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Abstract

Let X be a locally compact Hadamard space and G be a totally disconnected
group acting continuously, properly and cocompactly on X. We show that a closed
subgroup of G is amenable if and only if it is (topologically locally �nite)-by-
(virtually abelian). We are led to consider a set ∂fine

∞ X which is a re�nement of
the visual boundary ∂∞X. For each x ∈ ∂fine

∞ X, the stabilizer Gx is amenable.

1 Introduction

The class of amenable locally compact groups enjoys remarkable closure properties with
respect to algebraic operations, such as taking quotients or closed subgroups, or forming
group extensions. However, despite of this nice algebraic behaviour, the interaction be-
tween the amenability of a given group and its algebraic structure is still not completely
understood. This is notably illustrated by the still unresolved problem to show whether
or not there exists an in�nite �nitely generated simple group which is amenable. On the
other hand, for some special classes of locally compact groups, the notion of amenabil-
ity has a very well understood algebraic interpretation. For example, it is known that
a connected locally compact group is amenable if and only if its solvable radical is co-
compact [Pat88, Th. 3.8]. Therefore, understanding the structure of amenable locally
compact groups amounts to understand the structure of amenable locally compact groups
which are totally disconnected. The purpose of this paper is to show that for totally
disconnected groups arising in a rather wide geometric context, the algebraic property
which is relevant to amenability is the notion of topological local �niteness. A subgroup
H of a topological group G is called topologically locally �nite if every �nite sub-
set of H topologically generates a compact subgroup of G. Basic facts on topologically
locally �nite groups may be found in Sect. 2 below. Here we merely mention a result
of V. Platonov [Pla65] (see Th. 2.2 below) which ensures that the class of topologically
locally �nite groups is closed under group extensions. In particular, any topological group
G possesses a topologically locally �nite radical, or LF-radical, namely a unique
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maximal normal subgroup N which is topologically locally �nite and such that G/N has
no nontrivial normal topologically locally �nite subgroup. The LF-radical of G is denoted
by RadLF(G).

In this paper we focus on isometry groups of locally compact Hadamard spaces. Recall
that a Hadamard space is a complete CAT(0) space. Given a locally compact Hadamard
space X, its isometry group Is(X), endowed with the topology of uniform convergence
on compact subsets, is a locally compact second countable topological group. The main
result of this paper is the following:

Theorem 1.1. Let X be a locally compact Hadamard space and G be a totally disconnected
group acting continuously, properly and cocompactly on X. Then a closed subgroup H < G
is amenable if and only if RadLF(H) is open in H and the quotient H/RadLF(H) is
virtually abelian.

Note that the hypothesis that G is totally disconnected is naturally satis�ed in the
case of singular Hadamard spaces, for example when X is a CAT(0) cell complex and the
G�action is cellular. In fact, the same result as above holds if one replaces the hypothesis
that G is totally disconnected and cocompact by the following requirements: X is a locally
�nite cell complex with �nitely many isometry types of cells and �nitely many types of
links, and the G�action is cellular.

Corollary 1.2. Maintain the assumptions of the theorem and let Γ be a �nitely generated
simple subgroup of G. The the closure Γ is amenable if and only if Γ is �nite. In particular,
if Γ is amenable, then it is �nite.

In the special case when X is CAT(−1) and Is(X) acts cocompactly with no �xed
point at in�nity, one has the following dichotomy: either Is(X) is virtually connected, or
it is totally disconnected, see [MMS04, Th. 21]. This yields the following:

Corollary 1.3. Let Γ be a �nitely generated in�nite simple group acting nontrivially on
a CAT(−1) space X such that Is(X) acts cocompactly with no �xed point at in�nity. Then
Γ has no �xed point in X ∪ ∂∞X.

Specializing Theorem 1.1 to discrete groups, we also recover the following result, due to
S. Adams and W. Ballmann [AB98, Cor. B]. It is a generalization to amenable subgroups
of the so called Solvable Subgroup Theorem for CAT(0) groups [BH99, Th. II.7.8]:

Corollary 1.4. Let Γ be a group acting properly discontinuously and cocompactly on a
complete CAT(0) space X. Then any amenable subgroup of Γ is virtually abelian and
�nitely generated.

Applying an argument due to M. Burger and V. Schroeder [BS87, Proof of Cor. 2], one
can show furthermore, as in [AB98, Cor. B], that every amenable subgroup of Γ leaves
some �at of X invariant (the �at is possibly reduced to a point).

We refer to the introduction and reference list of [AB98] for a historical background
on amenability in the geometrical context of non-positive curvature. The proof of Theo-
rem 1.1 is based on the one hand, on obstructions for amenable groups to act by isometries
on Hadamard spaces established by S. Adams and W. Ballmann [AB98] (see Th. 5.1 be-
low) and, on the other hand, on an elementary construction which associates to every
point ξ of the visual boundary of any CAT(0) space X another CAT(0) space Xξ. This
construction is described in Sect. 4 below; it is originally due to F. Karpelevi£ [Kar65], who
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considered it in the context of Riemannian symmetric spaces, (implicitly) by F. Bruhat
and J. Tits [BT72, Prop. 7.6.4] in the context of Euclidean buildings, and then by B. Leeb
[Lee00, �2.1.3] in the context of general Hadamard spaces. As suggested in [Lee00], one
may iterate this construction to de�ne a boundary ∂fine

∞ X of a proper CAT(0) space X of
bounded geometry which re�nes the usual visual boundary ∂∞X, in the sense that there
is a canonical Is(X)�equivariant surjection ∂fine

∞ X → ∂∞X. Therefore, the set ∂fine
∞ X is

called the re�ned visual boundary of X. A generic point of ∂fine
∞ X is a sequence of the

form (ξ1, ξ2, . . . , ξk, x) such that ξ1 ∈ ∂∞X, ξi+1 ∈ ∂∞Xξ1,...,ξi for each i = 1, . . . , k − 1
and x ∈ Xξ1,...,ξk . When X is of bounded geometry, the maximal possible length of this
sequence happens to be bounded above by a constant depending only on X, see Corol-
lary 4.4 below. The following result provides a more geometric description of amenable
subgroups of G:

Theorem 1.5. Let X be a locally compact Hadamard space and G be a totally disconnected
group acting continuously, properly and cocompactly on X. Any amenable subgroup of G
has a �nite index subgroup which �xes a point in X ∪ ∂fine

∞ X. Conversely, given any point
x ∈ X ∪ ∂fine

∞ X, the stabilizer Gx is amenable.

