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Abstract. We show that twin building lattices have linear divergence,
which implies that all asymptotic cones are without cut-points.

Studying a class of finitely generated groups up to quasi-isometry amounts
roughly to studying the large scale geometry of these groups. In this context,
it is often crucial to understand the geometry of their asymptotic cones. The
following describes a very basic topological property of asymptotic cones of
twin building lattices.

Theorem 1. The asymptotic cones of a twin building lattice do not admit
cut-points.

In particular, it follows that twin building lattices are one-ended and have
trivial Floyd boundary.

We emphasize that twin building lattices are irreducible non-uniform lat-
tices in the product of the automorphism groups of the associated pair of
twin buildings. In particular, the above does not follow directly from the
elementary fact that asymptotic cones of non-trivial products have no cut
points. We do not know whether an arbitrary finitely generated lattice in
a product of at least two non-compact locally compact groups has auto-
matically no asymptotic cut-points; the proof we shall present uses some
geometric features which are specific to twin buildings.

Following Drutu–Mozes–Sapir [DMS09, Proposition 1.1], the statement of
Theorem 1 is equivalent to the linearity of the growth rate of a function as-
sociated to the underlying group, called the divergence. Roughly speaking,
the divergence measures the length of a shortest path joining two points at
distance n in the Cayley graph and avoiding a ball centered at a third point
(see loc. cit.; more details will also be given below). It is conjectured in
loc. cit., and established in a number of special cases, that irreducible lat-
tices in higher rank semi-simple Lie groups all have linear divergence. The
corresponding statement for twin building lattices is established in Theo-
rem 4 below, relying on the fact that twin building lattices are not distorted
in their ambient locally compact groups [CR09]. In the affine case, it cov-
ers in particular arithmetic groups of the form SLn(Fq[t, t−1]). In fact, our
proof does not use the fact that the groups under considerations are lattices:
the arguments hold for arbitrary groups acting strongly transitively on twin
buildings. In particular the above result applies to Kac–Moody groups over
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arbitrary fields; recall however that the latter groups are finitely generated
if and only if the associated ground field is finite.

Throughout this note, we let (W,S) denote a Coxeter system with S
finite and A denote the standard apartment of type (W,S), i.e. the corre-
sponding Coxeter complex. The notation of the present paper is taken over
from [CR09]. The reader is referred to loc. cit. and references therein for
basic facts on twin buildings and their lattices.

A remark on the asymptotic cones of irreducible buildings. We
start with a general observation on the asymptotic geometry of irreducible
buildings. Assume thus that (W,S) is irreducible.

If it is of spherical type, then any building of type (W,S) is bounded and
any of its asymptotic cones is therefore reduced to a single point.

If (W,S) is of affine type, then any asymptotic cone of a building of type
(W,S) is itself a (non-discrete) affine building (see [KL97]); such a building
admits cut points if and only if it is a tree or, equivalently, if and only if W
is infinite dihedral.

Finally, if (W,S) is non-spherical and non-affine (i.e. if W is not virtually
Abelian), then [CF08, Cor.4.7 and Th. 5.1] ensures that any building of
type (W,S) admits rank one geodesics (also called Morse geodesics). Each
asymptotic cone of such a building thus possesses cut-points by [DMS09,
Proposition 3.24].

In particular, we conclude that the only non-spherical irreducible buildings
whose asymptotic cones have no cut-points are the Euclidean buildings of
dimension ≥ 2.

Finally, we point out that if Γ is a finitely generated (possibly non-uniform)
lattice of a building X and if Γ possesses an element γ which acts as a rank
one isometry on X, then γ is a Morse element with respect to the word
metric of Γ (see [DMS09, Lemma 3.25]). In particular Γ has asymptotic
cut-points. The assumption that the lattices appearing in Theorem 1 act on
twin buildings is thus essential.

Pencils of parallel walls in Coxeter complexes.

Lemma 2. Assume that (W,S) is non-spherical. Then there exists a con-
stant C ≥ 1, depending only on (W,S), such that two chambers of A at
distance at least Cn apart are separated by at least n pairwise parallel walls.

