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Abstract. Root group data provide the abstract combinatorial framework common to all
groups of Lie-type and of Kac-Moody-type. These notes intend to serve as a friendly introduction
to their basic theory. We also survey some recent developments.

Introduction

Historical overview. Lie theory has a long and fascinating history. One of its most enthralling
aspects is the gain in unity which has been acquired over the years through the contributions of
many eminent �gures. We try to roughly sum this up in the following paragraphs.

One of the foundational works of the theory has been the classi�cation of simple Lie groups
completed by W. Killing and É. Cartan in the �rst half of the 20th century: up to isomorphism,
(center-free) complex simple Lie groups are in one-to-one correspondence with complex simple
Lie algebras, which themselves are in one-to-one correspondence with the irreducible �nite root
systems. In particular, the Killing-Cartan classi�cation highlighted �ve exceptional types of
simple Lie groups besides the classical ones. Classical groups were then thoroughly studied and
fairly well understood, mainly through case-by-case analysis [vdW35]. Still, some nice uniform
constructions of them deserve to be mentioned: e.g., by means of algebras with involutions
[Wei61], or constructions by means of automorphism groups of some linear structures de�ned
over an arbitrary ground �eld [Die71]. In this respect, the simple Lie groups of exceptional type
were much more mysterious; analogues of them had been de�ned over �nite �elds by L. Dickson
for types E6 and G2. A wider range of concrete realizations of exceptional groups is provided by
H. Freudenthal's work [Fre64].

From the 1950's on, the way was paved towards a theory which would eventually embody
all these groups, regardless of their type or of the underlying ground �eld. Two foundational
papers were those of C. Chevalley [Che55], who constructed analogues of simple Lie groups
over arbitrary �elds, and of A. Borel [Bor56], who began a systematic study of linear algebraic
groups. For the sake of completeness and for the prehistory of buildings, see also [Tit57] for an
approach from the geometer's viewpoint � where "geometer" has to be understood as in J. Tits'
preface to [KMRT98]. A spectacular achievement consisted in the extension by C. Chevalley of
É. Cartan's classi�cation to all simple algebraic groups over arbitrary algebraically closed �elds
[Che05]. Remarkably surprising was the fact that, once the (algebraically closed) ground �eld is
�xed, the classi�cation is the same as for complex Lie groups: simple algebraic groups over the
given �eld are again in one-to-one correspondence with irreducible �nite root systems.

In order to extend this correspondence to all split reductive groups over arbitrary �elds, M. De-
mazure [SGA70, Exp. XXI] introduced the notion of a root datum (in French: donnée radicielle),
which is a re�nement of the notion of root systems. These developments were especially exciting
in view of the fact that most of the abstract simple groups known in the �rst half of the 20th
century were actually related in some way to simple Lie groups.
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Another further step in the uni�cation was made by J. Tits in his seminal paper [Tit64], where
he proposed an axiomatic setting which allowed him to obtain a uniform proof of (projective)
simplicity for all of these groups, as well as isotropic groups over arbitrary �elds, at once. While
reviewing the latter article, J. Dieudonné wrote: �This paper goes a long way towards the real-
ization of the hope expressed by the reviewer in 1951 that some general method be found which
would give the structure of all "isotropic" classical groups without having to examine separately
each type of group. It is well-known that the �rst breakthrough in that direction was made in the
famous paper of Chevalley in 1955 [Che55], which bridged in a spectacular way the gap between
Lie algebras and �nite groups. The originality of the author has been to realize that the gist of
Chevalley's arguments could be expressed in a purely group-theoretical way, namely, the existence
in a group G of two subgroups B,N generating G, such that H = B ∩ N is normal in N , and
that W = N/H (the "Weyl group") is generated by a set S of involutory elements satisfying
two simple conditions (and corresponding to the "roots" in Chevalley's case). This he calls a
(BN)-pair (...).�

This notion of a BN -pair was inspired to J. Tits by the decompositions in double cosets discov-
ered by F. Bruhat [Bru54], which had then been extended and extensively used by C. Chevalley.
What J. Dieudonné called �purely group-theoretical � in his review turned out to be the group-
theoretic side of a uni�ed geometrical approach to the whole theory, that J. Tits developed by
creating the notion of buildings [Bou07b, IV �2 Exercice 15]. Exploiting beautifully the com-
binatorial and geometrical aspects of these objects, J. Tits was able to classify completely the
irreducible buildings of rank > 3 with �nite Weyl group [Tit74]. A key property of these build-
ings is that they happen to be all highly symmetric: they enjoy the so-called Moufang property.
J. Tits' classi�cation shows furthermore that they are all related to simple algebraic groups or
to classical groups in some way. J. Tits also shows that a generalization of the fundamental
theorem of projective geometry holds for buildings (seen as incidence structures). This result
was used by G.D. Mostow to prove his famous strong rigidity theorem for �nite volume locally
symmetric spaces of rank > 2 [Mos73]; in this way the combinatorial aspects of Lie structures
found a beautiful, deep and surprising application to di�erential geometry.

A few decades later, jointly with R. Weiss, J. Tits completed the extension of this classi�cation
to all irreducible Moufang buildings of rank > 2 with a �nite Weyl group [TW02]. This result,
combined with [BT73], yields a classi�cation of all groups with an irreducible split BN -pair of
rank > 2 with �nite Weyl group. The condition that the BN -pair splits is the group-theoretic
translation of the Moufang property (and has nothing to do with splitness in the sense of algebraic
groups). Thus, every irreducible BN -pair of rank > 3 with a �nite Weyl group splits. Concerning
BN -pairs with �nite Weyl groups, we �nally note that what this group combinatorics does not
cover in the theory of algebraic semisimple groups is the case of anisotropic groups. The structure
of these groups is still mysterious and for more information about this, we refer to [Tit78], [Mar91,
VIII.2.17] and [PR94].

