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Abstract. In this note, we study primitive symmetric spaces,
namely discrete symmetric spaces whose main group acts
primitively. We give three families of examples of such spaces,
and we prove that every primitive symmetric space belongs to
one of these families.

1 Introduction

(1.1) In the appendix of [Bru77], it is proved that if G is a simple Lie group which is
connected and of finite center, then any maximal compact subgroup K of G is abstractly
maximal. In other words, this means that the group G acts primitively on the symmetric
space X = G/K, namely that there is no non trivial partition of X which is invariant
under the action of G. In this note, we are interested in a possible converse for this
statement, and propose an answer to the following question : What can we say about the
group G if we assume that it acts primitively on a symmetric space X = G/K ? It turns
out that this question may be tackled in a very general context, which is much wider than
the strict framework of differential geometry. Let us introduce some definitions in order
to make the statements more precise.

(1.2) We define a discrete symmetric space to be a set of points X with a mapping
φ : X → Sym(X) satisfying the following conditions:

(i) x is a fixed point of φx,
(ii) φx has order 2,
(iii) φx ◦ φy ◦ φx(z) = φφx(y)(z).

Each permutation φx is called the symmetry corresponding to the point x. The group
G generated by all of the symmetries is called the main group of the discrete symmetric
space (X,φ), and the group D generated by all of the products of two symmetries is called

∗Aspirant du Fonds National de la Recherche Scientifique

AMS subject classification codes (2000) : 20B15, 53C35, 52C99.

Keywords: symmetric space, primitive group, simple group, involution.

1



the transvection group. A (discrete) symmetric space is called primitive if its main
group acts primitively ; in particular G is transitive.

This definition of a discrete symmetric space is actually obtained from the usual defini-
tion of a symmetric space (see for example [Loo69], p. 63) by just omitting the requirement
that X is a manifold. The concept so obtained is very rough ; primitivity is introduced
as a possible way of refinement.

(1.3) Observe, as a consequence of the aforementioned result of Brun, that a symmetric
space, in the usual sense, which is of non-compact type and whose main group is a simple
Lie group, must be primitive. Nevertheless, it should be noted that a usual symmetric
space may admit a partition in blocks of imprimitivity, given for example by an equivariant
fibration when it exists, or by pairs of antipodal points in the case of the sphere. However,
it follows from the definition that such blocks are necessarily of empty interior.

Before stating the main result, we still need additional terminology.

(1.4)A morphism between two discrete symmetric spaces (X,φ) and (Y, ψ) is a mapping
α : X → Y such that α ◦ φx = ψα(x) ◦ α for every x ∈ X. Automorphisms and
isomorphisms are defined as usual. If X ′ ⊂ X is invariant under φx′ for all x′ ∈ X ′ then
(X ′, φ|X′) is called a subspace of (X,φ).

The main result of this paper is the following proposition. The proof of it is naturally
in the spirit of the O’Nan-Scott theorem (see for example Chapter 4 in [DM96]). However,
note that the groups considered here are possibly infinite.

(1.5)Main theorem. A group G is isomorphic to the main group of a primitive symmet-
ric space if, and only if, G possesses an involution σ and satisfies the following properties:

(i) Z(G) = 1,
(ii) 〈σG〉 = G,
(iii) CG(σ) is a maximal subgroup of G,

where σG denotes the conjugacy class of σ in G.
For such groups, one of the following assertions holds.

(P1) G is simple;

(P2) G is a semi-direct product G = 〈σ〉 n D, where D is simple and σ is an outer
automorphism of order 2 of D;

(P3) G is a semi-direct product G = 〈σ〉nD, where D = S×S is a direct product of two
copies of a non-abelian simple group S; the action of σ on D is described by

σ : D → D : (g, h) 7→ (h, g).

Moreover, for each abelian simple group D, there is, up to isomorphism, a unique
primitive symmetric space with main group of type (P2) and transvection group isomorphic
to D.

Similarly, for each non-abelian simple group S, there is, up to isomorphism, a unique
primitive symmetric space (X,φ) with main group of type (P3) and transvection group
isomorphic to S × S. Furthermore, every primitive symmetric space with transvection
group isomorphic to S, is isomorphic to a subspace of (X,φ).
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2 Preliminaries

In this section, we collect preliminary observations, which will be used in the proof of the
main theorem, given in the next section.

