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Abstract. Let G be a complete Kac-Moody group over a finite field. It is
known that G possesses a BN-pair structure, all of whose parabolic subgroups
are open in G. We show that, conversely, every open subgroup of G is contained
with finite index in some parabolic subgroup; moreover there are only finitely
many such parabolic subgroups. The proof uses some new results on parabolic
closures in Coxeter groups. In particular, we give conditions ensuring that the
parabolic closure of the product of two elements in a Coxeter group contains
the respective parabolic closures of those elements.

1. Introduction

This paper is devoted to the study of open subgroups of complete Kac–Moody
groups over finite fields. The interest in the structure of those groups is motivated
by the fact that they constitute a prominent family of locally compact groups
which are simultaneously topologically simple and non-linear over any field (see
[Rém04]) and [CR09]). They show some resemblance with the simple linear lo-
cally compact groups arising from semi-simple algebraic groups over local fields
of positive characteristic.

The first question on open subgroups of a given locally compact group G one
might ask is: How many such subgroups are there? Let us introduce some ter-
minology providing possible answers to this question. We say that G has few
open subgroups if every proper open subgroup of G is compact. We say that
G is Noetherian if G satisfies an ascending chain condition on open subgroups.
Equivalently G is Noetherian if and only if every open subgroup of G is compactly
generated (see Lemma 3.22 below). Clearly, if G has few open subgroups, then
it is Noetherian. Basic examples of locally compact groups that are Noetherian
— and in fact, even have few open subgroups — are connected groups and com-
pact groups. Noetherianity can thus be viewed as a finiteness condition which
generalizes simultaneously the notion of connectedness and of compactness. It is
highlighted in [CM11], where it is notably shown that a Noetherian group admits
a subnormal series with every subquotient compact, or abelian, or simple. An ex-
ample of a non-Noetherian group is given by the additive group Qp of the p-adics.
Other examples, including simple ones, can be constructed as groups acting on
trees.

According to a theorem of G. Prasad [Pra82] (which he attributes to Tits),
simple locally compact groups arising from algebraic groups over local fields have
few open subgroups. Locally compact Kac–Moody groups are however known to
have a broader variety of open subgroups in general. Indeed, Kac–Moody groups
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are equipped with a BN -pair all of whose parabolic subgroups are open. In par-
ticular, if the Dynkin diagram of a Kac–Moody group admits proper subdiagrams
that are not of spherical type, then the corresponding Kac–Moody groups have
proper open subgroups that are not compact.

Our main result is that parabolic subgroups in Kac–Moody groups are essen-
tially the only source of open subgroups.

Theorem A. Every open subgroup of a complete Kac-Moody group G over a finite
field has finite index in some parabolic subgroup.

Moreover, given an open subgroup O, there are only finitely many distinct par-
abolic subgroups of G containing O as a finite index subgroup.

A more precise statement of this theorem will be given later, see Theorem 3.3.
As a consequence, we deduce the following.

Corollary B. Complete Kac–Moody groups over finite fields are Noetherian.

In fact, Theorem A allows us to characterize those locally compact Kac–Moody
groups having few open subgroups, as follows.

Corollary C. Let G be a complete Kac–Moody group of irreducible type over a
finite field. Then G has few open subgroups if and only if the Weyl group of G is
of affine type, or of compact hyperbolic type.

Notice that the list of all compact hyperbolic types of Weyl groups is finite and
contains diagrams of rank at most 5 (see e.g. Exercise V.4.15 on p. 133 in [Bou68]).
The groups in Corollary C include in particular all complete Kac–Moody groups
of rank two.

Another application of Theorem A is that it shows how the BN -pair structure
is encoded in the topological group structure of a Kac–Moody group. Here is a
precise formulation of this.

Corollary D. Let G be a complete Kac–Moody group over a finite field and P < G
be an open subgroup. If P is maximal in its commensurability class, then P is a
parabolic subgroup of G.

Our proof of Theorem A relies on some new results on parabolic closures in
Coxeter groups, which we now proceed to describe. Let thus (W,S) be a Coxeter
system with S finite. Recall that any intersection of parabolic subgroups in W is
itself a parabolic subgroup. Following D. Krammer [Kra09], it thus makes sense to
define the parabolic closure of a subset of W as the intersection of all parabolic
subgroups containing it. The parabolic closure of a set E ⊆ W is denoted by
Pc(E).

Theorem E. Let w ∈ W be an element of infinite order and let λ be a translation
axis for w in the Davis complex. Assume that the parabolic closure Pc(w) is of
irreducible type.

Then there is a constant C such that for any two parallel walls m,m′ transverse
to λ, if d(m,m′) > C, then Pc(w) = Pc(rm, rm′).

In particular, we get the following.

Corollary F. Any irreducible non-spherical parabolic subgroup of a Coxeter group
is the parabolic closure of a pair of reflections.



OPEN SUBGROUPS OF KAC–MOODY GROUPS 3

Our main result on Coxeter groups concerns the parabolic closure of the product
of two elements.

Theorem G. There is a finite index normal subgroup W0 < W enjoying the
following property.

For all g, h ∈ W0, there exists a constant K = K(g, h) ∈ N such that for all
m,n ∈ Z with min{|m|, |n|, |m/n| + |n/m|} ≥ K, we have Pc(gmhn) ⊇ Pc(g) ∪
Pc(h).

The following corollary is an essential ingredient in the proof of Theorem A.

Corollary H. Let H be a subgroup of W . Then there exists h ∈ H such that the
parabolic closure of h has finite index in the parabolic closure of H.

2. Walls and parabolic closures in Coxeter groups

Throughout this section, we let (W,S) be a Coxeter system with W finitely
generated (equivalently S is finite). Let Σ be the associated Coxeter complex,
and let |Σ| denote its standard geometric realization. Also, let X be the Davis
realization of Σ. Thus X is a CAT(0) subcomplex of the barycentric subdivision
of |Σ|.

Let Φ = Φ(Σ) denote the set of half-spaces of Σ. A half-space α ∈ Φ will also
be called a root. Given a root α ∈ Φ, we write rα = r∂α for the unique reflection
of W fixing the wall ∂α of α pointwise.

We say that two walls m,m′ of X are parallel if either they coincide or they
are disjoint. We say that the walls m,m′ are perpendicular if they are distinct
and if the reflections rm and rm′ commute.

Finally, for a subset J ⊆ S, we set J⊥ := {s ∈ S \ J | sj = js ∀j ∈ J}.
In this paper, we call a subset J ⊆ S essential if each irreducible component

of J is non-spherical.

2.1. The normalizer of a parabolic subgroup.

Lemma 2.1. Let L ⊆ S be essential. Then NW (WL) = WL × ZW (WL) and is
again parabolic. Moreover, ZW (WL) = WL⊥.

Proof. See [Deo82, Proposition 5.5] and [Kra09, Chapter 3]. �

2.2. Preliminaries on parabolic closures. A subgroup ofW of the formWJ for
some J ⊂ S is called a standard parabolic subgroup. Any of its conjugates is
called a parabolic subgroup of W . Since any intersection of parabolic subgroups
is itself a parabolic subgroup (see [Tit74]), it makes sense to define the parabolic
closure Pc(E) of a subset E ⊂ W as the smallest parabolic subgroup of W
containing R. For w ∈ W , we will also write Pc(w) instead of Pc({w}).

Lemma 2.2. Let G be a reflection subgroup of W , namely a subgroup of W
generated by a set T of reflections. We have the following:

(i) There is a set of reflections R ⊂ G, each conjugate to some element of T ,
such that (G,R) is a Coxeter system.

(ii) If T has no nontrivial partition T = T1 ∪ T2 such that [T1, T2] = 1, then
(G,R) is irreducible.

(iii) If (G,R) is irreducible (resp. spherical, affine of rank ≥ 3), then so is
Pc(G).
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(iv) If G′ is a reflection subgroup of irreducible type which centralizes G and if
G is of irreducible non-spherical type, then either Pc(G ∪G′) ∼= Pc(G)×
Pc(G′) or Pc(G) = Pc(G′) is of irreducible affine type.

Proof. For (i) and (iii), see [Cap09, Lemma 2.1]. Assertion (ii) is easy to verify.
For (iv), see [Cap09, Lemma 2.3]. �

Lemma 2.3. Let α0 ( α1 ( · · · ( αk be a nested sequence of half-spaces such
that A = ⟨rαi | i = 0, . . . , k⟩ is infinite dihedral. If k ≥ 7, then for any wall m
which meets every ∂αi, either rm centralizes Pc(A), or ⟨A∪ {rm}⟩ is a Euclidean
triangle group.

Proof. This follows from [Cap06, Lemma 11] together with Lemma 2.2(iv). �

2.3. Parabolic closures and finite index subgroups.

Lemma 2.4. Let H1 < H2 be subgroups of W . If H1 is of finite index in H2, then
Pc(H1) is of finite index in Pc(H2).

Proof. For i = 1, 2, set Pi := Pc(Hi). Since the kernelN of the action ofH2 on the
coset space H2/H1 is a finite index normal subgroup of H2 that is contained in H1,
so that in particular Pc(N) ⊆ Pc(H1), we may assume without loss of generality
that H1 is normal in H2. But then H2 normalizes P1. Up to conjugating by an
element of W , we may also assume that P1 is standard, namely P1 = WI for some
I ⊆ S. Finally, it is sufficient to prove the lemma when I is essential, which
we assume henceforth. Lemma 2.1 then implies that P2 < WI ×WI⊥ . We thus
have an action of H2 on the residue WI ×WI⊥ , and since H1 stabilizes WI and
has finite index in H2, the induced action of H2 on WI⊥ possesses finite orbits.
By the Bruhat–Tits fixed point theorem (see for example [AB08, Th.11.23]), it
follows that H2 fixes a point in the Davis realization of WI⊥ , that is, it stabilizes
a spherical residue of WI⊥ . This shows [P2 : WI ] <∞. �

2.4. Parabolic closures and essential roots. Our next goal is to present a de-
scription of the parabolic closure Pc(w) of an element w ∈ W , which is essentially
due to D. Krammer [Kra09].

