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Abstract. We give the solution of the isomorphism prob-
lem for Kac-Moody groups over algebraically closed fields of any
characteristic. In particular, we prove a conjecture of Kac and
Peterson and compute the automorphism group of a Kac-Moody
group over an algebraically closed field of characteristic zero.

1 Introduction

Kac-Moody groups are infinite-dimensional generalizations of Chevalley groups. It is
known that each automorphism of a Chevalley group (of irreducible type and over a
perfect field) can be written as a product of an inner, a diagonal, a graph and a field
automorphism (see Theorem 30 in [22]). In [14] it was conjectured that the same state-
ment holds for Kac-Moody groups over algebraically closed fields of characteristic 0 up
to the addition of a so called sign automorphism. In [7] this conjecture is shown to be
true for Kac-Moody groups of affine type. In [15] it is proved that each automorphism
which preserves the set of all Adg′-finite elements can be written in the way described
above; this holds for Kac-Moody groups over (not necessarily algebraically closed) fields
of characteristic 0 under the additional assumption that the underlying generalized Car-
tan matrix is symmetrizable. In this paper we prove the conjecture above to be true for
Kac-Moody groups over algebraically closed fields without any restrictions neither on the
type nor on the characteristic.

Throughout the paper we use Tits’ definition for Kac-Moody groups over fields [25].
This definition does not only provide the abstract Kac-Moody groupG but also a canonical
system (Uα)α∈Φ of root subgroups. The pair (G, (Uα)α∈Φ) is an example of a so called
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property.
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twin root datum. Twin root data have been introduced by Tits in order to give suitable
axioms for these pairs arising from his definition of Kac-Moody groups.

It turns out (Theorem 2.2 below) that the proof of the conjecture above is essentially
equivalent to showing that each automorphism of the group G maps the system (Uα)α∈Φ

onto one of its G-conjugates. This is certainly achieved if one can show that there is - up
to conjugation - only one system of subgroups (Uα)α∈Φ in G such that the corresponding
pair is a twin root datum. In this way we are naturally led to the isomorphism problem
for groups with a twin root datum.

The main result of the present paper (Theorem 2.3 below) is the solution of the
isomorphism problem for (locally split) twin root data over algebraically closed fields. As
Kac-Moody groups over algebraically closed fields are special cases of them, the validity
of the conjecture above turns out to be a corollary of it (see Theorem 2.4). We also
mention that our proof of the main theorem does not appeal to the corresponding well
known result in the spherical case. In particular, it yields a new approach to Steinberg’s
theorem for Chevalley groups over algebraically closed fields.

Before explaining our results in detail we remark that twin root data over algebraically
closed fields are not classified. There are essentially two known constructions how to
obtain examples of twin root data which are not Kac-Moody groups in the sense of Tits
(see also the remark preceding the statement of the main theorem below). One can use
the techniques of [16] in order to construct examples which are in a sense still of algebraic
nature. There is also a construction in [20] where one has more freedom (non-isomorphic
fields might be used) in one sense, but also the restriction that the Weyl group has to be
right-angled.

Finally, we would like to remark that the isomorphism problem for Kac-Moody groups
over finite fields has been considered in [19] for a special case. In [4], a complete solution
has been found recently by the authors for finite fields of cardinality at least 4.

2 Notation and Results

2.1 Twin root data

Let (W,S) be a Coxeter system and let ℓ denote the corresponding length function. For
each s ∈ S we set αs := {w ∈ W |ℓ(sw) = ℓ(w) + 1}. A root of (W,S) is a subset
of W of the form wαs for some w ∈ W and s ∈ S. The root αs is called a simple
root. The set of all roots is denoted by Φ(W,S), or simply by Φ. The roots containing
(resp. not containing) 1 are called positive (resp. negative); the set of positive (resp.
negative) roots is denoted by Φ+ (resp. Φ−). The complement W\α of a root α in W is
again a root which is denoted by −α. A pair of roots {α, β} is said to be prenilpotent
if α ∩ β 6= ∅ and (−α) ∩ (−β) 6= ∅. For a prenilpotent pair of roots {α, β} we set
[α, β] := {γ ∈ Φ|α ∩ β ⊂ γ, (−α) ∩ (−β) ⊂ −γ} and (α, β) := [α, β]\{α, β}. For each
α ∈ Φ there is a unique element of W conjugate to an element of S and permuting α and
−α by left translation; we denote it by sα: it is the reflection associated to the root α.
For instance, we have sα = s−α and if α = αs then sα = s.

Let (W,S) be a Coxeter system and let Φ be the set of its roots. A twin root datum
(abbreviated by TRD) of type (W,S) is a system consisting of a group G and a family
of subgroups Uα indexed by Φ such that the following axioms are satisfied, where H and
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U+ denotes respectively the intersection of the normalizers of all Uα’s and the subgroup
of G generated by the Uα’s such that α is positive:

(TRD0) Uα 6= {1} for all α ∈ Φ;
(TRD1) if {α, β} is a prenilpotent pair of distinct roots, the commutator [Uα, Uβ] is

contained in the group U(α,β) generated by all Uγ ’s with γ ∈ (α, β);
(TRD2) if s ∈ S and u ∈ Uαs

\{1}, there exist elements u′, u′′ of U−αs
such that the

product µ(u) = u′uu′′ conjugates Uβ onto Usα(β) for each β ∈ Φ;
(TRD3) if s ∈ S, then U−αs

is not contained in U+;
(TRD4) the group G is generated by H and the Uα’s.

The group generated by H and all µ(u) for u ∈ Uαs
\{1} (s ∈ S) normalizes H and is

denoted by N . It is a fact that the quotient N/H is isomorphic to W (see Theorem 1.5.4
in [18]).

If Z := (G, (Uα)α∈Φ) then we set GZ := G.

Example 2.1. Let K be a field. Then the group G = SL2(K) is naturally involved in a
twin root datum (G, {U+, U−}), where U+ (resp. U−) is the group of upper (resp. lower)
unipotent matrices in G. The type of this TRD is the Coxeter system of type A1 whose
Coxeter group has order 2. Similarly, the group PSL2(K) is naturally involved in a twin
root datum of the same type.

2.2 Isomorphisms of twin root data

Let Z := (G, (Uα)α∈Φ(W,S)) and Z ′ := (G′, (U ′
α)α∈Φ(W ′,S′)) be twin root data. Let S =

S1 ∪ · · · ∪ Sn be the finest partition of S such that [Si, Sj] = 1 whenever 1 ≤ i < j ≤ n.
Then Z and Z ′ are called isomorphic if there exist an isomorphism ϕ : G → G′, an
isomorphism π : W → W ′ with π(S) = S ′, an element x ∈ G′ and a sign ǫi for each
1 ≤ i ≤ n such that

ϕ(Uαs
) = xU ′

ǫiαπ(s)
x−1

for every s ∈ S. If ϕ is as above, then we say that the isomorphism ϕ induces an
isomorphism of Z to Z ′. The following result shows that the type of a twin root datum
is uniquely determined by the system of root subgroups (Uα)α∈Φ.

Theorem 2.2. Let Z := (G, (Uα)α∈Φ) (resp. Z ′ := (G′, (U ′
α′)α′∈Φ′)) be a twin root datum

of type (W,S) (resp. (W ′, S ′)), where S (resp. S ′) is finite. If ξ : G → G′ is an
isomorphism and if there exists x ∈ G′ such that

{ξ(Uα)|α ∈ Φ} = {xU ′
αx

−1|α ∈ Φ′},

then ξ induces an isomorphism of Z to Z ′. In particular, the Coxeter systems (W,S) and
(W ′, S ′) are isomorphic.

2.3 The main result

A twin root datum Z := (G, (Uα)α∈Φ) is called locally split if the groupH :=
⋂
α∈ΦNG(Uα)

is abelian and if, moreover, for each α ∈ Φ there is a field Kα such that the twin root
datum (〈Uα ∪ U−α〉, {Uα, U−α}) of type A1 is isomorphic to the natural twin root datum
involving SL2(Kα) or PSL2(Kα) as described in Example 2.1. We also say that Z is
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locally split over (Kα)α∈Φ. Notice that Kα = K−α. In that case, the group H is called
the fundamental torus of G (with respect to the given TRD). Moreover, if S is finite,
then there are only a finite number of non-isomorphic fields in (Kα)α∈Φ because every
pair {Uα, U−α} is conjugate to a pair {Uαs

, U−αs
} for some s ∈ S. If each field Kα is

isomorphic to a fixed field K, then Z is called locally split over the field K or simply
K-locally split. If Z is the natural twin root datum arising from a Kac-Moody group
over K, then it is said to be split over K or simply K-split. It follows from the definition
of a Kac-Moody group over K (see Section 8) that ‘K-split’ implies ‘K-locally split’.

One may wonder whether ‘locally split over a field K’ implies ‘split over K’ as it is the
case for algebraic groups. In the context of twin root data, this is no longer true – even
if the field in question is algebraically closed. Given a field K and an automorphism σ
of K, then we can twist the multiplication in K[t, t−1] by putting λt = tσ(λ). The group
GLn(K[t, t−1]) has a twin root datum of type Ãn which is locally split over K; if σ is
non-trivial, this group is however not a Kac-Moody group over K as defined in [25].

Our main result is the following.

Theorem 2.3. Let Z and Z ′ be twin root data of type (W,S) and (W ′, S ′) respectively.
Assume that S and S ′ are finite, that Z and Z ′ are locally split over algebraically closed
fields (Kα)α∈Φ(W,S) and (K′

α)α∈Φ(W ′,S′) respectively. Then any isomorphism of GZ to GZ′

induces an isomorphism of Z to Z ′. In this situation we have in particular an induced
bijection η : Φ(W,S) → Φ(W ′, S ′) and for each α ∈ Φ(W,S), the field Kα is isomorphic
to K

′
η(α).

