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Abstract. Let (W,S) be a Coxeter system of finite rank
(i.e. |S| is finite). A hyperbolic reflection triangle is a set
T ⊂ SW of 3 reflections such that the group 〈T 〉 is isomorphic
to a compact hyperbolic triangle group. Our main result is that
W has finitely many conjugacy classes of hyperbolic reflection
triangles. Using this result, we prove the strong parallel wall
conjecture of Niblo and Reeves [10].

1 Introduction

Let (W,S) be a Coxeter system of finite rank (i.e. |S| is finite). There are several ways
to construct a geometric space equipped with a natural action of W . For example, one
can consider the Cayley graph Σ(W,S), the Coxeter complex T (W,S) (see [12]) or the
Davis complex M(W,S) (see [5]). The Davis complex is a CAT(0) simplicial complex on
which W acts properly discontinuously and cocompactly. It was used by Moussong [8]
to give a characterization of word hyperbolic Coxeter groups. More recently, Niblo and
Reeves constructed a new space on which W has a natural action: the Coxeter cubing
X(W,S). The latter is a CAT(0) cubical complex which is finite-dimensional, locally
finite and properly discontinuously acted upon by W . Unfortunately, the action of W
is not always cocompact; actually, one has the following characterization (see [4]): the
action of W upon X(W,S) is cocompact if and only if the Coxeter diagram of (W,S) has
no irreducible subdiagram of affine type and rank at least 3.

In order to prove this result, the notion of a reflection triangle was used. We
recall that a reflection triangle is a set T := {t1, t2, t3} ⊂ SW of 3 reflections which is
not contained in any parabolic subgroup of rank 2 and such that o(ti, tj) is finite for
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1 ≤ i < j ≤ 3. It is known that for a given triangle T , there exists a triangle T ′ such that
〈T 〉 = 〈T ′〉 and (〈T 〉, T ′) is a Coxeter system. Moreover, the Coxeter diagram of (〈T 〉, T ′)
is uniquely determined by T ; we call it the type of T and we denote it by M(T ). We say
that T is affine (resp. spherical, hyperbolic) if M(T ) is affine (resp. spherical, hyperbolic).

Our main result is the following.

Theorem 1. There are only finitely many conjugacy classes of non-affine reflection tri-
angles.

It is well known that W has finitely many conjugacy classes of finite subgroups, from
which it follows that W has finitely many conjugacy classes of spherical triangles. Conse-
quently, Theorem 1 amounts to the statement that W has finitely many conjugacy classes
of hyperbolic reflection triangles. This improves Theorem 1.1 in [4].

The heuristic idea behind our strategy to prove Theorem 1 is the following. Let (W,S)
be a Coxeter system and a, b, c, c′ be four reflections of (W,S) such that T = {a, b, c} and
T ′ = {a, b, c′} are both reflection triangles of the same type M and the product cc′ is of
infinite order. A set of four reflections which satisfy this condition, is called a key set of
type M. Clearly, affine Coxeter systems possess many key sets of reflections. On the other
hand, if the Davis complex M(W,S) can be realized as a Coxeter tiling of the hyperbolic
plane H

2, then (W,S) has no key set, because for such a key set, the triangles T and T ′

would correspond to geodesic triangles of H
2 with the same angles, one properly contained

in the other, which is impossible. Combining arguments from hyperbolic geometry with
combinatorial considerations of the Davis complex, we prove that in any Coxeter system,
every key set is of affine type (see Theorem 4.1). This is the main ingredient of the proof
of Theorem 1.

Given a Coxeter system (W,S), there is a well known canonical way of constructing a
root system Φ ⊂ contained in a real vector space of dimension |S| and on which W acts
linearly and faithfully (see [1], Chapitre V, §4). The notion of a spherical (resp. affine,
hyperbolic) reflection triangle of (W,S) is essentially equivalent to the notion of a root
subsystem of rank 3 of spherical (resp. affine, compact hyperbolic) type. In view of this,
Theorem 1 can be reformulated as follows.

Theorem 1′. Let (W,S) be a Coxeter system with S finite and Φ be the associated root
system. There are only finitely many W -orbits of root subsystems of rank 3 and compact
hyperbolic type in Φ.

As a consequence of Theorem 1, we obtain the following.

Corollary 2. There exists a constant L = L(W,S) such that the following holds. Let
k1, k2, h1, h2, . . . , hn be hyperplanes in M(W,S) (or in T (W,S) or in Σ(W,S)) such that
k1 ∩ k2 ∩ h1 6= ∅, the hi’s are pairwise non-intersecting and each hi intersects both k1 and
k2. If n ≥ L then {rk1 , rk2 , rhi

} is an affine reflection triangle for i = 1, 2, . . . , n, where
rH denotes the reflection fixing the hyperplane H.

A collection {k1, k2, h1, h2, . . . , hn} of hyperplanes satisfying the conditions of the above
corollary (plus some other minor conditions) is called a ladder of hyperplanes in [14].
Corollary 2 answers a question raised on p. 59 in loc. cit.

Using Theorem 1 and its corollary, we prove the following two results.

Theorem 3. (Parallel wall theorem) For each positive integer n, there exists a con-
stant B(n) = B(n;W,S) such that the following holds. Given a hyperplane H and a point
p in M(W,S) (or in T (W,S) or in Σ(W,S)) such that the distance from p to H is at least
B(n), then there exist n pairwise non-intersecting hyperplanes which separate p from H.
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This result was proved for n = 1 by Brink and Howlett and used to show that Coxeter
groups are automatic (see [2]). The parallel wall theorem also implies the local finiteness
of X(W,S) (see §3.2 in [10]). We note that our proof of Theorem 3 is however independent
of [2] and yields therefore a new approach to the parallel wall theorem. The main interest
of the version of the parallel wall theorem stated above is that it allows us to prove
Theorem 4, which was stated in [10] as the strong parallel wall conjecture.

Theorem 4. (Wall separating theorem) There exists a constant N = N(W,S) such
that the following holds. Given two hyperplanes H1 and H2 in M(W,S) (or in T (W,S)
or in Σ(W,S)) such that the distance from H1 to H2 is at least N , then there exists a
hyperplane H which separates H1 from H2.

Combined with Theorem 6.3 below, the separating wall theorem has the following
consequence regarding the structure of the Coxeter cubing.

Corollary 5. There exists a uniform bound on the size of a link of a vertex in X(W,S).

2 Preliminaries

We work in the Cayley graph Σ = Σ(W,S) and we consider it as a chamber system over S.
Our main reference for the language of chamber systems and for the standard properties
of Σ is [13] (e.g. definition of a gallery, of a residue, existence of projections, . . . ).

Finite subgroups

Lemma 2.1. A subgroup of W is finite if and only if it stabilizes a spherical residue of
Σ.

Proof. This is an exercise in [1]. It can be proven using the Tits cone (see Proposition
3.2.1 in [7]) or with the Davis complex (see Corollary 11.9 in [5]).

Parallelism of residues

Given residues R1, R2 of Σ(W,S), then the set projR1
(R2) := {projR1

(c)|c ∈ R2} is itself
a residue. We say that R1 and R2 are parallel if projR1

(R2) = R1 and projR2
(R1) = R2.

Lemma 2.2. Let J,K be subsets of S and let RJ , RK be residues of type J,K respectively.
Then the following statements are equivalent:

(i) RJ and RK are parallel;
(ii) a reflection stabilizes RJ if and only if it stabilizes RK.

Furthermore, if J or K is spherical, then (i) and (ii) above are also equivalent to the
following:
(iii) there exist two sequences RJ = R0, R1, . . . , Rn = RK and T1, . . . , Tn of residues of

spherical type such that for each 1 ≤ i ≤ n the rank of Ti is equal to 1+rank(RJ),
the residues Ri−1, Ri are distinct, parallel and contained in Ti and moreover, we
have projTi

(RJ) = Ri−1 and projTi
(RK) = Ri.

Proof. This follows from Proposition 2.7 in [3].
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Roots and angles

Let ψ be a root. We denote by ∂ψ or ∂rψ (resp. ∂2ψ or ∂2rψ) the set of all panels (resp.
spherical residues of rank 2) stabilized by rψ. We also set C(∂ψ) = C(∂rψ) :=

⋃
σ∈∂ψ ψ

and C(∂2ψ) = C(∂2ψ) :=
⋃
σ∈∂2ψ σ. The set ∂ψ is called the wall or the hyperplane

associated to ψ.

Lemma 2.3. Let ψ be a root and let x, y ∈ C(∂ψ)∩ψ. Then there exists a minimal gallery
Γ = (x = x0, x1, . . . , xl = y) joining x to y such that xi ∈ C(∂2ψ) for each 1 ≤ i ≤ l.

Proof. This is an easy consequence of Lemma 2.2. See Lemma 2.3 in [4].

Let φ and ψ be roots. We say that φ and ψ (or rφ and rψ or ∂φ and ∂ψ) are parallel
if o(rφrψ) = ∞ and incident otherwise. Equivalently, φ and ψ are parallel if and only if
∂φ ⊂ ψ or ∂φ ⊂ −ψ, while they are incident if and only if ∂2φ ∩ ∂2ψ 6= ∅.

