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Abstract. Given an irreducible non-spherical non-affine (possibly non-proper) building
X, we give sufficient conditions for a group G < Aut(X) to admit an infinite-dimensional
space of non-trivial quasi-morphisms. The result applies in particular to all irreducible
(non-spherical and non-affine) Kac–Moody groups over integral domains. In particular,
we obtain finitely presented simple groups of infinite commutator width, thereby answer-
ing a question of Valerii G. Bardakov [MK99, Problem 14.13]. Independently of these
considerations, we also include a discussion of rank one isometries of proper CAT(0)
spaces from a rigidity viewpoint. In an appendix, we show that any homogeneous quasi-
morphism of a locally compact group with integer values is continuous.

1. Introduction

Let G be a group. Recall that a quasi-morphism is a map f : G→ R such that

sup
g,h∈G

|f(gh)− f(g)− f(h)| <∞.

A quasi-morphism is called homogeneous if its restriction to every cyclic subgroup is
a homomorphism. The set QH(G) of all quasi-morphisms is naturally endowed with the
structure of a real vector space. We denote by Q̃H(G) the vector space of non-trivial
quasi-morphisms, namely

Q̃H(G) = QH(G)/
(
`∞(G)⊕Hom(G,R)

)
.

The space Q̃H(G) naturally identifies to the kernel of the canonical map

H2
b(G,R)→ H2(G,R)

of the second bounded cohomology space with trivial coefficients to ordinary second coho-
mology. Groups G with vanishing Q̃H(G) include all amenable groups and all irreducible
lattices in higher rank semisimple algebraic groups over local fields [BM02]. Opposite to
these are groups with infinite-dimensional space of quasi-morphisms; they include non-
elementary hyperbolic groups [EF97], mapping class groups of surfaces of higher genus
[BF02] and outer automorphism groups of free groups [Ham08c], [BFe]. There exist groups
G which have Kazhdan’s property (T) such that Q̃H(G) is finite-dimensional but non-zero
[MR06].

Before stating the main result of this paper, let us recall that a building of type (W,S)
is a set X endowed with a map δ : X × X → W satisfying three simple axioms which
are recalled in Sect. 5 below. The map δ is called the Weyl distance. A group Γ acting
on X by automorphisms is said to be Weyl-transitive if for all x, y, x′, y′ ∈ X with
δ(x, y) = δ(x′, y′) there exists γ ∈ Γ such that γ.x = x′ and γ.y = y′.
Theorem 1.1. Let (W,S) be an irreducible non-spherical and non-affine Coxeter system
with S finite, X be a building of type (W,S) and G be a group acting on X by automor-
phisms. Assume that at least one of the following conditions is satisfied:

(1) The G-action on X is Weyl-transitive.
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(2) For some apartment A ⊂ X, the stabilizer StabG(A) acts cocompactly on A.

Then Q̃H(G) is infinite-dimensional.

Remark 1.2.
(a) Notice that the building X is not assumed to be locally compact. Moreover X may

contain flats of arbitrarily large dimension; in particular it need not be Gromov
hyperbolic.

(b) The quasi-morphisms appearing in Theorem 1.1 take values in Z and extend to
quasi-morphisms Aut(X) → Z defined over the full automorphism group of X.
It is an amusing fact that any homogeneous quasi-morphisms of a locally compact
group with values in Z is continuous; this will be shown in the appendix below.
In the special case when X is locally compact, the bounded-open topology gives
Aut(X) the structure of a locally compact (second countable) group. In particular,
under the assumptions of Theorem 1.1, we deduce that the space of continuous
non-trivial quasi-morphisms on Aut(X) is infinite-dimensional.

(c) Condition (1) in Theorem 1.1 implies in particular that G is far from discrete.
We point out that, in the special case when X is Gromov hyperbolic, a related
transitivity assumption (which is not logically correlated to Weyl transitivity, but
which might look qualitatively stronger at a first sight) would automatically imply
vanishing of Q̃H(G). Indeed, according to an unpublished result by N. Monod,
independently established by Ursula Hamenstädt [Ham08a, Th. 4.1], if a group Γ
admits a quasi-distance-transitive action on a Gromov-hyperbolic geodesic metric
space, then Q̃H(Γ) = 0 (for a related result see Corollary 3.2 below). By a quasi-
distance-transitive action, we mean that there exists C > 0 such that for all
x, y, x′, y′ ∈ X with d(x, y) = d(x′, y′), there exists γ ∈ Γ such that d(γ.x, x′) ≤ C
and d(γ.y, y′) ≤ C.

The most important class of groups admitting Weyl-transitive actions on buildings of
arbitrary type is provided by Kac–Moody groups. These groups are obtained by a functorial
construction which associates a group functor on the category of commutative rings to any
generalized Cartan matrix (or more generally to any Kac–Moody root datum), see [Tit87]
and [Tit92] for the split case and [Rém02] for the almost split case.

Corollary 1.3. Let G be a Kac–Moody-Tits functor whose Weyl group is irreducible non-
spherical and non-affine and let R be an integral domain. Then Q̃H(G(R)) is infinite-
dimensional. In particular G(R) possesses elements of strictly positive stable commutator
length and is therefore of infinite commutator width.

Recall that the stable commutator length of an element g, denoted by scl(g), of
the commutator subgroup [G,G] of a group G is defined as limn→∞

cl(gn)
n , where cl(h)

denotes the minimal number k such that h ∈ [G,G] may be written as a product of k
commutators. The commutator width of G is the supremum of the function cl on [G,G].
The connection between the second bounded cohomology of G, quasi-morphisms on G and
the stable commutator length of elements in [G,G] was discovered by Ch. Bavard [Bav91].
In particular, if f(g) > 0 for f ∈ Q̃H(G) and g ∈ [G,G], then scl(g) > 0. We refer to
a recent monograph by D. Calegari [Cal] for more information on the stable commutator
length.

A Kac–Moody group over a field of cardinality ≥ 4 is perfect. However even over the
smallest fields, the abelianization is always finite (this follows from the last two paragraphs
of the proof of Theorem 15 in [CR09]). The arguments of loc. cit. show that the group G(R)
as in Corollary 1.3 generally admits no nontrivial finite quotient. In fact, when R is a finite
field of order larger than the rank of the Weyl group, the group G(R) happens to be simple,
and even finitely presented when the Weyl group is 2-spherical [CR09]. In particular, we
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obtain the following, which answers positively a question asked by Valerii G. Bardakov
[MK99, Problem 14.13]:

Corollary 1.4. There exists an infinite family of pairwise non-isomorphic finitely pre-
sented simple groups possessing elements of strictly positive stable commutator length; these
groups have therefore infinite commutator width.

Formerly finitely generated simple groups of infinite commutator width had been con-
structed by Alexey Muranov [Mur07].

As discussed in [CR09], properties of Kac–Moody groups over finite fields may be fruit-
fully compared to properties of higher rank arithmetic groups; this comparison highlights
strong analogies between both families. Corollary 1.3 testifies for the fact that Kac–Moody
groups also enjoy some form of hyperbolicity property, as opposed to the higher rank lat-
tices. In order to stress this in a slightly different way, we include the following corollary,
which follows immediately from Corollary 1.3:

Corollary 1.5. Kac–Moody groups as in Corollary 1.3 do not have bounded generation.
Moreover they are not boundedly generated by any family of torsion amenable subgroups.

�

The proof of Theorem 1.1 relies on a construction of quasi-morphisms for groups acting
on CAT(0) spaces, elaborated by M. Bestvina and K. Fujiwara [BF07]. The conditions
ensuring an infinite-dimensional space of quasi-morphisms are recalled in Sect. 2; the main
one is the existence of contracting isometries, which by definition are isometries inducing
a North-South dynamics on the boundary and generalize the rank one isometries as de-
fined by W. Ballmann. The key geometric ingredients for the proof of Theorem 1.1 are a
charaterization of contracting isometries (Theorem 5.1) and a criterion ensuring that two
given contracting isometries are independent and non-equivalent. In fact, we believe that
the hypotheses of Theorem 1.1 are unnecessarily strong for the existence of contracting
isometries of buildings. To be more precise we propose the following:

Conjecture 1.6. Let (W,S) be an irreducible non-spherical and non-affine Coxeter system
with S finite, X be a building of type (W,S) and G be a group acting on X by automor-
phisms without fixing any point at infinity (in the CAT(0) realization of X). Then G either
stabilizes a proper residue or contains a contracting isometry.

