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Abstract. Let X be a building of arbitrary type. A compactification Csph(X) of the set
Ressph(X) of spherical residues of X is introduced. We prove that it coincides with the
horofunction compactification of Ressph(X) endowed with a natural combinatorial distance
which we call the root-distance. Points of Csph(X) admit amenable stabilisers in Aut(X)
and conversely, any amenable subgroup virtually fixes a point in Csph(X). In addition, it is
shown that, provided Aut(X) is transitive enough, this compactification also coincides with
the group-theoretic compactification constructed using the Chabauty topology on closed sub-
groups of Aut(X). This generalises to arbitrary buildings results established by Y. Guivarc’h
and B. Rémy [GR06] in the Bruhat–Tits case.
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The best known and probably most intuitively obvious compactification of a non-compact
Riemannian symmetric space M is the visual compactification M = M ∪ ∂∞M , whose
points at infinity consist in equivalence classes of geodesic rays at finite Hausdorff distance
of one another. Following Gromov [BGS85], this compactification may be identified with the
horofunction compactification Choro(M), whose points at infinity are Busemann func-
tions. This canonical identification holds in fact for any CAT(0) metric space, see [BH99,
Theorem II.8.13].

Another way to approach to visual compactification of M is the following. Using the visual
map which associates to every pair of points p, q ∈M the direction at p of the geodesic segment
[p, q], it is possible to associate to every point of M a unique element of the unit tangent ball
bundle over M . The total space of this bundle being compact, one obtains a compactification
by passing to the closure of the image of M ; this coincides with the visual compactification
M . Here again, the construction has a natural analogue which makes sense in any locally
compact CAT(0) space X provided that the space of directions ΣpX at every point p ∈ X is
compact. This condition is automatically satisfied if X is geodesically complete (i.e. every
geodesic segment may be extended to a bi-infinite geodesic line, which need not be unique)
or if X has the structure of a CAT(0) cell complex. In the latter case, each space of direction
ΣpX is endowed with the structure of a finite cell complex.

This suggests to modify the above construction of the visual compactification as follows.
Assume X is a locally finite CAT(0) cell complex. Then the space of direction ΣpX has a
cellular structure; one denotes by St(p) the corresponding set of cells. Associating to each
point its support, one obtains a canonical map ΣpX → St(p). Pre-composing with the afore-
mentioned visual map, one obtains a map X →

∏
p∈X

St(p). The closure of this map is called

the combinatorial compactification of X. It should be noted that the above map is not
injective in general: two points with the same support are identified.

The main purpose of this paper is to pursue this line of thoughts in the special case of
buildings of arbitrary type. Similar developments in the case of CAT(0) cube complexes are
carried out in the Appendix.

In the case of buildings, the relevant simplices are the so-called residues of spherical
type, also called spherical residues for short. The above combinatorial compactification
thus yields a compactification of the set Ressph(X) of all spherical residues, and the above
‘visual map’ Ressph(X)→

∏
σ∈Ressph(X)

St(σ) may be canonically defined in terms of the com-

binatorial projection. Its closure is the combinatorial compactification and will be denoted
by Csph(X).

The set Ressph(X) may moreover be endowed in the canonical with the structure of a
discrete metric space. For example, a graph structure on Ressph(X) is obtained by declaring
two residues adjacent if one is contained in the other. We shall introduce a sligthly different
distance, called the root-distance which has the advantage that its restriction to the chamber-
set Ch(X) coincides with the gallery distance (see Section 1). As any proper metric space,
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the discrete metric space Ressph(X) admits a horofunction compactification This turns
out to coincide with the combinatorial compactification (see Theorem 3.1).

It is important to remark that the combinatorial compactification does not coincide with
the visual one. Although there are elementary ways to establish the latter fact, strong evidence
is provided by the following result (see Theorem 6.1).

Theorem A. Let X be a locally finite building. Then every amenable subgroup of Aut(X)
has a finite index subgroup which fixes some point in Csph(X).

Conversely, the full stabiliser of every point of Csph(X) is a closed amenable subgroup.

In the special case of Bruhat–Tits buildings, a similar statement was established in [GR06,
Theorem 33] using another compactification called the group-theoretic compactification. The
construction of the latter goes back to an idea of Y. Guivarc’h in the case of symmetric spaces
and be outlined as follows. A symmetric space M embeds in the space of closed subgroups of
Isom(M) by attaching to each point its isotropy group. Since the space of closed subgroups
endowed with Chabauty topology is compact, one obtains a compactification by passing to
the closure. This yields the group-theoretic compactification Cgp(M). This turns out
to be equivariantly isomorphic to the maximal Satake and Furstenberg compactifications (see
[GJT98], [BJ06]). In the case of buildings, since points with the same support have identical
stabilisers, this approach cannot offer better than a compactification of the set Ressph(X),
which generalizes the approach of [GR06] in which only the set of vertices is compactified.
The advantage of our construction is that it is simpler and furthermore does not make any
reference to the automorphism group of the building.

Theorem B. Assume that Aut(X) acts strongly transitively. The group-theoretic compact-
ification Cgp(X) is Aut(X)-equivariantly homeomorphic to the maximal combinatorial com-
pactification Csph(X). More precisely, a sequence (Rn) of spherical residues converges to some
ξ ∈ Csph(X) if and only if the sequence of their stabilisers (GRn) converges to the locally finite
radical of Gξ in the Chabauty topology.

Recall that the locally finite radical of a locally compact group G is the unique sub-
group RadLF(G) which is (topologically) locally finite (i.e. all of whose finitely generated
subgroups are relatively compact), normal and maximal for these properties. It was shown
in [Cap07] that a closed subgroup H of Aut(X) is amenable if and only if H/RadLF(H) is
virtually Abelian.

It is shown in [GR06] that the group-theoretic compactifications may be canonically iden-
tified with the polyhedral compactification constructed by E. Landvogt in [Lan96]. The-
orem B may be viewed as an extension of this to the case of arbitrary buildings.

A central tool introduced in this work to study the combinatorial compactification is the
notion of combinatorial sectors, which extend to the general case the classical notion of
sectors in Bruhat–Tits theory. Given a point ξ ∈ Csph(X), we associate to every x ∈ Ressph(X)
as sector Q(x, ξ) based at x and pointing to ξ (see Section 2.6). Every sector is contained in
an apartment; the key property is that the collection of all sectors pointing to ξ ∈ Csph(X)
is filtering; in other words any two sectors pointing to ξ contain a common subsector (see
Proposition 2.30).

We emphasize that all of our considerations are valid for arbitrary buildings and are of
elementary nature; in particular, no use is made of the theory of algebraic groups. Moreover,
as it will appear in the core of the paper, most of the results remain valid for buildings
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which are not necessarily locally finite (in that case, one uses the term bordification instead
of compactification).

Another motiviation is that the tools introduced here will be used in a subsequent paper to
prove the amenability of the action of the automorphism group of a building on the combina-
torial boundary of the building (See [ADR00] for a definition of amenable actions). This fact
is useful in the study of C∗-algebras associated to such group and in bounded cohomology. It
may also have applications to rigidity results.

The paper is organised as follows. In a first section we introduce and study the properties
of a combinatorial distance on Ressph(X) which we call the root-distance. The next section
is devoted to the combinatorial compactification. Combinatorial sectors are introduced and
used to prove that every point of Csph(X) may be attained as the limit of some sequence of
residues all contained in a common apartment. The third section is devoted to the horofunction
compactification and proves that in the case of Ressph(X) the combinatorial and horofunction
compactifications coincide. Chabauty topology is studied in the next section, whose main
goal is to prove Theorem B. The next section studies the relationship between the visual
boundary and the combinatorial compactification. The main results are a stratification
of the combinatorial compactification (Theorem 5.5) and a description of Csph(X) as the
quotient of the refined visual boundary of X which is a refined version of the visual
boundary introduced in [Cap07] for arbitrary CAT(0) spaces. These results are used in the
final section which proves Theorem A. Finally, the Appendix outlines similar results in the
case of finite-dimensional CAT(0) cube complexes.

Acknowledgments. The second author is very grateful to Bertrand Rémy for his constant
support. Thanks are also due to the anonymous referee for a number of useful comments.

1. The root-distance on spherical residues

1.1. Preliminaries. Throughout this paper we let X be an arbitrary building of finite rank
and G be its full automorphism group. We denote by Ch(X) (resp. Res1(X), Ressph(X)) the
set of chambers (resp. panels, spherical residues) of X. Given a residue σ of X, the star of σ,
denoted by St(σ), is the set of all residues containing σ in their boundaries, see [Tit74, §1.1].
We recall that, in the chamber system approach to buildings, which is dual to the simplicial
approach, a residue is viewed as a set of chambers and the star is then nothing but the set of
all residues contained in σ. This has no influence on the subsequent considerations and the
reader should feel free to adopt the point of view which he/she is most comfortable with.

1.2. The root-distance. Our first task is to introduce a combinatorial distance on the set
Ressph(X) of spherical residues. A natural way to obtain such a distance is by considering the
incidence graph of spherical residues, namely the graph with vertex set Ressph(X) where two
residues are declared to be adjacent if one is contained in the other. However, the disadvantage
of this graph is that the natural embedding of Ch(X) in Ressph(X) is not isometric, when
Ch(X) is endowed with the gallery distance. This causes some technical difficulties which we
shall avoid by introducing an alternative distance on Ressph(X).

Given R1, R2 ∈ Ressph(X), let A be an apartment containing them both. We denote by
ΦA(R1, R2) the set of all half-apartments of A containing R1 but not R2. This set is empty
if and only if R1 is contained in R2, since every residue coincides with the intersection of all
half-apartments containing it. Notice moreover that the cardinality of the sets ΦA(R1, R2)
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and ΦA(R2, R1) is independent of the choice of A. We define the root-distance d(R1, R2)
between R1 and R2 to be half of the sum of their cardinalities. In symbols:

d(R1, R2) =
1
2
|ΦA(R1, R2)|+ 1

2
|ΦA(R2, R1)|.

Clearly the restriction of the root-distance to the chamber set coincides with the gallery
distance. However, checking that the root-distance indeed defines a metric on Ressph(X)
requires some argument (see Proposition 1.2). Before collecting this together with some other
basic facts on the root distance, we introduce some additional terminology.

A set of spherical residues R ⊂ Ressph(X) is called closed if for all R1, R2 ∈ Ressph(X),
we have

R1 ⊂ R2 ∈ R ⇒ R1 ∈ R.
It is called convex if it is closed and if for all R1, R2 ∈ R, we have projR1

(R2) ∈ R, where
proj denotes the combinatorial projection (see [Tit74, §3.19]) or [AB08, Section 4.9]). We
recall that by definition we have

projR1
(R2) =

⋂
{projR1

(C) | C ∈ Ch(X) ∩ St(R2)},

which allows one to recover the combinatorial projections amongst arbitrary residues from
projections of chambers. Recall that the projection of a chamber C on a spherical residue R
is defined as the unique chamber in R which is at minimal distance from C.

Since any intersection of closed (resp. convex) subsets is closed (resp. convex) and since
the whole set Ressph(X) is so, it makes sense to consider the closure (resp. the convex hull)
of a subset R ⊂ Ressph(X), which we denote by R (resp. Conv(R)). The convex hull of two
residues R1, R2 is denoted by Conv(R1, R2). Given an apartment A containing R1 ∪ R2, the
convex hull Conv(R1, R2) coincides with the intersection of all half-apartments of A containing
R1 ∪R2. The following basic fact provides a convenient characterisation of the combinatorial
projection:

Lemma 1.1. Given two (spherical) residues R, T , the combinatorial projection projR(T ) co-
incides with the unique maximal residue containing R and contained in Conv(R, T ).

‘Maximal’ should be understood as ‘of maximal possible dimension’, i.e. of minimal possible
rank.

Proof. Let A be an apartment containing Conv(R, T ) and σ1, σ2 ∈ Conv(R, T ) be two maximal
residues containing R. Assume σ1 and σ2 are distinct. Then there is a half-apartment α of
A containing one but not the other. Without loss of generality σ1 ⊂ α but σ2 6⊂ α. Since
R ⊂ σ1 ∩ σ2 we have R ⊂ ∂α. Therefore, if T ⊂ α, then Conv(R, T ) ⊂ α which contradicts
σ2 6⊂ α. Thus T meets in the interior of −α. In particular, so does projσ1

(T ). Since the latter
is a spherical residue containing σ1 ⊃ R, we have σ1 = projσ1

(T ), which contradicts the fact
that σ1 is contained in α.

This confirms that there is a unique maximal residue σ ∈ Conv(R, T ) containing R. Since
projR(T ) ⊃ R, we have thus projR(T ) ⊂ σ. If the latter inclusion were proper, then there
would exist some root β containing projR(T ) but not σ. In particular R and projR(T ) are
contained in the wall ∂β. This implies that T is also contained in ∂β. Therefore so is
Conv(R, T ) since walls are convex. This contradicts σ 6⊂ β. �

We next introduce the interval determined by two spherical residues R1, R2 as the set
[R1, R2] consisting of those σ ∈ Ressph(X) such that d(R1, R2) = d(R1, σ) + d(σ,R2).



6 PIERRE-EMMANUEL CAPRACE∗ AND JEAN LÉCUREUX

Proposition 1.2. We have the following.
(i) The root-distance turns the set Ressph(X) into a (discrete) metric space.
(ii) Retractions on apartments do not increase the root-distance.
(iii) For all R1, R2 ∈ Ressph(X), we have Conv(R1, R2) = [R1, R2].
(iv) A set R ⊂ Ressph(X) is convex if and only if it is closed and for all R1, R2 ∈ R, the

interval [R1, R2] is entirely contained in R.

Before undertaking the proof, we record the following subsidiary fact which will be helpful
in many arguments using induction on the root-distance.

Lemma 1.3. Let R1, R2 ∈ Ressph(X). Then the interval [R1, R2] coincides with the pair
{R1, R2} if and only if R1 ⊂ R2 or R2 ⊂ R1 and no residue other than R1 or R2 is sandwiched
between them.

Proof. The ‘if’ part is straightforward. Moreover, if R1 ⊂ R2 and R is a residue with R1 ⊂
R ⊂ R2, then R ∈ [R1, R2]. Therefore, it suffices to show that if R1 ∩R2 is different from R1

or R2, then ]R1, R2[ := [R1, R2] \ {R1, R2} is non-empty.
Consider the CAT(0) realisation |X| of X (see [Dav98]). Recall that the support of a point

x ∈ |X| is the unique minimal (i.e. lowest dimensional) spherical residue R such that x ∈ |R|.
Assume first that there exist points p1 ∈ |R2| and p2 ∈ |R2| such that pi is supported by Ri

and that the geodesic segment [p1, p2] is not entirely contained in |R1| ∪ |R2|. Let then x be
a point of [p1, p2] \ (|R1| ∪ |R2|) and let R denote the spherical residue supporting x. Clearly
R 6= R1, R2. We claim that R ∈ [R1, R2].