Proof. The group W contains a torsion-free normal subgroup of finite index,
say W0, such that for any wall H and any w ∈ W0, either w.H = H or
w.H ∩H = ∅ (see [DJ99, Lemma 1]). Let C be the number of W0-orbits of
walls in A. Note that C is a finite number.

Let now x, y by two chambers of A such that d(x, y) ≥ Cn. Then x and
y are separated by Cn walls. By the pigeonhole principle, at least n walls
amongst these lie in the same W0-orbit. By the definition of W0, these walls
must be pairwise parallel. �

Disjoining an apartment from a ball. Before presenting the main geo-
metric lemma needed for the proof of Theorem 1, let us briefly fix the nota-
tional conventions we shall adopt in the rest of the paper.
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We let X = X+ × X− be a product of a pair of thick buildings of type
(W,S) admitting a twinning. The set of pair of opposite chambers is denoted
by Opp(X) ⊂ X+×X− and Γ < Aut(X) is a group preserving the twinning
(and is thus a discrete subgroup with respect to the topology of uniform con-
vergence on bounded subsets) and acting transitively on Opp(X). Typical
examples of groups admitting such an action are provided by twin building
lattices. Note that the twinning prevents Γ from acting co-compactly on
X+ ×X−.

Following [CR09], we endow Γ with its generating sets consisting of those
elements mapping some fixed element x ∈ Opp(X) to an adjacent one. Recall
that two pairs of chambers (c+, c−), (d+, d−) are adjacent if there is some
s ∈ S such that cε shares an s-panel with dε, for both ε = ±. In particular
Γ is quasi-isometric to Opp(X) with its induced path metric. Moreover, by
[CR09], this path metric is undistorted in X.

The unique twin apartment determined by an opposite pair x ∈ Opp(X)
will be denoted by A(x). Its respective projections inX+ andX− are denoted
by A+(x) and A−(x).

Although the following result refers only to the combinatorial gallery dis-
tance between chambers, its proof appeals to the CAT(0) realization of build-
ings [Dav98] and its good convexity properties.

Lemma 3. Assume that (W,S) is non-spherical. Then there exists a con-
stant C ′ ≥ 1 such that the following holds.

Consider x = (x+, x−) and c = (c+, c−) in Opp(X), r ≥ 1 and ε ∈
{+,−}. Suppose that

dXε(xε, cε) ≥ C ′r.
Then there exists x′ = (x′+, x

′
−) ∈ Opp(X) such that dX(x, x′) ≤ C ′ and

Aε(x′) does not meet the ball of radius r around cε in Xε.

In the course of the proof, we will use the following consequence of the
axioms defining twin buildings: if (c+, c−) ∈ Opp(X), π is a panel of c+, then
among all chambers of X+ sharing π with c+, at most one is not opposite to
c−.

Proof. Let C be the constant provided by Lemma 2, let D > 0 be twice the
circumradius of a chamber in the CAT(0) realization of Xε and let E > 0
denote the minimal distance (in the CAT(0) metric) between two parallel
walls of an apartment. Notice that E is indeed positive since the Weyl
group W has finitely many orbits on walls, and the stabilizer of each wall
acts cocompactly on that wall.

Let also dist denote the CAT(0) distance on the buildings X+ and X−
and on the standard apartment A. Since W acts properly cocompactly on
W , it follows that (A,dist) is quasi-isometric to the gallery distance on A.
Upon enlarging D if necessary, we may and shall therefore assume that for
all chambers x, y ∈ Xε and any p ∈ x and q ∈ y, we have

1
D
dXε(x, y)−D ≤ dist(p, q) ≤ DdXε(x, y).

By the ‘Parallel Wall Theorem’ (which follows from [BH93, Theorem 2.8]),
there exists a constant C ′′ ≥ 0 such that in any apartment, a chamber at
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distance ≥ C ′′ from a given wall is separated from that wall by a parallel
wall. The desired constant C ′ is defined by

C ′ = max{2C ′′ + 1,
CD

E
+ 2D2}.