The main application of the theorem above we have in mind is the solution of the
isomorphism problem of Kac-Moody groups over algebraically closed fields. The specific
nature of these groups makes it possible to prove the existence of certain classes of auto-
morphisms which enables us to make the main result more precise in that case. In the
following statement we use the terminology of [18] concerning Kac-Moody groups. More-
over, we use some specific terminology regarding automorphisms of these groups which is
directly inspired from [7] and [22]. All of these notions are described in detail in Section
8 below.

Theorem 2.4. Let K be an algebraically closed field. Let D = (I, A,Λ, (ci)i∈I , (hi)i∈I)
be a Kac-Moody root datum such that the generalized Cartan matrix A is indecomposable
and that the lattice Λ∨ is generated by the hi’s. Let G := GD(K) be the corresponding Kac-
Moody group. Then every automorphism of G is a product of an inner automorphism, a
sign automorphism, a diagonal automorphism, a graph automorphism and a field auto-
morphism. If moreover, either char(K) = 0 or every off-diagonal entry of the generalized
Cartan matrix A is prime to char(K) then the term ‘graph automorphism’ may be replaced
by ‘diagram automorphism’ in the previous statement.

In the special case when K has characteristic 0 and D is the simply connected Kac-
Moody root datum this result was conjectured by Kac and Peterson in [14] (see Remark
(g) on p. 136 in loc. cit.).

The previous theorem gives only an “upper-bound” for the automorphism group of a
Kac-Moody group G over an algebraically closed field K. However, the definitions of sign
automorphisms, diagonal automorphisms, diagram automorphisms and field automor-
phisms are constructive (see Section 8.2 below). Therefore, it follows from the previous
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theorem that Aut(G) reaches this upper-bound in the case where char(K) = 0 or where
char(K) is prime to every off-diagonal entry of the generalized Cartan matrix which defines
A. Using a theorem about the existence of graph automorphisms of Kac-Moody groups
due to A. Chosson [8] (see Theorem 8.5 below), one can verify that this upper-bound is
also reached for other classes of Kac-Moody groups. Those include the affine Kac-Moody
groups over algebraically closed fields of any characteristic.

2.4 An outline of the proof of Theorem 2.3

Let us write Z = (G, (Uα)α∈Φ), where Φ = Φ(W,S). We have to show that the abstract
structure of the group G determines the twin root datum Z. The main tool is the theory
of twin buildings which had been introduced by M. Ronan and J. Tits in the late 1980’s.
The twin root datum (G, (Uα)α∈Φ) can be used to construct a so called twin building
on which the group G acts naturally; the action of the root groups Uα has very special
combinatorial properties. We show that any action of G on an abstract twin building
forces the groups Uα to act in exactly this way. This enables us to establish the desired
uniqueness of the system (Uα)α∈Φ.

The following two propositions constitute the main intermediate steps of the proof of
Theorem 2.3. They both relate the structure of certain small subgroups of G to their
behavior with respect to the given root datum Z. The small subgroups in question are
finite abelian subgroups for the first proposition and rank 1 subgroups (namely, subgroups
isomorphic to (P )SL2(K)) for the second.

Before stating those propositions we make one more definition. Let p be a prime and
X be a group. The supremum of the ranks of elementary abelian p-subgroups of X is
called the p-rank of X and denoted by mp(X).

Proposition 2.5. Any finite abelian subgroup of G whose order is prime to the charac-
teristic of Kα for each α ∈ Φ is conjugate to a subgroup of the fundamental torus H of
G. Assume moreover that G is center-free. Then for each prime p as above the p-rank of
G is finite and bounded by the cardinality of S. If A is an elementary abelian p-subgroup
of rank mp(G), then gNG(A)g−1 = NG(H) for every g ∈ G such that gAg−1 ≤ H.

In the special case when W is finite, this result is essentially equivalent to the classical
fact that a finite abelian subgroup of a linear algebraic group over K is diagonalizable
whenever its order is prime to the characteristic of K. The previous proposition is obtained
by combining the latter fact with the fixed point theorem for finite groups acting on
buildings.

Proposition 2.6. Assume that G is center-free. Let L be a subgroup of G which is iso-
morphic to SL2(K) or PSL2(K) for some algebraically closed field K. Then the following
two statements are equivalent:

(i) there exists a root α ∈ Φ such that L is conjugate to a subgroup of 〈Uα, U−α〉;
(ii) there exists an elementary abelian p-subgroup A1 of p-rank mp(G)−1 centralizing

L, where p is a prime such that p > 3, p 6= char(K) and p 6∈ {char(Kα)|α ∈ Φ}.

Let ∆ be the building associated to D. The important point is that the centralizer of
the group CA1(L) in G is naturally involved in a TRD, which is canonically related to the
subbuilding of ∆ fixed by CA1(L). The building ∆̄ associated to the latter TRD turns
out to be of universal type which essentially means that it is a tree. Since the group L
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centralizes CA1(L), it acts on ∆̄ and this action can be easily described thanks to a result
of [24]. The conclusive step is to use the relation between ∆̄ and ∆ in order to interpret
the previous analysis in terms of the action of L on ∆.

Once those two propositions are established it will be easy to check that the hypotheses
of Theorem 2.2 are satisfied, whence the conclusion.

The paper is organized as follows.
In the next section we introduce some terminology, fix notation and recall some results

from the theory of (twin) buildings which are needed later. In Section 4.2 we give the
proof of Theorem 2.2. In the following three sections the respective proofs of Proposition
2.5, Proposition 2.6 and the main theorem are given. The final Section 8 is devoted to
Kac-Moody groups in the strict sense. There we recall some definitions and introduce
the five types of automorphisms which appear in the statement of Theorem 2.4. More-
over, necessary conditions for the existence of nontrivial graph automorphisms are given
(Proposition 8.3). Finally, the proof of the latter is given.

3 Twin structures

3.1 Twin buildings

In this subsection we recall some notions and fix the notation used throughout. The main
references, beyond the specific ones mentioned in the text, are [1], [18], [21], [26] and [28].

We view buildings as chamber systems and refer the reader to [21] and [30] for the
basic theory.

Let (W,S) be a Coxeter system. A twinned pair of buildings or twin building
of type (W,S) is a pair ((∆+, δ+), (∆−, δ−)) of buildings of that type, endowed with a
W -codistance

δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W

satisfying the following axioms, where ǫ ∈ {+,−}, x ∈ ∆ǫ, y ∈ ∆−ǫ and w = δ∗(x, y):

(Tw1) δ∗(y, x) = w−1;
(Tw2) if z ∈ ∆ǫ is such that δ−ǫ(y, z) = s ∈ S and ℓ(ws) < ℓ(w), then δ∗(x, z) = ws;
(Tw3) if s ∈ S, there exists z ∈ ∆−ǫ such that δ−ǫ(y, z) = s and δ∗(x, z) = ws.

Two chambers x ∈ ∆+ and y ∈ ∆− are called opposite if δ∗(x, y) = 1. It can be proved
that the W -codistance δ∗ is completely determined by the opposition relation together
with the W -distances δ+ and δ− [26]. Two residues are called opposite if they are of the
same type and contain opposite chambers. A pair of opposite residues of type S ′ endowed
with the W -codistance induced by δ∗ is itself a twin building of type (〈S ′〉, S ′).

An ordered pair of apartments Σ = (Σ+,Σ−) with Σǫ ⊂ ∆ǫ for ǫ = +,− is called a
twin apartment if the restriction opΣ of the opposition relation to Σ defines a bijection
between Σ+ and Σ−. In this case δ∗ induces a W -codistance on Σ. This endows Σ
with the structure of a thin twin building (namely a twinned pair of thin buildings).
If (c+, c−) ∈ ∆+ × ∆− is a pair of opposite chambers, then there exists a unique twin
apartment (Σ+,Σ−) such that (c+, c−) ∈ Σ+ × Σ−. By abuse of notation, we often write
x ∈ Σ in place of x ∈ Σ+∪Σ− for a chamber x. An apartment of ∆ǫ is called admissible
if it is involved in some twin apartment. Any two chambers of ∆ǫ are contained in some
admissible apartment.

6



If Σ = (Σ+,Σ−) is a twin apartment in a twin building ∆ = (∆+,∆−, δ
∗) of type

(W,S), then the group W acts naturally on both Σ+ and Σ−. This action preserves the
restriction of the W -codistance of ∆ to Σ. Therefore, if t ∈ W is a reflection of Σ+, then
it is also a reflection of Σ− and vice versa. We call it a reflection of Σ. The symbol P (t) is
used to denote the union of the walls associated to t in both Σ+ and Σ− (these walls are
viewed as sets of panels). We set C(t) :=

⋃
π∈P (t) π. Conversely, if α = (α+, α−) is a twin

root of Σ, we equally write sα, sα+ of sα−
for the corresponding reflection. Let ǫ ∈ {+,−}.

Given c ∈ Σǫ, we denote by H(t, c) the root of Σǫ associated with t and containing c. A
pair of roots (α, α̃) in the twin apartment Σ is called a twin root if we have α̃ = −opΣα,
where opΣ denotes the restriction of the opposition relation to Σ.

An important feature of twin buildings is that their structure is rather rigid. The
following result makes this statement more precise. It is an extension to twin buildings
of Theorem 4.1.1. of [23]; for a proof in this more general context, see Theorem 1 in [27].
The symbol E1(c) denotes the set of all chambers adjacent to the chamber c.

