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Abstract. Simple Lie groups and simple algebraic groups over local fields are the most
prominent members of the class S of compactly generated non-discrete simple locally
compact groups. We outline a new trend, which emerged in the past decade, whose
purpose is the study of S as a whole.
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C’est en quelque sorte une loi historique que les propriétés générales
des groupes simples ont presque toutes été vérifiées d’abord sur les
différents groupes et qu’on a ensuite cherché et trouvé une raison
générale dispensant de l’examen des cas particuliers.1

Élie Cartan, 1936 ([29, p. 199])

1. Introduction

Through the history of their developments, locally compact groups provide a beau-
tiful illustration of the unity of mathematics. Initiated at the turn of the 20th
century under the impetus of Hilbert’s fifth problem, their investigation led to the
creation of topological algebra, laid the foundations of abstract harmonic analysis,
and revealed the relevance of measure and integration, as well as ergodic theory,
to classical number theory. In his 1946 article on the Future of Mathematics [73],
André Weil underlines how the work of Siegel, continuing the great tradition of
Dirichlet, Hermite and Minkowski, opened the way to a systematic study of dis-
crete groups of arithmetic nature by means of the continuous groups in which they
naturally embed. The tremendous developments in the study of lattices in semi-
simple Lie and algebraic groups that occurred in the following 70 years show the
extent to which Weil’s statement was accurate (see [51] and references therein).

The fascinating properties of discrete subgroups of semi-simple Lie and alge-
braic groups have provided landmarks shaping the development of geometric group
theory. Although the universe embraced by geometric group theory is endless and
full of dark zones (see [9]), its investigation often refers to arithmetic lattices as a
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1It is a kind of historical law that the general properties of the simple groups have been verified

first in the various groups, and afterward one has sought and found general explanations that do
not require the examination of special cases.
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reference frame guiding the intuition, to which the novelty of the phenomena ob-
served can be confronted (see [36]). One may wish to formalize the special heuristic
role played by higher rank arithmetic groups by finding purely algebraic proper-
ties characterizing them among all discrete groups. While this problem has been
addressed and solved in characteristic 0 (see [44]), its resolution in characteristic
p > 0 requires understanding which properties isolate, among non-discrete locally
compact groups, the Lie and algebraic groups in which arithmetic groups embed as
lattices. This leads us to the point of view adopted in this paper, which consists in
considering the simple Lie groups and the simple algebraic groups over local fields
as members of a much broader class, denoted by S , comprising all non-discrete,
compactly generated, locally compact groups that are topologically simple, i.e.
whose only closed normal subgroups are the trivial subgroup and the whole group.
The goal of this paper is to present an overview of results and problems pertaining
to a new trend, which emerged in the past decade, whose purpose is the study of
S as a whole.

1.1. Normal subgroups of lattices. The first compelling stride in the study
of S is the following iconic theorem obtained by U. Bader and Y. Shalom in 2006.

Theorem 1.1 (Bader–Shalom [3]). Let G = G1 × · · · × Gn be the direct product
of n ≥ 2 compactly generated, non-discrete, locally compact groups without non-
trivial closed normal subgroup isomorphic to Rd. Let Γ ≤ G be a uniform lattice
whose image under the natural projection G→ G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn
is dense for every i.

If Gi is (hereditarily) just-non-compact for all i, then Γ is (hereditarily) just-
infinite.

An abstract group is called just-infinite if it is infinite and all its proper
quotients are finite. It is hereditarily just-infinite if every finite index subgroup
is just-infinite. Similarly, a locally compact group is just-non-compact if it is
non-compact and its proper Hausdorff quotients are compact, and hereditarily
just-non-compact if that property is inherited by all open subgroups of finite
index. Compactly generated just-non-compact locally compact groups are indeed
intimately related to the class S , as shown by the following.

Theorem 1.2 ([19, Th. E]). A compactly generated just-non-compact locally com-
pact group G satisfies exactly one of the following conditions:

(i) G is discrete (hence just-infinite).

(ii) G has closed normal subgroup isomorphic to Rd, and the quotient is a closed
subgroup of O(d) whose action on Rd is irreducible.

(iii) G has a cocompact closed normal subgroup which is a quasi-product2 of

2A centerless locally compact group G is called the quasi-product of the locally compact
groups H1, . . . , Hn if there is a continuous injective homomorphism of the direct product H1 ×
· · ·×Hn in G, whose image is dense. The respective images of the Hi in G are then called quasi-
factors. The proof of [19, Th. E] ensures that the quasi-factors arising in Theorem 1.2(iii) are
indeed topologically simple and non-discrete; the fact that they are compactly generated requires
an extra argument similar to that in [25, Lem. 4.2].
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finitely many pairwise isomorphic non-compact groups in S .

In particular, a non-discrete hereditarily just-non-compact group without non-
trivial closed normal subgroup isomorphic to Rd is an extension3 of a compact
group by a group in S .

The structure of just-infinite discrete groups has been described by R. Grig-
orchuk and J. Wilson [33, Th. 3]: Every just-infinite group is either a branch group,
or virtually a finite direct power of a simple group, or residually finite and virtually
a finite direct power of a hereditarily just-infinite group.

Theorem 1.1 is a far-reaching extension of the Margulis Normal Subgroup the-
orem [45, Ch. VIII], whose scope is restricted to lattices in semi-simple Lie and
algebraic groups. An amazing feature of Theorem 1.1 is that its proof does not
require any algebraic information on the structure of G beyond the hypotheses
made on the normal subgroups of the factors Gi. Understanding the mechanisms
responsible for the existence of (irreducible) lattices in (products of) groups in S
is however an extremely challenging problem that requires a much deeper under-
standing of groups in S and that goes far beyond the current state of knowledge.
To illustrate this issue, we mention the following remarks.