Let now x and c be opposite pairs such that dXε(xε, cε) ≥ C ′r. We need
to find an opposite pair x′ adjacent to x and such that A(x′) avoids the ball
of radius r around c in Opp(X). To this end, let p0 denote the circumcentre
of the chamber cε and let p denote the CAT(0) projection of p0 to A(x)ε.
Let also y be a chamber of Aε(x) containing p. If dXε(y, cε) > D2(r + 1),
then any chamber v ∈ A(x)ε satisfies

dXε(cε, v) ≥ 1
D

dist(p0, p) ≥
1
D2

dXε(y, cε)− 1 > r

and hence A(x)ε does not meet the ball of radius r around cε. Thus we
may take x′ = x and we are done in this case. We assume henceforth that
dXε(y, cε) ≤ D2(r + 1).

We have

dXε(xε, y) ≥ dXε(x, cε)− dXε(y, cε) ≥ (C ′ −D2)r −D2 ≥ CD

E
r.

By Lemma 2, this implies that xε and y are separated by at least n pairwise
parallel walls, where n = inf{n ∈ Z | n ≥ D

E r}. Amongst these walls, let
H be the one which is closest to xε. By the Parallel Wall theorem, we may
assume, upon adding supplementary walls to our pencil of parallel walls, that
dXε(xε, H) < C ′′. Let α be the half-apartment of A(x)ε bounded by H and
containing xε but not y. Let x′′ = (x′′+, x

′′
−) ∈ A(x) be such that H contains

a panel of x′′ε , that x′′ε 6∈ α and that dXε(xε, x′′ε) ≤ C ′′. In particular we have
dX(x, x′′) ≤ 2C ′′. Now pick any opposite pair x′ = (x′+, x

′
−) adjacent to but

distinct from x′′ and such that x′−ε = x′′−ε (by the remark before the proof,
such a pair exists since X is thick). Then dX(x, x′) ≤ 2C ′′ + 1 ≤ C ′ and
the apartment Aε(x′) shares with Aε(x′′) = Aε(x) the half-apartment α. It
remains to verify that A(x′)ε does not meet the ball of radius r around cε in
Xε.

To check this, we first claim that the CAT(0) orthogonal projection of
p0 to A(x′)ε belongs the the wall H. Let α(x) (resp. α(x′)) denote the
complement of α in A(x)ε (resp. A(x′)ε). Since the projection of p0 to A(x)ε
belongs to α(x), it follows that the projection of p0 to α belongs to the wall
H.

Let now A denote the apartment of Xε which is the union of α(x) and
α(x′). Then the characterization of the CAT(0) orthogonal projection in
terms of Alexandrov angle [BH99, II.2.4] shows that the projection of p0 to
A coincides with p. As before, we deduce that the projection of p0 to A(x′)ε
belongs to the wall ∂α. Since A(x′)ε = α ∪ α(x′), the desired claim follows.

The claim implies that

dist(p0,A(x′)) ≥ dist(p, α) ≥ En ≥ Dr.

Since the ball of combinatorial radius r centered at c is contained in the ball
of CAT(0) radius Dr centered at p0, the desired result follows. �
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Divergence. Let δ ∈ (0, 1) and λ ≥ 0. Following [DMS09], we define the
divergence of a pair of points (a, b) in a geodesic metric space relative to
a point c to be the length of a shortest path from a to b avoiding a ball
around c of radius δ dist(c, {a, b}) − λ. If there is no such path, then the
divergence is understood to be infinity. The divergence of the pair (a, b)
is the supremum of the divergences relative to all points c. Finally, the
divergence function Divλ(n; δ) is the maximum of all divergences of all
pairs (a, b) with dist(a, b) ≤ n. Proposition 1.1 from loc. cit. ensures that
the divergence function Div2(n; 1

2) of a finitely generated group is linear if
and only if no asymptotic cone of the group admits cut-points. Therefore,
Theorem 1 from the introduction is a consequence of the following.

Theorem 4. The divergence Div0(n; 1
2) of a twin building lattice is linear.

As we shall see, the proof below does not use the fact that the groups in
question are lattices. In fact, the arguments do not even use the property
that the underlying buildings are locally compact. Therefore, the above
result also holds for arbitrary groups endowed with a root group datum.