A remarkable feature of the abstract notion of a BN -pair is that it does not require the Weyl
group to be �nite, even though J. Tits originally used them to study groups with a �nite Weyl
group in [Tit64] (the BN -pairs in these groups had been constructed in his joint work with
A. Borel [BT65]). The possibility for the Weyl group to be in�nite was called to play a crucial
role in another breakthrough, initiated by the discovery of a�ne BN -pairs in p-adic semisimple
groups by N. Iwahori and H. Mastumoto [IM65]. This was taken up by F. Bruhat and J. Tits in
their celebrated theory of reductive groups over local �elds [BT72]. In the latter, a re�nement
of the notion of split BN -pairs was introduced, namely valuated root data (in French: données
radicielles valuées). These combine the information encoded in root data with extra information
on the corresponding BN -pairs coming from the valuation of the ground �eld. Valuated root
data turned out to be classifying data for Bruhat-Tits buildings, namely the buildings constructed
from the aforementioned a�ne BN -pairs [Tit86b].

We note that in the case of Bruhat-Tits theory, the BN -pair structure (in fact the re�ned
structure of valuated root datum) was not a way to encode a posteriori some previously known
structure results proved by algebraic group tools (as in the case of Borel-Tits theory with spherical
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BN -pairs and buildings). Indeed, the structure of valuated root datum, and its counterpart: the
geometry of Euclidean buildings, is both the main tool and the goal of the structure theory.
The existence of a valuated root datum structure on the group of rational points is proved by
a very hard two-step descent argument, whose starting point is a split group. The argument
involves both (singular) non-positive curvature arguments and the use of integral structures for
the algebraic group under consideration. The �nal outcome can be nicely summed by the fact
that the Bruhat-Tits building of the valuated root datum for the rational points is often the
�xed point set of the natural Galois action in the building of the split group [BT84]. In fact,
F. Bruhat and J. Tits formulate their results at such a level of generality (in particular with
�elds endowed with a possibly dense or even surjective valuation) that the structure of valuated
root datum still makes sense while that of BN -pair doesn't in general (when the valuation is
not discrete). At last, this study became complete after J. Tits' classi�cation of a�ne buildings,
regardless of any group action a priori [Tit86b]; roughly speaking, this classi�cation reduces to
the previous classi�cation of spherical buildings after considering a suitably de�ned building at
in�nity. We refer to [Wei] for a detailed exposition of the classi�cation in the discrete case.

At about the same time as Bruhat-Tits theory was developed, the �rst examples of groups with
BN -pairs with in�nite but non-a�ne Weyl groups were constructed by R. Moody and K. Teo
[MT72] in the realm of Kac-Moody theory. The latter theory had been initiated by R. Moody
and V. Kac independently a few years before in the context of classifying simple Lie algebras with
growth conditions with respect to a grading. The corresponding groups (which were not so easily
constructed) became known as Kac-Moody groups and were regarded as in�nite-dimensional
versions of the semisimple complex Lie groups. Several works in the 1980's, notably by V. Kac
and D. Peterson, highlighted intriguing similarities between the �nite-dimensional theory and
the more recent Kac-Moody objects. Again, the notion of a BN -pair and its re�nements played
a crucial role in understanding these similarities, see e.g. [KP85]. We note that the present day
situation is that there exist several versions of Kac-Moody groups, as explained for instance in
[Tit89]. The biggest versions are often more relevant to representation theory (see [Mat88] or
[Kum02]) than to group theory (see however [Moo82]). The relation between the complete and
the minimal versions of these groups still needs to be elucidated precisely. As far as group theory
and combinatorics are concerned, the theory gained once more in depth when J. Tits de�ned
analogues of complex Kac-Moody groups over arbitrary �elds in [Tit87], as C. Chevalley had
done it for Lie groups some 30 years earlier. In [loc. cit.], some further re�nements of the notion
of BN -pairs had to be considered, the de�nitive formulation of which was settled in [Tit92] by
the concept of root group data. This is the starting point of the present notes.
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Content overview. The purpose of these notes is to highlight a series of structure properties
shared by all groups endowed with a root group datum. One should view them as a guide through
a collection of results spread over a number of di�erent sources in the literature, which we have
tried to present in a reasonably logical order. The proofs included here are often reduced to
quotations of accurate references; however, we have chosen to develop more detailed arguments
when we found it useful in grasping the �avour of the theory. The emphasis is placed on results
of algebraic nature on the class of groups under consideration. Consequently, detailed discussions
of the numerous aspects of the deep and beautiful theory of buildings are almost systematically
avoided. Inevitably, the text is overlapping some parts of the second author's book [Rém02c],
but the point of view adopted here is di�erent and several themes discussed here (especially from
Sect. 6 to 8) are absent from [loc. cit.].

The structure of the paper, divided into two parts, is the following.

Part I: survey of the theory and examples.� Sect. 1 collects some preliminaries on
(usually in�nite) root systems; it is the technical preparation required to state the de�nition of
a root group datum. Sect. 2 is devoted to the latter de�nition and to some examples. The
aim of Sect. 3 is to show that complex adjoint Kac-Moody groups provide a large family of
groups endowed with a root group datum (with in�nite Weyl group); the proof relies only on
the very basics of the theory of Kac-Moody algebras (which are outlined as well). In Sect. 4,
we �rst mention that any root group datum yields two BN -pairs, which in turn yield a pair of
buildings acted upon by the ambient group G; this interplay between buildings and BN -pairs is
then further described.

Part II: group actions on buildings and associated structure results.� The second
part is devoted to the algebraic results that can be derived from the existence of a su�ciently
transitive group action on a building. In Sect. 5, we �rst introduce a very important tool designed
by J. Tits, namely the combinatorial analogue of techniques from algebraic topology for partially
ordered sets; this is very useful for some amalgamation and intersection results. Subsequently we
deduce a number of basic results on the structure of groups endowed with a root group datum.
In Sect. 6, we explain that since the automorphism group of any building carries a canonical
topology, these buildings may be used to endow G (admitting a root group datum) with two
distinguished group topologies, with respect to which one may take metric completions; these
yield two larger groups G+ and G− containing both G as a dense subgroup, and the diagonal
embedding of G makes it a discrete subgroup in G+×G−. In Sect. 7, some simplicity results for
G± and G are discussed. In Sect. 8 we show that, under some conditions, the group G admits
certain nice presentations which can be used to describe classi�cation results for root group data.