Let w ∈ W . A root α ∈ Φ is called w-essential if either wnα ( α or w−nα ( α
for some n > 0. A wall is called w-essential if it bounds a w-essential root. We
denote by

Ess(w)
the set of w-essential walls. Clearly Ess(w) is empty if w is of finite order. If w
is of infinite order, then it acts on X as a hyperbolic isometry and thus possesses
some translation axis. We say that a wall is transverse to such an axis if it
intersects this axis in a single point. We recall that the intersection of a wall
and any geodesic segment which is not completely contained in that wall is either
empty or consists of a single point (see [NV02, Lemma 3.4]). Given x, y ∈ X, we
say that a wall m separates x from y if the intersection [x, y] ∩m consists of a
single point.

Lemma 2.5. Let w ∈ W be of infinite order and let λ be a translation axis for w
in X. Then Ess(w) coincides with those walls which are transverse to λ.
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The proof requires a subsidiary fact. Recall that Selberg’s lemma ensures that
any finitely generated linear group over C admits a finite index torsion-free sub-
group. This is thus the case for Coxeter groups. The following lemma provides
important combinatorial properties of those torsion-free subgroups of Coxeter
groups. Throughout the rest of this section, we let W0 < W be a torsion-free
finite index normal subgroup.

Lemma 2.6. For all w ∈ W0 and α ∈ Φ, either wα = α or w.∂α ∩ ∂α = ∅.

Proof. See Lemma 1 in [DJ99]. �
Proof of Lemma 2.5. It is clear that if α ∈ Φ is w-essential, then ∂α is tranverse
to any w-axis. To see the converse, let n > 0 be such that wn ∈ W0. Since λ is
also a wn-axis, we deduce from Lemma 2.6 that for all roots α such that ∂α is
transverse to λ, we have either wnα ( α or α ( wnα. The result follows. �

We also set
Pc∞(w) = ⟨rα | α is a w-essential root⟩.

Notice that every nontrivial element of W0 is hyperbolic. Moreover, in view of
Lemma 2.6, we deduce that if w ∈ W0, then a root α is w-essential if and only if
wα ( α or w−1α ( α.

Lemma 2.7. Let w ∈ W be of infinite order, let λ be a translation axis for w in
X and let x ∈ λ.

Then we have the following.
(i) Pc∞(w) = ⟨rα | ∂α is a wall transverse to λ⟩

= ⟨rα | ∂α is a wall transverse to λ and separates x from wx⟩.
(ii) Pc∞(w) coincides with the essential component of Pc(w), i.e. the product of

its non-spherical components. In particular Pc(w) = Pc∞(w) if and only if
Pc(w) is of essential type.

(iii) If w ∈ W0, then Pc(w) = Pc∞(w).

Proof. The first equality in Assertion (i) follows from Lemma 2.5. To check the
second, it suffices to remark that if ∂α is any wall transverse to λ, then there
exists a power wk of w such that wk∂α separates x from wx.

Assertion (ii) follows from Corollary 5.8.7 in [Kra09] (notice that what we call
essential roots here are called odd roots in loc. cit.). Assertion (iii) follows from
Lemma 2.6 and Theorem 5.8.3 from [Kra09]. �

2.5. The Grid Lemma. The following lemma is an unpublished observation due
to the first author and Piotr Przytycki.

Lemma 2.8 (Caprace–Przytycki). There exists a constant N , depending only on
(W,S), such that the following property holds. Let α0 ( α1 ( . . . αk and β0 (
β1 ( · · · ( βl be two nested families of half-spaces of X such that min{k, l} > 2N .
Set A = ⟨rαi | i = 0, . . . , k⟩, A′ = ⟨rαi | i = N,N + 1, . . . , k −N⟩, B = ⟨rβj | j =
0, . . . , l⟩ and B′ = ⟨rβj | j = N,N + 1, . . . , k − N⟩. If ∂αi meets ∂βj for all i, j,
then either of the following assertions holds:

(i) The groups A and B are both infinite dihedral, their union generates a
Euclidean triangle group and the parabolic closure Pc(A ∪ B) coincides
with Pc(A) and Pc(B) and is of irreducible affine type.
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(ii) The parabolic closures Pc(A), Pc(A′), Pc(B) and Pc(B′) are all of irre-
ducible type; furthermore we have

Pc(A′ ∪B) ∼= Pc(A′)× Pc(B) and Pc(A ∪B′) ∼= Pc(A)× Pc(B′).

We shall use the following related result.

Lemma 2.9. There exists a constant L, depending only on (W,S), such that the
following property holds. Let α0 ( α1 ( . . . αk be a nested sequence of half-spaces
and m,m′ be walls such that ∅ ̸= m ∩m′ ⊂ ∂α0, and that both m and m′ meets
∂αi for each i. If k ≥ L, then ⟨rm, rm′ , rαi | i = 0, . . . , k⟩ is a Euclidean triangle
group and ⟨rαi | i = 0, . . . , k⟩ is infinite dihedral.

Proof. See [Cap06, Th. 8]. �

Proof of Lemma 2.8. We let N = max{8, L} where L is the constant appearing
in Lemma 2.9.

Assume first that for some i ∈ {0, 1, . . . , k} and some j ∈ {N,N+1, . . . , l−N},
the reflections rαi and rβj do not centralize one another. Let ϕ = rαi(βj); thus
ϕ ̸∈ {±αi,±βj}. Let x0 ∈ ∂α0 ∩ ∂βj and xk ∈ ∂αk ∩ ∂βj. Then the geodesic
segment [x0, xk] lies entirely in ∂βj and crosses ∂αi. Since ∂αi ∩ ∂βj is contained
in ∂ϕ, it follows that [x0, xk] meets ∂ϕ. This shows that the wall ∂ϕ separates x0
from xk.

Let now p0 ∈ ∂α0 ∩ ∂β0 and pk ∈ ∂αk ∩ ∂β0. Then the piecewise geodesic path
[x0, p0] ∪ [p0, pk] ∪ [pk, xk] is a continuous path joining x0 to xk. This path must
therefore cross ∂ϕ. Thus ∂ϕ meets either ∂α0 or ∂β0 or ∂αk. We now deal with
the case where ∂ϕ meets ∂α0. The other two cases may be treated with analogous
arguments; the straightforward adaption will be omitted here.

Then ∂ϕ meets ∂αm for each m = 0, 1, . . . , i. Therefore Lemma 2.9 may be
applied, thereby showing that Ai = ⟨rαm | m = 0, . . . , i⟩ is infinite dihedral and
that the subgroup T = ⟨rαm , rβj | m = 0, . . . , i⟩ is a Euclidean triangle group.
Furthermore Lemma 2.2(iii) shows that Pc(T ) is of irreducible affine type. Since
Pc(Ai) is infinite (because Ai is infinite) and contained in Pc(T ) (because Ai
is contained in T ), it follows that Pc(Ai) = Pc(T ) since any proper parabolic
subgroup of Pc(T ) is finite. We set P := Pc(Ai) = Pc(T ).

Let now n ∈ {0, 1, . . . , l} with n ̸= j. Then rβn does not centralize rβi ; in
particular it does not centralize T . On the other hand the wall ∂βn meets ∂αm
for all m = 0, . . . , i, which implies by Lemma 2.3 that ⟨Ai ∪ {rβn}⟩ is a Euclidean
triangle group. Therefore rβn ∈ P by Lemma 2.2(iii).

We have already seen that P is of irreducible affine type. We have just shown
that B is contained in Pc(Ai) = P ; in particular this shows that B is infinite
dihedral since the walls ∂β0, . . . ∂βl are pairwise parallel. Moreover, the group
⟨B ∪ {rαi}⟩ must be a Euclidean triangle group since it is a subgroup of P . In
particular we have Pc(B) = P by Lemma 2.2(iii). Since every ∂αm meets every
∂βj, the same arguments as before now show that rαm ∈ Pc(B) = P for all
m = i+ 1, . . . , k. Finally we conclude that Pc(A) = Pc(B) = P in this case.

Notice that, in view of the symmetry between the α’s and the β’s, the previous
arguments yield the same conclusion if one assumed instead that for some i ∈
{N,N + 1, . . . , k−N} and some j ∈ {0, 1, . . . l}, the reflections rαi and rβj do not
centralize one another.
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Assume now that for all i ∈ {0, . . . , k} and all j ∈ {N,N + 1, . . . , l − N}, the
reflections rαi and rβj commute and that, furthermore, for all i ∈ {N,N+1, . . . , k−
N} and all j ∈ {0, 1, . . . l}, the reflections rαi and rβj commute. By Lemma 2.2(ii)
the parabolic closures Pc(A), Pc(A′) Pc(B) and Pc(B′) are of irreducible type.
By assumption A′ centralizes B. By Lemma 2.2(iv), either Pc(A′) = Pc(B) is of
affine type or else Pc(A′∪B) ∼= Pc(A′)×Pc(B). In the former case, we may argue
as before to conclude again that Pc(A) = Pc(B) is of affine type and we are in
case (i) of the alternative. Otherwise, we have Pc(A′ ∪B) ∼= Pc(A′)× Pc(B) and
by similar arguments we deduce that Pc(A ∪B′) ∼= Pc(A)× Pc(B′). �

2.6. Orbits of essential roots: affine versus non-affine. Using the Grid
Lemma, we can now establish a basic description of the w-orbit of a w-essential
wall for some fixed w ∈ W . As before, we let W0 < W be a torsion-free finite
index normal subgroup. Recall from Lemma 2.5 that for all n > 0 we have
Ess(w) = Ess(wn) and, moreover, the set Ess(w) has finitely many orbits under
the action of ⟨w⟩ (and hence also under ⟨wn⟩).

