe how non-distortion of lattices is related
to the integrability of the structural cocycle.

1. Introduction

1.1. Distortion. Let G be a locally compact group and Γ < G be a finitely generated lattice.
Then G is compactly generated [CM08, Lemma 2.12] and therefore both G and Γ admit word
metrics, which are well defined up to quasi-isometry. It is a natural question to understand
the relation between the word metric of Γ and the restriction to Γ of the word metric on G.

In order to address this issue, let us fix some compact generating set Σ̂ in G and denote by
‖g‖bΣ the word length of an element g ∈ G with respect to Σ̂; we denote by dbΣ the associated
word metric. Similarly, we fix a finite generating set Σ for Γ and denote by |γ|Σ the word
length of an element γ ∈ Γ with respect to Σ, and by dΣ the associated word metric. The
lattice Γ is called undistorted in G if dΣ is quasi-isometric to the restriction of dbΣ to Γ. The
condition amounts to saying that the inclusion of Γ in G defines a quasi-isometric embedding
from the metric space (Γ, dΣ) to the metric space (G, dbΣ).

As is well-known, any cocompact lattice is undistorted: this follows from the Švarc–Milnor
Lemma [BH99, Proposition I.8.19]. The question of distortion thus centres around non-uniform
lattices. The main result of [LMR01] is that if G is a product of higher-rank semi-simple alge-
braic groups over local fields (Archimedean or not), then any lattice of G is undistorted. This
relies on the deep arithmeticity theorems due to Margulis in characteristic 0 and Venkatara-
mana in positive characteristic, and on a detailed analysis of the distortion of unipotent
subgroups.

Besides the higher-rank lattices in semi-simple groups, a class of non-uniform lattices that
has attracted some attention in recent years are the so-called Kac–Moody lattices (see [Rém99]
or [CG99]). A more general class of lattices is that of twin building lattices [CR09]: a twin
building lattice is an irreducible lattice Γ < G = G+ ×G− in a product of two groups G+

and G− acting strongly transitively on (locally finite) buildings X+ and X− respectively, and
such that Γ preserves a twinning between X+ and X−. Recall that Γ is then finitely generated
and that, in this general context, irreducible means that each of the projections of Γ to G±
is dense.
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Theorem 1.1. Any twin building lattice Γ < G+ ×G− is undistorted.

It should be noted that each individual group G+ or G− also possesses non-uniform lattices,
obtained for instance by intersecting Γ with a compact open subgroup (e.g., a facet stabilizer)
of G− or G+, respectively. Other non-uniform lattices have been constructed by R. Gramlich
and B. Mühlherr [GM08]. We emphasize that, beyond the affine case (i.e. when G+ is a
semi-simple group over a local function field), a non-uniform lattice in a single irreducible
factor G+ (or G−) should be expected to be automatically distorted (see Section 3.3 below).

1.2. Quasi-isometry classes. Non-distortion of a lattice Γ inG relates the intrinsic geometry
of Γ to the geometry of G. In the case of twin building lattices, the latter geometry is (quasi-
isometrically) equivalent to the geometry of the product building X+ ×X− on which G acts
cocompactly. Non-distortion is especially relevant when studying quasi-isometric rigidity of Γ
(which is still an open problem). As a consequence of Theorem 1.1, we can estimate a quasi-
isometric invariant of a twin building lattice Γ for X+ ×X−, namely the maximal dimension
of quasi-isometrically embedded flat subspaces into (Γ, dΣ). This rank is bounded from below
by the maximal dimension of an isometrically embedded flat in X± and from above by twice
the same quantity (3.4); furthermore, thanks to D. Krammer’s thesis [Kra09], this metric rank
of X± can be computed concretely by means of the Coxeter diagram of the Weyl group of
X±. This enables us to draw the following group-theoretic consequence.

Corollary 1.2. There exist infinitely many pairwise non-quasi-isometric finitely presented
simple groups.

This corollary may also be deduced from the work of J. Dymara and Th. Schick [DS07],
which gives an estimate of another quasi-isometry invariant for twin building lattices, namely
the asymptotic dimension.