Proposition 3.1. Let ∆ = (∆+,∆−, δ
∗) be a thick twin building, let c+ ∈ ∆+ and

c− ∈ ∆− be opposite chambers and let ǫ ∈ {+,−}. Let φ1 and φ2 be automorphisms of ∆.
Then φ1 = φ2 if and only if, they coincide on the set E1(cǫ) ∪ {c−ǫ}.

3.2 Twin BN-pairs

Twin buildings naturally arise from twin root data. In order to describe the link between
these notions in more detail we need an auxiliary concept which is the twin analogue of
a BN-pair.

Let G be a group and let B+, B− and N be subgroups of G such that B+∩N = B−∩N .
Set H to be the common value and set W := N/H. Suppose that (G,B+, N, S) and
(G,B−, N, S) are both BN-pairs in G. The system (G,B+, B−, N, S) is called a twin
BN-pair if the following conditions are satisfied:

(TBN1) for w ∈W , s ∈ S with ℓ(ws) < ℓ(w) and ǫ ∈ {+,−}, we have
BǫwB−ǫsB−ǫ = BǫwsB−ǫ;

(TBN2) for s ∈ S, we have B+s ∩B− = ∅.

For ǫ ∈ {+,−}, the map βǫ : W → Bǫ\G/B−ǫ, w 7→ BǫwB−ǫ is bijective. This is
the Birkhoff decomposition of G. For each ǫ ∈ {+,−} let (∆ǫ, δǫ) be the building
associated to the BN-pair (G,Bǫ, N, S). Define a mapping δ∗ by

δ∗(gBǫ, hB−ǫ) = w ⇔ g−1h ∈ BǫwB−ǫ,

which makes sense in view of the Birkhoff decomposition of G. Then ∆(G) :=
((∆+, δ+), (∆−, δ−), δ∗) is a twin building of type (W,S); the group G acts on ∆(G) by
automorphisms and it is transitive on pairs of opposite chambers. Moreover, the group
Bǫ fixes a unique chamber cǫ ∈ ∆ǫ. The chambers c+ and c− are called the fundamental
chambers; they opposite and the unique twin apartment they determine is said to be
fundamental with respect to the given twin BN-pair. This twin apartment is stabilized
by the group N and chamberwise fixed by B+ ∩N = B− ∩N .

Remark 3.2. The notation ∆(G) is abusive, because the building it denotes depends on
the twin BN-pair (G,B+, B−, N, S) and (in general) not only on the group G. We shall
however make this abuse when there is no ambiguity on which twin BN-pair we have in
mind.
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3.3 Twin root data and the associated twin buildings

Let now Z = (G, (Uα)α∈Φ) be a twin root datum of type (W,S). Set Bǫ = HUǫ for
ǫ ∈ {+,−} and N = 〈H,µ(u)|u ∈ Uαs

\{1}, s ∈ S〉. Then (G,B+, B−, N, S) is a twin
BN-pair. We have Bǫ ∩ U−ǫ = {1} for ǫ ∈ {+,−}. In particular N is the full stabilizer
in G of the fundamental twin apartment Σ associated with the twin BN-pair, H is the
chamberwise stabilizer of it. The group Uǫ acts regularly on chambers opposite cǫ in the
twin building ∆(G), where c+ and c− are the fundamental chambers with respect to Z.
Moreover, if Z is locally split over fields (Kα)α∈Φ each of which has at least 4 elements,
then H fixes no chamber outside the fundamental twin apartment Σ (this is easily seen
thanks to arguments as in the proof of Lemma 5.1 below), and so we have N = NG(H).

Assume that H is abelian. Then the center Z of G coincides with the kernel of the
action of G on the twin building ∆(G). Let Ḡ = G/Z and p : G → Ḡ be the canonical
projection. Then the restriction of p to each Uα is injective and (Ḡ, (Ūα)α∈Φ) is a TRD
of type (W,S) where Ūα = p(Uα). This TRD is called the reduction of (G, (Uα)α∈Φ).
We have ∆(Ḡ) = ∆(G) and Ḡ acts faithfully on that building. Finally, if (G, (Uα)α∈Φ)
is locally split over (Kα)α∈Φ then so is (Ḡ, (Ūα)α∈Φ). (These assertions follow essentially
from Section 3.3 of [28]. See also Section 4.1 in [2] for a more detailed exposition.)

Let Σ = (Σ+,Σ−) be the fundamental apartment of ∆(G) and for ǫ ∈ {+,−} let
ιǫ be the isometry of Σ(W,S) to Σǫ such that ιǫ(1) = cǫ. For each α ∈ Φ the ordered
pair (α+, α−) := (ι+(α),−ι−(α)) is a twin root of Σ which we denote abusively by α as
well. The group Uα fixes any chamber of ∆(G) which is contained in a panel π such that
π ∩ α+ or π ∩ α− has cardinality 2. We say that Uα fixes α thickly. Moreover, Uα acts
sharply transitively on the set of twin apartments which contain the twin root (α+, α−).
Equivalently, it acts sharply transitively on the set π\α for each panel belonging to the
wall associated to α. Assume now that there exists an s-panel in this wall such that s ∈ S
is not a central element of W . Then there exists a chamber x of Σ such that no panel
containing x is in the wall P (sα). Proposition 3.1 then implies that Uα is the group of all
automorphisms of ∆(G) which fix α thickly. In this case Uα is called a root group of
the building ∆(G). If no element of S is central in W , then every Uβ is a root group and
the building ∆(G) is said to have the Moufang property or to be Moufang.

For example, any rank 2 residue of ∆(G) of irreducible type is a twin building which
satisfies the Moufang property. By Theorem (17.1) in [29], this implies that the order of
the product of any two elements of S is 2, 3, 4, 6, 8 or infinite.

3.4 Rank-one subgroups

For each α ∈ Φ we denote by Lα the group generated by Uα and U−α and the group H.Lα
is denoted by Pα. It is a fact that Pα is the full stabilizer in G of every pair of opposite
panels which belong to the wall P (sα). Assume that the given TRD is locally split over
algebraically closed fields (Kα)α∈Φ. Then every panel π ∈ P (sα) is isomorphic to the
projective line P1(Kα) and the induced action of Pα on π is equivalent to the action of
PSL2(Kα) on P1(Kα). (See for example Corollary 49 in [2].) This fact has the following
consequence which we shall often use in the sequel: If h ∈ H fixes some chamber of
π which is not contained in the fundamental twin apartment of ∆(G), then h fixes π
chamberwise. In other words, if h fixes three chambers of π, then it fixes every chamber
of π.
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4 From group isomorphisms to twin root datum iso-

morphisms

The purpose of this section is to present the proof of Theorem 2.2. The first subsection
records a result related to the rigidity of Coxeter groups which is the crucial ingredient
of this proof; the second subsection consists of the proof itself.

4.1 Rigidity of Coxeter groups

Let Σ be a set and let W be a group acting on Σ from the left. A subset D 6= ∅ of
Σ is called fundamental (or a fundamental domain) if, for w ∈ W , we have w = 1
whenever wD ∩D 6= ∅ and if moreover

⋃
w∈W wD = Σ.

Let now (W,S) be a Coxeter system, T the set of its reflections, Φ = Φ(W,S) the
set of its roots and Σ = Σ(W,S) the corresponding thin building. A set R ⊆ T is
called universal if (〈R〉, R) is a Coxeter system. Let Ψ ⊆ Φ be a set of roots. We put
R(Ψ) = {rψ|ψ ∈ Ψ} (where rψ is the reflection associated to ψ). The set Ψ is called
universal if R(Ψ) is universal. It is called weakly 2-geometric if for all ψ, ψ′ ∈ Ψ,
at least one of the sets ψ ∩ ψ′, (−ψ) ∩ (−ψ′) is a fundamental domain for the action of
〈rψ, rψ′〉 on Σ(W,S).

Notice that if α, β are two roots such that the product sαsβ has infinite order, then
the pair {α, β} is prenilpotent if and only if it is not weakly geometric. If the product
sαsβ has finite order, then there exists a spherical rank 2 residue R which is stabilized by
sα and sβ and the action of 〈sα, sβ〉 on R is faithful.

The following result is the main ingredient for the proof of Theorem 2.2. It is Theorem
(3.3) in [5], but an equivalent version of that result, is already proved in [12] in a completely
different setting (see also [10]).

Proposition 4.1. Let (W,S) be a Coxeter system and let Ψ ⊆ Φ(W,S) be a finite,
universal and weakly 2-geometric set of roots. Let Ψ = Ψ1∪· · ·∪Ψn be the finest partition
of Ψ such that the sets R(Ψi) and R(Ψj) centralize each other whenever i 6= j. Then, for
each 1 ≤ i ≤ n there is a sign ǫi ∈ {+,−} such that

⋃n

i=1 ǫiΨi is a geometric set of roots.

4.2 Proof of Theorem 2.2

We use the notation introduced in Section 1 and we add a superscript dash to denote the
objects related to the second TRD (e.g. H ′, N ′).

By the definition of the fundamental torus the hypotheses imply ξ(H) = xH ′x−1. We
may assume without loss of generality that x = 1. If α and β are distinct roots in Φ then
there exists w ∈ W such that wα is positive and wβ is negative. Hence Uα ∩ Uβ = {1}
by 3.3. Therefore, there is a well defined bijection η̄ : Φ → Φ′ such that ξ(Uα) = U ′

η̄(α).
We claim that if β 6= ±α then Uα and Uβ are not conjugate in the group they generate.

