
ON EMBEDDINGS INTO COMPACTLY GENERATED GROUPS

PIERRE-EMMANUEL CAPRACE AND YVES CORNULIER

Abstract. We prove that there is a second countable locally compact group
that does not embed as a closed subgroup in any compactly generated locally
compact group, and discuss various related embedding and non-embedding
results.

1. Introduction

The Higman–Neumann–Neumann Theorem [HNN49] ensures that every count-
able group embeds as a subgroup of a finitely generated group, indeed 2-generated
(relying on a fundamental construction referred to since then as HNN-extension).
This was a major breakthrough, providing some of the first evidence that finitely
generated groups are not structurally simpler than countable groups and thus are
far from tame or classifiable. Later B. and H. Neumann [NN59] gave an alter-
native construction, showing for instance that every countable k-solvable group
(i.e. solvable of derived length at most k) embeds as a subgroup of a finitely
generated (k + 2)-solvable group. Further refinements by Ph. Hall [Hal54] and
P. Schupp [Sch76] in a slightly different direction showed that every countable
group embeds in a 2-generated simple group.

In the present paper, we address similar questions in the context of locally
compact topological groups, which will be abbreviated henceforth by the term
l.c. groups. Recall that locally compact groups are a natural generalization of
discrete groups, the counterpart of countability, respectively finite generation,
being σ-compactness, resp. compact generation. A prototypical example of an
embedding of a non-compactly generated l.c. group into a compactly generated
one is the embedding of the p-adic additive group Qp into the affine group QpoQ×

p

(or its discrete cousin, the embedding of the additive underlying group of the ring
Z[1/p] into the Baumslag-Solitar group Z[1/p] op Z).

It is natural to ask whether analogues of the HNN Theorem hold in the context
of l.c. groups. In that context, an embedding ϕ : H → G of an l.c. group H to an
l.c. group G is defined as a continuous injective homomorphism (with potentially
non-closed image). In the non-discrete setting, several natural variants of the
question can be considered:
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• Given a σ-compact l.c. group H, is there any embedding ϕ : H → G into
a compactly generated l.c. group G?

• Is there one with closed image?
• Is there one with open image?

It turns out that, whenever the topology on H is non-discrete, the answers to
these questions are not always positive, and depend heavily on the algebraic
structure of H. The results of this note are intended to illustrate that matter of
fact. We start with a positive result in case the algebraic structure of H is the
simplest possible, namely H is abelian.

Theorem 1.1. Every σ-compact abelian l.c. group A embeds as an open subgroup
of a compactly generated group G, which can be chosen to be 3-solvable. If more-
over A is totally disconnected, respectively second countable, resp. both, then G
can also be chosen to enjoy the same additional properties.

In particular, the additive group of Adeles, defined as a restricted product of
all Qp (see Section 4 for the definition) is isomorphic to an open subgroup of a
compactly generated locally compact group. In contrast, the Adeles are used to
prove the following result, which shows in particular that Theorem 1.1 cannot be
generalized to solvable groups.

Theorem 1.2. There exists a σ-compact metabelian l.c. group M not isomorphic
to any closed subgroup of any compactly generated l.c. group.

Moreover M can be chosen to be second countable and totally disconnected.

The proof of Theorem 1.2 is based on the now classical observation, due to
H. Abels [Abe74, Beispiel 5.2], that every compactly generated l.c. group admits,
in a somewhat natural way, a continuous proper action on a connected graph of
bounded degree (see Proposition 2.1 below). Using similar ideas, we obtain the
following result, which shows that the HNN Theorem fails in the non-discrete
setting, even if one allows embeddings with potentially non-closed images.

Theorem 1.3. There exists a second countable (hence σ-compact), topologically
simple totally disconnected l.c. group S, such that every continuous (or even
abstract) homomorphism of S to any compactly generated l.c. group is trivial.

This result suggests that, as opposed to the discrete case, compact generation
for non-discrete l.c. groups imposes a strong constraint, making it thus plausible
that some of the pathologies that are unavoidable in the general case do not
occur. On the other hand, the local compactness is absolutely essential since it
is known [Pes86] that every σ-compact topological Hausdorff group is isomorphic
to a closed subgroup of some compactly generated topological Hausdorff group.

We finally present a result illustrating the difference between embeddings with
closed and open images.
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Theorem 1.4. There exists a second countable (hence σ-compact) l.c. group H
which is isomorphic to a closed subgroup of a compactly generated l.c. group, but
not to any open subgroup of any compactly generated l.c. group.

Moreover, H can be chosen to be of the form K o Γ with Γ discrete abelian,
and K compact abelian, either connected or profinite. It can also be chosen to be
a Lie group.