Proposition 2.10. Let w ∈ W be of infinite order, let k > 0 be such that wk ∈ W0
and let Ess(w) = Ess(wk) = M1 ∪ · · · ∪Mt be the partition of Ess(w) into ⟨wk⟩-
orbits. For each i ∈ {1, . . . , t}, let also Pi = Pc({rm | m ∈Mi}).

Then for all i ∈ {1, . . . , t}, the group Pi is an irreducible direct component of
Pc(w). In particular, for all j ̸= i, we have either Pi = Pj or Pc(Pi∪Pj) ∼= Pi×Pj.
More precisely, one of the following assertions holds.

(i) Pi = Pj and each m ∈Mi meets finitely many walls in Mj.
(ii) Pi = Pj is irreducible affine.

(iii) Pc(Pi ∪ Pj) ∼= Pi × Pj.

Proof. Let i ∈ {1, . . . , t}. Since Mi is ⟨wk⟩-invariant, it follows that Pi is normal-
ized by wk. As ⟨rm | m ∈Mi⟩ is an irreducible reflection group by Lemma 2.2(ii),
Pi is of irreducible non-spherical type by Lemma 2.2(iii). It then follows from
Lemma 2.1 that N (Pi) = Pi×Z (Pi) is itself a parabolic subgroup. In particular
it contains Pc(wk). Since on the other hand we have Pi ≤ Pc(wk) by Lemma 2.7,
we infer that Pi is a direct component of Pc(wk). Since Pc(wk) = Pc∞(w) is
the essential component of Pc(w) by Lemma 2.7, we deduce that Pi is a direct
component of Pc(w) as desired.

Let now j ̸= i. Since we already know that Pi and Pj are irreducible direct
components of Pc(w), it follows that either Pi = Pj or (iii) holds. So assume that
Pi = Pj and that there exists a wall m ∈Mi meeting infinitely many walls in Mj.
We have to show that (ii) holds.

Let λ be a w-axis. By Lemma 2.5, all walls in Mi ∪Mj are transverse to λ.
Moreover, by Lemma 2.6 the elements of Mi (resp. Mj) are pairwise parallel.
Therefore, we deduce that infinitely many walls in Mi meet infinitely many walls
in Mj. Since Mi and Mj are both ⟨wk⟩-invariant, it follows that all walls in Mi

meet all walls in Mj. Thus Mi∪Mj forms a grid and the desired conclusion follows
from Lemma 2.8. �

We shall now deduce a rather subtle, but nevertheless important, difference
between the affine and non-affine cases concerning the ⟨w⟩-orbit of a w-essential
root α.
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Let us start by considering a specific example, namely the Coxeter group W =
⟨ra, rb, rc⟩ of type Ã2, acting on the Euclidean plane. One verifies easily that W
contains a nonzero translation t which preserves the ra-invariant wall ma. Let
w = tra. Then w is of infinite order so that Pc(w) = W . Moreover the walls mb

and mc, respectively fixed by rb and rc, are both w-essential by Lemma 2.5. Now
we observe that, for each even integer n the walls mb and wnmb are parallel, while
for each odd integer the walls mb and wnmb have a non-empty intersection.

The following result (in the special case m = m′) shows that the situation we
have just described cannot occur in the non-affine case.

Proposition 2.11. Let w ∈ W , m be a w-essential wall and P be the irreducible
component of Pc(w) that contains rm.

If P is not of affine type, then for each w-essential wall m′ such that rm′ ∈ P ,
there exists an l0 ∈ N such that for all l ∈ Z with |l| ≥ l0, the wall m′ lies between
w−lm and wlm.

Proof. First notice that if m is a w-essential wall, then the reflection rm belongs
to Pc(w) by Lemma 2.7, so that P is well defined. Moreover, we have rwlm =
wlrmw

−l ∈ P for all l ∈ Z.
Let k > 0 be such that wk ∈ W0 and let Ess(w) = Ess(wk) = M1 ∪ · · · ∪Mt be

the partition of Ess(w) into ⟨wk⟩-orbits. Upon reordering the Mi, we may assume
that m′ ∈ M1. Let also I ⊆ {1, . . . , t} be the set of those i such that wlm ∈ Mi

for some l. In other words the ⟨w⟩-orbit of m coincides with ∪i∈IMi.
For all j, set Pj = Pc({rµ | µ ∈ Mj}). By Proposition 2.10, each Pj is an

irreducible direct component of Pc(w). By hypothesis, this implies that P =
P1 = Pi for all i ∈ I.

Suppose now that for infinitely many values of l, the wall wlm has a non-empty
intersection with m′. We have to deduce that P is of affine type.

Recall from Lemma 2.6 that the elements of Mj are pairwise parallel for all j.
Therefore, our assumption implies that for some i ∈ I, the wall m′ meets infinitely
many walls in Mi. By Proposition 2.10, this implies that either P = P1 = Pi is
of affine type, or Pc(P1 ∪ Pi) ∼= P1 × Pi. The second case is impossible since
P1 = Pi. �
2.7. On parabolic closures of a pair of reflections. The following conse-
quence of Proposition 2.10 was stated as Theorem E in the introduction.

Corollary 2.12. For each w ∈ W with infinite irreducible parabolic closure Pc(w),
there is a constant C such that the following holds. For all m,m′ ∈ Ess(w) with
d(m,m′) > C, we have Pc(w) = Pc(rm, rm′).

We shall use the following.

Lemma 2.13. Let α, β, γ ∈ Φ such that α ( β ( γ. Then rβ ∈ Pc({rα, rγ}).

Proof. See [Cap06, Lemma 17]. �
Proof of Corollary 2.12. Retain the notation of Proposition 2.10. Since P =
Pc(w) is irreducible, we have P = Pi for all i ∈ {1, . . . , t} by Proposition 2.10.
Recall that Mi is the ⟨wk⟩-orbit of some w-essential wall m. For all n ∈ Z, we set
mn = wknm. By Lemma 2.6 the elements of Mi are pairwise parallel and hence
for all i < j < n, it follows that mj separates mi from mn. For all n ≥ 0 let now
Qn = Pc({rmn , rm−n}). By Lemma 2.13 we have Qn ≤ Qn+1 ≤ P for all n ≥ 0. In
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particular ∪n≥0 Qn is a parabolic subgroup, which must thus coincide with P . It
follows that Qn = P for some n. Since this argument holds for all i ∈ {1, . . . , t},
the desired result follows. �

Corollary 2.14. Any irreducible non-spherical parabolic subgroup P is the para-
bolic closure of a pair of reflections.

Proof. Let w ∈ P such that P = Pc(w). Such an w always exists by [CF10,
Cor.4.3]. (Note that this can also be deduced from Corollary 2.17 below together
with [AB08, Prop.2.43].) The conclusion now follows from Corollary 2.12. �

2.8. The parabolic closure of a product of two elements in a Coxeter
group. We are now able to present the main result of this section, which was
stated as Theorem G in the introduction.

Before we state it, we prove one more technical lemma about CAT(0) spaces.
Recall that W acts on the CAT(0) space X. For a hyperbolic w ∈ W , let |w|
denote its translation length and set Min(w) = {x ∈ X | d(x,wx) = |w|}.

Lemma 2.15. Let w ∈ W be hyperbolic and suppose it decomposes as a product
w = w1w2 . . . wt of pairwise commuting hyperbolic elements of W . Let m be a
w-essential wall. Then m is also wi-essential for some i ∈ {1, . . . , t}.

Proof. Write w0 := w. Then, since the wi are pairwise commuting for i =
0, . . . , t, each wi stabilizes Min(wj) for all j. Thus M := ∩t

j=1 Min(wj) and
Min(w) are both non-empty by CAT(0)-convexity, and are stabilized by each
wi, i = 0, . . . , t. Therefore, if x ∈ M ∩Min(g), there is a piecewise geodesic path
x,w1x,w1w2x, . . . , w1 . . . wtx = wx inside M ∩Min(g), where each geodesic seg-
ment is part of a wi-axis for some i ∈ {1, . . . , t}. Since any wall intersecting the
geodesic segment [x,wx] must intersect one of those axis, the conclusion follows
from Lemma 2.5. �

Theorem 2.16. For all g, h ∈ W0, there exists a constant K = K(g, h) ∈ N such
that for all m,n ∈ Z with min{|m|, |n|, |m/n| + |n/m|} ≥ K, we have Pc(g) ∪
Pc(h) ⊆ Pc(gmhn).

Proof. Fix g, h ∈ W0. Let Ess(g) = M1 ∪ · · · ∪Mk (resp. Ess(h) = N1 ∪ · · · ∪Nl)
be the partition of Ess(g) into ⟨g⟩-orbits (resp. Ess(h) into ⟨h⟩-orbits). For all
i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, set Pi = Pc({rm | m ∈ Mi}) and Qj =
Pc({rm | m ∈ Nj}).

By Lemma 2.7, we have Pc(g) = ⟨{rm | m ∈ Mi, i = 1, . . . , k}⟩, and Propo-
sition 2.10 ensures that Pi is an irreducible direct component of Pc(g) for all i.
Thus there is a subset I ⊆ {1, . . . , k} such that Pc(g) = ∏i∈I Pi. Similarly, there
is a subset J ⊆ {1, . . . , l} such that Pc(h) = ∏j∈J Qj.

