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INTRODUCTION

Since the origin, Kac-Moody groups (both in their so-called minimal and maximal versions) have
been mostly considered as natural analogues of semisimple algebraic groups arising in an infinite-
dimensional Lie theoretic context (see e.g. | ] and | ]). A good illustration of this analogy
is the construction of minimal Kac-Moody groups over arbitrary fields, due to J. Tits [ |, by
means of presentations generalizing in infinite dimension the so-called Steinberg presentations of
Chevalley groups over fields | ]. This presentation provides not only a Kac-Moody group G, but
also a family of root subgroups {U, }ace indexed by an abstract root system ® and satisfying a list
of properties shared by the system of root groups of any isotropic semisimple algebraic group. These
properties constitute the group theoretic counterpart of the geometric notion of a twin building;:
any group endowed with such a family of root groups, which is called a twin root datum, has a
natural diagonal action on a product of two buildings, and this action preserves a twinning. We
refer to | | and [ | for this combinatorial point of view.

In this paper, we are mainly interested in finitely generated Kac-Moody groups, i.e. minimal
Kac-Moody groups over finite ground fields. In this special situation, it has been noticed more
recently that another viewpoint, different from the aforementioned algebraic group theoretic one,
is especially relevant: the arithmetic group viewpoint. The striking feature which justifies in the
first place this more recent analogy is the fact that finitely generated Kac-Moody groups embed
as irreducible lattices in the product of closed automorphism groups of the associated buildings,
provided the ground field is sufficiently large, see | ]. A sufficient condition for this is that
the order of the finite ground field is at least the number of canonical generators of the Weyl group.
In fact, Kac-Moody theory is one of the few known sources of examples of irreducible lattices in
products of locally compact groups outside the classical world of lattices in higher-rank Lie groups.
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On the other hand, the intersection between Kac-Moody groups and arithmetic groups is nonempty
since Kac-Moody groups of affine type, namely those obtained by evaluating Chevalley group
schemes over rings of Laurent polynomials, are indeed arithmetic groups. A standard example,
which is good to keep in mind, is the arithmetic group SL,(F,[t,¢t7!]), which is an irreducible
lattice of SLy, (Fg((t))) x SLyn(Fg((t™1))). This arithmetic group analogy, suggesting the existence
of strong similarities between Kac-Moody groups of arbitrary type and the previous examples of
affine type, is supported by several other results, see e.g. | | for finiteness properties, [ ]
for continuous cohomology, | , §1] for some structural properties, etc.

The main result of the present paper shows that for infinite Kac-Moody groups over finite fields,
there is a sharp structural contrast between affine and non-affine groups. Indeed, affine Kac-Moody
groups over finite fields, as finitely generated linear groups, are residually finite. On the other hand,
non-affine Kac-Moody groups are subjected to the following:

Simplicity theorem (Kac-Moody version). Let A be a split or almost split Kac-Moody group
over a finite field F,. Assume that the Weyl group W of A is an irreducible, infinite and non-affine
Cozxeter group. Then every finite index subgroup of A contains the derived subgroup [A, A], which is
of finite index. Assume moreover that q > |S|. Then the group [A,A], divided by its finite center,
s simple.

A more general result (Theorem 19 of Subsect. 4.4) holds in the abstract framework of twin root
data; it was announced in | ].

It follows from the above that for any neither spherical nor affine, indecomposable generalized
Cartan matrix A of size n, there exists a Kac-Moody group functor G4 such that for any finite
field F, with ¢ > n > 2, the group A = G4(F,), divided by its finite center, is an infinite finitely
generated simple group. We also note that this simplicity result for Kac-Moody groups over finite
fields implies strong non-linearity properties for Kac-Moody groups over arbitrary fields of positive
characteristic (Theorem 25). To be more constructive, we add the following corollary (see Corollary
21). As pointed out to us by Y. Shalom, we obtain the first infinite finitely presented discrete groups
to be both simple and Kazhdan. Note that finitely generated infinite simple Kazhdan groups
were constructed by M. Gromov | , Corollary 5.5.E] as quotients of hyperbolic groups with

property (T).

Simple Kazhdan group corollary. If the generalized Cartan matriz A is 2—spherical (i.e. every
2 X 2—submatriz is of spherical type) and if ¢ > 1764™, then the group A/Z(A) is finitely presented,
simple and Kazhdan. Moreover there exist infinitely many isomorphism classes of infinite groups
with these three properties.

Another consequence is the possibility to exhibit a large family of inclusions of lattices in topological
groups for which the density of the commensurator does not hold (see Corollary 17).

Non-arithmeticity corollary. Let A be a split or almost split Kac-Moody group over a finite field
F,. Assume that the Weyl group of A is irreducible, infinite and non-affine. Let B, %B_ be the
buildings associated with A and let Ay and A_ be the respective closures of the images of the natural
actions A — Aut(ABy) and A — Aut(AB_). We view A/Z(A) as a diagonally embedded subgroup of
A_ x Ay. Then the commensurator Commy WAy (A/Z(A)) contains A as a finite index subgroup;
i particular it is discrete.

Let us finally mention a consequence of the simplicity theorem concerning the word problem. It
is a well known observation that a finitely presented simple group has solvable word problem. In
fact, a theorem of W. Boone and G. Higman | | asserts that a finitely generated group has
solvable word problem if and only if it embeds in a simple group which itself embeds in a finitely
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presented group. Most finitely generated split or almost split Kac-Moody groups embed in adjoint
Kac-Moody groups of irreducible 2-spherical non-affine type over large finite fields, which are simple
by the theorem above and finitely presented by | |. In particular, one obtains:

Solvable word problem corollary. Let A be a split or almost split Kac-Moody group over an
arbitrary finite field Fy. Assume that the Weyl group of A is 2-spherical. Then A has solvable word
problem.

The proof of the above theorem follows a two—step strategy which owes much to a general approach
initiated by M. Burger and Sh. Mozes | | to construct simple groups as cocompact lattices
in products of two trees; however, the details of arguments are often substantially different. The
idea of | ] is to prove the normal subgroup property (i.e. normal subgroups either are finite
and central or have finite index) following G. A. Margulis’ proof for lattices in higher rank Lie
groups | , VIIL.2] but to disprove residual finiteness by geometric arguments in suitable cases
[ , Proposition 2.1]. This relies on a preliminary study of sufficiently transitive groups of
tree automorphisms | |. Let us also recall that a finitely generated just infinite group (i.e.
all of whose proper quotients are finite) is either residually finite or is, up to finite index, a direct
product of finitely many isomorphic simple groups | ].

In our situation, the first step of the proof, i.e. the normal subgroup property, had been established

in previous papers, in collaboration with U. Bader and Y. Shalom: | I, [ | and [ .
This fact, which is recalled here as Theorem 18, is one of the main results supporting the analogy
with arithmetic groups mentioned above. One difference with | , Theorem 4.1] is that the

proof does not rely on the Howe-Moore property (i.e. decay of matrix coefficients). Instead,
Y. Shalom and U. Bader use cohomology with unitary coefficients and Poisson boundaries. In fact,
it can be seen that closed strongly transitive automorphism groups of buildings do not enjoy Howe—
Moore property in general: whenever the ambient closed automorphism group of the buildings in
consideration contains a proper parabolic subgroup which is not of spherical type (i.e. whose
Weyl subgroup is infinite), then any such parabolic subgroup is an open subgroup which is neither
compact nor of finite index.

The second half of the simplicity proof does not actually use the notion of residual finiteness.
Instead, it establishes severe restrictions on the existence of finite quotients of a group endowed
with a twin root datum of non-affine type (Theorem 15). Here, one confronts the properties of the
system of root subgroups to a geometric criterion which distinguishes between the Tits cones of
affine (i.e. virtually abelian) and of infinite non-affine Coxeter groups (see | ] and | ] for
another illustration of this fact). This part of the arguments holds without any restriction on the
ground field, and holds in particular for those groups over tiny fields for which simplicity is still an
open question.

We note that the simplicity theorem above is thus obtained as the combination of two results which
pertain respectively to each of the two analogies mentioned above. In this respect, it seems that
the structure of Kac-Moody groups is enriched by the ambiguous nature of these groups, which are
simultaneously arithmetic-group-like and algebraic-group-like.

In order to conclude the presentation of our simplicity results, let us compare quickly Burger-Mozes’
groups with simple Kac-Moody lattices. The groups constructed thanks to | , Theorem 5.5]
are cocompact lattices in a product of two trees; they are always finitely presented, simple, torsion
free and amalgams of free groups (hence cannot have property (T)). Simple Kac-Moody lattices
are non-uniform lattices of products of buildings, possibly (and usually) of dimension > 2; they are
often (not always, though) finitely presented and Kazhdan and contain infinite subgroups of finite



exponent. It is still an open and challenging question to construct simple cocompact lattices in
higher-dimensional buildings.

We now turn to the second series of results of this paper. It deals with restrictions on actions of
Kac-Moody lattices on various non-positively curved spaces. This is a natural question in view of
the analogy between Kac-Moody lattices and arithmetic groups, since the latter are known to yield
some superrigidity phenomena. In fact one should expect even stronger rigidity results for simple
lattices in view of the following known fact: a non residually finite group cannot be embedded
injectively into a compact group (see Proposition 26). In particular a simple Kazhdan group acting
non-trivially on a Gromov-hyperbolic proper metric space Y of bounded geometry cannot fix any
point in the visual compactification ¥ =Y L 05 Y.

Therefore, it makes sense to try to use the recent superrigidity results due to N. Monod (with

CAT(0) target spaces [ ]) and generalized further by T. Gelander, A. Karlsson and G. Margulis
(with suitable Busemann non-positively curved, uniformly convex target spaces | ]). Note
however that, as it is the case for Y. Shalom’s result on property (T) [ |, the non-cocompactness

of Kac-Moody lattices is an obstruction to a plain application of these results (stated for uniform
lattices). Nevertheless, all the previous references propose measure-theoretic or representation-
theoretic substitutes for cocompactness. Weak cocompactness of a lattice I' in a topological group
G is the fact that the orthogonal of the constant functions in the regular representation L?(G/T")
doesn’t almost have invariant vectors | , II1.1.8]. It is still an interesting open question to
determine whether all Kac-Moody lattices are weakly cocompact; it is of course the case for lattices
enjoying Kazhdan’s property (T). We prove here that another partial substitute for cocompactness
holds (see Proposition 31).

Uniform integrability proposition. Let A be a split or almost split Kac-Moody group over F,.
Assume that A is a lattice of the product of its twinned buildings B+. Then the group A admits a
natural fundamental domain with respect to which it is uniformly p—integrable for any p € [1;+00).

For an arbitrary inclusion of a finitely generated lattice I' in a locally compact group G, uniform
integrability is a technical condition requiring the existence of a fundamental domain D with respect
to which some associated cocycle is uniformly integrable (see Subsect. 7.2). This circle of ideas
enables us to prove the following superrigidity statement | , Theorem 1.1].

Superrigidity proposition. Let A be as above and assume in addition that it is a weakly cocompact
lattice of the product of its two completions A_ x A (this is automatic if A is Kazhdan). Let X be a
complete Busemann non-positively curved, uniformly convex metric space without nontrivial Clifford
isometries. We assume that there exists a A-action by isometries on X with reduced unbounded
image. Then the A-action extends uniquely to a A_ x Ay -action which factors through A_ or A,

As already mentioned, this is a corollary of a result of N. Monod’s when the target space is complete
and CAT(0) [ , Theorem 6]. In fact the relevancy of reduced actions was pointed out in [loc.
cit.]: a subgroup L < Isom(X) is called reduced if there is no unbounded closed convex proper
subset Y of X such that gY is at finite Hausdorft distance from Y for any g € L. We also recall
that a Clifford isometry of X is a surjective isometry 7' : X — X such that z — d(T'(z),z) is
constant on X.

These results about continuous extensions of group homomorphisms call for structure results for
the geometric completions A+ of Kac-Moody groups over finite fields, i.e. the closures of the non-
discrete A-actions on each building 4+. Indeed, once a continuous extension has been obtained by
superrigidity, it is highly desirable to determine whether this map is proper, e.g. to know whether
infinite discrete subgroups can have a global fixed point in the target metric space. When the
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ambient topological groups are semisimple Lie groups, the properness comes as a consequence of
the Cartan decomposition of such groups | , Lemma 5.3]. The difficulty in our situation is
that, with respect to structure properties, topological groups of Kac-Moody type are not as nice
as semisimple algebraic groups over local fields. Unless the Kac-Moody group is of affine type,
there is no Cartan decomposition in which double cosets modulo a maximal compact subgroup are
indexed by an abelian semi-group: the Weyl group is not virtually abelian and roots cannot be put
into finitely many subsets according to parallelism classes of walls in the Coxeter complex. This is
another avatar of the strong Tits alternative for infinite Coxeter groups [ I, [ |. Hereis a
slightly simplified version of our main properness result (Theorem 28).

Properness theorem. Let A be a split or almost split simply connected Kac-Moody group over F,
and let A, be its positive topological completion. Then any nontrivial continuous homomorphism
@ : Ay — G to alocally compact second countable group G is proper.

As an example of application of superrigidity results, we study actions of Kac-Moody lattices on
CAT(—1)-spaces. In this specific case, the most appropriate results available are the superrigidity
theorems of N. Monod and Y. Shalom | ]. Putting these together with the abstract simplicity
of non-affine Kac-Moody lattices and the properness theorem above enables us to exhibit strong
incompatibilities between higher-rank Kac-Moody groups and some negatively curved metric spaces
(see Theorem 34 for more details).

«Higher-rank versus CAT(—1)» theorem. Let A be a simple Kac-Moody lattice and Y be a
proper CAT(—1)-space with cocompact isometry group. If the buildings B+ of A contain flat sub-
spaces of dimension = 2 and if A is Kazhdan, then the group A admits no nontrivial action by
isometries on Y .

We show below, by means of a specific example, that the assumption that Isom(Y’) is cocompact
is necessary (see the remark following Theorem 34). This theorem was motivated by | ,
Corollary 0.5]. Note that we made two assumptions (one on flat subspaces, one on property (T))
which, in the classical case, are implied by the same algebraic condition. Namely, if A were an
irreducible lattice in a product of semisimple algebraic groups, and if each algebraic group were of
split rank > 2, then both «higher-rank) assumptions would be fulfilled. In the Kac-Moody case,
there is no connection between existence of flats in the buildings and property (T). The relevant
rank here is the geometric one (the one involving flats in the buildings). According to [ | and
[ ], it has a more abstract interpretation relevant to the general theory of totally disconnected
locally compact groups.

The proofs of most results of the present paper use in a very soft way that the construction of
the lattices considered in this introduction pertains to Kac-Moody theory. The actual tool which
is the most natural framework for our arguments is the notion of a twin root datum introduced
in [ |. It turns out that the class of groups endowed with a twin root datum includes split and
almost split Kac-Moody groups only as a (presumably small) subfamily (see §1 below). Several
exotic constructions of such groups outside the strict Kac-Moody framework are known, see e.g.
[ , §9] for groups acting on twin trees, | | for groups acting on right-angled twin buildings
and | | for groups obtained by integration of Moufang foundations. All these examples are
discrete subgroups of the product of the automorphism groups of the two halves of a twin building,
which are actually mostly of finite covolume. These lattices, called twin building lattices, constitute
the main object of study for the rest of this paper.

Structure of the paper. In the preliminary Sect. 0, we fix the conventions and notation. Sect. 1
is devoted to collect some basic results for later reference. Although these results are often stated
in the strict Kac-Moody framework in the literature, we have been careful to state and prove them
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in the context of twin building lattices. Sect. 2 introduces a fixed-point property of root subgroups
and it is shown that most examples of twin building lattices enjoy this property. It is then used
to establish several useful structural properties of these completions. In Sect. 3, we prove the
main fact needed for the simplicity theorem; it is the existence of a weakly hyperbolic geometric
configuration of walls for non-affine infinite Coxeter complexes. In Sect. 4, the simplicity theorem
is proved together with very strong restrictions on quotients of the groups for which the simplicity is
still unknown. In Sect. 5, we prove a non-linearity property for Kac-Moody groups over arbitrary
fields of positive characteristic. In Sect. 6, we study homomorphisms from Kac-Moody groups
to locally compact groups. The main part deals with the geometric completions of Kac-Moody
groups; it establishes that any nontrivial continuous homomorphism from such a group to a second
countable group must be proper. In Sect. 7, we check some integrability conditions for Kac-Moody
lattices and we derive superrigidity statements from work by Monod-Shalom; restrictions on actions
in hyperbolic metric spaces in terms of «rank) are derived from this.
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0. NOTATION AND GENERAL REFERENCES

Let us fix some notation, conventions and make explicit our standard references.