Let A be an apartment containing R1 and R2. Then R ⊂ A. Since any root either contains
R or does not, we have ΦA(R1, R2) ⊂ ΦA(R1, R) ∪ ΦA(R,R2) and similarly with R1 and R2

interchanged. Thus it suffices to show that every root α containing R but not R2 also contains
R1 and vice-versa. But if α does not contain R1, it does not contain p1 since p1 lies in the
interior of R1. Thus the wall ∂α does not separate p1 from p2, which contradicts the fact that
x ∈ |R| ⊂ |α|. This proves the claim.

Assume in a second case that for all points p1, p2 respectively supported by R1, R2, the
geodesic segment [p1, p2] lies entirely in |R1| ∪ |R2|. Then |R1| ∩ |R2| is non-empty and
R := R1 ∩R2 is thus a non-empty spherical residue. By the above, the residue R is different
from R1 and R2. We claim that R ∈ [R1, R2]. Let A be an apartment containing R1 and R2;
thus R ⊂ A. As before, it suffices to show that every root α of A containing R but not R1

also contains R2. If it didn’t, then −α would contain two points p1, p2 respectively supported
by R1, R2. In particular the geodesic segment [p1, p2] is entirely contained in the interior of
−α and, hence, it avoids |R| ⊂ α. This is absurd since |R| = |R1| ∩ |R2|. �

Proof of Proposition 1.2. We start with the proof of (ii). Let ρ be a retraction to some apart-
ment A and let R1, R2 ∈ Ressph(X). We need to show that d(ρ(R1), ρ(R2)) ≤ d(R1, R2). We
work by induction on d(R1, R2), the result being trivial if R1 = R2. Notice more generally
that if R1 ⊂ R2, then the restriction of ρ to the pair {R1, R2} is isometric, in which case the
desired inequality holds trivially. We may therefore assume that R1 and R2 are not containing
in one another. By Lemma 1.3, this implies that the open interval ]R1, R2[ is non-empty. Let
R ∈ ]R1, R2[. Using the induction hypothesis, we deduce

d(R1, R2) = d(R1, R) + d(R,R2)
≥ d(ρ(R1), ρ(R)) + d(ρ(R), ρ(R2))
≥ d(ρ(R1), ρ(R2)),
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where the last inequality follows since any root of A either contains R or does not, whence
ΦA(R1, R2) ⊂ ΦA(R1, R) ∪ ΦA(R,R2) and similarly with R1 and R2 interchanged.

(i) The only non-trivial point to check is the triangle inequality. We have just observed along
the way that this inequality holds for triple of residues contained in a common apartment.
The general case follows, using the fact that retractions do not increase distances.

(iii) We first use induction on d(R1, R2) to prove that [R1, R2] ⊂ Conv(R1, R2).
Let thus R ∈ [R1, R2]. We shall show by induction on d(R,R2) that R ∈ Conv(R1, R2).
Assume first that ]R,R2[ contains some spherical residue T . Then

R ∈ [R1, T ] ⊂ Conv(R1, T ) ⊂ Conv(R1, R2),

where the first inclusion follows from the induction on d(R1, R2) and the second from the
induction on d(R,R2) > d(T,R2).

Assume now that ]R,R2[ is empty. If R ⊂ R2, then obviously R ∈ Conv(R1, R2). In view of
Lemma 1.3 it only remains to deal with the case R2 ( R. In particular d(R1, R) < d(R1, R2),
whence [R1, R] ⊂ Conv(R1, R) by induction. Since Conv(R1, R) is closed, it contains R2 and
we deduce that some apartment A contains R1∪R2∪R. Finally we observe that Conv(R1, R) =
Conv(R1, R2), since the fact that R ∈ [R1, R2] implies that any root of A which contains
R but not R2 also contains R1. Thus R ∈ Conv(R1, R2), which confirms the claim that
[R1, R2] ⊂ Conv(R1, R2). In particular [R1, R2] ⊂ Conv(R1, R2) since convex sets are closed.

Let now x ∈ Conv(R1, R2) and pick a maximal spherical residue R ∈ Conv(R1, R2) contain-
ing x. We claim that R ∈ [R1, R2]. Let thus α be a root containing R but neither R2 in some
apartment A containing R1 ∪R2. If R1 6⊂ α, then Conv(R1, R2) ⊂ −α whence R ⊂ ∂α. This
implies that projR(R2) is strictly contained in −α, thereby contradicting the maximality of
R. This shows that every root containing R but not R2 also contains R1. A similar argument
holds with R1 and R2 interchanged. This proves R ∈ [R1, R2] as claimed. Thus x ∈ [R1, R2],
which finishes the proof of (iii).

(iv) follows from (iii) since a set R ⊂ Ressph(X) is convex if and only if it is closed and for all
R1, R2 ∈ R, we have Conv(R1, R2) ⊂ Ressph(X). �

The following shows that the combinatorial projection of residues is canonically determined
by the root-distance. In the special case of projections of chambers, the corresponding state-
ments are well known.

Corollary 1.4. For all R, T ∈ Ressph(X), the projection projR(T ) coincides with the unique
maximal element of [R, T ] which contains R. It is also the unique spherical residue π ⊃ R
such that

d(π, T ) = min{d(σ, T ) | σ ∈ Ressph(X), σ ⊃ R}.

Proof. By Proposition 1.2(iii), the projection projR(T ) is contained in some spherical residue
π ∈ [R, T ]. In particular π is contained in Conv(R, T ) and contains R. Therefore we have
π = projR(T ) by Lemma 1.1. Thus projR(T ) is contained in the interval [R, T ] and the first
assertion of the Corollary follows from Lemma 1.1 since [R, T ] ⊂ Conv(R, T ) by Proposi-
tion 1.2(iii).

The second assertion follows from arguments in the same vein than those which have been
used extensively in this section. The details are left to the reader. �
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2. Combinatorial compactifications

2.1. Definition. The key ingredient for the construction of the combinatorial compactifi-
cations is the combinatorial projection. Given a residue σ, this projection is the map
projσ : Ch(X)→ St(σ) which associates to a chamber C the chamber of St(σ) which is near-
est to C, see [AB08, §4.9]. As recalled in the previous section, the combinatorial projection
may be extended to a map defined on the set of all residues of X. For our purposes, we shall
focus on spherical residues and view the combinatorial projection as a map

projσ : Ressph(X)→ St(σ).

This allows one to define two maps

πCh : Ch(X)→
∏

σ∈Res1(X)

St(σ) : C 7→
(
σ 7→ projσ(C)

)
and

πRes : Ressph(X)→
∏

σ∈Ressph(X)

St(σ) : R 7→
(
σ 7→ projσ(R)

)
.

The above products are endowed with the product topology, where each star is a discrete
set of residues. This allows one to consider the closure of the image of the above maps. In
symbols, this yields the following definitions:

C1(X) = πCh(Ch(X)) and Csph(X) = πRes(Ressph(X)).

It is quite natural to consider the space πRes(Ch(X)) as well; in fact, we shall see in
Proposition 2.12 below that this is equivariantly homeomorphic to C1(X). We shall also see
that C1(X) may be identified to a closed subset of Csph(X).

If the building X is locally finite, then the star of each spherical residue is finite and hence
the spaces C1(X) and Csph(X) are then compact, and even metrizable since Ressph(X) is at
most countable. The Aut(X)-action on X extends in a canonical way to actions on C1(X)
and Csph(X) by homeomorphisms; the action induced by an element g ∈ Aut(X) is given by

g : Csph(X)→ Csph(X) : f 7→
(
σ 7→ gf(g−1σ)

)
.

Definition 2.1. The space C1(X) and Csph(X) are respectively called the minimal and the
maximal combinatorial bordifications of X. When the building X is locally finite, we
shall use instead the term compactification.

This terminology is justified by the following.

Proposition 2.2. The maps πCh and πRes are G-equivariant and injective; moreover, they
have discrete images. In particular πCh and πRes are homeomorphisms onto their images.

Proof. We argue only with πCh, the case of πRes being similar. The equivariance is immediate.
We focus on the injectivity. Let C and C ′ be distinct chambers in X. There exists an
apartment, say A, containing them both. These chambers are separated in A by some wall H,
so that the projections of C and C ′ on every panel in H cannot coincide. This implies that
πCh(C) 6= πCh(C ′) as desired.

Let now (Cn)n≥0 be a sequence of chambers such that the sequence (πCh(Cn)) converges
to πCh(C) for some C ∈ Ch(X). We have to show that Cn = C for n large enough. Suppose
this is not the case. Upon extracting a subsequence, we may assume that Cn 6= C for all
n. Then there is some panel σn in the boundary of C such that projσn(Cn) 6= C. Up to a
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further extraction, we may assume that σn is independent of n and denote by σ the common
value. Thus, we have projσ(Cn) 6= C, which contradicts the fact that (πCh(Cn)) converges to
πCh(C). �

In the case when X is locally finite, Proposition 2.2 implies that C1(X) is indeed a com-
pactification of the set of chambers of X: In particular the discrete set πCh(Ch(X)) is open in
C1(X), which is thus indeed a compactification of Ch(X) in the locally finite case; a similar
fact of course holds for Csph(X).

The elements C1(X) and Csph(X) are considered as functions which associate to every panel
(resp. residue) a chamber (resp. residue) in the star of that panel (resp. residue). In view
of Proposition 2.2 we may – and shall – identify Ch(X) and Ressph(X) to subsets of C1(X)
and Csph(X). In particular, it makes sense to say that a sequence of chambers converges to a
function in C1(X).

We now take a closer look at the minimal bordification. The special case of a single apart-
ment is straightforward:

Lemma 2.3. Let f ∈ Csph(X) and let (Rn) and (Tn) be sequences of spherical residues in a
common apartment A such that (πRes(Rn)) and (πRes(Tn)) both converge to f . Then for every
half-apartment α in A, there is some N ∈ N such that either Rn ∪ Tn ⊂ α for all n > N , or
Rn ∪ Tn ⊂ −α for all n > N , or Rn ∪ Tn ⊂ ∂α for all n > N .

Conversely, let (Rn) be a sequence of spherical residues of A such that for every half-
apartment α in A, there is some N ∈ N such that either Rn ⊂ α for all n > N , or Rn ⊂ −α
for all n > N , or Rn ⊂ ∂α for all n > N . Then (Rn) converges in Csph(A).

The same statements hold for sequences of chambers of A and a point f ∈ C1(X).

Proof. We deal only with the maximal bordification, the case of C1(X) being similar but
easier.

Let H be a wall of A, let σ ⊂ H and C,C ′ be the two chambers of A containing σ. For any
spherical residue R of A, the projection projσ(R) coincides with C (resp. C ′) if and only if R
lies on the same side of H as C (resp. C ′). It coincides with σ itself if and only if R lies on
H. The result now follows from the very definition of the convergence in Csph(X).

Let conversely (Rn) be a sequence of spherical residues of A which eventually remain on
one side of every wall of A. Let R ∈ Ressph(A). Let Φ denote the set of all roots α such that
R ⊂ ∂α and (Rn) eventually penetrates and remains in α. Since Φ is finite, there is some
N such that Rn ⊂

⋂
α∈Φ

α for all n > N . In particular projR(Rn) ⊂
⋂
α∈Φ

α for all n > N . It

follows from Lemma 1.1 that projR(Rn) coincides with the unique maximal spherical residue
contained in

⋂
α∈Φ

α and containing R. In particular, this is independent of n > N . Thus (Rn)

indeed converges in Csph(A). �

The subset of C1(X) consisting of limits of sequences of chambers of an apartment A
is denoted by C1(A), and Csph(A) is defined analogously. One verifies easily that this is
consistent with the fact that C1(A) (resp. Csph(A)) also denotes the minimal (resp. maximal)
bordification of the thin building A. However, it is not clear a priori that for every f ∈ C1(X)
belongs to C1(A) for some apartment. Nevertheless, it turns out that this is indeed the case:

Proposition 2.4. The set C1(X) is the union of C1(A) taken over all apartments A. Similarly
Csph(X) is covered by the union of Csph(A) over all apartments A.
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This proposition is crucial in understanding the combinatorial compactifications, since it
allows one to reduce many problems to the thin case. The proof requires some preparation
and is thus postponed to §2.6

Example 2.5. Trees without leaves are buildings of type D∞. Panels in these trees are vertices
and a sequence of chambers (i.e. edges) (xn) converges in the minimal bordification if the
projection of xn on every vertex is eventually constant. It is easy to check that C1(X) is
isomorphic to the usual bordification of the tree, that is, to its set of ends.

It is also possible to view a homogeneous tree of valency r ≥ 1 as the Coxeter complex
associated to the group W = 〈s1, . . . , sr | s2

1, . . . , s
2
r〉. The panels are then the middles of

the edges, a chamber is a vertex with all the half-edges which are incident to it. From this
viewpoint as well, the combinatorial bordification coincides with the visual one.

Example 2.6. (This example may be compared to [GR06, 6.3.1]) Let us consider an apartment
A of type Ã2. It is a Euclidean plane, tessellated by regular triangles. We know by Lemma 2.3
that we can characterize the points ξ ∈ U(A) by the sets of roots Φ(ξ) associated to them. We
may distinguish several types of boundary points. Let us choose some root basis {a1, a2} in the
vectorial system of roots. Then there is a point ξ ∈ U(A) defined by Φ(ξ) = {a1+k, a2+l| k, l ∈
Z}. There are six such points, which correspond to a choice of positive roots, i.e. to a Weyl
chamber in A. The sequences of (affine) chambers that converge to these points are the
sequences that eventually stay in a given sector, but whose distances to each of the two walls
in the boundary of this sector tend to infinity.

There is also another category of boundary points, which corresponds to sequence of cham-
bers that stay in a given sector, but stay at bounded distance of one of the two walls defining
this sector. With a choice of a1 and a2 as before, these are points associated to set of roots
of the form {a1 + k, a2 + l|k, l ∈ Z, k ≤ k0}. As k0 varies, we get a ‘line’ of such points, and
there are six such lines.

When X is a building of type Ã2, by Proposition 2.4, we can always write a point in the
boundary of X as a point in the boundary of some apartment of X. Thus, the previous
description applies to general points of the bordification.

Example 2.7. Let W be a Fuchsian Coxeter group, that is, whose Coxeter complex is a tessel-
lation of the hyperbolic plane. Assume the action of W on the hyperbolic plane is cocompact.
As in the previous example we shall content ourselves with a description of the combinatorial
compactification of some apartment A. In order to do so, we shall use the visual boundary
∂∞A ' S1. If there is a point ξ of this boundary towards which no wall is pointing, then
we can associate to it a point of the combinatorial compactification, just by taking the roots
that contain a sequence of points converging to ξ. If we have a point of the boundary towards
which a wall is pointing, we associate to it 2 points in C1(A), whose positions are defined in
relations to the roots which have this wall as a boundary.