This conjecture holds in the special case where W is Gromov hyperbolic, or more gen-
erally when W is relatively hyperbolic with respect to its maximal virtually Abelian sub-
groups. The latter condition is completely characterized in [Cap07] and therefore yields
the following:

Proposition 1.7. Assume that for any two infinite special subgroups WJ1 ,WJ2 < W such
that [WJ1 ,WJ2 ] = 1, the group 〈WJ1 ∪WJ2〉 is virtually abelian. Then any locally finite
building of type (W,S) satisfies Conjecture 1.6.

A major interest of a solution to Conjecture 1.6 is that, when combined with the Burger–
Monod vanishing theorem [BM02, Theorems 20 and 21] and the Bestvina–Fujiwara con-
struction, it would yield an interesting rigidity statement for higher rank lattices, in the
same vein as those established in [BF02] and [Ham08c]. In order to illustrate this, we
mention the following result, which should be compared to [Ham08b, Theorem 2].

Theorem 1.8. Let X be a proper CAT(0) space and G < Is(X) be any group of isometries.
Assume that G contains a rank one element. Let G be the closure of G in Is(X) with the
compact-open topology. Then one of the following assertions holds, where Λ denotes the
limit set of G:

(1) G either fixes a point in ∂X or stabilizes a geodesic line; in both cases, it possesses
a subgroup of index at most 2 with infinite Abelianization.
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(2) G acts transitively on Λ× Λ−∆, where ∆ denotes the diagonal.
(3) G does not act transitively on Λ× Λ−∆, and the spaces Q̃H(G) and Q̃Hc(G) are

both infinite-dimensional.
Furthermore, if X has cocompact isometry group, then (1) implies that G is amenable and
(2) implies that the space of continuous nontrivial quasi-morphisms Q̃Hc(G) vanishes.

Theorem 1.8 has the following consequence, which directly relates to Conjecture 1.6:

Corollary 1.9. Let Γ < G =
∏
α∈AGα(kα) be an irreducible lattice, where |A| > 1,

(kα)α∈A is a finite family of local fields and the Gα are connected simply connected kα-
almost simple groups of kα-rank > 1. Let X be a proper CAT(0) space and ϕ : Γ→ Is(X)
be any homomorphism. Then ϕ(Γ) does not contain any rank one element.

In particular, combining Proposition 1.7 with Corollary 1.9, one obtains:

Corollary 1.10. Let Γ be as in Corollary 1.9 and X be a locally finite building whose
type satisfies the condition of Proposition 1.7. Then any Γ-action on X by automorphisms
stabilises a residue of spherical or Euclidean type. �

Let us finally mention that, independently of M. Bestvina and K. Fujiwara, Ursula
Hamenstädt developed a slightly different approach providing a general axiomatic set-
ting for groups acting on topological spaces by homeomorphisms to admit an infinite-
dimensional space of non-trivial quasi-morphisms [Ham08c]. It turns out that her ap-
proach, when applied to the present context, would also provide information on the second
bounded cohomology with nontrivial coefficients.

The paper is organized as follows. Section 2 is preliminary. The aim of Section 3 is the
proof of Theorem 1.8 and its corollaries. It contains several geometrical results on rank one
isometries of proper CAT(0) spaces which might be of some independent interest. Sect. 4
is devoted to Coxeter groups; its main purpose is to show that irreducible Coxeter groups
which are not virtually abelian contain many contracting isometries in their natural action
on the Davis complex. Finally, hyperbolic isometries of buildings are studied in Sect. 5.

Convention. In order to avoid any confusion, we remark that quasi-morphisms are some-
times called “quasi-homomorphisms” in the literature (for example in [BF02],[BF07]). This
explains the notation QH for the space of quasi-morphisms; and Q̃H for the non-trivial
ones in this paper, following [BF02],[BF07]. We note however that in the monograph
[Cal], the space of quasi-morphisms is denoted by Q̂ and the space of homogeneous quasi-
morphisms is denoted by Q, while the latter is denoted by HQH (for ‘homogeneous quasi-
homomorphisms’) in [BF02],[BF07]. In the present paper, no special notation is used for
the space of homogeneous quasi-morphisms.

Stable commutator length of g is denoted by scl(g) in this paper, but it is sometimes
called ‘stable length’, and also denoted by ‖g‖ (as for example in [Bav91]).

Acknowledgements. Both authors thank the MSRI, Berkeley and particularly the orga-
nizers of the special program on geometric group theory which was held there in the Fall
2007 and during which this work was initiated. The first author also acknowledges support
from the European Post-Doctoral Institute (EPDI). He is grateful to Ursula Hamenstädt
for suggesting that some of her results on bounded cohomology would also provide rel-
evant information in the context of the present paper. Section 3 below was inspired by
this conversation. The second author would like to thank Mladen Bestvina for intensive
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2. Rank one elements, contracting isometries and quasi-morphisms

Let X be a CAT(0) space. A geodesic line L in X is said to have rank one if it does
not bound a flat half-plane. The line L is said to be B-contracting for some B ≥ 0 if for
every metric ball C disjoint from L the projection πL(C) has diameter at most B.

An isometry γ ∈ Is(X) is said to have rank one if it is hyperbolic and if some (and
hence any) of its axes has rank one. Similarly γ is called B-contracting if it is hyperbolic
and if some of its axes is B-contracting. It is called contracting if it is B-contracting for
some B ≥ 0.

Recall from [BF07, Thm. 5.4] that if X is proper, then an isometry has rank one if
and only if it is B-contracting for some B ≥ 0. We will see later (see Theorem 5.1) that
for some class of finite-dimensional CAT(0) spaces, this assertion holds even without the
properness assumption.

Following [BF07], we will use:

Definition 2.1. Let γ1, γ2 ∈ Γ be hyperbolic elements and fix a base point x0 ∈ X.
The elements γ1 and γ2 are called independent if the map

Z× Z→ [0,∞) : (m,n) 7→ d(γm1 .x0, γ
n
2 .x0)

is proper.
The elements γ1 and γ2 are called Γ-equivalent (notation: γ1 ∼Γ γ2) if the following

condition holds: there exist δ > 0, a sequence (gn) in Γ and two sequences of positive
integers m1(n) and m2(n) tending to infinity with n, such that the geodesic segments
[x0, γ

m1(n)
1 .x0] and gn.[x0, γ

m2(n)
2 .x0] are δ-Hausdorff equivalent.

Notice that both properties are independent of the choice of the base point. Furthermore
two elements γ1 and γ2 are independent if and only if γ1 and γ−1

2 are independent. When
the Γ-action is proper, both notions can be made more precise:

Lemma 2.2. Let Γ act properly discontinuously on a complete CAT(0) space X. Then:
(i) Two hyperbolic elements γ1, γ2 are independent if and only if the canonical at-

tracting fixed point γ+
1 of γ1 at infinity is distinct from both the attracting and the

repulsive fixed point of γ2 at infinity.
(ii) Two contracting elements γ1, γ2 satisfy γ1 ∼Γ γ2 if and only if some positive powers

of γ1 and γ2 are conjugate.
(iii) If two contracting elements γ1 and γ2 are not independent, then γ1 ∼Γ γ2 or γ1 ∼Γ

γ−1
2 .

(iv) If Γ is non-elementary and contains a contracting element, then it contains two
contracting elements γ1 and γ2 such that γ1 6∼Γ γ2 and γ1 6∼Γ γ

−1
2 .

Assertion (i) means in other words that given two rank one elements, either their axes
are parallel (and the element are dependent) or the respective attracting and repulsive
fixed points of the two elements at infinity form four distinct points of the visual boundary
∂X.

