REGULAR ELEMENTS IN CAT(0) GROUPS
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ABSTRACT. Let X be a locally compact geodesically complete CAT(0) space and
I" be a discrete group acting properly and cocompactly on X. We show that I'
contains an element acting as a hyperbolic isometry on each indecomposable de
Rham factor of X. It follows that if X is a product of d factors, then I' contains
VA

Let X be a proper CAT(0) space and I" be a discrete group acting properly and
cocompactly by isometries on X. The flat closing conjecture predicts that if X con-
tains a d-dimensional flat, then I' contains a copy of Z? (see [Gro93, Section 6.Bj]).
In the special case d = 2, this would imply that I" is hyperbolic if and only if it does
not contain a copy of Z2. This notorious conjecture remains however open as of to-
day. It holds when X is a real analytic manifold of non-positive sectional curvature
by the main result of [BS91]. In the classical case when X is a non-positively curved
symmetric space, it can be established with the following simpler and well known
argument: by [BLI3l Appendix], the group I' must contain a so called R-regular
semisimple element, i.e. a hyperbolic isometry v whose axes are contained in a
unique maximal flat of X. By a lemma of Selberg [Sel60], the centraliser Z1-(y) is a
lattice in the centraliser Zyx)(7). Since the latter centraliser is virtually R? with
d = rank(X), one concludes that I' contains Z¢, as desired.

It is tempting to try and mimick that strategy of proof in the case of a general
CAT(0) space X: if one shows that I contains a hyperbolic isometry ~ which is
maximally regular in the sense that its axes are contained in a unique flat of
maximal possible dimension among all flats of X, then the flat closing conjecture
will follow as above. The main result of this note provides hyperbolic isometries
satisfying a weaker notion of regularity.

Theorem. Assume that X is geodesically complete.
Then I' contains a hyperbolic element which acts as a hyperbolic isometry on each
indecomposable de Rham factor of X.

Every CAT(0) space X as in the theorem admits a canonical de Rham decom-
position, see [CM09a, Corollary 5.3(ii)]. Notice that the number of indecomposable
de Rham factors of X is a lower bound on the dimension of all maximal flats in
X, although two such maximal flats need not have the same dimension in general.
As expected, we deduce a corresponding lower bound on the maximal rank of free
abelian subgroups of I'.

Corollary 1. If X is a product of d factors, then I contains a copy of Z°.
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We believe that those results should hold without the assumption of geodesic
completeness; in case X is a CAT(0) cube complex, this is indeed so, see [CS11] §1.3].

The proof of the theorem and its corollary relies in an essential way on results from
[CM09a] and [CMO9b]. The first step consists in applying [CM09al Theorem 1.1},
which ensures that X splits as

X2RIXMxY; x-xY,,

where M is a symmetric space of non-compact type and the factors Y; are geodesi-
cally complete indecomposable CAT(0) spaces whose full isometry group is totally
disconnected. Moreover this decomposition is canonical, hence preserved by a fi-
nite index subgroup of Is(X) (and thus of I'). The next essential point is that, by
[CMO9D), Theorem 3.8], the group I' virtually splits as Z? x I, and the factor I"
(resp. Z%) acts properly and cocompactly on M x Y} x - --x Y, (resp. R?). Therefore,
our main theorem is a consequence of the following.

Proposition 2. Let X = M x Y; x --- xY,, where M is a symmetric space of
non-compact type and Y; is a geodesically complete locally compact CAT(0) space
with totally disconnected isometry group.

Any discrete cocompact group of isometries of X contains an element acting as
an R-regular hyperbolic element on M, and as a hyperbolic element on'Y; for alli.

As before, this yields a lower bound on the rank of maximal free abelian subgroups
of I', from which Corollary [l follows.

Corollary 3. Let X = M xY; x---xY, be as in the proposition. Then any discrete
cocompact group of isometries of X contains a copy of Z*"kM)+a,

Proof. Let I' < Is(X) be a discrete subgroup acting cocompactly. Upon replacing
I' by a subgroup of finite index, we may assume that I' preserves the given product
decomposition of X (see [CM09al Corollary 5.3(ii)]). Let v € T" be as in Proposition 2]
and let vy (resp. 7;) be its projection to Is(M) (resp. Is(Y;)). Then Min(vyy) =
Rrk(M) and for all i we have Min(y;) = R x C; for some CAT(0) space C;, by
[BH99, Theorem I1.6.8(5)]. Hence the desired conclusion follows from the following
lemma. 0

Lemma 4. Let X = X; x---x X, be a proper CAT(0) space and I a discrete group
acting properly cocompactly on X. Let also v € T' be an element preserving some
d;-dimensional flat in X; on which it acts by translation, for all 1.