One part of the implication in Theorem 1.4 is the following general fact, which
is based on a wreath product construction.

Proposition 1.5. Any compact-by-{countable discrete} l.c. group embeds as a
closed subgroup in a compact-by-{finitely generated discrete} l.c. group.

Similarly as in Theorem 1.1, this proposition illustrates that embedding theo-
rems can hold in the non-discrete case when the algebraic or topological structure
of the group H is not too complicated.

We finish by mentioning some related natural questions which we have not
been able to answer.

Question 1.6. Is every second countable (real) Lie group isomorphic to a closed
subgroup of a compactly generated locally compact group? of a compactly gen-
erated Lie group? Same question for p-adic Lie groups.

The answer to the latter questions, with ‘closed subgroup’ replaced by ‘open
subgroup’, is negative for both real and p-adic Lie groups, see the examples in
Section 6.

Acknowledgments. We thank Pierre de la Harpe for discussions and in partic-
ular for pointing out the reference [Pes86].

2. Locally compact groups, Lie groups and locally finite graphs

We shall use the following general fact on l.c. groups; the first part follows from
the solution to Hilbert’s fifth problem, the second is an elementary but crucial
observation due to H. Abels.

Proposition 2.1. Let G be an l.c. group and V be any identity neighbourhood.

(i) (Yamabe) If G is connected-by-compact (i.e. if G/G◦ is compact), then V
contains a compact normal subgroup K of G such that G/K is a connected
Lie group.

(ii) (Abels) If G is totally disconnected and compactly generated, then V con-
tains a compact normal subgroup W of G such that G/W admits a faithful,
continuous proper vertex-transitive action on some connected locally finite
graph.

Proof. For (i), see [MZ55, Th. IV.4.6]. For (ii), originally observed in [Abe74,
Beispiel 5.2], we refer to [Mon01, §11.3]. �
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We deduce the following useful criterion for the non-existence of embeddings
into compactly generated l.c. groups.

Proposition 2.2. Let H be an l.c. group. The following are equivalent

(1) Every continuous homomorphism of H to a compactly generated l.c. group
is trivial

(2) The following two conditions are satisfied:
(a) every continuous homomorphism of H to a compactly generated to-

tally disconnected l.c. group is trivial;
(b) every continuous linear representation H → GLn(C) is trivial for

all n.

Moreover, a sufficient condition for (2a) is that H has no nontrivial continuous
action on any connected graph of bounded degree.

Proof. One implication is trivial. Assume that (2) holds. Let G be a compactly
generated l.c. group and f : H → G be a continuous homomorphism. Considering
the composite map H → G → G/G◦ and in view of (2a), we see that f(H) ⊂ G◦.
If f is not the trivial map, some identity neighbourhood V in G does not contain
the image of f . By Proposition 2.1(i), there is a compact normal subgroup K
of G◦ contained in V such that L = G◦/K is a (connected) Lie group. So the
composite map H → L is non-trivial. Using the adjoint representation of L
and (2b), we see that it maps H into the center of L. On the other hand, it
follows from Pontryagin duality and (2b) that H admits no nontrivial continuous
homomorphism to any abelian l.c. group. So we get a contradiction, and thus f
is the trivial homomorphism.

Let us now assume that H has no nontrivial continuous action on any con-
nected graph of bounded degree and let us check that (2a) holds. Let f : H → G
be a continuous homomorphism, with G a compactly generated, totally discon-
nected l.c. group. If f is non-trivial, some identity neighbourhood V in G does
not contain the image of f . By Proposition 2.1(ii), there is a compact normal
subgroup K of G contained in V such that G/K acts continuously, faithfully,
vertex-transitively on a connected locally finite graph. The hypothesis made
on H implies that the restriction of this action to H is trivial. Thus f(H) is
contained in K, hence in V , which is a contradiction. �

Remark 2.3. We do not know if, conversely, (2a) implies that H has no non-
trivial continuous action on any connected graph of bounded degree. In other
words, does the existence of a continuous non-trivial action on a connected graph
of bounded degree imply the existence of such an action on a vertex-transitive
graph? The same question, replacing “non-trivial” by “proper”, can also natu-
rally be addressed.

Finally, we record an elementary fact, allowing us in suitable situations to
exclude actions on some connected locally finite graphs.
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Lemma 2.4. Let G be an l.c. group acting continuously by automorphisms on a
connected graph all of whose vertices have degree ≤ d. Then every vertex stabiliser
O is open in G and, for any prime p > d, every closed pro-p subgroup of O acts
trivially on the graph. In particular, if G admits an open pro-p-group, then the
action has an open kernel.