Any finite simple group is of course quasi-isometric to the trivial group. Moreover any
finitely presented simple group constructed by M. Burger and Sh. Mozes [BM01] is quasi-
isometric to the product of free groups F2×F2; this is due to [Pap95] and to the fact that the
latter groups are constructed as suitable (torsion-free) uniform lattices in products of trees.
Furthermore, concerning the finitely presented simple groups constructed by G. Higman and
R. Thompson [Hig74], as well as their avatars in [Röv99], [Bri04], [Bro92] and [Sco92], we are
not aware of a classification up to quasi-isometry as of today. However the results of [BCS01]
seem to indicate that a number of finitely presented simple groups in this class may be quasi-
isometric to one another.

1.3. Integrability of the structural cocycle. Non-distortion of lattices is also relevant,
in a more subtle way, to the theory of unitary representations and its applications. More
precisely, given a lattice Γ < G and a unitary Γ-representation π, one considers the induced
G-representation IndGΓπ. For rigidity questions (at least) and also because the structure of G
is richer than that of Γ, it is desirable that the cocycles of Γ with coefficients in π extend to
continuous cocycles of G with coefficients in IndGΓπ. As explained in [Sha00, Proposition 1.11],
a sufficient condition for this to hold is that Γ be square-integrable. By definition, for any
p ∈ [1;∞) it is said that Γ (or more precisely the inclusion Γ < G) is p-integrable if there is
a Borel fundamental domain Ω ⊂ G for G/Γ such that, for each g ∈ G, we have:∫

Ω

(
|α(g, h)|Σ

)pdh <∞,
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where α : G× Ω→ Γ is the induction cocycle defined by α(g, h) = γ ⇔ ghγ ∈ Ω. Mimicking
Y. Shalom’s arguments in [Sha00, §2], the following statement will be established in the final
section of the paper (with the above notation for generating sets).

Theorem 1.3. Let G be a totally disconnected locally compact group and let Γ < G be a
finitely generated lattice. Assume there is a Borel fundamental domain Ω ⊂ G for G/Γ such
that for some p ∈ [1;∞) we have: ∫

Ω

(
‖h‖bΣ)pdh <∞.

Then, if Γ is non-distorted, it is p-integrable

For S-arithmetic groups, the existence of fundamental domains satisfying the condition of
Theorem 1.3 is established in [Mar91, Proposition VIII.1.2] by means of Siegel domains. As
we shall see, in the case of twin building lattices the condition is straightforward to check
once a fundamental domain provided by the specific combinatorial properties of these lattices
is used. In particular, combining Theorem 1.1 with Theorem 1.3, we recover the main result
of [Rém05]. We finish by mentioning that square-integrability of lattices is also relevant for
lifting Γ-actions toG-actions in geometric situations which are much more general than unitary
actions on Hilbert spaces, see [Mon06] and [GKM08].

This article is written as follows. Section 2 consists of preliminaries. Section 3 provides the
aforementioned geometric proof of non-distortion and deals with the various metric notions of
ranks that can be better understood thanks to non-distortion; we apply this to quasi-isometry
classes of finitely generated simple groups. Section 4 is independent of the previous setting
of twin building lattices and establishes a relationship between non-distortion and square-
integrability of lattices in general totally disconnected locally compact groups.

2. Lifting galleries from the buildings to the lattice

We refer to [AB08] for basic definitions and facts on buildings and twinnings, and to [CR09]
for twin building lattices. In this preliminary section, we merely fix the notation and recall
one basic fact on twin buildings which plays a key role at different places in this paper.