Then I' contains a free abelian group of rank dy + - - - + d,,.

Proof. By assumption v preserves the given product decomposition of X. We let ~;
denote the projection of v on Is(X;). Observe that

Min(y) = Min(y;) x -+ x Min(y,).

By hypothesis, we have Min(v;) & R% x C; for some CAT(0) space C;. Therefore
Min(y) 2 R+ x €y x - - - x C,. By [Rua0ll, Theorem 3.2] the centraliser 2 (7)
acts cocompactly (and of course properly) on Min(v). Therefore, invoking [CMO09b),
Theorem 3.8], we infer that Z4++% is a (virtual) direct factor of 27 (v). O

It remains to prove Proposition P2 We proceed in three steps. The first one
provides an element vy € I' acting as a hyperbolic isometry on each Y;. This
combines an argument of E. Swenson [Swe99, Theorem 11] with the phenomenon of
Alexandrov angle rigidity, described in [CM09al Proposition 6.8] and recalled
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below. The latter requires the hypothesis of geodesic completeness. The second step
uses that I' has subgroups acting properly cocompactly on M, and thus contains an
element v, acting as an R-regular isometry of M by [BL93]. The last step uses a
result from [PR72] ensuring that for all elements ¢’ in some Zariski open subset of
Is(M) and all sufficiently large n > 0, the product ~},6" is R-regular. Invoking the
Borel density theorem, we finally find an appropriate element 6 € I" such that the
product v = 3,0y has the requested properties. We now proceed to the details.

Proposition (Alexandrov angle rigidity). Let Y be a locally compact geodesi-
cally complete CAT(0) space and G be a totally disconnected locally compact group
acting continuously, properly and cocompactly on Y by isometries.

Then there is € > 0 such that for any elliptic isometry g € G and any v € X not
fized by g, we have Z.(gz,x) > €, where ¢ denotes the projection of x on the set of
g-fized points.

Proof. See [CM09al, Proposition 6.8]. O

Proposition 5. Let Y =Y, x --- xY,, where Y, is a geodesically complete locally

compact CAT(0) space with totally disconnected isometry group, and G be a locally

compact group acting continuously, properly and cocompactly by isometries on Y .
Then G contains an element acting on Y; as a hyperbolic isometry for all 1.

Proof. Upon replacing GG by a finite index subgroup, we may assume that G pre-
serves the given product decomposition of Y, see [CM09al Corollary 5.3(ii)]. Let
p:]0,00) — Y be a geodesic ray which is regular, in the sense that its projection to
each Y; is a ray (in other words the end point p(o0) does not belong to the boundary
of a subproduct).

Since G is cocompact, we can find a sequence (g,) in G and a sequence (t,) in
R such that g,.p(t,) converges to some point y € Y and g,,.p converges uniformly
on compacta to a geodesic line £in Y. Set h; ; = g; ! g; € G and consider the angle

As in [Swe99, Theorem 11], observe that 6 is arbitrarily close to 7 for i < j large
enough.

We shall prove that for all i < j large enough, the isometry h;; is regular hy-
perbolic, in the sense that its projection to each factor Y} is hyperbolic. We argue
by contradiction and assume that this is not the case. Notice that Is(Y}) does not
contain any parabolic isometry by [CM09al, Corollary 6.3(iii)]. Therefore, upon ex-
tracting and reordering the factors, we may then assume that there is some s < q
such that for all ¢ < j, the projection of h; ; on Is(Y7),...,Is(Y;) is elliptic, and the
projection of h; j on Is(Ysi1), ..., Is(Y,) is hyperbolic. Weset Y/ =Y; x--- x Y, and
Y" =Y x -+ xY,. We shall prove that for i < j large enough, the projections of
(hij) on Is(Y') forms a sequence of elliptic isometries which contradict Alexandrov
angle rigidity.