Proof. (i). The ‘only if’ part is clear. Let γ1 and γ2 be hyperbolic elements with non-
parallel axes, say `1 and `2 respectively, and assume for a contradiction that γ1 and γ2

are not independent. Then `1 and `2 contain rays ρ1 ⊂ `1 and ρ2 ⊂ `2 which are at finite
Hausdorff distance from one another. By properness of the Γ-action, it follows that there
exist integers m 6= m′ and n 6= n′ such that gm1 gn2 = gm

′
1 gn

′
2 . Thus gm′′

1 = gn
′′

2 for some
nonzero m′′ and n′′. This implies that `1 and `2 are at finite Hausdorff distance from one
another, hence parallel. This is absurd.

(ii). See [BF07, Prop. 6.5(3)].

(iii). Follows from (i), (ii) and the fact that the stabilizer the parallel set of any axis is
virtually cyclic by properness.
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(iv). Follows from [BF07, Prop. 6.2 and 6.5(4)]. �

Remark 2.3. Important to observe is that, when the action is discrete as above, the
property of being Γ-inequivalent is conjugacy–invariant. More precisely, given γ1, γ2 ∈ Γ
with γ1 6∼Γ γ2 and γ1 6∼Γ γ

−1
2 as in (iv), then, for any g ∈ Γ, we have γ1 6∼Γ gγ2g

−1 and
furthermore γ1 and gγ2g

−1 are independent. This follows from (ii) and (iii) in Lemma 2.2.

The construction of quasi-morphisms that we will use was performed by M. Bestvina and
K. Fujiwara [BF07, Th. 6.3]; notice that there is no discreteness assumption whatsoever
on the action:

Proposition 2.4. Let Γ < Is(X) be any group of isometries of a complete CAT(0) space
X. Assume that Γ contains two independent rank-one elements which are not Γ-equivalent.
Then Q̃H(Γ) is infinite-dimensional. �

3. Proper CAT(0) spaces with rank one isometries and rigidity of higher
rank lattices

The present section is aimed at proving Theorem 1.8; there is no logical dependence
between this and the subsequent sections.

Given a proper CAT(0) space X, the compact-open topology gives Is(X) the structure
of a locally compact second countable topological group.

3.A. The stabilizer of a point at infinity fixed by a rank one element.

Proposition 3.1. Let X be a proper CAT(0) space with cocompact isometry group and
G < Is(X) be any group of isometries. Let ξ ∈ ∂X be a point fixed by some rank one
element of Is(X). Then the stabilizer Gξ is amenable.

Proof. By the very nature of the statement to be established, there is no loss of generality
in assuming that G is closed. If G stabilizes a geodesic line, then the desired conclusion
clearly holds. We assume henceforth that G does not stabilize any line. In particular, the
existence of a rank one element implies that G does have a global fixed point at infinity.
Thus X possesses a nonempty minimal G-invariant closed convex subset Y ⊆ X (see
[CM08, Prop 4.1]). The point-wise stabilizer of Y being compact, hence amenable, there
is no loss of generality in assuming that Y = X.

By [CM08, Th. 5.7] the group G is either an almost connected simple Lie group or totally
disconnected. In the former case, the desired result follows from [CM08, Th. 7.4]. In the
latter case, the result follows from [Cap09, Th. 1.5] since for any fixed point ξ of a rank
one isometry, the transversal space Xξ as defined in loc. cit. is bounded. �

The following statement parallels Proposition 6.4 in [Ham08b]:

Corollary 3.2. Let X be a proper CAT(0) space with cocompact isometry group and G <
Is(X) be a closed group of isometries with limit set Λ. Assume that G contains a rank
one element. If G acts transitively on Λ× Λ−∆, then the space of continuous nontrivial
quasi-morphisms Q̃Hc(G) vanishes.

Proof. Let g ∈ G be the given rank one element and a, b ∈ ∂X denote its fixed points. Let
also G{a,b} denote the stabilizer of the pair {a, b} in G. By assumption, for each h ∈ G
there exists g′ ∈ G such that g′.h ∈ Gb, and we may choose g′ ∈ Ga or g′ ∈ G{a,b} according
as h(b) 6= a or h(b) 6= a. This shows that the group G is a product

G = Ga ·G{a,b} ·Gb.

By Proposition 3.1 all subgroups Ga, Gb and G{a,b} are amenable. In particular the spaces
H2

cb(Ga,R), H2
cb(Gb,R) and H2

cb(G{a,b},R) vanish and any continuous nontrivial quasi-
morphism of Ga, Gb or G{a,b} is bounded. Thus the same holds for G as desired. �
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Remark 3.3. If X is a CAT(0) cell complex with finitely many types of cells and G <
Is(X) acts by cellular transformations, then Proposition 3.1 and Corollary 3.2 remain true
without the hypothesis that X has cocompact isometry group: this follows from the same
reasoning as above, using a straightforward adaptation of the arguments in [Cap09].

3.B. On the existence of independent rank one elements.

Proposition 3.4. Let X be a proper CAT(0) space and G < Is(X) be any subgroup.
Assume that G contains a rank one element. Then one of the following assertions holds:

(1) G either fixes a point in ∂X or stabilize a geodesic line; in both cases, it possesses
a subgroup of index at most 2 with infinite Abelianization. Furthermore, if X has
cocompact isometry group, then G < Is(X) is amenable.

(2) G contains two independent rank one elements; in particular G contains a discrete
non-Abelian free subgroup.

Proof. Any rank one element acts on the boundary at infinity with a North-South dynam-
ics, see [Bal95, Lem. 3.3.3]. Therefore, if G contains two independent rank one elements
then the existence of a discrete non-Abelian free subgroup follows from a standard ping-
pong argument. We assume henceforth that G does not contain any pair of independent
rank one elements. In particular any two rank one elements of G have a common fixed
point in ∂X.

We claim that every triple of rank one elements of G have a common fixed point at
infinity. Otherwise there would exist three rank one elements g1, g2, g3 such that g1 and g2

have a common attracting fixed point, say a, and there respective repelling fixed points b1
and b2 are precisely the fixed points of g3. Conjugating g3 by a large positive power of g−1

1 ,
we then obtain a rank one element which is independent of g2. This is a contradiction.

>From this claim, it follows that all rank one elements of G have a common fixed point
at infinity, say ξ. In particular, the normal subgroup N � G generated by all rank one
elements of G fixes ξ. Since any rank one element of G has exactly two fixed points at
infinity, it follows that N has at most two fixed points as well. In particular G has a
subgroup of index at most 2 which fixes ξ, and the Busemann character centered at ξ
yields a homomorphism of this subgroup taking values in R (see e.g. [Cap09, §4.3]).

Passing to the closure, we deduce that G has a closed subgroup of index at most 2
which fixes ξ. Thus G is amenable as soon as Is(X) is cocompact by Proposition 3.1 and
Assertion (1) holds. �

Proposition 3.5. Let X be a proper CAT(0) space and G < Is(X). Assume that G
contains two independent rank one elements. Then the set of pairs of fixed points of rank
one elements of G is dense in Λ×Λ−∆, where Λ denotes the limit set of G and ∆ ⊂ Λ×Λ
the diagonal.

Proof. The proof goes along the same lines as that of [BB95, Th. 4.1]. For the reader’s
convenience, we include the details of the argument.

Following loc. cit., we shall say that a pair of points ξ, η ∈ ∂X is dual (relative to G) if
for all neighbourhoods U and V of ξ and η in the visual compactification X, there exists
g ∈ G such that

g(X − U) ⊂ V and g−1(X − V ) ⊂ U.
Notice that the set of points which are dual to some fixed ξ ∈ ∂X is closed (with respect
to the cone topology).