For all i ∈ I and j ∈ J , we finally let gi and hj denote the respective projections
of g and h onto Pi and Qj, so that Pi = Pc(gi) and Qj = Pc(hj).

We define a collection E(g, h) of subsets of W as follows: a set Z ⊆ W belongs
to E(g, h) if and only if there exists a constant K = K(g, h, Z) ∈ N such that for
all m,n ∈ Z with min{|m|, |n|, |m/n|+ |n/m|} ≥ K we have Z ⊆ Pc(gmhn).

Our goal is to prove that Pc(g) and Pc(h) both belong to E(g, h). To this end,
it suffices to show that Pi and Qj belong to E(g, h) for all i ∈ I and j ∈ J . This
will be achieved in Claim 6 below.
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Claim 1. Ms ⊆ Ess(gi) for all s ∈ {1, . . . , k} and i ∈ I such that Ps = Pi.
Similarly, Ns ⊆ Ess(hj) for all s ∈ {1, . . . , l} and j ∈ J such that Qs = Qj.

Indeed, let m ∈ Ms for some s ∈ {1, . . . , k}. Then rm ∈ Ps = Pi. Moreover, as
m is g-essential, it must be gi′-essential for some i′ ∈ I by Lemma 2.15. But then
rm ∈ Pc(gi′) = Pi′ and so i′ = i. The proof of the second statement is similar.

Claim 2. If i ∈ I is such that [Pi, Qj] = 1 for all j ∈ J , then Pi belongs to
E(g, h).

Similarly, if j ∈ J is such that [Pi, Qj] = 1 for all i ∈ I, then Qj belongs to
E(g, h).

Indeed, suppose [Pi, Qj] = 1 for some i ∈ I and for all j ∈ J . Then Pi
commutes with Pc(h). Thus h fixes every wall of Mi. In particular, any wall
µ ∈ Mi is gmhn-essential for all m,n ∈ Z∗ since gmhn = gmi w for some w ∈ W
fixing µ and commuting with gi. Therefore Pi ⊆ Pc(gmhn) for all m,n ∈ Z∗ and
so Pi belongs to E(g, h). The second statement is proven in the same way.

Claim 3. Let i ∈ I and j ∈ J be such that Pi = Qj. Then, for all m,n ∈ Z,
every gmi hnj -essential root is also gmhn-essential.

Indeed, take α ∈ Φ and k > 0 such that (gmi hnj )kα ( α. Notice that Pc(gmi hnj ) ⊆
Pi = Qj, and hence rα ∈ Pi = Qj by Lemma 2.7. Moreover, setting g′ := ∏t̸=i gmt
and h′ := ∏t̸=j hnt , we have g′α = α = h′α since g′ and h′ centralize Pi = Qj.
Therefore (gmhn)kα = (gmi hnj )k(g′h′)kα = (gmi hnj )kα ( α so that α is also gmhn-
essential.

Claim 4. Let i ∈ I and j ∈ J be such that Pi = Qj. If Pi is of affine type, then
Pi = Qj belongs to E(g, h).

Since Pi = Qj is of irreducible affine type, we have Pc(w) = Pi for all w ∈ Pi
of infinite order. Thus, in order to prove the claim, it suffices to show that there
exists some constant K such that gmi hnj is of infinite order for all m,n ∈ Z with
min{|m|, |n|, |m/n|+ |n/m|} ≥ K. Indeed, we will then get that Pc(gmi hnj ) = Pi is
of essential type and so Pi = Pc(gmi hnj ) ≤ Pc(gmhn) by Claim 3 and Lemma 2.7(ii).

Recalling that Pi is of affine type, we can argue in the geometric realization of
a Coxeter complex of affine type, which is a Euclidean space. We deduce that
if gi and hj have non-parallel translation axes, then gmi h

n
j is of infinite order for

all nonzero m,n. On the other hand, if gi and hj have some parallel translation
axes, we consider a Euclidean hyperplane H orthogonal to these and let ℓi and
ℓj denote the respective translation lengths of gi and hj. Then, upon replacing gi
by its inverse (which does not affect the conclusion since E(g, h) = E(g−1, h)), we
have d(gmi hnjH,H) = |mℓi − nℓj|. Since gmi hnj is of infinite order as soon as this
distance is nonzero, the claim now follows by setting K = ℓi/ℓj + ℓj/ℓi + 1.

Claim 5. Let i ∈ {1, . . . , k} and j ∈ {1, . . . , l} be such that Mi ∩ Nj is infinite.
Then Pi = Qj and these belong to E(g, h).

Indeed, remember that the walls in Mi are pairwise parallel by Lemma 2.6.
Since Mi ∩ Nj ⊆ Ess(gi′) ∩ Ess(hj′) for some i′ ∈ I such that Pi = Pi′ and some
j′ ∈ J such that Qj = Qj′ by Claim 1, Corollary 2.12 then yields Pi = Qj.

Let now C denote the minimal distance between two parallel walls in X and set
K := |g|+|h|

C
+1. Let m,n ∈ Z be such that min{|m|, |n|, |m/n|+ |n/m|} ≥ K. We
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now show that Pi ≤ Pc(gmhn). By Lemma 2.7 and Corollary 2.12, it is sufficient
to check that infinitely many walls in Mi ∩Nj are gmhn-essential.

Note first that for any wall µ ∈ Mi ∩ Nj, we have gϵmµ ∈ Mi and hϵnµ ∈ Nj

for ϵ ∈ {+,−}. Thus, since Mi ∩ Nj is infinite, there exist infinitely many such
µ ∈ Mi ∩Nj with the property that gϵmµ lies between µ and some µϵ ∈ Mi ∩Nj

and hϵnµ lies between µ and some µ′ϵ ∈ Mi ∩ Nj for ϵ ∈ {+,−}. We now show
that any such µ is gmhn-essential, as desired. Consider thus such a µ.

Let D be a g-axis and D′ be an h-axis. Since Mi ∩ Nj ⊆ Ess(g) ∩ Ess(h),
Lemma 2.5 implies that each of the walls µ, µϵ and µ′ϵ for ϵ ∈ {+,−} is transverse
to both D and D′. In particular, the choice of µ implies that gϵmµ and hϵnµ for
ϵ ∈ {+,−} are also transverse to both D and D′.

Let α ∈ Φ be such that ∂α = µ and gmα ( α. If hnα ( α then clearly
gmhnα ( α, as desired. Suppose now that hnα ) α.

Note that the walls in ⟨g⟩µ∪ ⟨h⟩µ are pairwise parallel since this is the case for
the walls in W0 · µ by Lemma 2.6 and since g, h ∈ W0.

Assume now that |n| > |m|, the other case being similar. In particular, |n/m| >
|g|/C. Then d(µ, g−mµ) ≤ |m| · |g| < |n| ·C ≤ d(µ, hnµ) and so the wall g−mµ lies
between µ and hnµ. Thus α ( g−mα ( hnα and so gmhnα ) α, as desired.

Claim 6. For all i ∈ I and j ∈ J , the sets Pi and Qj both belong to E(g, h).

We only deal with Pi; the argument for Qj is similar.
Let D denote a g-axis, and D′ an h-axis in X. By Claim 5 we may assume that

Mi ∩ Ess(h) is finite. Moreover, by Claim 3 we may assume there exists a j ∈ J
such that [Pi, Qj] ̸= 1.

If Nj ∩ Ess(g) is infinite, then Nj ∩Mi′ is infinite for some i′ ∈ {1, . . . , k} and
thus Claim 5 yields that Qj = Pi′ ∈ E(g, h). In particular, [Qj, Ps] = 1 as soon
as Ps ̸= Pi′ . This implies Pi = Pi′ ∈ E(g, h), as desired. We now assume that
Nj ∩ Ess(g) is finite.

Thus by Lemma 2.5, only finitely many walls in Mi intersect D′ and only finitely
walls in Nj intersect D.

Take m1 ∈Mi and m2 ∈ Nj. By Claim 1 and Corollary 2.12, there exists some
k0 ∈ N such that if one sets M := {gsk0m1 | s ∈ Z} ⊆Mi and N := {htk0m2 | t ∈
Z} ⊆ Nj, then any two reflections associated to distinct walls of M (respectively,
N) generate Pi (respectively, Qj) as parabolic subgroups. Also, we may assume
that no wall in M intersects D′ and that no wall in N intersects D.

If every wall of M intersects every wall of N , then since [Pi, Qj] ̸= 1, Lemma 2.8
yields that Pi = Qj is of affine type and Claim 4 allows us to conclude. Up to
making a different choice for m1 and m2 inside M and N respectively, we may
thus assume that m1 is parallel to m2. For the same reason, we may also choose
m′1 ∈ M and m′2 ∈ N such that D′ lies between m1 and m′1, D lies between m2
and m′2, and such that m1 ∩m′2 = m2 ∩m′1 = m′1 ∩m′2 = ∅.

Let now s0, t0 ∈ Z be such that gs0k0m1 = m′1 and ht0k0m2 = m′2. Up to
interchanging m1 and m′1 (respectively, m2 and m′2), we may assume that s0 > 0
and t0 > 0.

Let α, β ∈ Φ be such that ∂α = m1, ∂β = m2 and such that D′ is contained in
α ∩−gs0k0α and D is contained in β ∩−ht0k0β. For each s, t ∈ Z, set αs := gsk0α
and βt = htk0β (see Figure 1). Since for two roots γ, δ ∈ Φ with ∂γ parallel to ∂δ,
one of the possibilities γ ⊆ δ or γ ⊆ −δ or −γ ⊆ δ or −γ ⊆ −δ must hold, this
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g

h

αs0

αs0+1

βt0 βt0+1

α = α0

α−1

β = β0β−1

Figure 1. Claim 6.

implies that
αs0 ⊆ −βt0 , −α ⊆ β and βt0 ⊆ α.