• A single group in S may fail to contain any lattice whatsoever; see [1]
and [41, Th. 1.4]. Others, like the non-linear Kac–Moody groups in S ,
are subjected to a ‘rank one behaviour’ forcing all of their lattices to admit
infinite proper quotients, and even to be SQ-universal; see [17, Cor. 3.6 and
Rem. 3.7]. Yet other examples admit simple lattices [41, Th. 1.7]. One
naturally asks whether the ‘rank one versus higher rank’ dichotomy governing
the simple algebraic groups over local fields may be extended to a similarly
meaningful partition of the whole class S .

• A product of two non-linear groups in S can contain an irreducible lattice.
This was first revealed by M. Burger and S. Mozes, who constructed ground-
breaking examples of irreducible lattices in the product of two groups of S
acting on trees, see [11]. More examples of a similar nature have been con-
structed by D. Rattaggi [58]. Theorem 1.1 also holds for non-uniform lattices
under a technical condition called integrability (which requires in particular
that the lattice be finitely generated, see [63, §2]). This was exploited to es-
tablish the simplicity of minimal Kac–Moody groups over finite fields, as well
as more general twin building lattices, see [26] and [27]. No other irreducible
lattice in a product of two non-linear groups in S is known as of today.

• The only known irreducible lattices in products of more than two groups
in S are the S-arithmetic lattices in semi-simple algebraic groups. Find-
ing non-arithmetic examples is a notorious open problem suggested by the
seminal paper [11] of Burger–Mozes. Negative results in the context of Kac–
Moody groups are established in [20]. Showing S-arithmetic lattices are the

3We say that a group G is an extension of a group Q by a group N if there is a short exact
sequence 1→ N → G→ Q→ 1.



4 P-E. Caprace

only such examples requires discovering criteria that isolate the algebraic
groups in S .

1.2. Commensurated subgroups and dense embeddings. The Margulis
Normal subgroup theorem and its extension by Bader–Shalom ensures that cen-
terless irreducible lattices in semi-simple algebraic groups of higher rank or in
non-trivial products of groups in S are hereditarily just-infinite. For an infinite
residually finite group Γ, the hereditary just-infinite property can be interpreted as
the property that Γ has ‘as few normal subgroups as it can’: the only non-trivial
normal subgroups are those of finite index, which exist by residual finiteness.

A (hereditarily) just-infinite group may however contain infinite index sub-
groups that are close to normal, namely commensurated subgroups. Two sub-
groups L1, L2 of a group G are called commensurate if the indices [L1 : L1 ∩L2]
and [L2 : L1 ∩ L2] are both finite. The commensurator of a subgroup L ≤ G in
G is defined by

CommG(L) = {g ∈ G | L and gLg−1 are commensurate}.

We say that L is a commensurated subgroup of G if CommG(L) = G. Clearly,
the commensurator of L in G contains the normalizer NG(L). Obvious examples of
commensurated subgroups are normal subgroups, finite subgroups and finite index
subgroups. More generally, any subgroup of a group G that is commensurate to a
normal subgroup of G is commensurated by G.

Arithmetic groups provide prototypical non-obvious examples: GLd(Z) is a
commensurated subgroup of GLd(Q). It turns out that subgroup commensuration
is indeed intimately related to arithmetic phenomena. One illustration of this
is provided by Margulis’ arithmeticity criterion, ensuring that a lattice Γ in a
simple Lie group G is arithmetic if and only if its commensurator CommG(Γ) is
dense in G, see [45, §IX(1.9)]. Moreover, depending on the nature of the ambient
semi-simple group in which an arithmetic group embeds as a lattice, it may or
may not admit infinite commensurated subgroups of infinite index. For example
every commensurated subgroup of PSL3(Z) is finite or of finite index (see [64]),
while the group PSL3(Z[ 12 ]) commensurates its infinite index subgroup PSL3(Z).
The Margulis–Zimmer conjecture predicts that the only source of commensurated
subgroups in a higher rank arithmetic lattice are the totally disconnected factors
of its ambient locally compact group. A discussion of that conjecture, which is
open for uniform lattices, may be consulted in the paper [64] by Y. Shalom and
G. Willis.

The approach to the Margulis–Zimmer conjecture adopted by Shalom–Willis
consists in studying a commensurated subgroup L of an abstract group G via its
Schlichting completion, i.e. the closure of the image of G in the full symmetric
group on the coset space G/L with respect to the topology of pointwise conver-
gence. This yields a totally disconnected locally compact (abbreviated by t.d.l.c.)
group, denoted by G//L, together with a homomorphism G → G//L with dense
image. It is shown in [64] that tools from the structure theory of t.d.l.c. groups
may then be used to settle certain cases of the Margulis–Zimmer conjecture. The
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following result shows the relevance of the class S in this approach. A dense em-
bedding of topological groups is defined as a continuous injective homomorphism
with dense image.

Theorem 1.3 ([25, Prop. 3.6]). For a finitely generated just-infinite group Γ, the
following assertions are equivalent:

(i) Γ has a commensurated infinite subgroup of infinite index.

(ii) Γ has a dense embedding in a non-discrete compactly generated just-non-
compact t.d.l.c. group G.

If moreover Γ is hereditarily just-infinite, then Γ has a virtually commensurated
infinite subgroup of infinite index if and only if Γ virtually has a dense embedding in
a t.d.l.c. group G which is an extension of a compact group by a totally disconnected
group in S .

Some group properties, like amenability or Kazhdan’s property (T), pass from
dense subgroups to the ambient group and descend to cocompact closed normal
subgroups. With Theorems 1.2 and 1.3 at hand, this means that general infor-
mation on groups in the class S enjoying such a property will potentially yield
information on commensurated subgroups of finitely generated just-infinite discrete
groups satisfying that same property.

To conclude this discussion, let us finally mention that commensurated sub-
groups are also relevant to the study of lattice embeddings of discrete groups,
a systematic treatment of which was recently initiated by Bader–Furman–Sauer
[2]. While the Margulis–Zimmer conjecture predicts that a lattice in a higher rank
connected simple Lie group does not have non-trivial commensurated subgroups,
the absence of commensurated subgroups restricts drastically the structure of the
possible lattice envelopes of a finitely generated group. This is illustrated by the
following statement which was suggested to me by Ph. Wesolek. It can be obtained
by combining [2, Prop. 1.1] with results from [19] (see [42, Proof of Th. 7.3]).