Proof. Let O be a vertex stabiliser, which is open in G since the action on the
graph is assumed continuous. Given any closed subgroup H of O which acts non-
trivially on the graph, there is a vertex v fixed by H and adjacent to some vertex
which is not fixed by H. In particular H admits some non-trivial continuous
permutation action on the set of neighbours of v, which is a set of at most d
elements. It follows that H cannot be pro-p for any p > d. �

3. Proof of Theorem 1.1

Recall that any totally disconnected l.c. group contains compact open sub-
groups. Moreover every abelian l.c. group A has a (non-canonical) decomposition
as a topological direct product Rn × W , where W is compact-by-discrete, and
the discrete quotient is countable as soon as A is σ-compact. Those facts could
be used to deduce (a part of) Theorem 1.1 from Proposition 1.5. This is however
not what we shall do here, and present rather a simpler direct argument.

We begin with an easy classical result.

Lemma 3.1. There exists a finitely generated group Γ whose center contains a
free abelian group Z of countable rank; Γ can be chosen to be 3-solvable.

Proof. If t is an indeterminate, the reader can check that the three matrices1 0 0
0 t 0
0 0 1

 ,

1 1 0
0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1


generates a group containing the set of all matrices of the form1 0 P (t)

0 1 0
0 0 1

 , P (t) ∈ Z[t, 1/t]

as a central, infinitely generated subgroup. (This construction is due to P. Hall
[Hal54, Theorem 7].) �

Lemma 3.2. If G is a σ-compact l.c. group, then it has a cocompact closed
separable subgroup.

Proof. By the Kakutani–Kodaira Theorem, there is a compact normal subgroup
K such that G/K is second countable. So G/K admits a dense countable subset.
Lift this subset to G, and let D be the abstract (countable) group it generates.
So G = KD = KD since K is compact. Thus D is cocompact; moreover it is
separable by construction. �
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Proof of Theorem 1.1. By Lemma 3.2, there is a cocompact closed separable sub-
group in A. In other words, there is a homomorphism f : Z → A whose image
has cocompact closure, where Z = Z(ω) is the restricted product of countably
many copies of the infinite cyclic group. In view of Lemma 3.1, the group Z can
be embedded as a central subgroup of a finitely generated group Γ (which can be
chosen to be 3-solvable). The graph F of f is a closed discrete central subgroup
of Γ×A. Since f is injective, it follows that the mapping of A into G = (Γ×A)/F
is injective. Moreover A has open image (because the quotient map is open). So
A lies as an open (and central) subgroup of G. The latter group is compactly
generated: indeed, the closure of the subgroup generated by a finite generating
subset of Γ is cocompact. By construction, if A is second countable, resp. totally
disconnected, then so is G. �

4. Proof of Theorem 1.2

Consider Bp = Qp op Z, where the notation op means that the Z-action is
through multiplication by powers of p. Let A be the group of Adeles, namely
the set of elements in

∏
p Qp (p ranging over all primes) whose projection in∏

Qp/Zp is finitely supported, endowed with the ring topology for which
∏

Zp

is a compact open subring. In the product
∏

p Bp = (
∏

p Qp) o
∏

p Z, consider

the subgroup Z =
⊕

p Z, and endow it with the discrete topology. Finally define

M = A o Z ⊂
∏

p Bp. The group M is metabelian admits a unique Hausdorff

group topology for which
∏

p Zp is a compact open subgroup. In particular M is
locally compact.

Theorem 1.2 is a consequence of the following.

Proposition 4.1. There is no embedding of M as a closed subgroup of any com-
pactly generated l.c. group.

More precisely, given any continuous homomorphism f : M → G to a compactly
generated l.c. group G, there exists p0 such that f(Qp) is a compact connected
group for all p ≥ p0.

We begin by two lemmas on homomorphisms from Qp into locally compact
groups.

Lemma 4.2. For every continuous homomorphism f : Qp → G of Qp to a

connected-by-compact l.c. group G, the closure of the image f(Qp) is compact
and connected.

Proof. Assume first that G is a virtually connected Lie group. Since Qp is divisi-

ble, it has no nontrivial finite quotient. Thus f(Qp) is a closed abelian subgroup
of a connected Lie group, so is isomorphic to a product Γ × Rk × T for some
finitely generated abelian group Γ and torus T . Invoking again that Qp has no
nontrivial finite quotient, we find Γ = {0}. Since Rk × T has no small subgroup,
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the kernel of f must be open in Qp. In particular f(Qp) is a torsion group, from

which we infer that k = 0. Therefore f(Qp) is a torus; in particular it is compact.
Coming back to the general case, we now let W be the maximal compact normal

subgroup of G, which exists by Proposition 2.1(i). Proposition 4.1 ensures that
G/W is a virtually connected Lie group. By the special case above, we deduce

that, denoting K = f(Qp), we have KW/W is compact. Hence K is compact as
well. Since K/K◦ is profinite and Qp has no nontrivial finite quotient, K = K◦,
i.e. K is connected. �

Remark 4.3. It follows from Pontryagin duality that Qp has a continuous homo-
morphism with dense image into the circle, and also has an injective continuous
homomorphism with dense image into the Pontryagin dual Q̂ of Q, which is a
connected compact group.