(2.1) Lemma. The mapping φ : X → Sym(X) is injective.

Proof. Fix a point e ∈ X and define ∆ = {x ∈ X|φx = φe}. Then it readily
follows that ∆ is a block, namely that ∆g = ∆ or ∆g ∩∆ = ∅ for each g ∈ G. Therefore,
the primitivity of G implies that ∆ is reduced to a single point, as was to be proved. �

Since it is clear by definition that the set of all symmetries is a conjugacy class of
involutions of the main group G, this lemma allows us to identify each point with the
corresponding symmetry. Axiom (1.2)(iii) insures that the structure of discrete symmetric
space is included in the group structure of G. More precisely, we have the following result.

(2.2) Lemma. Let G be the main group of a primitive symmetric space (X,φ), and fix
a point e ∈ X. Let Q = {φx|x ∈ X} ⊂ G. Then Q is a conjugacy class of involutions
of G. By defining ψx to be the restriction to Q of the conjugation by φx in G, we have
(X,φ) ' (Q,ψ). Moreover Z(G) = 1 and CG(φe) is a maximal subgroup of G.

Conversely, let G be a group and suppose that G possesses an involution σ and
satisfies Properties (i), (ii) and (iii) as in the statement of the main theorem. For each
x ∈ X, define φx to be the restriction to X of the conjugation by x in G. Then (X,φ) is
a primitive symmetric space, and its main group is isomorphic to G.

Proof. Assume that G is the main group of the primitive symmetric space (X,φ).
Axiom (1.2)(iii) and Lemma (2.1) insure that the action of G on X is equivalent to its
action on Q by conjugation, and thus that (X,φ) ' (Q,ψ). It follows that Z(G) is the
kernel of the action of G on X, whence Z(G) = 1. The maximality of C(G)(φx) for
x ∈ X is a consequence of the primitivity of G (see [Hal76], Theorem 5.6.1 pp. 64-65).

The converse statement of the lemma follows by similar arguments. �

Thus, a primitive symmetric space is always identifiable with a conjugacy class of
involutions in the main group. The following result highlights subsets of the transvection
group which may be canonically identified with the symmetric space as well.

(2.3) Lemma. Fix a point e ∈ X. Define tx = φxφe ∈ D. The set {tx|x ∈ X} generates
D. Moreover, we have the following equivalence:

φx(y) = z ⇔ txt
−1
y tx = tz. (∗1)

Proof. The first statement is a direct consequence of the definition of D and the
following equality:

φxφy = φxφeφφe(y)φe.

For the second statement, we compute that txt
−1
y tx = tφx(y). The result now follows from

Lemma (2.1). �

Lemma (2.2) makes it easy to produce examples of primitive symmetric spaces, starting
from certain abstract groups.
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(2.4) Example 1. Let G be a simple group, and suppose that G possesses an involution
σ such that CG(σ) is a maximal proper subgroup of G. Clearly, G is non-abelian, whence
Z(G) = 1. Moreover, a simple group is generated by anyone of its nontrivial conjugacy
classes. Therefore, it follows from (2.2) that the conjugacy class of σ in G has a canonical
structure of primitive symmetric space, whose main group coincides with the transvection
group and is isomorphic to G. The main group is thus of type (P1), with the notations
of the main theorem.

It should be pointed out that not all of the simple groups possess an involution with
maximal centralizer. Indeed, the group Alt(5) is already a counter-example. On the other
hand, it may be checked (see for example in [CCN+85]) that each sporadic finite simple
group possesses such an involution, except the Mathieu Groups M23 and M24.

(2.5) Example 2. Let D be a simple group, and suppose that D possesses an outer
automorphism τ of order 2. Set G := 〈τ〉nD and suppose also that CG(τ) is a maximal
subgroup of G. It is easy to see that the conjugacy class X of τ in G generates G. Now it
is a consequence of Lemma (2.2) and Lemma (2.6) below, that X has a canonical structure
of primitive symmetric space. The transvection group of it is isomorphic to D, the main
group is isomorphic to G, and we have [G : D] = 2. Here, the main group has type (P2).

Notice also that a sufficient condition for the maximality of CG(τ) in G is that
Fix(τ) = CD(τ) is a maximal subgroup of D.