If the pair {α, β} is not prenilpotent, then the group 〈Uα ∪Uβ〉 is just the free product of
Uα and Uβ by the theorem of Section 3.5.3 in [18]. The claim follows. Now assume that
the pair {α, β} is prenilpotent. Let π ∈ P (sα) be such that π ∩ α ⊆ β, where α and β
are seen as twin roots of ∆(G). Then the group 〈Uα ∪ Uβ〉 stabilizes π, because it fixes
the chamber in π ∩ α. Therefore, no element of 〈Uα ∪ Uβ〉 maps P (sα) on P (sβ), which
implies the claim.
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Using the fact that Uα and U−α are conjugate in 〈Uα∪U−α〉 by (TRD2) it follows from
the claim above that η̄ maps pairs of opposite roots of Φ to pairs of opposite roots of Φ′.

It is a well known fact that for a nontrivial element u ∈ Uα the elements u′, u′′ ∈ Uα
which are used in the definition of µ(u) are uniquely determined by the requirement that
Uα and U−α are switched under conjugation by µ(u) (see Section 3.3 in [28]). By the
previous paragraph this implies that ξ(µ(u)) = µ(ξ(u)). Therefore, we have ξ(N) = N ′

and so ξ induces an isomorphism η : W → W ′ which sends the reflections of (W,S) to
the reflections of (W ′, S ′). Moreover, η(S) is a universal set of reflections in W ′ because
S is universal in W .

For each s ∈ S we set βs := η̄(αs). We have just seen that {βs|s ∈ S} is universal; we
now prove that it is weakly 2-geometric.

Let s, t be distinct elements of S. Set W ′
st := 〈η(s), η(t)〉. There are three cases.

• The order of the product st is 2. Then it is straightforward to see that βs ∩ βt is a
fundamental domain for the action of W ′

st on Σ(W ′, S ′).

• The order n of the product st is finite and at least 3. We know by the last paragraph
of Section 3.3 that n ∈ {3, 4, 6, 8}. There exists a rank 2 residue of spherical type R
in Σ(W ′, S ′) which is stabilized by W ′

st. Moreover, since there is no reflection r ∈ W
such that t ∈Wsr := 〈s, r〉 and that |Wsr| > 2n, we deduce |R| = |W ′

st| = 2n.

Since the order of the product η(s)η(t) is n, the cardinality d := |R ∩ βs ∩ βt| is
prime to n. Moreover, we have d ≤ n − 1 since |R ∩ βs| = |R|/2 = n. Assume
for a while that d = n − 1. Then we have [βs, βt] = {βs, βt} and so [U ′

βs
, U ′

βt
] = 1

by (TRD1). On the other hand, we know that [Uαs
, Uαt

] 6= {1} thanks to (5.7) in
[29]. This shows that d < n − 1. Hence d = 1 if n 6= 8 because d is prime to n.
Let us now consider the case n = 8. By the explicit formulas (16.9) in [29] we see
that [Uαs

, Uαt
] is non-abelian. On the other hand, the same formulas show that if d

equals 3 or 5 then [U ′
βs
, U ′

βt
] is an abelian group. Therefore, we conclude again that

d = 1. Hence, in all cases R∩ βs ∩ βt is a fundamental domain for the action of W ′
st

on R. Using projections we deduce that βs ∩ βt is a fundamental domain for the
action of W ′

st on Σ′
+ which implies the claim in this case.

• The order of the product st is infinite. Since the pair {αs, αt} is geometric it is not
prenilpotent. We have already seen that this implies that the group 〈Uαs

∪ Uαt
〉 is

the free product Uαs
∗Uαt

. Hence, 〈U ′
βs
∪U ′

βt
〉 = U ′

βs
∗U ′

βt
, and it is straightforward

to deduce from (TRD1) that {βs, βt} cannot be a prenilpotent pair of roots.

Hence the set {βs|s ∈ S} is universal and weakly 2-geometric. Now the conclusion
follows from Proposition 4.1.

5 Finite abelian subgroups

In this section we give the proof of Proposition 2.5.

Proof of Proposition 2.5. We keep the notation of the statement of 2.5. Moreover, we
denote by ∆(G) = (∆+,∆−, δ

∗) the twin building associated with the given twin root
datum.
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Let A be a finite abelian subgroup of G whose order is prime to char(Kα) for each
α ∈ Φ. Let Rǫ be a spherical residue of the building ∆ǫ which is stabilized by A for
ǫ ∈ {+,−}; such a residue exists by the fixed point theorem for finite groups acting
on buildings (see Corollary 11.9 in [9]). By Section 3.4 we know that Rǫ is a spherical
building in which each panel is a projective line over Kα for some α ∈ Φ. In the following
we show that Rǫ is isomorphic to the direct product of buildings of the form ∆(G) for a
simple algebraic group G over an algebraically closed field K isomorphic to Kα for some
α ∈ Φ. We proceed as follows. Recall from the proof of Lemma 6.3 that the only possible
irreducible rank 2 residues of ∆ǫ (and hence of Rǫ) are the Moufang polygons associated
with PGL3(K), PSp4(K) or G2(K), where K is isomorphic to Kα and α is a root such
that the reflection sα stabilizes the rank 2 residue in question. The required isomorphism
between Rǫ and the direct product of the ∆(G) mentioned above is a consequence of
Theorem 4.1.2 of [23] and Proposition 2 of [17].

Now, since a finite abelian subgroup of order prime to char(K) is diagonalizable in a
split semi-simple algebraic group over K, we conclude that A fixes an apartment in Rǫ.
Hence A fixes at least one chamber dǫ in ∆ǫ. Using again Section 3.4 together with the
hypothesis on the order of A, it is easy to show that A fixes at least two chambers in
each panel it stabilizes. This fact implies that the chambers d+ and d− can be chosen
to be opposite in ∆(G). Hence, A fixes each chamber in the unique twin apartment
which contains d+ and d−. Using now 3.3 we see that the chamberwise stabilizer of this
apartment is conjugate to H in G. This proves the first statement of the proposition.

Suppose now that G is center-free. Then G acts faithfully on ∆(G) (see Section
3.3). Let c+ and c− be the fundamental chambers of ∆(G) and let Σ = (Σ+,Σ−) be the
fundamental twin apartment. For each s ∈ S let πs be the s-panel containing c+. Let
Hs be the group of permutations of πs induced by H. By Section 3.4, we know that Hs

acts sharply transitively on πs\Σ+, and is isomorphic to K
×
αs
/{±1} ≃ K

×
αs

. Hence, Hs

is abelian. For each s ∈ S we have a canonical epimorphism ρs : H → Hs induced by
the restriction to πs whose kernel consists of the elements of H acting trivially on πs. By
Proposition 3.1 and the fact that G is faithful the canonical homomorphism

ρ : H →
∏

s∈S

Hs,

direct product of the ρs, is injective. As the p-rank of
∏

s∈S Hs is equal to the cardinality
of S, the p-rank of H is finite. It is equal to the p-rank of G in view of the first part of
the proposition.

Let now A ≤ H be an elementary abelian p-subgroup of rank mp(G). Then A is a
characteristic subgroup of H which implies NG(H) ≤ NG(A). On the other hand, Σ is the
unique twin apartment which is chamberwise stabilized by A as a consequence of Lemma
5.1 below. Thus, an element of G which normalizes A must stabilize Σ and therefore
NG(A) ≤ NG(H) because NG(H) is the stabilizer of Σ in G by 3.3. Thus, to finish the
proof, it remains to prove Lemma 5.1 below.

Lemma 5.1. Let (G, (Uα)α∈Φ) be as in the statement of the main theorem and assume
Z(G) = 1. Let p be a prime which is distinct from the characteristic of Kα for each α ∈ Φ.
Then an elementary abelian p-subgroup A ≤ H of p-rank equal to mp(G) fixes no chamber
outside the fundamental twin apartment Σ.
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Proof. We keep the notation of the previous proof. Notice that mp(G) = mp(H) by the
first part of Proposition 2.5 (which is already proved completely). Since the p-rank of Hs

is 1, we see that A fixes no chamber in π\Σ+ for each panel π containing the fundamental
chamber c+. Since A is normal in NG(H), and since NG(H) acts transitively on Σ+,
we conclude that A fixes no chamber in π\Σ+ for each panel π which intersects Σ+.
Now, using projections as in Section 3.4 we see that A fixes no chamber outside Σ+. By
symmetry, the analogous statement holds for Σ−.

6 Characterization of rank-one subgroups

The purpose of this section is to present the proof of Proposition 2.6. Each of the first
four subsections records an auxiliary result which we shall need in this proof; the proof
itself is given in Section 6.5.

6.1 A fixed point lemma

The next lemma describes the fixed point structure of a group acting on a twin building
which fixes all chambers of a twin apartment. Its proof is straightforward and will be
omitted here. A detailed proof can be found in [2], Lemma 83.

Lemma 6.1. Let A1 be a group of automorphisms of a twin building ∆ =
((∆+, δ+), (∆−, δ−), δ∗) fixing two opposite chambers z+ ∈ ∆+ and z− ∈ ∆−. Let ∆′

+

be the set of fixed points of A1 in ∆+ and let δ′+ be the restriction of δ+ to ∆′
+. Define

similarly (∆′
−, δ

′
−) and denote by δ∗| the restriction of δ∗ to (∆′

+×∆′
−)∪ (∆′

−×∆′
+). Then

((∆′
+, δ

′
+), (∆′

−, δ
′
−), δ∗| ) is a twin building of the same type as ∆ (which is possibly neither

thin nor thick).