Set K := (s0 + t0 + 1)k0 and let m,n ∈ Z be such that |m|, |n| > K. We now
prove that Pi ≤ Pc(gmhn). By Lemma 2.7, it is sufficient to show that either α−1
and α or αs0 and αs0+1 are gmhn-essential. We distinguish several cases depending
on the respective signs of m,n.

• If m,n > 0, then
gmhnαs0+1 ⊆ gmhnαs0 ⊆ gmhnβ ( gmβt0 ⊆ gmα ( αs0+1 ⊆ αs0

so that αs0 and αs0+1 are gmhn-essential.
• If m,n < 0, then

gmhnα−1 ⊇ gmhnα ⊇ gmhnβt0 ) gmβ ⊇ gmαs0 ) α−1 ⊇ α
so that α−1 and α are gmhn-essential.
• If m > 0 and n < 0, then
gmhnαs0+1 ⊆ gmhnαs0 ⊆ gmhn(−βt0) ( gm(−β) ⊆ gmα ( αs0+1 ⊆ αs0

so that αs0 and αs0+1 are gmhn-essential.
• If m < 0 and n > 0, then
gmhnα−1 ⊇ gmhnα ⊇ gmhn(−β) ) gm(−βt0) ⊇ gmαs0 ) α−1 ⊇ α
so that α−1 and α are gmhn-essential.

This concludes the proof of the theorem. �
The following corollary will be of fundamental importance in the rest of the

paper. It was stated as Corollary H in the introduction.
Corollary 2.17. Let H be a subgroup of W . Then there exists h ∈ H ∩W0 such
that [Pc(H) : Pc(h)] <∞.
Proof. Take h ∈ H ∩W0 such that Pc(h) is maximal. Then Pc(h) = Pc(H ∩
W0), for otherwise there would exist g ∈ H ∩ W0 such that Pc(g) ̸⊆ Pc(h),
and hence Theorem 2.16 would yield integers m,n such that Pc(h) ( Pc(gmhn),
contradicting the choice of h. The result now follows from Lemma 2.4 since
[H : H ∩W0] <∞. �
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Remark 2.18. Note that the conclusion of Corollary 2.17 cannot be improved:
indeed, one cannot expect that there is some h ∈ H such that Pc(H) = Pc(h)
in general. Consider for example the Coxeter group W = ⟨s⟩ × ⟨t⟩ × ⟨u⟩, which
is a direct product of three copies of Z/2Z. Then the parabolic closure of the
subgroup H = ⟨st, tu⟩ of W is the whole of W , but there is no h ∈ H such that
Pc(h) = W .

2.9. On walls at bounded distance from a residue. We finish this section
with a couple of observations on Coxeter groups which we shall need in our study
of open subgroups of Kac–Moody groups.

Given a subset J ⊆ S, we set ΦJ = {α ∈ Φ | ∃v ∈ WJ , s ∈ J : α = vαs}, where
αs denotes the positive root associated with the reflection s.

Lemma 2.19. Let L ⊆ S be essential. Then for each root α ∈ ΦL, there exists
w ∈ WL such that w.α ( α. In particular α is w-essential.

Proof. Let α ∈ ΦL. By [Hée93, Prop. 8.1, p. 309], there exists a root β ∈ ΦL such
that α ∩ β = ∅. We can then take w = rαrβ or its inverse. �

Lemma 2.20. Let L ⊆ S be essential, and let R be the standard L-residue of the
Coxeter complex Σ of W .

Then for each wall m of Σ, the following assertions are equivalent:
(i) m is perpendicular to every wall of R,
(ii) [rm,WL] = 1,
(iii) There exists n > 0 such that R is contained in an n-neighbourhood of m.

Proof. We first show that (iii)⇒(ii). By Lemma 2.19, if m′ is a wall of R (that
is, a wall intersecting R), then there exists w ∈ WL such that one of the two
half-spaces associated to m′ is w-essential. It follows that m and m′ cannot be
parallel since R is at a bounded distance from m. Hence m is transversal to every
wall of R, and does not intersect R. Back to an arbitrary wall m′ of R, consider
a wall m′′ of R that is parallel to m′ and such that the reflection group generated
by the two reflections rm′ and rm′′ is infinite dihedral. Such a wall m′′ exists by
Lemma 2.19. Then rm centralizes these reflections by Lemma 2.3 and [CR09,
Lem.12]. As m′ was arbitrary, this means that rm centralizes WL.

The equivalence of (i) and (ii) is trivial.
Finally, to show (i)⇒(iii), notice that if C is a chamber of R and t a reflection

associated to a wall of R, then the distance from C to m equals the distance from
t · C to m. Indeed, if α is the root associated to m not containing R and D is
the projection of C onto α, then t ·D is the projection of t · C onto α. As WL is
transitive on R, (iii) follows. �

3. Open and parabolic subgroups of Kac–Moody groups

Basics on Kac–Moody groups and their completions can be found in [Rém02],
[CR09] and references therein. We focus here on the case of a finite ground field.

Let G = G(Fq) be a (minimal) Kac–Moody group over a finite field Fq of order
q. The group G is endowed with a root group datum {Uα | α ∈ Φ = Φ(Σ(W,S))}
for some Coxeter system (W,S), which yields a twin BN-pair (B+,B−,N ) with
associated twin building (∆+,∆−). Let C0 be the fundamental chamber of ∆+,
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namely the chamber such that B+ = StabG(C0), and let A0 ⊂ ∆+ be the funda-
mental apartment, so that N = StabG(A0) and H := B+ ∩ N = FixG(A0). We
identify Φ with the set of half-spaces of A0.

We next let G be the completion of G with respect to the positive building
topology. Thus the finitely generated group G embeds densely in the topological
group G, which is locally compact, totally disconnected and acts properly and
continuously on ∆ := ∆+ by automorphims. A completed Kac–Moody group
over a finite field shall be called a locally compact Kac–Moody group. Let
B = B+ be the closure of B+ in G, let N = StabG(A0) and H = B∩N = FixG(A0).
[We warn the reader that N and H are discrete, whence closed in G while N and
H are non-discrete closed subgroups.] The pair (B,N) is a BN-pair of type (W,S)
for G; in particular we have N/H ∼= W . Moreover, the group B is a compact open
subgroup, and every standard parabolic subgroup PJ = BWJB for some J ⊆ S
is thus open in G. Important to our later purposes is the fact that the group G
acts transitively on the complete apartment system of ∆. In particular B acts
transitively on the apartments containing C0.

For a root α ∈ Φ, we denote as before the unique reflection of W fixing the wall
∂α pointwise by rα. In addition, we choose some element nα ∈ N ∩ ⟨Uα ∪ U−α⟩
which maps onto rα under the quotient map N → N/H ∼= W .

Before we state a more precise version of Theorem A, we will need some addi-
tional results on the BN-pair structure of G. This is the object of the following
paragraph.

3.1. On Levi decompositions in complete Kac–Moody groups. Given J ⊆
S, we denote by PJ = B+WJB+ (resp. PJ = BWJB) the standard parabolic
subgroup of G (resp. G) of type J and by RJ(C0) the J-residue of ∆ containing
the chamber C0. Thus PJ = StabG(RJ(C0)), PJ = StabG(RJ(C0)) and PJ is dense
in PJ .

We further set ΦJ = {α ∈ Φ | ∃v ∈ WJ , s ∈ J : α = vαs} and
L+
J = ⟨Uα | α ∈ ΦJ⟩.

Finally, we set LJ = H · L+
J and denote by UJ the normal closure of ⟨Uα | α ∈

Φ, α ⊃ RJ(C0) ∩ A0⟩ in B+. Following [Rém02, 6.2.2], there is a semidirect
decomposition

PJ = LJ ⋉ UJ .
The group UJ is called the unipotent radical of the parabolic subgroup PJ , and
LJ is called the Levi factor.

We next define
L+
J = L+

J , LJ = LJ and UJ = UJ .
Thus UJ and LJ are closed subgroups of PJ , respectively called the unipotent
radical and the Levi factor.

Lemma 3.1. We have the following:
(i) UJ is a compact normal subgroup of PJ , and we have PJ = LJ · UJ .

(ii) L+
J is normal in LJ and we have LJ = H · L+

J .

Proof. Since UJ is normal in PJ , which is dense in PJ , it is clear that UJ is normal
in PJ . Moreover UJ is compact (since it is contained in B) and the product LJ ·UJ
is thus closed in PJ . Assertion (i) follows since LJ · UJ contains PJ .
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For assertion (ii), we remark that H normalizes L+
J and hence also L+

J . More-
over, since H is finite, hence compact, the product H · L+

J is closed. Since H · L+
J

is dense in LJ , the conclusion follows. �

Remark that the decomposition PJ = LJ · UJ is even semidirect when J is
spherical, see [RR06, section 1.C.]. It is probably also the case in general, but this
will not be needed here.

Lemma 3.2. Let J ⊆ S. Then every open subgroup O of PJ that contains the
product L+

J · UJ∪J⊥ has finite index in PJ .

Proof. Set K := J⊥ and U := UJ∪J⊥ . Note that U ▹PJ∪K = LJ∪K ·U . Moreover,
L+
J is normal in LJ∪K . Indeed, as [Uα, Uβ] = 1 for all α ∈ ΦJ and β ∈ ΦK , the

subgroups L+
J and L+

K centralize each other. Since in addition H normalizes each
root group, we get a decomposition LJ∪K = H · L+

J · L+
K . In particular, LJ∪K

normalizes L+
J , whence also L+

J . As the normalizer of a closed subgroup is closed,
this implies that LJ∪K normalizes L+

J , as desired.
Let π1 : PJ∪K → PJ∪K/U denote the natural projection. Then π1(L+

J ) is normal
in PJ∪K/U , since it is the image of L+

J under the composition map

LJ∪K →
LJ∪K

LJ∪K ∩ U
∼=→ PJ∪K

U
: l 7→ l(LJ∪K ∩ U) 7→ lU.