Moreover, let us remark that the set of limit points of walls is dense in the boundary of the
hyperbolic plane. To prove that, it is enough to check that the action of W on S1 is minimal
(all its orbits are dense). Using [GdlH90, Corollary 26], the action of W on its limit set L(W )
is minimal, and by [Kat92, Theorem 4.5.2], the limit set L(W ) is in fact S1.

Therefore, if ξ and ξ′ are two different points on the circle at infinity, then ξ and ξ′ are
separated by some wall. In particular, we see that the construction we have just made always
yields different points. Therefore, the compactification C1(A) is a refinement of the usual
boundary.
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Example 2.8. If X = X1 × X2 is a product of buildings, then a chamber of X is just the
product of a chamber in X1 and a chamber in X2, and the projection on such a chamber is
just the product of the projections in X1 and X2. Therefore, the combinatorial bordification
Csph(X) is the product Csph(X1)× Csph(X2).

2.2. Projecting from infinity. In this section, we show that any function f ∈ C1(X) admits
a projection on every spherical residue of X. This allows us to define the embedding of C1(X)
into Csph(X) alluded to above.

Let thus ξ ∈ C1(X) and R be any residue. Recall that R is a building [Ron89, Theorem 3.5].
We define the projection of ξ to R, denoted projR(ξ), to be the restriction of ξ to Res1(R).
In the special case when R is a panel, the set Res1(R) is a singleton and the function projR(ξ)
may therefore be identified with a chamber which coincides with ξ(R).

Similarly, given ξ ∈ Csph(X) we define projR(ξ) as the restriction of ξ to Ressph(R).
The next statement ensures that the definition of projR is meaningful.

Lemma 2.9. Let (Cn) be a sequence of chambers converging to ξ ∈ C1(X) and let R be a
residue in X. The sequence of projections (projR(Cn)) converges to an element projR(ξ) ∈∏
σ∈Res1(R)

St(σ). In particular projR(ξ) is an element of C1(R).

Similarly, any sequence (Rn) converging to some η ∈ Csph(X) yields a sequence (projR(Rn))
which converges to some element of Csph(R) which is denoted by projR(η).

Proof. We focus on the minimal compactification; the maximal one is similar.
It is enough to prove the very first point. By definition of the convergence in C1(X),

for every panel σ ⊃ R, there exists some integer N depending on σ such that for n > N ,
projσ(Cn) = ξ(σ). Moreover we have

projR(projσ(Cn)) = projR(ξ(σ)) = ξ(σ).

Now projσ(Cn) coincides with projσ(projR(Cn)). Hence, for n > N , we have

projσ(projR(Cn)) = ξ(σ),

which is equivalent to saying that (projR(Cn)) converges to projR(ξ). �

In Lemma 2.9, if the residue R is spherical then for any ξ ∈ C1(X), the projection projR(ξ)
may be identified with a chamber of R. Similarly, for any η ∈ Csph(X), the projection projR(η)
may be identified with a residue in St(R).

Let now C be a chamber and ξ be a point in the boundary of C1(X). As ξ is not equal to
C, there exists some panel in the boundary of C on which the projection of ξ is different from
C. Let I be the set of all such panels, and consider the residue R of type I containing C.

Lemma 2.10. The residue R is spherical and projR(ξ) is a chamber opposite C in R.

Proof. Let (Cn) be a sequence converging to ξ. By Lemma 2.9, (projR(Cn)) converges to
projR(ξ). Therefore, the projection of projR(Cn) on the panels adjacent to Cn is eventually
the same as the projection of projR(ξ), that is, of ξ. In other words, the projection of Cn on
every panel of R in the boundary of C is always different from C. By [Bro89, IV.6, Lemma 3],
this implies that R is spherical and that projR(Cn) is opposite to C. As projR(Cn) converges
to projR(ξ), this implies that projR(ξ) is opposite to C in R. �
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Definition 2.11. The residue R defined as above is called the residual projection of ξ
on C.

Proposition 2.12. There is a G-equivariant continuous injective map C1(X)→ Csph(X). Its
image coincides with the closure of Ch(X) in Csph(X).

Proof. As pointed out before, the set Ressph(X) may be identified with a subset of Csph(X)
via the map πRes. In particular we may view Ch(X) as a subset of Csph(X). Projections to
residues allows one to extend this inclusion to a well defined map C1(X) → Csph(X). The
fact that it is injective and continuous is straightforward to check; the details are left to the
reader. �

In view of this Proposition, we may identify C1(X) to a closed subset of Csph(X). The fact
that C1(X) ∩ Ressph(X) coincides with Ch(X) motivates the following definition.

Definition 2.13. A point of Csph(X) which belongs to C1(X) is called a chamber. If it does
not belong to Ch(X), we say that it is a chamber at infinity.

2.3. Extending the notion of sectors to arbitrary buildings. The notion of sectors
is crucial in analysing the structure of Euclidean buildings. In this section we propose a
generalisation of this notion to arbitrary buildings. This will turn out to be a crucial tool for
the study of the combinatorial bordifications.

Let x ∈ Ressph(X) be a spherical residue and (Rn) be a sequence of spherical residues
converging to some ξ ∈ Csph(X). In order to simplify the notation, we shall denote the
sequence (Rn) by R. For any integer k ≥ 0 we set

Qk =
⋂
n≥k

Conv(x,Rn)

and
Q(x,R) =

⋃
k≥0

Qk.

Since Qk is contained in an apartment and since Qk ⊂ Qk+1 for all k, it follows from
standard arguments that Q(x,R) is contained in some apartment of X (compare [Tit81,
§3.7.4] or [Ron89, Theorem 3.6]).

Remark 2.14. Retain the same notation as before and let y be a spherical residue. If y ⊂
Q(x,R), then we have Q(y,R) ⊂ Q(x,R).

Proposition 2.15. Let (Rn) = R be a sequence of spherical residues converging to ξ ∈
Csph(X) and let x ∈ Ressph(X).

(i) The set Q(x,R) only depends on x and ξ, and not on the sequence R.
(ii) Q(x,R) may be characterised as the smallest subcomplex P of X containing x and such

that if R is a spherical residue in P , then for every σ ∈ St(R), the projection projσ(ξ)
is again in P .

Proof. Clearly (i) is a consequence of (ii).
Set Q := Q(x,R) and define Q′ to be the ξ-convex hull of x. By definition, this means

that Q′ is the minimal set of spherical residues satisfying the following three conditions:
• x ∈ Q′.
• Q′ is closed.
• For any spherical residue σ ⊂ Q′ we have projσ(ξ) ⊂ Q′.
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We have to show that Q = Q′. To this end, let V denote the collection of all subsets of
Ressph(X) satisfying the above three conditions. Thus Q′ =

⋂
V.

By definition, for each k ≥ 0 the subcomplex Qk is convex, hence closed, and contains x.
Therefore the same holds true for Q. We claim that Q ∈ V. Indeed, for any σ ∈ Ressph(X) the
projection projσ(ξ) coincides with projσ(Rn) for n large enough (see Lemma 2.9). Therefore,
for any σ ∈ Q there exists a sufficiently large k such that projσ(ξ) = projσ(Rn) ⊂ Conv(x,Rn)
for all n > k. Thus projσ(ξ) ⊂ Qk ⊂ Q, which confirms that Q ∈ V. In particular we deduce
that Q′ ⊂ Q.

Let now R be a spherical residue in Q. We shall show by induction on the root-distance of
R to x that R ⊂ Q′.

Assume first that x ⊃ R. Then R ⊂ Q′ since Q′ is closed and contains x. Assume next
that x ⊂ R. As R ∈ Q, we have R ⊂ Conv(x,Rn) for any n large enough. Since projx(Rn)
is the largest residue contained in Conv(x,Rn) and containing x (see Lemma 1.1), we have
R ⊂ projx(Rn). It follows that R ∈ Q′ since Q′ is closed and since for large n we have
projx(Rn) = projx(ξ) ∈ Q′.

In view of Lemma 1.3, we may now assume that the interval ]x,R[ is non-empty and
contains some spherical residue x′. By induction x′ ∈ Q′. Let n be large enough so that
R ∈ Conv(x,Rn). We have x′ ∈ [x,R] ⊂ Conv(x,R) by Proposition 1.2(iii). Thus, in
an apartment containing Conv(x,Rn), any root containing x and R also contains x′. One
deduces that R ∈ Conv(x′, Rn) for all large n. In particular R ∈ Q(x′, R). By induction, we
deduce that R belongs to the ξ-convex hull of x′, which we denote by Q′(x′). Since x′ ∈ Q′,
we have Q′(x′) ⊂ Q′ whence R ∈ Q′ as desired. �

Proposition 2.15 shows that Q(x,R) depends only on ξ = limR. It therefore makes sense
to write Q(x, ξ) instead of Q(x,R).

Definition 2.16. The set Q(x, ξ) is called the combinatorial sector, or simply the sector,
pointing towards ξ and based at x.

Remark 2.17. In the affine case, sectors in the classical sense are also combinatorial sectors in
the sense of the preceding definition (see example 2.21). However, the converse is not true in
general.

The following shows that the sector Q(x, ξ) = Q(x, (Rn)) should be thought of as the
pointwise limit of Conv(x,Rn) as n tends to infinity:

Corollary 2.18. Let x ∈ Ressph(X) and (Rn) be a sequence of spherical residues converging
to some ξ ∈ Csph(X). For any finite subset F ⊂ Ressph(X) there is some N ≥ 0 such that for
any n > N , the respective intersections of the sets Q(x, ξ) and Conv(x,Rn) with F coincide.

Proof. It suffices to show that for each y ∈ F , either y ⊂ Conv(x,Rn) for all large n, or
y 6⊂ Conv(x,Rn) for all large n.

If y ⊂ Q(x, ξ), this follows at once from the definition of Q(x, ξ).
Assume now that y is not contained in Q(x, ξ). We claim that there is some N > 0

such that y 6⊂ Conv(x,Rn) for all n > N . Indeed, in the contrary case for each n > 0
there is some ϕ(n) > n such that y is contained in Conv(x,Rϕ(n)). Therefore we have
y ⊂

⋂
n>0

Conv(x,Rϕ(n)). Since (Rϕ(n)) converges to ξ it follows from Proposition 2.15 that

Q(x, (Rϕ(n))) = Q(x, ξ) and we deduce that y ⊂ Q(x, ξ), which is absurd. �
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The following interpretation of the projection from infinity shows in particular that for all
x ∈ Ressph(X) and ξ ∈ Csph(X), the projection projx(ξ) is canonically determined by the
sector Q(x, ξ), viewed as a set of spherical residues.

Corollary 2.19. For all x ∈ Ressph(X) and ξ ∈ Csph(X), the projection projx(ξ) coincides
with the unique maximal residue containing x and contained in Q(x, ξ).

Proof. Follows from Lemma 1.1 and Corollary 2.18. �

Example 2.20. Let X be a tree. It has been seen in example 2.5 that C1(X) coincides with
the visual compactification X ∪ ∂∞X. If ξ ∈ ∂∞X, then Q(x, ξ) is the half-line starting from
x and pointing towards ξ.

Example 2.21. Let X be a building of type Ã2. As explained in example 2.6, there are several
type of boundary points. The sectors pointing towards different types of boundary points
have different shapes. Furthermore, there are two possible orientations for chambers, which
give also different shapes to the sectors.

Let ξ1 be the point of the boundary which corresponds, in a given apartment A, to a set
of roots ΦA(ξ1) = {a1 + k, a2 + l|k, l ∈ Z}. Let x be a chamber in A. To determine Q(x, ξ1),
we have to consider the roots in the direction of a1 and a2 that contain x. We then have two
possibilities for Q(x, ξ1), according to the orientation of x. If x is oriented ‘towards ξ1’, then
Q(x, ξ1) is the classical sector based at x and pointing towards ξ1. Otherwise, Q(x, ξ1) is a
troncated sector. These two possibilities are described on Figure 1.

Now, let ξ2 be the point in the boundary of A determined by ΦA(ξ2) = {a1 +k, a2 + l|k, l ∈
Z, k ≤ k0}. The sector Q(x, ξ2) is determined in the same way as Q(x, ξ1), but we now have to
stop at the root a1+k0. Thus, we get a ‘half-strip’ which goes from x, stops at the root a1+k0,
and is in the direction of a2. This corresponds to what Guy Rousseau called “cheminées” (or
chimney in English) [Rou77]. Once again, the precise shape of this half-strip depends on the
orientation of x. These two possibilites are described on Figure 2.

2.4. Sectors and half-apartments. The use of sectors will eventually allow us to study the
combinatorial compactifications of X by looking at one apartment at a time. The first main
goal is to obtain a proof of Proposition 2.4. Not surprisingly, retractions provide an important
tool.

Lemma 2.22. Let x ∈ Ch(X) and (Rn) be a sequence of spherical residues converging to
some ξ ∈ Csph(X). Let A be an apartment containing the sector Q(x, ξ). Then we have

Q(x, ξ) =
⋃
k≥0

⋂
n≥k

Conv(x, ρA,x(Rn)).

Proof. Let Qk =
⋂
n≥k

Conv(x,Rn), Q′k =
⋂
n≥k

Conv(x, ρA,x(Rn)), Q = Q(x, ξ) =
⋃
Qk and

Q′ =
⋃
Q′k. We must show that Q = Q′. Since these are both (closed and) convex and

contain the chamber x, it suffices to show that Ch(Q) = Ch(Q′).
Fix k ≥ 0. Let C ∈ Ch(Qk) and let n ≥ k. Then C belongs to a minimal gallery from x to

a chamber containing Rn. Since C ⊂ A, the retraction ρA,x fixes C and hence C belongs to a
minimal gallery from x to a chamber containing ρA,x(Rn). This shows that Ch(Qk) ⊂ Ch(Q′k).
Therefore we have Ch(Q) ⊂ Ch(Q′).

Suppose for a contradiction that there exists some C ∈ Ch(Q′) \ Ch(Q). Choose C at
minimal possible distance to Ch(Q). Thus C is adjacent to some chamber C ′ ∈ Ch(Q). Let
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Figure 1. Q(x, ξ1) and
Q(y, ξ1), where Φ(ξ1) =
{a1 + k, a2 + l|k, l ∈ Z}

Figure 2. Q(x, ξ2) and
Q(y, ξ2), where Φ(ξ2) =
{a1 + k, a2 + l|k, l ∈ Z, k ≤
k0}

σ = C ∩ C ′ be the panel shared by C and C ′ and α be the half-apartment containing C ′ and
such that ∂α contains σ. Since σ ⊂ Q, we have projσ(x) ⊂ Q, whence projσ(x) = C ′ and
x ⊂ α.