Lemma 2.4. There exists a constant P = P (W,S) such that any collection of more than
P walls contains a pair of parallel walls.

Proof. See Lemma 3 in [10].

The following result, though elementary, is extremely useful.

Lemma 2.5. Let φ, α, α′ be roots, let R ∈ ∂2α with R ⊂ φ and let R′ ∈ ∂2α′ with
R′ ⊂ −φ. Let α = α0, α1, . . . , αn = α′ be a sequence of roots such that αi−1 is incident to
αi for i = 1, . . . , n. Then φ is incident to αi for some i ∈ {0, 1, . . . , n}. Furthermore, if
n = 0 then α = α′ and the result is true if R ⊂ φ and R′ ⊂ −φ are panels stabilized by
rα.

Proof. By induction on n.
Suppose n = 0. Then α = ±α′ and by Lemma 2.3, there exists a gallery Γ joining a

chamber of R to a chamber of R′ and completely contained in C(∂2α). Since R ⊂ φ and
R′ ⊂ −φ, the gallery Γ must cross ∂φ. Therefore, ∂2φ ∩ ∂2α 6= ∅ and φ is incident to α,
as expected.

Suppose the result is true for n − 1. Since α is incident to α1, there exists R1 ∈
∂2α ∩ ∂2α1. If R1 ∈ ∂2φ then φ is incident to α and we are done. If R1 ⊂ φ then the
induction hypothesis applies and yields the desired conclusion. Finally, if R1 ⊂ −φ then
an argument as in the case n = 0 shows that φ is incident to α.

If φ and ψ are parallel, we define the angle ∠(φ, ψ) as follows:

∠(φ, ψ) := −∞ if φ ⊂ ψ or φ ⊃ ψ

and
∠(φ, ψ) := +∞ if φ ⊂ −ψ or φ ⊃ −ψ.

If φ and ψ are incident, let R ∈ ∂2φ ∩ ∂2ψ. We define the angle ∠(φ, ψ) as follows:

∠(φ, ψ) := 2π.
|R ∩ φ ∩ −ψ|

|R|
.

Lemma 2.2 implies that ∠(φ, ψ) is independent of the choice of R.

Lemma 2.6. Let α 6= β be roots and let c ∈ α ∩ β be a chamber. Assume c ∈ C(∂β) and
let n := d(c, C(∂α)). We have

d(rβ(c), C(∂α)) = n− 1 (resp. n, n+ 1) if ∠(α, β) <
π

2
(resp. =

π

2
, >

π

2
).
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Proof. The statement is equivalent to Lemma 1.7 in [2], where an algebraic proof is given.
Here is an alternative combinatorial argument.

Let c0 ∈ C(∂α) be such that d(c0, c) = n and let Γ = (c0, c1, . . . , cn) = c be a minimal
gallery.

If ∠(α, β) = −∞ then β ⊂ α and β is the unique root which contains cn but not cn−1.
Hence rβ(c) = cn−1 and d(rβ(c), C(∂α)) = n− 1 as expected.

If ∠(α, β) = π
2

then

n = d(c, (α, β)) = d(rβ(c), rβ((α, β))) = d(rβ(c), (α, β))

as expected.
If ∠(α, β) ∈]0, π

2
[, let R ∈ ∂2α ∩ ∂2β. Assume that Γ does not cross ∂β. Then Γ is

completely contained in α∩ β. In view of ∠(α, β) < π
2
, this implies that Γ crosses ∂rβ(α)

because projR(c0) ∈ C(∂α) ∩ β ∩ R ⊂ −rβ(α) while projR(c) ∈ C(∂β) ∩ α ∩ R ⊂ rβ(α)
and hence ∂rβ(α) separates c0 from c. Let k = max{i|ci ∈ C(∂rβ(α))}. We have k ≥ 1.
Therefore, Γ′ := (rβ(ck), rβ(ck+1), . . . , rβ(cn), cn = c) is a gallery of length n−k+1 joining
rβ(ck) ∈ rβ(C(∂rβ(α))) = C(∂α) to c. By the definition of n, we deduce k = 1. This shows
that, up to replacing Γ by Γ′, we may assume without loss of generality that Γ crosses ∂β.
It follows that β is the unique root which contains cn but not cn−1. Hence rβ(c) = cn−1

and d(rβ(c), C(∂α)) = n− 1 as expected.
Finally, suppose ∠(α, β) > π

2
. Then ∠(α,−β) < π

2
and rβ(c) ∈ −β. Thus, by what

we have already proven, we have

n = d(c, C(∂α)) = d(rβ(rβ(c)), C(∂α)) = d(rβ(c), C(∂α)) − 1

as expected.

Fundamental domains and geometric sets

Let Ψ be a set of roots. We set R(Ψ) := {rψ|ψ ∈ Ψ} and W (Ψ) := 〈R(Ψ)〉. The set
Ψ is called geometric if

⋂
ψ∈Ψ

ψ is nonempty and if for all φ, ψ ∈ Ψ, the set φ ∩ ψ

is a fundamental domain for the action of W ({φ, ψ}) on Σ(W,S). Here, a set D is
called a fundamental domain for the action of a group G on a set E containing D if⋃
g∈G gD = E and if D ∩ gD 6= ∅ ⇒ g = 1 for every g ∈ G.

Lemma 2.7. Let α 6= β be roots. The pair {α, β} is geometric if and only if either
∠(α,−β) = π

n
for some integer n ≥ 2 or ∠(α, β) = +∞ and α ∩ β 6= ∅.

Proof. If α and β are parallel, the criterion is given by Lemma 4.5 in [9].
If α and β are incident, let R ∈ ∂2α∩ ∂2β. The criterion follows from the faithfulness

of the action of 〈rα, rβ〉 on R and from the following observation:

α ∩ β = {c ∈ Σ|projR(c) ∈ α ∩ β ∩R}.

The following result, due to Tits, is very useful.

Lemma 2.8. Let Ψ be a geometric set of roots. Then D :=
⋂

Ψ is a fundamental domain
for the action of W (Ψ) on Σ(W,S), and (W (Ψ), R(Ψ)) is a Coxeter system. The chambers
of Σ(W (Ψ), R(Ψ)) may be identified with sets of chambers of Σ(W,S), and more precisely
with sets of the form wD with w ∈ W (Ψ). Furthermore, two chambers C and C ′ of
Σ(W (Ψ), R(Ψ)) are adjacent in Σ(W (Ψ), R(Ψ)) if and only if C and C ′, viewed as sets
of chambers of Σ(W,S), contain adjacent chambers of Σ(W,S).
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Proof. This is essentially a consequence of Lemma 1 in [11]. See also Lemma 3.2 and
Proposition 3.3 in [9].

Restated in other words, the last statement of Lemma 2.8 says that the Cayley graph
of the Coxeter system W ((Ψ), R(Ψ)) may be seen as a ‘quotient’ of the Cayley graph of
(W,S).

3 Triangles

Definition

In the introduction, we have defined the notion of a reflection triangle. In order to make
our forthcoming developments easier, we need to consider a slightly different notion which
we define now.

A combinatorial triangle (or simply a triangle is a set T of 3 roots which satisfy
the following conditions:
(CT1) the elements of T are pairwise incident;
(CT2) the group W (T ) is not contained in any parabolic subgroup of rank 2;
(CT3) for each α ∈ T there exists σ ∈ ∂2β ∩ ∂2γ such that σ ⊂ α, where β 6= γ ∈

T\{α}.
Clearly, given a combinatorial triangle T , the set R(T ) is a reflection triangle. Con-

versely, let R be a reflection triangle. Then there exists a combinatorial triangle T such
that R(T ) = R. Moreover, this combinatorial triangle is unique if and only if R is of
non-spherical type.

Let T1 and T2 be combinatorial triangles. We say that T1 is a subtriangle of T2 if⋂
T1 ⊆

⋂
T2 and if there exists a triangle T0 such that W (T1) ∪W (T2) ⊆ W (T0).

The following lemma guarantees that every triangle admits a geometric subtriangle.

Lemma 3.1. Let T be a combinatorial triangle. There exists a geometric triangle T ′ such
that W (T ) = W (T ′).

Proof. See Lemma 5.2 in [4].

Type of a triangle

The type of a combinatorial triangle T is the type of the reflection triangle R(T ) and
we set M(T ) := M(R(T )). If T ′ is a geometric triangle such that W (T ) = W (T ′)
(see Lemma 3.1) then the type of T is nothing but the type of the Coxeter system
(W (T ), R(T ′)). We call T spherical, affine or hyperbolic if M(T ) is spherical, affine
or hyperbolic.

Let T be a combinatorial triangle. For each pair α 6= β ∈ T , the angle ∠(α,−β) is
called an interior angle (or simply an angle) of the triangle T .

Not surprisingly, we have the following characterization.