0.1. About Coxeter groups. Throughout this paper, (W,S) denotes a Coxeter system |

IV.1] of finite rank (i.e. with S finite) and ¢ or ¢g denotes the word length W — N with respect
to the generating set S. We denote by W (t) the canonical growth series, i.e. the series Zn>0 Cnt”
where ¢, is the number of elements w € W such that £g(w) = n. The combinatorial root system
® of W is abstractly defined in | , Sect. 5]. We adopt this point of view because, since it is
purely set-theoretic, it is useful to connect several geometric realizations of the Coxeter complex of
(W, 9) | I, [ ]. A pair of opposite roots here is a pair of complementary subsets W which
are permuted by a suitable conjugate of some canonical generator s € S. The set of simple roots is
denoted by II.

Recall that a set of roots W is called prenilpotent if both intersections [ cq @ and (),cy — are
nonempty. Given a prenilpotent pair {«, 5} C ®, we introduce the following finite sets of roots:

a,f] :={ye®|anfCyand (—a)N(—P) C —y} and |a,f[:= [, []\{e, s}

0.2. About geometric realizations. We denote by .7 the Davis complex associated to (W, S)
and by d the corresponding CAT(0) distance on &7 | ]. The metric space 7 is obtained as
a gluing of compact subsets, all isometric to one another and called chambers. The group W acts
properly discontinuously on &/ and simply transitively on the chambers. The fixed point set of
each reflection, i.e. of each element of the form wsw™! for some s € S and w € W, separates o7/
into two disjoint halves, the closures of which are called root half-spaces. The fixed point set of
a reflection is called a wall. The set of root half-spaces of o/ is denoted by ®(7); it is naturally
in W—equivariant bijection with ®. We distinguish a base chamber, say c;, which we call the
standard chamber: it corresponds to 1y in the above free W-action. We denote by & the set of
6



root half-spaces containing c; and by II the set of simple roots, i.e. of positive roots bounded by
a wall associated to some s € S.

0.3. About group combinatorics. The natural abstract framework in which the main results of
this paper hold is provided by the notion of a twin root datum, which was introduced in [ | and
is further discussed for instance in | , 811, [ , 1.5] or [ , §87-8]. A twin root datum
consists of a couple (G,{U,}aca) where G is a group and {Uy}aea is a collection of subgroups
indexed by the combinatorial root system of some Coxeter system; the subgroups {U, }acs, called
root groups, are subjected to the following axioms, where T' := (), cp Ng(Ua) and Uy (resp. U_)
denotes the subgroup generated by the root groups indexed by the positive roots (resp. their
opposites):
(TRDO): For each a € ®, we have U, # {1}.
(TRD1): For each prenilpotent pair {«, 3} C ®, the commutator group [U,, Ugl is contained
in the group U, g = (Uy| v €], 8])-
(TRD2): For each « € IT and each u € U, \{1}, there exists elements v', u” € U_, such that
the product m(u) := u'uu” conjugates Ug onto U, (g for each 3 € .
(TRD3): For each o € II, the group U_, is not contained in Uy and the group U, is not
contained in U_.
(TRD4): G =T(Us| o € D).
Recall that prenilpotent pairs of roots, as well as intervals of roots, where defined in 0.1.

We also set N := T.(m(u) | w € Uy — {1}, a € II). A basic fact is that the subquotient N/T is
isomorphic to W; we call it the Weyl group of G.

0.4. About twin buildings. The geometric counterpart to twin root data is the notion of twin
buildings. Some references are [ 1, [ , 82], [ , §2.5] or | , §87-8]. Roughly
speaking, a group with a twin root datum {Up, }sca of type (W, S) admits two structures of BN—
pairs which are not conjugate to one another in general. Let (%4, %_) be the associated twinned
buildings; their apartments are modelled on the Coxeter complex of (W, S). We will not need the
combinatorial notion of a twinning between #_ and %,. The standard twin apartment (resp.
standard positive chamber) is denoted by (Z;, o7 ) (resp. c4). We identify the Davis complex &/
with the positive apartment ;. With this identification and when the root groups are all finite,
the buildings %+ are locally finite CAT(0) cell complexes.

1. TWIN BUILDING LATTICES AND THEIR TOPOLOGICAL COMPLETIONS

As mentioned in the introduction, the main results of this paper apply not only to split or almost
split Kac-Moody groups over finite fields, but also to the larger class of groups endowed with a
twin root datum with finite root groups. Some existing results in the literature are stated for split
or almost split Kac-Moody groups, but remain actually valid in this more general context of twin
root data. The purpose of this section is to collect some of these results and to restate them in this
context for subsequent references.

1.1. Kac-Moody groups versus groups with a twin root datum. Although the notion of

a twin root datum was initially designed as an appropriate tool to study Kac-Moody groups, it

became rapidly clear that many examples of twin root data arise beyond the strict scope of Kac-

Moody theory. This stands in sharp contrast to the finite-dimensional situation: as follows from

the classification achieved in [ | (see also | |), any group endowed with a twin root datum

with finite Weyl group of rank at least 3 and of irreducible type is associated (in a way which we
7



will not make precise) with some isotropic simple algebraic group over a field or with a classical
group over a (possibly skew) field. Here is a list of known constructions which yields examples of
twin root data with infinite Weyl group but not associated with split or almost split Kac-Moody
groups:

(D , 89] constructs a twin root datum with infinite dihedral Weyl group and arbitrary
prescribed rank one Levi factors. The possibility of mixing ground fields prevent these
groups from being of « Kac-Moody origin» . The associated buildings are one-dimensional,
i.e. trees.

(IT) In | |, the previous construction is generalized to the case of Weyl groups which are ar-
bitrary right-angled Coxeter groups. In particular, the associated buildings are of arbitrarily
large dimension.

(ITI) Opposite to right-angled Coxeter groups are 2—spherical Coxeter groups, i.e. those Coxeter
groups in which every pair of canonical generators generates a finite group. Twin root data
with 2—spherical Weyl group are subjected to strong structural restrictions (see | )]
showing in particular that wild constructions as in the right-angled case are impossible.
For instance, the following fact is a consequence of the main result of | |: a group
A endowed with a twin root datum {Uy}aca of irreducible type, such that the root groups
are all finite of order > 3 and generate A, and that every rank 2 parabolic subgroup is of
type A1 X Ay, As, B, Cy or Go must be a split or almost split Kac-Moody group in the
sense of | ]. Furthermore, it was mentioned to us by B. Miihlherr, as a non-obvious
strengthening of | ], that the preceding statement remains true if one allows the rank 2
subgroups to be twisted Chevalley groups of rank 2, with the exception of the Ree groups
2Fy. On the other hand, the theory developed in | | allows to obtain twin root data
by integrating arbitrary Moufang foundations of 2—spherical type. The groups obtained in
this way are not Kac-Moody groups whenever the foundation contains a Moufang octagon
(which corresponds to a rank 2 parabolic subgroup which is of type 2F}).

The conventions adopted throughout the rest of this section are the following: we let (W, S) be a
Coxeter system with root system ® and (A, {Uy}aca) be a twin root datum of type (W, S). We
assume that each root group is finite and that W is infinite. The associated twin buildings are
denoted (A4, AB-). The groups Aut(#ABy) are endowed with the compact-open topology, which
makes them locally compact totally disconnected second countable topological groups. We also
consider the subgroups T, N,U,,U_ of A defined in §0.3. The normal subgroup generated by
all root groups is denoted Af. If g € A fixes the building %, it fixes in particular the standard
positive apartment and its unique opposite in #_ | , Lemma 2] since g preserves the twinning;
therefore we have: g € T by | , Corollaire 3.5.4]. Moreover by the Moufang parametrization
(by means of root group actions) of chambers having a panel in the standard apartment, such a g
must centralize each root group. This argument shows that the kernel of the action of A on %,
(resp. #_) is the centralizer Z(AT) and is contained in T

1.2. Topological completions: the building topology. For € € {+, —}, let A?H be the image

of the natural homomorphism 7. : A — Aut(%.). Thus AT ~ A/Z)(AT) ~ A°T. The closure

Kiﬁ < Aut(%4) is the topological completion considered in | ]. In the Kac-Moody case,

another approach was proposed in | ], using the so-called weight topology; this allows to
obtain completions of A without taking the effective quotient. However, the weight topology is
defined using Kac-Moody algebras and, hence, does not have an obvious substitute in the abstract
framework considered here. Therefore, we propose the following.
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For each non-negative integer n, let K be the pointwise stabilizer in U, of the ball of #, centered
at c. and of combinatorial radius n. Clearly (), K* C Zy(AT) C T and, hence, (), K* = {1}
because TN U, = {1} by | , Theorem 3.5.4]. Define a map f.: A x A — R, as follows:

_J2 if g~*h € U,
fe(g,h) = { exp(—max{n | g7th € K'}) if g~ th € U.. }
Since K is a group for each n, it follows that f. is a left-invariant ultrametric distance on A. We

let A, be the completion of A with respect to this metric | , 11.3.7 Théoreme 3 and I11.3.4
Théoreme 3.4]; this is the topological completion that we consider in this paper.

Definition. The so-obtained topology is called the building topology on A..

By left-invariance of the metric, replacing U, and c. by A—conjugates leads to the same topology.
Here is a summary of some of its basic properties; similar results hold with the signs + and —
interchanged.

Proposition 1. We have the following:

(i) The group A, is locally compact and totally disconnected for the above topology. It is second
countable whenever A is countable, i.e. whenever so is T.
(ii) The canonical map 7y : A — A‘ff has a unique extension to a continuous surjective open
homomorphism T, : Ay — Keﬁ
(iii) The kernel of T is the dzscrete subgroup Zx(AY) < A,.
(iv) We have Stabg, (c4) ~ T U, where U, denotes the closure of Uy in A,.

(v) Every element g € A, may be written in a unique way as a product g = uynu_, with
up €Uy, ne N andu_ € U-_.
(vi) The sextuple (A4, N, U, U_,T,S) is a refined Tits system, as defined in | .

Remark. It follows from (ii) and (iii) that the canonical map A /Zx(AT) — Kj_ﬁ is an isomorphism
of topological groups.

Proof. We start by noting that the restriction 4 ¢, is injective since Zx(AT) N U = {1} by
[ , Théoréme 3.5.4]. Therefore, it follows from the definitions that 74 : Uy — 71 (U;) is an
isomorphism of topological groups.

We now prove (ii). Let (A,) be a Cauchy sequence of elements of A. Let ng > 0 be such that
f+(Angs An) < 1 for all n > ng. It follows that 74 (A, [\,) lies in the stabilizer of ¢y in Aut(%;),
which is compact. This implies that 71 (\,) is a converging sequence in Aut(%y). Hence 7 has
a unique continuous extension 7, : A, — Ki and it remains to prove that 7, is surjective. By
the preliminary remark above, it follows that 7, : U, — 4 (U,) is an isomorphism of topological
groups. The surjectivity of 7, follows easily since U, is an open neighborhood of the identity.
Finally, since U, contains a basis {K } of open neighborhoods of the identity, it follows that 74
maps an open subset to an open subset.

(iv). The inclusion .Uy < Staby (cq) is clear. Let g € Staby (cy) and let (),) be a sequence
+ +
in A such that liT An = ¢. Up to passing to a subsequence, we may — and shall — assume that
n—-+0oo

An € Stabp(cy) for all n. We know by [ , § 3.5.4] that Stabp(cy) ~ T x U4. Hence each A,
has a unique writing A, = t,u, with ¢, € T and u,, € U;. Again, up to extracting a subsequence,
we have fi (A1, A,) < 1 for all n. In view of the semidirect decomposition Stabp(c;) >~ T x Uy, this
implies that t,, = t; for all n. In particular, the sequence (u,,) of elements of Uy converges to tl_l g.

This shows that ¢ € T.U, as desired. For every nontrivial element ¢t € T, we have f,(1,t) = 2
9



because T N U4 = {1}. On the other hand, for all u € Uy, we have fi(1,u) < 1. Therefore, we
have TNU 1 = {1}.

(iii). The fact that Z(AT) is discrete follows from Zx(AT) N UL = {1}. Clearly we have Zx(AT) <
Ker(7+). We must prove the reverse inclusion. Let k € Ker(74). By (iv), we have k = tu for

unique elements ¢t € T and u € U,. Applying (iv) to the effective group Kiﬁ, we obtain 74 (t) = 1

and 74 (u) = 1. Since the restriction of 74 to U is injective by the proof of (ii), we deduce u =1
and hence k € T' < A. Therefore k € Zx(A") as desired.

(i). The building topology comes from a metric, so the Hausdorff group A injects densely in its
completion A | , 11.3.7 Corollaire] and the latter group is second countable whenever A s
countable. Tt is locally compact because U, is a compact open subgroup by the proof of (ii).

Furthermore, 7, annihilates the connected component of A because Kiﬁ is totally disconnected.
On the other hand, the kernel of 7 is discrete by (iii). Hence A, itself is totally disconnected.

(v). The group U_ acts on %, with the apartment <7, as a fundamental domain. The group N
stabilizes <7, and acts transitively on its chambers. In view of (iv), it follows that Ay = U .N.U_.
On the other hand, it follows easily from the definition of f. that

U& = {g € KE ’ fﬁ(lag) < 1}

Therefore, the uniqueness assertion follows immediately from [ , §1.5.4] and the fact that
ANUL =Uy.

(vi). The main axiom of a refined Tits system is the property of assertion (v), which has just
been proven. For the other axioms to be checked, the arguments are the same as | , Proof of
Theorem 1.C.(i)]. O

1.3. Twin building lattices. Let ¢min = min{|U,| : @ € II}, where IT C ® is the set of simple
roots. The following is an adaptation of the main result of | |:

Proposition 2. The image of the diagonal injection
A—)K+ XK_ )\?—>()\,)\>

is a discrete subgroup of Ay x A_. It is an irreducible lattice if and only if W (1/qmin) < +oo and
ZA(AT) is finite.

Proof. Let A(A) = {(\,\) | A € A} < A, x A_. The subgroup U, x U_ < Ay x A_ is an open
neighborhood of the identity. We have A(A)N(Uy xU_) = A(U- NU_). By | , §3.5.4],
Uy NU- = {1}. Thus A(A) is discrete. The second assertion follows from the proofs of | ,
Proposition 5 and Corollary 6], which apply here without any modification: the only requirement
is that (A, N,U,,U_,T,S) and (A_,N,U_,U,,T,S) be refined Tits systems. This follows from
Proposition 1(vi). O

Note that the group Zx (A!) may be arbitrarily large, since one may replace A by the direct product
of A with an arbitrary group; the root groups of A also provide a twin root datum for this direct
product. However it is always possible to make the group Za(A") finite by taking appropriate
quotients; note that if A = AT, then Zj(AT) = Z(A) is abelian. Finally, since Zx(AT) < T, it
follows that Zx (A') is always finite when A is a split or almost split Kac-Moody group.

Definition. If the twin root datum (A, {Us}aca) is such that W(1/qmin) < +oo and Zy(AT) is

finite, then A is called a twin building lattice.
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1.4. Structure of U,. The first assertion of the following proposition was proved in [ , The-
orem 1.C(ii)]. Recall that a set W of roots is called prenilpotent if the intersections (), ,cy @ and
(Nac_w @ are both non-empty sets of chambers; then W is finite.

Proposition 3. We have the following:
(i) Assume that each root group U, is a finite p-group. Then Uy is pro-p.
(i) Assume that each root group U, is solvable. Then U is pro-solvable.
(iii) Assume that each root group U, is nilpotent. Then, for every prenilpotent set of roots
U C &, the group Uy = (U, | a € W) is nilpotent.

Remark. One might expect that, under the assumption that all root groups are nilpotent, the
group U is pro-nilpotent. This is however not true in general. Counterexamples are provided by
twin root data over ground fields of mixed characteristics, constructed in | ]. More precisely,
consider a twin root datum (A, {Ua }aeca) of rank 2 with infinite Weyl group, such that the rank one
subgroups are SLo(F3) and SLy(F4). The associated twin building is a biregular twin tree. Then
the U, -action induced on the ball of combinatorial radius 2 centered at ¢, is not nilpotent: indeed,
the corresponding finite quotient of U, contains a subgroup isomorphic to the wreath product
(Z/2Z x Z/2Z)Z/3Z, which is not nilpotent.