Let now k be such that C ⊂ Conv(x, ρA,x(Rn)) for all n ≥ k and let Cn denote the unique
element of Conv(x,Rn) such that ρA,x(Cn) = C. Each Cn contains the panel σ and we have
projσ(Rn) = Cn. Therefore, we deduce that ξ(σ) = Cn (see Lemma 2.9). Since Q ⊂ A, this
implies that Cn ⊂ A by Proposition 2.15. Therefore we have C = ρA,x(Cn) = Cn, whence
C ⊂ Conv(x,Rn) for all n ≥ k. This implies that C is contained in Q, which is absurd. �

Lemma 2.23. Let x ∈ Ch(X) and (Rn) be a sequence of spherical residues converging to some
ξ ∈ Csph(X). Let A be an apartment containing the sector Q(x, ξ). Then for any chamber
C ∈ Ch(A), we have Q(C, ξ) ⊂ A. Moreover there exists k ≥ 0 such that ρA,C(Rn) = ρA,x(Rn)
for all n > k.

Proof. By connexity of A, it suffices to prove that for any chamber C adjacent to x, the sector
Q(C, ξ) is contained in A and furthermore that ρA,C(Rn) = ρA,x(Rn) for all sufficiently large
n. Let σ = x ∩ C be the panel separating x from C.

Since σ ⊂ Q(x, ξ), Proposition 2.15 implies that ξ(σ) is contained in A. The only possible
values for ξ(σ) are thus x,C and σ. We treat these three cases successively.

If ξ(σ) = C then C ⊂ Q(x, ξ), whence Q(C, ξ) ⊂ A by Remark 2.14. The desired claims
follow by definition.

If ξ(σ) = x then x ∈ Conv(C,Rn) for n sufficiently large. Thus there is a minimal gallery
from C to a chamber containing Rn via x and it follows that ρA,C(Rn) = ρA,x(Rn) since
x ∈ Ch(A). The fact that Q(C, ξ) is contained in A now follows from Lemma 2.22.
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If ξ(σ) = σ, pick a large enough n so that projσ(Rn) = σ. Let An be an apartment
containing x ∪ Rn. Then Rn lies on a wall Hn of An containing σ, and the convex hull
Conv(x,Rn) lies entirely on one side of Hn; we call the latter half-apartment α. Since the
chamber C contains the panel σ ⊂ Hn, there is a half-apartment β boundingHn and containing
C. Therefore, upon replacing An by α ∪ β, there is no loss of generality in assuming that C
is contained in An. It follows readily that ρA,C(Rn) = ρA,x(Rn). As in the previous case, the
fact that Q(C, ξ) is contained in A follows from Lemma 2.22. �

The following is an analogue of Lemma 2.3 in the non-thin case.

Lemma 2.24. Let x ∈ Ch(X), (Rn) be a sequence of spherical residues converging to some
ξ ∈ Csph(X) and A be an apartment containing the sector Q(x, ξ). Set R′n = ρA,x(Rn). For
any half-apartment α of A, there is some N such that for all n > N we have R′n ⊂ α or
R′n ⊂ −α.

Proof. Let C,C ′ be the chambers of A such that C∩C ′ = σ. Let also α be the half-apartment
containing C but not C ′. Assume that the sequence (R′n) possesses two subsequences R′ϕ(n)

and R′ψ(n) such that R′ϕ(n) is strictly contained in α and R′ψ(n) is strictly contained in −α.
Then Conv(C,R′ψ(n)) contains C ′ for all n while Conv(C,R′ϕ(n)) does not. This contradicts
Lemma 2.22, thereby showing that the sequence R′n eventually remains on one side of the wall
∂α. �

Definition 2.25. Let ΦA(ξ) denote the set of all half-apartments α of A such that the sequence
(R′n) eventually lies in α. In view of Lemma 2.23, this set is independent of x ∈ Ch(A), but
depends only on A and ξ.

One should think of the elements of ΦA(ξ) as half-apartments ‘containing’ the point ξ.
Notice that if ξ = R is a residue, then ΦA(ξ) is nothing but the set of those half-apartments
which contain R.

Notice that two opposite roots α,−αmight be both contained in ΦA(ξ); in view of Lemma 2.24,
this happens if and only if the residue R′n lies on the wall ∂α for all sufficiently large n.

Lemma 2.26. Let x ∈ Ch(X) and (Rn) be a sequence of spherical residues converging to
some ξ ∈ Csph(X). Let A be an apartment containing the sector Q(x, ξ). Then the sequence
(ρA,x(Rn)) converges in Csph(A) and its limit coincides with the restriction of ξ to Ressph(A).

Furthermore, for any ξ′ ∈ Csph(A), we have ξ′ = ξ if and only if ΦA(ξ′) = ΦA(ξ).

Proof. Let R ∈ Ressph(A) and H(R) denote the (finite) set of all walls containing R. By
Lemma 2.24, there is some N such that R′n remains on one side of each wall in H(R) for all
n > N . The fact that the sequence (R′n) converges to some ξ′ ∈ Csph(A) thus follows from
Lemma 2.3. By construction we have ΦA(ξ′) = ΦA(ξ). All it remains to show is thus that ξ
and ξ′ coincide.

We first show that they coincide on panels. Let thus σ ⊂ A be a panel and C,C ′ ∈ Ch(A)
be such that C ∩ C ′ = σ and C ⊂ α. The following assertions are straightforward to check:

• ξ(σ) = C if and only if Q(C, ξ) and Q(C ′, ξ) both contain C;
• ξ(σ) = C ′ if and only if Q(C, ξ) and Q(C ′, ξ) both contain C ′;
• ξ(σ) = σ if and only if Q(C, ξ) does not contain C ′ and vice-versa.

Now remark that Q(y, ξ) = Q(y, ξ′) for any chamber y ∈ Ch(A) in view of Lemma 2.22.
Therefore, we deduce from the above that ξ and ξ′ coincide on σ.
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It remains to observe that for any two spherical residues R,R′, the projection projR(R′) is
uniquely determined by the set of all projections projσ(R′) on panels σ containing R. �

The next result supplements the description provided by Proposition 2.15.

Proposition 2.27. Let x ∈ Ch(X), ξ ∈ Csph(X) and A be an apartment containing the sector
Q(x, ξ). Then we have

Q(x, ξ) =
⋂

α∈ΦA(x)∩ΦA(ξ)

α.

Proof. Set Q = Q(x, ξ) and Q′ =
⋂

α∈ΦA(x)∩ΦA(ξ)

α. By Lemma 2.26 there is a sequence (R′n)

of spherical residues of A converging to ξ in Csph(A).
A half-apartment α belongs to ΦA(ξ) if and only if R′n ⊂ α for any sufficiently large n.

Therefore, the equality Q = Q′ follows from Lemma 2.22. �

The following result allows one to extend all the results of this section to sectors based at
any spherical residues, and not only at chambers. It shows in particular that sectors based at
residues which are not chamber may be thought of as sector-faces:

Corollary 2.28. Let x ∈ Ressph(X), ξ ∈ Csph(X) and A be an apartment containing the
sector Q(x, ξ). Then Q(x, ξ) coincides with the intersection of all sectors Q(y, ξ) where y runs
over the set of chambers of A containing x.

Proof. By Lemma 2.26, there is a sequence (Rn) of spherical residues of A converging to ξ in
Csph(A). By Proposition 2.15 we have Q(x, ξ) =

⋃
k≥0

⋂
n≥k

Conv(R,Rn).

Let C be the set of all chambers of A containing x. Using the fact that the convex hull of
two residues is nothing but the intersection of all roots containing them, we deduce that for
any Rn we have

Conv(x,Rn) =
⋂
y∈C

Conv(y,Rn).

It follows that
Q(x, ξ) =

⋃
k≥0

⋂
y∈C

⋂
n≥k

Conv(y,Rn).

All it remains to show is thus that⋃
k≥0

⋂
y∈C

⋂
n≥k

Conv(y,Rn) =
⋂
y∈C

⋃
k≥0

⋂
n≥k

Conv(y,Rn).

To establish this equality, notice that the inclusion ⊂ is immediate. The reverse inclusion
follows similarly using the fact that C is a finite set. �

We close this section with the following subsidiary fact.

Lemma 2.29. Let x ∈ Ressph(X), ξ ∈ Csph(X) and A be an apartment containing the sector
Q = Q(x, ξ). Then for all α1, . . . , . . . αn ∈ ΦA(ξ), the intersection

Q(x, ξ) ∩ (
n⋂
i=1

αi)

is non-empty.
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Proof. In view of Corollary 2.28, it is enough to deal with the case x is a chamber. Thus we
assume henceforth that x ∈ Ch(X).

If the result is true with n = 1, then it is true for any n by a straightforward induction
argument using Remark 2.14.

We need to show that the sectorQ(x, ξ) penetrates any α ∈ ΦA(ξ). We work by induction on
the dimension of Davis’ CAT(0) realisation |X| of X (see [Dav98]). Recall that this dimension
equals the maximal possible rank of a spherical residue of X. We call it the dimension of X
for short.

Pick a sequence (Rn) of spherical residues of A converging to ξ in Csph(A); such a sequence
exists in view of Lemma 2.26. In order to simplify the notation, choose (Rn) in such a way that
R0 = x. Since the desired result clearly holds if ξ is an interior point, namely ξ ∈ Ressph(X),
we shall assume that (Rn) goes to infinity.

Let pn ∈ |Rn|. Upon extracting, the sequence (pn) converges to some point η of the visual
boundary ∂∞|A| ⊂ ∂∞|X|. Let Hη denote the set of all walls H of A such that η ∈ ∂|H|.
Equivalently some geodesic ray of |A| pointing to η is contained in a tubular neighbourhood
of |H|. Let also W denote the Weyl group of X (which acts on |A| by isometries), and Wη

denote the subgroup generated by the reflections associated with the elements of Hη. Recall
from [Deo89] that Wη is a Coxeter group.

Let now α ∈ ΦA(ξ). If x ⊂ α, then Q(x, ξ) ⊂ α by Proposition 2.27 and we are done. We
assume henceforth that x is not contained in α.

Recall that x = R0. In particular p0 ∈ |x|. Therefore, Proposition 2.27 implies that the
geodesic ray [p0, η) is entirely contained in |Q(x, ξ)|. In particular, if this ray penetrates |α|,
then we are done. We assume henceforth that this is not the case. Since pn ∈ |α| for any large
n, this implies that the wall ∂α belongs to Hη.

We claim that there is some R ∈ Ressph(A) such that R ⊂ α and R ⊂ β for all β ∈
ΦA(x) ∩ ΦA(ξ) such that ∂β ∈ Hη. The proof of this claim requires to use the induction
hypothesis for the thin building Aη associated to the Coxeter group Wη. The walls and the
roots of Aη may be canonically and Wη-equivariantly identified with the elements of Hη. This
yields a well defined Wη-equivariant surjective map πη : Ressph(A)→ Ressph(Aη) which maps
a residue σ to the unique spherical residue which is contained in all roots φ containing σ and
such that ∂φ ∈ Hη. The way πη acts on Ch(A) is quite clear: it identifies chambers which are
not separated by any wall in Hη.

We now verify that dim(Aη) < dim(A) = dim(X). Indeed, a spherical residue in a Davis
complex is minimal (i.e. does not contain properly any spherical residue) if and only if it
coincides with the intersection of all walls containing it. Now, given a spherical residue of
maximal possible rank σ in Aη, then on the one hand the intersection in |Aη| of all the walls
in Hη containing |σ| coincides with |σ|, but on the other hand the intersection of these same
walls in |A| is not compact since it contains a geodesic ray pointing to η. This shows that
dim(A) > dim(Aη) as desired.

We are now in a position to apply the induction hypothesis in Aη. Notice that, upon
extracting, the sequence (πη(Rn)) converges in Csph(Aη) to a point which we denote by πη(ξ).
Furthermore, we have

ΦAη(πη(ξ)) = {β ∈ ΦA(ξ) | ∂β ∈ Hη}.

By induction there is some R′ ∈ Ressph(Aη) contained in both α and Q(πη(x), πη(ξ)). Let
R ∈ Ressph(A) be any element such that πη(R) = R′. In view of Proposition 2.27, we have
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R ⊂ α and R ⊂ β for all β ∈ ΦA(x) ∩ ΦA(ξ) such that ∂β ∈ Hη, which confirms the above
claim.

Pick now p ∈ |R| any point supported by R and consider the geodesic ray ρ joining p to η.
We shall prove that this ray penetrates |Q(x, ξ)|, from which the desired conclusion follows.
Let qn = ρ(n) for all n ≥ 0.

Suppose for a contradiction that for all n, we have qn 6∈ |Q(x, ξ)|. Then, in view of Propo-
sition 2.27 there exists a root αn ∈ ΦA(x) ∩ ΦA(ξ) which does not contain qn.

We claim that none of the ∂αn’s separate the ray [x, η) from [p, η). Indeed, if ∂αn did, then
it would belong to Hη, which contradicts the definition of R.

Since [x, η) ⊂ |Q(x, ξ)| ⊂ |αn| for any n, it follows in particular that for each n there is
some n′ such that qn′ is contained in αn. Upon extracting, we may assume that either n′ > n
or n′ < n for all n. In either case, it follows that the set {αn} is infinite and that for any k,
the intersection

⋂
n≤k

(−αk) contains some point of q′k ∈ [p, η). In particular, when k tends to

infinity, the number of walls separating q′k from [x, η) tends to infinity, which contradicts the
fact that [x, η) and [p, η) are at finite Hausdorff distance from one another. �

2.5. Incidence properties of sectors. The goal of this section is to establish that two
sectors pointing towards the same point at infinity have a non-empty intersection. This should
be compared to the corresponding statement in the classical case of Euclidean buildings,
see [BT72a, 2.9.1].

Proposition 2.30. Let ξ be any point in Csph(X). Given any two residues x, y ∈ Ressph(X),
there exists z ∈ Ressph(X) such that Q(z, ξ) ⊂ Q(x, ξ) ∩Q(y, ξ).

Proof. In view of Remark 2.14, it suffices to prove that the intersection Q(x, ξ) ∩ Q(y, ξ)
contains some spherical residue z. We proceed by induction on the root-distance d(x, y).

If x ⊂ y or y ⊂ x, the result is clear. Thus there is no loss of generality in assuming
that the open interval ]x, y[ is non-empty, see Lemma 1.3. Let z ∈ ]x, y[. By induction there
exists a ∈ Q(x, ξ) ∩ Q(z, ξ) and b ∈ Q(y, ξ) ∩ Q(z, ξ). Therefore, it suffices to show that
Q(a, ξ) ∩ Q(b, ξ) is non-empty. Since the sectors Q(a, ξ) and Q(b, ξ) are both contained in
Q(z, ξ), it follows in particular that they are contained in a common apartment, say A. Let
α1, . . . , αk be the finitely many elements of (ΦA(a) ∩ ΦA(ξ)) \ ΦA(b). By Lemma 2.29, there
is some spherical residue R contained in Q(b, ξ) as well as in each αi.