(2.6) Lemma. Let D be a simple group of order at least 3, and let τ be an involutory
automorphism of D. Set G := 〈τ〉 n D. Then Z(G) = 1 if, and only if, τ is an outer
automorphism of D.

Proof. If D is abelian, then it is cyclic of odd prime order, and it possesses an
unique involutory automorphism τ , which is outer and given by g 7→ g−1. One easily
computes that Z(G) = 1 as required.

Suppose now that τ is inner, namely that it corresponds to the conjugation by the
involution t ∈ D. Then, it is easily seen that (τ, t) 6= 1 is central in G. Conversely, suppose
that (σ, g) is central in G, where σ ∈ {1, τ} and g ∈ D. Since D is not abelian, we must
have σ = τ . Expressing the fact that (τ, g) centralizes (1, h) for each h ∈ D, one obtains
hτ = ghg−1, which means that τ is inner. �

(2.7) Example 3. In [Loo69] (see p. 65), a canonical process for producing symmetric
spaces from Lie groups, is given. This construction has a straightforward adaptation to
our situation.

Let X be a group of order at least 3, and define φ : X → Sym(X) by

φx(y) = xy−1x. (∗2)

A direct computation shows that (X,φ) is a discrete symmetric space. Let G be its main
group and D its transvection group. We have the following.

(2.8) Lemma. (X,φ) is primitive if, and only if, X is simple. In that case, we have
[G : D] = 2, and either X is abelian, G has type (P2) and D ' X, or X is non-abelian,
G has type (P3) and S ' X.

Proof. Assume X is not simple. Let N be a nontrivial normal subgroup of X.
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Then for all x, y ∈ X, we have φx(Ny) = xy−1Nx = Nxy−1x, and the cosets of N are
thus permuted among themselves by G. This contradicts the primitivity of X.

Now assume that X is simple. Choose 1 ∈ X as base point and define tx = φxφ1. We
have tx(y) = xyx, and by Lemma (2.3), the tx’s generate D.

In a first case, suppose that X is abelian. Then it is cyclic of odd prime order, and
tx(y) = x2y. Therefore, D consists of all of the left translations of X, and thus D ' X,
namely D is simple. Since X has no nontrivial subgroups, it follows that D is primitive,
and so is also G. Here, G has even order, while the order of D is odd, whence D is a
proper subgroup of G and we have indeed [G : D] = 2.

In a second case, suppose that X is not abelian. Notice that

tx−1y−1txty(z) = (x−1y−1xy)z

for each z ∈ X. Therefore, L = 〈tx−1y−1txty|x, y ∈ X〉 ≤ D consists of all of the left
translations of X by elements of the derived group X ′. Since X is simple and non-
abelian, we have X = X ′ and all of the left translations of X are contained in L. Notice
also that L / D. Similarly, R = 〈tx−1y−1tytx|x, y ∈ X〉 / D is the group of all of the right
translations of X. One easily checks that L ∩ R = 1, LR = D and L ' X ' R whence
D = L × R ' X × X. Suppose now that ∆ ⊂ X is a proper block of imprimitivity for
G which contains 1 ∈ X. Then ∆ is invariant under the left translations by its elements,
and hence it is a subgroup of X. On the other hand, the group D1 = {g ∈ D|g(1) = 1}
also stabilizes ∆. But it is clear that if z ∈ X then cz : X → X : x 7→ zxz−1 belongs
to D = L × R since cz = lz ◦ rz−1 , where lz (resp. rz) denotes the left (resp. right)
multiplication by z. Therefore, the invariance of ∆ under D1 implies that the subgroup ∆
of X is normal. Since X is simple and ∆ 6= X , we have ∆ = 1 and so (X,φ) is primitive.
Finally, notice that Lφ1 = R, whence L is not normal in G, while we already know it is
normal in D. Hence, D is proper subgroup of G and we have indeed [G : D] = 2. This
completes the proof. �

(2.9) Notice that it is a consequence of (∗1) in Lemma (2.3) and (∗2) in (2.7) that every
primitive symmetric space with transvection group isomorphic to X, is isomorphic to a
subspace of (X,φ).