Notation. If G is a group, the order of an element g ∈ G is denoted by o(g). If moreover H is
a subgroup of G, then gH denotes the conjugate gHg−1.

What this article does not cover. The main aim of these notes is to highlight some algebraic
properties common to all groups with a root group datum, with a special emphasis in those with
an in�nite Weyl group. However, root group data were initially designed to describe and study
the combinatorial structure of rational points of isotropic simple algebraic groups, and it is far
beyond the scope of this paper to describe the theory of algebraic groups. For a recent account
of advanced problems in that area, we refer to [Gil07]. Another excellent reference on root group
data with �nite Weyl groups is the comprehensive book by J. Tits and R. Weiss [TW02], which
is targeted at the classi�cation in the rank two case. The case of rank one root group data, i.e.
Moufang sets, is a subject in its own right: see [dMS07] in the same volume.

Acknowledgements. These notes are based on a series of lectures the �rst author gave in the
Advanced Class in Algebra at the University of Oxford during Hilary Term 2007. Thanks are due
to Dan Segal for proposing him to expose this topic in the class, and to all attendants for their
questions and interest. A �rst draft of these notes was written and circulated at the time. These
were then taken over and revised when both authors jointly gave a mini-course on the topic at
the conference Buildings & Groups in Ghent in May 2007; they are grateful to the organizers of
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that conference for the invitation to participate actively to the event. The second author thanks
É. Ghys for a useful conversation, in particular suggesting to investigate J. Tits' earliest works.
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Part I. Survey of the theory and examples

1. Root data

Root data were �rst introduced by M. Demazure [SGA70, Exp. XXI] as data which classify, up
to isomorphism, reductive group schemes over Z or split reductive algebraic groups over a given
�eld [Spr98, Chapters 9-10]. Demazure's original de�nition can be viewed as a re�nement of the
notion of �nite root systems, taking into account the possibility to have a non-trivial (connected)
central torus. However, root systems encountered in Kac-Moody theory are mostly in�nite, hence
the de�nition of a root datum we give is not Demazure's (although it is closely related). The way
towards a general theory of in�nite root systems has been paved by R. Moody and A. Pianzola
[MP89] (see also [MP95, Chapter 5] for a more comprehensive and self-contained treatment).
However, this approach has two drawbacks that we want to avoid: it implicitly excludes non-
reduced root systems and it requires a certain integrality condition. The axioms we propose here
follow rather closely J.-Y. Hée's approach developed in [Hée91] (for a further comment on the
comparison between these references, see Remark 1.1.1 below). We note that in another vein of
generalization, N. Bardy has developed an abstract theory of root systems covering R. Borcherds'
work using Lie algebras for number theory [Bar96]; this topic will not be covered here.

The content of this section is very simple: we �rst de�ne root bases, which are designed to
generate root systems, which themselves are the index sets of the combinatorics of root group
data.

1.1. Root bases.

1.1.1. Axioms of a root basis. Let V be a real vector space. A root basis for V is a pair
B = (Π,Π∨ = {α∨}α∈Π) where Π is a (nonempty) subset of V and Π∨ is a set consisting of an
element α∨ ∈ V ∗ associated to each element α ∈ Π, submitted to the following conditions:

(RB1): For each α ∈ Π, we have 〈α, α∨〉 = 2.
(RB2): For all α, β ∈ Π with α 6= β, we have either 〈α, β∨〉 = 〈β, α∨〉 = 0 or 〈α, β∨〉 < 0,
〈β, α∨〉 < 0 and 〈α, β∨〉〈β, α∨〉 ∈ {4 cos2(πk ) | k ∈ Z} ∪ R>4.

(RB3): There exists f ∈ V ∗ such that 〈α, f〉 > 0 for all α ∈ Π.

Given a root basis B = (Π,Π∨ = {α∨}α∈Π) as above, we make the following de�nitions:

• The matrix A(B) = (Aα,β)α,β∈Π de�ned by Aα,β = 〈α, β∨〉 is called the Cartan matrix
of B.
• The cardinality of Π is called the rank of B.
• To each α ∈ Π, we associate the involution rα : V → V ; v 7→ v − 〈v, α∨〉α, which we call
the re�ection with respect to α.
• We set S = S(B) = {rα | α ∈ Π}.
• We de�ne W = W (B) to be the subgroup of GL(V ) generated by S(B); it is called the
Weyl group of B.
• We set

Φ(B) = {w.α | α ∈ Π, w ∈W}, Φ(B)+ = Φ ∩ (
∑

α∈Π R+α) and Φ(B)− = −Φ(B)+,

and call Φ(B) the root system of B.
• Given a subset J ⊂ Π, we set BJ = (J, J∨ = {α∨}α∈J), SJ = {rα | α ∈ J} and
WJ = 〈SJ〉. The tuple BJ is a root basis for V with Weyl group WJ .

We say that B is integral if each entry of the Cartan matrix is an integer. We say that B is
free if Π is linearly independent in V .

Remarks. 1. The article [MP89] deals only with integral root bases, while [Hée91] considers
only free root bases (note that under this assumption, axiom (RB3) is automatically
satis�ed).

2. The integrality condition is not appropriate when one wishes to study (non-algebraic)
twisted forms of Chevalley groups or of Kac-Moody groups: the simplest illustration of
this fact is provided by groups of type 2F4.
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3. The freeness condition is not appropriate to study root subbases and re�ection subgroups
of the Weyl group, see [MP89, Example 1]. Axiom (RB3), which was proposed by
D. Krammer [Kra94], allows to combine naturally the approaches of both [Hée91] and
[MP89]. In particular, most results from both [Hée91] (in the case K = R) and [MP89]
remain valid in the present context; the necessary modi�cations of arguments are mild
and straightforward.