We claim that R ∈ Q(a, ξ). If this were not the case, there would exist some α ∈ ΦA(a) ∩
ΦA(ξ) not containing R in view of Proposition 2.27. The same proposition shows that if b ⊂ α,
then Q(b, ξ) ⊂ α which is absurd since R ⊂ Q(b, ξ). Therefore we have b 6⊂ α or equivalently
α 6∈ ΦA(b). Thus α coincides with one of the αi’s, and yields again a contradiction since

R ⊂
k⋂
i=1

αi. This confirms the claim, thereby concluding the proof of the proposition. �

2.6. Covering the combinatorial compactifications with apartments. We are now able
to prove Proposition 2.4. In fact we shall establish the following more precise version.

Proposition 2.31. Given ξ ∈ Csph(X), we have the following.
(i) There exists a sequence of spherical residues (x0, x1, . . . ) which penetrates and even-

tually remains in every sector pointing to ξ, and such that xn = projxn(ξ) for all
n.
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(ii) Every such sequence converges to ξ.

Proof of Propositions 2.4 and 2.31. In view of Proposition 2.12 and the fact that a sequence
as in (i) eventually remains in one apartment, it suffices to prove Proposition 2.31.

(i) Let Q be some sector pointing to ξ and A be an apartment containing Q. Since A is locally
finite and since any finite intersection of sectors pointing to ξ is non-empty by Proposition 2.30,
it follows that Q contains a sequence (xn) of spherical residues which penetrates and eventually
remains in every sector contained in A and pointing to ξ. Furthermore, upon replacing xn
by projxn(ξ) for all n > 0, we may and shall assume without loss of generality that (xn) is
eventually meets the interior of every root α ∈ ΦA(ξ) such that −α 6∈ ΦA(ξ). Notice that
projxn(projxn(ξ)) = projxn(ξ) in view of Corollary 2.19.

If Q′ is any other sector pointing to ξ, then Q∩Q′ contains some sector by Proposition 2.30.
Therefore (xn) eventually penetrates and remains in Q′ as desired.

(ii) Let (Rn) be a sequence of spherical residues which eventually penetrates and remains in
every sector pointing to ξ, and such that Rn = projRn(ξ) for all n. Let R be a spherical
residue and A an apartment containting Q(R, ξ). The assumption on (Rn) ensures that the
sequence (Rn) eventually remains on one side of every wall of A (see Proposition 2.27). In
particular (Rn) converges to some ξ′ ∈ Csph(A) by Lemma 2.3. By construction we have
ΦA(ξ) ⊂ ΦA(ξ′). Furthermore, since the sequence (Rn) eventually leaves every root α of A
such that −α 6∈ ΦA(ξ), we obtain in fact ΦA(ξ) = ΦA(ξ′). Thus ξ = ξ′ by Lemma 2.26.
Therefore we have projR(ξ) = projR(ξ′) = projR(Rn) for any sufficiently large n.

Since R ∈ Ressph(X) is arbitrary, we have just established that Rn converges to ξ in Csph(X)
as desired. �

We have seen in Lemma 2.3 that a sequence (Rn) contained in some apartment A converges
to ξ ∈ Csph(A) if and only if it eventually remains on one side of every wall of A. By
Proposition 2.27, the latter is equivalent to the fact that (Rn) eventually penetrates and
remains in every sector of A pointing to ξ. As we have just seen in the above proof, this
implies that (Rn) converges in Csph(X). Thus we have proven the following:

Corollary 2.32. Let (Rn) be a sequence of spherical residues contained in some apartment
A. If (Rn) converges in Csph(A), then it also converges in Csph(X). In particular, it always
admits a subsequence which converges in Csph(X). �

3. Horofunction compactifications

Let Y be a proper metric space, i.e. a metric space all of whose closed balls are compact.
Given a base point y0 ∈ Y , we define F (Y, y0) as the space of 1-Lipschitz maps Y → R taking
value 0 at y0. The topology of pointwise convergence (which coincides with the topology of
uniform convergence since Y is proper) turns F (Y, y0) into a compact space. To each p ∈ Y
we attach the functions

dp : Y → R : y 7→ d(p, y)

and
fp : Y → R : y 7→ d(p, y)− d(p, y0).

Then fp belongs to F (Y, y0) and it is a matter of routine verifications to check that the map

Y → F (Y, y0) : p 7→ fp
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is continuous and injective. We shall implicitly identify Y with its image. The closure of Y
in F (Y, y0) is called the horofunction compactification of Y . We denote it by Choro(Y ).

Since F (Y, y0) may be canonically identified with the quotient of the space of all 1-Lipschitz
functions by the 1-dimensional subspace consisting of constant functions, it follows that the
horofunction compactification is independent of the choice of the base point y0.

It is well known that the horofunction compactification of a proper CAT(0) space coincides
with the visual compactification, see [BH99, Theorem II.8.13]. In the case of a locally finite
building X, several proper metric spaces may be viewed as realisations of X: Davis’ CAT(0)
realisation |X| is one of them; the chamber graph (i.e. the set of chambers endowed with
the gallery distance) is another one; the set of spherical residues Ressph(X) endowed with the
root-distance is yet another. It should be expected that the respective horofunction compacti-
fications of these metric spaces yield different spaces which may be viewed as compactifications
of the building X. This is confirmed by the following.

Theorem 3.1. The minimal combinatorial compactification of a locally finite building X is
Aut(X)-equivariantly homeomorphic to the horofunction compactification of its chamber graph.

Similarly, the maximal combinatorial compactification of X is Aut(X)-equivariantly home-
omorphic to the horofunction compactification of Ressph(X) endowed with the root-distance.

Abusing notation slightly, we shall denote by Choro(X) the horofunction compactification
of (Ressph(X), d), where d denotes the root-distance. Since by definition the chamber graph
embeds isometrically into (Ressph(X), d), it follows that Choro(Ch(X)) is contained as a closed
subset in Choro(X). This is confirmed by combining Proposition 2.12 with Theorem 3.1.

Proof of Theorem 3.1. In one sentence, the above theorem holds because the combinatorial
bordifications are defined using combinatorial projections, and the latter notion may be defined
purely in terms of the root-distance (see Corollary 1.4). Here are more details.

We deal only with the maximal combinatorial compactification, the case of the minimal one
being similar but easier.

Let (Rn) and (Tn) be two sequences of spherical residues which converge to the same point
ξ ∈ Csph(X). We claim that the sequences (fRn) and (fTn) both converge in Choro(X) and
have the same limit.

Let x ∈ Ressph(X). We show by induction on the root-distance d(x, y0) between x and a
base point y0 ∈ Ressph(X) that fRn(x) and fTn(x) take the same value for all sufficiently large
n. This implies the above claim.

Assume first that x ⊂ y0. Let A be an apartment containing y0 and Rn. Consider the roots
of A. Since x ⊂ y0, we have

|ΦA(Rn, y0)| − |ΦA(Rn, x)| = |ΦA(Rn, y0) \ ΦA(Rn, x)|
= |ΦA(projx(Rn), y0)|,

where the last equality follows since every root containing Rn ∪ x also contains (projx(Rn),
and conversely any root containing projx(Rn) but not y0 also contains Rn ∪ x. By similar
arguments, one obtains

|ΦA(x,Rn)| − |ΦA(y0, Rn)| = |ΦA(x, projx(Rn) ∪ y0)|,

where ΦA(x,projx(Rn) ∪ y0) denotes the set of all the roots of A containing x but neither
projx(Rn) nor y0. Remark that the projection projx(Rn) coincides with projx(ξ) for any



22 PIERRE-EMMANUEL CAPRACE∗ AND JEAN LÉCUREUX

sufficiently large n. Let dRn(x) = d(Rn, x). This shows that

fRn(x) = dRn(x)− dRn(y0)

=
1
2

(|ΦA(Rn, x)| − |ΦA(Rn, y0)|+ |ΦA(x,Rn)| − |ΦA(y0, Rn)|)

depends only on x, y0 and projx(ξ) for any large enough n. In particular this shows that the
sequence (fRn) converges and its limit coincides with the limit of (fTn) as expected.

The same arguments apply to the case x ⊃ y0.
Assume now that x and y0 are not contained in one another. Then the open interval ]x, y0[

is non-empty by Lemma 1.3. Let z be an element of this interval. By induction the sequences

n 7→ dRn(z)− dRn(y0)

and
n 7→ dRn(x)− dRn(z)

both converge to some value which depends only on ξ. Since the sum of these sequences yields
(fRn(x)), the desired result follows.

This provides a well defined Aut(X)-equivariant map Csph(X) → Choro(X) : ξ 7→ fξ. A
straightforward modification of the above arguments also show that the latter map is contin-
uous.

Let now (Rn) be a sequence of spherical residues such that (fRn) converges to some f ∈
Choro(X). Given x ∈ Ressph(X), the projection projx(Rn) coincides with the unique spherical
residue σ containing x and such that fRn(σ) is minimal with respect to the latter property (see
Corollary 1.4). Since X is locally finite, the set St(x) is finite and we deduce from the above
that projx(Rn) takes a constant value, say ξf (x), for all sufficiently large n. Furthermore,
if (Tn) were another sequence such that (fTn) converges to f ∈ Choro(X), then the same
arguments shows that projx(Tn) also converges to the same ξf (x). This shows that there is
a well defined Aut(X)-equivariant map Choro(X)→ Csph(X) : f 7→ ξf such that fξf = f and
ξfξ = ξ for all f ∈ Choro(X) and ξ ∈ Csph(X).

Thus Choro(X) and Csph(X) are indeed Aut(X)-equivariantly homeomorphic. �

4. Group-theoretic compactifications

4.1. The Chabauty topology. Let G be a locally compact metrizable topological group
and S(G) denote the set of closed subgroups of G. The reader may consult [Bou07b] for an
exposition of several equivalent definitions of the Chabauty topology on S(G); this topology
is compact (Theorem 1 of §5.2 in loc. cit), metrizable and preserved by the conjugation action
of G. The next proposition provides a concrete way to handle convergence in this space and
could be viewed as yet another definition of the Chabauty topology.

Lemma 4.1. Let Fn ∈ S(G) for n ≥ 1. The sequence (Fn) converges to F ∈ S(G) if and
only if the two following conditions are satisfied:
(i) For every sequence (xn) such that xn ∈ Fn, if there exists a subsequence (xϕ(n)) converg-

ing to x ∈ G, then x ∈ F .
(ii) For every element x ∈ F , there exists a subsequence (xn) converging to x and such that

xn ∈ Fn for every n ≥ 1.

Proof. See [GR06, Lemma 2]. �
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4.2. Locally finite groups. LetG be a topological group. The groupG is said topologically
locally finite (or simply locally finite when there is no ambiguity) if every finitely generated
subgroup of G is relatively compact. By Zorn’s lemma, there exists a subgroup of G which
is normal, topologically locally finite, and maximal for these properties. This subgroup is
unique: indeed, if H and H ′ are two such subgroups, then G/H has no non-trivial locally
finite normal subgroup, by [Cap07, Proposition 2.2]. Thus, the image of H ′ in G/H is trivial,
which means that H ′ = H by maximality. This subgroup is called the locally finite radical
of G (or LF-radical) and denoted RadLF(G). It may be shown that if G is locally compact,
then the closure of a locally finite subgroup is itself locally finite (see [Cap07, Lemma 2.1]).
In particular, in that case the LF-radical is a closed subgroup.

One also shows that if G is locally compact, then G is locally finite if and only if every
compact subset of G topologically generates a compact subgroup of G (see [Cap07, Lemma
2.3]). In particular a locally compact topologically locally finite group is amenable.

Example 4.2. Let F be a non-archimedean local field, with absolute value | · | and ring of
integers OF . In contrast with the archimedean case, the group (F,+) is locally finite. Indeed,
if x1, . . . , xn are elements of F , then the subgroup they generate is included in the ball centered
at the origin and of radius equal to the maximum of the absolute values of the xi.

The group F× is not locally finite: if |x| is different than one, then xn will leave every
compact set as n tends to ±∞. So RadLF(F×) ⊂ O×F , which is itself a compact group, and
thus we have equality: RadLF(F×) = O×F .

Example 4.3. With the same notations as in the example above, let P be the subgroup of
SL3(F ) consisting of upper triangular matrices. The same argument as above proves that
RadLF(P ) is included in the group D of matrices of the forma ∈ O×F ∗ ∈ F ∗ ∈ F

0 b ∈ O×F ∗ ∈ F
0 0 (ab)−1

 .

It turns out that D itself is locally finite. Indeed, if A1, . . . , An are matrices in D, then a simple
calculation shows that the absolute values of the elements of the upper diagonal elements in
products and inverses of the Ai are bounded. Then it follows that the upper right element is
also of absolute value bounded. Hence RadLF(P ) = D.

The group D appears as an example of a limit group in [GR06, §6.2]. Similar calculations
also prove that the other limit groups which appear in [GR06, §6.2], such as the group of
matrices of the form a b ∗ ∈ F

c d ∗ ∈ F
0 0 (ad− bc)−1

 ,

with
(
a b
c d

)
∈ GL2(OF ), are locally finite.

4.3. Stabilisers of points at infinity. LetX be a building andG be a locally compact group
acting continuously by type-preserving automorphisms on X in such a way that the stabiliser
of every spherical residue is compact. A special case in which the latter condition automatically
holds is when the G-action on the CAT(0) realisation |X| is proper. In particular, this happens
if X is locally finite and G is a closed subgroup of Aut(X).

The goal of this section is to provide a description of the G-stabilisers of points in Csph(X).
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Lemma 4.4. Let x ∈ Ressph(X) and ξ ∈ Csph(X). Then any element g ∈ G fixing x and ξ
fixes the sector Q(x, ξ) pointwise.

Proof. It is clear that g stabilises Q(x, ξ). Let A be an apartment containing Q(x, ξ) and ρ
be a retraction onto A centred at some chamber C containing x. Let gA : A→ A denote the
restriction of ρ ◦ g to A. Thus gA is a type-preserving automorphism of A and all we need to
show is that it fixes Q(x, ξ) pointwise. Let y ∈ Q(x, ξ). If y ⊂ x, then y is fixed by gA since
gA is type-preserving. If x ⊂ y, then y is contained in projx(ξ) by Corollary 2.19 and is thus
fixed by gA. Now, in view of Lemma 1.3, the desired assertion follows from a straightforward
induction on the root-distance d(x, y). �

Recall that an element of a topological group is called periodic if the cyclic subgroup it
generates is relatively compact.