Lemma 4.4. Every nontrivial continuous homomorphism f : Qp → G of Qp to a
totally disconnected l.c. group G is proper, and has either a compact open kernel
or is an isomorphism to its (closed) image.

Proof. We can suppose that f has dense image, so G is abelian. Let U be a
compact open subgroup in G. Then f−1(U) is an open subgroup of Qp. If it
is all of Qp, then U = G and since U is profinite and Qp has no nontrivial
finite quotient, it follows that U = {1}. Otherwise, f−1(U) is a compact open
subgroup, so f is proper and in particular has closed image and is the quotient
map by some compact subgroup, giving the two possibilities. �

Lemma 4.5. Every continuous homomorphism f : Bp → G of the group Bp =
Qp op Z to a totally disconnected l.c. group G satisfies the following alternative:
either f is a topological isomorphism to its closed image, or f(Qp) is trivial.

Proof. If f(Qp) is nontrivial, then f is proper in restriction to Qp by Lemma 4.4.
Since the only compact subgroup of Qp that is normal in Bp is the trivial group,
it follows from Lemma 4.4 that the restriction of f to Qp is an isomorphism to
its closed image.

Let Ω be the normalizer of f(Qp) in G; this is a closed subgroup and there
is a unique continuous homomorphism ρ : Ω → Z such that the conjugation by
g ∈ Ω on f(Qp) multiplies the Haar measure by pρ(g). In restriction to Z, we see
that ρ ◦ f is the identity. It follows that f(Qp) is open in f(Bp) and that f is
proper. �

Proof of Proposition 4.1. Let f : M → G be an arbitrary continuous homomor-
phism to a compactly generated l.c. group G. Note that G/G◦ is a compactly
generated totally disconnected l.c. group. Therefore it has continuous proper
action on a connected graph of degree d, for some d, by Proposition 2.1(ii). By
Lemma 2.4, for every p > d, the restriction to Qp of the G-action on this graph
has an open kernel. Hence, by Lemma 4.5, the action of Qp on this graph is
trivial for all p > d.
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Let W/G◦ is the (compact) kernel of the G-action on the graph. Thus W is
connected-by-compact, and contains f(Qp) for all p > d. In view of Lemma 4.2,

this implies that for all p > d, the group f(Qp) is compact and connected. �

Remark 4.6. Proposition 4.1 and Lemma 4.4 together show that there is no in-
jective continuous homomorphism from M to any totally disconnected compactly
generated l.c. group. On the other hand, it admits an injective continuous ho-
momorphism (not proper!) to a compactly generated l.c. group, which can be
obtained as follows: start from the dense embedding Q ⊂ Qp; it induces a dense

embedding Qp ⊂ Q̂, where Q̂ is the Pontryagin dual of Q (this is a compact
connected group). The multiplication by p is an automorphism of Q and thus

induces a topological automorphism of Q̂, also given by multiplication by p. So
we obtain a continuous injective homomorphism M →

∏
p Q̂ o Z, where the

pth component of Z acts on the pth component of the compact group
∏

p Q̂ by
multiplication by p. By Theorem 1.1, the latter group embeds into a compactly
generated l.c. group.

5. Some groups of permutations

5.A. A non-embedding criterion.

Proposition 5.1. Let H be a topologically simple totally disconnected locally
compact group. Assume that H has a compact open subgroup K such that for
every k, the group K possesses, for some prime p > k, a closed subgroup topolog-
ically isomorphic to a non-trivial pro-p-group (e.g., K has some element of order
p). Then H admits no nontrivial continuous homomorphism into any compactly
generated locally compact group.

Proof. We use the criteria from Proposition 2.2 applied to H, in which we can
replace “nontrivial” by “faithful” since H is topologically simple. Thus we only
have to show:

(1) H has no faithful continuous action on any connected graph of bounded
degree;

(2) H has no faithful continuous representation into GLn(C) for any n.

The condition (2) is immediate as H has small nontrivial subgroups whereas
GLn(C) has none.