In the rest of this section, we collect only a few basic facts for later references. Concerning the
comparison of the di�erent notions of root bases, let us simply mention one useful construction
adapted from [MP89]. Given a root basis B = (Π,Π∨) with Cartan matrix A, a free root basis
B̃ may be constructed as follows. De�ne Ṽ =

⊕
α∈Π Rα̃. Moreover, for each β ∈ Π, de�ne

β̃∨ ∈ Ṽ ∗ by the assignment 〈α̃, β̃∨〉 = Aα,β for all α ∈ Π. Then B̃ = (Ṽ , {α̃}α∈Π, {α̃∨}α∈Π) is
a free root basis. Its Cartan matrix coincides with A. Furthermore, there is a canonical linear
map π : Ṽ → V induced by α̃ 7→ α which maps Φ(B̃) to Φ(B). This restricted map turns out to
be a bijection. Moreover π induces a canonical isomorphism W (B̃) → W (B): this follows from
Theorem 1.1.4 below. Now all results of [Hée91] apply to the free root basis B̃ and then descend
to B via π. In the rest of this section, we will often refer to [Hée91] to establish properties of B;
if we make no further comment on the lack of freeness of B, it means that the desired property of
B follows from the corresponding property of B̃ by the general principle we have just outlined.

1.1.2. Products and irreducibility. There is an obvious notion of a direct product of root bases:
given root bases Bi = (Vi,Πi,Π∨i ) for i = 1, 2, de�ne V = V1 ⊕ V2 and identify V1 and V2 with
subspaces of V . We set Π = Π1 ∪ Π2 and Π∨ = Π∨1 ∪ Π∨2 . It is straightforward to check that
(Π,Π∨) is a root basis, which is called the direct product of B1 and B2. Its Weyl group is the
product W (B1)×W (B2). A root basis which does not split as a product is called irreducible.

1.1.3. Example: the standard root basis of a Coxeter system. The standard reference is [Bou07b,
IV]. Let S be a set and M = (mst)s,t∈S be a Coxeter matrix over S. This means that

mst ∈ Z ∪ {∞}, mss = 1 and mst = mts > 2

for all s, t ∈ S. The group W which is de�ned by the following presentation:

W = 〈S | {(st)mst = 1 | s, t ∈ S, mst <∞}〉
is called the Coxeter group of typeM . The ordered pair (W,S) is called the Coxeter system
of type M .

Given a Coxeter system (W,S) of typeM , we set V =
⊕

s∈S Res. Next we de�ne a symmetric
bilinear form (·, ·) on V by the formula

(es, et) = − cos(
π

mst
)

for all s, t ∈ S. We also set fs = 2(·, es) ∈ V ∗ for each s ∈ S. Then B(W,S) = ({es}s∈S , {fs}s∈S)
is a free root basis. Note that (RB3) obviously holds here because the es's are linearly indepen-
dent. This is called the standard root basis associated with (W,S).

Remark. It is well-known that the map W → GL(V ) attaching to each s ∈ S the re�ection
σs : v 7→ v − 2(es, v)es is an injective group homomorphism [Bou07b, V.4].

1.1.4. The Weyl group is a Coxeter group. A basic result on root bases is the following:

Theorem. Let B = (Π,Π∨) be a root basis. We have the following:

(i) The ordered pair (W,S) is a Coxeter system. Furthermore, for all distinct α, β ∈ Π,
the order o(rαrβ) of rαrβ is equal to k (resp. ∞) if Aα,βAβ,α = 4 cos2(πk ) (resp. if
Aα,βAβ,α > 4).

(ii) We have: Φ(B) = Φ(B)+ ∪ Φ(B)−.

Proof. The axioms (RB1)�(RB3) imply that any pair {α, β} of elements of Π is linearly inde-
pendent. In other words B{α,β} is a free root basis. By [Hée91, (2.11)], it is thus a root basis
in the sense of [loc. cit.]. Now the arguments of [Hée91, (2.10)] show that (ii) holds and allow
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moreover to apply verbatim the proof of [Bou07b, Ch. 5, �4, Th. 1], which yields (i). Finally, the
rule that computes the order of rαrβ is established in [Hée91, Prop. 1.23]. �

Remark. The result [Bou07b, Ch. 5, �4, Th. 1] quoted above is due to J. Tits; a more general
version as the one in [loc. cit.] is stated in [Tit95, Lemme 1].

1.1.5. The set Φ(B)w. Let B = (Π,Π∨ = {α∨}α∈Π) and let W = W (B) be its Weyl group. For
each w ∈W , we set

Φ(B)w = {α ∈ Φ(B)+ | w.α ∈ Φ(B)−}.

Lemma. Let ` denote the word length in W with respect to S, i.e., for any w ∈ W we set:
`(w) = min{m ∈ N : w = s1s2...sm with each si in S}.

(i) For all w ∈W and α ∈ Π, we have

`(rαw) > `(w) if and only if w−1.α ∈ Φ(B)+

and

`(rαw) < `(w) if and only if w−1.α ∈ Φ(B)−.

(ii) For each α ∈ Π, we have Φ(B)rα = Φ(B) ∩ R+α.
(iii) For each w = rα1 . . . rαn ∈W with αi ∈ Π for each i and `(w) = n, we have

Φ(B)w = Φ(B)αn ∪ rαnΦ(B)αn−1 ∪ · · · ∪ rαn . . . rα2Φ(B)α1 .

Proof. For (i), see [Hée91, (2.10)]. For (ii) and (iii), see [Hée91, (2.23)]. �

1.1.6. Re�ections and root subbases. By [Hée91, (2.13)(d)], for all α, β ∈ Π and w ∈W , we have
w.α = β if and only if wrαw−1 = rβ . Therefore, given β ∈ Φ(B), we may write β = w.α for
some α ∈ Π and w ∈ W , and the re�ection wrαw−1 depends only on β, but not on the speci�c
choice of α and w. We denote this re�ection by rβ . Note that for all λ ∈ R such that λβ ∈ Φ(B)
we have rλβ = rβ . In fact, it is convenient to de�ne rλβ = rβ for all nonzero λ ∈ R; in this way,
we attach a re�ection in W to every nonzero vector in V which is proportional to an element of
Φ. Furthermore, given a nonzero vector u ∈ V such that u = λβ with β ∈ Φ and λ ∈ R, we set
u∨ = λ−1β∨. In this way, we have ru = rλβ : v 7→ v − 〈v, u∨〉u.