LetX = (X+, X−) be a twin building with Weyl groupW associated to a group Γ admitting
a root group datum. In particular Γ acts strongly transitively on X. We let dX+ (resp. dX−)
denote the combinatorial distance on the set of chambers of X+ (resp. X−). We further denote
by S the canonical generating set ofW and by Opp(X) the set of pairs of opposite chambers of
X. Throughout the paper, we fix a base pair (c+, c−) ∈ Opp(X) and call it the fundamental
opposite pair of chambers. Two opposite pairs (x+, x−) and (y+, y−) ∈ Opp(X) are called
adjacent if there is some s ∈ S such that x+ is s-adjacent to y+ and x− is s-adjacent to y−.
Recall that an opposite pair x ∈ Opp(X) is contained in unique twin apartment, which we
shall denote by A(x) = A(x+, x−). The positive (resp. negative) half of A(x) is denoted by
A(x)+ (resp. A(x)−).

The following key property is well known to the experts, and appear implicitly in the proof
of Proposition 5 in [Tit89].

Lemma 2.1. Let ε ∈ {+,−}. Given any gallery (x0, x1, . . . , xn) in Xε and any chamber
y0 ∈ X−ε opposite x0, there exists a gallery (y0, y1, . . . , yn) in X−ε such that the following hold
for all i = 1, . . . , n:

(i) (xi, yi) ∈ Opp(X);
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(ii) (xi, yi) is adjacent to (xi−1, yi−1);
(iii) yi belongs to the twin apartment A(x0, y0).

Proof. The desired gallery is constructed inductively as follows. Let i > 0. If yi−1 is opposite
xi, then set yi = yi−1. Otherwise the codistance δ∗(xi, yi−1) is an element s ∈ S and there is
a unique chamber in the twin apartment A(x0, y0) which is s-adjacent to yi−1. Define yi to
be that chamber. It follows from the axioms of a twinning that yi is opposite xi. The gallery
(y0, y1, . . . , yn) constructed in this way satisfies all the desired properties. �

3. Non-distortion of twin building lattices

In this section, we show that a twin building lattice is non-distorted for its natural diagonal
action on its pair of twinned buildings. The arguments are elementary and use the basic
combinatorial geometry of buildings.

3.1. An adapted generating system. Let Σ denote the subset of Γ consisting of those
elements γ such that (γ.c+, γ.c−) is adjacent to (c+, c−), where (c+, c−) ∈ Opp(X) denotes
the fundamental opposite pair. Notice that

max{dX+(c+, γ.c+); dX−(c−, γ.c−)} 6 1

for all γ ∈ S.
The graph structure on Opp(X) induced by the aforementioned adjacency relation is iso-

morphic to the Cayley graph associated to the pair (Γ,Σ). Lemma 2.1 readily implies that
this graph is connected. Thus Σ is a generating set for Γ.

Lemma 3.1. Let z = (z+, z−) be a pair of opposite chambers such that

max{dX+(c+, z+); dX−(c−, z−)} 6 1.

Then there exists σ ∈ Σ such that σ.z = c.

Proof. It is enough to deal with the case when max{dX+(c+, z+); dX−(c−, z−)} = 1.
If both z− and z+ belong to the twin apartment A = A− t A+, we can write z+ = w+.c+

and z− = w−.c− for w± ∈ W uniquely defined by z±. Since z− and z+ are assumed
to be opposite, the codistance δ∗(z−, z+) is by definition equal to 1W . Since the diago-
nal Γ-action on X− × X+ preserves codistances, we deduce that w+ = w−. At last since
max{dX+(c+, z+); dX−(c−, z−)} = 1, we deduce that there exists a canonical reflection s ∈ S
such that w± = s and this reflection is represented by an element ns ∈ StabΓ(A); we clearly
have ns ∈ Σ.

We henceforth deal with the case when at least one of the elements z± does not lie in A.
Up to switching signs, we may – and shall – assume that z− 6∈ A−. Let s be the canonical
reflection such that z− is s-adjacent to c−. By the Moufang property, the group U−αs acts
simply transitively on the chambers 6= c− which are s-adjacent to c−. By conjugating by an
element ns as above and since z− 6= s.c− (because z− 6∈ A−), we conclude that there exists
u+ ∈ Uαs \ {1} such that u+.z− = c−. Moreover u+ stabilizes c+ so the chamber u+.z+ is
adjacent to c+.