Lemma 4.5. Let ξ ∈ Csph(X) and Gξ be its stabilizer in G. We have the following.
(i) The set of periodic elements of Gξ coincides with RadLF(Gξ).
(ii) For any apartment A containing a sequence of spherical residues converging to ξ, we have

RadLF(Gξ) =
⋃

x∈Ressph(X)

Fix(Q(x, ξ)) =
⋃

x∈Ressph(A)

Fix(Q(x, ξ)).

Proof. (i) Clearly, every element of RadLF(Gξ) is periodic. Conversely, let g be a periodic
element in Gξ. Then g fixes a point in |X| by [BH99, II.2.8], and hence a spherical residue x ∈
Ressph(X). Now, given finitely many periodic elements gn and denoting by xn ∈ Ressph(X)

a gn-fixed point, the group 〈g1, . . . , gn〉 fixes
n⋂
i=1

Q(xi, ξ) pointwise by Lemma 4.4. In view

of Proposition 2.30, the latter intersection is non-empty. Thus 〈g1, . . . , gn〉 fixes a spherical
residue and is thus contained in a compact subgroup of G. This shows in particular that the
set of periodic elements forms a subgroup of G which is locally finite. The desired conclusion
follows.

(ii) In view of Lemma 4.4, the equality RadLF(Gξ) =
⋃

x∈Ressph(X)

Fix(Q(x, ξ)) is a reformulation

of (i). The inclusion
⋃

x∈Ressph(X)

Fix(Q(x, ξ)) ⊃
⋃

x∈Ressph(A)

Fix(Q(x, ξ)) is immediate and the

reverse inclusion follows from Proposition 2.30. �

Example 4.6. In the case of affine buildings, there are some points ξ ∈ Csph(X) such that
the combinatorial sectors are usual sectors. In this case, the group Gξ and RadLF(Gξ) were
already considered in [BT72b, §4], where they were denoted respectively B and B0.

Although we shall only need the following in the special case of sectors, it holds for arbitrary
thin sub-complexes.

Lemma 4.7. Let Y be a convex sub-complex of an apartment A of X. Assume that G acts
strongly transitively on X. Then the pointwise stabiliser of Y in G is topologically generated
by the pointwise stabilisers of those roots of A which contain Y . Furthermore, this group acts
transitively on the set of apartments containing Y .

Proof. As Y is convex, it coincides with the intersection of roots in A containing it. Let H
be the subgroup of FixG(Y ) topologically generated by the pointwise stabilisers of such roots.
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We will first prove that H is transitive on the set of apartments containing Y . Let A′ be such
an apartment.

We shall repeatedly use the following fact which is easy to verify: since the G-action is
strongly transitive, given two apartments A1, A2 which share a common half-apartment α,
there is an element g ∈ G fixing α pointwise and mapping A1 to A2.

This remark implies in particular that there is an element of H which maps A′ to some
apartment containing a chamber of C of A which meets Y . Therefore, it suffices to prove the
desired assertion for the convex hull of C ∪ Y . In other words, we may and shall assume that
Y contains some chamber C0.

Let C1 be a chamber of A which meets Y but is not contained in it. The above remark yields
an element g1 ∈ H which maps A′ =: A′0 to some apartment A′1 containing C1. Proceeding
inductively, one constructs sequences (Cn), (A′n) and (gn) such that:

• Cn is a chamber of A not contained in Yn := Conv(Y ∪ {C0, . . . , Cn−1});
• A′n is an apartment containing Yn ∪ Cn and sharing a half-apartment with A′n−1;
• gn is an element of H which maps A′n−1 to A′n.

Furthermore, these sequences are built in such a way that A is covered by
⋃
n

Yn. Thus for

each C ′ ∈ Ch(A′) there is some large n such that ρA,C(C ′) ⊂ Yn and we deduce that hm(C ′)
is contained in A for all m > n, where the sequence (hm) defined by hm = gm · · · g1. Since H
is compact, the sequence (hm) subconverges to some h ∈ H. Since the G-action is continuous,
the above implies that h maps A′ to A, as desired.

It remains to show that FixG(Y ) ⊂ H. Let thus g ∈ FixG(Y ) and set A′ = gA. There
exists some h ∈ H such that hA′ = A. Hence hgA = A and since hg fixes Y pointwise, it is
enough to show that the subgroup of StabG(A) which fixes Y pointwise is contained in H. As
the pointwise stabiliser of the apartment is obviously contained in H, it is enough to prove
that each element of StabG(A)/FixG(A) 'W which fixes Y can be lifted to an element in H.
This subgroup FixW (Y ) is trivial if Y contains a chamber. Otherwise it is generated by all
the reflections of W fixing Y . It is well known and easy to see how to express such a reflection
as a product of three elements, which each fixes pointwise a root of A. Thus there reflections
indeed belong to H, as desired. �

Combining Lemmas 4.5 and 4.7, one obtains a description of the locally finite radical
RadLF(Gξ) in terms of root groups.

4.4. Description of the group-theoretic compactification. We now assume that the
building X thick and locally compact, i.e. of finite thickness. In particular the automor-
phism group Aut(X) of X, endowed with the topology of pointwise convergence, is locally
compact and metrisable. Let G < Aut(X) be a closed subgroup consisting of type-preserving
automorphisms.

We assume that G acts strongly transitively on X, i.e. G acts transitively on the set of
ordered pairs (C,A) where C is a chamber and A an apartment containing C. (Throughout
it is implicitly understood that the only system of apartments we consider the full system.)
In particular, the group G is endowed with a Tits system, or BN -pair, see [Bro89, Ch. V]. A
basic exposition of Tits systems may be found in [Bou07a, IV,§2].

The group-theoretic compactification of X is based on the following simple fact.
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Lemma 4.8. The map ϕ : Ressph(X)→ S(G) : R 7→ GR which associates to a residue R its
stabiliser GR is continuous, injective, G-equivariant and has discrete image. In particular it
is a homeomorphism onto its image.

Proof. Continuity is obvious since Ressph(X) is discrete. The fact that ϕ is equivariant is
equally obvious. The injectivity follows since, by strong transitivity of the action, any two
distinct residues have distinct stabilisers. It only remains to show that if some sequence (Rn)
of spherical residues is not asymptotically constant, then the sequence of stabilisers GRn does
not converge to some point of the image of ϕ.

Let thus (Rn) and R be spherical residues such that the sequence (GRn) converges to GR.
Suppose for a contradiction that Rn is not eventually constant.

Assume first that GRn 6⊂ GR for infinitely many n. Then for each such n there is an element
gn ∈ GRn \GR. Since the action of G is strongly transitive, we may even choose gn so that it
stabilises a spherical residue at root-distance at most one from R. In particular, the sequence
(gn) is relatively compact in G. By construction, no accumulation point of (gn) in G can
stabilise R. In view of Lemma 4.1, this contradicts the fact that lim

n
GRn = GR.

Assume now that GRn ⊂ GR for all but finitely many n’s. Since X is locally finite, the
spherical parabolic subgroup Gr contains only finitely many parabolic subgroups. This shows
that the converging sequence (GRn) takes only finitely many values. Therefore it is eventually
constantly equal to GR. Since ϕ is injective, we deduce the absurd conclusion that Rn = R
for almost all n’s. This finishes the proof. �

Definition 4.9. The closure of the image of ϕ in S(G) is called the group-theoretic com-
pactification of X. It is denoted by Cgp(X).

The main result of this section is the following.

Theorem 4.10. The group-theoretic compactification Cgp(X) is Aut(X)-equivariantly home-
omorphic to the maximal combinatorial compactification Csph(X). More precisely, a sequence
(Rn) of spherical residues converges to some ξ ∈ Csph(X) if and only if the sequence of their
stabilisers (GRn) converges to RadLF(Gξ) in the Chabauty topology.

It follows in particular that the closure of the image of the chamber-set Ch(X) under ϕ
is Aut(X)-equivariantly homeomorphic to the minimal combinatorial compactification C1(X)
(see Proposition 2.12).

Example 4.11. The group-theoretic compactification of Bruhat–Tits buildings was already
studied in [GR06]. In particular they explicitely calculate the stabilizers and limit groups.
In the case of the building associated to SL3 over a local field, there is some point ξ such
that Gξ = P is the group of upper triangular matrices. The limit group is thus the group
calculated in Example 4.3.

The proof of Theorem 4.10 requires some additional preparations, collected in the following
intermediate results.

Lemma 4.12. Let (Rn) be a sequence of spherical residues converging to a point ξ ∈ Csph(X)
and such that the sequence (GRn) converges to some closed group D in Cgp(X). Then D
fixes ξ.

Proof. Let g ∈ D and gn ∈ GRn be a sequence which converges to g (see Lemma 4.1). Let
σ ∈ Ressph(X). Then we have g−1

n .σ = g−1.σ for n large enough. Likewise, for n large enough,
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g.(ξ(g−1σ)) = gn.(ξ(g−1σ)). Therefore we have (g.ξ)(σ) = gnξ(g−1
n σ) = (gn.ξ)(σ) for large

n. Now, taking n so large that ξ(σ) = projσ(Rn) and ξ(g−1σ) = projg−1σ(Rn), we obtain
sucessively

(g.ξ)(σ) = g.(ξ(g−1σ))
= gn.(ξ(g−1

n σ))
= gn.(projg−1

n σ(Rn))
= gn.(projg−1

n σ(g−1
n Rn))

= gn.(g−1
n projσ(Rn))

= projσ(Rn)
= ξ(σ).

Thus g.ξ = ξ as desired. �

Lemma 4.13. Let (Rn) be a sequence of spherical residues converging to ξ ∈ Csph(X). Then
the sequence (GRn) converges in Cgp(X) and its limit coincides with RadLF(Gξ).

Proof. Let D be a cluster value of the sequence (GRn). It suffices to prove that D =
RadLF(Gξ). This indeed implies that (GRn) admits D has its unique accumulation point,
and hence converges to D.

Since X is locally finite, the pointwise stabiliser of every bounded set of X is open in G.
Moreover, since G acts by simplicial isometries on |X|, it follows that every element acts either
as an elliptic or as a hyperbolic isometry. This implies that the set of elliptic isometries is
closed in G. Notice that this set coincides with the set of periodic elements of G.1 Since
every element of D is limit of some sequence of periodic elements by Lemma 4.1, it follows
that D itself is contained in the set of periodic elements. Lemmas 4.5 and 4.12 thus yield
D ⊂ RadLF(Gξ).

In order to prove the reverse inclusion, pick x ∈ X and let A be an apartment containing
Q(x, ξ). By strong transitivity, there exists some kn ∈ Gx such that knRn ∈ A. As Gx <
G is compact, we may assume upon extracting that (kn) converges to some k ∈ Gx. Let
R′n = kn.Rn. Then (R′n) is contained in A converges to k.ξ. Furthermore, (GR′n) converges to
kDk−1 in Cgp(X).

The sequence (R′n) penetrates and eventually remains in every α ∈ ΦA(k.ξ). In particu-
lar, for any sufficiently large n, the pointwise stabiliser G(α) of α is contained in GR′n . By
Lemma 4.1, this implies that G(α) < kDk−1. Conjugating by k−1, we deduce that for all
α ∈ ΦA(ξ), we have G(α) < D. In view of Lemma 4.7, this shows that G(Q(x,ξ)) < D. The
desired results follows since

⋃
x∈Ressph(x)

G(Q(x,ξ)) = RadLF(Gξ) by Lemma 4.5. �

Lemma 4.14. Let (Rn) be a sequence of spherical residues. If the sequence (GRn) converges
to D ∈ Cgp(X), then (Rn) also converges in Csph(X).

Furthermore, for all ξ, ξ′ ∈ Csph(X), we have ξ = ξ′ if and only if RadLF(Gξ) = RadLF(Gξ′).

Proof. Assume that (GRn) converges. If the sequence (Rn) has two accumulation points
ξ, ξ′ ∈ Csph(X), then Lemma 4.13 implies that RadLF(Gξ) = RadLF(Gξ′). Therefore, the
Lemma will be proved if one shows that the stabilisers of two distinct points of Csph(X) have
distinct LF-radicals.

1It turns out that the latter fact is general and does not depend on the existence of an action on a CAT(0)
space. Indeed, by [Wil95, Theorem 2] the set of periodic elements is closed in any totally disconnected locally
compact group.
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Given any ξ ∈ Csph(X) and x ∈ Ressph(X), the sector Q(x, ξ) coincides with the fixed-point-
set of Gx,ξ by Lemmas 4.4 and 4.7. Furthermore Lemma 4.5 implies that Gx,ξ = Rx, where
R = RadLF(Gξ). Thus Q(x, ξ) is nothing but the fixed point set of Rx for all x ∈ Ressph(X).
If follows that for any other ξ′ ∈ Csph(X) such that RadLF(Gξ′) = RadLF(Gξ), the respective
combinatorial sectors based at any x ∈ Ressph(X) and associated to ξ and ξ′ coincide. In view
of Corollary 2.19, this implies that ξ = ξ′. �

We are now ready for the following.

Proof of Theorem 4.10. Consider now the map

Ψ : Csph(X)→ S(G) : ξ 7→ RadLF(Gξ).

By Lemma 4.13, the map Ψ takes its values in Cgp(X). By Lemma 4.14, it is bijective. The
Aut(X)-equivariance is obvious. It only remains to show that Ψ is continuous.

Let (ξn) be a sequence of elements of Csph(X) converging to ξ ∈ Csph(X). We claim that
every accumulation point of (Ψ(ξn)) equals Ψ(ξ). Let D be such an accumulation point. Upon
extracting, we shall assume that (Ψ(ξn)) converges to D.

Since ξn belongs to Csph(X), there exist some sequences (xnm)m of spherical residues such
that (xnm)m converges to ξn for each n. Let d be some arbitrary distance on Csph(X). We can

assume d(xnm, ξn) <
1
m

for all m,n. Then, if d(ξn, ξ) < ε, then we have d(xmm, ξ) <
1
m

+ ε, so
that the sequence (xmm)m converges to ξ. By Lemma 4.13, we deduce that (Ψ(xmm))m converges
to Ψ(ξ) while (Ψ(xnm))m converge to Ψ(ξn). Therefore, the sequence (Ψ(xmm))m converges to
lim
n

Ψ(ξn) = D. The desired equality Ψ(ξ) = D follows. �

5. Comparison to the refined visual boundary

As opposed to the previous section, we do not assume here that X be locally finite. In order
to simplify the notation, we shall often identify X with its CAT(0) realisation |X|. This will
not cause any confusion. This section is devoted to the relationship between the combinatorial
and visual compactifications and their variants.

5.1. Constructing buildings in horospheres. Let ξ ∈ ∂∞X be a point in the visual bound-
ary of X. In this section we present the construction of a building Xξ which is canonically
attached to ξ; it is acted on by the stabiliser Gξ and should be viewed as a structure which is
‘transverse’ to the direction ξ. The construction goes as follows.