Theorem 1.4. Let Γ be a finitely generated infinite group whose only commensu-
rated subgroups are finite or of finite index.

Any locally compact group H in which Γ embeds as a lattice has a compact
normal subgroup Q such that the quotient G = H/Q satisfies one of the following
assertions:

(1) G is discrete and just-infinite;

(2) G is virtually the direct product of connected non-compact centerless simple
Lie groups;

(3) G is an extension of a compact group by a quasi-product of finitely many
pairwise isomorphic totally disconnected groups in S .

The theorems discussed above highlight tight relations between the intrinsic
structure of finitely generated just-infinite groups and the non-discrete simple lo-
cally compact groups. We view them as an invitation to study the class S , on
which we shall now focus.
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2. Examples of simple groups

2.1. Semi-simple algebraic groups over local fields. The classification of the
non-discrete locally compact fields, due independently to D. van Dantzig [72] and
L. Pontryagin [55], is an early success of the development of the theory of locally
compact groups. That classification ensures that a non-discrete locally compact
field is isomorphic to R, C, or a finite extension of Qp or of Fp((t)). Among
those, the disconnected ones (i.e. all of them except R and C) are called non-
Archimedean local fields. Given a locally compact field k, the group GLd(k)
inherits a locally compact topology from the product topology on kd×d. Any of its
closed subgroups is thus locally compact. A linear algebraic group over a locally
compact field is thus endowed with a locally compact group topology. The group
is furthermore totally disconnected as soon as the field is.

The theory of semi-simple algebraic groups over local fields was initiated by
N. Iwahori and H. Matsumoto, and gained full maturity in the monumental work
of F. Bruhat and J. Tits. A complete classification of the simple algebraic groups
over local fields was achieved by M. Kneser in characteristic 0 and Bruhat–Tits in
general; see [70] for an extended overview.

Let k be non-Archimedean local field and G be a k-isotropic simply connected
k-simple algebraic k-group. Then the quotient G = G(k)/Z of G(k) be its centre
enjoys the following remarkable properties:

• G is a non-discrete compactly generated t.d.l.c. second countable group (see
§2.3 in [45, Ch. I]).

• G acts continuously, properly, cocompactly on a locally finite Euclidean
building whose dimension equals the k-rank of G; see §2 in [70]. More-
over, the G-action is strongly transitive, i.e. transitive on pairs consisting
of an apartment and a chamber in that apartment.

• G is abstractly simple, i.e. it is simple as an abstract group (see the main
result of [67], combined with (2.3.1)(a) in [45, Ch. I]).

• Every proper open subgroup of G is compact (see [56, Th. (T)]).

• G has an open subgroup which is a hereditarily just-infinite pro-p group,
where p is the residue characteristic of k (see [28, Th. 2.6]).

• G contains non-abelian discrete free subgroups (follows by a standard ping-
pong argument in the rank-one case; the general case reduces to rank–one
by [8, Th. 7.2]).

2.2. Kac–Moody groups over finite fields. Another important family of non-
discrete simple locally compact groups of Lie theoretic origin is obtained by consid-
ering suitable completions of Kac–Moody groups over a finite ground field. This
was observed for the first time by B. Rémy [60]. Kac–Moody algebras form
a class of finitely generated complex Lie algebras whose main properties may be
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consulted in [38]. Their definition is constructive: it provides a list of Lie alge-
bras gA attached to a parameter A via a presentation à la Chevalley–Serre. The
parameter in question is a so-called generalized Cartan matrix, i.e. a square
matrix A = (Aij)1≤i,j≤d of size d with integer coefficients, such that Aii = 2,
Aij ≤ 0 for i 6= j, and Aij = 0 if and only if Aji = 0. If A is a Cartan matrix
in the usual sense, the Lie algebra gA is a finite-dimensional semi-simple complex
Lie algebra; in any other case gA is infinite-dimensional. In [71], J. Tits defines a
group functor GA on the category of commutative rings, characterized by a small
list of properties analogous to key features of Chevalley groups; one of them is that
the group GA(C) has a natural action by automorphisms on the Lie algebra gA.
The group obtained by evaluating the Tits functor GA over a field k is called a
minimal Kac–Moody group over k. Tits’ construction equips the Kac–Moody
group GA(k) with a natural action by automorphisms on a product of two buildings
B+ ×B− whose type is determined by the Weyl group of the Kac–Moody algebra
gA. Those buildings are locally finite if and only if the field k is finite. In that
case the group GA(k) is finitely generated and its action on B+ × B− is proper.
The full automorphism groups Aut(B+) and Aut(B−) are compactly generated
t.d.l.c. groups, so the closure of the projection of GA(k) onto a coordinate is also
compactly generated and locally compact. The locally compact groups obtained
in this way are respectively denoted by Grr+A (k) and Grr−A (k). They are called
maximal or complete Kac–Moody groups over k. The letters rr stand for
Rémy–Ronan, who introduced this completion of the minimal Kac–Moody group
GA(k) in [61]. Other completions of minimal Kac–Moody groups are described in
the literature and yield potentially different groups; see [62, §6] and [46, Ch. 6] for
more information and references. Let us merely mention the existence of one other
completion, denoted by Gma+A (k) (or Gma−A (k)), introduced by O. Mathieu [49] and
developed by G. Rousseau [62], and also called maximal Kac–Moody group.
Instead of relying on the action of GA(k) on the building B+ (or B−), its definition
rather uses the topology induced by the natural Z-grading of the Lie algebra gA.
That completion is more naturally linked to the Kac–Moody algebra, and is thus
more suited for algebraic investigations. The locally compact group Gma+A (k) also
acts continuously, properly and cocompactly on the building B+.

The following statement summarizes properties of complete Kac–Moody groups
established in [12], [18], [46], [47], [48] and [62].