If u+.z+ ∈ A+, then since the Γ-action preserves the codistance, the chamber u+.z+ ∈ A+

is the unique chamber in A which is opposite c− = u+.z−, namely c+; we are thus done in
this case because we clearly have u+ ∈ Σ.

We finish by considering the case when u+.z+ 6∈ A+. Then there exists some canonical
reflection t ∈ S such that u+.z+ is t-adjacent to c+ and we can find similarly an element
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u− ∈ U−αt \ {1} such that u−.(u+.z+) = c+. Setting σ = u−u+, we obtain an element of Γ
sending z± to c±. Since the Γ-action preserves each adjacency relation, hence the combinatorial
distances, we have σ ∈ Σ because dX−(c−, σ.c−) = dX−(u−1

− .c−, u+.c−) = dX−(c−, u+.c−) = 1
and dX+(c+, σ.c+) = dX+(c+, u−.c+) = 1. �

3.2. Proof of non-distortion. We define the combinatorial distance dX of the chamber set
of X by

dX
(
(x+, x−), (y+, y−)

)
= dX+(x+, y+) + dX−(x−, y−).

Since the G-action on X is cocompact, it follows from the Švarc–Milnor lemma [BH99,
Proposition I.8.19] that G is quasi-isometric to X. Hence Theorem 1.1 is an immediate
consequence of the following.

Proposition 3.2. Let Γ < G = G+ × G− be a twin building lattice associated with the twin
building X = X+ × X− and let c = (c+, c−) ∈ X be a pair of opposite chambers. Then for
each γ ∈ Γ, we have:

1
2
dX(c, γ.c) 6 |γ|Σ 6 2dX(c, γ.c).

Proof of Proposition 3.2. Writing γ ∈ Γ as a product of |γ|Σ elements of the generating set Σ
and using triangle inequalities, we obtain

dX(c, γ.c) 6 2|γ|Σ
by the definition of dX and of Σ.

It remains to prove the other inequality, which says that Γ-orbits spread enough in X.
We set x = (x+, x−) = γ−1.c. Let us pick a minimal gallery in X−, from x− to c−. Using
auxiliary positive chambers, one opposite for each chamber of the latter gallery, a repeated
use of Lemma 3.1 shows that there exists γ− ∈ Γ such that γ−.x− = c− and

(∗) |γ−|Σ 6 dX−(c−, x−).

Moreover as in the first paragraph, we have:

(∗∗) dX+(c+, γ−.c+) 6 |γ−|Σ,

by the definition of Σ. We deduce:

dX+(c+, γ−.x+) 6 dX+(c+, γ−.c+) + dX+(γ−.c+, γ−.x+)
6 |γ−|Σ + dX+(c+, x+)
6 dX−(c−, x−) + dX+(c+, x+),

successively by the triangle inequality, by (∗∗) and the fact the Γ-action is isometric for the
combinatorial distances on chambers, and by (∗). Therefore, by definition of dX , we already
have:

(∗ ∗ ∗) dX+(c+, γ−.x+) 6 dX(c, x).
We now construct a suitable element γ+ ∈ Γ such that γ+.x+ = c+ and γ+.c− = c−. Let

γ−.x+ = z0, z1, . . . , zk = c+ be a minimal gallery in X+ from γ−.x+ to c+. Let A = A+ t A−
be the twin apartment defined by the opposite pair c = (c+, c−). Let c0 = c−, c1, . . . , ck be
the gallery contained in A+ and associated to z0, z1, . . . , zk = c+ as in Lemma 2.1. Notice
that, since ck is opposite zk = c+ and since c− is the unique chamber of A− opposite c+, we
have ck = c−.
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By Lemma 3.1, there exists σ1 ∈ Σ such that σ1.zk−1 = zk and σ1.ck−1 = ck. Moreover
a straightforward inductive argument yields for each i ∈ {1, . . . , k} an element σi ∈ Σ such
that σiσi−1 . . . σ1.zk−i = zk and σiσi−1 . . . σ1.ck−i = ck. Let now γ+ = σk . . . σ1, so that
|γ+|Σ 6 k = dX+(c+, γ−.x+). By construction, we have γ+.(γ−.x+) = c+ and γ+.c− = c−,
that is (γ+γ−).x = c. Therefore (γ+γ−γ