Lemma 3.2. Let T be a combinatorial triangle, let

A(T ) :=
∑

α 6=β∈T

∠(α,−β).

and let T ′ be a geometric triangle such that W (T ) ≤ W (T ′).
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The following assertions are equivalent:
(i) T is spherical (resp. affine, hyperbolic);
(ii) T ′ is spherical (resp. affine, hyperbolic);
(iii) the Coxeter system (W (T ′), R(T ′)) is of spherical (resp. affine, compact hyper-

bolic) type;
(iv) the Coxeter complex T (W (T ′), R(T ′)) is a tessellation of S

2 (resp. E
2, H

2) by
compact geodesic triangles;

(v) A(T ) > π (resp. A(T ) = π, A(T ) < π);
(vi) every subtriangle of A is spherical (resp. affine, hyperbolic).

Proof. The equivalences (ii) ⇔ (iii) ⇔ (iv) are clear. Since W (T ) ≤ W (T ′), we may
identify the combinatorial triangle T with a geodesic triangle of the Coxeter complex
T (W (T ′), R(T ′)), and this identification preserves the angles in view of Lemma 2.8. The
equivalences (i) ⇔ (ii) ⇔ (v) clearly follow. Finally, since every substriangle of T is (up
to conjugation) a subtriangle of T ′, the equivalence (i) ⇔ (vi) is a consequence of what
we have already proven.

Vertices and perimeter

Let T be a combinatorial triangle.
A rank 2 spherical residue σ is called a vertex of T if there exist α 6= β ∈ T such that

σ ∈ ∂2α ∩ ∂2β.
The following lemma gives a useful sufficient condition for a triangle to be non-

spherical.

Lemma 3.3. Let T = {α, β, γ} be a combinatorial triangle, let ν be a vertex of T such
that ν ⊂ γ. If there exists a root φ which is parallel to γ and such that ν ∈ ∂2φ, then T

is non-spherical.

Proof. Suppose by contradiction that T is spherical. By Lemma 2.1, there exists a spher-
ical residue R stabilized by W (T ). Let ν ′ ⊂ R be a vertex of T such that ν ′ ⊂ γ. Thus ν
and ν ′ are parallel, and by Lemma 2.2, we have ν ′ ∈ ∂2φ. Thus rφ stabilizes R. It follows
that the product rγrφ stabilizes the spherical residue R, which contradicts the hypothesis
that γ and φ are parallel.

A set {σ1, σ2, σ3} is called a set of vertices of T if the following conditions are
satisfied:
• for i ∈ {1, 2, 3}, σi is a vertex of T ;
• for i ∈ {1, 2, 3}, there exists αi ∈ T such that σi ⊂ αi;
• the αi’s are mutually distinct, i.e. T = {α1, α2, α3}.

The perimeter of T , denoted by perim(T ), is defined by:

perim(T ) := min

{ ∑

σ 6=τ∈V

d(σ, τ)|V is a set of vertices of T

}
+

∑

α 6=β∈T

d(C(∂α)∩α, C(∂β)∩β).

Lemma 3.4. Let T = {α1, α2, α3} be a combinatorial triangle and let V = {σ1, σ2, σ3}
be set of vertices such that σi ⊂ αi for each i ∈ {1, 2, 3}. Assume ∠(α1,−α2) < π

2

and ∠(α2, α3) = π
2
. Then T̄ := {α1, rα2

(α1), α3} is a combinatorial triangle and V̄ :=
{σ2, rα2

(σ2), σ3} is a set of vertices of T̄ .
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Proof. Note that the elements of T̄ are pairwise different because ∠(α1, α2) 6= π
2
. We

have ∠(α3, rα2
(α1)) = ∠(rα2

(α3), α1) = ∠(α2, α1) because ∠(α2, α3) = π
2
. It follows that T̄

satisfies (CT1). For (CT2), it suffices to verify that σ2 and σ3 are not parallel (see Lemma
2.2), which follows from Lemma 3.5(1). Finally, we have ∅ 6= α1∩α2∩σ3 ⊂ α1∩rα2

(α1)∩α3

which implies (CT3). Thus T̄ is a combinatorial triangle.
Since ∠(α1,−α2) <

π
2

and since σ2 and σ3 are not parallel, we have projσ3
(σ2) ⊂

rα2
(α1) from which we deduce σ2 ⊂ rα2

(α1). Transforming by rα2
we also obtain rα2

(σ2) ⊂
α1. This shows that V̄ is a set of vertices of T̄ .

Circumscribing galleries

Let T = {α1, α2, α3} be a combinatorial triangle and let V = {σ1, σ2, σ3} be a set of
vertices of T such that σi ⊂ αi for each i ∈ {1, 2, 3}. Let Γ be a gallery. We say that Γ is
a (T, V )-circumscribing gallery if the following conditions are satisfied:
• Γ is closed;

• Γ is completely contained in
⋃

3

i=1
C(∂2αi);

• the length of Γ equals
∑

1≤i<j≤3
d(σi, σj) + d(C(αi) ∩ αi, C(αj) ∩ αj).

The existence of a (T, V )-circumscribing gallery follows from Lemma 2.3.
As before, let T = {α1, α2, α3} be a combinatorial triangle, let V = {σ1, σ2, σ3} be set

of vertices such that σi ⊂ αi for each i ∈ {1, 2, 3} and let Γ be a (T, V )-circumscribing
gallery. Let i, j, k ∈ {1, 2, 3} be pairwise distinct. We denote by ]σi, σj[Γ the set of all
τ ∈ ∂2αk\{σi, σj} that are crossed by Γ, i.e. that contain a panel crossed by Γ. We also
set

[σi, σj]Γ :=]σi, σj[Γ∪{σi, σj}, [σi, σj[Γ:=]σi, σj[Γ∪{σi} and ]σi, σj]Γ :=]σi, σj[Γ∪{σj}.

The basics

The following two lemmas collect several basic observations on combinatorial triangles
which are all intuitively clear.

Lemma 3.5. Let T = {α1, α2, α3} be a combinatorial triangle, let V = {σ1, σ2, σ3} be set
of vertices such that σi ⊂ αi for each i ∈ {1, 2, 3} and let Γ be a (T, V )-circumscribing
gallery. Let i, j, k ∈ {1, 2, 3} be pairwise distinct, let σ ∈]σi, σj[Γ and let r 6= rαk

be a
reflection which stabilizes σ. We have the following:
(1) Two distinct elements of [σi, σj]Γ cannot be parallel.
(2) σ ⊆ αi ∩ αj.
(3) σi is contained in one of the roots associated with r, say ψ, and σj is contained

in the other.
(4) If r stabilizes some residue τ ∈]σi, σk[Γ, then every element of [σj, σk]Γ is contained

in −ψ.
(5) There exists a unique residue τ ∈]σi, σk]Γ∪]σj, σk]Γ which is stabilized by r.
(6) If τ ∈]σi, σk]Γ (resp. τ ∈]σj, σk]Γ) then {αj, αk, ψ} (resp. {αi, αj,−ψ}) is a com-

binatorial triangle.
(7) If φ is a root such that σi ∈ ∂2φ and ∠(αk,−φ) < (αk,−αj) then there exists a

unique ρ ∈]σj, σk[∩∂
2φ. Moreover, {αi, αk, φ} and {αi, αj,−φ} are combinatorial

triangles which are both subtriangles of T .

Proof. (1) By (CT2), σi and σj are not parallel. By the definition of a (T, V )-circumscribing
gallery, no element of ]σi, σj[Γ is parallel to σi or σj and no two elements of ]σi, σj[Γ
are parallel.
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(2) By (1), we know that neither rαi
nor rαj

stabilizes σ.

Suppose that σ ⊆ −αi. Since σi ⊆ αi, it follows that Γ crosses the wall ∂αi.
Hence, there exists σ′ ∈]σi, σj[Γ∩∂

2αi. However, rαi
does not stabilize any element

of ]σi, σj[Γ by (1). This contradiction shows that σ ⊆ αi and by symmetry, we
obtain σ ⊆ αj.

(3) Let ψ be the root associated with r and containing projσ(σi). Then, in view of (1),
we have projτ (σi) ⊂ ψ and σi ⊆ ψ. Similarly, σj ⊆ −ψ because projσ(σj) ⊂ −ψ.

(4) By (3), we have σk ⊆ −ψ.

Let σ′ ∈]σj, σk[Γ and assume that σ′ ∈ ∂2ψ. Since σj and σk are both contained
in −ψ, it follows that there exists a τ ′ ∈]σj, σk[Γ∩∂

2ψ with τ ′ 6= σ′. Therefore, σ′

and τ ′ are distinct and both are stabilized by rψ and rαi
. Furthermore, we have

rψ 6= rαi
because rψ does not stabilize σj. It follows that σ and τ ′ are parallel, which

contradicts (1).

Thus rψ does not stabilize any element of [σj, σk]Γ. We have seen above that σj and
σk are both contained in −ψ. We deduce by an argument as in the proof of (2) that
every element of [σj, σk]Γ is contained in −ψ.

(5) (Compare Lemma 2.5). The existence of τ follows from the fact that Γ is closed
and crosses thus ∂ψ at least twice. The uniqueness of τ follows from (1) and (4).