Theorem 2.1. Let A = (Aij)1≤i,j≤d be an indecomposable generalized Cartan
matrix which is not of finite type (i.e. such that gA is infinite-dimensional). Set
Grr = Grr+A (Fq) and Gma = Gma+A (Fq). Let Z ′ denote the kernel of the action of
Gma on the building B+.

(i) Grr and Gma are non-discrete compactly generated t.d.l.c. second countable
groups.

(ii) Grr and Gma act continuously, properly and strongly transitively (hence co-
compactly) on the infinite locally finite building B+. Moreover Grr is con-
tained in Gma/Z ′ (the latter being identified with its image in Aut(B+)).
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(iii) If the characteristic p of Fq is larger than the maximal off-diagonal entry of
A in absolute value, then Grr = Gma/Z ′. Otherwise the inclusion of Grr in
Gma/Z ′ may be strict.

(iv) Grr is abstractly simple, and so is Gma/Z ′ provided the matrix A is non-
affine.

(v) Every open subgroup of Grr and Gma is compactly generated (but not neces-
sarily compact).

(vi) Grr (resp. Gma/Z ′) has an open pro-p subgroup U . If A has a proper subma-
trix which is not of finite type, then U has infinite closed normal subgroups
of infinite index. If the characteristic p of Fq is larger than the maximal
off-diagonal entry of A in absolute value, then U is topologically finitely gen-
erated.

(vii) Grr and Gma contain non-abelian discrete free subgroups.

Dwelling on the distinction between the completions Grr and Gma may seem ar-
tificially complicated and confusing, especially in view of the fact that the proper
comparison between the groups Grr+A (Fq) and Gma+A (Fq) is a delicate and sub-
tle question which is incompletely understood beyond the case covered by Theo-
rem 2.1(iii). It should however be emphasized that, as stated in Theorem 2.1(iii),
the simple groups Grr and Gma/Z ′ can be different. In fact, if one fixes the
field Fq and let A run over all generalized Cartan matrices of size d, the comple-
tion Grr+A (Fq) meets only finitely many isomorphism classes, while the number of
isomorphism classes taken by Gma+A (Fq)/Z

′ can be strictly larger (see [48, §6]).
The Mathieu–Rousseau completion Gma+A (Fq)/Z

′ thus affords more (and poten-
tially infinitely many more) simple t.d.l.c. groups than the geometric completion
Grr+A (Fq).

2.3. Groups acting on trees. Historically, the first examples of non-discrete
non-linear simple locally compact groups are due to J. Tits [68]. In that paper,
J. Tits establishes a very flexible simplicity criterion for groups acting on trees
(see Th. 4.5 in loc. cit.), which has been repeatedly exploited and generalized since
then. The following result provides a first illustration of it.

Theorem 2.2. Let T be an edge-transitive locally finite tree with vertex degrees ≥ 2
and at least one vertex of degree ≥ 3.

Then the group Aut(T )+, generated by the pointwise edge-stabilizers in Aut(T ),
is a non-discrete compactly generated abstractly simple t.d.l.c. group. Moreover,
for any n and any field F , the only homomorphism of Aut(T )+ to GLn(F ) is the
trivial one.

Proof. The abstract simplicity is ensured by [68, Th. 4.5]. To prove the absence of
finite-dimensional representations, it suffices to find a finitely generated subgroup
of Aut(T )+ that is not residually finite. It is easy to see that the iterated wreath
product (C2 o C2) o Z is isomorphic to a subgroup of the stabilizer of a geodesic
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line of T . That group is finitely generated, but not residually finite (see Prop. 5 in
[27]).

In the introduction of [68], Tits writes that his simplicity criterion provides a
large variety of pairwise non-isomorphic simple locally compact groups and illus-
trates that statement with explicit examples, see [68, Prop. 8.2 and Rem. 8.4]. Tits’
remark on the variety of examples revealed to be utterly lucid: A remarkable list
of examples of simple locally compact groups has been found since then with the
help of Tits’ criterion or natural generalizations thereof; see [4], [10, §3.2], [41], [50],
[57], [65]. The scope of the criterion has also been extended to encompass groups
acting on spaces more general than trees: see [35], [40, Appendix] for CAT(0) cube
complexes and [13] for right-angled buildings.

The examples mentioned above are numerous and feature various properties.
Giving an exhaustive account goes beyond the scope of this paper. We shall rather
focus on one class of examples whose diversity is especially striking. This class is
provided by Simon Smith’s extension, described in [65], of a construction due to
M. Burger and S. Mozes [10, §3].

Consider a non-empty (possibly infinite) discrete set Ω and a simplicial tree
T all of whose vertices have a degree equal to the cardinality of Ω. Thus the
set of edges E(v) containing a vertex v is in one-to-one correspondence with the
set Ω. A coherent choice of bijections of E(v) to Ω for all v is afforded by a
legal coloring of T , i.e. a map i : E(T ) → Ω whose restriction to each E(v) is
bijective. Clearly, legal colorings exist, and any two of them are transformed into
one another by an automorphism of T . Given a legal coloring i on T , we associate
to each automorphism g ∈ Aut(T ) its local action at a vertex v

σ(g, v) = i|E(gv) ◦ g ◦
(
i|E(v)

)−1 ∈ Sym(Ω).

Fixing F any subgroup of Sym(Ω), we define the group

U(F ) = {g ∈ Aut(T ) | ∀v ∈ V (T ), σ(g, v) ∈ F}

and call it the universal group of automorphisms of T with local action pre-
scribed by F . The conjugacy class of U(F ) in Aut(T ) is independent of the choice
of the legal coloring i, which justifies the choice of a notation hiding the depen-
dence on i. The definition of U(F ) is due to Burger–Mozes [10, §3.2] in case Ω is
finite, and to S. Smith [65] in general. Tits’ simplicity criterion mentioned above
ensures that the subgroup U(F )+ generated by the pointwise edge-stabilisers in
U(F ) is a simple group (unless trivial).