6.2 The thick frame of a weak twin building

The next result is a structure theorem for twin buildings in general. It says that, given a
given non-thin twin building, then there exists a canonical thick twin building associated
with it. In order to give a precise statement of this result we need some more terminology.

Let (∆, δ) be a not necessarily thick building of type (W,S). Two chambers of ∆
are called thick-adjacent if they are contained in some thick panel. A gallery γ =
(x0, x1, . . . , xn) is called thin if {xi−1, xi} is a thin panel of ∆ for each 1 ≤ i ≤ n. The
set of all ordered pairs of chambers (x, y) such that x can be joined to y by a thin gallery
is an equivalence relation called the thin-equivalence. The corresponding equivalence
classes are called thin-classes. If c ∈ ∆ is any chamber, we denote by c̄ the thin-class
of c. For a set of chambers Γ ⊂ ∆ we denote the corresponding set of thin-classes by Γ̄.
It is readily seen from the axioms that any apartment containing c contains the whole
thin-class c̄.

Proposition 6.2. Let ∆ = ((∆+, δ+), (∆−, δ−), δ∗) be a twinned pair of non-thin buildings
of type (W,S). Let (c+, c−) be a fixed pair of opposite chambers in ∆ and let Σ = (Σ+,Σ−)
denote the corresponding twin apartment. Let S̄ be the set of reflections of Σ+ corre-
sponding to the thick panels which intersect c̄+ non-trivially and let W̄ denote the group
generated by S̄. Then (W̄ , S̄) is a Coxeter system and (∆̄+, ∆̄−) is naturally endowed
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with a structure of a thick twin building of type (W̄ , S̄). This twin building is called the
thick frame of ∆ and it is denoted by ∆̄. If (Σ′

+,Σ
′
−) is a twin apartment of ∆, then

(Σ̄′
+, Σ̄

′
−) is a twin apartment of ∆̄; moreover, two thin-classes are opposite as chambers

of ∆̄ if and only if they contain opposite chambers of ∆.

Proof. This follows from the main result of [3].

6.3 A technical lemma on Moufang polygons

The following lemma is an important tool for the proof of Proposition 2.6. It concerns
locally split root data over algebraically closed fields whose type is an irreducible spherical
Coxeter system of rank 2. The building associated to such a TRD is a Moufang polygon.

Lemma 6.3. Let (G, (Uα)α∈Φ) be a twin root datum of type (W,S). For α ∈ Φ we set
Hα := NLα

(Uα) ∩NLα
(U−α). For α, β ∈ Φ we set Cαβ := CHα.Hβ

(Uα).
Now assume that the given TRD is locally split over algebraically closed fields (Kα)α∈Φ,

and that (W,S) has rank 2 and spherical type. If α 6= ±β belong to Φ then |Hα ∩Hβ| ≤ 3
and |Cαβ ∩ Cβα| ≤ 3.

Proof. If the Coxeter system (W,S) is reducible, then G/Z(G) ≃ PSL2(Kα)×PSL2(Kβ).
Therefore, the necessary computations can be made in the group PSL2(Kα)×PSL2(Kβ),
which makes this case easy.

Assume now that the type is irreducible. We first want to determine the different
possibilities for the Moufang polygon ∆(G). Using explicit formulas from Chapter 16
in [29] together with a theorem by Hua (Proposition 8.12.3 in [23]) it follows that there
are only three possibilities, namely ∆(G) ≃ ∆(SL3(K)), ∆(G) ≃ ∆(Sp4(K)) or ∆(G) ≃
∆(G2(K)) where K ≃ Kα ≃ Kβ. Once this is known, the desired result follows from
computations using formulas (33.10), (33.13) and (33.16) in [29].

6.4 Fixed points of SL2(k) acting on a tree

We now recall a result of Tits which follows from Proposition 4 in [24] (see also the
statement in §5.5 of loc. cit.).

Proposition 6.4. Let k be a field and assume that SL2(k) is acting on a tree T without
fixed point and without fixed end. Then there exists a well-defined non-archimidean val-
uation η of k and an SL2(k)-equivariant isometric embedding of the Bruhat-Tits tree Tη
into T .

6.5 Proof of Proposition 2.6

In order to make future applications of the proposition easier, we prove a more technical
but slightly stronger version of it.

Proposition 6.5. Let Z = (G, (Uα)α∈Φ) be a twin root datum of type (W,S) with S finite
and let H be the fundamental torus. Assume that Z is locally split over algebraically closed
fields (Kα)α∈Φ and that G is center-free. Let K be an algebraically closed field and let p
be a prime such that p > 3, p 6= char(K) and p 6∈ {char(Kα)|α ∈ Φ}. Let l be the p-rank
of G, let A ≤ G be an elementary abelian p-subgroup of p-rank l and let x ∈ G be such
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that xAx−1 ≤ H. Let L be a subgroup of G which is isomorphic to SL2(K) or PSL2(K)
and which intersects the group A non-trivially. Then the following two statements are
equivalent:

(i) there exists a root α ∈ Φ such that xLx−1 ≤ 〈Uα ∪ U−α〉;
(ii) CA(L) has order pl−1.

Moreover, if (i) holds and if β ∈ Φ is a root such that xLx−1 ≤ 〈Uβ ∪ U−β〉, then
β ∈ {α,−α}.

Proof. In the language of buildings Part (i) of the proposition essentially means that the
group L stabilizes some pair of opposite panels in the twin building ∆(G) associated
with the given TRD. Our strategy is to reduce the problem to the special case where the
twin root datum has universal type. This means that the product of any two distinct
reflections in the corresponding Coxeter group has infinite order. In this special case the
desired conclusion is deduced from Proposition 6.4.

We denote by ∆(G) = ((∆+, δ+), (∆−, δ−), δ∗) the twin building associated with the
given twin root datum. Let Σ = (Σ+,Σ−) be the fundamental twin apartment. We also
set A1 := CA(L).

(i) ⇒ (ii): We may – and shall – assume that x = 1. Hence, we have A ≤ H and
L ≤ Lα := 〈Uα, U−α〉. We must show that mp(A

1) = l − 1. Let (π+, π−) be a pair of
opposite panels which belong to the wall P (sα) and is thus stabilized by Lα. We know
by Section 3.4 that the stabilizer of a chamber of πǫ in Lα is solvable for ǫ ∈ {+,−}.
Hence L has no fixed chamber in πǫ. Moreover, since πǫ ∩ Σǫ has cardinality 2 and since
L has no subgroup of index 2, we conclude that L does not stabilize {xǫ, yǫ} := πǫ ∩ Σǫ.
Therefore, there exists g ∈ L such that g(xǫ) ∈ πǫ\Σǫ. Let now h be an arbitrary element
of A1. Then z := g(xǫ) = hgh−1(xǫ) = hg(xǫ) = h(z) and h fixes a chamber which does
not belong to Σ. By Section 3.4, this implies that A1 is properly contained in A, namely
mp(A

1) < l.
The previous argument shows that any element of A1 fixes a chamber of πǫ which

does not belong to Σ. By Section 3.4, this implies that A1 acts trivially on πǫ. On the
other hand, any element of H which centralizes πǫ also centralizes Lα. Since L ≤ Lα, we
conclude that A1 is the kernel of the action of A on πǫ.

Now, suppose that mp(A
1) < l − 1. Then there exist two distinct cyclic subgroups of

A, say C1 and C2, such that 〈C1 ∪C2〉 ∩A
1 = {1} (and so 〈C1 ∪C2 ∪A

1〉 ≤ A). Since A1

is the kernel of the action of A on πǫ, it follows that C1 and C2 act both faithfully on πǫ.
It follows from Section 3.4 that they induce the same action on πǫ. Therefore, there is an
isomorphism φ : C1 → C2 such that for each c ∈ C1, the element cφ(c) acts trivially on
πǫ. This implies that for each c ∈ C1 the element cφ(c) centralizes Lα. Thus, the group
〈C1 ∪C2〉 has a subgroup of order p which is contained in A1. This is a contradiction and
(ii) follows.

(ii) ⇒ (i): Without loss of generality, we may – and shall – assume that x = 1. We
have to prove that L is contained in 〈Uα ∪ U−α〉 for some α ∈ Φ and that this property
determines the pair {α,−α} uniquely.

We set AL := A ∩ L. The group AL is nontrivial by assumption. Moreover, it is not
central in L because p > 3. We also set A1 := CL(A). Thus, A1 has order pl−1 and we
have A = A1.AL and A1 ∩ AL = {1}.

By Lemma 5.1 we know that the set of fixed chambers of A in ∆(G) is the fundamental
twin apartment Σ. Up to conjugation by some element of G we may assume that this
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twin apartment is Σ and that A ≤ H.
Let Φ1 denote the set of roots α ∈ Φ such that A1 centralizes Uα. Set also G1 :=

〈Uα|α ∈ Φ1〉 ≤ CG(A1).
The rest of the proof is divided into several steps.

Step 1: Φ1 is nonempty.
It suffices to show that there is a panel of Σ whose chambers are all fixed by A1.

Suppose there is no such panel. Then it follows from Section 3.4 and an argument used
in the proof of 5.1 that Σ is the set of chambers fixed by A1. Since L centralizes A1,
we deduce that L stabilizes Σ and hence normalizes A by 3.3 and Proposition 2.5. As
AL = A∩L is not normal in L, we obtain a contradiction and we conclude that Φ1 is not
empty.

Step 2: (G1, (Uα)α∈Φ1) is a twin root datum of universal type.
For ǫ ∈ {+,−} let ∆1

ǫ ⊂ ∆ǫ be the set of chambers fixed by A1. Then (∆1
+,∆

1
−)

is naturally endowed with a structure of twin building by Lemma 6.1. Moreover, the
buildings ∆1

+ and ∆1
− are not thin by the previous paragraph. We denote by ∆̄1 =

(∆̄1
+, ∆̄

1
−, δ̄

∗) the corresponding thick frame (see Section 6.2) and by (W 1, S1) the type of
∆̄1.