−1).c = c and hence there is σ ∈ Σ such that
γ = σγ+γ−. In fact, since σ fixes c, it follows that σσ′ ∈ Σ for each σ′ ∈ Σ. Upon replacing
σk by σσk, we may – and shall – assume that γ = γ+γ−. Therefore we have:

|γ|Σ 6 |γ+|Σ + |γ−|Σ
6 dX+(c+, γ−.x+) + dX−(c−, x−),

the last inequality coming from |γ+|Σ 6 k = dX+(c+, γ−.x+) and (∗) above. By (∗ ∗ ∗) and
the definition of dX , this finally provides |γ|Σ 6 2 · dX(c, γ.c), which finishes the proof. �

3.3. A remark on distortion of lattices in rank one groups. Let G = G+ × G− be
product of two totally disconnected locally compact groups, let π± : G → G± denote the
canonical projections and let Γ < G be a finitely generated lattice. Assume that π−(Γ) is
cocompact in G− (this is automatic for example if Γ is irreducible). Let also U− < G− be a
compact open subgroup and set Γ− = Γ ∩ (G+ × U−). Then the projection of Γ− to G+ is a
lattice, and it is straightforward to verify that, if Γ− is finitely generated and undistorted in
G−, then Γ is undistorted in G.

We emphasize however that, in the case of twin building lattices, the lattice Γ− should not be
expected to be undistorted inG− beyond the affine case (which corresponds to the classical case
of arithmetic lattices in semi-simple groups over local function fields). Indeed, a typical non-
affine case is when G+ and G− are Gromov hyperbolic (equivalently, the Weyl group is Gromov
hyperbolic or, still equivalently, each of the buildings X+ and X− are Gromov hyperbolic).
Then a non-uniform lattice in G+ is always distorted, as follows from the following.

Lemma 3.3. Let G be a compactly generated Gromov hyperbolic totally disconnected locally
compact group and Γ < G be a finitely generated lattice. Then the following assertions are
equivalent.

(i) Γ is a uniform lattice.
(ii) Γ is undistorted in G.
(iii) Γ is a Gromov hyperbolic group.

Proof. (i) ⇒ (ii) Follows from the Švarc–Milnor Lemma.

(ii)⇒ (iii) Follows from the well-known fact that a quasi-isometrically embedded subgroup of
a Gromov hyperbolic group is quasi-convex.

(iii) ⇒ (i) By Serre’s covolume formula (see [Ser71]) a non-uniform lattice in a totally discon-
nected locally compact group possesses finite subgroups of arbitrary large order, and therefore
cannot be Gromov hyperbolic. �

3.4. Various notions of rank. As a consequence of Theorem 1.1, we obtain the following
estimate for one of the most basic quasi-isometric invariants attached to a finitely generated
group.

Corollary 3.4. Let Γ < G = G+ × G− be a twin building lattice with finite symmetric
generating subset Σ. Let r denote the quasi-flat rank of (Γ, dΣ) and let R denote the flat rank
of the building X±. Then we have: R 6 r 6 2R.
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Recall that by definition, the flat rank (resp. quasi-flat rank) of a metric space is
the maximal rank of a flat (resp. quasi-flat), i.e. an isometrically embedded (resp. quasi-
isometrically embedded) copy of Rn. By [CH09] the flat rank of a building coincides with
the maximal rank of a free Abelian subgroup of its Weyl group W , and this quantity may be
computed explicitly in terms of the Coxeter diagram of W , see [Kra09, Theorem 6.8.3].