(6) Assume τ ∈]σi, σk]Γ. It is clear that {αj, αk, ψ} satisfies (CT1). Moreover, σi and σ
are not parallel by (1), whence (CT2). Finally, we have ∅ 6= σi∩αj∩αk ⊆ ψ∩αj∩αk
by (3), whence (CT3). The case τ ∈]σj, σk]Γ follows by symmetry.

(7) The existence of ρ follows from (1) combined with an argument as in (6). Applying
now (6) to ρ, we deduce that {αi, αk, φ} and {αi, αj,−φ} are combinatorial trian-
gles. Let now φ′ be the root such that σi ∈ ∂2φ′ and ∠(αk,−φ

′) = 2π
|σi|

. By what

we have just proven, {αi, αk, φ
′} is a combinatorial triangle. Moreover, it is clear

from the definition of φ′ that W ({αi, αk, φ
′}) contains W (T ), W ({αi, αk, φ}) and

W ({αi, αj,−φ}) as subgroups. Whence the conclusion.

The previous lemma allows us to introduce some notation which will be used inten-
sively in Section 4.

Let T = {α1, α2, α3}, V = {σ1, σ2, σ3}, Γ be as in the statement of Lemma 3.5. Let
σ ∈]σ1, σ2[Γ. We set

ΦT (σ, σ1) := {φ|φ is a root, σ ∈ ∂2φ, σ1 ⊂ φ and ]σ1, σ3]Γ ∩ ∂2φ 6= ∅}.

Note that Lemma 3.5(5) implies that ΦT (σ, σ1) ∪ ΦT (σ, σ2) is nonempty. Actually, we

have |σ|
2
− 1 ≤ |ΦT (σ, σ1) ∪ ΦT (σ, σ2)| ≤

|σ|
2

.
If ΦT (σ, σ1) is nonempty, we denote by

φT (σ, σ1)

the root φ ∈ ΦT (σ, σ1) such that ∠(α3,−φ) is maximal.
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Decompositions of triangles

An essential tool in our study of triangles is the possibility of determining all subtriangles
of a given non-spherical combinatorial triangle T . Since every triangle contains a geomet-
ric subtriangle (see Lemma 3.1), this determination is equivalent to the determination (up
to conjugation), for a given geometric triangle F , of all combinatorial triangles T such
that T ⊂ W (F ). This is the purpose of the following result.

Proposition 3.6. Let F be a geometric combinatorial triangle of non-spherical type. Let
T be a combinatorial triangle such that W (T ) ⊂ W (F ). There are only finitely many
possibilities for the angles of T . All possibilities are listed in Table 1.

Proof. The first assertion is a direct consequence of Lemma 2.1. The second is clear if F
is affine and follows from the results of [6] if F is hyperbolic.

Affine triangles

Crucial to our arguments is the following result on affine triangles.

Proposition 3.7. (D. Krammer) Let T be an affine combinatorial triangle. Then there
exists an irreducible residue of affine type and rank ≥ 3 which is stabilized by W (T ).

Proof. See Theorem 1.2 in [4].

4 The key configuration

Let α, β, γ and γT be roots of Σ such that the following conditions hold:
• γ is properly contained in γT ;
• T := {α, β, γT} and U := {α, β, γ} are combinatorial triangles;
• T and U are geometric and of the same non-spherical type M.

In this situation, we say that α, β, γ and γT are in the key configuration.
The aim is to prove the following.

Theorem 4.1. M is affine.

This is the key result on which our proof of Theorem 1 rests.
The proof of Theorem 4.1 works by contradiction, so we assume from now on that M is

compact hyperbolic. We aim at obtaining a contradiction. There are several intermediate
steps, which we present in the following three technical lemmas.

Throughout, we consider vertex sets VT := {ν, σT , ρT} and VU := {ν, σ, ρ} of T and U
respectively, which are such that:
• ν is contained in γ;
• σ and σT are contained in β;
• ρ and ρT are contained in α.

Without loss of generality, we may and shall assume that perim(T ) = d(ν, σT ) +
d(ν, ρT ) + d(σT , ρT ) + d(C(∂α) ∩ α, C(∂β) ∩ β) + d(C(∂α) ∩ α, C(∂γT ) ∩ γT ) + d(C(∂β) ∩
β, C(∂γT ) ∩ γT ). We also consider a (T, VT )-circumscribing gallery Γ.

Given a spherical residue R, we set

nR :=
|R|

2
.
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Type Angles of F Angles of T Picture Symbol

Affine

(π
3
, π

3
, π

3
) (π

3
, π

3
, π

3
) (A1)

(π
2
, π

4
, π

4
) (π

2
, π

4
, π

4
) (A2)

(π
2
, π

3
, π

6
)

(π
2
, π

3
, π

6
) (A3)

(π
3
, π

3
, π

3
) (A4)

(π
6
, π

6
, 2π

3
) (A5)

Hyperbolic

(π
2
, π
k
, π
l
) (π

k
, π
k
, 2π
l
) (H1)

(π
2
, π

3
, π
k
)

(π
2
, π
k
, 2π
k

) (H2)

(π
3
, π
k
, 3π
k

) (H3)

(π
k
, π
k
, 4π
k

) (H4)

(2π
k
, 2π
k
, 2π
k

) (H5)

(π
2
, π

4
, π
k
) (π

k
, π
k
, 2π
k

) (H6)

(π
2
, π

3
, π

7
)

(π
3
, π

7
, 2π

7
) (H7)

(π
7
, π

7
, π

7
) (H8)

(π
2
, π

3
, π

8
) (π

4
, π

8
, π

8
) (H9)

Table 1: Decompositions of triangles
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Lemma 4.2. We have perim(U) < perim(T ).

Proof. Let Γ′ be a (U, VU)-circumscribing gallery. Let CT := d(C(∂α) ∩ α, C(∂β) ∩ β) +
d(C(∂α) ∩ α, C(∂γT ) ∩ γT ) + d(C(∂β) ∩ β, C(∂γT ) ∩ γT ) and CU := d(C(∂α) ∩ α, C(∂β) ∩
β) + d(C(∂α) ∩ α, C(∂γ) ∩ γ) + d(C(∂β) ∩ β, C(∂γ) ∩ γ). We have

perim(T ) = ℓ(Γ)
= d(ν, σT ) + d(ν, ρT ) + d(σT , ρT ) + CT
= d(ν, σ) + d(σ, σT ) + d(ν, ρ) + d(ρ, ρT ) + d(σT , ρT ) + nσ − 1 + nρ − 1 + CT

and
ℓ(Γ′) = d(ν, σ) + d(ν, ρ) + d(σ, ρ) + CU .

Since the numerical distance d is a pseudo-metric on the residues, we have d(σ, ρ) ≤
d(σ, σT ) + d(σT , ρT ) + d(ρT , ρ). Furthermore, since σ ∈ ∂2α ∩ ∂2γ and ρ ∈ ∂2β ∩ ∂2γ, we
have d(C(∂α) ∩ α, C(∂γ) ∩ γ) < nσ − 1 and d(C(∂β) ∩ β, C(∂γ) ∩ γ) < nρ − 1. We deduce

perim(T ) − ℓ(Γ′) > d(C(∂α) ∩ α, C(∂γT ) ∩ γT ) + d(C(∂β) ∩ β, C(∂γT ) ∩ γT ) ≥ 0,

whence the result, since perim(U) ≤ ℓ(Γ′).

Lemma 4.3. The triangle U is not a subtriangle of T . In particular, there exists no
reflection stabilizing both σ and ρT (resp. ρ and σT ).

Proof. Assume U is a subtriangle of T . Then there exists a geometric triangle Ũ such
that W (T ) ∪W (U) ⊆ W (Ũ). By Lemma 3.2, the triangle Ũ is hyperbolic since T and
U are. Now, T and U may be identified with geodesic triangles of the Coxeter complex
T (W (Ũ), R(Ũ)) which is a tessellation of H

2, and this identification preserves the angles.
Since T and U are of the same type, they are identified with triangles of the same area,
which contradicts the fact that

⋂
φ∈U φ is properly contained in

⋂
φ∈T φ.

The last assertion is now a direct consequence of Lemma 3.5(7).

The proofs of the following four lemmas are technical and require repeated application
of Proposition 3.6 and, thereby, of Table 1.

Lemma 4.4. We have
∠(β, γ) =

π

2
⇒ ∠(β, γT ) 6=

π

2
.

Proof. Suppose T is a triangle of minimal perimeter among all triangles which contradict
the lemma.

Thus ∠(β, γT ) = π
2

and it follows that ∠(α,−β) = π
n

for some integer n ≥ 3 because
T is geometric and hyperbolic (see Lemma 2.7). Let T̄ := {α, γT , rβ(α)} and V̄ :=
{σT , ν, rβ(σT )}. By Lemma 3.4, T̄ is a combinatorial triangle and V̄ is a set of vertices
of T̄ . Let Γ̄ be a (T̄ , V̄ )-circumscribing gallery such that rβ(σ) ∈]ν, rβ(σT )[Γ̄ (see the
paragraph preceding Lemma 3.5 for the notation). Using the invariance of T̄ under rβ, it
is easily seen that such a circumscribing gallery exists.