We now prove that (W 1, S1) has universal type. Let s, t be distinct reflections of S1;
we have to prove that the order of the product st is infinite. Assume the contrary. Let
R be a spherical residue of rank 2 which is stabilized by s and t. Let c ∈ R ∩ Σ and set
α := H(s, c) and β := H(t, c). Define now Hα and Hβ as in the statement of Lemma
6.3 and let Aα and Aβ be the subgroups of p-torsion elements of Hα and Hβ respectively.
By Lemma 6.3, we have Aα ∩ Aβ = {1} and so Aα.Aβ has order p2. Moreover, the same
lemma also implies that the kernel of the action of Hα.Hβ on C(s) (resp. C(t)) has order
at most 3. Therefore, no non-trivial element of Aα.Aβ acts trivially on C(s) (resp. C(t)).
On the other hand, we know by definition that A1 acts trivially on both C(s) and C(t).
Hence A1 ∩ (Aα.Aβ) = {1} and so the group A1.Aα.Aβ is an elementary abelian group of
order pl+1 which is impossible by the definition of l. Thus, we obtain a contradiction and
we conclude that (W 1, S1) is of universal type.

We identify the roots in Φ with the twin roots of Σ as described in Section 3.3. If
α = (α+, α−) ∈ Φ is such that Uα centralizes A1, then ᾱ := (ᾱ+, ᾱ−) is a twin root of ∆̄1

(see 6.2 for the notation ᾱ+ and ᾱ−) and Uα fixes ᾱ thickly. Moreover, the action of Uα on
any panel of ∆(G) belonging to P (sα) is equivalent to the action of Uα on a panel of ∆̄1

belonging to P (sᾱ). This follows from the construction of ∆̄1 (see 6.2). Hence, the action
of Uα on ∆̄1 is faithful and we conclude that Uα is a root group of ∆̄1. By identifying
the twin roots of (Σ̄+, Σ̄−) with the elements of Φ(W 1, S1) as in Section 3.3 the mapping
α 7→ ᾱ provides a canonical bijection of Φ1 onto Φ(W 1, S1). Now, Proposition 7 of [28]
yields that (G1, (Uα)α∈Φ1) is a TRD of universal type (W 1, S1).

Step 3: The buildings ∆̄1
+ and ∆̄1

− are “trees”.
Any subgroup of G which centralizes A1 acts on ∆1 and ∆̄1, where ∆1 and ∆̄1 are

as in the proof of the claim. In particular, this is the case for L. Since ∆̄1 has universal
type, it follows that for ǫ ∈ {+,−} the building ∆̄1

ǫ can be viewed as a tree T (∆̄1
ǫ) in a

canonical way. The vertex set of T (∆̄1
ǫ) is the union of the set of chambers and the set of

panels of ∆̄1
ǫ . Given a chamber x and a panel π, then {x, π} is an edge of T (∆̄1

ǫ) if and
only if x ∈ π and each edge is of this form. Since the type of ∆̄1 is universal, the graph
T (∆̄1

ǫ) is a tree.
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Step 4: L has no fixed end in the tree T (∆̄1
ǫ).

We first record some observations concerning the twin building ∆̄1. We have already
noticed that the group CG(A1) acts on ∆̄1. It follows from the construction of ∆̄1 that an
element of CG(A1) fixes the fundamental twin apartment Σ̄ of ∆̄1 chamberwise if and only
if it fixes Σ chamberwise. In particular, this shows that the chamberwise stabilizer of Σ̄ in
CG(A1) is the fundamental torus H, which is abelian. We also deduce from the previous
observation and from Proposition 2.5 that we have mp(CG(A1)/K) = mp(H)−mp(A

1) =
1, where K denotes the kernel of the action of CG(A1) on ∆̄1. Therefore, by Lemma 5.1
we observe that AL fixes no chamber outside Σ̄ in ∆̄1.

Recall that L is isomorphic to SL2(K) or PSL2(K). Hence there is an epimorphism
λ : SL2(K) → G with kernel of order at most 2. We may moreover assume that λ−1(AL)

is diagonal in SL2(K). Set nL := λ(

(
0 −1
1 0

)
). We have nL ∈ N\H and (nL)

4 = 1.

Now, since nL normalizes AL, it stabilizes Σ̄ in ∆̄1. The element nL has finite order
and therefore the fixed point theorem for finite groups acting on buildings implies that it
stabilizes a spherical residue in Σ̄. Since ∆̄1 has universal type, the only spherical residues
are panels or chambers. Therefore, nL acts on Σ̄ as a reflection because 〈{nL} ∪ AL〉 is
not abelian. Therefore nL cannot fix all chambers of Σ̄.

Assume now that L fixes an end e of T (∆̄1
ǫ). Since AL fixes no chamber outside Σ̄ we

deduce that e is an end of T (Σ̄ǫ). But as nL acts on Σ̄ǫ as a reflection, it does not fix any
end of T (Σ̄ǫ) and we have a contradiction. Hence, L fixes no end in T (∆̄1

ǫ).

Step 5: End of the proof.
As the tree T (∆̄1

ǫ) is simplicial and as algebraically closed fields have no non-trivial
discrete valuation, we conclude from Proposition 6.4 and from Step 4 that L fixes a vertex
in T (∆̄1

ǫ).
A solvability argument as in the proof of ‘(i) ⇒ (ii)’ above shows that L fixes no

chamber of ∆̄1
ǫ . This yields that L stabilizes a unique panel π̄ǫ of ∆̄1

ǫ . The group AL =
A∩L fixes no panel of ∆̄1 which is not contained in Σ̄. This follows from an argument as
in Step 4 above. Hence, π̄ǫ is contained in Σ̄ǫ. The panels π̄+ and π̄− are opposite. Indeed,
if π̄+ and π̄− were not opposite, then there would exist c ∈ π− such that ℓ(δ∗(x, c)) >
ℓ(δ∗(x, y)) for each x ∈ π+ and each y ∈ π−\{c}. Hence L would fix c and thus also c̄.
We have seen above that this is impossible and therefore π̄+ and π̄− are opposite.

Hence, L stabilizes a unique pair of opposite panels of ∆̄1 and these panels belong to
Σ̄. By the construction of ∆̄1

ǫ this yields a unique pair of opposite roots {α,−α} of the
fundamental twin apartment Σ such that L stabilizes every panel of ∆(G) which belongs
to the wall P (sα). Therefore L ≤ Pα for some α ∈ Φ by Section 3.4. Passing to derived
groups, we finally obtain L ≤ Lα as expected. This completes the proof.

7 Proof of Theorem 2.3

Let us write Z = (G, (Uα)α∈Φ) and Z ′ = (G′, (U ′
α)α∈Φ′) and let H and H ′ be the respective

fundamental tori. Let ξ : G→ G′ be an isomorphism.
Let p be a prime which is strictly greater than 3 and distinct from the characteristic of

Kα (resp. K
′
α′) for all α ∈ Φ (resp. α′ ∈ Φ′). In view of Section 3.3, we may assume that

Z and Z ′ are reduced, or in other words that G and G′ are center-free. By Proposition
2.5 the p-ranks of G and G′ are both finite. We have mp(G) = mp(G

′) because G and
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G′ are isomorphic. Let A be the subgroup of p-torsion elements of H. Proposition 2.5
provides an element x of G′ such that ξ(A) ≤ xH ′x−1.

Set Lα := 〈Uα∪U−α〉 and L′
α′ := 〈U ′

α′∪U ′
−α′〉 for each α ∈ Φ and α′ ∈ Φ′. Given α ∈ Φ,

then group Lα ∩A has order p. Therefore, Proposition 6.5 implies that ξ(Lα) ≤ xL′
α′x−1

for a root α′ ∈ Φ′ which is uniquely determined up to a sign. A second application
of Proposition 6.5 yields Lα ≤ ξ−1(xL′

α′x−1) ≤ Lβ for a root β ∈ Φ which is uniquely
determined up to a sign. By the last statement of Proposition 6.5 applied to the inclusion
Lα ≤ Lβ we obtain α = ±β. This implies finally ξ(Lα) = xL′

α′x−1.
Let K be an algebraically closed field. Then the twin root datum of Example 2.1 is up

to isomorphism the only twin root datum of rank 1 in which SL2(K) (resp. PSL2(K))
is involved (see for example Theorem 31 in [22]; see also Theorem 7 of [2] for a more
elementary treatment which is independent of the solution of the isomorphism problem
for Chevalley groups). It follows that Kα ≃ K

′
α′ and that Ad(x−1)◦ ξ sends the conjugacy

class Uα of Uα in Lα onto the conjugacy class U′
α′ of U ′

α′ in L′
α′ , where Ad(x−1) denotes

the conjugation by x−1. The group A normalizes Lα and acts on Uα. By Lemma 5.1 the
groups Uα and U−α are the only fixed points of A in Uα. Hence Ad(x−1)◦ ξ maps Uα on a
fixed point of A′ in U′

α′ , namely U ′
α′ or U ′

−α′ . This finally shows that ξ sends {Uα|α ∈ Φ}
to {xU ′

α′x−1|α′ ∈ Φ′}. Now, the conclusion follows from Theorem 2.2.