Proof. For (i), see | , 1.C Lemma 1 p.198]. The arguments given in [loc. cit.] can be immedi-
ately adapted to provide a proof of (ii): the essential fact is that an extension of a solvable group
(resp. a p-group) by a solvable group (resp. a p-group) is again solvable (resp. a p-group).

(iii). A set of roots W is called nilpotent if it is prenilpotent and if, moreover, for each pair {«, 3} C ¥
one has [«, 5] C W. Since every prenilpotent set of roots is contained in a nilpotent set (see [ ,
§1.4.1 and §2.2.6]), it suffices to prove the assertion for nilpotent sets. The proof is by induction
on the cardinality of ¥, the result being obvious when W is a singleton. The elements of ¥ can
be ordered in a nibbling sequence aq, o, ..., ay; hence the sets U1 = U\{ay} and ¥,, = U\{«,}
are nilpotent [loc. cit., §1.4.1]. Furthermore, one has [U,,,Uy,] < Uy, and [U,,,Uy,] < Uy,
as a consequence of (TRD1). Therefore, the subgroups Uy, and Uy, are normal in Uy, and are
nilpotent by the induction hypothesis. It follows that Uy is nilpotent | , Theorem 10.3.2].
This part of the proof does not require that the root groups be finite. O

2. FURTHER PROPERTIES OF TOPOLOGICAL COMPLETIONS

In this section, we introduce a property of fixed points of root subgroups of a group A endowed
with a twin root datum; this property is called (FPRS). We first provide sufficient conditions which
ensure that this property holds for any split or almost split Kac-Moody group, as well as for all
exotic twin building lattices mentioned in Sect. 1.1. We then show that (FPRS) implies that the
topological completion A is topologically simple (modulo the kernel of the action on the building,
see Proposition 11). Property (FPRS) will be used again below, as a sufficient condition implying
that any nontrivial continuous homomorphism whose domain is A is proper (Theorem 28).

Throughout this section, we let A be a group endowed with a twin root datum {U,}ace of type
(W, S) and let (A4, PB_) be the associated twin buildings.

2.1. Fixed points of root subgroups. For any subgroup I' < A, we define r(I") to be the supre-
mum of the set of all non-negative real numbers r such that I" fixes pointwise the (combinatorial)
closed ball B(cy,r) of (combinatorial) radius r centered at cy. In the present subsection, we

consider the following condition:
(FPRS): Given any sequence of roots (an)n>0 of ®(47) such that lirf d(cy, o) = +o0, we
n—-roo
have: lim r(U_,,) = +o0.
n—-+00
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Remark. This property can be seen as a non-quantitative generalization of [ , 7.4.33].

In other words, this means that if the sequence of roots (cv,)n>0 is such that lir_~r_1 d(cy,ap) = +o0,
n—-roo

then the sequence of root subgroups (U_q,, )n>0 tends to the identity in the building topology. The
purpose of this subsection is to establish sufficient conditions on the twin root datum (A, {Ua }aca)
which ensure that property (FPRS) holds. To this end, we will need the following conditions:
(PP): For any prenilpotent pair of roots {«, B} such that (ro,7g) is infinite, either [Uy,Ug| =
{1} or there exists a root ¢ such that ry(a) = =0, [Ua,Ug] < Uy and [Uy,Uy] = {1} =
[Us, Ugl.

(2-sph): The Cozxeter system (W, S) is 2-spherical and A possesses no critical rank 2 subgroup.
This means that any pair of elements of S generates a finite group and moreover that for
any pair {o, 8} C II, the group X, 3 generated by the four root groups Uiq, Ut g, divided
by its center, is not isomorphic to any of the groups Ba(2), Ga(2), G2(3) or 2Fy(2).

The main result of this section is the following:

Proposition 4. Assume that the twin root datum (A,{Us}aca) satisfies (PP) or (2-sph) or that
A is a split or almost split Kac-Moody group. Then property (FPRS) holds.

Remark. The exotic examples of twin root data mentioned in Sect. 1.1 (I) and (II) satisfy condition
(PP). In fact, they satisfy even the stronger condition that all commutation relations are trivial: for
any prenilpotent pair of distinct roots {a, 5}, one has [U,,Ug] = {1}. Moreover, the examples of
type (III) satisfy (2-sph). However, it was communicated to us by B. Miihlherr that there exists an
example of a group endowed with a twin root datum, which does not satisfy condition (FPRS). In
this example, whose construction is nontrivial, the Weyl group is the free Coxeter group of rank 3
(i.e., a free product of 3 copies of the group of order 2) and the ground field is Fs.

The proof of Proposition 4 splits into a sequence of lemmas which we prove separately.

Lemma 5. Assume that (PP) holds. For each integer n > 0, each root o € ®(&) and each chamber

cedy, ifd(c,a) > 4n+31_1, then U_,, fizes B(c,n) pointwise. In particular (FPRS) holds.

Proof. We work by induction on n. If d(c,«) > 1, then ¢ € o whence ¢ € —«. In particular c is
fixed by U_,. Thus the desired property holds for n = 0.

Assume now that n > 0 and let « be a root such that d(c,a) > 4n+3171. By induction, the group

U_, fixes the ball B(c,n — 1) pointwise. Furthermore, if ¢’ is a chamber contained in <7, and
adjacent to ¢, then d(c/, @) > d(c, «) — 1; therefore, the induction hypothesis also implies that U_,,
fixes the ball B(¢/,n — 1) pointwise.

Let now = be a chamber at distance n from c¢. Let ¢g = ¢,¢1,...,¢, = & be a minimal gallery
joining ¢ to x. We must prove that U_,, fixes x. If ¢; is contained in &7, then we are done by the
above. Thus we may assume that ¢; is not in 7. Let ¢’ be the unique chamber of .7, such that
¢,c1 and ¢ share a panel. Let € ®(«7) be one of the two roots such that the wall 93 separates
¢ from . Upon replacing 3 by its opposite if necessary, we may — and shall — assume by | ,
Proposition 9] that the pair {—«, 3} is prenilpotent. Let u € U be the (unique) element such that
u(c1) belongs to o7y ; thus we have u(c1) = cor ¢. Since u(c1), u(ca), ..., u(cy,) is a minimal gallery,
it follows that u(z) is contained in B(¢,n — 1)U B(c/,n — 1).

There are three cases.

Suppose first that [U_,,Us] = {1}. For any g € U_,, we have ¢ = u~'gu whence g(z) =
u"tgu(z) = z because g € U_,, fixes B(c,n — 1) U B(¢/,n — 1) pointwise.
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Suppose now that [U_,,Ug] # {1} and that (rq,7s) is infinite. By property (PP) there exists a
root ¢ € ®(a7) such that [U_,,Ug] < Uy and rg(o) = B. Let yo = ¢, y1,...,yx be a gallery of
minimal possible length joining ¢ to a chamber of —¢. Thus we have yr € —¢, yp_1 € ¢ and
k = d(c,—¢). Since ry(8) = « and since either ¢ or ¢ belongs to 3, it follows by considering the
(possibly non-minimal) gallery

C=Y0,---Yk-1,Yk = T(z)(yk—l); r(ﬁ(yk—Q)? s ,Td)(C), T¢(Cl)

of length 2k, that d(c, ) < 2k, whence d(c, —¢) > 3d(c,a) > 4n+61*1 > Lgl. A similar argument
shows that d(c/, —¢) > 3d(c,a) > 4n+61 =4 > %. Therefore, the induction hypothesis shows that
Uy fixes B(c,n—1)UB(c,n—1) pointwise. Now, for any g € U_,, we have g(z) = [g,uu~ gu(x) =
[g,u~1](z) because g € U_,, fixes B(c,n — 1) U B(c/,n — 1) pointwise. By (PP), the commutator
[g,u~'] commutes with u and, hence, we have [g,u"!](2) = v~ g, u"u(z) = x because [g,u"!] €
Uy fixes B(c,n — 1)U B(d,n — 1) pointwise.

Suppose finally that [U_,Ug| # {1} and that (r,,rg) is finite. This implies that the pairs {—a, 5}
and {—a«, —(} are both prenilpotent. Therefore, up to replacing [ by its opposite if necessary, we
may — and shall — assume that ¢ ¢ 3, whence u(c;) = c¢. Note that (ro,7g) is contained in a rank 2
parabolic subgroup P of W. Since any such subgroup is the Weyl group of a Levi factor of rank 2 of
A, which is itself endowed with a twin root datum of rank 2, it follows from [ , Theorem 17.1]
that P is of order at most 16. Let [—o, (] = {y € ®(«) | ()N B C v, an(-0) C —}k
thus [—a, 5] has at most 8 elements because for every v € [—a, ], the reflection 7 belongs to P.
Order the elements of [3, —a] in a natural cyclic order: [, —a] = {8 = fo, b1, .., Bm = —a}; this
means that 7g,(8i—1) = Bis1 for ¢ = 1,...,k — 1. Such an ordering does exist because the group
(ry | v € (B, —al) is (finite) dihedral. Let ¢ = yo,y1, ..., yx be a gallery of minimal possible length
joining ¢ to a chamber of —f3;. Thus we have yp € —f1, yr—1 € 1 and k = d(¢,—f1). Since
78, () = —f2 and since ¢’ belongs to [, it follows from considering the gallery

C=Yo,.--,Yk—1,Yk = Tﬁl (yk—l)a Tﬁl (yk—Q)a ... 7Tﬂ1 (C)v rﬂl (C,)

of length 2k, that d(c, —32) < 2k. A straightforward induction yields d(c, —3;) < ikfori=1,...,m.
In particular, we have d(c, ) < mk = m.d(c, —f1). Recall that m + 1 is the cardinality of [—«, f].

We may now choose a natural cyclic order [-8,—a] = {-8 = £, 5],...,4,, = —a} and repeat
the same arguments with c replaced by ¢/, § replaced by —f and each f3; replaced by 73(53;). This
yields d(c¢, —p}) < id(c,—p}) for each 7. Note that d(c,—B1) = d(rg(c),—rs(61)) = d(c',—57).
We obtain that d(c,a) — 1 < d(¢, ) < m’.d(c,—1), where m' 4+ 1 is the cardinality of [—«a, —/].
Observe now that m+m/ = ‘% < 8. In particular, we have min{m, m'} < 4. Therefore, we deduce
from the inequalities above that for each ¢ = 1,..., m, we have

-1 4" —1
d(67 *ﬂl) P d(C, 7ﬂ1) = d(q (Z) P 3 .

By the induction hypothesis, it follows that for each v €]—«, f[= [—«, B]\{—«, 8}, the root sub-
group U, fixes the ball B(c,n — 1) pointwise.

Now, for any g € U_,, we have g(z) = [g,u |Ju"tgu(z) = [g,u"!](x) because g € U_, fixes
B(c,n — 1) pointwise. Moreover, we have [g,u™'] € U_o5 = (Uy | v €—a,B]) by (TRD1).

Therefore, the commutator [g,u "] fixes u(x) and we have

g(x) = lg,u (@) = ([lgu™ '], ) g, u™ ul@) = [[g,u™ "], u™"(2).

Repeating the argument m times successively, we obtain g(z) = [...[[g,u"'],u™'],...,u"](x)
where the commutator is iterated m times. By (TRD1), we have [...[[g,u '], u7!],... ,u
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Ujg, g which is trivial since |1, B8] is empty. Therefore, we deduce finally that ¢ fixes z, as
desired. 0

Lemma 6. Suppose that A is a split Kac-Moody group and that {Uy}acs is its natural system of
root subgroups. Then the twin root datum (A,{Uy}acs) satisfies (PP).

Proof. This follows by combining [ , Theorem 2| with some results from | | (see also
[ , Sect. 3.2]). In order to be more precise, we freely use the notation and terminology of these
references in the present proof. In particular, we use the ‘linear’ root system of the Lie algebra
associated with the Kac-Moody group A, instead of the ‘abstract’ root system introduced above
and which is appropriate to the case of general twin root data. A comprehensive introduction to

linear root systems can be found in | , Chapter 5].
Commutation relations in split Kac-Moody groups are described precisely by | , Theorem 2|.
Combining the latter result together with [ , Proposition 1], one sees easily that if {«, 5} is

a prenilpotent pair such that (ro,rg) is infinite and [Uy,Ug] # {1}, then [U,,Ug] < Usqp and
the a-string through 3 is of length > 5 and contains exactly 4 real roots, which are 3 — (3, a")a,
B— ((8,a") —1)a, B and B + a. In particular, 8 + 2« is not a root, whence {—a,a + 3} is W-

conjugate to a Morita pair by | , Proposition 3(i)]. In particular, we have (—a, (a4 3)Y) = —1
by [ , Proposition 2]. We deduce that ro45(—a) = —a+ (—a, (o + 3)V)(a + §) = 5. Finally,
since 2 + [ is not a root, it follows from | , Theorem 2| that [Uy,Us13] = {1}. Hence
property (PP) holds, as desired. O

Lemma 7. Suppose that A is an almost split Kac-Moody group and that {Uy}aca is its natural
system of root subgroups. Then the twin root datum (A, {Uy}aca) satisfies (FPRS).

Proof. Our reference on almost split Kac-Moody groups is | , Chapitres 11-13]. Let K be
the ground field of A, let K be a separable closure of K, let I' = Gal(Ky/K) and let A be a split
Kac-Moody group over K, such that A is the fixed point set of a I'-action on A. We henceforth
view A as a subgroup of A. We denote by (U ) § the natural system of root subgroups of A and

by (%’Jr,%’ ) the twin building associated with the twin root datum (A, (ﬁa)aeq)). By | ,

Théoreme 12.4.4], the twin building (A4, %) is embedded in a A-equivariant way in (B, B_), as
the fixed point set of T-action on (%, %_). This embedding maps chambers of (%, %_) to K-
chambers of (%7+, %7_), which are minimal I'-invariant spherical residues. Let r be the rank of such
a spherical residue. Two K-chambers are adjacent (as chambers of (%, %_)) if they are contained
in a common spherical residue of rank r 4+ 1 and either coincide or are opposite in that residue.
This shows that bounded subsets of (%4, %_) are also bounded in (A, %A_) and, moreover, that

every ball of large radius in (,@7+, ,%7,) which is centered at a point of a K-chamber contains a ball
of large radius of (%A, %#_).

Let (an)n>0 be a sequence of roots of & = ®() such that d(cy,a,) tends to infinity with n.
We must prove that r(U_,,, ) also tends to infinity with n. We choose the base chamber ¢, of
(<%’+, PB_ ) such that it is contained in the K-chamber ¢, and denote by 7(H) the supremum of the
radius of a ball centered at ¢y which is pointwise fixed by H. In view of the preceding paragraph,
it suffices to show that 7(U_,,, ) tends to infinity with n. To this end, we will use the fact that

(A, (ﬁa)aé)) satisfies property (FPRS) by Lemmas 5 and 6. Let 8 € ® be a K-root and consider
the root subgroup Ug. Let x,y be two adjacent K-chambers such that 3 contains x but not y. Let
®(f3) be the set of (Kg-)roots containing z but not y; it is independent of the choice of z and y.
Furthermore ®(f3) is a prenilpotent subset of ® and Ug C ﬁ%(,@) = <(7A, | v € ®(8)) by | ,

§12.4.3]. Therefore, in order to finish the proof, it suffices to show that min{d(c;,~) | v € ®(an)}

tends to infinity with n.
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Assume for a contradiction that this is not the case. Then there exists a subsequence (o, );j>0 and

an element v; € 5(04,1].) such that d(cy,~;) is a bounded function of j. Since the apartments are
locally finite, it follows that, up to extracting a subsequence, we may — and shall — assume that ;
is constant. On the other hand, we claim (and prove below) that if o, o’ are two distinct K-roots,
then the sets ®(a) and ®(c) are disjoint; this implies that the sequence (an;)j>0 is constant,
contradicting the fact that d(cy,ay;) tends to infinity with j. It remains to prove the claim. This
is most easily done using the notion of (combinatorial) projections in buildings. Let 7 (resp. 7’)
be a K-panel stabilized by the K-reflection r, (resp. r4). Thus m and 7’ are spherical residues
of A, of rank r + 1. Note that proj. (') (resp. proj.(m)) contains a K-chamber. Furthermore,
given any v € ®(a) N ®(a), the (Kg-)reflection 1+ stabilizes both 7 and 7/, but it does not stabilize
any K-chamber. Therefore proj(7’) (resp. proj. (mw)) cannot be reduced to a single K-chamber;
since proj.(7') (resp. proj..(m)) is a sub-residue of 7 (resp. 7’), it must be of rank r + 1, which
yields proj.(7’) = 7 (resp. proj.(m) = 7’). In other words the K-panels 7 and 7’ are parallel.