Since rβ(σ) ∈]ν, rβ(σT )[Γ̄, the set ΦT̄ (σ, ν) is nonempty (see the paragraph immediately
following Lemma 3.5 for the notation). Let φ̄σ := φT̄ (σ, ν) and T̄σ := {α, φ̄σ, rβ(α)}.

Since T̄σ and U have a common subtriangle and since U is hyperbolic, we deduce from
Lemma 3.2 that T̄σ is hyperbolic. Let us apply Proposition 3.6 to T̄σ. There are two
cases: either T̄σ corresponds to (H1) in Table 1 and then φσ = γ and ∠(α,−φ̄σ) = π

nσ
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or T̄σ corresponds to (H5) in Table 1 and then ∠(α,−φ̄σ) = 2.∠(α,−φ̄σ) = 2π
nσ

. Thus we
obtain

either ∠(α,−φ̄σ) =
π

nσ
and nσ ≥ 3 or ∠(α,−φ̄σ) =

2π

nσ
and nσ ≥ 7, (1)

where the lower bounds on nσ follow from the fact that T̄σ is hyperbolic. In both cases,
the set ΦT̄ (σ, σT ) is nonempty. Let φ̄′

σ := φT̄ (σ, σT ) and T̄ ′
σ := {α, φ̄′

σ, γT}. The latter is
a triangle by Lemma 3.5(6); it is non-spherical because γ and γT are parallel. Applying
Proposition 3.6 to T̄ ′

σ, we obtain

∠(α,−φ̄′
σ) ≤

4π

nσ
. (2)

From (2) and the inequality ∠(α,−φ̄σ) + ∠(α,−φ̄′
σ) ≥ ν − π

nσ
, we deduce nσ = 7 in the

second case of (1). This implies φ̄σ = γ by Proposition 3.6. Since γ ∈ ΦT̄ (σ, ν) because
γ and γT are parallel, U is a subtriangle of T̄σ and, by Proposition 3.6, it has either an
angle 2π

3
or an angle 2π

7
. This contradicts the fact that U is geometric (see Lemma 2.7).

We deduce nσ ≤ 6, ∠(α,−φ̄σ) = π
nσ

and φ̄σ = γ. Since U and T have the same angles,
we obtain

∠(α, γ) = ∠(α, γT ). (3)

Since T̄σ is non-spherical, we have nσ 6= 2 and since T̄ ′
σ is non-spherical, Proposition

3.6 implies nσ 6= 5. For U is hyperbolic, Proposition 3.6, Lemma 3.2 and (3) also yield

nσ = 3 ⇒ ∠(α,−β) ≤ π
7
,∠(α,−γ) = π

3
and ∠(γT ,−φ̄

′
σ) ≤

π
3

nσ = 4 ⇒ ∠(α,−β) ≤ π
5
,∠(α,−γ) = π

4
and ∠(γT ,−φ̄

′
σ) = π

4

nσ = 6 ⇒ ∠(α,−β) ≤ π
4
,∠(α,−γ) = π

6
and ∠(γT ,−φ̄

′
σ) = π

6
.

(4)

Assume ]ν, ρT ]Γ∩∂
2φ̄′

σ 6= ∅. Let τ ∈]ν, ρT ]Γ∩∂
2φ̄′

σ 6= ∅. By Lemma 4.3, we have τ 6= ρT .
We have φ̄′

σ ∈ ΦT (τ, ν). Let φτ := φT (τ, ν). By Lemma 3.5(6), the set Tτ := {α, β, φτ} is
a combinatorial which is hyperbolic as it contains U as a subtriangle. By (4), Proposition
3.6 and the equality ∠(α,−β) = ∠(β,−φ̄′

σ) we obtain

nσ = 3 ⇒ ∠(β,−φτ ) ≤
4π
nτ

and nτ ≥ 7

nσ = 4 ⇒ ∠(β,−φτ ) ≤
2π
nτ

and nτ ≥ 5

nσ = 6 ⇒ ∠(β,−φτ ) = π
nτ

and nτ ≥ 4,
(5)

and in each case, the set ΦT (τ, ρT ) is nonempty. Let φ′
τ := φT (τ, ρT ).

By Lemma 3.5(6), the sets T ′
τ := {β, γT , φ

′
τ} and T̄τ := {−β, γT , φ̄

′
σ} are combinatorial

triangles. Moreover, they are both contained as subtriangles in the combinatorial triangle
{γT , φ

′
τ , φ̄

′
σ}. For ∠(β, φ̄′

σ) = ∠(α,−β), Lemma 3.2 implies that T̄τ is hyperbolic in view
of (4). We deduce from Lemma 3.2 that T ′

τ is hyperbolic. Therefore, since ∠(β, γT ) = π
2
,

Proposition 3.6 implies

either ∠(β,−φ′
τ ) =

π

nτ
or ∠(β,−φ′

τ ) =
2π

nτ
and nτ ≥ 7. (6)

Combining (5) and (6) with the inequality ∠(β,−φτ ) + ∠(β,−φ′
τ ) ≥ ν − π

nτ
, we obtain

∠(α,−β) =
π

7
, nσ = 3, nτ = 7,∠(β,−φτ ) =

4π

7
and ∠(γT ,−φ

′
τ ) =

π

7
. (7)

Let now τ ′ ∈ [σT , ρT [Γ∩∂
2φ′

τ . Since ∠(α,−γT ) = ∠(α,−γ) = π
3

(see (3), (4) and
(7)) while ∠(γT ,−φ

′
τ ) = π

7
, we have τ ′ 6= σT . Proposition 3.6 implies that ΦT (τ ′, ρT ) =
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{φ′
τ}. Therefore, the set ΦT (τ ′, σT ) contains at least 5 roots because nτ ′ ≥ 7 and thus

∠(γT ,−φT (τ ′, σT )) ≥ 5π
nτ ′

. Proposition 3.6 now implies that triangle {α, γT , φT (τ ′, σT )}

is spherical, and for nτ ′ ≥ 7, we deduce ∠(α,−γT ) = π
2
. This contradicts ∠(α,−γT ) =

∠(α,−γ) = π
3

(see (3), (4) and (7)).
This shows ]ν, ρT ]Γ ∩ ∂2φ̄′

σ = ∅.
We claim that the roots −φ̄′

σ, β,−γT and −γ are in the key configuration and that T̄ :=
{−φ̄′

σ, β,−γ} and Ū := {−φ̄′
σ, β,−γT} are hyperbolic. Since perim(T̄ ) = perim(rγ(U)) =

perim(U) < perim(T ) (see Lemma 4.2), this claim is in contradiction with the minimality
of perim(T ) and yields the desired conclusion.

It remains to prove the claim. We have T̄ = rγ(U) which implies that T̄ is a combi-
natorial triangle of hyperbolic type. Thus the claim will be proven once we show that Ū
is a combinatorial triangle of the same type as T̄ .

Let τ ∈]σT , ρT ]Γ∩∂
2φ̄′

σ. By Lemma 4.3, we have τ 6= ρT . Thus Ū satisfies (CT2). It is
clear by the definition of Ū that (CT1) is satisfied. Moreover, we have ∅ 6= τ∩−γT∩−φ̄

′
σ ⊂

β (see Lemma 3.5(2)) from which (CT3) follows. Thus Ū is a combinatorial triangle.
It remains to show ∠(−γT , φ̄

′
σ) = ∠(−γ, φ̄′

σ) or equivalently ∠(γT ,−φ̄
′
σ) = ∠(α,−γ).

By (4), this is true for nσ = 4 or 6 and we may assume nσ = 3, ∠(α,−β) ≤ π
7
, ∠(α,−γ) =

π
3

and ∠(γT ,−φ̄
′
σ) ≤

π
3
.

Suppose by contradiction ∠(γT ,−φ̄
′
σ) <

π
3
, whence nτ ≥ 4. By (3), we have ∠(α,−γT ) =

π
3
. Applying Proposition 3.6 to T̄ ′

σ, we obtain

either |ΦT (τ, σT )| = 1 or |ΦT (τ, σT )| = 2 and nτ ≥ 7. (8)

In all cases, the ΦT (τ, ρT ) is nonempty. Let φτ := φT (τ, ρT ). By Lemma 3.5(6), the set
Tτ := {β, φτ ,−φ̄

′
σ} is a combinatorial triangle. Moreover, Tτ is non-spherical because it

contains Ū as a subtriangle, and Ū itself is non-spherical because ∠(β, φ̄′
σ) = ∠(α,−β) ≤ π

7

and ∠(γT , φ̄
′
σ) <

π
3
. Applying Proposition 3.6 to Tτ yields now

either |ΦT (τ, ρT )| = 1 or |ΦT (τ, ρT )| = 2 and nτ ≥ 7. (9)

Combining (8) and (9) with the equality |ΦT (τ, σT )| + |ΦT (τ, ρT )| + 1 = nτ , we finally
obtain a contradiction, which finishes the proof.

Lemma 4.5. We have
∠(β, γT ) =

π

2
⇒ ∠(β, γ) =

π

2
.