The preceding discussion shows that the assignments α 7→ α∨ with α ∈ Π extend uniquely to
a map Φ(B)→ V ∗ : β 7→ β∨ which isW�equivariant (V ∗ is endowed with the dual action ofW ).
Indeed, since rβ is a re�ection, it is of the form rβ : v 7→ v−〈v, β∨〉β for a unique β∨ ∈ V ∗. Now,
writing again β = w.α with α ∈ Π and w ∈ W , we have rβ = wrαw

−1 and it is straightforward
to deduce that β∨ = w.α∨.

Let now Ψ be a subset of Φ(B). We set

WΨ = 〈rβ | β ∈ Ψ〉 and 〈Ψ〉 = {w.β | β ∈ Ψ, w ∈WΨ}.
Note that W〈Ψ〉 = WΨ and that 〈Ψ〉 is WΨ�invariant. We set also:

C(Ψ) = {f ∈ V ∗ | 〈α, f〉 > 0 for all α ∈ 〈Ψ〉 ∩ Φ(B)+}
and

ΠΨ =
⋂

∆{∆ ⊂ 〈Ψ〉 | C(∆) = C(Ψ)}.
We have the following:

Proposition. The couple BΨ = (ΠΨ,ΠΨ
∨ = {α∨}α∈ΠΨ

) is a root basis which satis�es Φ(BΨ) =
〈Ψ〉 and W (BΨ) = WΨ.

Proof. Follows by arguments as in the proof of [MP89, Theorem 6]. �

The couple BΨ is called the root subbasis generated by Ψ. We say that BΨ is parabolic if
ΠΨ ⊂ Π = ΠΦ(B). This is the case whenever Ψ ⊂ Π. In that special case, we recover the root
subbase which was considered in Sect. 1.1.1.

1.2. Root systems.
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1.2.1. Root systems with respect to a root basis. Given a root basis B = (Π,Π∨ = {α∨}α∈Π),
a B-root system is a subset Φ of V \{0} which is W (B)�invariant, contained in {λα | α ∈
Φ(B), λ ∈ R} and such that for each α ∈ Π, the set Φ ∩ Rα is �nite and non-empty. The set

ΠΦ = {β ∈ Φ | β = λα for some α ∈ Π and λ ∈ R+}
is called the basis of Φ. The B-root system Φ is called reduced if Φ ∩Rα has cardinality 2 for
each α ∈ Π., i.e., if Φ ∩Rα = {±α}. Given a B-root system Φ, we set Φ+ = Φ ∩R+Φ(B)+ and
Φ− = Φ ∩ R+Φ(B)−. By Theorem 1.1.4(ii), we have Φ = Φ+ ∪ Φ−.

Note that by Sect. 1.1.6, there is a re�ection rβ ∈W associated with every root β of a B-root
system Φ. A subset Ψ of Φ is called a B-root subsystem if Ψ is rβ�invariant for each β ∈ Ψ.
Note that a root subsystem is a root system in a root subbase of B, whose Weyl group is WΨ.
We say that the B-root subsystem Ψ is parabolic if WΨ is a parabolic subgroup of W , namely
it is the Weyl group of a parabolic root subbasis.

Given any Ψ ⊂ Φ, the set 〈Ψ〉 = {w.α | α ∈ Ψ, w ∈ WΨ}, where WΨ = 〈rβ | β ∈ Ψ〉, is a root
subsystem. It is called the root subsystem generated by Ψ.

For each w ∈W (B), we let

Φw = {α ∈ Φ+ | w.α ∈ Φ−}.
Note that a decomposition similar to that of Lemma 1.1.5(iii) holds for Φw. In particular, this
shows that the set Φw is �nite.

Lemma. Let B = (Π,Π∨) be a root basis. We have the following:

(i) Then Φ(B) is a reduced B-root system if and only if for all α, β ∈ Π such that the order
o(rαrβ) is odd, one has Aα,β = Aβ,α.

(ii) If there exists a B-root system, then Φ(B) is a B-root system.

Proof. (i). By [Hée91, (2.17)], the set Φ(B) is a reduced root system if and only if Φ(B{α,β}) is
a reduced root system for all distinct α, β ∈ Π. Clearly, the subspace Vαβ of V spanned by α
and β is W{α,β}�invariant. Moreover, the W{α,β}�action on Vαβ preserves the symmetric bilinear
form (·, ·) de�ned by:

(α, α) = −Aα,β, (β, β) = −Aβ,α, (α, β) = −
Aα,βAβ,α

2
.

Therefore, in view of [Hée91, (2.16)], it follows that Φ(B{α,β}) is not a reduced root system if
and only if o(rαrβ) is �nite and odd, and if moreover Aα,β 6= Aβ,α.

(ii). Follows from the de�nitions. �

1.2.2. Prenilpotent sets of roots. Let B = (Π,Π∨) be a root basis and Φ be B-root system. Given
a set of roots Ψ ⊂ Φ, we set

Wε(Ψ) = {w ∈W | w.α ∈ Φε for each α ∈ Ψ}
for each sign ε ∈ {+,−}. Moreover, we set

Ψ = {α ∈ Φ |W+(Ψ) ⊂W+(α) and W−(Ψ) ⊂W−(α)}.
A subset Ψ ⊂ Φ is called prenilpotent ifW+(Ψ) andW−(Ψ) are both nonempty. A prenilpotent
set Ψ is called nilpotent if Ψ = Ψ. Clearly for every set Ψ, the set Ψ is nilpotent.

Note that if Ψ is prenilpotent, there exist v, w ∈ W such that v.Ψ ⊂ Φw. Therefore, any
prenilpotent set is �nite (see Sect. 1.2.1). Furthermore, it is easy to verify that for each w ∈W ,
the set Φw is nilpotent. Thus a set of positive roots is prenilpotent if and only if it is contained
in Φw for some w ∈W .