Let us now address the problem of endowing it with a compactly generated
t.d.l.c. group topology. Given two permutation groups F ≤ F ′ ≤ Sym(Ω), we
have a natural inclusion U(F ) ≤ U(F ′). Since the group U({1}) acts freely and
transitively on V (T ), we see that U(F ) is vertex-transitive for any F . When Ω is
finite, the tree T is locally finite and the group Aut(T ) is a compactly generated
t.d.l.c. second countable group for the topology of pointwise convergence on the
vertex-set. As a closed vertex-transitive subgroup of Aut(T ), the universal group
U(F ) inherits the same topological properties. When Ω is infinite, the group
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Aut(T ) is no longer locally compact; it is however possible to construct a t.d.l.c.
group topology on U(F ) when F itself is a t.d.l.c. group acting continuously on
the discrete set Ω. The key is to impose that the stabilisers in F of points in Ω
are compact and open. Under that condition, every edge of T has a compact open
stabiliser in U(F ) (so that the latter is indeed a locally compact group), while the
vertex-stabilisers are open but need not be compact. The properties of the group
U(F ) established in [10, §3.2] and [65] yield the following.

Theorem 2.3. For any (possibly discrete) compactly generated t.d.l.c. group F 6=
{1} and any compact open subgroup U ≤ F such that

⋂
g∈F gUg

−1 = {1} and

F = 〈gUg−1 | g ∈ F 〉, there is a non-discrete compactly generated abstractly simple
t.d.l.c. group U(F )+ which has an open subgroup mapping continuously onto F with
compact kernel.

The class of groups F satisfying the condition of Theorem 2.3 is extremely
broad, and the theorem suggests that the class of non-discrete compactly generated
simple locally groups has a similar diversity (although it is not formally clear that
two distinct groups F and F ′ yield two non-isomorphic simple groups U(F )+ and
U(F ′)+). A precise illustration is provided in [65, §7]: an uncountable family of
pairwise non-isomorphic non-discrete compactly generated simple locally compact
groups is obtained by letting F run over the class of Olshanskii–Tarski monsters.

2.4. Groups almost acting on trees. Another fascinating class of simple groups
closely related to groups acting on trees is provided by groups of tree sphero-
morphisms, also called tree almost automorphisms. The original definition
goes back to the work of Y. Neretin [53]. The prototypical example of such groups
is the following. Given a regular locally finite tree T of degree ≥ 3, we define the
Neretin group Ner(T ) by

Ner(T ) =
{
g ∈ Homeo(∂T ) | ∀ξ ∈ ∂T, ∃h ∈ Aut(T ), ∃α ⊂ ∂T clopen,

ξ ∈ α and g|α = h|α
}
.

In the language of topological dynamics, the group Ner(T ) is the topological full
group associated to the Aut(T )-action on ∂T . The Neretin group Ner(T ) is proved
to be simple in [39]. It carries a unique t.d.l.c. group topology such that the natural
inclusion Aut(T ) ≤ Ner(T ) is continuous and open; with respect to that topology
it is a non-discrete compactly generated t.d.l.c. group. The group Ner(T ) enjoys
various striking properties, like the absence of any lattice subgroup established in
[1]. Other non-discrete simple t.d.l.c. groups of a similar nature are discussed in
[14, §6] and [5, Th. 4.16].

2.5. Beyond compact generation. We close this chapter by mentioning some
of the pathologies that may occur as soon as one considers non-compactly generated
groups, following [76, §3].

Let Ω be an infinite set. We endow Sym(Ω) with the topology of pointwise
convergence. The subgroup of finitely supported even permutations is denoted by
Alt(Ω).
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Proposition 2.4. Let U ≤ Sym(Ω) be an infinite closed subgroup acting with
finite orbits. Then the group G = 〈U ∪Alt(Ω)〉 enjoys the following properties.

(i) G carries a unique t.d.l.c. group topology such that the inclusion U → G is
continuous and open. It is second countable if Ω is countable.

(ii) The compact open subgroups of G form a directed set whose union is G. In
particular G is not compactly generated.

(iii) G is not abstractly simple.

(iv) If U ∩Alt(Ω) is dense in U , then G is topologically simple.

Proof. (i) The hypotheses made on U imply that U is profinite, hence compact.
The required property of G follows from the fact that U is a commensurated
subgroup of G. Moreover, if Ω is countable, then U is metrizable and Alt(Ω) is
countable, so that G is indeed second countable.

(ii) Any compact subset of G preserves all but finitely many U -orbits, and is thus
contained in a compact subgroup of G.

(iii) Alt(Ω) is a non-trivial normal subgroup of Sym(Ω), hence of G. We have
Alt(Ω) 6= G since U is infinite and closed, and thus contains permutations whose
support is infinite. Thus G is not abstractly simple.

(iv) Assume now that U ∩Alt(Ω) is dense in U . It follows that Alt(Ω) is dense in
G. Let now N be a non-trivial closed normal subgroup of G. Since the centralizer
of Alt(Ω) in Sym(Ω) is trivial (because the Alt(Ω)-action is n-transitive for any
n), we have {1} 6= [N,Alt(Ω)] ≤ N ∩Alt(Ω). Since Alt(Ω) is simple, we infer that
N contains Alt(Ω). It follows that N = G since Alt(Ω) is dense.

Any profinite group can be embedded as a closed subgroup in a product of
finite groups, and any finite group can be embedded in a finite alternating group.
Hence we obtain the following.

Corollary 2.5. Any infinite direct product of finite groups can be continuously
embedded as an open subgroup in a non-discrete topologically simple locally compact
group.

In particular any profinite group can be continuously embedded in a non-discrete
topologically simple locally compact group.