It is likely that if Is(X) is cocompact, then the full stabilizer Is(X)x of any point
x ∈ X ∪ ∂fine

∞ X is always amenable. In fact, this is already known if X is CAT(−1) by a
result of M. Burger and Sh. Mozes [BM96, Prop. 1.6].
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2 On topologically locally �nite groups

Let G be a topological group. A subgroup H < G is called topologically locally �nite

if the closure of every �nitely generated subgroup of H is compact. It is readily seen
that if G itself is topologically locally �nite, then so is any subgroup and any continuous
quotient group. Moreover, we have:

Lemma 2.1. Let G be a locally compact group and H be a topologically locally �nite
subgroup. Then the closure H is topologically locally �nite, and H endowed with the
induced topology is a topologically locally �nite group.

Proof. Suppose that G contains a dense subgroup H which is topologically locally �-
nite. We must show that G itself is topologically locally �nite. Let C be a relatively
compact open neighborhood of the identity in G. Given c1, . . . , ck ∈ G, the subset
C1 =

⋃k
i=0 ci.C, where c0 = 1, is a relatively compact open neighborhood of the iden-

tity containing c1, . . . , ck. We set U = C1 ∪C−1
1 . It su�ces to prove that the subgroup of

G generated by U is compact. Note that this subgroup is open, hence closed.
Let now y ∈ U2. Then y.U ∩ U2 is a nonempty open set. Hence there exists h ∈

H ∩ y.U ∩ U2. Since U = U−1 and h ∈ y.U , we have y ∈ h.U . Therefore, we deduce
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that U2 ⊂
⋃
h∈H∩U2 h.U . Since U2 is compact, there exist h1, . . . , hn ∈ H such that

U2 ⊂
⋃n
i=1 hi.U . Let K be a compact subgroup of G containing {h1, . . . , hn}. Then we

have:
U3 = U2 · U ⊂ (K · U) · U = K · U2 ⊂ K ·K · U = K · U.

We obtain inductively that Un is contained in K · U for each n. Since 〈U〉 =
⋃
n>0 U

n

and since K · U is compact, it follows that 〈U〉 is compact, as desired.

By Zorn's lemma, any topological groupG possesses a maximal normal subgroup which
is topologically locally �nite. It is called the LF-radical of G and denoted RadLF(G). By
Lemma 2.1, the LF-radical of a locally compact group is a closed subgroup. The following
result was proven by V. Platonov [Pla65, Th. 2]:

Theorem 2.2. Let G be a locally compact group and N be a closed normal subgroup. If
N and G/N are both topologically locally �nite, then so is G.

It follows from Theorem 2.2 that RadLF(G/RadLF(G)) = {1} for any locally compact
group G. Another useful basic fact is the following:

Lemma 2.3. Let G be a locally compact group. Then G is topologically locally �nite if
and only if every compact subset of G is contained in a compact subgroup.

Proof. The `if' part is clear. We focus on the opposite implication and assume henceforth
that G is topologically locally �nite. Let Q be a compact subset of G such that Q = Q−1.
We must show that Q is contained in a compact subgroup of G. Up to replacing G by the
closed subgroup which is generated by Q, this amounts to showing that if G is compactly
generated, then it is compact. Let thus U be a compact symmetric neighborhood of the
identity which generates G. There exist g1, . . . , gn ∈ G such that U2 ⊂

⋃n
i=1 gi.U . Now

we can conclude by the same argument as in the proof of Lemma 2.1.

Corollary 2.4. Let G be a locally compact group which is topologically locally �nite. Then
G is amenable.

Proof. Follows from Lemma 2.3 together with Følner's characterization of amenability.

3 On proper actions of totally disconnected groups on

Hadamard spaces

Let X be a locally compact Hadamard space, namely a complete locally compact CAT(0)
space. Let also G be a totally disconnected group acting continuously on X. Any compact
subgroup of G �xes a point in X by [BH99, Ch. II, Cor. 2.8]. Recall that the full isometry
group Is(X), endowed with the topology of uniform convergence on compact subsets, is
a locally compact second countable group. In particular, if the G�action on X is proper,
then G is locally compact. The following basic fact will be useful:

Lemma 3.1. Let G be any totally disconnected locally compact group. Then every compact
subgroup of G is contained in a compact open subgroup of G.
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Proof. Let K be a compact subgroup of G and choose a compact open subgroup Q < G;
it is well-known that such a subgroup exists, see [Bou71, III �4 No 6]. Considering the
open cover

⋃
k∈K kQ of the compact group K, we may extract �nitely many k1, . . . , kn ∈

K such that K ⊂
⋃n
i=1 knQ. In particular Q has �nitely many K-conjugates and we

deduce Q0 :=
⋂
k∈K kQk

−1 =
⋂n
i=1 knQk

−1
n . Thus the subgroup Q0, which is by de�nition

compact and normalized by K, is moreover open. It follows that K is contained in the
compact open subgroup K.Q0.

We say that the G�action is smooth if Gx is open in G for each x ∈ X. The term
smooth is borrowed from the representation theory of p-adic groups.

The following lemma, though elementary, is crucial to the proof of the main results:

Lemma 3.2. Assume that G acts properly on X. Let (xn)n≥0 be a sequence of points of
X and (γn)n≥0 be a sequence of elements of G such that the sequence (γn.xn)n≥0 has a
subsequence converging to some c ∈ X. Then we have the following:

(i) There exists a sequence (x′n)n≥0 of points of X such that, given any g ∈ G with
limn→∞ d(xn, g.xn) = 0, we have g.x′n = x′n for all but a �nite number of indices
n ≥ 0.