The relevance of this notion comes from the following. The two fixed points of any given
rank one element are dual to each other: this follows from [Bal95, Lem. 3.3.3]. Conversely,
the results of [Bal95, Sect. III.3] imply that if {ξ, η} ⊂ ∂X is a dual pair, then there exists
a sequence of rank one elements gn ∈ G such that the attracting and repelling fixed points
of gn tend to ξ and η as n tends to infinity. All we need to show is thus that any point of
Λ is dual to any other.
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Let γ1, γ2 ∈ G be two independent rank one elements, and a1, a2 (resp. b1, b2) denote
their respective attracting (resp. repelling) fixed points. By considering products of the
form γm1 .γ

n
2 for appropriately chosen integers m,n, one shows that any two distinct points

in {a1, a2, b1, b2} are dual to one another.
Let now ξ ∈ Λ−{a1, a2, b1, b2}. Pick a base point x0 ∈ X and choose a sequence (gn)n≥0

of elements of G such that limn gn.x0 → ξ. By [BB95, Lem. 4.4] we have limn gn.a1 = ξ
or limn gn.b1 = ξ (or both). Thus g′n = gnγ1g

−1
n is a sequence of rank one elements

such that the corresponding sequence of attractive or repelling fixed points converges to
ξ. Upon multiplying each g′n by an appropriate power of γ2 if necessary, we may extract a
subsequence (g′nk) such that g′nk is independent from γ1 for each k ≥ 0 and which still enjoys
the same convergence property of its attracting or repelling fixed points. The preceding
paragraph then shows that ξ is dual to both a1 and b1. From a symmetric argument we
deduce that ξ is also dual to both a2 and b2.

What we have done so far shows that for any four-tuple of points of Λ which are pairwise
dual, any other point of Λ is dual to each of them. In view of the hypothesis, this implies
that any two points of Λ are dual. �

3.C. Quasi-morphisms and rigidity.

Lemma 3.6. Let X be a proper CAT(0) space and G < Is(X) be a closed subgroup with
limit set Λ. For every hyperbolic isometry g ∈ G with attracting and repelling fixed points
a 6= b ∈ Λ, the G-orbit of (a, b) is a closed subset of Λ× Λ.

Proof. Identical to the proof of [Ham08b, Lem. 6.1]. �

Proof of Theorem 1.8. Assume that G is non-elementary, that is to say G does not fix a
point at infinity and does not stabilize any geodesic line. By Proposition 3.4 it follows that
G contains two independent rank one elements. Therefore the set of pairs of fixed points
of rank one elements of G is dense in Λ× Λ−∆.

Assume now that G does not act transitively on Λ× Λ−∆. In view of Lemma 3.6, we
deduce from the density assertion of the preceding paragraph that G contains two rank one
elements g1, g2 with respective attracting and repelling fixed points (a1, b1) and (a2, b2),
such that the G-orbit of (a1, b1) is distinct from the G-orbit of (a2, b2). It follows that g1

and g2 are G-inequivalent.
Notice moreover that b1 6= b2. Indeed, since gn1 .a2 tends to a1 as n tends to infinity,

the equality b1 = b2 would imply that (a2, b2) is in the same G-orbit as (a1, b1), which
is absurd. Similarly one shows that the four points a1, a2, b1, b2 are pairwise distinct. In
particular g1 and g2 are independent.

Therefore, we may apply Proposition 2.4, which shows that Q̃H(G) and Q̃H(G) are
infinite-dimensional. Since the Bestvina–Fujiwara construction yields quasi-morphisms
with integer values, it follows from Theorem A.1 below that Q̃Hc(G) is infinite-dimensional
as well.

The last two assertions of Theorem 1.8 follow from Proposition 3.1 and Corollary 3.2
since the limit set of G coincides with the limit set of its closure G. �

Proof of Corollary 1.9. Suppose that ϕ(Γ) contains a rank-one isometry. Since Γ has Kazh-
dan’s property (T), every finite index subgroup of Γ has finite Abelianization. On the other
hand, we know by [BM02, Theorems 20 and 21] that Q̃H(Γ) = 0. Theorem 1.8 thus implies
that H = ϕ(Γ) is transitive on the pair of distinct points of its limit set Λ.

Let Y ⊆ X be a nonempty closed convex H-invariant subset; such a subspace exists
since H has no fixed point at infinity in view of Proposition 3.4. The version of Monod’s
superrigidity theorem given in [CM08, Theorem 8.4] (which may be applied since Γ has
property (T) and is square-integrable [Sha00]) provides a continuous homomorphism ϕ :
G→ Is(Y ) extending the given ϕ : Γ→ Is(Y ).
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Notice that since Y admits a rank one isometry by assumption, it is irreducible. Since
Γ acts minimally, it follows from [CM08, Th. 1.6] that the continuous map ϕ : G→ Is(Y )
factors through some simple factor of G, say Gα.

Given a semisimple element h ∈ Gα which is not periodic (i.e. the cyclic subgroup 〈h〉
is not relatively compact), the image ϕ(h) is not an elliptic isometry, since any continuous
nontrivial homomorphism of a simple algebraic group to a locally compact second countable
group is proper [BM96, Lemma 5.3]. In particular the limit set of 〈ϕ(h)〉 in Y is a nonempty
subset of Λ, thus consisting of 1 or 2 points.

Let now P < Gα be any proper parabolic subgroup. By [Pra77, Lemma 2.4] there exists
a non-periodic semisimple element h such that

P = ZGα(h) · U(h),

where ZGα(h) is the centraliser of h in Gα and U(h) � P is the contraction group defined
by

U(h) = {g ∈ Gα | lim
n→∞

hngh−n = 1}.

It follows that the limit point of the sequence (h−n.y0)n≥0, where y0 ∈ Y is any base point,
is P -invariant. We have thus established that any proper parabolic subgroup of Gα fixes
some point of Λ. In particular the stabilizer of any ξ ∈ Λ in Gα is a parabolic subgroup,
since any subgroup containing a parabolic is itself parabolic. In view of [BB95, Lemma 4.4]
the pointwise stabilizer of a triple of points of Λ in Is(Y ) has a fixed point in Y and is thus
compact. Since ϕ : Gα → Is(Y ) is proper, it follows that any parabolic subgroup of Gα
has at most 2 fixed points in Λ. Thus any minimal parabolic subgroup of Gα is contained
in at most two maximal ones. This is absurd since Gα is simple and has kα-rank ≥ 2. �

Remark 3.7. It should be noted that the assumption that the group G has at least two
simple factors accounts for the corresponding assumption in the version of the superrigidity
theorem for higher rank lattices that we appeal to. It is reasonable to conjecture the
conclusion of Corollary 1.9 still holds for lattices in higher rank simple groups; in fact,
apart from the aforementioned superrigidity, all arguments of the proof remain valid in
that more general context.

4. Rank one elements in Coxeter groups

Let (W,S) be a Coxeter system such that the Coxeter group W is finitely generated;
equivalently S is finite. We denote by Σ the associated Davis complex; it is endowed
with proper CAT(0) metric and a natural properly discontinuous cocompact W -action by
isometries (See [Dav98]. This fact is proved by Moussong [Mou88]). We view the elements
ofW as isometries of Σ; thus by a hyperbolic element ofW (resp. rank one, B-contracting,
etc.) we wean an element which acts on Σ as a hyperbolic (resp. rank one, B-contracting,
etc.) isometry.

Lemma 4.1. Let γ ∈ W and x, y ∈ Σ such that γ.x = y. Then γ belongs to the group
W (x, y) generated by all those reflections which fix some point of the geodesic segment
[x, y].