Proof. Suppose by contradiction that ∠(β, γT ) = π
2

and ∠(β, γ) 6= π
2
. Since T and U are

geometric and of the same type, they have the same angles and we deduce

∠(α, γ) =
π

2
and ∠(β,−γ) =

π

n
, n ∈ N, n ≥ 3 (10)

(see Lemma 2.7).
As γ and γT are parallel, we have ∂2γ∩]ν, σT [Γ 6= ∅. Moreover, as ∠(β, γT ) = π

2
, it

follows that β(γ) ⊂ γT and thus ∂2rβ(γ)∩]ν, σT [Γ 6= ∅. This shows

{γ, rβ(γ)} ⊆ ΦT (ρ, ν) (11)

Let φρ := φT (ρ, ν). By (11), we have ∠(β,−φρ) ≥ ∠(β,−rβ(γ)). This yields

∠(β,−γ) + ∠(β,−φρ) ≥ ν (12)

because ∠(β,−γ) + ∠(β,−rβ(γ)) = ν.
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Let Tρ := {α, β, φρ}. This is a combinatorial triangle (see Lemma 3.5(6)) which is
hyperbolic because it contains U as a subtriangle (see Lemma 3.2). Applying Proposition
3.6 to Tρ yields

either ∠(β,−φρ) = 2∠(β,−γ)
or ∠(β,−φρ) = 3π

nρ
,∠(β,−γ) ≤ 2π

nρ
and nρ ≥ 7.

(13)

We deduce from (10), (12) and (13) that ∠(β,−γ) = π
3

and φρ = rβ(γ) = rγ(β). Thus,
we have

∠(α,−γT ) =
π

3
and ∠(α,−β) = (α,−φρ) ≤

π

7
(14)

because T and U are geometric hyperbolic and have the same angles.
Let τ ∈]ν, σT ]Γ∩∂

2φρ. By Lemma 4.3, we have τ 6= σT . Moreover (14) implies nτ ≥ 7.
Let T̄ := {α, rβ(α), γT} and V̄ := {ν, rβ(σT ), σT}. By Lemma 3.4, T̄ is a combinatorial

triangle and V̄ is a set of vertices of T̄ .
Since φρ = rβ(γ) and γT are parallel, we have φρ ∈ ΦT̄ (τ, ν). Let φτ := φT̄ (τ, ν) and

Tτ := {α, rβ(α), φτ}. Applying Proposition 3.6 to the hyperbolic triangle Tτ , we obtain

∠(α,−φτ ) ≤
2π

nτ
. (15)

As nτ ≥ 7 we deduce ΦT̄ (τ, σT ) 6= ∅. Let φ′
τ := φT̄ (τ, σT ) and T ′

τ := {α, γT , φ
′
τ}. Since

φρ = rβ(γ) and γT are parallel, the combinatorial triangle T ′
τ is non-spherical (see Lemma

3.3) and we deduce from Proposition 3.6 that

∠(α,−φ′
τ ) ≤

3π

nτ
(16)

because ∠(α,−γT ) = π
3

(see (14)). Combining (15) and (16) with the inequality ∠(α,−φτ )+
∠(α,−φ′

τ ) ≥ ν − π
nτ

, we obtain a contradiction with nτ ≥ 7.

Lemma 4.6. At least one of the angles ∠(α, β), ∠(α, γ), ∠(β, γ) equals π
2
.

Proof. Suppose by contradiction that U is not a right triangle. We assume that the roots
α, β, γ, γT are chosen among all roots in the key configuration which contradict the lemma
in such a way that T is of minimal perimeter. Moreover, we may and shall assume without
loss of generality that

∠(α,−β) =
π

nπ
, ∠(α,−γ) =

π

nσ
and ∠(β,−γ) =

π

nρ
, (17)

which implies

if Ũ is a combinatorial triangle which contains U as a subtriangle, then Ũ = U. (18)

The latter is a consequence of Prop 3.6. It can also be obtained in a direct way by easy
computations in the Coxeter system (W (U), R(U)).

¿From (18), we deduce φT (σ, ν) = γ = φT (ρ, ν).
Since U is not right, the sets ΦT (σ, σT ) and ΦT (ρ, ρT ) are both nonempty. Let φσ :=

φT (σ, σT ), Tσ := {α, γT , φσ},φρ := φT (ρ, ρT ) and Tρ := {β, γT , φρ}. By Lemma 3.3, Tσ and
Tρ are non-spherical. By Proposition 3.6, we obtain, in view of the preceding paragraph,
that nσ and nρ both belong to {3, 4, 6} and moreover

nσ = 6 ⇒ ∠(α,−γT ) = ∠(φσ,−γT ) = π
6

and ∠(α,−φσ) = 2π
3

nσ = 4 ⇒ ∠(α,−γT ) = ∠(φσ,−γT ) = π
4

and ∠(α,−φσ) = π
2

(19)
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and similarly for ρ. Since U and T have the same angles and since Tσ and Tρ are non-
spherical, we deduce, using Lemma 3.2(v),

nσ = 3 ⇒ ∠(α,−γT ) = ∠(α,−φσ) = π
3

and ∠(φσ,−γT ) ≤ π
3

(20)

and similarly for ρ.
There are two cases.

Case 1: rγ(ν) ⊂ γT .
Let U ′′ := {γT ,−rγ(α),−rγ(β)}. The set U ′′ is a combinatorial triangle: it clearly satisfies
(CT1), while (CT2) and (CT3) are easy to deduce from rγ(ν) ⊂ γT . By (19) and (20),
the angles ∠(γT ,−φσ) and ∠(γT ,−φρ) are both ≤ ν

3
. Moreover, we have ∠(φσ,−φρ) =

∠(rγ(α),−rγ(β)) = ∠(α,−β) ≤ π
3

because U is not right. In view of Lemma 3.2(v), it
follows that U ′′ is non-spherical. Furthermore, the assumption (17) implies that each root
ψ 6∈ {±φσ,±φρ}, we have

rγ(ν) ∈ ∂2ψ ⇒ ∂ψ ⊂ γT . (21)

Notice also that, in view of (18),

the roots α and φρ are parallel. (22)

Assume nσ = 4. By (19) this implies ∠(α, φσ) = π
2

and it follows from (22) that α
and rφσ

(φρ) are parallel. By Lemma 3.5(5) applied to Tσ and rγ(ν), this implies that γT
and rφσ

(φρ) are incident, which contradicts (21). Thus nσ 6= 4 and by symmetry nρ 6= 4.
Let n := nν = nrγ (ν). Since n ≥ 3, the set ΦTσ

(rγ(ν)) is nonempty. Let φ :=
φTσ

(rγ(ν)). It follows from (21) that ∠(φ,−φσ) = n−2

n
ν.

Assume nσ = 6. By (19) this implies ∠(α, φσ) = 2π
3

. By Lemma 3.3 and (22), the
combinatorial triangle {α, φσ, φ} is non-spherical and Lemma 3.2(5) yields (α,−φσ) +
(φ,−φσ) < ν. This contradicts n ≥ 3. Thus nσ 6= 6 and by symmetry nρ 6= 6.

Hence nσ = 3 = nρ. Then (α,−φσ) = π
3
. Since U is hyperbolic, we deduce n ≥ 4.

Moreover, a computation as in the case nσ = 6 yields here n < 6. Thus n = 4 or n = 5.
In both cases, an application of Proposition 3.6 to the non-spherical triangle {α, φσ, φ}
yields a contradiction.

Case 2: rγ(ν) ⊂ −γT .
Let T̄ := {−γ,−φσ,−φρ} and Ū := {−γT ,−φσ,−φρ}. Since T̄ = rγ(U), it follows that
T̄ is a combinatorial triangle and {σ, ρ, rγ} is a set of vertices of T̄ . Similarly, the set Ū
is a combinatorial triangle: (CT1) is clearly satisfied, while (CT2) and (CT3) are easy
to deduce from rγ(ν) ⊂ −γT . Moreover, we have ∠(φσ,−φρ) = π

n
while ∠(γT ,−φσ) and

∠(γT ,−φσ) are both ≤ π
3

by (19) and (20). It follows from Lemma 3.2(v) that U is
non-spherical.

We claim that if nσ = 3 then ∠(γT ,−φσ) = π
3
.

Assume nσ = 3. Let τ be the unique element of ∂2φσ∩]σT , ρT [Γ. Since ∠(γT ,−φσ) ≤
π
3
,

we have nτ ≥ 3.
Applying Proposition 3.6 the non-spherical triangle Tσ, we get

either ∠(γT ,−φσ) =
π

nτ
or ∠(γT ,−φσ) =

2π

nτ
and nτ ≥ 6. (23)

The set ΦT̄ (τ, rγ(ν)) is nonempty as is contains −γT . Let φτ := φT̄ (τ, rγ(ν)). Applying
Proposition 3.6 to the triangle {−φσ,−φρ, φτ} which is non-spherical as it contains Ū as
a subtriangle, we obtain (using also (23) and the inequality ∠(γT ,−φρ) ≤

π
3
)

either ∠(φτ , φσ) = π
nτ

or ∠(φτ , φσ) ∈ { 2π
nτ
, 3π
nτ
},∠(γT ,−φσ) = 2π

nτ
and nτ ≥ 6;

moreover, if ∠(φτ , φσ) = 3π
nτ

then ∠(φσ,−φρ) = ∠(γT ,−φρ) = π
3
.