(ii) Assume moreover that the G�action is smooth. Then, given any g ∈ G such that
limn→∞ d(xn, g.xn) = l, there exists k ∈ G such that d(c, k.c) = l and that the set
{n ≥ 0 | γngγ−1

n ∈ k.Gc} is in�nite.

Proof. Up to extracting, we may and shall assume that limn→∞ γn.xn = c. Let g ∈ G be
such that limn→∞ d(xn, g.xn) = l. We have

lim
n→∞

d(xn, g.xn) = lim
n→∞

d(γn.xn, (γngγ
−1
n )γn.xn) = l.

Therefore, it follows that limn→∞ d(c, γngγ
−1
n .c) = l. In particular, the set {γngγ−1

n }n≥0

is relatively compact in G. Hence, up to extracting, we may assume that the sequence
(γngγ

−1
n )n≥0 converges. By construction, its limit k maps the point c to a point c′ such

that d(c, c′) = l.
Assume �rst that l = 0. Thus c = c′. By Lemma 3.1, there exists x ∈ X such that

Gc ⊂ Gx and Gx is compact open. Since the sequence (γngγ
−1
n )n≥0 converges to k ∈ Gx, it

follows that the set {n ≥ 0 | γngγ−1
n ∈ Gx} contains all su�ciently large n. Now, setting

x′n = γ−1
n .x, we obtain that g �xes x′n for almost all n. Thus (i) holds.

Assume now that l is arbitrary and that G acts smoothly. Then Gc is open, hence so
is the coset k.Gc = {h ∈ G | h.c = c′}. Therefore, for all n su�ciently large, we have
γngγ

−1
n ∈ k.Gc and (ii) holds.

Recall that, given γ ∈ G, the displacement function of γ is the map dγ : X → R+ :
x 7→ d(x, γ.x). Its in�mum is denoted by |γ| and is called the translation length of γ in
X.

Note that when G is cocompact, the existence of a sequence (γn)n≥0 as in the lemma
is automatic. In particular, we obtain (see [BH99, Ch. II, Sect. 6.1�6.3]):

Corollary 3.3. Assume that G acts properly and cocompactly on X. Then every element
γ ∈ G with |γ| = 0 has a �xed point in X, and the set {|γ| | γ ∈ G} of translation
lengths of elements of G is discrete at 0. Furthermore, if the G�action is smooth, then it
is semisimple: any element acts as an elliptic or a hyperbolic isometry.
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Proof. Let γ ∈ G and choose xn ∈ X so that d(xn, γ.xn) tends to |γ| as n tends to in�nity.
Since X/G is compact, there exists γn ∈ G such that {γn.xn} is relatively compact in X.
Thus, up to extracting, we may assume that (γn.xn)n≥0 converges to some c ∈ X. If
|γ| = 0, then Lemma 3.2(i) shows that γnγγ

−1
n is elliptic for some n, hence so is γ.

Similarly, if the G�action is smooth, Lemma 3.2 shows that the displacement function dγ
attains its in�mum |γ|.

Let now (gn)n≥0 be a sequence of elements of G such that |gn| tends to 0 as n tends to
in�nity and assume in order to obtain a contradiction that |gn| > 0 for all n. Since X/G
is compact, we may and shall assume, up to replacing gn by a conjugate, that there exists
c ∈ X, r ∈ R and xn ∈ X such that d(c, xn) < r for all n and that d(xn, gn.xn) tends
to 0 as n tends to in�nity. Up to extracting, we may assume that the sequence (xn)n≥0

converges to some x ∈ X. Since {gn}n≥0 is relatively compact in G, we may assume,
up to a further extraction, that (gn)n≥0 converges to some g ∈ G. Clearly g �xes x. By
Lemma 3.1, this implies that gn is elliptic for all n su�ciently large. Thus |gn| = 0, which
is absurd.

Recall from [Bri99, Th. A] that if X is a CAT(0) cell complex with �nitely many
isometry types of cells, and if the G�action is cellular, then it is semisimple and the set
of translation lengths of elements of G is discrete at 0. Thus the hypothesis that X/G is
compact is super�uous in that special case. Note that G is automatically smooth in this
case.

We record the following observation:

Lemma 3.4. Assume that G acts properly and smoothly on X. Let F ⊂ X be a �at and
let ϕ : G{F} → Is(F ) be the homomorphism induced by the action of the stabilizer G{F}
of F on F . Then ϕ(G{F}) is a discrete subgroup of Is(F ). In particular G{F}/Kerϕ is
virtually abelian and G{F} possesses a �nite index subgroup which �xes a point in ∂∞ F .

Proof. Let Γ = ϕ(G{F}). We must show that Γ < Is(F ) acts properly discontinuously on
F .

Let x ∈ F be any point. We may choose n+ 1 points x0, . . . , xn, where n = dimF , in
such a way that the group G{F},x0,...,xn �xes pointwise a neighborhood of x in F . Therefore,
the group G{F},x0,...,xn is contained in Kerϕ. Since Gx0,...,xn is an open subgroup of the
compact open subgroup Gx, it follows that the index of Gx0,...,xn in Gx is �nite. In
particular, for each x ∈ F , the index of Kerϕ in G{F},x is �nite or, in other words, for
each x ∈ F , the stabilizer Γx is �nite.