Let π : PJ∪K → π1(PJ∪K)/π1(L+
J ) denote the composition of π1 with the canon-

ical projection onto π1(PJ∪K)/π1(L+
J ). Note that π is an open continuous group

homomorphism. Then π(PJ) = π1(L+
J · UJ · H)/π1(L+

J ) is compact. Indeed, it is
homeomorphic to the quotient of the compact group π1(UJ · H) by the normal
subgroup π1(L+

J ∩ UJ · H) under the map

π1(L+
J · UJ · H)
π1(L+

J )
∼=→ π1(UJ · H)
π1(L+

J ∩ UJ · H)
: π1(l · u)π1(L+

J ) 7→ π1(u)π1(L+
J ∩ UJ · H).

In particular, since π(O) is open in π(PJ), it has finite index in π(PJ). But then
since O = π−1(π(O)) by hypothesis, O has finite index in π−1(π(PJ)) = PJ , as
desired. �

3.2. A refined version of Theorem A. We will prove the following statement,
having Theorem A as an immediate corollary.

Theorem 3.3. Let O be an open subgroup of G. Let J ⊆ S be the type of a
residue which is stabilized by some finite index subgroup of O and minimal with
respect to this property.

Then there exist a spherical subset J ′ ⊆ J⊥ and an element g ∈ G such that

L+
J · UJ∪J⊥ < gOg−1 < PJ∪J ′ .

In particular, gOg−1 has finite index in PJ∪J ′.
Moreover, any subgroup of G containing gOg−1 as a finite index subgroup is

contained in PJ∪J ′′ for some spherical subset J ′′ ⊆ J⊥. In particular, only finitely
many distinct parabolic subgroups contain O as a finite index subgroup.
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3.3. Proof of Theorem 3.3: outline and first observations. This section
and the next ones are devoted to the proof of Theorem 3.3 itself.

Let thus O be an open subgroup of G. We define the subset J of S as in the
statement of the theorem, namely, J is minimal amongst the subsets L of S for
which there exists a g ∈ G such that O ∩ g−1PLg has finite index in O. For such
a g ∈ G, we set O1 = gOg−1 ∩ PJ . Thus O1 stabilizes RJ(C0) and is an open
subgroup of G contained in gOg−1 with finite index.

We first observe that the desired statement is essentially empty when O is
compact. Indeed, in that case the Bruhat–Tits fixed point theorem ensures that
O stabilizes a spherical residue of G, and hence Theorem 3.3 stands proven with
J = ∅. It thus remains to prove the theorem when O, and hence also O1, is
non-compact, which we assume henceforth.

Recall from the previous section that we call a subset J ⊆ S essential if all
its irreducible components are non-spherical. We begin with the following simple
observation.

Lemma 3.4. J is essential.

Proof. Let J1 ⊆ J denote the union of the non-spherical irreducible components
of J . As PJ1 has finite index in PJ , the subgroup O1 ∩ PJ1 is open of finite index
in O1 and stabilizes RJ1(C0). The definition of J then yields J1 = J . �

Let us now describe the outline of the proof. Our first task will be to show
that O1 contains L+

J . We will see that this is equivalent to prove that O1 acts
transitively on the standard J-residue RJ(C0), or else that the stabilizer in O1
of any apartment A containing C0 is transitive on RJ(C0) ∩ A. Since each group
StabO1(A)/FixO1(A) can be identified with a subgroup of the Coxeter group W
acting on A, we will be in a position to apply the results on Coxeter groups from
the previous section. This will allow us to show that each StabO1(A)/FixO1(A)
contains a finite index parabolic subgroup of type IA ⊆ J , and hence acts transi-
tively on the corresponding residue.

We thus begin by defining some “maximal” subset I of J such that StabO1(A1)
acts transitively on RI(C0) ∩ A1 for a suitably chosen apartment A1 containing
C0. We then establish that I contains all the types IA when A varies over all
apartments containing C0. This eventually allows us to prove that in fact I = J ,
so that StabO1(A1) is transitive on RJ(C0) ∩ A1, or else that O1 contains L+

J , as
desired.

We next show that O1 contains the unipotent radical UJ∪J⊥ . Finally, we make
use of the transitivity of O1 on RJ(C0) to prove that O is contained in the desired
parabolic subgroup.

3.4. Proof of Theorem 3.3: O1 contains L+
J . We first need to introduce some

additional notation which we will retain until the end of the proof.

Let A≥C0 denote the set of apartments of ∆ containing C0. For A ∈ A≥C0 , set
NA := StabO1(A) and NA = NA/FixO1(A), which one identifies with a subgroup
of W . Finally, for h ∈ NA, denote by h its image in NA ≤ W . Here is the main
tool developed in the previous section.
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Lemma 3.5. For all A ∈ A≥C0, there exists h ∈ NA such that
Pc(h) = ⟨rα | α h-essential root of Φ⟩

and is of finite index in Pc(NA).

Proof. This is an immediate consequence of Corollary 2.17 and Lemma 2.7. �
Lemma 3.6. Let (gn)n∈N be an infinite sequence of elements of O1. Then there
exist an apartment A ∈ A≥C0, a subsequence (gψ(n))n∈N and elements zn ∈ O1,
n ∈ N, such that for all n ∈ N we have

(1) hn := z−1
0 zn ∈ NA,

(2) d(C0, znR) = d(C0, gψ(n)R) for every residue R containing C0 and
(3) | d(C0, hnC0)− d(C0, gψ(n)C0)| < d(C0, z0C0).

Proof. As O1 is open, it contains a finite index subgroup K := FixG(B(C0, r))
of B for some r ∈ N. Since B is transitive on the set A≥C0 , we deduce that
K has only finitely many orbits in A≥C0 , say A1, . . . ,Ak. So, up to choosing
a subsequence, we may assume that all chambers gnC0 belong to the same K-
orbit Ai0 of apartments. Hence there exist elements xn ∈ K ⊂ O1 and an
apartment A′ ∈ Ai0 containing C0 such that g′n := xngn ∈ O1, g′nC0 ∈ A′ and
d(C0, g

′
nC0) = d(C0, gnC0). For each n, we now choose an element of G stabilizing

A′ and mapping C0 to g′nC0. Thus such an element is in the same right coset
modulo B as g′n. In particular, up to choosing a subsequence, we may assume it
has the form g′nynb ∈ StabG(A′) for some yn ∈ K and some b ∈ B independant
of n. Denote by {ψ(n) | n ∈ N} the resulting indexing set for the subsequence.
Then setting A := bA′ ∈ A≥C0 , the sequence zn := g′ψ(n)yψ(n) ∈ O1 is such that
hn := z−1

0 zn ∈ b StabG(A′)b−1 ∩O1 = StabO1(A) = NA and
| d(C0, hnC0)− d(C0, gψ(n)C0)| = | d(z0C0, znC0)− d(C0, znC0)| < d(C0, z0C0).

�
Lemma 3.7. There exists an apartment A ∈ A≥C0 such that the orbit NA · C0 is
unbounded. In particular, the parabolic closure in W of NA is non-spherical.

Proof. Since O1 is non-compact, the orbit O1 ·C0 is unbounded in ∆. For n ∈ N,
choose gn ∈ O1 such that d(C0, gnC0) ≥ n. Then by Lemma 3.6, there exist an
apartment A ∈ A≥C0 and elements hn ∈ NA for n in some unbounded subset
of N such that d(C0, hnC0) is arbitrarily large when n varies. This proves the
lemma. �

Let A1 ∈ A≥C0 be an apartment such that the type of the product of the non-
spherical irreducible components of Pc(NA1) is nonempty and maximal for this
property. Such an apartment exists by Lemma 3.7. Now choose hA1 ∈ NA1 as in
Lemma 3.5, so that in particular [Pc(NA1) : Pc(hA1)] <∞. Up to conjugating O1
by an element of PJ , we may then assume without loss of generality that Pc(hA1)
is standard, non-spherical, and has essential type I. Moreover, it is maximal in the
following sense: if A ∈ A≥C0 is such that Pc(NA) contains a parabolic subgroup
of essential type IA with IA ⊇ I, then I = IA.

Now that I is defined, we need some tool to show that O1 contains sufficiently
many root groups Uα. This will ensure that O1 is “transitive enough” in two ways:
first on residues in the building by showing it contains subgroups of the form L+

T ,
and second on residues in apartments by establishing the presence in O1 of enough
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nα ∈ ⟨Uα ∪ U−α⟩, since these lift reflections rα in stabilizers of apartments. This
tool is provided by the so-called (FPRS) property from [CR09, 2.1], which we now
state. Note for this that as O1 is open, it contains the fixator in G of a ball of ∆:
we fix r ∈ N such that O1 ⊃ Kr := FixG(B(C0, r)).

Lemma 3.8. There exists a constant N = N(W,S, r) ∈ N such that for every root
α ∈ Φ with d(C0, α) > N , the root group U−α is contained in FixG(B(C0, r)) = Kr.

Proof. See [CR09, Prop. 4]. �
We also record a version of this result in a slightly more general setting.

Lemma 3.9. Let g ∈ G and let A ∈ A≥C0 containing the chamber D := gC0.
Also, let b ∈ B such that A = bA0, and let α = bα0 be a root of A, with α0 ∈ Φ.
Then there exists N = N(W,S, r) ∈ N such that if d(D,−α) > N then bUα0b

−1 ⊆
gKrg

−1.