Let Aξ denote the set of all apartments A such that ξ ∈ ∂∞A. Let also
1
2Aξ denote the set

of all half-apartments α such that the visual boundary of the wall ∂α contains ξ. In particular,
every α ∈

1
2Aξ is a half-apartment of some apartment in Aξ.

Since any geodesic ray is contained in some apartment (see [CH06, Theorem E]), it follows
that the set Aξ is non-empty. This is not the case for

1
2Aξ, which is in fact empty when ξ is a

‘generic’ point at infinity. We shall not try to make this precise.

Lemma 5.1. For all A,A′ ∈ Aξ and each C ∈ Ch(A) and each geodesic ray ρ′ ⊂ A′ pointing
to ξ, there exists an apartment A′′ ∈ Aξ containing both C and a subray of ρ′.

Proof. We work by induction on d(C,Ch(A′)). Let thus C ′ be a chamber of A′ at minimal
possible distance from C and let C ′ = C0, C1, . . . , Cn = C be a minimal gallery. The panel
which separates C0 from C1 defines a wall in A′, and there is some half-apartment α of
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A′ bounded by this wall which contains a subray of ρ′. Then C1 ∪ α is contained in some
apartment, and the desired claim follows by induction on n. �

Given R ∈ Ressph(X), let Rξ denote the intersection of all α ∈
1
2Aξ such that R ⊂ α. Thus,

in the case of chambers, the map C 7→ Cξ identifies two adjacent chambers of X unless they
are separated by some wall ∂α with α ∈

1
2Aξ. Let Cξ be the set of all Cξ. We call two elements

of Cξ adjacent if they are the images of adjacent chambers of X. If
1
2Aξ is empty, there is

only one chamber Cξ (and one spherical residue Rξ), which can be identified to the whole
building.

Let W be the Weyl group of X. Choose an apartment A ∈ Aξ and view W as a reflection
group acting on A. The reflections associated to half-apartments α of A which belong to

1
2Aξ

generate a subgroup ofW which we denote byWξ. If
1
2Aξ is empty,Wξ is equal to {1}. By the

main result of [Deo89], the groupWξ is a Coxeter group and the set {Cξ | C ∈ Ch(A)} endowed
with the above adjacency relation is Wξ-equivariantly isomorphic to the chamber-graph of the
Coxeter complex of Wξ.

Lemma 5.2. The Coxeter group Wξ depends only on ξ but not on the choice of the apart-
ment A.

Proof. By the above, it suffices to show that for any two A,A′ ∈ Aξ, the adjacency graphs of
{Cξ | C ∈ Ch(A)} and {Cξ | C ∈ Ch(A′)} are isomorphic.

We claim that if the apartments A and A′ contain a common chamber, then the retraction
ρ onto A based at this chamber yields such an isomorphism. Indeed ρ fixes A ∩A′ pointwise,
and this intersection contains a ray pointing to ξ. This implies that for any half-apartment α
of A′, we have α ∈

1
2Aξ if and only ρ(α) ∈

1
2Aξ. This proves the claim.

In view of Lemma 5.1, the general case of arbitrary A,A′ ∈ Aξ follows from the special case
that has just been dealt with. �

Keeping in mind the above preparation, the proof of the following result is a matter of
routine verifications which are left to the reader. Lemma 5.1 ensures that two chambers of
Xξ are contained in an apartment; this is the main axiom to check.

Proposition 5.3. The set Cξ = {Cξ | C ∈ Ch(X)} is the chamber-set of a building of type
Wξ which we denote by Xξ. Its full apartment system coincides with Aξ. The map R 7→ Rξ
is a Gξ-equivariant map from Ressph(X) onto Ressph(Xξ) which does not increase the root-
distance. �

Remark 5.4. We have dim(Xξ) < dim(X). This was established implicitly in the course of
the proof of Lemma 2.29.

5.2. A “stratification” of the combinatorial compactifications. By Proposition 5.3 each
point ξ of the visual boundary of X yields a building Xξ and it is now desirable to compare
the respective combinatorial bordifications of X and Xξ.

Theorem 5.5. For each ξ ∈ ∂∞X, there is a canonical continuous injective Aut(X)ξ-
equivariant map rξ : Csph(Xξ)→ Csph(X). Furthermore, identifying Csph(Xξ) with its image,
one has the following decomposition:

Csph(X) = Ressph(X) ∪
( ⋃
ξ∈∂∞X

Csph(Xξ)
)
.
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The following lemma establishes a first basic link between points at infinity in the combi-
natorial bordification and points in the visual boundary.

Lemma 5.6. Let (Rn) be a sequence of spherical residues and let (pn) denote the sequence of
their centres. Assume that (Rn) converges to some f ∈ Csph(X). Then (pn) admits convergent
subsequences. Furthermore, any accumulation point of (pn) lies in the visual boundary of any
combinatorial sector pointing to f .

It is not clear a priori that (pn) subconverges in X ∪ ∂∞X since X need not be locally
compact.

Proof. Fix a base point p ∈ X and let R ∈ Ressph(X) denote its support. For each n, the
geodesic segment joining p to pn is contained in Conv(R,Rn) which is geodesically convex
also in the sense of CAT(0) geometry. Therefore, in view of Corollary 2.18, it follows that
for any r > 0 there is some N such that the geodesic segment [p, pn] ∩ B(p, r) lies entirely
in Q(R, f) for all n > N . Since combinatorial sectors are contained in apartments and since
apartments are proper, it follows that (pn) subconverges to some ξ ∈ ∂∞X, and the above
argument implies that the geodesic ray [p, ξ) is entirely contained in the sector Q(R, f). �

Proof of Theorem 5.5. Let ξ ∈ ∂∞X, f ∈ Csph(Xξ). We shall now define an element f̂ :
Ressph(X)→ Ressph(X) belonging to

∏
σ∈Ressph(X)

St(σ). To this end, we proceed as follows.

Consider the map Ressph(X)→ Ressph(Xξ) : σ 7→ σξ which was constructed in Section 5.1.
Let σ ∈ Ressph(X), let ρ be a geodesic ray emanating from the centre of σ and pointing to
ξ and let A be an apartment containing ρ. Let ΨA(ξ) denote the set of all half-apartments
α of A such that α 6∈

1
2Aξ and α contains a subray of ρ. Notice that if α ∈ ΨA(ξ), then

−α 6∈ ΨA(ξ).
Given τ ∈ St(σξ), there is a unique spherical residue τ ′ ∈ St(σ) such that (τ ′)ξ = τ and

that τ ′ is contained in every root α ∈ ΨA(ξ) containing σ. We denote this residue τ ′ by
rξ(τ). It is easy to see that the map rξ : St(σξ)→ St(σ) does not depend on the choice of the
apartment A.

Now we define f̂ ∈
∏

σ∈Ressph(X)

St(σ) by

f̂ : σ 7→ rξ(f(σξ)).

Notice that the definition of f̂ does not depend on the choice of A.
We claim that f̂ belongs to Csph(X). Indeed, let (xn) be a sequence of spherical residues of

Xξ converging to f and contained in some apartment A′ of Xξ (see Proposition 2.4). We may
view A′ as an apartment ofX. Choose Rn ∈ Ressph(A′) with (Rn)ξ = xn in such a way that the
sequence (Rn) eventually penetrates and remains in the interior of every α ∈ ΨA′(ξ). It is easy
to see that such a sequence exists. If follows from Lemma 2.3 and Proposition 5.3 that (Rn)
converges in Csph(A′). The fact that (Rn) converges in Csph(X) follows from Corollary 2.32.
The fact that lim

n
Rn coincides with f̂ follows from Lemma 2.26. This proves the claim.

We now show that Csph(X) admits a decomposition as described above. Let h ∈ Csph(X) \
Ressph(X) and let (Rn) be a sequence of spherical residues contained in some apartment A of
X and converging to h (see Proposition 2.4). Upon extracting, the sequence of centres of the
Rn’s converges to some ξ ∈ ∂∞A, and the sequence ((Rn)ξ)n≥0 converges in Csph(Xξ). Let h′
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denote its limit. Using the very definition of the map f 7→ f̂ , one verifies that ĥ′ = h, which
yields the desired conclusion. �

We can apply Theorem 5.5 recursively: each compactification Csph(Xξ) is itself the union
of all the Xξ,ξ′ where ξ′ ∈ ∂∞Xξ, and so on. Note that, because of Remark 5.4, after a finite
number of steps (bounded by the dimension of X), we will get a spherical building, so that
the construction terminates. Hence, we obtain a decomposition:

(*) Csph(X) = Ressph(X) ∪
⋃

ξ1∈∂∞X

(
Ressph(Xξ1) ∪

⋃
ξ2∈∂∞Xξ1

(
Ressph(Xξ1,ξ2)

∪ · · · ∪
⋃

ξn∈∂∞Xξ1,...,ξn−1

Ressph(Xξ1,...,ξn−1)
)
. . .
)
,

where n ≤ dim(X).
It is important to remark that the decomposition (*) is a priori not a disjoint union. Indeed,

it could happen that Ressph(Xξ1,ξ2) ∩ Ressph(Xξ′1,ξ
′
2) 6= ∅ for some distinct ξ1, ξ

′
1 ∈ ∂∞X and

some ξ2 ∈ ∂∞Xξ1 and ξ′2 ∈ ∂∞Xξ′1 . The easiest example of such a situation is to be found in an
apartment of type Ã1×Ã1. In an apartment A of type Ã2, one also finds the following situation:
There exist points ξ, ξ1 ∈ ∂∞A and ξ2 ∈ ∂∞Aξ1 such that Ressph(Aξ)∩Ressph(Aξ1,ξ2) 6= ∅. In
order to address this issue, we introduce an equivalence relation on Csph(X) defined as follows,
where x, y ∈ Csph(X):

x ∼ y ⇔ there is an apartment A such that x, y ∈ Csph(A)
and |ΦA(x)4ΦA(y)| <∞.

In order to facilitate the discussion, we shall say that a tuple ξ = (ξ1, . . . , ξk) is an admis-
sible k-tuple if ξ1 ∈ ∂∞X, ξ2 ∈ ∂∞Xξ1 , . . . , ξk ∈ ∂∞Xξ1,...,ξk−1 .

The following lemma shows in particular that the relation ∼ is well defined.

Lemma 5.7. Let ξ be an admissible tuple and let x ∈ Ressph(Xξ). For any y ∈ Csph(X), we
have x ∼ y if and only if y ∈ Ressph(Xξ).

Proof. The ‘if’ part is clear. Assume conversely that x ∼ y. There is no loss of generality in
assuming that X = A.

Write ξ = (ξ1, . . . , ξk) and let (yn) be a sequence in Ressph(A) converging to y. Upon
extracting, we may assume that the sequence (yn) converges in the visual compactification
A ∪ ∂∞A to some point ξ ∈ ∂∞A. The assumption that |ΦA(x)4ΦA(y)| is finite guarantees
that ξ = ξ1. In particular this shows that y ∈ Csph(Aξ1). An induction on k now completes
the proof. �

For any x ∈ Csph(X) \Ressph(X), we define the level of x to be the maximal integer k > 0
such that there is an admissible k-tuple ξ with x ∈ Ressph(Xξ). We declare moreover that
the level of the elements of Ressph(X) is zero. Remark 5.4 guarantees that the level of each
element is bounded above by dim(X). Lemma 5.7 implies that the level function is constant
on every subset Ressph(Xξ) ⊂ Csph(X), and if ξ is a k-tuple then the level of each element of
Ressph(Xξ) is at least k.

Now, for each i ≥ 0, we denote by Y i the subset of Csph(X) consisting of those elements of
level i. Thus the decomposition (*) may be rewritten as a finite partition

(**) Csph(X) = Y 0 ∪ Y 1 ∪ · · · ∪ Y n
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where n = dim(X). It is tempting to verify that this partition provides a stratification of
the compactification Csph(X) in the sense of the following definition, which is taken over
from [Klo09, §3, Définition 1] (and slightly generalises a definition due to Siebenmann [Sie72,
Definition 1.1]).

Definition 5.8. A stratification of a topological space Y is a locally finite partition (Y s)s∈S
by locally closed sets called strata such that the frontier condition holds: if Y s ∩ Y t 6= ∅,
then Y s is included in Y t. In other words, the closure of any stratum is a union of strata.

Proposition 5.9. If the building X is affine, then the decomposition (**) is a stratification
of Csph(X).

Since this result will not be used in the sequel, we only provide a sketch.

Sketch of proof. The only thing to check is that, for each i ≥ 0, we have Y i =
⋃
j≥i

Y j . Since the

closure of Ressph(Xξ) is Csph(Xξ) for any admissible tuple ξ, we deduce from the definition
that Y i ⊇

⋃
j≥i

Y j for each i ≥ 0. In order to prove the reverse inclusion, it suffices to show that⋃
j≥i

Y j is closed. This is where the hypothesis that X is affine will be used. Let v be a special

vertex. One first shows that x ∈ Csph(X) has level ≥ k if and only if the combinatorial sector
Q(v, x) contains a k-dimensional simplicial cone based at v. One next considers a sequence
(xn) of points of Csph(X), each of level at least k, converging to some x ∈ Csph(X). Let Cn be
a k-dimensional cone with vertex v contained in Q(v, xn). Given any m > 0, the intersection
Q(v, xn)∩B(v,m) of the combinatorial sector Q(v, xn) with the m-ball around v is a subset of
X which becomes independent of n for all n > 0 large enough (in other words the sequence of
combinatorial sectors Q(v, xn) converges pointwise to Q(v, x)). In particular this implies that
the sequence of truncated cones (Cn∩B(v,m))n converges to a truncated cone of dimension at
least k. Letting now m tend to infinity, we infer that Q(v, x) contains a k-dimension simplicial
cone with vertex v. This implies that the level of v is at least k, as desired. �

If the building X is Gromov-hyperbolic, then the level of every point of Csph(X) is at
most 1, and the fact that (**) is a stratification is thus tautological in this case. We conclude
this section by an example showing that some assumption on the type of X has to be made
for (**) to define a stratification.

Example 5.10. Let W be the Coxeter group associated with the tiling of the real hyperbolic
3-space H3 by ideal tetrahedra, and let A denote the Davis realization of corresponding apart-
ment. The Coxeter matrix of W has size 4 and each off-diagonal entry equals 3. Thus W is
a non-uniform lattice of Is(H3); the ideal tetrahedron is a non-compact fundamental domain
of finite volume for the W -action on H3. On another hand W acts cocompactly on A. We
shall use the hyperbolic space H3 as an auxiliary space in order to describe the combinatorial
compactification of A.