Since 7, stabilizes any K-panel which is parallel to 7 by [ Proposition 2.7], this implies that
the K-reflections r, and r,/ stabilize a common K-panel. Slnce a # o/, we deduce that a = —a/,
which implies that ®(a) = —®(a’) = {—y | v € ®(/)}. In particular, the sets ®(a) and ®(a’) are
disjoint, a contradiction. O

Lemma 8. Suppose that A satisfies condition (2-sph) and that all root groups are finite. Then
property (FPRS) holds.

Remark. It appears that the proof given below uses the finiteness of the root subgroups in exactly
one place, in order to show that U is pro-nilpotent in the building topology. It turns out that this
holds in the general case of groups satisfying (2-sph), without any assumption on the cardinality
of the root subgroups (recall from the Remark following Proposition 3 that condition (2-sph) is
necessary for this to hold). However, although in the case of finite root subgroups, this was
established in an elementary way using the fact that finite p-groups are nilpotent, the infinite
case is more delicate and seems to require B. Miihlherr’s embedding theorem (see | ] and
references therein), showing that any group satisfying (2-sph) admits a geometric embedding in
some split Kac-Moody group. The desired assumption then follows from the fact that in the case
of Kac-Moody groups, the group U is always pro-nilpotent in the building topology.

In fact, since split Kac-Moody groups satisfy (FPRS) by Lemmas 6 and 5, Miithlherr’s embedding
theorem may be used to deduce directly that groups satisfying (2-sph) also satisfy (FPRS), as was
done in the proof of Lemma 7.

In order to keep the paper reasonably self-contained, we shall content ourselves with a detailed
proof in the case of finite root subgroups, without appealing to the aforementioned embedding
theorem. This is in fact the only relevant case for all the applications discussed in the rest of the
paper.

Proof. As before, we denote by (W, S) the Coxeter system consisting of the Weyl group W together
with its canonical generating set S. If (W, .S) is not of irreducible type, then the buildings %, and
Z_ split into direct products of irreducible components, and it is easy to see that checking (FPRS)
for the A-action on A is equivalent to checking (FPRS) for the induced action on each irreducible
component. We henceforth assume that (W, .S) is of irreducible type. If W is finite, then there is
no sequence of roots (ay)n>0 such that d(cy, ay,) tends to infinity with n. Assume now that W
is infinite; in particular (W,S) is of rank > 3. Consider a sequence of roots (ay)n>0 such that
d(c4, ap) tends to infinity with n. We must prove that r(U_,,,) tends to infinity with n.

Given any two basis roots «,a’, there exists a sequence of basis roots a = ag,a1,...,a, = o/
such that r,, , does not commute with r,, for ¢ = 1,...,k because (W, S) is irreducible. This
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implies that each rank two subgroup Xo, ; a; = (Uta, ;> Uta,) is endowed with a twin root datum
of irreducible spherical type and rank 2, since (W,S) is 2-spherical. By the classification of such
groups [ ], it follows that U,, , and U,, are both nilpotent (of nilpotency degree < 3). Since
this is true for each i, we have p; = p;_1, whence the sequence (p;) is constant. This shows that
there exists a prime p such that each root group is a finite p-group. By Proposition 3(i), it follows
that U is pro-p, whence pro-nilpotent. In particular, the descending central series (Uin)),@o tends
to the identity in the building topology when n — +o0. In other words, this means that for each k

there is some n such that the group Uin) acts trivially on the ball of radius k centered at the base

chamber c;. Therefore, in order to finish the proof, it suffices to show that lirf q(—ay) = +o0,
n—-+0oo

where ¢(a) = max{n > 0: U, < Ug_n)} for each positive root v € ®.

For each integer n > 0, we set ® = {a € &4 : g(a) = n}. We claim that each ®7 is finite. By
assumption, for every n there exists n’ such that the set {c; : j > n'} does not contain any element
of ®", the desired assertion follows from the claim. In order to prove the claim, we proceed by
induction on n. We first need to recall a consequence of condition (2-sph).

A pair {«a, 8} C 4 is called fundamental if the following conditions hold:
(FP1): The group (ra,rg) is finite.

(FP2): For each v € ® such that the group (rs,rs,r,) is dihedral, we have v € [a, 5]. In
other words, this means that the pair {«, 5} is a basis of the root subsystem it generates.

We have the following:

(a) Let {a, 3} C @4 be a fundamental pair. Then, for all v €], B[, we have U, < [Uq, Ug| by
, Proposition 7].
(b) Let v € @, be a root such that d(c,—7) > 1. Then there exists a fundamental pair
{a, 8} C @4 such that vy €]a, B[. This follows from | , Lemma 1.7] together with the
fact that (W, S) is 2-spherical.

We now prove by induction on n that 7 is finite. The set <I>9r coincides with II. Indeed, for each
simple root a € 11, the group U, fixes c; but acts non-trivially on the chambers adjacent to c;..
Since on the other hand, the derived group US) fixes the ball B(cy, 1) pointwise, we deduce that

U, is not contained in UJ(:), whence g(o) = 0. Thus I C ®%. Conversely, if & € @, does not

belong to II, then d(c4,—a) > 1 and property (a) implies that U, < Uf). Thus g(a) > 1 and
aé <I)3_. This shows that <I>3_ = II. In particular @3 is finite.

Let now n > 1 and assume that <I>ﬁ is finite for all & < n. We must prove that @ is finite.
Let us enumerate its elements: ®7 = {v1,72,...}. Since n > 1 and since <I>9r = II, we have
d(cy,—7;) > 1 for all ¢ > 1. Hence, by property (b), for each i there is a fundamental pair
{ai, B;} such that v; € ]ay, B;[. By property (b), this implies U,, < [Uq,,Ug,]|. Therefore, we have
n = q(y) > max{q(w), q(B)}. In particular:

n—1
U{Ozi,ﬂi} C U (I)i
>0 k=0

The set U {a;, B;} is thus finite. By the definition of the 7;’s, we have

>0
7 < | Jous i
>0
Since each interval Joy, §;] is finite | , 2.2.6], this shows that @ is finite. O
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This concludes the proof of Proposition 4.

2.2. Density of the commutator subgroup. As before, (A, {Uy}aca) is a twin root datum of
type (W, S) and (%, AB-) is the associated twin buildings. We assume moreover, for the rest of
this section, that all root groups are finite.

Lemma 9. Assume that property (FPRS) holds, that the Weyl group W is infinite and that the
associated Cozeter system LVV, S) is irreducible. If A is generated by its root subgroups, then the
commutator subgroup [Ay, Ai] is dense in Ay.

Remark. If each rank one subgroup X, = (U, UU_,) of A is perfect and if A is generated by
its root subgroups, then [Ay,A;] D A and, hence, [A;,A;] is dense in A,. However, there are
many examples of groups endowed with a twin root datum satisfying (FPRS) but whose rank one
subgroups are not perfect, e.g. Kac-Moody groups over Fy or F3, or twin building lattices as in
Sect. 1.1(IT) where the rank one subgroups may be solvable.

Proof. Let ¢ : Ay — G be a continuous homomorphism to an abelian topological group G. Let II
be the standard root basis of ®, where ® is the root system of (W, S) indexing the twin root datum
of A. For each a € II, let X, = (U, UU_,).

Assume by contradiction that ¢ is nontrivial. Since A = (Uy | @ € ®) = (Uy | £« € 1I), it
follows that there is some « € II such that ¢(U,) is nontrivial. Let u € U, be such that ¢(u) # 1.
Since W is infinite and (W, S) is irreducible, there exists f € ® such that a N g = @ | ,
Proposition 8.1 p.309]. Let t = rgro, € W and «, = t"(«) for all n > 0. By definition, we have
nETood(CJ”_a") = +o00. Let 7 € N be such that v(7) =t € W, where v : N — N/T =W

is the canonical projection. For each n > 0, let uw, = 7".u.77"™. Since G is abelian, we have

©(un) = ¢(u) # 1 for all n. On the other hand, by definition w, € U,, and, hence lim w, =1

n—-+o0o

by (FPRS). This contradicts the continuity of . O

The following lemma will be used again below, in order to establish restrictions on finite quotients
of a group endowed with a twin root datum.

Lemma 10. Let (X,{Uq,U_o}) be a twin root datum of rank one. We have the following:

(i) The group X is not nilpotent.
(ii) Given a homomorphism ¢ : X — G whose kernel does not centralize X, = (U, UU_,), we

have SO(Ua) = (p(U—oc)'

Proof. We identify the building % associated with the twin root datum (X, {U,,U_,}) with the
conjugacy class {gUag_l}geX of U, in X, on which X acts by conjugation. The axioms of a root
datum imply that there exists n € X, such that nU,n~! = U_,, and that U, acts simply transitively
on the X-conjugates of U, different from U,, itself; the latter conjugates can be described as the
subgroups ulU_au~"! for u varying in U,. Let ¢ € X act trivially on #. We deduce first that g
normalizes U, and U_, and then from the previous simple transitivity property, we deduce that
g actually centralizes U,. Therefore, up to switching o and —«, we deduce that the kernel of the
X-action on the building is the centralizer Zx (X,,).

(i). This implies that the group X, is not nilpotent: up to dividing X, by its center, we obtain a
group endowed with a twin root datum of rank one which acts faithfully on the associated building,
and is therefore center-free.

(ii). Since (X,{Us,U_4}) is a twin root datum of rank one, the group X acts 2-transitively,

hence primitively, on the conjugacy class & of U, in X. The preliminary remark shows that

the kernel of the X-action on % is Zx(X,), so from the assumption on Ker(yp) and the previous
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primitivity property, we deduce that Ker(y) acts transitively on %. In particular, this proves that

P(Ua) = p(U-q). (|
2.3. Topological simplicity. The following proposition is an improvement of the topological sim-
plicity theorem of | ] (see also | , Theorem 3.2]). We also note that, under some

additional assumptions, topological completions of Kac-Moody lattices have recently been shown
to be abstractly simple by L. Carbone, M. Ershov and G. Ritter | ].

Proposition 11. Let (W, S) be an irreducible Cozxeter system of non-spherical type with associated
root system ®. Let (A, {Ua}aca) be a twin root datum of type (W, S) with finite root groups and let
Ay be its positive topological completion. We assume that the root groups are all solvable and that
[A+,A4] is dense in Ay. Then:
(i) Every closed subgroup of A normalized by A' either contains AT or centralizes AT. In
particular, the group KL/Z(AT) is topologically simple.
(i) Let J be an irreducible non-spherical type in S and let G ; be the closure in A, of the group
generated by the root groups indexed by the simple roots in J and their opposites. Assume

that [Gy,G ] is dense in G ;. Then any proper closed normal subgroup of G ; is contained
in the center Z(G ).

Remark. This is the opportunity to correct a mistake in [ , Proposition 2.B.1 (iv)]. The
factor groups there are not topologically simple but simply have property (ii) above: their proper
closed normal subgroups fix inessential buildings, but this does not seem to imply easily that the
whole ambient building is fixed. This does not affect the rest of the paper. The second author
thanks M. Ershov for pointing out this mistake to him.

Proof. For both (i) and (ii), the proof is an easy “topological” adaptation of the “abstract” ar-
guments from Bourbaki. The argument is provided in detail in | , §7.2]; here, we sketch the
proof of (ii). The essential point is that the group U, and hence also G ; N U, is pro-solvable by
Proposition 3(ii). Let H be a normal subgroup of G; not contained in the center. As the closure
of a Levi subgroup, G'; has an irreducible Tits system, with Borel subgroup B+ N G . Therefore,

by Tits’ transitivity lemma [ , IV.2.7, Lemma 2], we have: G; = H. (BJr NGy). Since G is
topologlcally generated by the root groups indexed by the smaple roots in J, we can even obtain
Gy = H.(UyNGy). It follows that GJ/H (Uy N Gy)/(Ug N H). Since G is assumed to be

topologically perfect, so is G;/H. But U+ is pro- solvable, hence the derived series of U+ NGy
meets any open neighborhood of the identity in U+ N G ;. This implies that the only topologically
perfect continuous quotient of U, is the trivial one, hence H = G ;. O

3. NON-AFFINE COXETER GROUPS

This section is mainly Coxeter theoretic. We prove that in any non-affine infinite Coxeter complex,
given any root there exist two other roots such that any two roots in the so-obtained triple have
empty intersection. Such a triple is called a fundamental hyperbolic configuration and used in the
next section to prove strong restrictions on finite index normal subgroups for twin root data.

3.1. Parabolic closure. Let (I¥,S) be a Coxeter system. Given a subset R of W, we denote by

Pc(R) the parabolic closure of R, namely the intersection of all parabolic subgroups of W containing

R. This notion is defined in D. Krammer’s PhD | |. It is itself a parabolic subgroup which

can be characterized geometrically as follows. Let % be the Coxeter complex associated with
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(W,S). Given R C W and any simplex p of maximal dimension stabilized by (R), we have:
Pc(R) = Staby (p).

By a Euclidean triangle group, we mean a reflection subgroup of Isom(E?) which is the automor-
phism group of a regular tessellation of the Euclidean plane E? by triangles. Recall that there are

three isomorphism classes of such groups, corresponding respectively to tessellations by triangles

with angles (3,5, 5), (5.5.5), (5.5.5)
Lemma 12. Let (W,S) be a Coxeter system and let r,s be reflections in W. Assume that the

product T = rs is of infinite order. Then the following holds.

(i) The Cozeter diagram of Pc(T) is irreducible.
(i1) The reflections r and s belong to Pc(7).
(iii) Let t be a reflection which does not centralize T and such that (r,s,t) is isomorphic to a
Euclidean triangle group. Then t belongs to Pc(T).

Proof. We first prove that (ii) implies (i). Let us assume that (ii) holds. By a suitable conjugation
in W, we may — and shall — assume that Pc(7) = W for some subset J C S. Let J. be the
connected component of J such that the irreducible factor W contains r. If s did not belong to
W, then r and s would generate a subgroup isomorphic to Z/2Z x Z/2Z, contradicting that 7 is
of infinite order. Therefore s € J, and by definition of the parabolic closure we have J = J,.

Suppose (ii) fails. Without loss of generality, this means that r ¢ Pc(7). Let ¢ be the Coxeter
complex associated with (IW,S) and p be a simplex of maximal dimension which is stabilized by
(1). Since r & Pc(7), it follows that p is contained in the interior of one of the two half-spaces
determined by r. Let o be this half-space. We have p C «, and hence p C [,z 7".« because p is
T-invariant. This is absurd since (), cz 7".c is empty.

The proof of (iii) is similar. Let ¢ be a reflection which does not centralize 7 and such that (r, s, t)
is isomorphic to a Euclidean triangle group. Let § be any of the two half-spaces associated with .
Using the fact that 7 does not centralize ¢, it is immediate to check in the Euclidean plane that the
intersection (), 7.0 is empty. Hence the same argument as in the proof of (ii) can be applied
and yields ¢ € Pc(7). O

We also need the following result due to D. Krammer. It is a first evidence that non-affine infinite
Coxeter groups have some weak hyperbolic properties.

Proposition 13. Let (W, S) be an irreducible, non-affine Cozeter system. Let w € W be such that
Pc(w) = W. Then the cyclic group generated by w is of finite index in its centralizer.

Reference. This is | , Corollary 6.3.10]. O

Remark. This result is of course false for affine Coxeter groups whose subgroup of translations is
isomorphic to Z™ with n > 2, since the centralizer of any translation in such a group contains the
translation subgroup.

3.2. Fundamental hyperbolic configuration. The non-linearity proof in | , §4] makes
crucial use (for a very specific case of Weyl groups) of the fundamental hyperbolic configuration
defined in the introduction of this section. We prove here that the Coxeter complex of any infinite
non-affine irreducible Coxeter group contains many such configurations. Note that an affine Cox-
eter complex does not contain any fundamental hyperbolic configuration. We do not assume the
generating set .S to be finite.