Now consider a continuous action of H on a connected graph of bounded degree,
say ≤ d. Fix a vertex x0. Then the stabiliser Kx0 of x0 in K is open, hence of
finite index in K. Therefore, the hypothesis implies that Kx0 , and hence also the
full stabiliser Hx0 , contains a non-trivial pro-p-subgroup L for some prime p > d.
On the other hand, Lemma 2.4 implies that L acts trivially on the graph, so (1)
holds. �
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5.B. Proof of Theorem 1.3. We here prove the continuous case of Theorem 1.3.
The case of abstract homomorphisms is postponed to §5.C.

There exist various sources of topologically simple groups satisfying the cri-
terion of Proposition 5.1 and, hence, the conclusions of Theorem 1.3. We shall
content ourselves with describing one of them, following a construction due to
Akin, Glasner and Weiss in [AGW08, §4]; let us point out that those examples
were independently obtained as part of a more general construction by Willis
[Wil07, §3].

The construction goes as follows. Fix a sequence u = (uk)k≥0 of integers greater
than 2. Define the graph G = G(u) (non-oriented, without self-loops) as a disjoint
union of complete graphs Gk on uk elements, whose vertex set is also denoted by
G(u). Let us call the height function h the function G → N mapping any
v ∈ Gk to k. Note that h completely characterizes the graph structure.

Given a self-map f : G → G, we call a vertex v ∈ Gu singular if h(f(v)) 6= v.
We call the self-map f almost regular if only finitely many vertices are singular.
If f is a permutation, we say that f is an almost automorphism of the graph
with height function (G, h) if both f and f−1 are almost regular. The group of
almost automorphisms of (G, h) is denoted by S (or S(u) if we need specify it).
Its subgroup of automorphisms of (G, h), i.e. those f preserving the height and
the graph structure, is denoted by K (or K(u)).

Note that K is naturally isomorphic to the product
∏∞

k=0 Sym(uk), which
makes it a compact group. The group S is endowed with the unique left-invariant
topology making K a compact open subgroup; this topology is obviously locally
compact and is a group topology, as checked in [AGW08, §4]. It is the union of
an increasing union of compact subgroups (Kn)n≥0, where Kn is defined as those
elements in S all of whose singularities and pairs of singularities lie in

⋃
i≤n Gi;

note that K0 = K and that Kn is topologically isomorphic to

Sym(u0 + · · ·+ un)×
∏

k≥n+1

Sym(uk).

Define K+
n as its closed subgroup

Alt(u0 + · · ·+ un)×
∏

k≥n+1

Alt(uk).

Note that the sequence (K+
n ) is increasing; we define S+, as an abstract group,

as the union
⋃

n≥0 K+
n . Endow it with the left-invariant topology making K+

0 a
compact open subgroup. For the same reason as S, this is a group topology.

Finally, we define A < S and A+ < S+ as the subgroups consisting of the
finitary permutations, i.e. the permutations with finite support. Clearly A is
the group of all finitary permutations on the vertices of G, while A+ is the index
two subgroup of A consisting of the alternating finitary permutations.

Remark 5.2. It is easily seen that A+ (resp. A) is dense as a subgroup of S+

(resp. A). Moreover A+ is also dense in S: indeed, since A is dense, it is enough
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to show that any transposition (x y) in S can be approximated by a sequence of
elements of A+. This is indeed the case, using a sequence of double transpositions
(x y)(xk yk) with xk, yk distinct elements of the same height tending to infinity
with k.

This implies in particular that the embedding of S+ into S, which is continuous,
is not closed: indeed, its image is a proper subgroup which is dense since it
contains A+.

Remark 5.3. In [AGW08], it is shown that S has a dense conjugacy class, under
the assumption that lim uk = ∞. The precise statement of [AGW08, Theorem
4.4] actually shows that such a conjugacy class can be found inside S+, and also
shows that S+ itself admits a dense conjugacy class.

Let us show the following related but independent result.

Proposition 5.4. Every non-trivial normal subgroup of S+ (resp. S) contains
A+, and is thus dense. In particular S+ and S are both topologically simple.

Note that S+ and S are not abstractly simple, since A+ is a proper dense
normal subgroup in both.

Proof. Let s be a nontrivial element in S+ (resp. S) and t ∈ A+. Let N be the
normal subgroup generated by s. For some n ≥ 2 (this ensures u0 + · · ·+un ≥ 5),
the element s belongs to Kn and t has support in the finite set X =

⋃n
i=0 Gi

and can thus be viewed as an element of Alt(X). The commutator s′ of s and a
suitable element of Alt(X) is a nontrivial element of N ∩ Alt(X). By simplicity
of Alt(X), it follows that t ∈ N . �

We deduce the following corollary, which implies Theorem 1.3.

Corollary 5.5. If (uk) is unbounded, the groups S(u)+ and S(u) admit no non-
trivial continuous homomorphism into any compactly generated l.c. group.