Suppose now that the Γ�action on F is not properly discontinuous. Then there exist
x0 ∈ F and r ∈ R+ such that the set SΓ = {γ ∈ Γ | d(γ.x0, x0)} is in�nite. Since Γx is
�nite for each x ∈ X, it follows that the set S0 = {γ.x0 | γ ∈ SΓ} is in�nite. Let x1 ∈ F
be a cluster point of S0. Let also (gn)n≥0 be a sequence of elements of G{F} such that
lim gn.x0 = x1 and that gm.x0 6= gn.x0 for m 6= n. Since {gn}n≥0 is relatively compact,
we may assume that (gn)n≥0 converges to some g ∈ G such that g.x0 = x1. Since Gx0 is
open in G, so is g.Gx0 . Therefore, we have gn.x0 = x1 for all su�ciently large n. This
contradicts the fact that gm.x0 6= gn.x0 for m 6= n. Thus Γ is a discrete subgroup of Is(F ).

The fact that Γ is virtually abelian now follows from [Thu97, Cor. 4.1.13]. It remains
to show that Γ has a �nite index subgroup which �xes an element in the sphere at in�nity
∂∞ F . This is trivial if Γ is �nite. If Γ is in�nite, then there exists an element γ ∈ Γ
which acts as a hyperbolic isometry on F . Some power of γ is centralized by a �nite index
subgroup Γ0 < Γ. Therefore, the group Γ0 �xes the unique attractive �xed point of γ in
∂∞ F .
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4 Projective limits of horoballs: the space Xξ

The purpose of this section is to study the main geometrical tool of this paper. In the
�rst subsection, we collect a few subsidiary facts on metric geometry.

4.1 On metric spaces of bounded geometry

Let (X, d) be any metric space. Given ε > 0, a subset N ⊂ X is called ε�sparse if
d(x, x′) ≥ ε for all x 6= x′ ∈ N . Note that a ε�sparse subset is discrete; in particular, if it
is contained in a compact subset, then it is �nite. Given a subset C ⊂ X, we denote by
nε(C) the maximal cardinality of a ε�sparse subset of C. Note that if nε(C) is �nite, then
a ε�sparse subset N ⊂ C of maximal possible cardinality is necessarily ε�dense: every
point of C is at distance less than ε from some point of N . Given r > 0 and ε > 0, we
also set

nr,ε(X) = sup
x∈X

nε(B(x, r)),

where B(x, r) denotes the open ball of radius r centered at x.
We say that the metric space (X, d) is of bounded geometry if for all r > ε > 0,

one has nr,ε(X) <∞. We record some elementary facts for later references:

Lemma 4.1. We have the following:

(i) If (X, d) is complete and of bounded geometry, then it is proper, i.e. any closed ball
is compact.

(ii) If (X, d) is locally compact and X/ Is(X) is compact, then X is of bounded geometry.

Proof. (i). Follows from the characterization of compact metric spaces as those metric
spaces which are complete and totally bounded. The argument goes as follows. Let B
be a closed ball in X and S be an in�nite set of points of B. Since X is of bounded
geometry, the ball B can be covered by a �nite number of balls of radius 1. Thus there
exists b0 ∈ B such that the ball B(b0, 1) contains an in�nite subset of S. Repeating this
argument inductively, we construct a sequence (bn)n≥0 of points of B such that B(bn, 2

−n)
contains an in�nite subset of S and that bn+1 ∈ B(bn, 2

−n). In particular the sequence
(bn)n≥0 is Cauchy. Let b denote its limit. Clearly b is a cluster point of S. Hence B is
compact.

The proof of (ii) is a standard exercise and will be omitted here.

4.2 The space Xξ and the re�ned boundary ∂fine
∞ X

Let X be any CAT(0) space. Given any point ξ ∈ ∂∞X in the visual boundary of X,
we now describe a canonical construction which attaches a CAT(0) space Xξ to ξ. Any
closed horoball centered at ξ is a closed convex subset of X. The collection of all of
these horoballs form a chain of subspaces of X. Endowing this chain with the orthogonal
projections, we obtain a projective system of CAT(0) spaces. By de�nition, the space Xξ

is the metric completion of the projective limit of this system. Note that the projective
limit itself need not be complete even if X is so. Indeed, consider for example the convex
subset of the Euclidean plane R2 de�ned by X = {(x, y) | xy ≥ 1}. Then the space
Xξ associated to the direction of the positive y-axis is an open half-line, which is thus
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not complete. It is therefore important to take a completion since we want to deal with
Hadamard spaces. The space Xξ is endowed with a canonical surjective projection

πξ : X → Xξ

induced by the orthogonal projections onto horoballs. Note that πξ is 1�Lipschitz: it does
not increase distances.

There is a more down-to-earth description of Xξ which goes as follows. Let X∗ξ be
the set of all geodesics rays of X which point toward ξ. The set X∗ξ is endowed with a
pseudo-distance de�ned by:

d(ρ, ρ′) = inf
t,t′≥0

d(ρ(t), ρ′(t′)).

The space Xξ is the completion of the quotient of X∗ξ by the relation which identi�es two
rays at distance 0, namely two rays which are strongly asymptotic. It is readily veri�ed
that this construction yields the same space as the preceding one. Note that Xξ need not
be locally compact, even if X is so. Indeed, consider for example the CAT(0) cube complex
X which is de�ned as follows. For each positive integer n, we de�ne a closed convex subset
Cn of the Hilbert space `2(N) consisting of those functions f ∈ `2(N) satisfying:

f(0) ∈ [n− 1, n],
f(k) ∈ [0, 1] for k ∈ {1, . . . , n− 1},
f(k) = 0 for k ≥ n.

Thus Cn is isometric to the unit cube in the Euclidean n-space. Now we de�ne X as the
union over all n > 0 of the Cn's, endowed with the length metric induced from `2(N) (see
[BH99, Def. I.3.3] for the de�nition of the induced length metric). Thus X is a locally
compact CAT(0) cube complex. Note that the visual boundary ∂∞X consists of a single
point ξ, associated with the geodesic ray

ρ : R+ → X : t 7→ tχ{0}.

Moreover, it is easily seen that for each n ≥ 0 the horosphere centered at ξ with base
point 0 and radius −n is a n-cube. Therefore the space Xξ is an in�nite-dimensional cube;
in particular it is not locally compact.