8 Kac-Moody groups

In this section we are interested in Kac-Moody groups in the sense of [25]. Our aim
is to prove that Theorem 2.3 implies a factorization result for automorphisms of Kac-
Moody groups over algebraically closed fields (see Theorem 2.4). We also discuss the
existence of graph automorphisms of Kac-Moody groups over algebraically closed fields
(see Proposition 8.3).

8.1 Definition and uniqueness

Let I be a finite set. Recall that a generalized Cartan matrix is a matrix A = (Aij)i,j∈I
with integral coefficients such that Aii = 2, Aij ≤ 0 if i 6= j and Aij = 0 ⇔ Aji = 0.
It is called symmetrizable if it is the product of an invertible diagonal matrix and a
symmetric matrix. A Kac-Moody root datum is a system D = (I, A,Λ, (ci)i∈I , (hi)i∈I)
where I is a finite set, A is a generalized Cartan matrix indexed by I, Λ is a free Z-module
whose Z-dual is denoted by Λ∨ and where the elements ci of Λ and hi of Λ∨ satisfy the
relation 〈ci|hj〉 = Aji for all i, j ∈ I.

Let us fix a Kac-Moody root datum D. Following [25], a Kac-Moody group is defined
as the value on a field of a certain group functor G called Tits functor, which is described
by a series of axioms that we recall below. One of these axioms relates G to the complex
Kac-Moody algebra gA. We recall that this is the Lie algebra generated by the elements
ei, fi and h̄i (i ∈ I) with the following presentation:

[h̄i, ej] = Aijej, [h̄i, fj] = −Aijfj, [h̄i, h̄j] = 0, [ei, fj] = −h̄i,

for i 6= j, [ei, fj] = 0, (ad ei)
−Aij+1(ej) = ad (fi)

−Aij+1(fj) = 0.

Let now F = (G, (φi)i∈I , η) be a system consisting of a group functor G on the category
of all commutative unitary Z-algebras, a collection (ϕi)i∈I of morphisms of functors ϕi :
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SL2 → G, and a morphism of functors η : TΛ → G, where TΛ is the split torus scheme,
namely TΛ(R) = Homgr(Λ, R

×). The group functor G involved in such a system is called
a Tits functor if it satisfies the following conditions, where rhi denotes the element
λ 7→ r〈λ,hi〉 of TΛ:
(KMG1) if K is a field, G(K) is generated by the images of ϕi(K) and η(K);
(KMG2) for every ring R, the homomorphism η(R) : TΛ(R) → G(R) is injective;

(KMG3) for i ∈ I and r ∈ R×, one has ϕi

(
r 0
0 r−1

)
= η(rhi);

(KMG4) if ι is an injection of a ring R in a field K, then G(ι) : G(R) → G(K) is
injective;

(KMG5) there is a homomorphism Ad : G(C) → Aut(gA) whose kernel is contained
in η(TΛ(C)), such that, for c ∈ C,

Ad

(
ϕi

(
1 c
0 1

))
= exp ad cei, Ad

(
ϕi

(
1 0
c 1

))
= exp ad (−cfi),

and, for t ∈ TΛ(C),

Ad(η(t))(ei) = t(ci) · ei, Ad(η(t))(fi) = t(−ci) · fi.

As above, let D = (I, A,Λ, (ci)i∈I , (hi)i∈I) be a Kac-Moody root datum, and let
M(A) = (mij)i,j∈I be the Coxeter matrix over I defined as follows: mii = 1 and for
i 6= j, mij = 2, 3, 4, 6 or ∞ according as the product AijAji is equal to 0, 1, 2, 3 or ≥ 4.
Let (W,S) be the corresponding Coxeter system and set Φ := Φ(W,S). In Section 3.6
of [25] Tits constructs a group functor GD (still on the category of commutative unitary
Z-algebras) and a family of morphisms of functors uα : Add → GD (α ∈ Φ). This functor
GD has the property that for each field K the system (GD(K), (Uα(K))α∈Φ) is a K-locally
split twin root datum, where Uα(K) denotes the image of uα(K). Moreover, there is a
canonical morphism of functors TΛ → GD such that the fundamental torus of this TRD is
the image of TΛ(K) in GD(K). The functor GD is called the constructive Tits functor.

The main result of [25] is that for a fixed Kac-Moody root datum D the value of any
Tits functor on a field K is isomorphic to the value of the constructive Tits functor on K.
Here is the precise statement.

Theorem 8.1. Let D = (I, A,Λ, (ci)i∈I , (hi)i∈I) be a Kac-Moody root datum and let GD be
the corresponding constructive Tits functor. Set U±i(R) := U±αi

(R) for each simple root
αi. Let U+(R) (resp. U−(R)) denote the subgroup of GD(R) generated by all Uα(R) for

α positive (resp. negative), and let u+ (resp. u−) be the homomorphism r 7→

(
1 r
0 1

)

(resp. r 7→

(
1 0
−r 1

)
) of Add in SL2. If F = (G, (ϕi)i∈I , η) is a system which satisfies

the axioms (KMG1) to (KMG5) for the Kac-Moody root datum D, then:
(i) there exists a unique morphism of group functors π : GD → G such that the

canonical map TΛ → GD followed by π coincides with η and that π◦u±αi
= ϕi◦u±;

(ii) if K is a field, then π(K) is an isomorphism unless ϕi(SL2(K)) is contained in
π(U+(R)) or in π(U−(R)) for some i.

Is is mentioned in Section 3.10(b) of [25] that Tits functors do exist, which implies by
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the previous theorem, that the constructive Tits functor is indeed a Tits functor.

8.2 Sign, diagram, diagonal and field automorphisms

In this section we define several specific types of automorphisms of Kac-Moody groups.
The terminology we introduce for these different types of automorphisms is taken over
from [22] and [7]. Our definitions are constructive, except for graph automorphisms, which
are discussed in the next subsection.

We keep the notation of Section 8.1. Moreover, we define ϕi : SL2 → GD by

ϕi

(
1 k
0 1

)
= uαi

(k) and ϕi

(
1 0
−k 1

)
= u−αi

(k)

where k is an element of a field K and uα(k) abusively denotes uαi
(K)(k) (we shall again

make this little abuse of notation in the following). Let η : TΛ → GD be the canonical
map. By the remark following Theorem 8.1, we know that the system (GD, (ϕi)i∈I , η)
satisfies the axioms (KMG1) – (KMG5). In particular, there exists a homomorphism
Ad : GD(C) → gA, such that the relations of (KMG5) are satisfied.

Sign automorphisms are defined as follows. Let τ denote the automorphism of SL2

which is the conjugation by the matrix

(
0 1
1 0

)
. For each i ∈ I, let ϕ̃i := ϕi◦τ . Let ι be

the automorphism of TΛ defined by ι(t) : Λ → R× : λ 7→ t(−λ) = (t(λ))−1. Set η̃ := η ◦ ι.
One obtains a system (GD, (ϕ̃i)i∈I , η̃), and it can be checked that it satisfies the axioms
(KMG1) – (KMG4) (for (KMG3), the verification requires the use of Relation 3.6(6) of

[25]). In order to verify (KMG5) we define a homomorphism Ãd : GD(C) → Aut(gA)

by Ãd = ω ◦ Ad ◦ ω−1, where ω is the Chevalley involution of gA (namely ω(ei) = −fi,
ω(fi) = −ei and ω(h̄i) = −h̄i). An easy computation shows that (KMG5) is also satisfied

with Ãd playing the role of Ad. Therefore, Theorem 8.1 insures (notice that, by 3.3,
the condition of (ii) in that theorem is satisfied) the existence of a unique morphism of
functors GD → GD (also denoted by ω) such that

ω(R)(uαi
(r)) = u−αi

(−r), ω(R)(u−αi
(r)) = uαi

(−r) and ω(R)(η(t)) = η(ι(t))

for each i ∈ I, r ∈ R, t ∈ TΛ(R) and each ring R. Moreover, for every field K the
morphism ω(K) is an automorphism called a sign automorphism of GD(K). The identity
is considered to be also a sign automorphism.

Diagram automorphisms are defined as follows. We assume in this paragraph that
the lattice Λ∨ is generated by all the hi’s. Let σ be a permutation of the index set I such
that

Aij = Aσiσj (1)

for all i, j ∈ I. For each i ∈ I, let ϕ̃i := ϕσi. By the above assumption, for every ringR, the
torus TΛ(R) is generated by elements of the form rhi with r ∈ R and i ∈ I. Therefore, the
relations η̃(rhi) = η(rhσi) induce a well defined homomorphism of functors η̃ : TΛ → GD.
Again, one obtains a system (GD, (ϕ̃i)i∈I , η̃) and it is readily verified that it satisfies the
axioms (KMG1) – (KMG4). In order to verify (KMG5) we define a homomorphism

Ãd : GD(C) → Aut(gA) by Ãd = σ
−1 ◦ Ad ◦ σ, where σ is the automorphism of gA

defined by σ(ei) = eσi and σ(fi) = fσi (the fact that σ is indeed an automorphism of gA
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is an easily computable consequence of the condition Aij = Aσiσj). Again, Theorem 8.1
insures the existence of a unique morphism of functors GD → GD (also denoted by σ) such
that

σ(R)(uαi
(r)) = uασi

(r), σ(R)(u−αi
(r)) = u−ασi

(r) and σ(R)(η(rhi)) = η(rhσi)

for each i ∈ I and r ∈ R. Moreover, for every field K, the morphism σ(K) is an
automorphism called a diagram automorphism of GD(K).

Remark 8.2. In the next subsection, we introduce graph automorphisms. We shall see
that any diagram automorphism is a graph automorphism. The converse is not true in
general.