Given a pair {α, β} ⊂ Φ, we set

[α, β] = {α, β}, ]α, β[= [α, β]\{λα, µβ | λ, µ ∈ R+}
and

[α, β]lin = Φ ∩ (R+α+ R+β), ]α, β[lin= [α, β]lin\{λα, µβ | λ, µ ∈ R+}.
10



Note that the set [α, β]lin is contained in [α, β]. However, the inclusion is proper in general, see
[Rém02b, �5.4.2].

We record the following result for later references:

Lemma. Let α, β ∈ Φ.

(i) If {α, β} generates a �nite root subsystem, then {α, β} is prenilpotent if and only if
−β 6∈ R+α.

(ii) If {α, β} generates an in�nite root subsystem, then {α, β} is prenilpotent if and only if
〈α, β∨〉 > 0.

(iii) If {α, β} is not prenilpotent, then {−α, β} is prenilpotent.
(iv) If {α, β} is prenilpotent with α ∈ ΠΦ and β ∈ Φ+, then ]α, β[⊂ Φ+\Φrα .
(v) If {α, β} is prenilpotent, then for all γ, γ′ ∈ [α, β], the pair {γ, γ′} is prenilpotent and

furthermore, we have [γ, γ′] ⊂ [α, β].

Proof. (i). By Theorem 1.1.4(i), the Weyl group of a �nite root system is a �nite Coxeter group.
The (unique) element of maximal length maps every positive root of this system to a negative
one. The desired assertion follows easily.

(ii). By [MP95, Ch. 5, Prop. 8], we have 〈α, β∨〉 > 0 (resp. < 0) if and only if 〈β, α∨〉 > 0. Now
if 〈α, β∨〉 < 0, then the set [α, β]lin is in�nite since the group 〈rα, rβ〉 is in�nite. Therefore, the
pair {α, β} cannot be prenilpotent, since the set [α, β], which contains [α, β]lin, is prenilpotent,
hence �nite. For the converse statement, see [Cap07, Lemma 2.3]

(iii). Follows from (i) and (ii).

(iv). Follows from Lemma 1.1.5(iii).

(v). We have mentioned above that a nilpotent set of roots is prenilpotent. Moreover, it is clear
from the de�nition that any subset of a prenilpotent set of roots is prenilpotent. Thus {γ, γ′} is
prenilpotent. The inclusion [γ, γ′] ⊂ [α, β] follows from the de�nitions. �

1.3. Root data. A root datum consists in a root basis B = (Π,Π∨) such that Aα,β = Aβ,α
for all α, β ∈ Π such that o(rαrβ) is �nite and odd, together with a B-root system Φ. All the
vocabulary used to qualify root bases (e.g. free, integral, irreducible, . . . ) will be used for root
data as well, according as the property in question holds for the underlying root basis.

2. Root group data

2.1. Axioms of a root group datum. We are now ready to introduce the main object of
study. Let G be a group and E = (B,Φ) be a root datum. Thus B = (Π,Π∨) is a root basis in
a real vector space V which will be held �xed throughout, and Φ is a B-root system.

A root group datum of type E for G (formerly called a twin root datum) is a tuple
{Uα}α∈Φ of subgroups of G which, setting

U+ = 〈Uα | α ∈ Φ+〉 and U− = 〈Uα | α ∈ Φ−〉,

satis�es the following axioms.

(RGD0): For all α ∈ Φ, we have Uα 6= {1} and moreover G = 〈Uα | α ∈ Φ〉.
(RGD1): For each β ∈ ΠΦ, we have Uβ 6⊂ U−.
(RGD2): For each β ∈ ΠΦ and each u ∈ Uβ\{1}, there exists an element µ(u) ∈ U−β.u.U−β

such that µ(u)Uα µ(u)−1 = Urβ .α for all α ∈ Φ.
(RGD3): For each prenilpotent pair {α, β} ⊂ Φ, we have [Uα, Uβ] ⊂ 〈Uγ | γ ∈]α, β[〉.
(RGD4): For each β ∈ ΠΦ there exists β′ ∈ Φrβ such that Uα ⊂ Uβ′ for each α ∈ Φrβ .

The subgroups Uα of G are called root subgroups.
11



2.2. Comments on the axioms of a root group datum.

Remark 1.: Combining (RGD0) with (RGD2), it follows that G is generated by the set

{Uβ | β ∈ ΠΦ} ∪ {U−β | β ∈ ΠΦ}.
Remark 2.: As it is the case for root bases, one obtains new systems of root subgroups from

existing ones by taking products. We leave it to the reader to perform these constructions
in details. In particular, if the root datum E is not irreducible, then G is a commuting
product of subgroups, each one endowed with a root group datum indexed by a root
subsystem of E.

Remark 3.: We will establish in Corollary 5.3(iii) below that U−β 6⊂ U+ for each β ∈ ΠΦ.
Thus, the whole theory is `symmetric in + and −', although (RGD1) seems to break the
symmetry at a �rst glance. In other words, if {Uα}α∈Φ is a root group datum for G, then
so is {U−α}α∈Φ.

Remark 4.: A strengthened version of axiom (RGD3) is the following:

(RGD3)lin: For each prenilpotent pair {α, β} ⊂ Φ, we have

[Uα, Uβ] ⊂ 〈Uγ | γ ∈]α, β[lin〉.
This is indeed stronger than (RGD3), see Remark 1 of Sect. 1.2.2, and useful to prove
Levi decompositions for parabolic subgroups. However, big parts of the theory can be
developed using (RGD3) only.

Remark 5.: If G̃ is an extension of G of the form G̃ = T.G, with G as above and T

normalizing every root subgroup of G, then G is normal in G̃ and it is common to view
{Uα}α∈Φ as a (non-generating) root group datum for G̃. This is in fact the case in J. Tits
original de�nition [Tit92]. In particular, the group G̃ could be the direct product of G
with any group. Thus most structure results on groups with a root group datum concern
actually the subgroup G̃† = G generated by all root groups. That is why we have found
natural to take the more restrictive condition that G = 〈Uα | α ∈ Φ〉 as an axiom. It
yields some technical simpli�cations and avoid to introduce a group T normalizing each
root subgroup as part of the datum.