The fact that πξ does not increase distances yields the following:

Lemma 4.2. Let ξ ∈ ∂∞X and r, ε > 0 be positive numbers. Let x0, x1, . . . , xn ∈ Xξ be
such that d(x0, xi) < r for each i and that the set {x1, . . . , xn} is ε�sparse. Then there exist
y0, y1, . . . , yn, yn+1 ∈ X such that d(y0, yi) < r for each i and that the set {y1, . . . , yn, yn+1}
is ε�sparse.

Proof. Let ρ0, ρ1, . . . , ρn : R+ → X be geodesic rays which are representatives of x0,
x1, . . . , xn respectively. Note that for all i = 0, . . . , n and t ∈ R+, we have πξ(ρi(t)) = xi.
Let R0 = ρ0(R+). By de�nition, for each i = 1, . . . , n there exists ti ∈ R+ such that
d
(
ρi(ti), projR0

(ρi(ti))
)
< r. Here proj denotes the orthogonal CAT(0) projection map

[BH99, Ch. II, Prop. 2.4]. Let now H be a closed horoball centered at ξ, whose radius is
su�ciently small so that {ρi(ti), projR0

(ρi(ti)) | i = 1, . . . , n}∩H = ∅ and that ρ0(ε) does
not belong to H either. Set yi = projH(ρi(0)) for each i = 0, . . . , n; this makes sense since
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H is closed and convex. Note that projH(ρi(0)) = projH(ρi(ti)) for all i > 0. Therefore,
we have

d(yi, y0) ≤ d
(
ρi(ti), projR0

(ρi(ti))
)
< r

for each i = 1, . . . , n since projH does not increase distances. Note also that the set
{y1, . . . , yn} is ε�sparse since πξ does not increase distances and since {x1, . . . , xn} is
ε�sparse.

It remains to de�ne yn+1. To this end, let t0 ∈ R+ be the unique real such that
ρ0(t0) = y0. We set yn+1 = ρ0(t0 − ε). Thus d(y0, yn+1) = ε. Since projH(yn+1) = y0,
we have d(y, yn+1) ≥ ε for all y ∈ H. In particular, the set {y1, . . . , yn, yn+1} is ε�sparse.
Finally, since ε < r, we have d(y0, yn+1) < r as desired.

The following proposition collects some of the basic properties of Xξ:

Proposition 4.3. Let ξ ∈ ∂∞X. We have the following:

(i) Xξ is a complete CAT(0) space.

(ii) There is a canonical continuous homomorphism ϕξ : Is(X)ξ → Is(Xξ), where Is(X)
and Is(Xξ) are endowed with the topology of uniform convergence on compact subsets.

(iii) If X is proper and of bounded geometry, then so is Xξ.

Proof. (i). Follows immediately from the de�nition in terms of horoballs. For another
argument using the alternative construction of Xξ, see B. Leeb [Lee00, Proposition 2.8].

(ii). The map ϕξ is de�ned by:

ϕξ(g).πξ(x) = πξ(g.x). (4.1)

It is immediate from the de�nition that it is a homomorphism. Assume in order to obtain
a contradiction that ϕξ is not continuous. Then it is not continuous at 1. Thus there exists
a compact subset C ⊂ Xξ, a real ε > 0, a sequence (yn)n≥0 of points of C and a sequence
(gn)n≥0 of elements of Is(X)ξ such that limn→∞ gn = 1 and d(ϕξ(gn).yn, yn) > ε for each
n. Let D ⊂ C be a �nite subset which is ε

3
�dense in C. Let D′ ⊂ X be a �nite subset

such that πξ(D
′) = D. Since limn→∞ gn = 1 and since D′ is �nite, we have d(gn.x, x) ≤ ε

3

for all x ∈ D′ and all su�ciently large n. Since πξ does not increase distances, we deduce
from the de�nition of ϕξ that d(ϕξ(gn).y, y) ≤ ε

3
for all y ∈ D and all su�ciently large

n. Since D is ε
3
�dense in C, it �nally follows that d(ϕξ(gn).z, z) ≤ ε for all z ∈ C and all

su�ciently large n. This is a contradiction.
Note that ϕξ need not be proper.

(iii). By de�nition, the space Xξ is complete. In view of Lemma 4.1(i), it is proper
whenever it is of bounded geometry. The fact that it is of bounded geometry follows
easily from Lemma 4.2.

Important to us will be the fact that the length of a sequence (ξ1, ξ2, . . . , ξk) such that
ξ1 ∈ ∂∞X and ξi+1 ∈ ∂∞Xξ1,...,ξi for each i = 1, . . . , k − 1 may not be arbitrarily large
under suitable assumptions on X:

Corollary 4.4. Let X be a complete CAT(0) space of bounded geometry. Then there exists
an integer K ≥ 0 depending only on X such that, given any sequence (ξ1, ξ2, . . . , ξk) with
ξ1 ∈ ∂∞X and ξi+1 ∈ ∂∞Xξ1,...,ξi for each i = 1, . . . , k − 1, the space Xξ1,...,ξk is bounded
whenever k = K. In particular ∂∞Xξ1,...,ξk is empty whenever k = K.

9



Proof. Suppose that Xξ1,...,ξk is of diameter > r. Then Xξ1,...,ξk contains two points at
distance r from one another. Applying Lemma 4.2 inductively, we construct a �nite
subset N ⊂ X of cardinality k+ 2 which is r-sparse and of radius ≤ r+ ε, where ε > 0 is
a �xed positive number (which may be chosen arbitrarily small). In particular, we obtain
k + 2 ≤ nr+ε,r(X). The desired result follows.