The local structure of a non-discrete topologically simple t.d.l.c. group is thus
quite flexible, although it is not completely arbitrary, since some profinite groups
do not continuously embed as open subgroups of simple t.d.l.c. groups (e.g. a
non-abelian p-adic analytic pro-p group whose Qp-algebra is not simple). That
situation changes rather drastically under the assumption that the simple group is
compactly generated, as we shall now see.
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3. The class S

Since the connected component of the identity is a closed normal subgroup of every
locally compact group, it follows that a group in S is either connected or totally
disconnected. The solution to Hilbert’s fifth problem (see [66]) implies that the the
connected members of S are all simple Lie groups. Thus S is naturally partitioned
into two subclasses, denoted by SLie (consisting of connected Lie groups) and Std

(consisting of totally disconnected groups) respectively.
Among the examples of simple groups reviewed in the previous section, those

derived from Tits’ simplicity criterion or an extension thereof, i.e. those mentioned
in Sections 2.3 and 2.4, seem intractable and certainly out of reach of any exhaus-
tive understanding. It is however possible to identify formally common features
that those groups share. One of these common features is that all those groups
admit a non-trivial continuous action on a totally disconnected compact Hausdorff
space with non-trivial elements of arbitrarily small support. This can be formalized
with the concept of micro-supported actions introduced below.

3.1. Micro-supported actions. Consider a groupG acting by homeomorphisms
on a Hausdorff topological space X. The rigid stabiliser of a subset U ⊂ X, de-
noted by RistG(U), is defined as the pointwise stabiliser in G of the complement
X \U . The G-action on X is called micro-supported if for every non-empty open
set U ⊂ X, the rigid stabiliser RistG(U) is non-trivial. Micro-supported actions
occur naturally when considering large transformation groups, like the full home-
omorphism group or diffeomorphism group of a manifold. Moreover, it has been
observed long ago that a group with a micro-supported action which is ‘sufficiently
transitive’ is often simple, or at least it has a simple derived subgroup; see [32]
and references therein. The following result is an explicit illustration of that fact.
A subset α ⊂ X is called compressible (under the G-action on X) if for every
non-empty open set β ⊂ Ω, there exists g ∈ G such that gα ⊂ β.

Proposition 3.1 ([25, Prop. H]). Assume that the G-action on X is micro-
supported.

If there exists a non-empty compressible open set α in X, then the intersection
S of all non-trivial normal subgroups of G is non-trivial.

If in addition there exits a non-empty open set α′ in X which is compressible
under the S-action on X, then S is simple.

It turns out that for groups in Std, the existence of a non-trivial micro-
supported action on a compact totally disconnected space is encoded in the local
algebraic structure; in other words, it can be detected in arbitrarily small iden-
tity neighbourhoods. In order to explain this, we recall the construction of the
structure lattice, a local invariant introduced in a joint work with Colin Reid
and George Willis outlined in [22] and developed in [23, 25]. It is inspired by
earlier work of John Wilson on the structure of just-infinite groups [77] and by
Barnea–Ershov–Weigel on abstract commensurators of profinite groups [5].

Two subgroups L1, L2 of a t.d.l.c. group G are called locally equivalent if
their intersection L1 ∩ L2 is relatively open in both L1 and L2. The local class
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of L is denoted by [L]. When L1 and L2 are both compact, they are locally
equivalent if and only if they are commensurate. A subgroup L ≤ G is called
locally normal if its normalizer NG(L) is open. When G is a p-adic Lie group,
two closed subgroups are locally equivalent if and only if their Lie algebras are the
same subalgebra of g = Lie(G), and a closed subgroup is locally normal if and only
if its Lie algebra is an ideal in g. The structure lattice4 of a t.d.l.c. group G,
denoted by LN (G), is the set of local equivalence classes of compact locally normal
subgroups, equipped with the order relation induced by inclusion. It is a modular
lattice on which G acts continuously by automorphisms. The structure lattice has a
smallest element, denoted by 0 (namely the local class of the trivial subgroup) and
a largest one, denoted by ∞ (namely the local class of compact open subgroups).
Classical lattice theory associates geometric or topological structures to modular
lattices that are complemented, i.e. for each α there exists β with α ∧ β = 0
and α∨ β =∞ (see e.g. [7, Ch. IV]). Although the structure lattice is usually not
a complemented lattice, there is a natural algebraic map whose properties suggest
those of an orthocomplementation, namely the centralizer map. The centralizer
map is order-reversing and maps a locally normal subgroup to a locally normal
subgroup. However, there are two obstructions for the centralizer map to play
the role of an orthocomplementation: the centralizers of two locally equivalent
locally normal subgroups may be different, and a locally normal subgroup can
have a non-trivial intersection with its centralizer. Concrete examples illustrating
this are provided by the locally abelian topologically simple groups arising from
Corollary 2.5. This issue is resolved in [23]: if a t.d.l.c. group G is [A]-semi-
simple, which means that its only discrete normal subgroup and its only virtually
solvable locally normal compact subgroups are the trivial subgroup, then for any
locally normal compact subgroup L ≤ G, we have L ∩ CG(L) = 1 and for any K
locally equivalent to L, we have CG(L) = CG(K). Therefore, the map

LN (G)→ LN (G) : [L] 7→ [L]⊥ = [CG(L)]

is well defined and satisfies [L] ∧ [L]⊥ = 0. The discrete G-set

LC(G) = {α⊥ | α ∈ LN (G)}

is then naturally endowed with the structure of a Boolean lattice. It is called the
centralizer lattice of G.

Theorem 3.2 ([25, Theorem A]). Every group G ∈ Std is [A]-semi-simple. In
particular the centralizer lattice LC(G) is a well-defined Boolean algebra.

The Stone duality theorem ensures that every Boolean lattice A is the lattice
of clopen sets of its Stone dual, which is the compact totally disconnected space
denoted by ΩA consisting of all lattice homomorphisms A → {0, 1}, endowed with

4We warn the reader that the word lattice has two different common acceptations in mathe-
matics, both used in this paper: A lattice can mean a discrete subgroup of finite covolume (as
in §1.1 above), or a poset in which any pair has a supremum and an infimum (as in the current
section).
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the topology of pointwise convergence. Thus Theorem 3.2 yields a canonical com-
pact G-space. The following result shows that this space has remarkable dynamical
properties and governs all micro-supported G-actions on compact totally discon-
nected spaces. A compact G-space Ω is called minimal if every G-orbit is dense,
and strongly proximal if the closure of the G-orbit of every probability measure
on Ω contains a Dirac mass.