Remark 6.: Note that axiom (RGD4) is an empty condition if the B-root system Φ is
reduced. In fact, this axiom does not appear in [Tit92], but it does appear in the Bruhat-
Tits' earlier de�nition of root group data [BT72, �6.1, (DR3)]. In fact, we will see in
Lemma 2.4 that (RGD4) allows one to de�ne a reduction of an arbitrary root group
datum, which is a root group datum indexed by a reduced root system.

2.3. Root group data for root subsystems. Let E = (B,Φ) be a root datum. Given a
B-root subsystem Ψ ⊂ Φ and a root group datum {Uα}α∈Φ for a group G, we say that Ψ is
quasi-closed if for each prenilpotent pair {α, β} ⊂ Ψ, the group [Uα, Uβ] is contained in the
subgroup generated by root groups Uγ with γ ∈]α, β[∩Ψ. The proof of the following statement
is a straightforward veri�cation:

Lemma. Let G be a group endowed with a root group datum (Uα)α∈Φ of type E. Given a B-root
subsystem Ψ ⊂ Φ which is quasi-closed, we set GΨ = 〈Uψ | ψ ∈ Ψ〉. Then {Uψ}ψ∈Ψ is a root
group datum for GΨ. �

Remark. An obvious su�cient condition for Ψ to be quasi-closed is that it is closed, that is
to say: [α, β] ⊂ Φ for each prenilpotent pair {α, β} ⊂ Ψ. This is for example the case if Φ is a
parabolic root subsystem. If the root group datum of G satis�es moreover the axiom (RGD3)lin,
then Ψ is quasi-closed whenever it is linearly closed, namely [α, β]lin ⊂ Ψ for each prenilpotent
pair {α, β} ⊂ Ψ.

2.4. A reduction. Let E = (B,Φ) be a root datum. By de�nition of root data, Lemma 1.2.1(i)
shows that Φ(B) is a reduced B-root system. For each α ∈ Φ(B), we set

U(α) = 〈Uβ | β ∈ Φ, β = λα for some λ > 0〉.

Lemma. The system {U(α)}α∈Φ(B) is a root group datum of type (B,Φ(B)) for G.
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Proof. It is clear from the de�nition that (RGD0) and (RGD1) hold. By (RGD4) for the original
root group datum, we deduce that for each α ∈ Π there exists β ∈ ΠΦ such that U(α) = Uβ .
Therefore (RGD2) holds as well. The fact that (RGD3) holds follows easily by combining (RGD3)
for the original root group datum with Lemma 1.2.2(v). Finally, since Φ(B) is reduced, the axiom
(RGD4) is clearly satis�ed. �

The lemma shows that any root group datum for a group G yields a root group datum for G
indexed by a reduced root system. Most structure results on groups endowed with a root group
datum assume that the underlying root system is reduced. In view of the reduction presented
above, this assumption causes no loss of generality.

2.5. Example: rank one groups. The purpose of the present subsection and the following
ones is to describe a �rst set of examples of groups admitting a root group datum.

A group G is called a rank one group if it admits a root group datum indexed by a root
system of rank one, which can be assumed to be reduced in view of Sect. 2.4. Equivalently
G possesses nontrivial subgroups U+ and U−, whose union generates G and such that for each
u ∈ U+\{1} there exists µ(u) ∈ U−.u.U− such that conjugation by µ(u) swaps U+ and U−. It is
easy to see that the latter condition is equivalent to the following, where A = U+ and B = U−:

for each a ∈ A\{1}, there exists b ∈ B such that bA = aB.

For instance, the group G = SL2(k), where k is any �eld, is a rank one group with root
subgroups

A =
{(

1 x
0 1

)
| x ∈ k

}
and B =

{(
1 0
x 1

)
| x ∈ k

}
.

Indeed, given a =
(

1 x
0 1

)
with x ∈ k×, one has bA = aB with b =

(
1 0
−x−1 1

)
.

It is common to consider a rank one group as a permutation group on the conjugacy class of
its root subgroups (note that there is such a unique conjugacy class). This permutation action
makes this conjugacy class a so called Moufang set; we refer to [dMS07] for a survey on this
notion.

Finite rank one groups have been classi�ed by C. Hering, W. Kantor and G. Seitz [HKS72]
and this work is a fundamental step in the classi�cation of �nite simple groups. More precisely:

Theorem. Let G be a �nite 2-transitive group on a set Ω and suppose that, for α ∈ Ω, the
stabilizer Gα has a normal subgroup regular on Ω \ α. Then G contains a normal subgroup M
and M acts on Ω as one of the following groups in their usual 2-transitive representation: a
sharply 2-transitive group, PSL(2, q), Sz(q), PSU(3, q) or a group of Ree type.

Thus a �nite rank-one group is either a sharply-2-transitive group or a �nite group of Lie type
and Lie rank one. No such classi�cation is known in the in�nite case, but this is an active area
of research. Let us mention that very little is known about sharply-2-transitive in�nite groups,
and that the only known examples of in�nite rank one groups which are not sharply-2-transitive
are all of Lie type (in an appropriate sense). Furthermore, in these examples, the root groups are
nilpotent of class at most 3. The case of abelian root subgroups seems to be intimately related
to quadratic Jordan division algebras [dMW06] which paves the way towards a general theory of
Moufang sets.

2.6. Example: (isotropic) reductive algebraic groups. Standard references are [Bor91]
and [Spr98]. Let G be a reductive linear algebraic group de�ned over a �eld k. Assume that
G is isotropic over k, namely that some proper parabolic subgroup of G is de�ned over k or,
equivalently, that G(k) seen as a matrix group contains an in�nite abelian subgroup of diagonal
matrices. Let T be a maximal k-split k-torus. Borel-Tits theory [BT65] implies the existence
of a root group datum {Uα}α∈Φ, indexed by the relative root system Φ of (G(k), T (k)), for the
group G(k)† which is generated by the k-points of unipotent radicals of parabolic k-subgroups
of G. This root group datum satis�es the extra condition (RGD3)lin.
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A complementary fact is the following statement:

Theorem. Groups endowed with a root group datum of rank > 2 and �nite irreducible Weyl
group are classi�ed.