Proof. Let Cx be a chamber containing x and define Cy = γ.Cx. It is well known (and
easy to see) that γ belongs to the group generated by all those reflections which fix a wall
separating Cx from Cy. Clearly every wall separating Cx from Cy meets [x, y]; the result
follows. �

4.A. Parabolic closures and essential elements. Recall that a subgroup of W of
the form WJ for some J ⊂ S is called a standard parabolic subgroup. Any of its
conjugates is called a parabolic subgroup of W . A basic fact on Coxeter groups is that
any intersection of parabolic subgroups is itself a parabolic subgroup. This allows one
to define the parabolic closure Pc(R) of a subset R ⊂ W : it is the smallest parabolic
subgroup of W containing R (see [Kra09]).
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An element w ∈ W is called standard if its parabolic closure is a standard parabolic
subgroup. It is called cyclically reduced if `(w) = min{`(γwγ−1) | γ ∈W}. The follow-
ing elementary result shows in particular that any cyclically reduced element is standard:

Proposition 4.2. Let w ∈W . We have the following:
(i) If w is standard, then for any writing of w as a reduced word w = s1s2 · · · s`(w)

with letters in S, we have Pc(w) = 〈s1, s2, . . . , s`(w)〉.
(ii) Let x ∈W be such that xPc(w)x−1 is standard. Assume moreover that

`(x) = min{`(γ) | γ ∈W, γ Pc(w)γ−1 is standard}.
If x 6= 1, then `(xwx−1) < `(w).

(iii) Let s ∈ S. If w is standard, then either Pc(ws) ⊂ Pc(w) or Pc(ws) = 〈Pc(w)∪{s}〉
and ws is standard as well.

Proof. (i). This is well known; it is an immediate consequence of the solution to the word
problem [Tit69].

(ii). Set P = Pc(w). Let J ⊂ S be such that xPx−1 = WJ and set R = x−1WJ .
We view (the 1-skeleton of) Σ as a chamber system (see [Wei03]); the chambers are the
elements of W . The coset R is the J-residue of Σ containing x−1. Note that StabW (R) =
P . The condition that x minimizes the length of all elements which conjugate P to a
standard parabolic subgroup means precisely that x−1 is the combinatorial projection
of 1 onto R (see [Wei03, Th. 3.22] for the notion of projections onto residues). Thus
x−1 = projR(1). Let also y = projR(w). Since R is P -invariant we have w.x−1 = y.
Thus d(x−1, y) = `(xwx−1). Furthermore, in view of basic properties of the combinatorial
projection [Wei03, Th. 3.22], every wall which separates x from y also separates 1 from
w. This implies that d(x−1, y) ≤ d(1, w) = `(w). Therefore, if `(xwx−1) ≥ `(w), then we
deduce `(xwx−1) = `(w) and the set M (x, y) of walls separating x from y coincides with
the set M (1, w). We have to show that x = 1.

Let s1 · · · s`(w) be a reduced word representing w. Notice that the reflections associated
to walls in M (1, w) are precisely

s1, s1s2s1, . . . , s1 · · · s`(w) · · · s1

since w = s1s2 . . . s`(w). By the above, each of these reflections stabilizes R (see [Wei03,
Prop. 4.10]) and, hence, belongs to P . This shows that P ⊃ 〈s1, s2, . . . , s`(w)〉. Since the
group generated by s1, s2, . . . , s`(w) is clearly a parabolic subgroup which contains w, we
deduce P = Pc(w) = 〈s1, s2, . . . , s`(w)〉. In particular P is standard and hence x must be
trivial, as desired.

(iii). By assumption w is standard. This implies that Q := 〈Pc(w) ∪ {s}〉 is a standard
parabolic subgroup. Since w and s both belong to Q, it follows that Pc(ws) ⊂ Q. If
s ∈ Pc(w), then Q = Pc(w) and, hence Pc(ws) ⊂ Pc(w). We assume henceforth that
s 6∈ Pc(w). In particular Pc(w) is properly contained in Q; more precisely the ranks of
Pc(w) and Q differ by 1.

If wsw−1 ∈ Pc(ws), then w = wsw−1.ws belongs to Pc(ws) and hence Pc(w) ⊂ Pc(ws).
Since s does not belong to Pc(w), we obtain

Pc(w) ( Pc(ws) ⊂ Q,
which implies that Pc(ws) = Q since these parabolic subgroups have the same rank. In
particular ws is standard.

Assume now that wsw−1 6∈ Pc(ws). Set P ′ = Pc(ws) and choose a residue R′ whose
stabilizer in W is P ′, in a similar way as in the proof of (ii). The condition that wsw−1

does not stabilize R′ means that the projections projR′(w) and projR′(ws) must coincide.
Arguing as in the proof of (ii), we deduce that every walls separating projR′(1) from
projR′(ws) also separates 1 from w. Since w is standard, this implies in view of (i) that
Pc(ws) is contained in Pc(w), as desired. �
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An element γ ∈ W is called essential if Pc(γ) = W . The following result appears in
[Par07, Thm. 3.4]; we give an alternative argument:

Corollary 4.3. Let s1, . . . , sn be all the elements of S (in any order). Then w = s1 · · · sn
is essential.

Proof. For each k = 1, . . . , n, let wk = s1 · · · sk. An immediate induction using Proposi-
tion 4.2 shows that Pc(wk) = 〈s1, . . . , sk〉. �

4.B. Walls separating a flat half-space. Euclidean flats in Σ have been studied in
[CH09]. The following parallels some results from loc. cit. in the case of flat half-planes:

Proposition 4.4. Let H be a flat half-plane in Σ bounded by a periodic line L and denote
by P the parabolic closure of the set of reflections fixing some point of L. Then:

(i) We have
P ∼= K × P1 × · · · × Pk,

where each Pi is an infinite parabolic subgroup and K is a finite parabolic subgroup
fixing L pointwise. Moreover, if none of the Pi’s is of affine type and rank ≥ 3,
then k ≥ 2.

(ii) The parabolic subgroup P contains every element γ ∈W which maps some point of
L into L.

Proof. Part (i) follows by adapting the arguments from [CH09] (see also [Cap07, Prop. 3.1]).
Part (ii) follows from (i) and Lemma 4.1. �

4.C. Irreversible rank one elements of Coxeter groups. There are obvious obstruc-
tions for a given element γ ∈W to have rank one: namely, if γ is contained in a parabolic
subgroup P < W which is of spherical or affine type, or which splits as a direct product
of two infinite subgroups, then clearly γ cannot have rank one. The following shows that
these are in fact the only obstructions:

Proposition 4.5. An element γ ∈W does not have rank one if and only if γ is contained
in a parabolic subgroup P < W such that either P is finite, or P splits as P = P1 × P2

where P1 and P2 are both infinite parabolic subgroups, or P splits as P = K × Paff where
K is a finite parabolic subgroup and Paff is an affine parabolic of rank ≥ 3.

Proof. The ‘if’ part is clear; we focus on the ‘only if’ part. Let thus γ ∈W be an element
which does not have rank one. If γ is not hyperbolic, then γ is of finite order and hence
contained in a finite parabolic subgroup as is well known. We may therefore assume that
γ is hyperbolic and the desired assertion is provided by Proposition 4.4. �

Corollary 4.6. Let γ ∈ W be an element of infinite order and L ⊂ Σ be an axis of γ.
Then:

(i) Either γ is rank-one or there exists γ′ ∈W such that 〈γ, γ′〉 ∼= Z× Z.
(ii) γ is rank-one if and only if its centralizer is virtually cyclic.
(iii) L is rank-one if and only if it is not contained in a periodic 2-flat.

Proof. The first assertion follows from Proposition 4.5. The second assertion follows from
the first and the easy fact that rank one elements have virtually cyclic centralizer. Assertion
(iii) follows from (i) and the flat torus theorem [BH99, Thm. II.7.1]. �

Corollary 4.7. The group W contains two rank-one elements γ1, γ2 such that γ1 6∼W γ2

and γ1 6∼W γ−1
2 if and only if W has an irreducible non-spherical non-affine parabolic

subgroup of finite index.

Notice that a parabolic subgroup of finite index in W is necessarily a direct factor.

Proof. Follows from Lemma 2.2, Corollary 4.3 and Proposition 4.5, and the fact that for
proper CAT(0) spaces, a hyperbolic element is contracting if and only if it is rank one, see
[BF07, Th. 5.4]. �
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Given a hyperbolic element γ ∈ W , we say that γ is irreversible if γ 6∼W γ−1. In the
case of Coxeter groups, there is a simple algebraic criterion which may be used to detect
irreversibility:

Lemma 4.8. A rank one element γ ∈W is irreversible if and only if no positive power of
γ can be written as a product γk = a.b where a, b ∈W have order 2.