Theorem 3.3 ([25, Th. K]). Let G ∈ Std and ΩG denote the Stone dual of LC(G).

(i) The canonical G-action on ΩG is continuous, minimal, strongly proximal,
and micro-supported. Moreover there exists a non-empty compressible clopen
set.

(ii) Every compact totally disconnected space with a continuous micro-supported
G-action is a G-quotient of ΩG. In particular, every such action is minimal,
strongly proximal and has a non-empty compressible clopen set.

Corollary 3.4. For a group G ∈ Std, the following assertions are equivalent.

(1) Every continuous micro-supported G-action on a compact totally disconnected
space is trivial.

(2) LC(G) = {0,∞}.

(3) For any pair of compact subgroups L1, L2 ≤ G with open normalizer, we have
[L1, L2] = 1 if and only if L1 = 1 or L2 = 1.

Let us close this section with what we view as a tentalizing analogy. The cen-
tralizer lattice of a group G ∈ Std is a local invariant that can be trivial or not,
and thus provides an obvious partition of the class Std into two proper subclasses.
Theorem 3.3 and Corollary 3.4 provide an interpretation of that subdivision in
terms of a global property, namely the existence of a continuous micro-supported
G-action on a compact totally disconnected space. There is an analogous subdivi-
sion of the class of finite simple groups: Indeed, the existence of a transitive action
admitting elements with small support characterizes the alternating groups. This
is expressed by the following beautiful result of Guralnick–Magaard, providing a
sharp and surprising quantitative measure of what ‘small’ means in that context.

Theorem 3.5 (Guralnick–Magaard [34, Cor. 1]). Let G be a finite simple group
acting transitively5 by permutations on a set X. If G contains a non-trivial el-
ement, the proportion of whose fixed points is greater than 4/7, then G is an
alternating group.

According to the Classification of the non-abelian Finite Simple Groups, the
complement of the subclass constituted by the alternating groups consists, up to
twenty-six sporadic exceptions, of the groups of Lie type. At the time of this
writing, the only known groups in Std with a trivial centralizer lattice are also

5The cited reference deals with primitive actions; the reduction from transitive to primitive
actions is straightforward.
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groups of Lie theoretic origin, see Section 2. It is a major challenge to elucidate
the nature of the groups in Std whose centralizer lattice is trivial, and to determine
their actual relation to Lie theory.

3.2. Characterizing algebraic groups. The simple algebraic groups over local
fields are important members of the class Std, due to their connections to other
areas of mathematics. It is thus desirable to understand the specific properties
that isolate algebraic groups within the class Std.

3.2.1. Linearity. A first exceptional property of algebraic groups is that they
are the only linear groups in Std. A linear group is a locally compact group G
admitting a continuous faithful representation G→ GLd(k) over a locally compact
field k. Linearity naturally unifies three important classes of simple locally compact
groups:

Theorem 3.6 ([28, Cor. 1.6]). A compactly generated topologically simple locally
compact group is linear if and only if it belongs to one of the following families:

• Finite simple groups.

• Connected simple Lie groups.

• Simple algebraic groups over non-Archimedean local fields.

Among non-discrete totally disconnected groups, the simple algebraic groups
can be characterized locally:

Theorem 3.7 ([28, Cor. 1.4]). A group G ∈ Std is a simple algebraic group over
a local field if and only if G has a linear open subgroup.

It is again important to note that such a result fails for non-compactly generated
groups. By Corollary 2.5, a topologically simple locally compact group can be
locally isomorphic to the additive group of the local field Fp((t)). The proof of
those results relies in an essential way on the results on the structure lattice from
[23, 25], combined with R. Pink’s advanced study of compact subgroups of linear
groups over local fields [54].

3.2.2. Buildings and BN-pairs. Algebraic groups within S may also be char-
acterized in geometric terms. Bruhat–Tits theory associates a locally finite Eu-
clidean building to each simple algebraic group over a local field. Conversely, a
classification theorem of Tits shows that all locally finite irreducible Euclidean
buildings of dimension ≥ 3 arise from Bruhat–Tits theory. This suggests one may
be able to characterize algebraic groups within Std in terms of their capability
of acting sufficiently transitively on Euclidean buildings; this would yield a purely
algebraic characterization via the concept of BN-pairs. However, dealing with the
case of low dimensional buildings is especially challenging: for 2-dimensional build-
ings, the characterization was established only recently in [21, Cor. E], while for
1-dimensional buildings, namely trees, one has to cope with the numerous non-
linear locally compact groups acting on trees. The following summarizes known
results in this direction.
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Theorem 3.8. Let T be a locally finite tree with vertex degrees ≥ 2. Let G ≤
Aut(T ) be a closed subgroup belonging to S , acting transitively on the set of ends
∂T .

(i) ([15, Th. A]) G is isomorphic to PSL2(k) with k a non-Archimedean local
field if and only if the stabilizer Gξ of an end ξ ∈ ∂T is metabelian.

(ii) ([16, Cor. 1.2]) G is isomorphic to a rank one simple algebraic group over a
non-Archimedean local field with abelian root groups if and only if the con-
traction group con(g) = {x ∈ G | gnxg−n → 1} of an element g ∈ G acting
hyperbolically on T is abelian.

The interest of those statements is that the linearity of the group is deduced
from an abstract/topological group property. An application of Theorem 3.8 to
sharply-3-transitive locally compact groups is described in [16, §5.2].

The class of topologically simple groups acting properly on a tree T and tran-
sitively on ∂T may be viewed as a microcosmos reflecting some of the intriguing
features of the class Std. It contains rank one algebraic groups over local fields,
rank two Kac–Moody groups over finite fields, as well as groups with a non-trivial
centralizer lattice like (some of) those arising from Theorems 2.2 and 2.3. A break-
through in the study of that microcosmos was accomplished by N. Radu [57], who
obtained a remarkable classification theorem describing completely those groups
under the extra hypothesis that the local action of a vertex stabiliser on its neigh-
bours contains the full alternating group. The latter hypothesis happens to be
redundant when the valency of the vertex in question avoids the sparse set of val-
ues constituted by the degrees of the finite 2-transitive groups different from the
full symmetric or alternating groups (see [57, Th. B and Cor. D]).