Theorem 14. Let (W, S) be an irreducible non-affine and non-spherical Cozeter system and let
% be the associated Cozxeter compler. Let o, 3 be two disjoint non-opposite root half-spaces of €.
Then there exists a root half-space v such that yNa=vyN g = 2.

19



Proof. Let us first deal with the case when S is infinite. The pair {ro, g} is contained in a finitely
generated standard parabolic subgroup of W: take explicit (minimal) writings of r, and rg in the
generating system .S; the union of all elements used in these writings defines a finite non-spherical
subdiagram. Up to adding a finite number of vertices to this subdiagram, we may assume that
it is irreducible and non-affine. The corresponding standard parabolic subgroup of W is finitely
generated and contains r, and rg.

We henceforth assume that the generating system S is finite and denote by |S| its cardinality. We
prove the assertion by induction on |.S|. The roots a and 5 being non-opposite, the corresponding
reflections r, and r3 generate an infinite dihedral subgroup in W. This excludes | S |= 1 and
| S'|= 2, except possibly when the two vertices are connected by an edge labelled by co. But since
the latter diagram is affine, the induction starts at |.S|= 3.

Assume first that | S|= 3, i.e. that the Coxeter diagram of (W, S) is a triangle. Denoting by a, b
and c the labels of its edges, we have a, b, ¢ > 3, and also %—|— % —}—% < 1 because (W, .S) is non-affine.
Let H? denote the hyperbolic plane and let .7 be a geodesic triangle in H? of angles o, pand T
(an angle equal to 0 correspond to a vertex in the boundary of H?). It follows from Poincaré’s
polyhedron theorem that the reflection group generated by .7 is isomorphic to W and that the
so-obtained hyperbolic tiling is a geometric realization of the Coxeter complex of (W, S) | ,

IV.H]. Thanks to this geometric realization, the result is then clear when |S|= 3.

Assume now that | S| > 3 and that the result is proved for any Coxeter system as in the theorem
and whose canonical set of generators has less than |.S | elements. Denote by 7 the infinite order
element r,rg. Using a suitable conjugation, we may — and shall — assume that Pc(7) is standard
parabolic, i.e. Pc(7) = W for some J C S. According to Lemma 12, the Coxeter system (W, J)
is irreducible by (i) and we have ro,r3 € Wy by (ii). Then two cases occur.

The first case is when (W, J) is non-affine. By the induction hypothesis, we only have to deal with
the case J = S and Wy = W. If all canonical generators in S centralized 7, then we would have
W = Zw (7); but 7 cannot be central in W since 7 = r,rg does not centralize r, and rg. Therefore
there exists a reflection t € S such that ¢ does not centralize 7. Let T" be the subgroup generated
by t, ro and rg. If T' were isomorphic to a Euclidean triangle group, then Z7(7) would contain a
free abelian group of rank 2. This is impossible by Proposition 13. Therefore, T' is isomorphic to
a hyperbolic triangle group and we can conclude as in the case |S|= 3.

The remaining case is when (W, J) is affine. Then J is properly contained in S because W is
non-affine and there exists an element s € S\ J which does not normalize W;. In particular s
does not centralize 7 because Pc(r) = W;. Let T’ be the subgroup generated by s, r and rg. If
T’ is isomorphic to a Euclidean triangle group, then Lemma 12 (iii) implies that s € W, which is
excluded. Thus 7" is isomorphic to a hyperbolic triangle group and we are again reduced to the
case | S| = 3. O

4. SIMPLICITY OF TWIN BUILDING LATTICES

As mentioned in the introduction, the proof of the main simplicity theorem applies to the general
setting of twin building lattices: the only required assumption is that root groups are nilpotent (see
Theorem 19). The proof splits into two parts, each of which is presented in a separate subsection
below. These two parts have each their own specific hypotheses and are each of independent
interest.

4.1. Finite quotients of groups with a twin root datum. Here, we prove strong restrictions
on finite index normal subgroups of a group endowed with a twin root datum, under the assumption
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that root groups are nilpotent. These conditions are fulfilled by Kac-Moody groups over arbitrary
fields since their Levi factors are abstractly isomorphic to reductive algebraic groups.

Theorem 15. Let (W, S) be a Coxeter system with associated root system ® and let I1 be the root
basis associated to S. Let G be a group endowed with a twin root datum {Uy}aco indexed by P.
Suppose that:

(1) The Coxeter system (W, S) is irreducible, non-spherical and non-affine;
(2) For any o € 11, the root group U, is nilpotent.

Let H be a normal subgroup of G such that N/T.(N N H) is finite. Let GT be the subgroup of G
generated by the root groups, let HT = HNGT, let 7 : GT — G'/HT be the canonical projection and
for each o € T, denote by f, the inclusion Uy, — GT. Then the composed map:

HaEH UO‘ H f GT . GT/HT

18 a surjective homomorphism. In particular, the group GT/H‘L is nilpotent.
Remark. The finiteness of N/T.(N N H) is automatically satisfied when H has finite index in G.

Proof. We identify the elements of ® with the half-spaces of the Davis complex .o/ associated with
(W,S). Weset h=[N:T.(NNH).

Let « be an arbitrary root. By | , Proposition 8.1 p.309] there is a root 1 such that anNn = @.
The product T = r,r, has infinite order. We set 3 = 7".(—a) € ®. We have 3 C n and, hence, the
roots « and [ are disjoint (see Figure on p. 22). By Theorem 14, there exists a root £ € ® such
that a N& =nN¢§ = @. In particular 3N & = @. Again the product 7/ = r¢rg has infinite order.
We set v = (7/)".(—f3).

By construction, we have v C £ (see Figure 1). Hence the roots «, 3 and v are pairwise disjoint.

Therefore it follows from Assumption (2) and Proposition 3(iii) that the group U’ = (U, UU_,) is
nilpotent, and so is its image 7(U’). But by (TRD2) we have

Usg=7"U_or™" and U_, = ()"Us(r")~
Note that N/T.(N N H) is the quotient of the Weyl group W = N/T induced by H <G. Since h
is the order of the quotient N/T.(N N H), applying m provides m(U_,) = m(Ug) = w(U—_-), which
implies
7(U") = (w(Usy) UT(U—q)) = 1(Xa).
This shows that m(X,) is a nilpotent group.

Note that (X4, {Ua,U_q4}) is a twin root datum of rank one. By Lemma 10(i), the group X, is not
nilpotent and, hence, Xo,NH = Ker(m|x,) is not central in X,. Therefore, we have 7(U,) = 7(U_,)
by Lemma 10(ii).

Finally, for any two distinct roots o, 8 € II, we have [U,,U_g] = 1 by axiom (TRD1). In view
of the preceding paragraph, this implies that [7(U,),m(Ug)] = 1 for all distinct o, 8 € II. The
desired result follows by noticing that G is generated by Uiaerr Ua- This is easily seen using
axiom (TRD2) of twin root data to produce elements in N and then to conjugate the simple root
groups by these elements to produce any desired root group. (|

The following corollary applies to all split and almost split Kac-Moody groups over finite fields.

Corollary 16. Let G be a group as in Theorem 15, maintain the assumptions (1) and (2) and
assume moreover that root groups are finite. Here we let HT denote the intersection of all finite
index normal subgroups of GT. Then
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FIGURE 1. Proof of Theorem 15

[GT: HY] < Tlaen [Ual-

Furthermore, we have HY = Gt whenever one of the following holds:
(3) Each group X, a € 11, is a finite group of Lie type and the minimal order ¢yin = min{|Uy| :
aelIl} > 3;
(4) The Cozxeter system (W, S) is 2-spherical, i.e. every 2—subset of S generates a finite group,
and Qmin > 2;
(5) The Cozeter system (W,S) is simply laced, i.e. every 2—subset of S generates a group of
order 4 or 6.

Remark. The above group H' is contained in any finite index subgroup of G.

Proof. Let H be a finite index normal subgroup in GT. Applying Theorem 15 to GT we see that
the index [GT : H] is uniformly bounded, so that finite index subgroups of GT are finite in number.
This implies that the intersection defining H' is finite, so that H' is itself a finite index subgroup.
It remains to apply again Theorem 15 to obtain the desired bound on [GT : HT].

If condition (3) holds, then each X, is perfect (in fact: simple modulo center), so admits no non-
trivial nilpotent quotient. We combine this remark with Theorem 15 applied to GT: this shows
that the image of each subgroup X, is trivial in GT/HT. Since G is generated by the subgroups
X,, this implies the equality H = GT. Similarly, if (4) or (5) holds then for each a € II there
exists § € II — {a} such that X, 3 = (X, Xg) is a rank 2 finite group of Lie type. All such groups
are perfect except Ba(2) and G2(2) (which contain both a simple subgroup of index 2). Since (4)
implies gmin > 2 and (5) implies that X, g is of type A, the group X, g is isomorphic to neither
of the latter groups and we have again HT = G1. O

Theorem 15 and its corollary imply that any split Kac-Moody group over a finite field of irreducible

non-spherical and non-affine type, admits at most a finite number of finite quotients, which are

necessarily abelian since so are root groups in the split case. Then A/AT is a quotient of a finite
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split torus, that is a quotient of finitely many copies of the multiplicative group of the finite ground
field.

Furthermore, if the ground field is of cardinality at least 4 and if the group is generated by its root
groups, e.g. because it is simply connected, then all finite quotients are trivial.

We close this subsection with an example of a Kac-Moody group which admits nontrivial finite
quotients when the ground field is Fo or F3. We set I = {1,2,3} and consider the generalized
Cartan matrix

2 -2 =2

A= (Aijliger=| -2 2 =2

-2 =2 2
Let G4 be the simply connected Tits functor of type A [ , 3.7.c]. We set A = Ga(F2). For
each i € I, we let ¢; : SLa(F2) — A be the standard homomorphism [ , §2 and 3.9] and let
fi : SLa(F2) — Fg be the surjective homomorphism defined by f; < (1) 1 > = f; < 1 (1) ) = 1.
Using the defining relations of A | , §8.3], we see that there is a unique homomorphism

[+ A — [lic; Fa such that fo (J[,c; i) = [Lic; fi- By the definition of f;, the homomorphism f
is surjective.

4.2. Non-arithmeticity. For the next statement we recall that for a group inclusion A < B, the
commensurator of A in B, denoted Commp(A), consists of the elements b € B such that A and
bAb~! share a finite index subgroup. According to a well-known theorem of G. Margulis, a lattice
in a semisimple Lie group is arithmetic if and only if its commensurator is dense in the ambient
Lie group [ , 6.2.5].

Corollary 17. Let A be a group as in Theorem 15. Suppose moreover that assumption (3) of
Corollary 16 holds and let Ay (resp. A_) be the positive (resp. negative)jopolggical completion of
A. Then the commensurator CommK+X37 (AT) s a discrete subgroup of Ay x A_.

Proof. Recall that Af is viewed here as a diagonal subgroup of A, x A_. By Corollary 16, the
commensurator Commmrxx_ (AT) is equal to the normalizer NK+xK_ (AT) because any finite index
subgroup of a given group contains a finite index normal subgroup. Furthermore, the centralizer
Zx, (AT) (vesp. Zz (A")) is nothing but the kernel of the Aj-action (resp. A_-action) on the
positive (resp. negative) building associated with A. By Proposition 1(iii), we have Zx, (AT) =
ZA(AT) (vesp. Zx (AT) = Z(AT)). Therefore, we have an exact sequence:
1 — Zp(AT) x Zp (A1) — NK+XK, (AT) — Aut(AT).
This yields an exact sequence
1 — (Za(AT) x Zy(AT)).AT — Nx, & (AT) — Out(AT),

where Out(AT) = Aut(AT)/Inn(AT) is the outer automorphism group. By | , Corollary BJ,
the group Out(A') is finite. Since (Zx(A") x Zx(AT)).A" is a discrete subgroup of A, x A_ by

Propositions 1(iii) and 2, it finally follows that Commy 5 (AT) = NE, & (AT) is discrete as
well. O

Remark. In fact, the non-existence of any proper finite index subgroup for A implies that its
group of abstract commensurators coincides with Aut(A), which by | , Corollary B] is a finite
extension of A.
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4.3. Normal subgroup property. In view of Corollary 16, the complementary property neces-
sary in order to obtain simplicity of the group Hf (modulo center) is that any non-central normal
subgroup has finite index. This is called the normal subgroup property and is well-known for

irreducible higher rank lattices in Lie groups | , IV.4.9]. The generalization to irreducible co-
compact lattices in products of topological groups follows from work by U. Bader and Y. Shalom,
following Margulis’ general strategy (see | | and mostly | , Introduction| for an explana-

tion of the substantial differences with the classical case). In the attempt of adapting these results
to Kac-Moody groups over finite fields, one has to overcome the fact that Kac-Moody lattices are
never cocompact. This was done in | | by proving that one can find a fundamental domain
D for A in A, x A_ with respect to which the associated cocycle is square integrable.

The following result is a restatement of the normal subgroup theorem proved in [ | and | ],
in the general framework of twin building lattices.

Theorem 18. Let (A,{Uas}aca) be a twin root datum of type (W, S). We assume that:

(NSP1): FEach root group U, is finite.
(NSP2): With the notation of Sect. 1.3, the series W(1/qmin) converges.

Then any subgroup of A which is normalized by AY, either centralizes AT or contains a finite index
subgroup of AT,

Remarks. 1. There is no condition excluding affine diagrams. Indeed, Kac-Moody groups of
affine type are {0, oo }-arithmetic groups and as such are irreducible lattices in higher-rank algebraic
groups: this case was already covered by Margulis’ theorem.

2. As pointed out to us by M. Burger, an infinite group with the normal subgroup property cannot
be hyperbolic since it is incompatible with SQ-universality, the property that any countable group
embeds in a suitable quotient of the group under consideration. Any non-elementary hyperbolic
group is SQ-universal | |l ]. The fact that no Kac-Moody group can be hyperbolic can
also be derived from the specific property that Kac-Moody groups over finite fields contain infinitely
many conjugacy classes of torsion elements.

Proof. Note that a subgroup of A (resp. A.) centralizes AT if and only if it acts trivially on the
building %.. Without loss of generality, we may — and shall - assume that Z(A') is trivial. Hence
A and A, act faithfully on the building %, . Let H be a nontrivial normal subgroup of A and set
H' = H N AT. We must show that the index of HT in A' is finite. To this end, we apply the main
results of | ]. This requires to ensure that two conditions are fulfilled. The first condition is that

the closure of H' in Kl is cocompact. Since H' is normal in AT, it follows from Tits’ transitivity
lemma (see [ , Ch. IV, §2, Lemma 2]) that HT is transitive on the chambers of both %, and
%_. Since the chamber-stabilizers are compact-open subgroups of Ay, the desired cocompactness
condition clearly holds. The second condition is the existence of a fundamental domain D for A
with respect to which the associated cocycle is square integrable; this is provided by the same
arguments as in [ ]. We do not go into details here because this question is more carefully
examined Subsect. 7.2, where we prove a refinement of the square integrability. We merely remark
that the group combinatorics needed to prove the existence of D, namely the structure of refined
Tits system defined in | ], is available for arbitrary twin root data, and not only for those
arising from Kac-Moody groups, see Proposition 1(vi). O

4.4. Simplicity of lattices. We can now put together the two ingredients needed to prove the
simplicity theorem for twin building lattices.

Theorem 19. Let (A, {Us}aca) be a twin root datum of type (W,S). Let AT be the subgroup
generated by all root groups and assume that:
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(S0): The Cozeter system (W,S) is irreducible, non-spherical and non-affine.
(S1): Each root group U, is finite and nilpotent.
(S2): With the notation of Sect. 1.3, the series W(1/qmin) converges.

Then the quotient AT/Z(AY) is infinite virtually simple and all of its finite quotients are nilpotent.

Assume moreover that:
(S3): Each rank one group X, = (Uy, UU_,) is perfect.

Then any subgroup of A, normalized by AY, either centralizes AT or contains AT.

Remark. This theorem applies to the groups of mixed characteristics defined in [ | provided
the minimal size of the finite ground fields is large enough with respect to the growth of the (right-
angled) Weyl group. In this case the lattices are by definition generated by their root groups and
condition (S3) is fulfilled. One can push a little further this construction by replacing the rank 1
Levi factors, isomorphic to some suitable SLy(q)’s, by affine groups. In this case, the root groups
are isomorphic to multiplicative groups of finite fields, so the thicknesses are prime powers, and
rank 1 subgroups are solvable.