3 Proof of the main theorem

The first assertion of the theorem is a consequence of Lemma (2.2).
For the other assertions, we suppose that G is the main group of a primitive symmetric

space (M,φ) with transvection group D.
Assume that G has not type (P1), namely that G is not simple. Let N be a nontrivial

normal subgroup of G. Let x ∈ X. Since N 6= 1 is normal in G, it does not stabilize x
and hence, N must be transitive on X by the primitivity of G. Moreover φx 6∈ N because
(φx)

G generates G and N is properly contained in G. By the transitivity of N , we have
G = 〈φx〉N , using again the fact that (φx)

G generates G. Therefore

G/N = 〈φx〉N/N ' 〈φx〉/(N ∩ 〈φx〉) = 〈φx〉.

This shows that N has index 2 in G. But now, φyφz ∈ N for all y, z ∈ X and thus N = D
is the transvection group of G. Hence, we have proved that the transvection group is the
only nontrivial normal subgroup of G.
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Suppose now that the transvection group D is abelian. Then for all x, y, z ∈ X, we
have φzφyφzφx = φzφxφzφy and so (φyφz)

φx = φzφy. This implies that gφx = g−1 for each
g ∈ D and each x ∈ X. Therefore, each subgroup of D is normal in G, and so D has no
nontrivial subgroups by the last assertion of the previous paragraph. Hence D is simple.
Obviously, D has order at least 3, whence D is cyclic of odd prime order. Since G has
even order, we have [G : D] = 2 and G is of type (P2), with σ = φe for some fixed point
e ∈ X. The fact that in this case, the discrete symmetric space is uniquely determined by
its transvection group follows from the fact that a cyclic group of odd prime order has a
unique automorphism of order 2. Moreover, for each abelian simple group D of order at
least 3, we have already constructed a discrete symmetric space with transvection group
isomorphic to D (see (2.7)).

We now assume that D is not abelian.
If the transvection group D is simple then Lemma (2.6) shows that φx is an outer

automorphism of D for each point x, and thus that G has type (P2), with σ = φe for
some fixed point e ∈ X.

We now suppose that D is not simple. Let L be a nontrivial normal subgroup of D.
Since D is the only non trivial normal subgroup of G, we see that L is not normal in
G. On the other hand, D has index 2 in G and normalizes L, which shows that L has
exactly one distinct conjugate R in G. Clearly, R /D. Moreover, we have L ∩R / G and
so L∩R = 1. Similarly, as {L,R} is a conjugacy class of subgroups of G, we have LR/G
and so LR = D. This shows that D = L × R. Since D is not abelian, L ' R is not
abelian.

Now let S 6= 1 be a normal subgroup of L. Since S is centralized by R, it is normal in
D = L×R, and we may repeat the arguments of the preceding paragraph to obtain that
D = S × T where T / R is the unique subgroup of G distinct to S and conjugate to it in
G. Hence we must have S = L and T = R, which means that L and R are isomorphic
copies of a non-abelian simple group S.

We have thus shown that D = L × R, and that conjugation by φx switches L and
R for each x ∈ X. Since g ∈ D fixes the point x if, and only if, gφx = g, we deduce
that L ∩ Gx = 1 = R ∩ Gx, namely that both L and R act semi-regularly on X. On
the other hand, for x ∈ X, the intersection L(x) ∩ R(x) of the orbits of x under L and
R respectively, is a block of imprimitivity for the action of G on X. We must thus have
L(x) ∩R(x) = X, and both L and R are sharply transitive on X.

We now fix a point e ∈ X. Each element d ∈ D can be written in a unique way as a
product d = ghφe for some g, h ∈ L. Therefore, by choosing σ = φe and by writing ghφe

as (g, h), we have (g, h)σ = (h, g).
Moreover, for each g ∈ L, φe commutes with ggφe , which means that ggφe(e) = e and

so that gφe(e) = g−1(e). Therefore, for all x, y ∈ L we have

φx(e)(y(e)) = xφex
−1y(e)

= x(x−1y)φe(e)
= xy−1x(e).

This shows that (X,φ) is isomorphic to the primitive symmetric space constructed on
the simple group L as in (2.7), and hence that if the main group has type (P3), then
the primitive symmetric space is determined up to isomorphism by the simple group S.
The fact that S is arbitrary in the class of non-abelian simple groups follows from the
construction of (2.7).

It just remains to prove that every primitive symmetric space with transvection group
isomorphic to S, is isomorphic to a subspace of (X,φ). But this was pointed out in (2.9).
�
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