Remark. Using results of B. Kleiner [Kle99], it can be shown that if X is complete and
GeomDim(Xξ) ≥ n, then GeomDim(X) ≥ n+ 1. In particular, if GeomDim(X) is �nite,
then GeomDim(Xξ) < GeomDim(X). Therefore, if X is complete and GeomDim(X) is
�nite, then there exists a constant K such that ∂∞Xξ1,...,ξk is empty whenever k ≥ K.
Note that a CAT(0) space X such that ∂∞X is empty might be unbounded: for example
take X to be a metric graph which is a star with in�nitely many branches of �nite length,
such that the supremum of the length of the branches is in�nite. Note also that the fact
that X is of �nite geometric dimension is unrelated to the local compactness of X. In
particular, if X is a CAT(0) piecewise Euclidean cell complex with �nitely many types of
cells (such as a building [Dav98] or a �nite dimensional cube complex), then GeomDim(X)
is �nite but X need not be locally compact.

We de�ne the re�ned visual boundary ∂fine
∞ X to be the set of all sequences

(ξ1, ξ2, . . . , ξk, x)

such that ξ1 ∈ ∂∞X, ξi+1 ∈ ∂∞Xξ1,...,ξi for each i = 1, . . . , k − 1 and x ∈ Xξ1,...,ξk .
Given such a sequence (ξ1, ξ2, . . . , ξk, x) in the re�ned boundary, we de�ne its level to
be the number k. In order to associate a level to each point of X ∪ ∂fine

∞ X, we take the
convention that points of X are of level 0. Corollary 4.4 gives su�cient conditions on X
for the existence of an upper bound on the level of all points in X ∪ ∂fine

∞ X.

4.3 Structure of the stabilizer of a point in the re�ned boundary

Given a point ξ ∈ ∂∞X and a base point x ∈ X, we let bξ,x : X → R be the Busemann
function centered at ξ such that bξ,x(x) = 0. Recall that Busemann functions satisfy the
following cocycle identity for all x, y, z ∈ X:

bξ,x(y)− bξ,x(z) = bξ,z(y).

It follows that the mapping

βξ : Is(X)ξ → R : g 7→ bξ,x(g.x)

is independent of the point x ∈ X and is a group homomorphism. It is called the
Busemann homomorphism centered at ξ.

Proposition 4.5. Let X be a proper CAT(0) space and G be a totally disconnected group
acting continuously, properly and cocompactly on X. Given ξ ∈ ∂∞X, we have the fol-
lowing:

(i) Given any x ∈ Xξ, the LF-radical RadLF(Gξ,x) is open in Gξ,x; it coincides with
the kernel of βξ : Gξ,x → R.
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(ii) Let Kξ be the kernel of the restriction of ϕξ to Gξ, where φξ is de�ned by (4.1) on
page 9. Then RadLF(Kξ) is open in Kξ; it coincides with the kernel of βξ : Kξ → R.
In particular, the group Kξ/RadLF(Kξ) is isomorphic to a subgroup of R.

(iii) Let (ξ1, ξ2, . . . , ξn, x) ∈ ∂fine
∞ X be a point of level n in the re�ned visual boundary.

Set H = Gξ1,...,ξn,x. Then RadLF(H) is open in H, it contains all elements of H
which act as elliptic isometries on X and, furthermore, H/RadLF(H) is abelian
and torsion free. In particular H is amenable.

Proof. Note that (i) is a special case of (iii). However, the proof of (iii) involves some
technicalities which can be avoided in the situation of (i). Therefore, in order to make
the argument more transparent, we prove (i) separately.

(i). Let Kξ,x denote the kernel of the restriction to Gξ,x of the Busemann homomorphism
βξ. Let y ∈ X be such that πξ(y) = x and ρ = ρξ,y : R+ → X be the geodesic ray pointing
towards ξ with origin y. De�ne xn = ρ(n) for each n ∈ N. Since G is cocompact, there
exists a sequence (γn)n≥0 of elements of G such that (γn.xn)n≥0 converges to some c ∈ X.
Now, given any g1, . . . , gk ∈ Kξ,x, we have limn→∞ d(xn, gi.xn) = 0 for each i = 1, . . . , k.
Therefore, applying Lemma 3.2 inductively, we deduce that there exists n ∈ N such that
gi ∈ Gγ−1

n .c for each i = 1, . . . , k. In particular, the set {g1, . . . , gk} is contained in a
compact subgroup of G. This shows that Kξ,x is topologically locally �nite.

Now, the inclusion Kξ,x ⊂ RadLF(Gξ,x) is obvious. Conversely, given any element
g ∈ Gξ,x which does not belong to Kξ,x, then g is not elliptic, hence it is not contained in
RadLF(Gξ,x). Thus Kξ,x = RadLF(Gξ,x) as desired.

The fact that Kξ,x is open in Gξ,x is clear: by de�nition Gξ,x is closed and any compact
open subgroup of Gξ,x �xes a point in X, and is thus contained in Kξ,x.

(ii). By de�nition, we have Kξ =
⋂
x∈Xξ Gξ,x. Hence the desired assertion follows from (i).

(iii). For each i = 1, . . . , n, let βξi : Gξ1,...,ξi → R be the restriction of the Busemann homo-
morphism centered at ξi. In particular, restricting further, one obtains a homomorphism
βξi : H → R. The direct product of these homomorphisms de�nes a homomorphism

β = βξ1 × · · · × βξn : H → Rn,

whose kernel is the subgroup K =
⋂n
i=1 Ker βξi . Clearly K contains all elements of H

which act as elliptic isometries on X (and hence on Xξ1,...,ξi for each i = 1, . . . , n). In
particular it follows that K is open in H.

Our aim is to show that K = RadLF(H). We have just seen that K contains all
periodic elements of H. Thus the inclusion RadLF(H) ⊂ K is clear. It remains to show
that K is topologically locally �nite.

For each i = 1, . . . , n, we de�ne

ϕi = ϕξi ◦ · · · ◦ ϕξ1 ◦ ϕξ1 : Is(X)ξ1,...,ξi → Is(Xξ1,...,ξi).