Proof. Since twin building lattices are undistorted (see [CR09, Theorem 1.1]),
it suffices to prove the result for the divergence function of the metric space
(Opp(X), dX). Let a = (a+, a−), b = (b+, b−), c = (c+, c−) ∈ Opp(X). Set
n = dX(a, b) and

r = min{dX(a, c), dX(b, c)}.
We shall construct a path of length ≤ Ln joining a to b in Opp(X) and avoid-
ing the ball of radius r

2 around c, where L is a universal constant depending
only on the type of the building X. This implies the desired statement.

Upon exchanging a and b, we may assume that r = d(a, c) ≤ d(b, c).
Moreover, if n < r, then any minimal path from a to b avoids the ball of
radius r

2 around c. We assume henceforth that n ≥ r.
Recall from the definition that a path γ in Opp(X) consists of a pair of

paths γ+ and γ− in X+ and X− respectively. A sufficient condition for γ to
avoid the ball of radius r around c = (c+, c−) in Opp(X) is that γ+ avoids
the ball of radius r around c+, or else that γ− avoids the ball of radius r
around c−. This is the key observation for the construction of desired path.
In fact, we shall construct it by concatenating 6 pieces according to the
following scheme:

a −→ a′ −→ a′′ −→ x −→ b′′ −→ b′ −→ b.

In the successive pieces, the positive and the negative part of the path will
alternately avoid the ball of radius r

2 around c+ and c−, thereby providing
a path satisfying the required condition.

The intermediate points are defined as follows. The point a′ = (a′+, a
′
−)

is chosen to be any closest point to a with respect to the property that
dX+(c+, a′+) > C ′(r + 1) (possibly a′ = a). For this we just use the fact
that in X+, one can extend a geodesic path from c+ to a+ into an infinite
geodesic (X+ is non-spherical). One can promote this path into a path in
Opp(X) by choosing a suitable path in X−. Thus, moving from a to a′ can
be achieved in less than C ′(r+ 1) + 1 steps, which costs a length of at most
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2C ′(r+ 1) + 2 in X. Moreover, such a path does not get any closer to c than
a.

Likewise b′ = (b′+, b
′
−) is chosen to be any closest point to b with respect

to the property that dX−(c−, b′−) > C ′(r + 1).
The point a′′ is defined by means of Lemma 3, applied to x = a′. It lies at

distance at most C ′ from a′ and A+(a′′) avoids the ball of radius r around
c+. Thus a shortest path from a′ to a′′ cannot enter the ball of radius r
around c.

The point b′′ is defined similarly; it lies at distance at most C ′ from b′ and
A−(b′′) avoids the ball of radius r around c−.

Using Lemma 2.1 from [CR09], it is then possible to construct a path
γ′ = (γ′+, γ

′
−) of length ≤ 2dX−(a′′−, b

′′
−) in Opp(X) joining a′′ to a some

point x = (x+, b
′′
−) ∈ Opp(X) so that the positive part γ′+ remains in the

twin apartment A+(a′′). In particular it avoids the ball of radius r around
c+.

Finally, another application of [CR09, Lemma 2.1] provides a path γ′′ =
(γ′′+, γ

′′
−) of length ≤ 2dX+(x+, b

′′
+) joining x to b′′ so that the negative part

γ′′− remains in the twin apartment A−(b′′). In particular it avoids the ball of
radius r around c−.

It remains to estimate the total length of the path we have constructed
piecewise. The initial and terminal sections from a to a′′ and from b′′ to b
contribute a piece of length at most 2× (2C ′(r+ 1) + 2 +C ′) ≤ (10C ′+ 4)r.
In particular we deduce

dX(a′′, b′′) ≤ dX(a′′, a)+dX(a, b)+dX(b′′, b) ≤ (10C ′+4)r+n ≤ (10C ′+5)n

since r ≤ n. Therefore, the section from a′′ to b′′ via x contributes a piece
of length at most

2dX−(a′′−, b
′′
−) + 2dX+(x+, b

′′
+) ≤ 2dX(a′′, b′′) + 2dX(x, a′′) + 2dX(a′′, b′′)
≤ 6dX(a′′, b′′)
≤ 6(10C ′ + 5)n.

Adding up all the different contributions, we come to a total length of at
most (70C ′ + 40)n, which is linear in n as desired. �
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