3.3. Challenges.

Lorsque l’on veut parler de théorie des groupes, que ce soit au passé
ou au présent, l’idée de classification se présente immanquable-
ment à l’esprit, idée si obstinément attachée au sujet qui nous oc-
cupe qu’elle en a acquis mauvaise réputation auprès de bien des
mathématiciens.6

Jacques Tits, 1975 [69]

The pantheon of classification theorems in mathematics includes some of the
most salient results from group theory: the classification of the simple Lie groups
by W. Killing and E. Cartan, the classification of the simple algebraic groups over
algebraically closed fields by C. Chevalley (written up in famous seminar notes that
have been nicknamed “The Bible” by the specialists — see [31] — and recently
been reedited in [30]) and the Classification of the Finite Simple Groups.

6When one wants to speak about group theory, whether past or present, the idea of a classi-
fication comes unavoidably to mind, an idea so intimately attached to the topic of our concern
that it acquired a bad reputation among many mathematicians.
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Although still in its infancy, the study of the class S should not be aimed at a
classification up to isomorphism: Theorem 2.3 indeed provides strong evidence that
this classification problem is at least comparable in complexity to the classification
of the finitely generated simple groups with torsion. This should not be viewed as
an obstruction to the study of this class, but rather as a hint towards its proper
calibration. We conclude this paper by suggesting directions that future study of
this class could pursue.

Non-compact simple Lie groups are non-positively curved : they act properly
on their associated symmetric spaces, which are simply connected Riemannian
manifolds of non-positive sectional curvature. This fundamental feature, which
is far from obvious from a contemplation of the axioms of Lie theory, influences
deeply their global structure as well as the properties of their discrete subgroups.
It has played a key role in the development of geometric group theory. Similarly,
the non-positive curvature features of simple algebraic groups over local fields
were unveiled by Bruhat–Tits’ theory via Euclidean buildings. Understanding the
extent to which those geometric features are shared by all non-compact groups
in S is a general (and rather vague) problem, which however suggests specific
questions based on the experience, acquired by geometric group theory, of the
ways in which actions on geometric spaces of non-positive curvature influences the
algebraic properties of a group. Non-elementary Gromov hyperbolic groups, as
well as many other non-positively curved, have exponential growth. This suggests
the following:

Question 3.9. Can a group in Std be of subexponential growth?

The growth means the word growth, i.e. the growth rate of the volume (in
terms of Haar measure) of the ball of radius r around the identity in the word
metric, with respect to a compact generating set, as a function of r. Losert’s
extension of Gromov’s theorem (see [43]) implies that the growth of a group in Std

is superpolynomial. All known examples in Std contain discrete free subgroups
and thus have exponential growth. The following weakening of Question 3.9 is
equally natural:

Question 3.10. Can a group in Std be amenable?

Additional motivation for this question is provided by the recent groundbreak-
ing discovery of finitely generated infinite simple amenable groups by Juschenko–
Monod [37]; V. Nekrashevych found examples that are moreover torsion groups of
subexponential growth [52, Th. 1.2]. Theorem 3.3 implies a negative answer for
all groups G ∈ Std with a non-trivial centralizer lattice. The negative answer to
Question 3.10 has several striking implications: It implies that every finitely gener-
ated infinite simple amenable group has no non-trivial commensurated subgroups
(by Theorem 1.3) and furthermore that the only lattice envelopes of such groups
are compact-by-discrete (by Theorem 1.4).

Leaving the geometric aspects aside, we also mention another fundamental
problem, that is very natural from a purely algebraic viewpoint, and is unavoidable
from the point of view of the role of simple groups in the global structure of general
t.d.l.c. groups (see [19] and [59]):
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Question 3.11. Can a group in Std have a proper dense normal subgroup?

Again, when non-trivial, the centralizer lattice yields a partial negative answer
(see [25, Th. Q]).

The theory of the scale function, initiated by G. Willis in [75], provides tools
that are relevant to those a priori non-related problems. In order to illustrate this,
let us first mention the following, which can be deduced from the results in [6]:

Theorem 3.12 (Baumgartner–Willis). Let G be a compactly generated t.d.l.c.
group. If G contains a non-unimodular closed subgroup, then G has exponential
growth.

It is shown in [6] that the existence of a non-unimodular closed subgroup in
an arbitrary t.d.l.c. group G implies the existence of an element g ∈ G whose
contraction group con(g) = {x ∈ G | gnxg−n → 1} is non-trivial (indeed has
non-compact closure). It turns out that contraction groups are directly relevant
to Question 3.11:

Theorem 3.13 ([24]). Let G be a t.d.l.c. group. Every dense subnormal subgroup
of G contains the group G† = 〈con(g) | g ∈ G〉.

In particular, if G is topologically simple and contains an element whose con-
traction group is non-trivial, then G† is abstractly simple, and is the smallest dense
normal subgroup of G.

Those considerations motivate the following.

Question 3.14. Can a group in Std have all its closed subgroups unimodular?
Can it exclusively consist of elements whose contraction group is trivial?

The questions listed above should not be viewed as defining ultimate goals
for the study of S , but rather as illustrations of the limitations of the current
state of knowledge. It is conceivable that a single new example of a group in S
could provide a positive answer to all the above questions at once. A concrete
strategy to find new examples is actually provided by Theorem 1.3: A positive
answer to Question 3.10 (resp. Question 3.9) could be obtained by exhibiting
a finitely generated just-infinite amenable group (resp. group of subexponential
growth) with an infinite commensurated subgroup of infinite index. A recent result
of Ph. Wesolek (elaborating on Theorem 1.3) implies that this won’t work with
the Grigorchuk group: Indeed a finitely generated just-infinite branch group does
not have any infinite commensurated subgroup of infinite index (see [74]). This
leads us naturally to a compelling open problem: What are the commensurated
subgroups in the simple amenable groups constructed by Juschenko–Monod [37]
and Nekrashevych [52]?
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