(24)
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In all cases, the set ΦT̄ (τ, σ) is nonempty because nτ ≥ 3. Let φ′
τ := φT̄ (τ, σ). Applying

Proposition 3.6 to the triangle {−γ,−φσ, φ
′
τ} which is non-spherical by Lemma 3.3, we

obtain (using also the equality ∠(γ,−φσ) = π
3
)

either ∠(φ′
τ , φσ) =

π

nτ
or ∠(φ′

τ , φσ) ∈ {
2π

nτ
,
3π

nτ
} and nτ ≥ 6. (25)

Combining (24) and (25) with the inequality ∠(φτ , φσ) + ∠(φ′
τ , φσ) ≥ ν − π

nτ
, we finally

obtain

either ∠(γT ,−φσ) =
π

3
or nτ = 7,∠(φσ,−φρ) = ∠(γT ,−φρ) =

π

3
.

In the second case, we deduce ∠(α,−β) = ∠(α,−γ) = π
3

and (19) implies ∠(β,−γ) = π
3
.

This contradicts the fact that U is hyperbolic.
This proves the claim. By symmetry, if nρ = 3 then ∠(γT ,−φρ) = π

3
.

These facts, together with (19), imply that the triangles U , T̄ and Ū have the same
angles. Thus the roots −φσ, −φρ, −γT and −γ are in the key configuration. Moreover, we
have perim(T̄ ) = perim(rγ(U)) = perim(U) < perim(T ) by Lemma 4.2, which contradicts
the minimality of perim(T ).

Lemma 4.7. We have
∠(α, β) 6=

π

2
.

Proof. Suppose by contradiction that ∠(α, β) = π
2
.

Let φσ := φT (σ, ν) and Tσ := {α, β, φσ}. Since U is a subtriangle of Tσ, the latter is
hyperbolic (Lemma 3.2) and Proposition 3.6 yields

either ∠(α,−φσ) =
π

nσ
or ∠(α,−φσ) =

2π

nσ
,∠(β,−φσ) =

π

nσ
and nσ ≥ 7. (26)

In both cases, the ΦT (σ, σT ) is nonempty. Let φ′
σ := φT (σ, σT ). Thus T ′

σ := {α, γT , φ
′
σ} is

a combinatorial triangle which is non-spherical by Lemma 3.3. Applying Proposition 3.6
to T ′

σ yields

∠(α,−φ′
σ) ≤

4π

nσ
and ∠(α,−φ′

σ) ≥
3π

nσ
⇒ nσ ≥ 6. (27)

Combining (26) and (27) with the equality ∠(α,−φσ) + ∠(α,−φ′
σ) = ν − π

nσ
, we obtain

nσ ≤ 7 and nσ 6= 5.
By symmetry between α and β, we deduce nρ 6= 5. Moreover, we may and shall

assume without loss of generality that ∠(α,−γ) ≤ ∠(β,−γ). Since U is hyperbolic this
implies ∠(α,−γ) ≤ π

5
.

The conclusions of the preceding two paragraphs imply

either ∠(α,−γ) =
π

6
or ∠(α,−γ) =

π

7
.

Suppose ∠(α,−γ) = π
7
. By (26) and (27), we deduce ∠(β,−φσ) = π

7
. Let τ ∈

]ν, ρT ]Γ∩∂
2φσ. By Lemma 4.3, we have τ 6= ρT . Moreover, φσ ∈ ΦT (τ, ν) and Proposition

3.6 applied to {α, β, φT (τ, ν)} yields ΦT (τ, ν) = {φσ}. Since ∠(β,−φσ) = π
7
, we have

nτ ≥ 7 and we deduce that ∠(β,−φT (τ, ρT ) = 5π
7

. By Proposition 3.6, this implies
that the combinatorial triangle {β, γT , φT (τ, ρT )} is spherical. Therefore, its type is not
irreducible and we obtain ∠(β, γT ) = π

2
. This contradicts the hypothesis ∠(α, β) = π

2

because U is hyperbolic.
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Suppose ∠(α,−γ) = π
6
. By (26) and (27), we deduce ∠(α,−φ′

σ) = 2π
3

and Proposition
3.6 applied to T ′

σ implies ∠(α,−γT ) = π
6
. Since U is hyperbolic and ∠(α,−γ) ≤ ∠(β,−γ),

we have ∠(β,−γ) ∈ {π
4
, π

6
} (note that the case ∠(β,−γ) = π

5
is impossible for we have seen

above nρ 6= 5). In both cases, the set ΦT (ρ, ρT ) is nonempty and Tρ := {β, γT , φT (ρ, ρT )}
is a well defined combinatorial triangle which is non-spherical (see Lemma 3.3). Applying
Proposition 3.6 to Tρ, we obtain that the angles of Tρ are either (π

4
, π

4
, π

2
) or (π

6
, π

6
, 2π

3
).

Let T̄ := {α, γT , rβ(γT )}. By Lemma 3.4, T̄ is a combinatorial triangle. Furthermore,
since γ and γT are parallel, it follows from Lemma 3.5(6) that Ū := {α, γ, rβ(γT )} is
also a combinatorial triangle. An easy computation in the affine triangle group W (Tρ)
shows moreover that ∠(γ, rβ(γT )) = ∠(γT , rβ(γT )). It follows that the roots α, rβ(γT ), γ
and γT are in the key configuration, and that the triangle T̄ and Ū are hyperbolic. For
∠(β,−γ) = π

4
, this contradicts Lemma 4.4. For ∠(β,−γ) = π

6
, this contradicts Lemma

4.6.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We have assume M is compact hyperbolic and we want to obtain
a contradiction. Since the triangles T and U are geometric and of the hyperbolic type,
they have the same angles. By Lemma 4.6, one of these angles equals π

2
. By symmetry

between α and β, Lemma 4.4 and Lemma 4.5 imply that none of the angles ∠(α,−γ) and
∠(β,−γ) equals π

2
. Therefore ∠(α, β) = π

2
. This contradicts Lemma 4.7.

5 Finitely many conjugacy classes of hyperbolic tri-

angles

Theorem 5.1. There are at most finitely many conjugacy classes of hyperbolic combina-
torial triangles.

Proof. By Lemma 3.1 and Proposition 3.6, it suffices to prove the statement for geometric
triangles.

Suppose by contradiction that there are infinitely many conjugacy classes of geometric
hyperbolic triangles. It follows from Lemma 2.1 that the angle between two incident roots
can take only a finite number of distinct values. By the pigeonhole principle, this implies
that there are infinitely many conjugacy classes of hyperbolic triangles which are all of the
same type, say M. By Lemma 2.1 and the pigeonhole principle again, we deduce there
exists an infinite family (Ti)i∈I (where I is some infinite parameter set) of combinatorial
triangle which are all of type M and which contain all a common geometric pair of roots
{α, β}. For each i ∈ I, let γi ∈ Ti\{α, β}. Thus (γi)i∈I is an infinite family of roots, and
by Lemma 2.4, this family contains a pair of pairwise parallel roots, say γ and γT . We
may assume without loss of generality γ ⊂ γT . We conclude that the roots α, β, γ and
γT are in the key configuration, which contradicts Theorem 4.1.

Theorem 1 of the introduction is a consequence of Theorem 5.1 because, by Lemma 2.1,
there are at most finitely many conjugacy classes of spherical triangles. As for Corollary
2 of the introduction, it is a consequence of the following.

Corollary 5.2. There exists a constant L = L(W,S) such that the following holds. Let
α, β, γ0, . . . , γn be roots, let ν ∈ ∂2α ∩ ∂2β. Suppose
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• Tn := {α, β, γn} is a combinatorial triangle,
• ν ⊂ γn,
• ν ∈ ∂2γ0,
• γi−1 ⊂ γi for all i = 1, . . . , n.

If n ≥ L then Tn is affine and for each i = 1, . . . , n we have ∠(α, γi) = (α, γ0) and
∠(β, γi) = ∠(β, γ0).

Proof. Let L := 3

2
+ 1

2
.max{perim(T )|T is a non-affine combinatorial triangle}. By The-

orem 5.1, L is a well defined integer. The hypotheses imply that for each set of vertices
V of Tn, we have

∑
σ 6=ρ∈V d(σ, ρ) ≥ 2.(n− 1). It follows from the definition of L that Tn

is an affine triangle. By Theorem 3.7, there exists an irreducible residue of affine type
which is stabilized by W (Tn). The other assertions follow.

6 Parallel walls

Many pairwise parallel walls

Lemma 6.1. For each integer k ≥ 2, there exists a constant C(k) = C(k;W,S) such that
any collection of at least C(k) walls contains a subcollection of k walls which are pairwise
parallel.

Proof. This is a straightforward consequence of Lemma 2.4 together with Ramsey’s the-
orem.

A technical lemma

The main tool for the proofs of Theorem 3 and Theorem 4 is provided by the following
result.