Proof. We have to check that the hypotheses of Proposition 5.1 are fulfilled.
The topological simplicity is ensured by Proposition 5.4. The local condition
also holds, because since (uk) is unbounded, every neighbourhood of the identity
contains finite symmetric groups of all orders and thus contains elements of all
possible finite orders. �

5.C. Abstract homomorphisms of S and S+. We start with the following
converse to Corollary 5.5.

Proposition 5.6. If (uk) is bounded, then S(u)+ and S(u) are both embeddable
as open subgroups in compactly generated l.c. groups, indeed topologically finitely
generated.

Proof. Consider a permutation σ of G preserving the partition by the height,
with finitely many orbits. Then σ normalizes S and S+, as well as K and K+.
Therefore the semidirect products S o 〈σ〉 and S+ o 〈σ〉 are well-defined. They



ON EMBEDDINGS INTO COMPACTLY GENERATED GROUPS 11

are totally disconnected locally compact groups containing S (resp. S+) as open
subgroups. Moreover they act naturally by permutations of G. The subgroup
generated by A+ and σ is finitely generated (when σ is transitive, this group was
introduced by B.H. Neumann [Neu37, p. 127]). Since A+ is dense in S and S+,
it follows that S o 〈σ〉 and S+ o 〈σ〉 are topologically finitely generated, hence
compactly generated. �

Using two theorems of S. Thomas, it is possible to improve Corollary 5.5 in
case the sequence (uk) tends to infinity.

Theorem 5.7. Assume that lim uk = ∞. Then S(u)+ admits no nontrivial
abstract homomorphism into any compactly generated l.c. group.

Proof. We invoke the criterion from Proposition 2.2, applied to the group S+ =
S(u)+ endowed with the discrete topology. Thus, it is enough to show that:

(1) S+ has no nontrivial action on any connected graph of bounded degree;
(2) S+ has no nontrivial representation into GLn(C).

Both conditions can be checked with the help of the following result. Consider
the subgroup Lk =

∏
j≥k Sym(uj) of S+. Observe that S+ is generated by the

alternating finitary group A+ and Lk (because A+ is dense), so it follows from
Proposition 5.4 that S+ is normally generated by Lk.

Next, we use a result of S. Thomas [Tho99, Theorem 1.10] that every (ab-
stract) subgroup of at most countable index in Lk is open. This immediately
shows that every action of S+ on a graph of at most countable valency is contin-
uous, so (1) follows from the proof of Corollary 5.5 (which, through the proof of
Proposition 5.1, discards the existence of a nontrivial continuous action on any
connected graph of bounded valency).

Suppose S+ has a non-trivial linear representation ρ into some GLd(C) over
a field. Let mi be the dimension of the smallest nontrivial representation of the
alternating group Alt(i); then mi tends to infinity (it can be shown that mi = i−1
for i ≥ 7, but a nice argument based on commutation [Abé06] gives a completely
elementary lower bound '

√
i). Fix k so that muj

> d for all j ≥ k. Since Lk

normally generates S+, the representation ρ is non-trivial in restriction to Lk.
By another result of S. Thomas [Tho99, Theorem 2.1], any non-trivial subgroup
of GLd(C) admits a subgroup of at most countable index. Apply this to ρ(Lk)
and let H be its inverse image in Lk. By the choice of k, the kernel of ρ contains
the direct sum

⊕
j≥k Alt(uj), which is dense. So H is dense; on the other hand

the first-mentioned result of Thomas implies that H is open. We thus reach a
contradiction. �

We have seen in Corollary 5.5 that unboundedness of the sequence (uk) was
sufficient to guarantee the absence of non-trivial homomorphisms of S(u) or S(u)+

to a compactly generated locally compact group. In contrast to this, the next
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result shows that the hypothesis that (uk) tends to infinity in Theorem 5.7 cannot
be weakened to the unboundedness of the sequence.

Proposition 5.8. The quotient of the group S (resp. S+) by its subgroup of
finitary permutations can be identified with∏

j

Sym(uj)/
⊕

j

Sym(uj)
(
resp.

∏
j

Alt(uj)/
⊕

j

Alt(uj)
)
.

In particular,

(1) S has an uncountable abstract abelianization and has proper subgroups of
finite index (such subgroups are necessarily dense).

(2) S+ has proper subgroups of finite index if and only if lim inf uk < ∞. It has
a non-trivial (resp. uncountable) abelianization if and only if lim inf uk ≤
4.

Proof. The first statement follows from the fact that S = AK, so S/A = AK/A =
K/(A ∩K); the argument for S+ is similar.