Proof. Let H' be the intersection of all finite index normal subgroups of Af. The center of HT
is a normal subgroup of AT, which must be central in AT in view of Theorem 18. In particular
the canonical projection of HT in Af/Z(A") is isomorphic to H'/Z(HT) and coincides with the
intersection of all finite index subgroups of AT/Z(AT).

By Corollary 16, the index of HT in AT is finite. On the other hand, it follows from Theorem 18 that
AT/Z(AT) is just infinite (i.e. every nontrivial quotient is finite). Therefore, it follows from | ,
Proposition 1] that HT/Z(H?') is a direct product of finitely many isomorphic simple groups. Write
HY/Z(H") = Hy x --- x Hy,. We must prove that k = 1.

Notice that HT, viewed as a diagonally embedded subgroup, is a lattice in Ki X KT,, because it is a
finite index subgroup of the lattice AT. Furthermore, H' is irreducible. Indeed, since H' is a finite
index normal subgroup of Af, its closure H in Kl is a non-central closed normal subgroup, which

must coincide with Ki by Proposition 11(i).

Assume now that k > 1. It follows that the simple group H; is a quotient of H' which is not
co-central, since we have a composed map

HY' - H'/Z(H" = H, x --- x H, — H;.

The closure of the projection of the corresponding normal subgroup of H' in KL is thus a non-

central closed normal subgroup of KL. Hence it coincides with Ki by Proposition 11(i). By | ,
Theorem 1.3], this implies that H; is amenable. Since the H;’s are all isomorphic, it follows that
H'/Z(HT) is amenable, and so is Al since Z(H') and [AT : H'] are finite. Recall that At acts on the
associated positive building %, which may be viewed as a proper CAT(0)-space. Amenability of
AT implies that its action on %, stabilizes a Euclidean flat or fixes a point in the visual boundary
at infinity | ]. Both eventualities are absurd. This shows that k = 1 as desired.

Assume now that (S3) also holds. Note that a subgroup of A (resp. A, ) centralizes AT if and only
if it acts trivially on the building %,. Hence, in view of what has already been proven, it suffices
to show that HT = AT. This follows from Corollary 16. ]

Here is now the Kac-Moody specialization of this theorem:

Theorem 20. Let A be a split or almost split Kac-Moody group over a finite field Fy of order q.
Let us denote by (W, S) the natural Cozxeter system of the Weyl group W and by W (t) the growth
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series of W with respect to S. Assume that (W,S) is irreducible, neither of spherical nor of affine
type and that W(%) < +o0. Then the derived group of A, divided by its center, is simple.

Proof. All root groups of A are nilpotent (of class at most 2). Thus conditions (S0), (S1) and (S2)
are clearly satisfied. In order to deduce the desired statement from Theorem 19 and its proof, it
remains to show that the derived group [A, A] coincides with the intersection HT of all finite index
subgroups of Af.

Each rank one subgroup X, = (U, U U_,) is isomorphic to the F,-points of a simple algebraic
group of relative rank one. Therefore, the group X, is perfect except if U, is of order 2 or 3 in
which case it is abelian. In view of Theorem 15, this implies in particular that the quotient A/HT
is abelian. Thus [A,A] C HT. Tt follows from the proof of Theorem 19 that the latter inclusion
cannot be proper, as desired. [l

Note that if ¢ > 3 then every rank one subgroup of the Kac-Moody group A is perfect and, hence,
condition (S3) holds. In that case, we have [A, A] = A.

Kac-Moody groups are the values over fields of group functors defined by J. Tits thanks to com-
binatorial data called Kac-Moody root data [ ]. The main information in a Kac-Moody root
datum is given by a generalized Cartan matrix, say A. Once A is fixed we can still make some
choices in order for A to be generated by its root groups. In this case, e.g. when we choose the
simply connected Kac-Moody root datum | , 3.7.c], we have A = AT = [A, A] (if ¢ > 3) and we
recover the situation described in the comment to the simplicity theorem (Introduction).

Let us now state a corollary on property (T). Its proof is a straightforward combination of work
by J. Dymara and T. Januszkiewicz and by P. Abramenko and B. Miihlherr, but the corollary has
interesting rigidity consequences (Theorem 34).

Corollary 21. Let A be a group endowed with a twin root datum satisfying (S0), (S1), (S2) and
(S3) of Theorem 19. We assume furthermore that any two canonical reflections in S generate a
finite subgroup of W. If qmin > 1764151, then A has Kazhdan’s property (T). In particular there
exist infinitely many isomorphism classes of finitely presented infinite simple groups with Kazhdan’s

property (T).

Proof. This is a straightforward application of | , Theorem EJ, which provides the vanishing
of the first cohomology useful to a well-known criterion for property (T) | , Chapitre 4].
Finite presentation follows from [ ] under the hypothesis that gmi, > 2. Finally, it follows
from | ] that Kac-Moody groups over non isomorphic finite fields (or of different types) are
not isomorphic. O

Concretely, in order to produce infinite simple Kazhdan groups, it is enough to pick a generalized
Cartan matrix A = [As4]stes such that Az A < 3 for each s # t and a finite ground field,
whose order is at least the size of A. The above simple groups seem to be the first examples of
infinite finitely presented simple groups enjoying property (T). The simple lattices in products of
trees constructed by M. Burger and Sh. Mozes | | are finitely presented but they cannot
have property (T) since they act fixed point freely on trees. However these lattices are torsion free,
while a Kac-Moody group over a finite field of characteristic p contains infinite abelian subgroups of
exponent p | , proof of Theorem 4.6]. Note that finitely generated infinite simple Kazhdan
groups were constructed by M. Gromov [ , Corollary 5.5.E] as quotients of hyperbolic groups
with property (T).

4.5. Application to the word problem. As mentioned in the introduction, combining Theo-
rem 20 with the theorem of W. Boone and G. Higman | ], one deduces that large classes of
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finitely generated Kac-Moody groups have solvable word problem. It is however a delicate problem
to determine exactly which Kac-Moody groups can be embedded in a finitely presented simple
Kac-Moody group. Here, we limit ourselves to recording the following statement:

Corollary 22. Let A be a split or almost split Kac-Moody group over an arbitrary finite field F,
of order q. Let us denote by (W, S) the natural Coxeter system of the Weyl group W. If (W, S) is
2-spherical, then A has solvable word problem.

Proof. In view of Theorem 20, | ] and | ], if a group I' can be embedded in a split adjoint
Kac-Moody group of irreducible 2-spherical non-affine type over a sufficiently large finite field,
then I' has solvable word problem. Therefore, the desired result follows from the following three
observations:

Observation 1: Any finitely generated almost split Kac-Moody group of 2-spherical type em-
beds in a finitely generated split Kac-Moody group of 2-spherical type.

By definition, an almost split Kac-Moody group A embeds in a split group A. If A is
finitely generated, then we may assume that A is defined over a finitely generated field and,
hence, is itself finitely generated. Let W be the Weyl group of A; thus the Weyl group W of
A embeds in W. If now W is 2-spherical, then it has Serre’s property (FA) and it is easy to
deduce that its parabolic closure in W is itself 2-spherical. This implies that A is conjugate
to a Levi subgroup of A which is of 2-spherical type.

Observation 2: Any finitely generated split Kac-Moody group of 2-spherical type embeds (pos-
sibly modulo a finite normal subgroup) in a finitely generated split adjoint Kac-Moody group
of irreducible 2-spherical non-affine type.

Clearly, any generalized Cartan matrix of 2-spherical type can be embedded as a top-left
submatrix of a generalized Cartan matrix of irreducible 2-spherical non-affine type. The
claim follows since an embedding of Cartan matrices induces an embedding of Kac-Moody
groups (possibly modulo a finite normal subgroup), the smaller one as a Levi subgroup of
the bigger one.

Observation 3: A split Kac-Moody group over a given finite field embeds in the group of
rational points over any extension of that field.

Immediate by functoriality. O

5. NON-LINEARITY OF KAC-MOODY GROUPS

A result of Mal’cev’s asserts that any finitely generated linear group is residually finite. In partic-
ular, the groups covered by Corollary 16 are not linear over any field. Note that with the notation
and assumptions of this corollary, the group G is finitely generated. In this section, we show that
the latter corollary actually implies a strong non-linearity statement for Kac-Moody groups over
arbitrary fields of positive characteristic.

5.1. Normal subgroups (arbitrary ground field). The proof of the non linearity theorem
below (Theorem 25) requires the following statement, which is a complement to Theorem 15. The
reader familiar with infinite-dimensional Lie algebras will recognize some similarity with | ,
Proposition 1.7].

Proposition 23. Let A be a generalized Cartan matriz which is indecomposable and non-affine,
let Ga be a Tits functor of type A and let K be an infinite field. We set G = G4(K) and Gt = (U, :
a € D), where {Uytaca is the twin root datum given by the root groups. Then given any normal
subgroup H of G, either H contains GT or H N Uy = {1} for each nilpotent set of roots .

Proof. Let H <G be such that H N Uy # {1} for some nilpotent set of roots ¥. We must prove
that H O Gt. The set ¥ is finite | , 2.2.6]; we assume that it is of minimal cardinality with
respect to the property that H N Ug # {1} and we set n = |¥|.
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Suppose that n > 1. The elements of ¥ can be ordered in a nibbling sequence aq, v, ..., a, [loc.
cit., 1.4.1]. Now let g € HNUyg —{1}. The group Uy decomposes as a product Uy = Uy, Uy, . .. Uy,
[loc. cit., 1.5.2], so we have g = ujus...u, with u; € U,, for each ¢ = 1, ..., n. By the minimality
assumption on ¥, the elements u; and w, must be nontrivial. We set j = min{i > 1:u; # 1}. By
Lemma 24 below, we can pick some h € Z7(Uy,) not centralizing U,;). By the defining relations
of G4, we see in a suitable parametrization of U,; by the additive group (K, +) that the action of
h on Uy, by conjugation is merely a multiplication by an element of K*. Therefore h centralizes
no nontrivial element of U, and we obtain successively:

g th7lgh = wu;t.. u;lul_lu?u? oul
= u;l...uj*luflulu?...uz
= u;lu;lu?uﬁ
= uj_lu?ujJrl cooul
for some u; € Uy, (i = j + 1,...,n) and where the last equality follows from the commutation

relations satisfied by the U,’s in view of (TRD 1). Since T normalizes H, we have g~'h~'gh € H.
Moreover the definition of j and the choice of h imply that uj_lug‘ # 1 so in particular g~ 'h~1gh # 1.
This shows that H N Uy_q,} # {1}, which contradicts the minimality of |¥|. Thus n = 1.

The group X, = (U, U U_,) is quasi-simple. More precisely, any proper normal subgroup is
contained in the center, which intersects U, trivially. Therefore, since H N U, is non-trivial, we
deduce that H N X, coincides with X,. Let II be a basis of ® containing « and let 5 € II — {a} be
such that the associated reflections r, and 73 do not commute. Since K is infinite, it follows that
TN Xy ¢ Zr(Ug). In particular, there exists k'€ TN H and u € Ug such that h'u(h/) " lu~1 # 1.
Thus H N Upg is nontrivial and, as above, this implies that H contains Ug U U_g. Finally, since A
is indecomposable we obtain U, < H for any v € ®, that is to say H D GH. O

Let us now immediately prove the lemma we used in the previous proof.

Lemma 24. Maintain the notation and assumptions of Proposition 25 and set T = () ce Na(Ua).
Then, for any positive roots «, 3 € ®T, the inclusion Zp(Uy) C Zp(Ug) implies o = 3.

Proof. Let X* (resp. X.) be the lattice of algebraic characters (resp. cocharacters) of the maximal
split torus T' | , §8.4.3]. We may — and shall — identify the abstract root system ® with a
subset of X* and use the identification 7' ~ Homgoups(X*, K*). For a € &, z € K and t € T', we
have:

(*%) tag(x).t7t = ug(t(a).x),
where u, : (K, +) — U, is a standard isomorphism (see | , §3]).

Assume now that o # 3. We claim that there exists v € X, such that («|v) =0 and (G|v) # 0.
Let us set k(a, 3) = (| BV)(B|aY). If k # 4, then it is easy to see that there exists such a ~ in
the group Za" + Z3Y. If k = 4, then the order of s,ss is infinite and we are in position to apply
Theorem 14. This yields a non-degenerate infinite rank 3 root subsystem of ¢ containing « and (.
Then it is again easy to check the existence of v inside this subsystem. In both cases, the claim
above holds. Given ¢t € K*, let ¢ denote the element of T defined by 7 : X — t* 7). Since K is
infinite, there exists some z € K* such that 2817 2 1. In view of (%), it is now straightforward
to check that 27 is an element of T" which centralizes U, but not Ug. U

5.2. Non-linearity. We can now state the main non-linearity theorem of this section. Note that it
is known that Kac-Moody groups of indefinite type over infinite fields of arbitrary characteristic do
not admit any faithful finite-dimensional linear representation over any field | , Theorem 7.1],
but the simplicity for Kac-Moody groups over infinite fields is still an open question.
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Theorem 25. Let A be a generalized Cartan matriz, let G4 be a Tits functor of type A and let K
be a field of characteristic p > 0. Assume that A is indecomposable, of indefinite type, i.e. neither
spherical nor affine, that each rank one subgroup of Go(K) is perfect and that G4(K) is generated
by its root subgroups. Then any finite-dimensional linear representation of Ga(K) is trivial.

Proof. We set G = G4(K) and we let ¢ : G — GL,(F) be any representation. If K is finite,
then ¢(G) is residually finite by Mal’cev’s theorem. On the other hand G does not have any finite
quotient by Corollary 16. Hence ¢(G) is trivial in this case.

We henceforth assume that K is infinite. Let us denote by G, the group Ga(F),) (where F), is the
prime field of K). We view G, as a subgroup of G. By Mal'cev’s theorem, ¢(G)) is residually
finite, so by Corollary 16 it is finite. Since the root system ® contains nilpotent subsets of arbitrary
large cardinality, the kernel H of ¢ meets non-trivially the F)-points of Uy for some nilpotent set of
roots W. In particular, we have HNUy # {1}, which implies by Proposition 23 that H contains GT.
Since the field K is infinite, we have GT = [G, G] because the rank one subgroups X, = (U, UU_,)
are perfect. The conclusion follows since [G, G] = G by hypothesis. O

6. HOMOMORPHISMS TO TOPOLOGICAL GROUPS

In this section we study homomorphisms from Kac-Moody groups to locally compact groups. In the
first result, we collect some basic facts which show that the only interesting group homomorphisms
from finitely generated Kac-Moody groups are those with totally disconnected target. However,
the main part of this section is devoted to proving that any nontrivial continuous homomorphism
whose domain is the topological completion of a twin building lattice is a proper map. This is a
useful result to be combined with superrigidity.

6.1. Homomorphisms from simple discrete groups. We collect here some basic (and probably
well-known) facts about abstract group homomorphisms from simple discrete to locally compact
groups.

Proposition 26. Let A be an infinite finitely generated group endowed with the discrete topology.

(i) The group A is residually finite if, and only if, there exists an injective homomorphism from
A to a compact group.

(i1) If A is simple (resp. simple and Kazhdan), any group homomorphism from A to a compact
(resp. amenable) group is trivial.

We henceforth assume that A is simple.

(iii) There exists no nontrivial group homomorphism from A to a Lie group with finitely many
connected components.

(iv) Let ¢ : A — G be a nontrivial group homomorphism to a locally compact group G and let
m: G — G/G° be the projection onto the group of connected components. Then wo ¢ is a
continuous, injective, unbounded homomorphism.

(v) Let X be a CAT(0) or hyperbolic proper metric space. Then if A fizes a point, say &, in the
visual boundary 0~ X, it stabilizes each horosphere centered at &.

Point (i) was pointed out to us as a folklore result by N. Monod. A proof appears in | ,
Proposition 4(i) and (ii)]; since it is short and elegant, we reproduce it here. The key is to use
Peter-Weyl’s theorem.