Diagonal automorphisms are defined as follows. Let Λ̃ be the Z-lattice Λ̃ =⊕
i∈I Zc̃i. There is a canonical homomorphism Λ̃ → Λ : c̃i 7→ ci, which induces a

morphism of split tori TΛ → TΛ̃ := Homgr(Λ̃, R
×). For each h ∈ TΛ̃, we define an

automorphism of GD(R), again denoted by h, called a diagonal automorphism, and
induced by the relations

h|H = idH and h(uα(r)) = uα(h(aα)r)

where α belongs to Φ(W,S) (see Section 8.1 for the definition of (W,S)) and aα is the

corresponding element of Λ̃. We recall the definition of aα. It is well known that the
group W defined as in Section 8.1 acts on Λ̃. This action is determined by the equations
si(cj) = cj−Aij · ci where i ∈ I. If α is a root of (W,S), then α = w(αsi

) for some w ∈ W

and i ∈ I. Thus aα := w(ci) is an element of Λ̃ which depends only on α. Now, it can be
verified that relations above indeed induce a well defined automorphism of GD(R) (using
for example the explicit definition of the constructive Tits functor).

Ring automorphisms are defined as follows. Since GD is a functor, it is clear that
to any automorphism f of R corresponds a well defined automorphism GD(f) of GD(R),
called a ring automorphism (or a field automorphism according as R is a field).
More explicitly we have GD(f)(t) = f ◦ t for each t ∈ TΛ(R) (which is identified with its
image in GD(R)) and GD(f)(uα(r)) = uα(f(r)) for α ∈ Φ and r ∈ R.

8.3 Graph automorphisms

It is well known that Chevalley groups of type B2 and F4 over a field of characteristic
2 admit graph automorphisms (see Proposition 12.3.3 in [6]) and these are not diagram
automorphisms in the above sense. These automorphisms are exceptional in the sense
that they exist only over a field of characteristic 2. In this subsection, we define graph
automorphisms for arbitrary Kac-Moody groups. The question of the existence of these
graph automorphisms is still open. We give necessary conditions for their existence (see
Proposition 8.3); we do not know whether or not these conditions are sufficient. For graph
automorphisms satisfying a certain restriction (see the remark below), similar conditions
have been proved to be necessary and sufficient by A. Chosson [8] (see Theorem 8.5 below);
another existence result had been obtained previously by J.-Y. Hée [11].

We keep the notation of Section 8.1, and denote by Π the set of simple roots of Φ. An
automorphism θ of GD(R) is called a graph automorphism if there exists a permutation
σ of Π such that

θ(Uα(R)) = Uσα(R) and θ(uα(1)) = uσα(1)
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for every α ∈ Π. In that situation we say that the permutation σ of Π can be lifted to
a graph automorphism of GD(R).

The terminology of ‘diagram’ and ‘graph’ automorphisms is inspired by the distinction
which is sometimes made between a Dynkin diagram (with arrows on multiple bonds) and
its underlying Coxeter graph.

Proposition 8.3. Let Π be a set indexing a generalized Cartan matrix A and let σ be
a permutation of Π. Let G be a Kac-Moody group over an algebraically closed field K of
characteristic p ≥ 0 whose underlying generalized Cartan matrix is A. If σ can be lifted
to a graph automorphism of G, then the following conditions are satisfied for all α, β ∈ Π:

(i) AαβAβα = Aσα,σβAσβ,σα;
(ii) if Aαβ 6= 0, then the number

Aσα,σβ
Aαβ

either equals 1 if p = 0, or is an integral (possibly negative) power of p if p > 0;
(iii) if (α0, α1, . . . , αn = α0) is a loop in the Coxeter diagram M(A) (see Section 8.1)

then
n∏

i=1

Aσαi−1,σαi

Aαi−1αi

= 1.

Assume now that A is indecomposable and that σ can indeed be lifted to an automor-
phism θ of G (hence Conditions (i), (ii) and (iii) are satisfied). Fix an element α0 ∈ Π,
and for each β ∈ Π, choose a path (α0, α1, . . . , αn = β) from α0 to β in the Coxeter graph
associated to A. Let us define the number

cβ :=
n∏

i=1

Aσαi−1,σαi

Aαi−1αi

(by (iii), the number cβ is independent of the chosen path); by convention, we also put
cα0 := 1. Then there exists a field automorphism f of G such that for θ′ := θ ◦ f , we have

θ′(uβ(k)) = uσβ(k
cβ)

for each β ∈ Π.

This proposition is a consequence of the arguments used in the proof of Theorem 2.4,
given below.

Remark 8.4. If the restriction of σ to every loop of the Coxeter graph M(A) is a reflection
preserving that loop, then Condition (iii) in the previous proposition is equivalent to the
requirement that the generalized Cartan matrix A is symmetrizable. This follows from
Exercise 2.1 on page 27 in [13].

As said in the introduction, Theorem 2.4 can be used to determine the automorphism
group of a Kac-Moody over an algebraically closed field of characteristic 0. We also
mentioned that a result from A. Chosson’s doctoral thesis allows to determine the auto-
morphism group in further cases (including the affine). For the sake of convenience, we
reproduce this result here.
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Theorem 8.5. (A. Chosson) Let (Aij)i,j ∈ I be a generalized Cartan matrix and let D =
(I, A,

⊕
i∈I Zei, (ci)i∈I , (hi)i∈I) be the Kac-Moody root datum defined by ci :=

∑
j∈I Ajiej

and 〈ei|hj〉) = δij for all i, j ∈ I (this is called the simply connected root datum). Let
(W,S) be the associated Coxeter system (see Section 8.1). Let K be a field of characteristic
p ≥ 0 and let (fi)i∈I be a collection of automorphisms of K. Let σ be a permutation of I.

Assume that Aij = Aσj,σi for all i, j ∈ I. Then σ can be lifted to a graph automorphism
θ of GD(K) such that θ(ui(k)) = uσi(fi(k)) for all i ∈ I and k ∈ K if and only if the
following conditions are satisfied for all i, j ∈ I:
(1) if p 6= 2, then Aij and Aji have the same parity;
(2) if Aij = −1, then either Aji = −1 or Aji ≡ 0modp;
(3) for all k ∈ K we have fi(k

Aji) = fj(k
Aij);

(4) if ei and ej are W -conjugate, then σi = σj (the W -action on
⊕

i∈I Zei is defined
as in the paragraph on diagonal automorphisms in the previous section).

Proof. This is Theorem 1.1 of Chapter 7 in [8].

8.4 Proof of Theorem 2.4

The main ingredient is of course Theorem 2.3. Let Z := (G, (Uα)α∈Φ) be the natural twin
root datum involving G. Here, Φ = Φ(W,S) where (W,S) is the Coxeter system of type
M(A), defined as in Section 8.1. The twin root datum Z is thus locally split over the
algebraically closed field K. Let H be its fundamental torus and let U+ (resp. U−) be the
group generated by all Uα with α positive (resp. −α positive).

Let us fix an automorphism ξ of G. Then Theorem 2.3 insures the existence of an
inner automorphism ι of G such that ξ1 := ι−1 ◦ ξ leaves H invariant and maps U+ and
U− respectively onto either U+ and U− or U− and U+. In both cases, we may compose
ξ1 with an appropriate sign automorphism ω in such a way that ξ2 = ω ◦ ξ1 stabilizes U+

and U−. Now, the automorphism of the group W induced by ξ2 must leave S invariant.
In particular, it induces a permutation σ of S according to the rule

ξ2(αs) = ασs

(we shall also write σ for the corresponding permutation of the simple roots) and the
corresponding root groups are permuted accordingly.

It is now clear that we may choose a diagonal automorphism d in such a way that
ξ3(uα(1)) = uσα(1) for each simple root α, where ξ3 = d−1 ◦ ξ2. Hence ξ3 is a graph
automorphism of G, and ξ = ιωdξ3 as expected.

Now, we assume that either char(K) = 0 or every off-diagonal entry of A is prime to
char(K).

Let us fix two simple roots α and β. There exist automorphisms fα and fβ of K

such that ξ3(uγ(k)) = uσγ(fγ(k)) for all k ∈ K, where γ ∈ {α, β}. This follows from
computations as in the proof of the assertion (4) on page 161 in [22]. Let us now consider
the following special case of the relation 3.6(4) in [25]:

khαuβ(1)(khα)−1 = uβ(k
Aαβ).

Transforming by ξ3 and using the fact that ξ3(k
hα) = (fαk)

hσα , we obtain the following
equality:

uσβ
(
(fαk)

Aσασβ
)

= uσβ
(
(fβk)

Aαβ
)
,
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which implies, since uσβ is bijective, that

(f−1
β fα)k

Aσασβ = kAαβ .

Now, the number of solutions of the polynomial equation X |Aσασβ | = 1 must be equal to
the number of solutions of the polynomial equation X |Aαβ | = 1. Since the polynomial
Xn− 1 has exactly n distinct roots in K whenever n is prime to char(K), we see that the
hypothesis on the characteristic of K implies that

Aσασβ = Aαβ.

Now, unless Aαβ = 0, for any k′ ∈ K
×, we may choose a k ∈ K

× such that kAαβ = k′, and
this implies that f−1

β fα is the identity on K. In other words, the automorphisms fα and fβ
coincide. Since this holds for any pair of distinct simple roots, and since the generalized
Cartan matrix A is supposed to be indecomposable, we deduce that the automorphisms
fγ all coincide. Finally, it follows from the previous discussion that we can choose a
diagram automorphism g and a field automorphism f in such a way that f−1 ◦ g−1 ◦ ξ3
is the identity on G. In other words, we have ξ = ιωdgf . This concludes the proof of
Theorem 2.4.
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24
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