Let g1, . . . , gk be elements of K. By de�nition, there exists a sequence (xn−1,m)m≥0 of
points of Xξ1,...,ξn−1 such that

lim
m→∞

d(ϕn−1(gi).xn−1,m, xn−1,m) = 0

for each i = 1, . . . , k. Let now ρn−2,m : R+ → Xξ1,...,ξn−2 be a geodesic ray pointing towards
ξn−1 such that πξn−1(ρn−2,m(t)) = xn−1,m for each t ∈ R+.
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For eachm, we may choose a su�ciently large tm ∈ R+ in such a way that the sequence
(xn−2,m)m≥0 de�ned by xn−2,m = ρn−2,m(tm) ∈ Xξ1,...,ξn−2 satis�es the identity

lim
m→∞

d(ϕn−2(gi).xn−2,m, xn−2,m) = 0

for each i = 1, . . . , k.
Proceeding inductively, we construct in this way a sequence (xj,m)m≥0 of points of

Xξ0,...,ξj such that
lim
m→∞

d(ϕj(gi).xj,m, xj,m) = 0

for each i = 1, . . . , k and each j = 1, . . . , n− 1. In a �nal further step, we then construct
a sequence (xm)m≥0 of points of X such that

lim
m→∞

d(gi.xm, xm) = 0

for each i = 1, . . . , k. Now, it follows by the same arguments as in the proof of (i) that
{g1, . . . , gk} is contained in a compact subgroup of G. Hence K is topologically locally
�nite, as desired.

The amenability of H is now immediate from Corollary 2.4.

Note that the proof of Proposition 4.5(iii) shows that RadLF(H) coincides with Ker β|H ,
where β = βξ1 × · · · × βξn : Gξ1,...,ξn → Rn is the direct product of the Busemann homo-
morphisms centered at ξi for i = 1, . . . , n.

Lemma 4.6. Let X be a proper CAT(0) space and G be a totally disconnected group
acting continuously, properly and cocompactly on X. Then, given any element γ ∈ Ker β,
the respective translation lengths of γ in X and in Xξ1,...,ξn coincide. Furthermore, if the
G�action is smooth, then the action of Gξ1,...,ξn on Xξ1,...,ξn is by semisimple isometries.

Proof. Let ξ ∈ ∂∞X. Since πξ does not increase distances, it is clear that the translation
length |γ| of any element γ ∈ Is(X)ξ is bounded below by the translation length |ϕξ(γ)|
of ϕξ(γ) in Xξ. Conversely, if γ ∈ Ker β, then it is easy to see that |γ| ≤ |ϕξ(γ)|.

It is clear that an elliptic isometry γ ∈ Is(X) which �xes ξ acts as an elliptic isometry
on Xξ. Suppose now that γ ∈ Is(X) is hyperbolic and �xes ξ. Let λ be an axis of γ. If
ξ ∈ ∂∞ λ, then γ is elliptic onXξ. Otherwise, it follows easily from [BH99, Ch. II, Prop. 9.8
and Cor. 9.9] that λ bounds a Euclidean half-plane H such that ξ ∈ ∂∞H. Moreover, one
veri�es immediately that the projection of H to Xξ is an axis for γ, from which it follows
that γ acts as a hyperbolic isometry on Xξ. Note moreover that βξ(γ) = 0 if and only if
ξ is the middle point of ∂∞H, where βξ denotes the Busemann homomorphism centered
at ξ.

Now, if the G�action is smooth, the fact that the Gξ1,...,ξn�action onXξ1,...,ξn is semisim-
ple follows from a straightforward induction on n, since we know by Corollary 3.3 that
the G�action on X is semisimple.

5 The structure of amenable subgroups

The main tool in proving Theorem 1.1 is provided by the obstructions for continuous
isometric actions of amenable groups on locally compact Hadamard spaces established by
S. Adams and W. Ballmann in [AB98]. Let us recall its precise statement:
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Theorem 5.1. Let H be an amenable locally compact group acting continuously by isome-
tries on a proper CAT(0) space X. Then H stabilizes a Euclidean �at in X, or else H
�xes a point in X ∪ ∂∞X.

Proof. See [AB98, Theorem].

Before proceeding to the proof of the main results, we still need a subsidiary lemma:

Lemma 5.2. Let X be a proper CAT(0) space and G be a totally disconnected group
acting continuously, properly and cocompactly on X. Let (ξ1, . . . , ξn) be a sequence such
that ξ1 ∈ ∂∞X, ξi+1 ∈ ∂∞Xξ1,...,ξi for each i = 1, . . . , n− 1 and let F be a �at in Xξ1,...,ξn

(possibly n = 0 and F ⊂ X). Suppose that H < G is a closed amenable subgroup which
�xes (ξ1, . . . , ξn) and which stabilizes F . Then H possesses a �nite index subgroup which
�xes a point in F ∪ ∂∞ F .

Proof. As in the proof of Proposition 4.5(iii), we let βξi : Gξ1,...,ξi → R be the restriction
of the Busemann homomorphism centered at ξi and

β = βξ1 × · · · × βξn : Gξ1,...,ξn → Rn

be the direct product of these Busemann homomorphisms. Let R = Ker β.
By hypothesis, we have H < StabGξ1,...,ξn (F ). Thus there is a well de�ned homomor-

phism
ϕ : H → Is(F ).

Since H is totally disconnected, it follows from [MZ55, Ch. V, Th. 2] that ϕ(H) (endowed
with the quotient topology) is a discrete group. Since moreover ϕ(H) is amenable and
contained in the real Lie group Is(F ), it follows from [Tit72, Th. 1] that ϕ(H) is virtually
solvable, hence virtually metabelian because Is(F ) is abelian-by-compact. Up to replacing
H by a �nite index subgroup, we may � and shall � assume henceforth that ϕ(H) is
metabelian.

We let T denote the translation subgroup of Is(F ). Thus we have [ϕ(H), ϕ(H)] ⊂ T .
On the other hand, since R = Ker β contains the derived group [H,H], we deduce that
[ϕ(H), ϕ(H)] ⊂ T ∩ ϕ(H ∩R). Now we distinguish several cases.