Fix some small 6 > 0. Let x; (resp. ;) be the point at distance § from
p(t;) and lying on the geodesic segment [h;}.p(ti),p(ti)] (resp. [p(ti), hij.p(t:)])-
By construction, for ¢ < j large enough, the union of the two geodesic segments
[z;, p(t;)]U[p(t;), y;] lies in an arbitrary small tubular neighbourhood of the geodesic
ray p. Since the projection Y — Y is 1-Lipschitz, it follows that the Y’-component
of [z, p(t;)] U [p(t:), ys], which we denote by [z}, p'(t;)] U [¢'(t:), yi], is uniformly close
to the Y'-component of p, say p’. Since p is a regular ray, its projection p’ is also a
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geodesic ray. Therefore, the angle

0 = Ly, ;)
is arbitrarily close to 7 for i < j large enough. Pick ¢ < j so large that ' > m — ¢,
where € > 0 is the constant from Alexandrov angle rigidity for Y’. Set h = h; ; and
let i’ be the projection of h on Is(Y’). By assumption A’ is elliptic. Let ¢ denote

the projection of p/(t;) on the set of h'-fixed points. Then the isosceles triangles
A(e, (W)™p (L), p/(t:)) and A(c, p(t;), W.p/(t;)) are congruent, and we deduce

Zo(p'(t:), W p'(t:) < 7= Ly (e, Wp' (i) — Ly (e, (W) Hp'(t:)
< 77— 4p/(ti)((h,)7l.pl(ti)7 hlp,(tZ»
= 7-—40
< E&.
This contradicts Alexandrov angle rigidity. 0

Proof of Proposition[d. Let T" be a discrete group acting properly and cocompactly
on X. First observe that (after passing to a finite index subgroup) we may assume
that T' preserves the given product decomposition of X, see see [CM09al, Corol-
lary 5.3(ii)].

Let G be the closure of the projection of I' to Is(Y;) x - -+ x Is(Y;). Then G acts
properly cocompactly on Y = Y x---xY,. Therefore it contains an element g acting
as a hyperbolic isometry on Y; for all i by Proposition [ Since I' maps densely to G
and since the stabiliser of each point of Y in G is open by [CM09al, Theorem 1.2], it
follows that I'-orbits on Y x Y coincide with the G-orbits. In particular, given y €
Min(g), we can find vy € I" such that vy (y, g7 'y) = (9y,y). Since 2, (15 v, Vyy) =
Zy,(g7 'y, gy) = 7, we infer that vy is hyperbolic and has an axis containing the
segment [¢g~'y, gy|. In particular 7y acts as a hyperbolic isometry on Y; for all i.

Let 7y = («, h) be the decomposition of ~y along the splitting Is(X) = Is(M) x
Is(Y'). By construction h acts as a hyperbolic isometry on Y; for all 4.

Let U < Is(Y) be the pointwise stabiliser of a ball containing y,yyy and vy 'y.
Notice that every element of Is(Y') contained in the coset Uh maps y to h.y and
h~'y to ¥y, and therefore acts also as a hyperbolic isometry on Y; for all i.

On the other hand U is a compact open subgroup of Is(Y") by [CM09al, Theorem
1.2]. Set I'y = I'n (Is(M) x U). Notice that I'y acts properly and cocompactly
on M by [CMO09b, Lemma 3.2]. In other words the projection of I'y to Is(M) is a
cocompact lattice. Abusing notation slightly, we shall denote this projection equally
by FU-

By the appendix from [BLI3] (see also [Prad4] for an alternative argument), the
group ['y contains an element 7, acting as an R-regular element on M. By [PR72,
Lemma 3.5] there is a Zariski open set V' = V(vp) in Is(M) with the following
property. For any 6 € V there exists ns such that an element v},0 is R-regular for
any n > ns. By the Borel density theorem, the intersection I'y NV a ™! is nonempty.
Pick an element § € Ty NVa™t. Then da € V which means by definition that v%,da
is R-regular for all n > ng for some integer ny.

Pick an element v}, € I" (resp. ¢’ € I') which lifts v, (resp. J). Set

7= (vir)" 0"y € Ty

The projection of v to Is(M) is v}?0a and is thus R-regular. The projection of v to
Is(Y') belongs to the coset Uh, and therefore acts as a hyperbolic isometry on Y; for
all 7. 0
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