Proof of Corollary 3.4. Let us first prove r 6 2R. Let ϕ : (Rr, deucl) → (Γ, dΣ) denote a
quasi-isometric embedding of a Euclidean space in the Cayley graph of Γ. With the notation
of Proposition 3.2, we know that the orbit map ωc : Γ → X+ × X− defined by γ 7→ γ.c is
a quasi-isometric embedding. Therefore the composed map ωc ◦ ϕ : (Rr, deucl) → X+ × X−
is a quasi-isometric embedding. By [Kle99, Theorem C], this implies the existence of flats of
dimension r in the product of two spaces of flat rank R; hence r 6 2R.

We now turn to the inequality R 6 r. As mentioned above, it is shown in [CH09] that the
flat rank of a building coincides with the flat rank of any of its apartment. Since the standard
twin apartment is contained in the image of Γ under the orbit map Γ→ X+×X−, the desired
inequality follows directly from the non-distortion of Γ established in Proposition 3.2. �

Note that another notion of rank, relevant to G. Willis’ general theory of totally discon-
nected locally compact groups, is discussed for the full automorphism groups G± = Aut(X±)
in [BRW07], and turns out to coincide with the above notions of rank.

Finally, we now provide the proof of existence of infinitely many quasi-isometry classes of
finitely presented simple groups.

Proof of Corollary 1.2. Since there exist twin buildings of arbitrary flat rank (choose for in-
stance Dynkin diagrams such that the associated Coxeter diagram contains more and more
commuting Ã2-diagrams), we deduce that twin building lattices fall into infinitely many quasi-
isometry classes. This observation may be combined with the simplicity theorem from [CR09]
to yield the desired result. �

4. Integrability of undistorted lattices

In this section, we give up the specific setting of twin building lattices and provide a simple
condition ensuring that non-distorted finitely generated lattices in totally disconnected groups
are square-integrable.

4.1. Schreier graphs and lattice actions. Let us a consider a totally disconnected, locally
compact group G. As before we assume that G contains a finitely generated lattice, say
Γ, which implies that G is compactly generated [CM08, Lemma 2.12]. By [Bou07, III.4.6,
Corollaire 1], we know that G contains a compact open subgroup, say U . Let C be a compact
generating subset of G which, upon replacing C by C ∪C−1, we may – and shall – assume to
be symmetric: C = C−1. We set Σ̂ = UCU , which is still a symmetric generating set for G.

We now introduce the Schreier graph g
U,bΣ, or simply g, associated to the above choices.

It is the graph whose set of vertices is the discrete set G/U , which is countable whenever G
is σ-compact. Two distinct vertices gU and hU are connected by an edge if, and only if, we
have g−1h ∈ Σ̂ [Mon01, §11.3]. The natural G-action on g by left translation is proper, and
it is isometric whenever we endow g with the metric dg for which all edges have length 1. We
view the identity class 1GU as a base vertex of the graph g, which we denote by v0.
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Denoting by ‖ · ‖bΣ the word metric on G attached to Σ̂, we have: ‖g‖bΣ = dbΣ(1G, g) for any
g ∈ G. Notice that the generating set Σ̂ of G consists by definition of those elements g ∈ G
such that dg(v0, g.v0) 6 1. In particular, for all g, h ∈ G, we have:

dg(g.v0, h.v0) 6 dbΣ(g, h) 6 dg(g.v0, h.v0) + 1.

Moreover dg(g.v0, h.v0) = dbΣ(g, h) whenever g.v0 6= h.v0.
In the present setting, using again [Bou07, III.4.6, Corollaire 1] and the discreteness of the

Γ-action, we may – and shall – work with a Schreier graph g defined by a compact open
subgroup U small enough to satisfy Γ ∩ U = {1G}. Thus we have:

StabΓ(v0) = Γ ∩ U = {1G}.

Let V = {v0, v1, . . . } be a set of representatives for the Γ-orbits of vertices. The element v0

is the previous one, and for each i > 0, we choose vi in such a way that dg(vi, v0) 6 dg(vi, γ.v0)
for all γ ∈ Γ; this is possible because the distance dg takes integral values. We set g0 = 1; for
each i > 0, since the G-action on the vertices of g is transitive, there exists gi ∈ G such that
gi.vi = v0. Thus for any g ∈ G there exists j > 0 such that g.v0 ∈ Γ.vj , which provides the
partition:

G =
⊔
j>0

Γg−1
j U.