Proof. Take for N = N(W,S, r) the constant of Lemma 3.8 and suppose that
d(D,−α) > N . Let h ∈ StabG(A0) be such that hC0 = b−1D. Then

N < d(D,−α) = d(bhC0,−bα0) = d(hC0,−α0) = d(C0,−h−1α),
and so Lemma 3.8 implies h−1Uα0h = Uh−1α0 ⊆ Kr. Let b1 ∈ B such that bh = gb1.
Then

bUα0b
−1 ⊆ bhKrh

−1b−1 = gb1Krb
−1
1 g−1 = gKrg

−1.

�
This will prove especially useful in the following form, when we will use the

description of the parabolic closure of some w ∈ W in terms of w-essential roots
as in Lemma 3.5.

Lemma 3.10. Let A ∈ A≥C0 and b ∈ B such that A = bA0. Also, let α = bα0
(α0 ∈ Φ) be a w-essential root of A for some w ∈ StabG(A)/FixG(A), and let
g ∈ StabG(A) be a representative of w. Then there exists n ∈ Z such that for
ϵ ∈ {+,−} we have Uϵα0 ⊆ b−1gϵnKrg

−ϵnb.

Proof. Choose n ∈ Z such that d(gϵnC0,−ϵα) > N for ϵ ∈ {+,−}, where N =
N(W,S, r) is the constant appearing in the statement of Lemma 3.8. Thus, for
ϵ ∈ {+,−} we have d(b−1gϵnC0,−ϵα0) > N, and so d(C0,−ϵ(b−1g−ϵnb)α0) > N .
Lemma 3.8 then yields

(b−1g−ϵnb)Uϵα0(b−1g−ϵnb)−1 = Uϵ(b−1g−ϵnb)α0 ⊆ Kr,

and so
Uϵα0 ⊆ (b−1gϵnb)Kr(b−1g−ϵnb) = (b−1gϵn)Kr(g−ϵnb).

�
We are now ready to prove how the different transitivity properties of O1 are

related.

Lemma 3.11. Let T ⊆ S be essential, and let A ∈ A≥C0. Then the following are
equivalent:

(1) O1 contains L+
T ;

(2) O1 is transitive on RT (C0);
(3) NA is transitive on RT (C0) ∩ A;
(4) NA contains the standard parabolic subgroup WT of W .
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Proof. The equivalence (3) ⇔ (4), as well as the implications (1) ⇒ (2), (3) are
trivial.

To see that (4) ⇒ (2), note that if b ∈ B maps A0 onto A, then for each
α0 ∈ ΦT , we have bU±α0b

−1 ⊆ O1, and so O1 ⊇ bL+
T b
−1 is transitive on RT (C0).

Indeed, let α0 ∈ ΦT and consider the corresponding root α := bα0 ∈ ΦT (A) of
A. By Lemma 2.19, there exists w ∈ WT ⊆ NA such that α is w-essential. Then
if g ∈ O1 is a representative for w, Lemma 3.10 yields an n ∈ Z such that for
ϵ ∈ {+,−} we have Uϵα0 ⊆ b−1gϵnKrg

−ϵnb ⊆ b−1O1b.
Finally, we show (2) ⇒ (1). Again, it is sufficient to check that if α ∈ ΦT ,

then O1 contains Uϵα for ϵ ∈ {+,−}. By Lemma 2.19, there exists g ∈ StabG(A0)
stabilizing RT (C0)∩A0 such that α is g-essential, where g denotes the image of g
in the quotient group StabG(A0)/FixG(A0). Then, by Lemma 3.10, one can find
an n ∈ Z such that Uϵα ⊆ gϵnKrg

−ϵn for ϵ ∈ {+,−}. Now, since O1 is transitive
on RT (C0), there exist hϵ ∈ O1 such that hϵC0 = gϵnC0, and so we find bϵ ∈ B
such that gϵn = hϵbϵ. Therefore

Uϵα ⊆ hϵbϵKrb
−1
ϵ h−1

ϵ = hϵKrh
−1
ϵ ⊆ O1.

�

Now, to ensure that O1 indeed satisfies one of those properties for some “max-
imal T”, we use Lemma 3.5 to show that stabilizers in O1 of apartments contain
finite index parabolic subgroups.

Lemma 3.12. Let A ∈ A≥C0. Then there exists IA ⊆ S such that NA contains a
parabolic subgroup PIA of W of type IA as a finite index subgroup.

Proof. Choose h ∈ NA as in Lemma 3.5, so that in particular Pc(h) is generated
by the reflections rα with α an h-essential root of A. Let α = bα0 be such a root
(α0 ∈ Φ), where b ∈ B maps A0 onto A. By Lemma 3.10, we then find K ∈ Z
such that for ϵ ∈ {+,−},

Uϵα0 ⊆ (b−1hϵK)Kr(h−ϵKb) ⊆ b−1O1b.

In particular, nα0 ∈ ⟨Uα0 ∪ U−α0⟩ ⊆ b−1O1b. As rα0 is the image in W of nα0

and since rα = brα0b
−1, we finally obtain Pc(h) ⊆ NA. Then PIA := Pc(h) is the

desired parabolic subgroup, of type IA. �

For each A ∈ A≥C0 , we fix such an IA ⊆ S which, without loss of generality,
we assume essential. We also consider the corresponding parabolic PIA contained
in NA. Note then that PIA1

has finite index in Pc(NA1) by Lemma 2.4, and so
I = IA1 .

Lemma 3.13. O1 contains L+
I .

Proof. As noted above, we have I = IA1 and PI = WI . Since O1 is closed in G,
Lemma 3.11 allows us to conclude. �

We now have to show that I is “big enough”, that is, I = J . For this, we first
need to know that I is “uniformly” maximal amongst all apartments containing
C0.

Lemma 3.14. Let A ∈ A≥C0. Then IA ⊆ I.
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Proof. Set R1 := RI(C0)∩A and let R2 be an IA-residue in A on which NA acts
transitively and that is at minimal distance from R1 amongst such residues. Note
that NA is transitive on R1 as well by Lemma 3.11.

If R1∩R2 is nonempty, then NA is also transitive on the standard I∪IA-residue
of A and so NA contains WI∪IA . By maximality of I and since I ∪ IA is again
essential, this implies IA ⊆ I, as desired.

We henceforth assume that R1 ∩ R2 = ∅. Let b ∈ B such that bA0 = A.
Consider a root α = bα0 of A, α0 ∈ Φ, whose wall ∂α separates R1 from R2.

If both R1 and R2 are at unbounded distance from ∂α, then the transitivity of
NA on R1 and R2 together with Lemma 3.9 yield bU±α0b

−1 ⊆ Kr ⊆ O1. Since
rα0 ∈ ⟨Uα0 ∪ U−α0⟩, we thus have rα := brα0b

−1 ∈ O1 and so rα ∈ NA. But then
NA = rαNAr

−1
α is also transitive on the IA-residue rαR2 which is closer to R1, a

contradiction.
If R2 is at bounded distance from ∂α then by Lemma 2.20, rα centralizes the

stabilizer P in W of R2, that is, P = rαPr
−1
α . Note that NA contains P since it

is transitive on R2. Thus NA is transitive on the IA-residue rαR2, which is closer
to R1, again a contradiction.

Thus we are left with the case where R1 is contained in a tubular neighbourhood
of every wall ∂α separating R1 from R2. But in that case, Lemma 2.20 again yields
that WI is centralized by every reflection rα associated to such walls. Choose
chambers Ci in Ri, i = 1, 2, such that d(C1, C2) = d(R1, R2), and let ∂α1, . . . , ∂αk
be the walls separating C1 from C2, crossed in that order by a minimal gallery from
C1 to C2. Then each αi, 1 ≤ i ≤ k, separates R1 from R2 and so w := rαk . . . rα1

centralizes WI and maps C1 to C2. So WI = wWIw
−1 ⊆ NA is transitive on

wR1 and R2, and hence also on RI∪IA(C2)∩A. Therefore NA contains a parabolic
subgroup of essential type I∪IA, so that I ⊇ IA by maximality of I, as desired. �
Lemma 3.15. Let A ∈ A≥C0. Then NA contains WI as a subgroup of finite
index.

Proof. We know by Lemmas 3.11 and 3.13 that NA contains WI . Also, by
Lemma 3.12, NA contains a finite index parabolic subgroup PIA = wWIAw

−1

of type IA, for some w ∈ W . Since IA ⊆ I by Lemma 3.14, we get WIA ⊆ NA

and so the parabolic subgroup P := WIA ∩ wWIAw
−1 has finite index in WIA . As

IA is essential, [AB08, Prop.2.43] then yields P = WIA and so WIA ⊆ wWIAw
−1.

Finally, since the chain WIA ⊆ wWIAw
−1 ⊆ w2WIAw

−2 ⊆ . . . stabilizes, we find
that WIA = PIA has finite index in NA. The result follows. �

We are now ready to make the announced connection between I and J .

Lemma 3.16. I = J .

Proof. Let R denote the set of I-residues of ∆ containing a chamber of O1 · C0,
and set R := RI(C0). We first show that the distance from C0 to the residues of
R is bounded, and hence that R is finite.