Proof. (i). By definition, a residually finite group injects in its profinite completion, so one direction

is clear. Now let A admit an injective homomorphism ¢ : A — K into a compact group K and

let A € A — {1}. The regular representation px of K in L?(K) is injective; we will use its Peter-

Weyl decomposition | , Theorem 27.40]. The image A of ) in some suitable finite-dimensional
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irreducible submodule, say V', is nontrivial. The projection Ay of (px o¢)(A) to GL(V) is a finitely
generated linear group containing . By Mal’cev’s theorem [ , Window 7 §4 Proposition 8], the
group Ay is residually finite, so it admits a finite quotient in which A is nontrivial: this is a finite
quotient of A in which the image of the arbitrary nontrivial element A is nontrivial.

(ii). The case when A is simple follows immediately from (i). We assume that A is both simple
and Kazhdan. Let ¢ : A — P be a homomorphism to an amenable group P. The closure p(A) is a
Kazhdan group because so is A [ , Proposition 7.1.6] and it is amenable as a closed subgroup
of P | , 2.3.2]. Therefore it is compact | , IIL.3 p.115] and it remains to apply the first
case of this point.

(iii). Let ¢ : A — G be a homomorphism to a Lie group with finitely many connected components.
By simplicity, the group A has no finite index subgroup, so we are reduced to the case when G
is connected. We compose this map with the adjoint representation of G, whose kernel is the
center Z(G) | , I11.6.4 Corollaire 4], in order to obtain a continuous homomorphism Ad o ¢
to the general linear group of the Lie algebra of G. This map is not injective since the group A is
simple and finitely generated, hence non-linear. Therefore (Ad o ¢)(A) is trivial. Finally, again by
simplicity, we successively obtain ¢p(A) < Z(G) and ¢(A) = {1}.

(iv). By simplicity of A, the map ¢ is injective since it is not trivial. Moreover the kernel of mo ¢ is
equal to {1} or A. We have to exclude the case when Ker(m o ¢) = A. Let us assume the contrary,
ie. p(A) < G°, in order to obtain a contradiction. It follows from | , 4.6] that there exists
a compact normal subgroup K < G° such that G°/K is a connected Lie group. Let us consider

the composed map A —— G° G°/K where p : G° — G°/K denotes the canonical projection.
By (iii) we have (p o ¢)(A) = {1} so p(A) < K. It remains to apply (ii) to obtain the desired
contradiction. The unboundedness of 7 o ¢ follows from (ii) as well.

(v). For each y € X, we denote by (¢, the Busemann function f¢, : X — R centered at ¢
and such that F¢,(y) = 0 | , 11.8.17 and III.LH.3]. We pick € X and define the function
ez A — R by setting ¢ 2(9) = Bez(g.2). Then for g, h € A, we compute @¢ »(gh) — ¢ (),
i.e. Beq(gh.x) — Bez(h.x) by definition. By equivariance, this is f¢ »(gh.x) — Bg.¢ g.o(gh.z), that is
also B¢ z(gh.x) — B¢ g.o(gh.z) because & is fixed under the A-action. But the latter quantity is also
Bex(g.x), ie. pez(g), by the cocycle property of Busemann functions. In other words, the function
¢, is a group homomorphism from A to (R, +). By simplicity of A, it is trivial, from which we
deduce that = and g.x are on the same horosphere centered at £ for any g € A and any x € X. 0O

Note that if in (v) we replace A by a topologically simple group acting continuously on X, the
same conclusion holds (the argument is the same: the above map ¢, is a continuous group
homomorphism).

6.2. Diverging sequences in Coxeter groups. In the present subsection, we consider a Coxeter
system (W, S) and the associated Davis complex <.
We say that a sequence (wy,),>0 of elements of W diverges if lirJIrl l(wy) = 4o0.

n—-+0oo
Lemma 27. Let (wn)n>0 be a diverging sequence in W. Given any x € o, there exists a root
half-space o € () and a subsequence (wy, )k>o0 such that klim d(z, wp,.00) = +00.

—400
Proof. The sequence (wy,)n>o diverges if and only if so does (w,, 1),>0. Therefore, it suffices to find

a root a € ® and a subsequence (wp, )r>0 such that klim d(wy,,.x, o) = +00. We set z,, = wy,.x.
— 400

Since (wp)n>0 diverges, we have 11111 d(z, xy) = +o0o. Therefore (x,,),>0 possesses a subsequence
n—-+oo

(%, )k>0 which converges to a point & of the visual boundary Ou.7.
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Let p : [0, +00) — &7 be the geodesic ray such that p(0) = x and p(+00) = £. Since p is unbounded
and since chambers are compact, it follows that p meets infinitely many walls of the Davis complex
&/. On the other hand, the ray p is contained in finitely many walls, otherwise its pointwise
stabilizer would be infinite, contradicting the fact that W acts properly discontinuously on <.
Therefore, there exists a wall da which meets p and such that p is not contained in it. This wall
determines two roots, one of which containing no subray of p. We let o be that root: anpis a
bounded (nonempty) segment.

Since « is a closed convex subset of o7, the map d(-, «) : & — Ry is convex | , 11.2.5] and so
is f: Ry — Ry 1t d(p(t),a). Therefore, if f is bounded, it is constant and since p meets «
we have f(t) = 0 for all ¢. This is excluded because by construction the ray p is not contained in
a. Thus f is an unbounded convex function and we deduce that tliinoo d(p(t), ) = 4+o0. Finally,

since tlim p(t) = klim Ty, = &, it follows that {z,, : k > 0} is at finite Hausdorff distance from
—00 —00

p([0,+00)). Therefore, we obtain klim d(zp,, o) = 400 as desired. O
— 400

6.3. Properness of continuous homomorphisms. We now settle our main properness result

for continuous group homomorphisms from topological completions of twin building lattices.

Theorem 28. Let A be a group endowed with a twin root datum {Uy}aca of type (W, S) with finite
root groups, and such that A = (U, | a« € ®) and Z(A) is finite. Assume that W is infinite, that
(W, S) is irreducible, that all root groups are solvable and that property (FPRS) of Sect. 2.1 holds.
Let A be the positive topological completion of A and let ¢ : A — G be a continuous nontrivial
homomorphism to a locally compact second countable group G. Then @ is proper.

Remark. In view of the proof below, we can consider Proposition 4 and Lemma 27 as substitutes
for results such as the contracting or expanding properties of torus actions on root groups in the
classical algebraic group case | , Lemma 5.3].

Proof. Let us assume that ¢ is not proper in order to obtain a contradiction. There exists a sequence
(74)j=0 eventually leaving every compact subset of A and such that .liin ©(7;) exists in G. Let us
j—too

recall that we can view the Weyl group W as the quotient ]/V; /. where ]/V—;{ = StabKJr () and
Qy = FiXK+($27+)- We also have a Bruhat decomposition: A = | |, oy BywBy, where By is the
Iwahori subgroup By = Fixx+(c+). We use it to write v; = kj.n;.k} with kj, k; € By and nj € Ny
Up to passing to a subsequence, we may assume that (k;);>0 and (k;-)J;o are both converging in

the compact open subgroup B;. We set w; = n;Q,. The hypothesis on (v;);>0 implies that
(wj)j>0 is a diverging sequence in W and that ; Erfoocp(nj) exists in G. We denote this limit by

g. In view of Lemma 27, up to passing to a subsequence, there exists a root o € ®(&7;) such that
jginm d(cq,wj.a) = +00. Let u € U_,—{1}. Recall that nj.u.n]71 € Uy, (—a) for all j. Therefore by
(FPRS) we have: jEIJPoo nj.u.nj_l = 1. Applying ¢ we obtain: 1 = jETm (p(nj.u.nj—l) = g.p(u).g L.
Thus we have u € Ker(¢). By Proposition 11(i), this implies that K:_ < Ker(yp). Since A = AT by

assumption, it follows that ¢ is trivial, providing the desired contradiction: ¢ is proper. O

7. SUPERRIGIDITY

In this section, we show that recent superrigidity theorems can be applied to twin building lattices.
They concern actions on CAT(0)-spaces. We also derive some consequences: non-linearity of irre-
ducible cocompact lattices in some Kac-Moody groups, homomorphisms of twin building lattices
with Kac-Moody targets, restrictions for actions on negatively curved complete metric spaces.
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7.1. Actions on CAT(0)-spaces. The possibility to apply | | to irreducible cocompact lat-
tices enables us to prove the following. Note that the existence of irreducible cocompact lattices in
this context is an open problem.

Proposition 29. Let A be a twin building lattice generated by its root groups {Uay}aca, with
associated twinned buildings $B+. We assume that the Weyl group W is infinite, irreducible and
non-affine, that root groups are nilpotent and that Z(A) = 1. Let T' be an irreducible cocompact
lattice in A; x A_. Then any linear image of I is finite.

Remark. The important assumption here is irreducibility. Indeed, the twin buildings associated
to some Kac-Moody groups are right-angled Fuchsian. For each of the two buildings %Ay, the
completion A4 contains a cocompact lattice isomorphic to a convex cocompact subgroup of the
isometry group of a well-chosen real hyperbolic space | , 4.B]. Taking the product of two such
lattices, we obtain a cocompact lattice in A_ x A, which is linear over the real numbers.

The arguments are classical, so we only sketch the proof. Note that one could appeal here to
Monod’s alternative | , Theorem 2.4] which yields the above proposition when combined with
the nonlinearity of twin building lattices. However, the alternative in [loc. cit.] does not apply to
linear images over fields of characteristic 2 and 3 (although this restriction is probably not necessary,
see | , Remark 2.4(c)]). The arguments below, relying on | |, avoid any consideration
of characteristics.

Proof. By Proposition 11(i), the groups A+ are topologically simple. By | , Corollary 1.4], it
follows that I is just infinite, i.e. all its proper quotients are finite. Hence any group homomorphism
from I with infinite image is injective; the same holds for any finite index subgroup of I'. Let F be
a field with algebraic closure F and let n > 2 be an integer such that there is an injective group
homomorphism 7 : I' — GL,(F). We must obtain a contradiction. Let H be the Zariski closure
of n(I') in GL,(F). We denote by I'° the preimage by 7 of the identity component H°. It is a
finite index normal subgroup of I, so as a lattice in A_ x A it is still irreducible because A is
topologically simple. We denote by R(H®) the radical of H° and by = : H°® — H°/R(H°®) the
natural projection. Then 7 o 7 is still injective since otherwise, by the normal subgroup property
for T°, the group I' would be virtually solvable, hence amenable, while A_ x A, is not. We
thus obtain a semisimple group G over F and an injective group homomorphism ¢ : I'° — G
with Zariski dense image. We choose an algebraic group embedding in some general linear group:
G < GL,. Being cocompact, the lattice I'° is finitely generated. Taking the matrix coefficients
of the elements of some finite symmetric generating system implies that ¢(I'°) lies in GL,(E) for
some finitely generated field E. The group I'° is finitely generated, linear and non-amenable so
by Tits’ alternative it contains a non-abelian free group | |. We can find an element with one
eigenvalue, say A, of infinite multiplicative order, so there is a local field K with absolute value
|- | and a field extension ¢ : E — K such that | o(\)|# 1. In particular, the subgroup ¢(I'°)
is unbounded in G(K ). The map ¢ : I'° — G(K ) satisfies the two conditions required to apply
Monod’s superrigidity [ , Corollary 4 and Lemma 59]: the homomorphism ¢ extends to a
continuous homomorphism @ : A_ x A, — G(K ). By topological simplicity of AL, we obtain an
injective homomorphism A — G(K ), which is impossible since A is infinite, virtually simple and
finitely generated, hence non-linear. O

7.2. Uniform p—integrability. We now check an integrability condition which is a partial substi-

tute for cocompactness of lattices. Let us recall the general context: G is a locally compact group,

I' is a lattice in G. We assume that I" contains a finite generating subset > and denote by |- |y the

length function on I' with respect to it. Following | , Sect. 7], each time we have a right

fundamental domain €2 for I', we define the function x,, : G — I" by g € x,(¢9)Q2. For each real
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number p > 1, we say that I' is p—integrable if there is a right fundamental domain 2 such that for
any ¢ € G, we have: /(| Xq(g9¢) [2)Pdg < +oo. The main result of | | is that Kac-Moody
Q

lattices are p—integrable for any p > 1. This amounts to saying that the function g — | x,(g¢) |2
belongs to LP(2) for any ¢ € G. We are interested in a stronger property. We denote by || - |/, the
LP—norm of measurable functions on 2.

Definition 30. Given p € [1;00), the lattice T in G is called uniformly p-integrable if there is a
right fundamental domain Q) as above such that for any compact subset C' in G we have:

sup / (Ixa(90) [5)? dg < +o0,
ceC JQ

i.e. the real valued function ¢, , : ¢ ||[Xq(-c)|s|lap is bounded on compact subsets of G.

The relation with Y. Shalom’s condition | | is the following. Given a left fundamental domain
D for the inclusion I' < G, we can define a map ap : G x D — I' by setting ap(g,d) = 7 if, and
only if, we have gdy € D. Up to translating it, we may — and shall — assume that 14 belongs to D.
The set Q2 = D! is a right fundamental domain and the following equivalences hold:

ap(g,1lg) =7 <= g7eD <= 77l e <= gl <= y=x,0g7".

In other words, we have: x,,(g) = ap(97!, 1¢) and 2-integrability amounts to Y. Shalom’s condition
(1.5) in | , 1.IT p.14].

Let us now turn to the specific case of twin building lattices. For the rest of the section, we let
I' = A be a twin building lattice with twin root datum {U,}ace. We also let G = A_ x A,. In
[ , 1.2] a left fundamental domain D is defined by means of refined Tits systems arguments.
It is a union D = | |, oy Dy, indexed by the Weyl group W, of compact open subsets D,, in G
and we have 1 € Dy, . For the rest of the subsection, ¥ denotes the finite symmetric generating
subset used in | , Definition 1], i.e. the union of the rank one subgroups X, -7 = (Uy,U_o) - T
indexed by the simple roots a € II.

Theorem 31. There exists a right fundamental domain Q such that for any p € [1;400) the
function ¢, ¢ =[x (- ¢)|slla,p is bounded from above by a function which is constant on each
product of double cosets modulo the standard Iwahori subgroups in A_ and A,. In particular, twin
building lattices are uniformly p—integrable for any p € [1;4+00).

Remark. The second assertion implies the first one because the standard Iwahori subgroups B+
are open and compact, so products of double cosets modulo Iwahori subgroups Bywi+ B+ xB_w_B_
are open and compact (and disjoint when distinct).

Proof. We first note that as for the normal subgroup property (Theorem 18), though the results
in [ | are stated for Kac-Moody groups, we can use them in the more general context of
the above statement thanks to Proposition 1(vi). Moreover since the groups AL have BN-pairs,
they are unimodular | , IV.2.7]. Hence so is G. We denote by dg a Haar measure on G and
compute ¢, (c)P for c € G. It is:

/(xﬂ(gc)|g)pdg:/ (|04D(Clg1710)|E)pd9=/(ap(0197 1g) )" dg.
Q D1 D

The first equality follows from the remarks before the statement and the last equality from the
unimodularity of G. Therefore it is enough to check that the map h — / (]ozD(hg, 1g) |E)p dg

D
is bounded from above by a function which is constant on products of double cosets modulo the
standard Iwahori subgroups B_ and By, in A_ and Ay respectively. We are now back to objects
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studied in [ ]. An element h € G is a couple (h_, hy) with he € AL and we denote by L. (h)
the combinatorial distance (i.e. the length of a minimal gallery) in the building %+ from the
standard chamber c+ to the chamber hi'.cx. The function h — L (h) is constant on each double
coset of Ay modulo the standard Iwahori subgroup of sign + since L (h) is nothing but the length
in W of the Weyl group element indexing the double class Byhy B1. We set L(h) = L_(h)+ L (h)
and introduce the polynomial @} defined in [ , Lemma 17] by Qn(X) = 3X? + (6L(h) +
3)X + (3L(h)? +3L(h) +1). Then by the proof of the main theorem of [loc. cit., p. 39] there exists

P
a constant | 7| such that we have: ¢, (h)P < |T]- Z M We are done since h — Qj, is
’ q

neN
constant on the products of double cosets BLw By x B_w_B_. |

Recall that weak cocompactness of a lattice I' in a topological group G is the fact that the space
of functions of zero mean in L?(G/T') doesn’t almost have invariant vectors | , III.1.8]. Tt is
possible that all Kac-Moody lattices enjoy this property, which is implied by Kazhdan’s property
(T). As already mentioned in the introduction (where a specific statement is provided), using
the above p-integrability for weakly cocompact Kac-Moody groups enables us to derive a lot of
superrigidity results.