Assume �rst that T ∩ ϕ(H ∩ R) is nontrivial. By Corollary 3.3 and Lemma 4.6, the
set of translation lengths of elements of R in Xξ1,...,ξn is discrete at 0. Therefore, it follows
that T ∩ϕ(H ∩R) is a discrete subgroup of T . Let now t ∈ T ∩ϕ(H ∩R) be a nontrivial
element. Since T ∩ ϕ(H ∩ R) is normal in ϕ(H) and since conjugate elements act with
the same translation length, it follows from the discreteness of T ∩ ϕ(H ∩ R) in T that
ϕ(H) possesses a �nite index subgroup which centralizes t. Since t acts as a hyperbolic
element, we deduce that its unique attractive �xed point in the sphere at in�nity ∂∞ F is
�xed by a �nite index subgroup of H. Hence we are done in this case.

We assume henceforth that T ∩ ϕ(H ∩ R) is trivial. By the above, it follows that
ϕ(H) is abelian. Suppose now ϕ(H) contains an element t′ which acts as a hyperbolic
element on F . Then ϕ(H) �xes the attractive �xed point of t′ in ∂∞ F and again we are
done. Suppose �nally that every element in ϕ(H) is elliptic. Since the �xed point set of
an element in Is(F ) is a linear, hence Euclidean, subspace, a straightforward induction
on dimension shows then that ϕ(H) has a global �xed point in F . This concludes the
proof.

We are now ready for the:
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Proof of Theorems 1.1 and 1.5. Note that X is complete and of bounded geometry,
since Is(X) is cocompact by hypothesis.

The fact that Gx is (topologically locally �nite)-by-(virtually abelian) for each x ∈
X ∪ ∂fine

∞ X follows from Proposition 4.5(iii). Any such subgroup is amenable in view of
Corollary 2.4.

Let now H < G be a closed amenable subgroup. We want to show that H possesses
a �nite index subgroup which �xes an element of X ∪ ∂fine

∞ X.
Assume that H �xes no point in X ∪ ∂∞X. In view of Theorem 5.1, this implies that

H stabilizes a �at F ⊂ X. By Lemma 5.2, we deduce that H possesses a �nite index
subgroup which �xes a point in ∂∞ F . This shows that in all cases H possesses a �nite
index subgroup H0 which �xes a point ξ1 ∈ X ∪ ∂∞X.

If ξ1 ∈ X we are done. Otherwise H0 acts on Xξ1 . Assume that H0 �xes no point in
Xξ1 ∪ ∂∞Xξ1 . Then H0 stabilizes a �at in Xξ1 and, by Lemma 5.2, we deduce that H0

possesses a �nite index subgroup H1 which �xes a point ξ2 in Xξ1 ∪ ∂∞Xξ1 . Again, if
ξ2 ∈ Xξ1 we are done. Otherwise H2 acts on Xξ1,ξ2 .

Now we repeating this argument inductively. The process will stop after �nitely many
steps in view of Corollary 4.4. Therefore, we obtain a point (ξ1, . . . , ξn, x) ∈ ∂fine

∞ X and a
�nite index subgroup Hn < H which is contained in Gξ1,...,ξn,x. By Proposition 4.5(iii), the
latter subgroup is (topologically locally �nite)-by-(abelian torsion free) and its LF-radical
is open.

Proof of Corollary 1.2. Let Γ < G be a �nitely generated simple subgroup which is
contained in an amenable subgroup of G. In view of the characterization of amenability
in terms of a �xed point property [BdlHV07, Th. G.1.7], we may and shall assume that Γ
is in fact contained in a closed amenable subgroup of G, say H. Let H0 be its LF-radical.
There are two cases.

Suppose �rst that H0 ∩ Γ is trivial. Then Γ injects in the quotient H/H0, which is
virtually abelian. Since Γ is simple and �nitely generated, it must then be �nite.

Suppose now that H0 ∩ Γ is nontrivial. Then Γ ⊂ H0. Therefore Γ is contained in a
compact subgroup of G. Since any such subgroup is a pro�nite group, it follows that Γ is
residually �nite. Hence, since Γ is simple, it must be �nite.

Proof of Corollary 1.3. By [MMS04, Th. 21], the group Is(X) is either virtually con-
nected or totally disconnected. By assumption Is(X) contains a �nitely generated in�nite
simple group Γ. Such a group cannot be contained in a connected locally compact group.
Indeed, a connected locally compact group is an extension of a Lie group by a compact
group [MZ55], and any �nitely generated subgroup of a compact group (resp. a Lie group)
is residually �nite. Thus we may assume without loss of generality that Is(X) is totally
disconnected. Now, given any x ∈ X, the stabilizer Is(X)x is compact and, hence, cannot
contain the simple group Γ. Finally, given any ξ ∈ ∂∞X, the stabilizer Is(X)ξ is amenable
[BM96, Prop. 1.6] and the conclusion now follows from Corollary 1.2.

Proof of Corollary 1.4. Let H < Γ be an amenable subgroup. Let F be its LF-
radical. It is a discrete countable locally �nite group. In particular, it is a union of an
ascending chain of �nite subgroups of Γ. Since Γ acts geometrically on X, it follows from
[BH99, Ch. II, Cor. 2.8] that it has �nitely many conjugacy classes of �nite subgroups.
In particular F is �nite. Therefore, there exists a �nite index subgroup H0 < H which
centralizes F . By Theorem 1.1, the group H/F is virtually abelian. Thus H0 possesses a
�nite index subgroup H1 such that the derived subgroup [H1, H1] is contained in F . Since
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any �nitely generated group with a �nite derived subgroup is virtually abelian [BH99,
Ch. II, Lem. 7.9], it follows that any �nitely generated subgroup of H1 is virtually abelian.
On the other hand, the group Γ satis�es an ascending chain condition for virtually abelian
subgroups by [BH99, Ch. II, Th. 7.5], from which it �nally follows that H1 is virtually
abelian and �nitely generated and, hence, so is H.
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