Denoting by Cp the cyclic group of order p, the signature map induces a canon-
ical surjection ∏

j

Sym(uj)/
⊕

j

Sym(uj) → CN
2 /C

(N)
2 ,

proving that S has an uncountable abelianization, and, by taking suitable quo-
tient, admits subgroups of index 2, proving (1). (Observe that S+ has index 2 in

the kernel of the surjection S → CN
2 /C

(N)
2 .)

Concerning S+, first assume that lim uk = ∞. If S+ has nontrivial finite
quotients, then it admits a nontrivial linear representation, contradicting The-
orem 5.7. Also observe that if for some k, uj ≥ 5 for j ≥ k, then since S+ is
generated by the perfect groups A+ and Lk, it is also perfect.

Conversely, assume lim inf uk < ∞. Picking a subsequence on which uk is
constant, say equal to m ≥ 3, we obtain a surjective homomorphism

S+ → Alt(m)N/Alt(m)(N).

Taking the limit with respect to a non-principal ultrafilter yields a nontrivial
finite quotient. Also if lim inf uk ≤ 4, then S+ admits either Alt(3)N/Alt(3)(N)

or Alt(4)N/Alt(4)(N) as a quotient, and thus admits either CN
2 /C

(N)
2 or CN

3 /C
(N)
3

as an uncountable abelian quotient. �

6. Proof of Theorem 1.4

Our first example is the following: let Q̂ be the Pontryagin dual of the discrete
additive group Q. So Q̂ is a connected, torsion-free compact group, and by
Pontryagin duality, its automorphism group can be identified with the group of
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automorphisms of the group Q, namely the multiplicative group Q×. The first
example is then

H1 = Q̂ o Λ,

where Λ is an arbitrary infinitely generated subgroup of Q× endowed with the
discrete topology (recall that Q× is isomorphic to the product of its subgroup of
order 2 and of a free abelian group of countable rank).

Our second example is very similar in the construction. Fix a prime p. Recall
that the group Z×p is uncountable (it is known to be isomorphic to the product
of a finite abelian group with Zp). Let Λ be a countable, infinitely generated
subgroup of Z×p , and endow Λ with the discrete topology. Our second example is

H2 = Zp o Λ.

A third example is
H3 = R o Λ,

where Λ is a countable infinitely generated subgroup of R; this is a Lie group.

Proposition 6.1. If an l.c. group G admits an isomorphic copy of Hi (i = 1, 2, 3)
as an open subgroup, then it admits a discrete quotient which is an infinitely
generated abelian group. In particular G is not compactly generated.

Proof. Since the identity component H◦ = Q̂ is open in H, it is open in G and
thus H◦ = G◦ is open and normal in G. Thus the action by conjugation of G on
G◦ = Q̂ defines a continuous homomorphism φ : G → Q×, which is the identity
on Λ and trivial on G◦. So Ker(φ) is open and the image of φ contains Λ and
is thus an infinitely generated abelian group. This concludes the proof of the
proposition for H1. The proof for H3 is similar.

Let us now deal with H2; since Zp is not connected, the previous argument does
not work. The subgroup Zp being compact and open in G, it is commensurated by
G; its abstract topological commensurator is the group Q×

p , so that G naturally
admits a continuous homomorphism to Q×

p , whose kernel contains Zp. Let us

check it directly: observe that if g ∈ G, then there exists n such that g(pnZp)g
−1 ⊂

Zp, and then there exists a unique λ(g), not depending on n, such that the
conjugation by g, in restriction to pnZp, coincides with the multiplication by
λ(g). An immediate verification shows that λ is a homomorphism. In restriction
to Λ, the map λ is the identity, and Ker(λ) is open in G since it contains Zp.
Thus G/Ker(λ) is a discrete abelian group containing Λ and therefore fails to be
finitely generated. �

In order to conclude the proof of Theorem 1.4, it remains to show that those
examples admit embeddings as closed subgroups into some compactly generated
l.c. groups.

For H2, such an embedding can be obtained as follows. First embed Λ into
a finitely generated group Γ (this is possible by Lemma 3.1). Thus Λ can be
diagonally embedded as a discrete subgroup into Z×p ×Γ. This embedding extends
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to a continuous embedding of Zp oΛ into (Zp oZ×p )×Γ. This second embedding
is continuous and injective; moreover it is proper since it is a discrete embedding
in restriction to the cocompact subgroup Λ.

An obvious similar construction works for the third example R o Λ. However,
both embeddings rely on the fact that Λ is contained in a compactly generated
l.c. group of automorphisms of the normal subgroup (Zp or R). For H1, we use
the following topological version of a classical theorem of Krasner and Kaloujnine
[KK51].