Furthermore, for each i > 0, we choose a Borel subset Vi ⊂ U which is a section of the
right U -orbit map U → Γ \ (Γg−1

i U) defined by u 7→ Γg−1
i u. Setting Fi = g−1

i Vigi, we obtain
a subset Fi of StabG(vi) such that

F =
⊔
i>0

Fvig
−1
i

is a Borel fundamental domain for Γ in G. We normalize the Haar measure on G so that F
has volume 1.

4.2. Non-distortion implies square-integrability. We can now turn to the proof of The-
orem 1.3 from the introduction. Let us first recall its precise statement.

Theorem 1.3. Let G be a totally disconnected locally compact group and let Γ < G be a
finitely generated lattice. Assume there is a Borel fundamental domain Ω ⊂ G for G/Γ such
that for some p ∈ [1;∞) we have: ∫

Ω

(
‖h‖bΣ)pdh <∞.

Then, if Γ is non-distorted, it is p-integrable.

Proof. Let g ∈ G and h ∈ F .
On the one hand, by definition of the induction cocycle α : G × F → Γ, the element

α(g, h) = γ ∈ Γ is defined by γhg ∈ F . Therefore, by construction of the fundamental
domain F , there exist i > 0 and u ∈ Fi such that γhg = ug−1

i . Let us apply the latter
element to the origin v0 of g. We obtain γhg.v0 = ug−1

i v0 = u.vi, and since u ∈ Fi and
Fi ⊂ StabG(vi), this finally provides γhg.v0 = vi. By this and the choice of vi in its Γ-orbit,
we have:

(?) dg(v0, vi) 6 dg(v0, γ
−1.vi) = dg(v0, hg.v0).
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On the other hand, let Σ be a finite symmetric generating set for Γ and let dΣ be the
associated word metric; we set |γ|Σ = dΣ(1G, γ) for γ ∈ Γ. Since the metric spaces (G, dbΣ)
and (g, dg) are quasi-isometric (4.1), the assumption that Γ is undistorted is equivalent to the
fact that the Γ-orbit map Γ→ g of v0 defined by γ 7→ γ.v0 is a quasi-isometric embedding. In
particular, there exist constants L > 1 and C > 0 such that

|γ|Σ 6 L · dg(v0, γ.v0) + C

for all γ ∈ Γ. Moreover dg takes integer values and StabΓ(v0) = {1G}, so for all non-trivial
γ ∈ Γ we have: L.dg(v0, γ.v0) + C 6 (L + C).dg(v0, γ.v0). Therefore, upon replacing L by a
larger constant we may – and shall – assume that C = 0.

Our aim is to evaluate |γ|Σ = |α(g, h)|Σ in terms of ‖g‖bΣ and ‖h‖bΣ. Note that |γ|Σ = |γ−1|Σ
since Σ is symmetric.

First, we deduce successively from non-distortion, from the triangle inequality inserting
γ−1.vi, and from the fact that the Γ-action on g is isometric, that:

|γ−1|Σ 6 L · dg(v0, γ
−1.v0)

6 L ·
(
dg(v0, γ

−1.vj) + dg(γ−1.v0, γ
−1.vj)

)
6 L ·

(
dg(v0, γ

−1.vj) + dg(v0, vj)
)
.

Then, we deduce successively from (?), from the triangle inequality inserting h.v0, and from
the fact that the G-action on g is isometric, that:

|γ−1|Σ 6 2L · dg(v0, hg.v0)
6 2L ·

(
dg(v0, h.v0) + dg(h.v0, hg.v0)

)
6 2L ·

(
dg(v0, h.v0) + dg(v0, g.v0)

)
.

Finally, by definition of the Schreier graph we deduce that |γ−1|Σ 6 2L ·
(
‖g‖bΣ + ‖h‖bΣ).