Indeed, suppose for a contradiction that there exists a sequence of elements
gn ∈ O1 such that d(C0, gnR) ≥ n for all n ∈ N. Then, up to choosing a
subsequence and relabeling, Lemma 3.6 yields an apartment A ∈ A≥C0 and a
sequence (zn)n≥n0 of elements of O1 such that hn := z−1

n0 zn ∈ NA and d(C0, znR) =
d(C0, gnR). Moreover by Lemma 3.15, we have a finite coset decomposition of the
form NA = ⨿tj=1 vjWI . Denote by π : NA → NA the natural projection. Again
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up to choosing a subsequence and relabeling, we may assume that π(hn) = vj0un
for all n ≥ n1 (for some fixed n1 ∈ N), where each un ∈ WI and where j0 is
independant of n. Then the elements wn := π(h−1

n1 hn) = π(z−1
n1 zn) belong to WI .

Thus the chambers zn1C0 and znC0 belong to the same I-residue since zn1 maps an
I-gallery between C0 and wnC0 to an I-gallery between zn1C0 and znC0. Therefore

d(C0, gnR) = d(C0, znR) ≤ d(C0, zn1C0)
and so d(C0, gnR) is bounded, a contradiction.

So R is finite and is stabilized by O1. Hence the kernel O′ of the induced
action of O1 on R is a finite index subgroup of O1 stabilizing an I-residue. Up to
conjugating by an element of O1, we thus have O′ < PI and [O1 : O′] <∞. Then
O′′ := O1 ∩ PI is open and contains O′, and has therefore finite index in O1. The
definition of J finally implies that I = J . �

In particular, Lemmas 3.13 and 3.16 yield the following.

Corollary 3.17. O1 contains L+
J .

3.5. Proof of Theorem 3.3: O1 contains the unipotent radical UJ∪J⊥. To
show that O1 contains the desired unipotent radical, we again make use of the
(FPRS) property.

Lemma 3.18. O1 contains the unipotent radical UJ∪J⊥.

Proof. By definition of UJ∪J⊥ , we just have to check that for every b ∈ B and
every α ∈ Φ containing RJ∪J⊥(C0) ∩ A0, we have bUαb−1 ∈ O1. Fix such b and
α. In particular, α contains R := RJ(C0)∩A0. We claim that R is at unbounded
distance from the wall ∂α associated to α. Indeed, if it were not, then as J is
essential by Lemma 3.4, the reflection rα would centralize WJ by Lemma 2.20,
and hence would belong to WJ⊥ by Lemma 2.1, contradicting α ⊃ RJ⊥(C) ∩ A0.

Set now A = bA0. Then α′ = bα is a root of A containing R′ := RJ(C0) ∩ A.
Moreover, R′ is at unbounded distance from −α′. Since O1 is transitive on RJ(C0)
by Corollary 3.17, there exists g ∈ O1 such that D := gC0 ∈ RJ(C0) ∩ A and
d(D,−α′) > N , where N is provided by Lemma 3.9. This lemma then implies
that bUαb−1 ⊆ gKrg

−1 ⊆ O1, as desired. �
3.6. Proof of Theorem 3.3: endgame. We can now prove that gOg−1 is con-
tained in a parabolic subgroup that has PJ as a finite index subgroup.

Lemma 3.19. Every subgroup H of G containing O1 as a subgroup of finite index
is contained in some standard parabolic PJ∪J ′ of type J ∪ J ′ , with J ′ spherical
and J ′ ⊆ J⊥.

Proof. Recall that O1 stabilizes the J-residue R := RJ(C0) and acts transitively
on its chambers by Corollary 3.17. Let R be the (finite) set of J-residues of ∆
containing a chamber in the orbit H · C0.

We first claim that for any R′ ∈ R there is a constant M such that R is
contained in an M -neighbourhood of R′ (and since R is finite we may then as
well assume that this constant M is independant of R′). Indeed, because R is
finite, there is a finite index subgroup H ′ of H which stabilizes R′. In particular
d(D,R′) = d(H ′ · D,R′) for any chamber D of R. Moreover, the chambers of
R are contained in finitely H ′-orbits since H acts transitively on R. The claim
follows.
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Let now J ′ ⊆ S \ J be minimal such that R := RJ∪J ′(C0) contains the reunion
of the residues of R. In other words, H < PJ∪J ′ with J ′ minimal for this property.

We next show that J ′ ⊆ J⊥. For this, it is sufficient to see that H stabilizes
RJ∪J⊥(C0).

Note that, given R′ ∈ R, if A is an apartment containing some chamber C ′0 of
R′, then every chamber D in R∩A is at distance at most M from R′∩A. Indeed,
if ρ = ρA,C′0 is the retraction of ∆ onto A centered at C ′0, then for every D′ ∈ R′
such that d(D,D′) ≤M , the chamber ρ(D′) belongs to R′ ∩A and is at distance
at most M from D = ρ(D) since ρ is distance decreasing (see [Dav98, Lemma
11.2]).

Let now g ∈ H and set R′ := gR ∈ R. Let Γ be a minimal gallery from C0 to its
combinatorial projection onto R′, which we denote by C ′0. Let A be an apartment
containing Γ. Finally, let w ∈ W = StabG(A)/FixG(A) such that wC0 = C ′0. We
want to show that Γ is a J⊥-gallery, that is, w ∈ WJ⊥ .

To this end, we first observe that, since Γ joins C0 to its projection onto R′,
it does not cross any wall of R′ ∩ A. We claim that Γ does not cross any wall
of R ∩ A either. Indeed, assume on the contrary that Γ crosses some wall m of
R∩A. Then by Lemma 2.19 we would find a wall m′ ̸= m intersecting R∩A and
parallel to m, and therefore also chambers of R ∩ A at unbounded distance from
R′ ∩ A, a contradiction.

Thus every wall crossed by Γ separates R∩A from R′∩A. In particular, R∩A
is contained in an M -neighbourhood of any such wall m since it is contained in an
M -neighbourhood of R′ ∩ A and since every minimal gallery between a chamber
in R∩A and a chamber in R′ ∩A crosses m. Then, by Lemmas 2.1 and 2.20, the
reflection associated to m belongs to WJ⊥ . Therefore w is a product of reflections
that belong to WJ⊥ , as desired.

Finally, we show that J ′ is spherical. As R splits into a product of buildings
R = RJ ×RJ ′ , where RJ := RJ(C0) and RJ ′ := RJ ′(C0), we get a homomorphism
H → Aut(RJ) × Aut(RJ ′). As O1 stabilizes RJ and has finite index in H, the
image of H in Aut(RJ ′) has finite orbits in RJ ′ . In particular, by the Bruhat–Tits
fixed point theorem, H fixes a point in the Davis realization of RJ ′ , and thus
stabilizes a spherical residue of RJ ′ . But this residue must be the whole of RJ ′ by
minimality of J ′. This concludes the proof of the lemma. �

Proof of Theorem 3.3. The first statement summarizes Corollary 3.17 and Lem-
mas 3.18 and 3.19, since some conjugate gOg−1 of O contains O1 as a finite index
subgroup. The second statement then follows from Lemma 3.2 applied to the
open subgroup O1 of PJ . Finally, the two last statements are a consequence of
Lemma 3.19. Indeed, any subgroup H containing gOg−1 with finite index also
contains O1 with finite index. Then H is a subgroup of some standard parabolic
PJ∪J ′ for some spherical subset J ′ ⊂ J⊥. Moreover, since the index of O1 in PJ∪J ′
is finite, and since there are only finitely many spherical subsets of J⊥, it follows
that there are only finitely many possibilities for H. �

Remark 3.20. Let O be a subgroup of G, and let J ⊆ S be as in the statement
of Theorem 3.3. Assume that J⊥ is spherical. Then L+

J · UJ∪J⊥ has finite index
in PJ∪J⊥ and is thus open since it is closed. Thus, in that case, O is open if and
only if L+

J · UJ∪J⊥ < gOg−1 < PJ∪J⊥ for some g ∈ G.
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Corollary 3.21. Let O be an open subgroup of G and let J ⊆ S be minimal such
that O virtually stabilizes a J-residue. If J⊥ = ∅, then there exists some g ∈ G
such that L+

J · UJ < gOg−1 < PJ = H · L+
J · UJ .

Proof. This readily follows from Theorem 3.3. �
To prove Corollary B, we use the following general fact, which is well known in

the discrete case.

Lemma 3.22. Let G be a locally compact group. Then G is Noetherian if and
only if every open subgroup is compactly generated.

Proof. Assume that G is Noetherian and let O < G be open. Let U1 < O be the
subgroup generated by some compact identity neighbourhood V in O. If U1 ̸= O,
there is some g1 ∈ O \ U1 and we let U2 = ⟨U1 ∪ {g1}⟩. Proceeding inductively
we obtain an ascending chain of open subgroups U1 < U2 < · · · < O, and the
ascending chain condition ensures that O = Un for some n. In other words O is
generated by the compact set V ∪ {g1, . . . , gn}.

Assume conversely that every open subgroup is compactly generated, and let
U1 < U2 < . . . be an ascending chain of open subgroups. Then U = ∪n Un is an
open subgroup. Let C be a compact generating set for U . By compactness, the
inclusion C ⊂ ∪n Un implies that C is contained in Un for some n since every Uj
is open. Thus U = ⟨C⟩ < Un, whence U = Un and G is Noetherian. �
Proof of Corollary B. By Theorem A, every open subgroup of a complete Kac–
Moody group G over a finite field is contained as a finite index subgroup in some
parabolic subgroup. Notice that parabolic subgroups are compactly generated by
the Svarc–Milnor Lemma since they act properly and cocompactly on the residue
of which they are the stabilizer. Since a cocompact subgroup of a group acting
cocompactly on a space also acts cocompactly on that space, it follows for the
same reason that all open subgroups of G are compactly generated; hence G is
Noetherian by Lemma 3.22. �
Proof of Corollary C. Immediate from Theorem A since Coxeter groups of affine
and compact hyperbolic type are precisely those Coxeter groups all of whose
proper parabolic subgroups are finite. �
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