Lemma 2.26 allows one to define a map π : Csph(A)\Ressph(A)→ ∂∞H3 as follows. For each
ξ ∈ Csph(A)\Ressph(A), we define π(ξ) to be the unique point of ∂∞H3 such that π(ξ) ∈ ∂∞α
for every α ∈ ΦA(ξ). One verifies that π is continuous and surjective. It is however far from
being injective. For example, if R ⊂ A is a residue of type Ã2, then the whole boundary of R
in Csph(A) is mapped onto a single parabolic point of ∂∞H3.
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Let now (ξn) be a sequence of parabolic points in ∂∞H3 which converges to a conical limit
point ξ. Since π−1(ξn) contains the boundary of a residue of type Ã2, we can choose for each
n a point xn ∈ π−1(ξn) which has level 2. Upon extracting, we may assume that the sequence
(xn) converges to some point x ∈ Csph(A). Since π is continuous, we conclude π(x) = ξ is a
conical limit point. Since a point of level 2 in Csph(A) belongs to the boundary of a residue
of type Ã2 and is thus mapped by π on a parabolic point, we infer that x has level at most 1.
This shows that the level function is not upper semi-continuous on Csph(A), and thus that
(**) is not a stratification.

5.3. Comparison to the refined visual boundary. Besides its own intrinsic CAT(0) real-
isation, the building Xξ inherits a CAT(0) realisation in a canonical way from X. This follows
actually from a general construction which may be performed in an arbitrary CAT(0) space
and which attaches a transverse CAT(0) space to every point in the visual boundary. This
construction was described by Karpelevič in the case of symmetric spaces; it was introduced
by Leeb [Lee00] in the general context of CAT(0) spaces and used recently in [Cap07] to study
the structure of amenable groups acting on CAT(0) spaces. A brief description is included
below.

Let ξ ∈ ∂∞X. We let X∗ξ denote the set of geodesical rays ρ pointing towards ξ. The set
X∗ξ is endowed with a pseudo-distance defined by

d(ρ, ρ′) = inf
t,t′≥0

d(ρ(t), ρ′(t′)).

If bξ is a Busemann function associated to ξ, and if the parametrisation of ρ and ρ′ is chosen
so that bξ ◦ ρ = bξ ◦ ρ′, then in fact d(ρ, ρ′) = lim

t→+∞
(ρ(t), ρ′(t)). This remark justifies that d

is indeed a pseudo-distance.
Identifying points at distance 0 in X∗ξ yields a metric space X ′ξ. There is no reason for

this new space to be complete; its metric completion is denoted by Xξ. There is a canonical
projection

πξ : X → Xξ

which associates to a point x the (equivalence class of the) geodesic ray from x to ξ. It is
immediate to check that πξ is 1-Lipschitz.

Moreover, there is a canonical morphism ϕ′ξ : Gξ → Isom(X ′ξ), where G = Isom(X), defined
by

ϕ′ξ(g).πξ(x) = πξ(g.x).
The space Xξ is CAT(0) (see [Lee00, Proposition 2.8]). Furthermore the morphism ϕξ is
continuous (see [Cap07, Proposition 4.3]).

As before, the space Xξ is transverse to the direction ξ. Since each transverse space Xξ

admits its own visual boundary, it is natural to repeat inductively the above construction and
consider sequences (ξ1, ξ2, . . . ) such that ξn+1 ∈ ∂∞Xξ1,ξ2,...ξn . The next proposition shows
that this inductive process terminates after finitely many steps (in the case of buildings, this
should be compared to Remark 5.4):

Lemma 5.11. There exists an integer K ∈ N, depending only on X, such that for every
sequence (ξ1, . . . , ξK) with ξ1 ∈ ∂∞X and ξi+1 ∈ ∂∞Xξ1,...,ξi we have ∂∞Xξ1,...,ξK = ∅.

Proof. See the remark after [Cap07, Corollary 4.4]. �

The following definition is taken over from [Cap07].
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Definition 5.12. The refined visual boundary of level k of X is the set of all sequences
(ξ1, . . . , ξk, x), where ξ1 ∈ ∂∞X and ξi+1 ∈ ∂∞Xξ1,...,xi for all 1 ≤ i ≤ k − 1 and x ∈ Xξ1,...,ξk .

The refined visual boundary of X is the union over all k ∈ N of the refined boundaries
of level k. It is denoted by ∂fine

∞ X.

As mentioned earlier, in case the underlying space X is a building, the transverse space
Xξ may be viewed as a CAT(0) realisation of the building Xξ constructed combinatorially in
Section 5.1. The following result shows that in some sense, the refined visual boundary is a
realisation of the boundary at infinity of the combinatorial bordification.

Theorem 5.13. Let X be a building. Then there is an Aut(X)-equivariant map F : X ∪
∂fine
∞ X → Csph(X).

Proof. There is an Aut(X)-equivariant surjective map F : X → Ressph(X) which associates
to each point its support. Recall that the support of a point x may be characterised as the
unique spherical residue contained in the intersection of all half-apartments containing x. We
are going to prove, by induction on the dimension of X, that this map extends to ∂fine

∞ X.
Let now ξ ∈ ∂∞X. To ξ is associated a buildingXξ and a CAT(0) spaceXξ ; furthermore, it

is easy to see that Xξ is a metric realisation of Xξ. By induction hypothesis (see Remark 5.4)
there is a well-defined Aut(X)ξ-equivariant map ∂fine

∞ Xξ → Csph(Xξ). Upon post-composing
with the map rξ of Theorem 5.5, we may assume that this map takes it values in Csph(X).
Since by definition, we have a partition

∂fine
∞ X =

⊔
ξ∈∂∞X

∂fine
∞ Xξ,

the existence of the desired map F follows. �

Notice that it is not clear a priori (and not true in general) that this map is surjective.
Indeed, it might be the case that the CAT(0) space Xξ be reduced to a single point while the
associated building Xξ is a spherical building not reduced to a single chamber. This happens
for example of X is a Fuchsian building and ξ is an end point of some wall. In this case, the
combinatorial boundary is just the usual boundary, and the map F associates to a point ξ of
the visual boundary the whole building Xξ, which is spherical, hence itself a spherical residue
in Xξ.

6. Amenability of stabilisers

Let X be a building. The following shows the relationship between amenable subgroups of
Aut(X) and the combinatorial bordification Csph(X).

Theorem 6.1. Let G be a locally compact group acting continuously on X, and H a subgroup
of G. If H is amenable, then some finite index subgroup of H fixes a point in Csph(X).

Assume in addition that the stabiliser in G of every spherical residue is compact. Then the
stabiliser of any point of Csph(X) is a closed amenable subgroup.

Proof. By [Cap07, Theorem 1.4] (see also [CL08, Theorem 1.7] in case X is not locally com-
pact), the group H has a finite index subgroup H∗ which fixes a point in X∪∂fine

∞ X. Its image
under the equivariant map F of Theorem 5.13 is thus a H∗-fixed point in the combinatorial
bordification Csph(X).

Assume now that elements of Ressph(X) haves compact stabilisers in G and let f ∈ Csph(X).
We shall prove by induction on dim(X) that the stabiliser Gf fixes some point in the refined
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visual bordification X ∪ ∂fine
∞ X. The desired result on amenability will then be provided by

[Cap07, Theorem 1.5] (see also the remark following Theorem 1.1 in loc. cit. as well as [CL08,
Theorem 1.7] for the non-locally compact case).

If f ∈ Ressph(X), then Gf fixes the centre of the residue f and there is nothing to prove.
Since the latter happens when X is has dimension 0, the induction can start and we assume
henceforth that f is a point at infinity.

Notice that combinatorial sectors are closed and convex in the CAT(0) sense. Let Qf denote
the collection of all combinatorial sectors pointing to f . By Proposition 2.30, the set Qf forms
a filtering family of closed convex subsets, i.e. any finite intersection of such sectors is non-
empty and contains such a sector. Since f lies at infinity, it follows that

⋂
Qf is empty. It

then follows from [CL08, Theorem 1.1] and [BL05, Proposition 1.4] that the intersection of
the visual boundaries of all elements of Qf admits a canonical barycentre ξ ∈ ∂∞X which is
thus fixed by Gf . In particular Gf acts on the building Xξ transverse to ξ.

We claim that Gf fixes a point in Csph(Xξ). In order to establish it, notice first that by
definition ξ belongs to the visual boundary of every apartment containing a sector in Qf . Pick
such an apartment A. Then A may also be viewed as an apartment of Xξ and its walls in Xξ

is a subset of its walls in X. By Lemmas 2.3 and 2.24 and Corollary 2.32, it follows that f
determines a point f ′ ∈ Csph(Xξ). Furthermore, since A contains a subsector of every element
of Qf , it follows from Lemma 2.26 that f ′ is uniquely determined by f . In particular Gf fixes
f ′ ∈ Csph(Xξ) as claimed.

Since dim(Xξ) < dim(X) by Remark 5.4, it follows from the induction hypothesis that
Gf < Gf ′ fixes a point in the refined visual bordification Xξ ∪ ∂fine

∞ Xξ. By definition, the
latter embeds in the refined visual boundary ∂fine

∞ X. Thus we have shown that Gf fixes a
point in the refined visual boundary of X as desired. �

Appendix A. Combinatorial compactifications of CAT(0) cube complexes

In this appendix, we outline how some of the above results may be adapted in the case
of finite-dimensional CAT(0) cube complexes. Since the arguments are generally similar but
easier than in the case of buildings, we do not include detailed proofs but content ourselves
by referring to the appropriate arguments in the core of the text.

Let thus X be such a space. The 1-skeleton X(1) induces a combinatorial metric on the set
of vertices X(0) which is usually called the `1-metric. In general it does not coincide with the
restriction of the CAT(0) metric. The distance between two vertices may be interpreted as
the number of hyperplanes separating them.

Let P denote the product of all pairs {h+, h−} of complementary half-spaces. Then there
is a canonical embedding X(0) → P which is defined by remembering on which side of every
wall a point lies. The closure of X(0) in P is denoted by Cultra(X). It is called the Roller
compactification or ultrafilter compactification of X; see [Gur08, §3.3] and references
therein. It is a natural analogue of the minimal combinatorial compactification of buildings
introduced in the core of the paper. Notice that, as opposed to the case of buildings, the space
Cultra(X) is compact even if X is not locally finite. The following result is due to U. Bader
and D. Guralnick (unpublished); it should be compared to Theorem 3.1.

Proposition A.1. The ultrafilter compactification coincides with the horofunction compacti-
fication of the vertex-set X(0) endowed with the `1 metric.

The following is an obvious adaption Lemma 2.3; it is established with the same proof.
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Lemma A.2. Let (vn) be a sequence of vertices. Then the sequence (vn) in Cultra(X) if and
only if for each wall W there is some N such that the subsequence (vn)n>N lies entirely on
one side of W . �

This allows one to associate with every ξ ∈ Cultra(X) the set Φ(ξ) of all half-spaces in
which every sequence converging to ξ penetrates and eventually remains in. We define the
combinatorial sector based at a vertex v and pointing to ξ as the set

Q(v, ξ) =
⋂

h∈Φ(v)∩Φ(ξ)

h.

The (combinatorial) convex hull of a set of vertices is defined as the intersection of
all half-spaces containing it. Having this in mind, it is straightforward to prove that for all
v ∈ X(0) and any sequence (vn) of vertices converging to some ξ ∈ Cultra(X), we have

Q(v, ξ) =
⋃
k≥0

⋂
n≥k

Conv(v, vn),

compare Propositions 2.15 and 2.27. The key property of combinatorial sectors pointing to
some ξ ∈ Cultra(X) is that they form a filtering family:

Proposition A.3. Let v, v′ ∈ X(0) and ξ ∈ Cultra(X). Then there exists some vertex v′′ such
that Q(v′′, ξ) ⊂ Q(v, ξ) ∩Q(v′, ξ).

Proof. Use induction on dim(X) mimicking the proof of Lemma 2.29. �

Assume for the moment that X is locally finite; then the automorphism group G = Aut(X)
is locally compact and we may as before consider the closure of the set of vertex-stabilisers
in the Chabauty compact space S(G) of closed subgroups of G. Notice however that one
should not expect the latter to coincide with the ultrafilter compactification in general: the
most obvious reason for this is that the group-theoretic compactification need not be a gen-
uine compactification if G is to small — for example if G is discrete and torsion free, the
group-theoretic compactification is a singleton. In fact, as opposed to the case of buildings,
where the condition of strongly transitive actions is very natural, the transitivity properties
one should impose on G to make sure that the group-theoretic compactification is indeed a
compactification of the vertex set do not seem natural at all. Therefore we shall not pursue
this here and content ourselves with the following fact.

Proposition A.4. Let (vn) be a sequence of vertices of X converging to some ξ ∈ Cultra(X).
Then the sequence of stabilisers (Gvn) converges in the Chabauty topology and its limit coin-
cides with RadLF(Gξ).

Proof. Let D be an accumulation point of the sequence (Gvn). It suffices to show that D =
RadLF(Gξ).

The proof of Lemma 4.12 applies verbatim to the present situation and ensures thatD ⊂ Gξ.
Moreover, by similar arguments as in Lemma 4.5, one deduces from Proposition A.3 that the
set of periodic elements of Gξ coincides with RadLF(Gξ). Since Lemma 4.1 implies that D
consists of periodic elements, one obtains the inclusion D ⊂ RadLF(Gξ).

In order to prove the reverse inclusion, consider an element g ∈ RadLF(Gξ). Then g is
periodic and hence it fixes some cube C of X. Since the point ξ determines exactly one side
of each of the walls of C, it follows that g fixes some vertex v of C. In particular g stabilises
the sector Q(v, ξ). It is easy to see by induction on the distance to v that g fixes pointwise all
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vertices contained in Q(v, ξ). On the other hand, Lemma A.2 implies that the sequence (vn)
penetrates and eventually remains in Q(v, ξ). Therefore, we deduce that g belongs to Gvn for
any sufficiently large n. By Lemma 4.1, this implies that g ∈ D as desired. �

We now drop off the assumption that X be locally finite. The ultrafilter compactification
may also be compared to the visual boundary in a similar way as in Section 5; in particular
Cultra(X) admits a stratification as in Theorem 5.5. This may be used to established the
following by mimicking the proof of Theorem 6.1.

Theorem A.5. Every amenable locally compact group acting continuously on X has a finite
index subgroup which fixes some point in Cultra(X).

Conversely, given a locally compact group G acting continuously on X in such a way that
every vertex has compact stabiliser, then the stabiliser in G of every point of Cultra(X) is a
closed amenable subgroup. �

In the special case of a discrete group G, this last part was established independently
in [BCG+]. Remark that, as in the case of buildings, a closed subgroup H < G is amenable
if and only if H/RadLF(H) is virtually Abelian (see [Cap07], as well as [CL08, Theorem 1.7]
for the non-locally compact case)
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