Recall that given two groups K and Q, the unrestricted wreath product
K ō Q is the semidirect product KQ o Q, where Q acts on KQ by shifting on the
left, namely q · f(r) = f(q−1r). Assume now that K is a topological group, and
Q is a discrete group. Then the product topology on KQ × Q makes K ō Q a
topological group.

Theorem 6.2. For every l.c. group H that is an extension of a compact normal
subgroup K by a discrete quotient Q, there is an embedding of H as a closed
subgroup the unrestricted wreath product K ō Q = KQ o Q.

Proof of Proposition 1.5. Let Γ be a finitely generated group containing Q. By
Theorem 6.2, there is a closed embedding H 6 K ō Q. By the definition of
the unrestricted wreath product, the embedding Q 6 Γ extends to a closed
embedding K ō Q 6 K ō Γ. �

Proof of Theorem 6.2. We begin by a general construction, not relying on the
group topologies. Let π : H → Q be a surjective group homomorphism with
kernel K. We will define, in a canonical way, a set X = X(π) with commuting
actions of K ō Q and H, such that the (K ō Q)-action is simply transitive and the
H-action is free. Given a choice of x ∈ X, this yields a unique injective homomor-
phism Fx : G → K ō Q, mapping g ∈ G to the unique element s = Fx(g) ∈ K ō Q
such that gx = s−1x. The latter homomorphism depends on the choice of x, but
is canonically defined up to post-composition by inner automorphisms of K ō H.

The set X is defined to be the set of functions f : Q → H such that π ◦ f is a
left translation of Q, by some element θ(f). Note that X 6= ∅, indeed it contains
the set of set-theoretic sections Q → H of π, which are the elements f in X such
that θ(f) = 1.

Let KQ act on X as follows. If u ∈ KQ, define

u · f(q) = f(q)u(q)−1.

If f ∈ X then u · f ∈ X and θ(u · f) = θ(f), because

π ◦ (u · f)(q) = π(f(q)u(q)−1) = π(f(q)) = θ(f)q.

This is clearly an action.
Besides, let Q act on X as follows. If r ∈ Q, define

r · f(q) = f(r−1q).
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Note that π(r ·f(q)) = π(f(r−1q)) = θ(f)r−1q, so r ·f ∈ X and θ(r ·f) = θ(f)r−1.
We next claim that these actions define an action of the semidirect product

K ō Q on X. To verify the claim, we need to show that for all f ∈ X, u ∈ KQ

and r ∈ Q, we have
v · f = r · (u · (r−1 · f)),

where v ∈ KQ is defined as v : q 7→ u(r−1q). In other words we have v = rur−1

in the wreath product K ō Q. Given q ∈ Q, we have

v · f(q) = f(q)v(q)−1 = f(q)u(r−1q)−1.

On the other hand, we have

r · (u · (r−1 · f))(q) = (u · (r−1 · f))(r−1q)
= (r−1 · f)(r−1q)u(r−1q)−1

= f(rr−1q)u(r−1q)−1

= f(q)u(r−1q)−1,

so that v · f(q) = r · (u · (r−1 · f))(q) for all q ∈ Q, as desired.
A straightforward verification shows that the action of K ō Q on X that has

just been defined is simply transitive.
Finally, the H-action on X is defined as follows: if g ∈ H and f is a function

Q → H, define
g · f(q) = gf(q).

If f ∈ X and g ∈ H and q ∈ Q, we have

(π ◦ (g ◦ f))(q) = π((g ◦ f)(q)) = π(gf(q)) = π(g)π(f(q)) = π(g)θ(f)q,

so g · f ∈ X and θ(g · f) = π(g)θ(f).
We immediately see that the action of H, which is free, commutes with both

the action of KQ and the action of Q, and thus commutes with the action of
K ō Q. So we have, for x ∈ X, an injective homomorphism Fx : H → K ō Q as
defined above.

Assume now that K is a topological group, while Q is still assumed to be
discrete, so that K ō Q is a topological group. Endow HQ with the product
topology, and endow X ⊂ HQ with the topology induced by inclusion, namely
the pointwise convergence topology. It is straightforward that the actions of
K ō Q and H on X are continuous and that orbital maps K ō Q → X are
homeomorphisms. It follows that the homomorphism Fx is continuous.

Let us now assume that K is compact, so that K ō Q and X are both locally
compact. (As soon as Q is infinite, the converse holds, namely: K ō Q is locally
compact if and only if K is compact.) We claim that the homomorphism Fx is
then proper. Checking this amounts to verify that the H-action on X is proper.
Indeed, let U1, U2 be non-empty compact subsets of X and let us check that
I = {g ∈ H : gU1 ⊂ U2} has compact closure. By compactness, θ(U2) is finite,
and therefore we deduce that π(I) is finite. Since π is proper, it follows that I
has compact closure. �
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