Remark 4.9. Lemma 4.8 can be used to obtain the following refinement of Corollary 4.3:
if W is infinite, irreducible and non-affine, then the Coxeter element is irreversible as soon
as the Coxeter diagram of (W,S) is not a star, i.e. there is no element s ∈ S such that the
parabolic subgroup WS\{s} is a finite elementary abelian 2-group.

Proof of Lemma 4.8. If γk = a.b with a, b involutions for some k > 0, then γk is conjugate
to γ−k and, hence, γ ∼ γ−1 by [BF07, Prop. 6.5(3)]. Thus γ is not irreversible.

Suppose now that γ is not irreversible. Then by properness W possesses an element
g which stabilises some γ-axis L and satisfies gγg−1|L = γ−1

L . By Selberg’s lemma W
possesses a torsion free normal subgroup of finite index, which acts thus freely on Σ. Let
k > 0 be such that γk belongs to this finite index subgroup. Then gγkg−1 = γ−k. Since
W acts properly on Σ, the subgroup of W which stabilises L is virtually cyclic; thus we
may and shall assume that g2 acts trivially on L. In particular g is a torsion element of
W of even order, say 2m. Notice that gmγg−m|L = γ−1

L , whence gmγkg−m = γ−k. We set
a = gm = g−m and b = gmγk. Then clearly γk = a.b and a2 = 1 = b2, as desired. �

5. Rank one isometries of buildings

5.A. Definitions and basic facts. Let (W,S) be a Coxeter system. A building of type
(W,S) is a set C endowed with a map δ : C×C →W submitted to the following conditions,
where x, y ∈ C and w = δ(x, y):

(Bu1): w = 1 if and only if x = y;
(Bu2): if z ∈ C is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws, and if,

furthermore, l(ws) = l(w) + 1, then δ(x, z) = ws;
(Bu3): if s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

The map δ is called the Weyl distance. An automorphism of (C, δ) is a permutation
of C which preserves the Weyl distance. The map δW : W ×W →W defined by δW (x, y) =
x−1y turns canonically W into a building of type (W,S). Any subset of a building (C, δ) of
type (W,S) which is Weyl-isometric to (W, δW ) is called an apartment. Given a subset
J ⊆ S, we denote WJ = 〈J〉. Given any chamber c ∈ C, the set

ResJ(c) = {x ∈ C | δ(c, x) ∈WJ}
is called the residue of type J containing c. An important fact is that a residue of type
J , endowed with the appropriate restriction of the Weyl distance, is a building of type
(WJ , J). We refer to [Wei03] for the general theory.

Another relevant fact is that any building of type (W,S) possesses a geometric realization
as a CAT(0) metric space [Dav98]. In other words, given a building B = (C, δ) of type
(W,S), there exists a CAT(0) space XB and a canonical injection Aut(B)→ Is(XB). We
will identify all elements of Aut(B) to their image in Is(XB).

5.B. A characterization of rank one elements.

Theorem 5.1. Let B = (C, δ) be a building of type (W,S) and let γ ∈ Aut(B) be a
hyperbolic element. Then the following assertions are equivalent:

(i) γ is a rank one isometry of XB.
(ii) γ is contracting.
(iii) γ does not stabilise any residue whose Weyl group is of the form WI ×WJ , where

either WI and WJ are both infinite, or WI is affine and WJ is finite.
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Proof. Let L be an axis of γ and A be an apartment containing L; such an apartment
exists by [CH09, Thm. E]. Let π denote the nearest point projection to L and C ⊂ L be a
compact segment which is a fundamental domain for the 〈γ〉–action on L.

(i) ⇒ (ii) Suppose for a contradiction that γ is a rank one isometry but that L is not
B-contracting for any B. Then there exist sequences (xn) and (yn) in XB such that
d(xn, yn) < d(xn, L) and d(π(xn), π(yn)) tends to infinity with n. Since L = 〈γ〉.C, we
may and shall assume that π(xn) is contained in C for all n. Upon extracting a subsequence,
we may further assume that there exists a chamber c containing a point p0 ∈ L which does
not meet C and which separates C from π(yn) for all n. We denote by

ρ = ρA,c

the retraction onto A centered at c. Recall that this map is the identity on A, it does not
increase distances and its restriction to any geodesic segment emanating from a point of
c (and more generally to any apartment containing c) is an isometry onto its image (see
[AB08, §4.4]). A further extraction allows one to assume that the sequences (ρ(xn)) and
(ρ(yn)) both converge to boundary points of A, say ξ and η respectively.

The choice of the base point p0 and the contracting property of the retraction ρ guarantee
that p0 separates π(ρ(xn)) from π(ρ(yn)) for all n. Since moreover we have d(ρ(xn), ρ(yn)) ≤
d(xn, yn) < d(xn, L) < d(xn, p0) = d(ρ(xn), p0), we deduce that the limit point ξ =
lim ρ(xn) does not belong to ∂L, since otherwise π(ρ(xn)) and π(ρ(yn)) would lie on the
same side of p0 for all large n.

We now claim that η ∈ ∂L. Indeed, consider η′ = limπ(yn) ∈ ∂L. If η 6= η′, then
there is a rank one geodesic line joining η to η′ in A (see [Bal95, Lemma III.3.3]). In view
of [Bal95, Lemma III.3.1], this implies the existence of some constant K > 0 such that
d(p0, π(yn)) + d(p0, ρ(yn))−K ≤ d(π(yn), ρ(yn)) for all n. We infer that

d(p0, π(yn)) + d(p0, yn)−K ≤ d(π(yn), ρ(yn)) ≤ d(π(yn), yn) ≤ d(p0, yn)

for all n, which contradicts the fact that d(p0, π(yn)) is unbounded. The claim stands
proven.

The claim implies that the sequence of geodesic segments [ρ(xn), ρ(yn)] converges to a
rank one geodesic line joining ξ to η. Therefore there exists a constant K ′ > 0 such that
d(p0, ρ(xn)) + d(p0, ρ(yn)) − K ′ ≤ d(ρ(xn), ρ(yn)) ≤ d(xn, yn) < d(xn, L) < d(xn, p0) =
d(ρ(xn), p0) for all n. This is absurd since d(p0, ρ(yn)) = d(p0, yn) tends to infinity with n.

(ii)⇒ (iii) Assume that γ stabilises a residue R whose Weyl group is of the form WI ×WJ

as in (iii). Since R is a building of type (WI×WJ , I ∪J), it follows that the Tits boundary
of its CAT(0) realisation XR has diameter π and, hence, does not contain any rank one
isometry. In particular XR has no B-contracting isometry. The result follows, since XR is
isometrically embedded in XB.

(iii) ⇒ (i) Suppose that γ is not a rank one isometry; in other words some γ-axis L is
contained in a flat half-plane, say H. The arguments of [CH09, Thm. 6.3] show that H
is contained in an apartment A. Let ρ = ρA,c be the retraction onto A centered at some
chamber c intersecting L. Proposition 4.4 implies that ρ◦γ|A is an isometry of A contained
in a parabolic subgroup of the form WI ×WJ as in the statement of (iii). This implies
that γ stabilises the residue of type I ∪ J containing c, thereby contradicting (iii). �

5.C. Existence of rank one elements in Weyl–transitive groups. In order to deal
with the question of existence, we shall transfer to the whole building the constructions
performed so far at the level of apartments. An essential tool in doing this is the retraction
that we have just considered.

As before, let B = (C, δ) be a building of type (W,S) and g1, g2 ∈ Aut(B) be rank
one elements. For i ∈ {1, 2} let also Li be an axis of gi, Ai be an apartment containing
Li, ci ∈ Li be any point and ρi = ρAi,ci be the retraction onto Ai centred at ci. Then
γi := ρi ◦ gi|Ai : Ai → Ai is an automorphism of the apartment Ai.
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Recall that any apartment is isomorphic to the Davis complex Σ, i.e. the standard
CAT(0) realization of the thin building (W, δW ). We now would like to compare γ1 and
γ2 as elements of W = Aut(W, δW ) < Is(Σ). In order to do this properly, we need to
choose identifications Ai ∼= Σ and make sure that our considerations are independent of
this choice.