Recall that we want to prove that the function h 7→ |α(g, h)|Σ belongs to Lp(F , dh). Since
Vol(F ,dh) = 1, so does the constant function h 7→ ‖g‖bΣ, therefore it remains to prove the
lemma below. �

Lemma 4.1. The function h 7→ ‖h‖bΣ belongs to Lp(F ,dh).

Proof. Let h ∈ F . By construction of the fundamental domain F , there exist i > 0 and ui in
Fi, hence in StabG(vi), such that h = uig

−1
i . This implies h.v0 = ui.(g−1

i .v0) = ui.vi = vi, and
also (γh).v0 = γ.vi for each γ ∈ Γ. Now the explicit form of the quasi-isometry equivalence
(4.1) between (g, dg) and (G, dbΣ) implies:

dg(v0, h.v0) 6 ‖h‖bΣ 6 dg(v0, h.v0) + 1,
and

dg(v0, (γh).v0) 6 ‖γh‖bΣ 6 dg(v0, (γh).v0) + 1.

Moreover by the choice of vi in its Γ-orbit, we have dg(v0, h.v0) 6 dg(v0, (γh).v0) for any
γ ∈ Γ. This allows us to put together the above two double inequalities, and to obtain (after
forgetting the extreme upper and lower bounds):

(†) ‖h‖bΣ 6 ‖γh‖bΣ + 1.

for any h ∈ F and γ ∈ Γ.

Recall that p ∈ [1; +∞) is an integer such that we have a Borel fundamental domain Ω for

which
∫

Ω

(
‖h‖bΣ)pdh <∞. Since G =

⊔
γ∈Γ γ

−1Ω we can write:
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F

(
‖h‖bΣ)pdh =

∑
γ∈Γ

∫
F∩γ−1Ω

(
‖h‖bΣ)pdh.

But in view of (†) and of the unimodularity of G (which contains a lattice), we have:∫
F∩γ−1Ω

(
‖h‖bΣ)pdh 6 ∫

F∩γ−1Ω

(
‖γh‖bΣ + 1

)pdh =
∫
γF∩Ω

(
‖h‖bΣ + 1

)pdh,
which finally provides∫

F

(
‖h‖bΣ)pdh 6∑

γ∈Γ

∫
γF∩Ω

(
‖h‖bΣ + 1

)pdh =
∫

Ω

(
‖h‖bΣ + 1

)pdh.
The conclusion follows because F has Haar volume equal to 1 and because by assumption

h 7→ ‖h‖bΣ belongs to Lp(Ω, dh). �

4.3. p-integrability of twin building lattices. Let us finish by mentioning the following
fact which, using Theorem 1.3, allows us to prove the main result of [Rém05] in a more
conceptual way.

Lemma 4.2. Let Γ be a twin building lattice and let G be the product of the automorphism
groups of the associated buildings X±. Let W be the Weyl group and

∑
n>0 cnt

n be the growth
series ofW with respect to its canonical set of generators S, i.e., cn = #{w ∈W : `S(w) = n}.
Let qmin denote the minimal order of root groups and assume that

∑
n>0 cnq

−n
min < ∞. Then

Γ admits a fundamental domain F in G, with associated induction cocycle αF , such that
h 7→ αF (g, h) belongs to Lp(F , dh) for any g ∈ G and any p ∈ [1; +∞).

Proof. We freely use the notation of 3.1 and [Rém05]. We denote by B± the stabilizer of
the standard chamber c± in the closure ΓAut(X±). By [loc. cit.] there is a fundamental
domain F = D =

⊔
w∈W Dw such that Vol(Dw, dh) 6 q

−`S(w)
min . If we choose the compact

generating set Σ̂ =
⊔

(s−,s+)∈S×S B−s−B− × B+s+B+, we see that by definition of Dw,
which his contained in B− × B+w, we have ‖h‖bΣ 6 `S(w) for any w ∈ W \ {1} and any

h ∈ Dw. Therefore for any p ∈ [1; +∞) we have:
∫

F

(
‖h‖bΣ)pdh 6∑

n>0

npcnq
−n
min, from which

the conclusion follows. �
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