Lemma 6.2. Let α be a root, let x ∈ C(∂α) and y ∈ α be chambers such that d(x, y) =
d(C(∂α), y). Let γ0, . . . , γn be pairwise distinct roots such that x ∈ γ0 ⊂ γ1 ⊂ · · · ⊂ γn 6∋ y.
Assume each γi is incident to α. If n ≥ L (where L is as in Corollary 5.2), then we have
the following:

(i) there is an infinite dihedral group D1 which contains rγi
for each i = 0, . . . , n;

(ii) if γ is a root such that rγ ∈ D1 and γ ⊂ γ1 or γ1 ⊂ γ, then ∠(α, γ) = ∠(α, γ1);
(iii) there exist m := ⌊n

2
⌋ reflections r1, . . . , rm which are pairwise parallel and which

separate α from y;
(iv) the group D2 := 〈r1, . . . , rm〉 is infinite dihedral and contains rα.

Proof. Let i ∈ {1, . . . , n} and let φ be a root such that γi−1 ⊂ φ ⊂ γi. Lemma 2.5 implies
that φ is incident to α. Thus we may assume without loss of generality that, for every
i ∈ {1, . . . , n}, the only such φ’s are γi−1 and γi.

Let Γ be a minimal gallery joining x to y. Thus Γ crosses ∂γi for every i ∈ {0, . . . , n}.
Let σn ∈ ∂2α ∩ ∂2γn, let x′ = projσn

(x) and let Γ′ be a minimal gallery from x to
x′ which is contained in C(∂2α) (see Lemma 2.3). For each i ∈ {0, 1, . . . , n − 1}, let
σi ∈ ∂2α ∩ ∂2γi be a residue which is crossed by Γ′.

In view of Lemma 2.6, the hypotheses imply ∠(α, γ0) >
π
2
. It follows that nσ0

≥ 3.
Let β be a root such that σ0 ∈ ∂2β and ∠(α,−β) = π

nσ
. Using Lemma 2.6 again, we

see that β does not separate x from y. Thus Γ does not cross ∂β. On the other hand,
the gallery Γ′ does cross ∂β as well as γi for every i ∈ {0, . . . , n}. Therefore, for every
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i ∈ {0, . . . , n}, there exist two panels of ∂γi, one contained in β and the other in −β. We
deduce from Lemma 2.5 that β is incident to γi for every i ∈ {0, . . . , n}.

It follows that Ti := {α, β, γi} is a combinatorial triangle for every i ∈ {1, . . . , n}.
Since n ≥ L, Corollary 5.2 implies that all Ti’s are of the same affine type. Let R be
an irreducible affine residue stabilized by W (Tn). Then R is stabilized by each rγ0 and
rγn

. Thus there exists panels P1 ∈ ∂γ0 and P2 ∈ ∂γn which are completely contained in
R. Since R is convex and since any gallery joining a chamber of C(∂γ1) to a chamber
C(∂γn) crosses each wall ∂γi for i = 1, . . . , n − 1, we conclude that each rγi

stabilizes R.
Moreover, since no root separates γi−1 from γi, we deduce W (T1) contains rγi

for each
i ∈ {0, . . . , n}. Assertions (i) and (ii) follow.

Since Tn is affine, we have nσ0
∈ {3, 4, 6} and ∠(α,−γ0) ∈ {π

3
, π

4
, π

6
}.

Case 1: ∠(α,−γ0) = π
3
.

Then ∠(α,−β) = π
3

or π
6

and, up to replacing β by rβ(α), we may assume without loss
of generality that ∠(α,−β) = π

3
. For every i ∈ {1, . . . , n}, let βi := rγi

(β). We have
−α ⊂ β1 ⊂ · · · ⊂ βn, and the reflections rβi

generate an infinite dihedral group which
contains rα. Thus (iii) and (iv) will be proven if we show that each ∂βi separates x from
y.

Let z ∈ C(∂γi)∩−γi be a chamber which is crossed by the gallery Γ. Let z′ = projσn
(z).

We have {x, z′} ⊂ C(∂2α) ⊂ βi. Moreover, we have already seen that ∂β separates each
chamber crossed by Γ from σi. In view of Lemma 2.3, this implies that ∂βi separates z
from z′, whence z ∈ −βi. Therefore, the gallery Γ crosses ∂βi, as was to be shown.

Case 2: ∠(α,−γ0) = π
4
.

Then ∠(α,−β) = π
4
. By Lemma 2.6, the wall ∂rβ(α) does separate x from y. We set

βi := rγi
rβ(α) for every i ∈ {1, . . . , n}. We have −α ⊂ β1 ⊂ · · · ⊂ βn, and the reflections

rβi
generate an infinite dihedral group which contains rα. Assertions (iii) and (iv) follow

by an argument as in Case 1.

Case 3: ∠(α,−γ0) = π
6
.

Then ∠(α,−β) = π
6

and ∠(β,−γi) = 2π
3

for i ∈ {0, . . . , n}. For every i ∈ {1, . . . , ⌊n
2
⌋},

let βi := rγi
rαrγirβ(α) = −rγ2i

rγi
(α). Here again, we have −α ⊂ β1 ⊂ · · · ⊂ βn, and the

reflections rβi
generate an infinite dihedral group which contains rα. Assertions (iii) and

(iv) follow by an argument as in Case 1.

Proof of Theorem 3

We may assume without loos of generality n ≥ L where L is as in Corollary 5.2. We
define B(n) := C(3n− 1) where C is as in Lemma 6.1.

Let α be a root and let y ∈ α be a chamber such that d(y, C(∂α)) ≥ H(k). Let
x ∈ C(∂α) be such that d(x, y) = d(C(∂α), y). By Lemma 6.1, there exist 3n− 1 pairwise
parallel walls which separate x from y. If n of these walls are parallel to ∂α, then we are
done. Otherwise, there are at least 2n of these walls which are incident to ∂α. In that
case, Lemma 6.2(iii) yields the desired conclusion.

Proof of Theorem 4

We define N := B(2L+ 1) where B is as in Theorem 3 and L as in Corollary 5.2.
Let α and α′ be roots such that −α ⊂ α′, −α′ ⊂ α and n := d(C(∂α), C(∂α′)) ≥ N .

Assume by contradiction that no wall separates ∂α from ∂α′.
Let x ∈ C(∂α) and x′ ∈ C(∂α′) be such that d(x, x′) = n. Since d(x, C(∂α′)) = n,

Theorem 3 implies that there exist 2L + 1 pairwise parallel walls which separate x from
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∂α′. Since no wall separates ∂α from ∂α′, it follows that each of these 2L + 1 walls is
incident to α. By Lemma 6.2(iii), this implies that there exist L roots β1 ⊂ · · · ⊂ βL
which are pairwise parallel and separate x′ from ∂α. Since no wall separates ∂α from
∂α′, it follows that each βi is incident to α′. Now Lemma 6.2(i) yields an infinite dihedral
group D which contains rβi

for every i ∈ {1, . . . , L}. By Lemma 6.2(iv), we have rα ∈ D.
By Lemma 6.2(ii), we obtain ∠(α′, β1) = ∠(α′, α). This contradicts the fact that α and
α′ are parallel.

Another finiteness property related to parallel walls

In order to apply Theorem 4 to obtain information on the Coxeter cubing of Niblo-Reeves,
we will need the following result.

Theorem 6.3. For each k ∈ N there exists a constant U(k) = U(W,S; k) such that the
following holds:
Let H be a collection of half-spaces such that

(i)
⋂
φ∈H φ 6= ∅;

(ii) for all φ, ψ ∈ H, the hyperplanes ∂φ and ∂ψ are parallel.

If H is of cardinality at least U(n) then there exist φ, ψ ∈ H such that d(∂φ, ∂ψ) > k.

Remark. Let W0 be a universal Coxeter group of rank r which is contained as a reflection
subgroup in W . It is well known that r can be arbitrarily large. Qualitatively, the
preceding theorem says the following: the higher the rank r, the larger the index [W : W0].

The proof will use the following lemmas.

Lemma 6.4. For each k ∈ N, the group W has finitely many orbits on pairs of hyperplanes
which are at distance at most k.

Proof. Clear since S is finite.

Lemma 6.5. Let Φ = Φ(W,S) be the standard root system associated with (W,S). For
each k ∈ N there exists a constant T (k) such that given φ, ψ ∈ Φ with |(φ, ψ)| > T (k)
(where (·, ·) denotes the standard inner product), we have d(∂φ, ∂ψ) > k.

Proof. Immediate consequence of the previous lemma.

Proof of Theorem 6.3. We view H as a subset of Φ. Let Π ⊂ H be a basis of the vector
space V spanned by H. Clearly the restriction of the inner product to V is non-degenerate.
Therefore, the set B of all v ∈ V such that (v, φ) ∈ [−1,−N ] for all φ ∈ Π is compact
(where N > 1 is an arbitrary real number). Since Φ is discrete, the set B ∩ Φ is finite.
We deduce that when H is sufficiently large, there exists φ ∈ H and ψ ∈ Π ⊂ H such
that (φ, ψ) < −N . By the previous lemma, this implies the desired result when N is large
enough.
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