Crucial to us is the following:

Lemma 5.2. For i ∈ {1, 2}, let fi : Ai ∼= Σ be any isomorphism (of thin buildings).
If the elements g1 and g2 are Aut(B)-equivalent, then f1γ1f

−1
1 and f2γ2f

−1
2 , viewed as

elements of W , are W -equivalent.
If the elements g1 and g2 are not independent, then f1γ1f

−1
1 ∼W f2γ2f

−1
2 or f1γ1f

−1
1 ∼W

f2γ
−1
2 f−1

2 .

Proof. The first thing to observe is that any modification of the isomorphism f1 : A1
∼= Σ

amounts to replacing the element f1γ1f
−1
1 ∈W by a W -conjugate. In view of Remark 2.3,

the assertion of Lemma 5.2 is thus clearly independent of the choices of the fi’s. In order
to avoid unnecessarily heavy notation, we shall henceforth identify both A1 and A2 to Σ
by means of f1 and f2 respectively and, hence, omit to write the maps f1 and f2. In other
words, the elements γ1 and γ2 will be viewed as elements of W acting on Σ.

Fix a chamber ci ⊂ Ai such that ci meets Li. Upon replacing respectively g1 and g2 by
some positive powers, we may and shall assume further that

(5.i) δW (ci, γni .ci) = δW (ci, γi.ci)n

for all n > 0 and i = 1, 2. Since furthermore the chambers gni .ci and γni .ci intersect in
a point of Li, the Weyl group element δ(gni .ci, γ

n
i .ci) is contained in some standard finite

parabolic subgroup of W for all n > 0 and i = 1, 2; in particular it is of uniformly bounded
length. We deduce that there exist an element εi,n ∈W of uniformly bounded length such
that

(5.ii) δ(ci, gni .ci) = δW (ci, γni .ci)εi,n
for all n > 0 and i = 1, 2.

Suppose now that g1 and g2 are Aut(B)-equivalent. Then there exist a constant D > 0,
a sequence (gn) in Aut(B) and two sequences of positive integersm1(n) andm2(n) tending
to infinity with n such that

(5.iii) ` ◦ δ(gn.c1, c2) < D and ` ◦ δ
(
gng

m1(n)
1 .c1, g

m2(n)
2 .c2

)
< D

for all n > 0, where ` : W → N denotes the word length with respect to the Coxeter
generating set S. From (5.i), (5.ii) and (5.iii), we deduce that there exist two sequences
(an), (bn) of elements of W , of uniformly bounded length, such that

w
m2(n)
2 = an.w

m1(n)
1 .bn

for all n > 0, where wi = δW (ci, γi.ci) ∈W . Therefore, upon extracting a subsequence, we
obtain two elements a, b ∈W such that wm2(n)

2 = a.w
m1(n)
1 .b for all n > 0.

Upon replacing γ1 and γ2 by a W -conjugate, we may assume that c1 = c2 and that
this chamber corresponds to the identity element of W (recall that the 1-skeleton of Σ is
nothing but the Cayley graph of (W,S)). This choice of parametrization yields γ1 = w1

and γ2 = w2.
Let now L+

1 , L
+
2 ∈ ∂Σ be the respective attracting fixed points of w1, w2 at infinity. Set

c0 := c1 = c2. Since wn2 .c0 → L+
2 while wn1 b.c0 → L+

1 at the limit when n tends to infinity,
if follows from the equality wm2(n)

2 = aw
m1(n)
1 b that a.L+

1 = L+
2 . Thus aw1a

−1 and w2

have the same attracting fixed point at infinity, namely L+
2 . By Lemma 2.2, this implies

that w1 ∼W w2.

Assume that that g1 and g2 are not independent. In other words the axes L1 and L2

contain respectively rays which are asymptotic to each other. It follows that upon replacing
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g1 and g2 by appropriate nonzero powers (5.iii) holds with gn ≡ 1 for some D > 0 and all
n ≥ 0. The same argument as above can be repeated and now yields either w1 ∼W w2 or
w1 ∼W w−1

2 . �

Proposition 5.3. Let B = (C, δ) be a building of irreducible type (W,S) and G < Aut(B)
be a group of automorphisms acting Weyl–transitively on the chambers. Then G contains
two independent rank-one elements g1, g2 such that g1 6∼Aut(B) g2 if and only if W has an
irreducible non-spherical non-affine parabolic subgroup of finite index.

Proof. The ‘only if’ part is clear since, the Tits boundary of XB is then either empty
or of Tits diameter π. Suppose now that W has an irreducible non-spherical non-affine
parabolic subgroup of finite index. Then, by Corollary 4.7, the group W contains two
rank one elements γ1, γ2 such that γ1 6∼W γ2 and γ1 6∼W γ−1

2 . Furthermore, the latter
property remains valid if we replace γ1 and γ2 by any nonzero power or any W -conjugate,
see Lemma 2.2 Remark 2.3. Therefore, we may and shall assume that some axis of γi
(i = 1, 2) contains a point in the relative interior of a fixed base chamber c of the CAT(0)
realisation of (W, δW ). Let wi = δW (c, γi.c).

Fix now an apartment A of B, which identify it with (W, δW ). In this way we view
c0, γi.c0 and γ2

i .c as chambers of B, for i = 1, 2. By hypothesis G contains an ele-
ment gi such that gi.c = γi.c and g2

i .c = γ2
i .c. Since some γi-axis contains a point in

the relative interior of c, there exists a point xi in the relative interior of γi.c such that
∠xi(γ

−1
i .xi, γi.xi) = π. This implies that ∠xi(g

−1
i .xi, gi.xi) = π; in other words the points

{gni .xi}n∈Z are collinear, and hence gi is a hyperbolic isometry, an axis of which contains
xi.

Let Ai be an apartment containing c and some axis Li of γi; such an apartment exists
by [CH09, Th. E]. Let ρi = ρAi,c be the retraction onto A centred at c. Then ρi ◦ gi is
an automorphism of Ai which maps c to gi.c = γi.c and, hence, coincides with γi if we
identify A to Ai by an means of isomorphism which fixes c. In particular, it follows from
Proposition 4.5 that the gi-axis Li is not contained in any residue whose Weyl group has
the form WI ×WJ with WI and WJ either both infinite or both virtually abelian. By
Theorem 5.1, this implies that gi ∈ G is a rank one isometry of XB. Now the fact that g1

and g2 are independent and Aut(B)-inequivalent follows from Lemma 5.2 in view of the
definition of γ1 and γ2. �

We are now ready for the:

Proof of Theorem 1.1. If G is Weyl-transitive, then by Proposition 5.3, the group G con-
tains two independent rank one elements which are not Aut(B)-equivalent.

If StabG(A) acts cocompactly on some apartment A, we may choose two elements of
StabG(A) whose action on A coincides with some powers of the elements provided by
Corollary 4.7. These two elements of StabG(A) are rank one for the same reason as in
the proof of Proposition 5.3 above; they are independent and Aut(B)-inequivalent by
Lemma 5.2.

In view of Theorem 5.1, we may apply Proposition 2.4, which yields the desired conclu-
sion. �

Proof of Corollary 1.3. WhenR is a field, the Kac–Moody group G(R) acts Weyl-transitively
on each of its two buildings. When R is a domain, we consider the action of G(R) on ei-
ther of the two buildings B+ and B− associated with G(k), where k is a field in which R
embeds. Since G(R) already contains the Weyl group of G(k), it follows that G(R) acts
transitively on the chambers of the standard apartment of both B+ and B−. In all cases,
the fact that Q̃H(G(R)) is infinite-dimensional follows from Theorem 1.1.

The assertion on the stable commutator length now follows from [Bav91], while the
assertion on the commutator width follows from a straightforward verification. �
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Remark 5.4. It follows in particular that a rank one element of the Weyl group of G(R)
acts as a contracting isometry on both B+ and B−.