Proposition 32. Let A be a twin building lattice, which we assume to be weakly cocompact in
A_ x Ai. Then the results in | |, as well as theorems 1.1, 1.3, 1.4 and 2.7 of | | can
be applied to A < A_ x A

Proof. This is a straightforward consequence of | , Theorem 7] and of | , 87]. O

Remark. In this subsection, no assumption was made on the type of the Coxeter diagram of the
Weyl group.

7.3. Homomorphisms of twin building lattices with Kac-Moody targets. The purpose of
this subsection is to present a concrete application of superrigidity of twin building lattices, and
more specifically of Proposition 32. Recall that the main application of superrigidity of lattices in
Lie groups is arithmeticity, see e.g. | | and | |. In the context of twin building lattices,
and in view of the simplicity theorem 19 and its corollaries, it is rather natural to apply superrigidity
to homomorphisms with non-linear targets. The main result of this section is an example of such
an application.

Let (G,{Uq}acs) be a twin root datum of type (W,S), with finite root groups, such that the
centralizer Zg(GT) is trivial, and let G, be its positive topological completion. Since Zg(G') is the
kernel of G ;-action on the associated building %, , we may — and shall — view G as a subgroup
of Aut(A.) (see Proposition 1(iii)).

Theorem 33. Let A be a weakly cocompact (e.g. Kazhdan) twin building lattice of irreducible type,
whose root groups are solvable, and such that A is generated by the root groups and that property
(FPRS) of Sect. 2.1 holds. Let ¢ : A — G be a homomorphism with dense image. Assume that
(W, S) is irreducible, non-spherical and 2—spherical (i.e. any 2—-subset of S generates a finite group).
Assume also that guin = min{|Uy| : « € ®} > 3. Then p(A) is conjugate to GT in Aut(%.). In
particular GT is isomorphic to AJ/Z(A).

Proof. Details of the arguments involve some rather delicate considerations pertaining to the theory
of twin buildings. Since a detailed proof would therefore require somewhat lengthy preparations
which are too far away from the main topics of this paper, we only give a sketch.

Since the G -action on the associated building %, is strongly transitive and since ¢(A) is dense in

G, it follows that the A-action on % induced by ¢ is reduced (in the sense of | ]). By Propo-

sition 32, we may therefore apply [ , Theorem 1.1], which ensures that the homomorphism
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¢ extends uniquely to a continuous homomorphism A, x A_ — G, factoring through A, or A_.
Up to exchanging + and —, we assume that ¢ extends to a continuous homomorphism Ay — G,
also denoted . Since ¢ is proper by Theorem 28, it follows that ¢ is surjective. Furthermore, by
Proposition 11(i) the kernel of ¢ is contained in the discrete center Z(A,) = Z(A).

For both A, and G, the maximal compact subgroups are precisely the maximal (spherical) para-
horic subgroups. Moreover, since (W, S) is irreducible and 2-spherical, a maximal parahoric sub-
group of G has a Levi decomposition as semi-direct product L x U, where L is a finite group of Lie
type and U is a pro—p group for some prime p depending only on G (see | , Theorem 1.B.1(ii)]
and Proposition 3(i)). Furthermore, in the decomposition L x U, the «congruence subgroup) U
is characterized as the maximal normal pro—p subgroup. Using the fact that maximal parahoric
subgroups of A also admit Levi decompositions, it is not difficult to deduce that the Levi factors
in A, are also finite groups of Lie type and, then, that ¢ induces isomorphisms between the Levi
factors in Ay and in G. In view of the description of the respective buildings of the latter groups
as coset geometries modulo parahoric subgroups, this in turn implies that ¢ induces an isomor-
phism between the building 27, of A, and the building %, of G, ; moreover this isomorphism is
p—equivariant. In particular 27 is of 2—spherical irreducible type with infinite Weyl group. By
assumption, the building 27 (resp. %) admits a twin 2_ (resp. %_) such that the diagonal
action of A (resp. G) on the product 275 x Z_ (resp. B4 x HB_) preserves the twinning. By the
main result of | |, these twinnings must be isomorphic since 27 and %, are. More precisely,
these twinnings are conjugate under some element of Aut(#;). Up to conjugating ¢(A) by this

element of Aut(#, ), we may — and shall — assume that ¢(A) preserves the twinning between %,
and A_.

Since the isomorphism between 27, and %, is p—equivariant, it follows from standard description
of root group actions in Moufang twin buildings (see e.g. | ]) that ¢ maps each root group
of A to a root group of GG, and that every root group of G is reached in this manner. Since A is
generated by its root groups, we deduce that ¢(A) = Gf. Finally, since G is center-free, so is ¢(A),
from which it follows that Ker(p) N A = Z(A). O

7.4. Actions on CAT(—1)-spaces. Another consequence is the existence of strong restrictions on
actions of «higher-rank) Kac-Moody lattices on CAT(—1)-spaces. Of course, in this case we must
discuss the notion of rank which is relevant to the situation; this is done just after the statement.
Since we are dealing with hyperbolic target spaces, it is most convenient to use a superrigidity
theorem due to N. Monod and Y. Shalom | ]

Theorem 34. Let A be a split or almost split adjoint Kac-Moody group over Fq which is a lattice in
the product of the associated buildings B+. We assume that the Weyl group W is infinite, irreducible
and non-affine and that q > 4. Let'Y be a proper CAT(—1)-space with cocompact isometry group.
We assume that A acts on'Y by isometries and we denote by ¢ : A — Isom(Y') the corresponding
homomorphism.

(i) If the A-action is nontrivial but has a global fived point in the compactification Y = Y 05 Y,
then the fixed point is unique and lies in the visual boundary OxY .

(ii) We assume that the A-action has no global fized point at all. Then there exists a nonempty,
closed, convex, A-stable subset Z C'Y on which it extends to a continuous homomorphism
¢ :A_ x Ay — Isom(Z) which factors through A_ or A, .

(iii) We assume that the buildings HB+ contain flat subspaces of dimension > 2. Then the A-
action, if not trivial, has a unique global fixed point in Y, which lies in the visual boundary
OxY .

(iv) Assume that Isom(Y') is non-elementary, or else that A is Kazhdan. If the buildings %4
contain flat subspaces of dimension > 2, then the A-action is trivial.
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Remarks. 1. The assumption that Y has cocompact isometry group in the theorem is necessary.
Consider indeed the minimal adjoint Kac-Moody group A = Ga(F,) over F,, where A is the
generalized Cartan matrix of size 4 defined by A;; = 2 for i = 1,...,4 and 4;; = —1 for 1 <
i # j < 4. Thus the group A satisfies all hypotheses of the theorem if ¢ > 4; furthermore A
has property (T) provided q > 1764% [ ]. The specificity is here that the Weyl group W is a
Coxeter group which is a non-uniform lattice of SO(3,1). In fact W acts on the real hyperbolic
3-space H? with a non-compact simplex as a fundamental domain. It turns out that the whole
building %, has a geometric realization X in which apartments are isomorphic to the tiling of H?
by the above simplex as fundamental tile. This geometric realization is a locally finite simplicial
complex which admits a global CAT(—1)-metric induced by the metric of the apartments | ,
Proposition 11.31]. Hence, although the building %, has 2-dimensional flats in its usual geometric
realization, the CAT(—1)-space X is endowed with a natural A-action which has no global fixed
point in the visual compactification X. The point is of course that chambers are not compact in
X (while they are of course compact in %, ), which implies that Isom(X) is not cocompact.

Note that in the above example, the rank 2 Levi factors of A are (virtually) nothing but arithmetic
groups SL3(F,[t,¢t71]). The action of these subgroups on X induced by the A-action has no global
fixed points in X, which shows in particular that the assumption that Isom(Y") has finite critical
exponent is necessary in | , Corollary 0.5] as well.

2. The prototype of «higher-rank versus CAT(—1)» result we have in mind is | , Corollary
0.5]. In the latter case the target space is also a CAT(—1)-space without any required connection
with Lie groups, but the irreducible lattice lies in a product of algebraic groups. Then the fact
that each factor in the associated product of symmetric spaces and Bruhat-Tits buildings contains
higher-dimensional flats implies property (T) for the lattice. In the Kac-Moody case, the existence
of higher-dimensional flats no longer implies property (T); this explains the distinction between
(iii) and (iv).

3. Another interesting rigidity result for actions of «higher-rank) groups on CAT(—1)-spaces is
obtained in [ , Theorem 2]. More precisely, it is shown in [loc. cit.] that a finitely generated
group whose first LP-cohomology vanishes for all p > 1 cannot act properly on a CAT(—1)-space
with cocompact isometry group. Note that these cohomological conditions are satisfied by 2-
spherical Kac-Moody groups over sufficiently large finite fields by the results of | .

4. The notion of flat rank considered in | ] for groups of building automorphisms is relevant
here. According to [ | and | , Theorem A], knowing whether the buildings %+ contain
higher-dimensional flat subspaces is equivalent to the fact that the groups A4 are of flat rank
> 2 or, still equivalently, that the Weyl group contains a free abelian subgroup of rank > 2. In
particular, the flat rank can be explicitly computed from the Dynkin diagram of the twin building
lattice group A.

Proof of Theorem 34). (i). We first note that the hypotheses (S0)—(S3) of Theorem 19 are fulfilled.
Moreover A = AT and Z(A) = 1 since A is adjoint. Hence the group A is simple. In particular, the
non-triviality of ¢ implies that it is injective. Moreover for any y € Y the stabilizer Stabry,yy(y) is
a compact group, so by Proposition 26 a nontrivial A-action on Y cannot have any fixed point in
Y. Now let £ and n be two distinct A-fixed points in the visual boundary d.Y. Then the unique
geodesic (n€) is stable and by simplicity of A the restriction of the A-action on (7€) has to be trivial:
this implies the existence of a global fixed point in Y, which again is excluded when ¢ is nontrivial.

(ii). Let us first show that the closure group ¢(A) is non-amenable. Assume the contrary. Then
there is a probability measure g which is fixed by this group. Since the A-action has no global

fixed point in Y, the group ¢(A) is not compact so by the CAT(—1) Furstenberg’s lemma | ,
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Lemma 2.3] the support of 1 contains at most two points. This support is A-stable, so by simplicity
it is pointwise fixed by A; this is excluded because the A-action has no global fixed point in J,Y .

We henceforth know that ¢(A) is non-amenable. We apply | , Theorem 1.3]: there exists a
compact normal subgroup M < (A) such that the induced homomorphism A — ¢(A)/M extends
to a continuous homomorphism A_ x Ay — ¢(A)/M factoring through A_ or A;. Therefore,

choosing a suitable sign we obtain an injective continuous group homomorphism

Let us denote by Z the fixed-point set of M in Y. The subset Z is nonempty because M is
compact, it is closed and convex by uniqueness of geodesic segments. Since M is normal in ¢(A),

the subset Z is stable under the ¢(A)-action. The restriction map rz : ¢(A) — Isom(Z) factors
through the canonical projection mps : @(A) — @(A)/M and provides a natural homomorphism

Tz + @(A)/M — Isom(Z) which we can compose with ¢ to obtain the desired homomorphism
p=Tz00.
(iii). Let us assume that the A-action has no fixed point in Y in order to obtain a contradiction.

By applying (ii), we have an injective continuous homomorphism ¢ : Ax — Isom(Z) as above.
Moreover Proposition 4 and Theorem 28 imply that ¢ is proper.

Root system preliminaries.— By the remarks before the proof, the existence of flats of dimension
> 2 implies the existence of an abelian subgroup isomorphic to Z x Z in the Weyl group W.
Moreover it follows from | , Theorem 6.8.3] that if W has a subgroup isomorphic to Z x Z,
then it has a reflection subgroup isomorphic to Dy, X Dy, where D, is the infinite dihedral group.
Let a, o/, 3,3 € ® be roots such that 7 = rorg and 7" = ry/rg are mutually commuting and both
of infinite order. Let Vi (resp. V_) the group generated by the root groups indexed by roots in
Unez 7" -{c; =B} (resp. by the opposite roots). Note that each of these two groups is normalized
by any element lifting 7 in V.

Reduction to hyperbolic isometries.— Recall that the torus T is finite, hence the fixed-point-set Y7
of T in Y is nonempty. Thus Y7 is a closed convex subset of Y on which the group N acts since N
normalizes T'. Recall that the quotient N/T is nothing but the Weyl group W. Obviously T" acts
trivially on Y7 and, hence, the action of N on Y7 factors through W. Therefore, we may — and
shall — consider that W acts on Y.

Let us now pick n, such an element, i.e. such that n,T = 7 in W = N/T. By properness of
@, the group generated by ¢(n,) is unbounded, therefore the isometries @(n,)*! are either both
hyperbolic or both parabolic because n, and n_! are mutually conjugate by r,. We claim that we
obtain the desired contradiction if we manage to prove that these isometries (as well as n,/) are
hyperbolic. Indeed, 7 together with 7/ generate a free abelian group of rank 2 which acts on Y7
Since the group N is a discrete subgroup of Ay (because it acts properly discontinuously on %, )
and since @ is proper, it follows that (7,7’) acts freely on Y7. By the flat torus theorem | ,
Corollary I1.7.2], we deduce that Y7 contains a 2-flat. This is absurd because Y is CAT(—1).

Fized points of «unipotent) subgroups— On the one hand, we claim that @(Vyi) cannot stabilize
any geodesic line in Z. Indeed, any element g € V. is torsion so it fixes a point in Z. If L were
a ¢(V4)-stable geodesic line then, using orthogonal projection, ¢(g) would fix a point of L. This
would imply that the subgroup of index at most 2 in ¢(V4) fixing the extremities of L would in
fact fix the whole line L: this is excluded because, by properness of ¢, the groups (Vi) are not
compact. On the other hand, the groups Vi are metabelian | , 3.2 Example 2] so the closures

@(Vy) are amenable groups | , 4.1.13], hence fix a probability measure on 0Z. By | ,
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Lemma 2.3] the support of such a measure contains at most two points. By the previous point, the
support must consist of one single point at infinity and the same argument shows that this point
is the unique @¢(V4)-fixed point in 0,Z: we call it 7.

Images of translations are not parabolic.— Since n, normalizes Vi and since (0o Z)?(V+) = {11},
the isometry @(n;) fixes n— and 74. In order to see that ¢(n,) is hyperbolic, it suffices to show
that n_ # n4+. Let us assume that 7_ and ny are the same boundary point, which we call n. We
need to obtain a very last contradiction. Let us consider the group H = (V_, V), by definition
topologically generated by V_ and V. It is non-amenable because, as a completion of a group with
twin root datum of type A;, it admits a proper strongly transitive action on a semi-homogeneous
locally finite tree. Theorem 28 implies that the maps ¢ and @ are proper. On the one hand,
properness of ¢ implies that the group @(H) is non-amenable and neither is 7, " (@(H )) since s
is proper and surjective. On the other hand, properness of ¢ implies that @(H) is a closed subgroup

of Isom(Z), which implies that ;' (3(H)) is a closed subgroup of Stabm(n). Moreover we have:

v H(@(H)) < r;'(¢(H)), so the non-amenable group my~!(p(H)) is a closed subgroup of
Stabm(n). The contradiction comes from the fact that Stabrgymy) (1) is amenable, since Isom(Y')
acts co-compactly on Y [ , Propositions 1.6 and 1.7].

(iv). The stabilizer Stabigom(yy(§) of every point at infinity of Y is amenable [ , Propositions
1.6 and 1.7]. Therefore, it cannot contain a Kazhdan subgroup. If one assumes moreover that
Isom(Y') is non-elementary, then by [ , Th. 21] Isom(Y) is either virtually connected or
totally disconnected. In the first case, Isom(Y’) does not contain any finitely generated infinite
simple group by the solution to Hilbert 5th problem | | (see also Proposition 26). In the
second case, no amenable subgroup of Isom(Y') contains a finitely generated infinite simple group
by [ , Cor. 1.2]. Thus the desired conclusion follows from (iii). O

In view of recent results from [C)M], it is known that if X is a proper CAT(0) space such that
X/Isom(X) is compact, then the closure of any finitely generated infinite simple subgroup I' <
Isom(X) is non-amenable. This implies that the conclusion of (iv) holds even without assuming
that A is Kazhdan or that Isom(Y") is non-elementary.
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