Proof of Corollary 1.4. Immediate from Corollary 1.3, the simplicity result in [CR09] and
the fact that Kac–Moody groups of different types over non-isomorphic finite fields are
non-isomorphic [CM06, Cor. B]. �

5.D. A special case: buildings with isolated residues. The aim of this section is to
prove Proposition 1.7. We first need an existence result for hyperbolic isometries of proper
Gromov hyperbolic metric spaces. It is certainly well known to the experts; however we
could not find a reference where it is explicitly stated in the literature. We therefore include
a detailed proof.

Proposition 5.5. Let X be a proper Gromov hyperbolic geodesic metric space and G <
Is(X) be any group of isometries. Then one of the following assertions holds:

(1) G contains a hyperbolic isometry.
(2) G has a bounded orbit.
(3) G has a unique fixed point at infinity.

Proof. Let δ be a constant of hyperbolicity for the space X. We assume that G does not
contain any hyperbolic isometry.

We start with the special case when G is countable. We may then write G as the union
of an increasing chain of finite subsets S1 ⊂ S2 ⊂ . . . . By [Kou98, Proposition 3.2], for
each n the set Pn consisting of those points x ∈ X such that d(g.x, x) ≤ 100δ for all g ∈ Sn,
is nonempty. If each Pn meets some fixed bounded subset of X, then

⋂
n Pn is nonempty

since X is proper and, hence, G has a bounded orbit. Otherwise, denoting by X the visual
compactification X ∪∂X, the intersection

⋂
n Pn is a subset of ∂X which is pointwise fixed

by G. If this subset contains more than 2 points then G has a bounded orbit; if it contains
exactly two points then G acts by translation along the geodesic lines joining them and,
since G has no hyperbolic element, we conclude again that G has a bounded orbit. Thus
we are done in this special case.

We now turn to the general case and assume moreover that G has no bounded orbit. In
view of the above we may assume that for every countable subgroup H of G the set PH
of those points x ∈ X such that d(g.x, x) ≤ 100δ for all g ∈ H, is nonempty. The same
arguments as before then yield the desired conclusion. �

Proof of Proposition 1.7. By [Cap07, Corollary E] a building X of type (W,S) as in the
statement possesses isolated Euclidean residues. Thus it admits a realization as a proper
Gromov hyperbolic geodesic metric space |X| on which Aut(X) acts by isometries, and
such that the Euclidean residues correspond in a canonical way to the parabolic points at
infinity of |X|, see [Bow99]. The desired result now follows from Proposition 5.5. �

Remark 5.6. The results of [Cap07] provide in fact a complete characterization of those
buildings which are relatively hyperbolic with respect to some family of (non-necessarily
Euclidean) residues. The arguments above show that Conjecture 1.6 holds in that more
general context. The remaining open case of buildings whose Weyl group is not rela-
tively hyperbolic with respect to any family of finitely generated subgroups is especially
intriguing.

Appendix A. On homogeneous quasi-morphisms of locally compact groups
with integer values

The purpose of this appendix is to prove the following.

Theorem A.1. Let G be a locally compact group. Then any homogeneous quasi-morphism
ϕ : G→ Z is continuous.
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It was observed by Roger Alperin that the solution to Hilbert fifth problem implies that
any homomorphism of a locally compact group to Z is continuous (this follows from [Alp82,
Corollary 3]). The above statement shows that this holds more generally for homogeneous
quasi-morphisms. A remarkable result of a similar nature has been established in [BIW08,
Lemma 7.4], asserting that for any locally compact group G, a homogeneous Borel quasi-
morphism G → R is continuous. Notice that non-homogeneous quasi-morphisms are
generally discontinuous.

We start with a basic consequence of homogeneity.

Lemma A.2. Let ϕ : G → R be a homogeneous quasi-morphism of a group G, which
vanishes on a normal subgroup N . Then ϕ descends to a homogeneous quasi-morphism of
the quotient G/N .

Proof. Given g ∈ G and n ∈ N , we claim that ϕ(g) = ϕ(g · n). Indeed, for each integer
k > 0, there exists nk ∈ N such that (g · n)k = gk · nk. Therefore, we have

ϕ(g · n) = limk→∞
ϕ
(

(gn)k
)

k

= limk→∞
ϕ
(
gk·nk

)
k

≤ limk→∞
(ϕ(gk)+D

k

)
= ϕ(g),

where D is a constant depending only on ϕ. In particular, we have also ϕ(g · n−1) ≤ ϕ(g),
and hence ϕ(gn) = ϕ(g). The desired conclusion follows. �

The next step is to consider totally disconnected groups, the key point being the compact
case.

Lemma A.3. Let G be a profinite group. Then any homogeneous quasi-morphism ϕ :
G→ Z is constant.

Proof. Assume for a contradiction that ϕ is not constant and let g ∈ G be such that
ϕ(g) 6= 0. Let H be the closure of 〈g〉 in G. Thus H is a pro-cyclic group. In particular
it is Abelian and, hence, amenable as an abstract group. It follows that the restriction of
ϕ to H is a homomorphism. Since Z is residually finite, the kernel of the restriction of ϕ
to H is an intersection of finite index subgroups of H. By [Ser94, §4.2], any finite index
subgroup of H is closed. This shows that the restriction of ϕ to H is continuous. Since H
is compact, we deduce ϕ(H) = 0, a contradiction. �

Recall from [Kap54, p. 55] (see also [HRN56, Satz 4]) that a compact Abelian group is
connected if and only if it is divisible (in fact, the latter holds for non-Abelian groups as
well, see [Myc57, Corollary 2]). From this and the preceding two lemmas, we deduce the
following.

Lemma A.4. Let G be a compact group. Then any homogeneous quasi-morphism ϕ : G→
Z is constant.

Proof. Let G◦ denote the neutral component of G. We claim that the restriction of ϕ to
G◦ vanishes. As in the proof of Lemma A.3, it is enough to prove this fact in the case
G◦ is Abelian. As recalled above, a compact connected Abelian group is divisible. Thus
ϕ(G◦) = 0 since a divisible group admits no nonzero homogeneous quasi-morphism. It
follows from Lemma A.2 that ϕ descends to a quasi-morphism of the group of components
G/G◦, and the desired conclusion now follows from Lemma A.3. �

The last and most important step is the following. It relies on the structure theory of
locally compact connected groups.

Lemma A.5. Let G be a connected locally compact group. Then any homogeneous quasi-
morphism ϕ : G→ Z is constant.
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Proof. By [MZ55, Theorem 4.3], the group G possesses a compact normal subgroup K such
that G/K is a Lie group. In view of Lemmas A.2 and A.4, there is no loss of generality in
assuming K = 1. We suppose henceforth that G is a Lie group. Let R denote its soluble
radical. Thus R is a connected Lie group which is amenable as an abstract group. In
particular the restriction of ϕ to R is a homomorphism, and we deduce ϕ(R) = 0 since R
is generated by one-parameter subgroups. By Lemma A.2, we may thus further assume
that G is semi-simple. Appealing again to Lemma A.4, it is enough to deal with the
case when G is simple and non-compact. Let P be a minimal parabolic subgroup of G.
Then P is soluble-by-compact and, hence, as before the restriction of ϕ to P vanishes.
The Bruhat decomposition now implies that every element of G is a bounded product of
elements of a finite number of conjugates of P . Thus ϕ(G) is bounded, whence constant
by homogeneity. �

Proof of Theorem A.1. Let G◦ denote the neutral component of G. By Lemma A.5, the
restriction of ϕ toG◦ vanishes. Thus Lemma A.2 ensures that ϕ descends to a homogeneous
quasi-morphism of the group of components to Z. In other words, it suffices to prove the
theorem in the case when G is totally disconnected. It is enough to show that ϕ−1(0) is
open. By [Bou71, III §4 No 6], the group G possesses some compact open subgroup Q.
Thus Q is a profinite group and Lemma A.3 shows that ϕ(Q) = 0. Thus ϕ−1(0) is indeed
open and we are done. �
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