This follows from the work of J. Tits [Tit74] for root data of rank > 3 and Tits-Weiss [TW02]
for rank 2, all combined with [BT73]. The result can be loosely summarized by saying that all
groups with such a root group datum are `of Lie type' in an appropriate sense. In slightly more
precise terms, these groups are classical groups over skew �elds or reductive algebraic groups
over �elds, or twisted forms of them, which might not be algebraic in the strict sense (e.g. the
Suzuki groups 2B2, the Ree-Tits groups 2F4 [Tit83] or the so-called �mixed groups� of Tits). An
important step in the classi�cation is that, denoting by {s, s′} the canonical generating set of
the �nite Weyl group of a root group datum of rank 2, then o(ss′) ∈ {2, 3, 4, 6, 8}. Therefore,
it follows from Lemma 2.3 that for any root group datum indexed by a root system Φ, we have
o(rαrβ) ∈ {1, 2, 3, 4, 6, 8,∞} for all α, β ∈ Φ.

2.7. Example: some arithmetic groups. Let k be any �eld and consider the (S-)arithmetic
group G = SLn(k[t, t−1]). Let

T =
{(

x 0
0 x−1

)
| x ∈ k×

}
and E = (B,Φ) be the classical root datum of SLn(k) with respect to T , whose underlying vector
space is V ' Rn−1 endowed with the Killing form (·, ·). Note that Φ = Φ(B) in this case. The
basis Π = ΠΦ corresponds to the Borel subgroup of upper triangular matrices. Thus roots in
Φ are in one-to-one correspondence with pairs (i, j) such that i 6= j and i, j ∈ {1, . . . , n}. If
the root α corresponds to (i, j) one has a mapping (in fact: a morphism of functors) uα : k →
SLn(k) : x 7→ 1n×n + eij(x), where eij(x) denotes the n×n-matrix with x as the (i, j)-entry and
0 elsewhere. Furthermore, the tuple

{
{uα(x) | x ∈ k}

}
α∈Φ

is a root group datum for SLn(k).

Now we make the following de�nitions:

• V aff = V ⊕ Re;
• Φaff = {α+ n.e | α ∈ Φ, n ∈ Z};
• Πaff = Π ∪ {−α0 + e}, where α0 is the highest root of Φ;
• (·, ·) is the extension to V aff of the Killing form, de�ned by the assignments

(α, e) = (e, e) = 0

for all α ∈ Φ;
• ∨ : Φaff → (V aff)∗ : α→ α∨ = 2(·, α).

One veri�es that Baff = (Πaff , {β∨}β∈Πaff ) is a root basis for V aff with canonical root system Φaff .
Its Weyl group is the so-called a�ne Weyl group of SLn. It is isomorphic to the automorphism
group of a tiling of Euclidean (n− 1)-space by (hyper-)tetrahedra.

Note that a pair {α+m.e, β+n.e} of roots in Φaff , with α, β ∈ Φ and m,n ∈ Z, is prenilpotent
if and only if α 6= −β.

It is now an exercise to check that the system
{
{uα(xtn) | x ∈ k}

}
α+n.e∈Φaff is a root group

datum of type (Baff ,Φaff) for G.

2.8. Example: a �free� construction. Here we indicate how to construct a root group datum
with in�nite dihedral Weyl group starting from any two rank one groups. We �rst describe the
underlying root datum.

Let V = Re1⊕Re2 and Π = {e1,−e1 +e2}. Let also (·, ·) by the symmetric bilinear form on V

whose Gram matrix in the canonical basis {e1, e2} is
(

1 0
0 0

)
and let ∨ : Φ→ V ∗ : α 7→ 2(·, α).

Then B = (Π, {α∨}α∈Π) is a root basis. Its canonical root system is Φ(B) = Φ = {±e1 +
n.e2 | n ∈ Z} and its Weyl group W is in�nite dihedral. We let S = {s1, s2} be its canonical
generating set, where s1 = re1 and s2 = re2−e1 .
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Let Φ1 = {±e1}, Φ2 = {e1 − e2,−e1 + e2}, Π1 = {e1} and Π2 = {−e1 + e2}. Thus Ei =(
(Πi,Π∨i ),Φi

)
is a rank one root datum for i = 1, 2. Let Gi be a group with a root datum

{Uα}α∈Φi of type Ei for i = 1, 2. Note that Gi may be any rank one group. Let

Ti = 〈µ(u)µ(v) | u, v ∈ Uα\{1}, α ∈ Πi〉
where i = 1, 2 and set T = T1 × T2. We de�ne

G̃ = (G1 × T2) ∗T (T1 ×G2)

and
N = T.〈µ(u) | u ∈ Uα\{1}, α ∈ Π1 ∪Π2〉 < G̃.

Note that T is normal in N . Furthermore, the unique homomorphism W → N/T , de�ned by
the assignments s1 7→ µ(u1).T and s2 7→ µ(u2).T where ui is some �xed nontrivial element of Uα
with α ∈ Πi, is in fact an isomorphism. Thus the quotient N/T is in�nite dihedral. Therefore,
there is a well-de�ned W�equivariant map Φ → {nUαn−1 | n ∈ T, α ∈ Π1 ∪ Π2}. In particular,
we may use Φ as an index set for the family {nUαn−1 | n ∈ T, α ∈ Π1 ∪ Π2}. Now, one veri�es
that the system {Uα}α∈Φ of subgroups of G̃ satis�es (RGD0)�(RGD2). In order to make (RGD3)
hold, one just add the necessary relations. More precisely, let H be the normal closure in G̃ of
the subset

{[Uα, Uβ] | α 6= β and {α, β} ⊂ Φ is prenilpotent}.
We denote by G the quotient G̃/H. The projection in G of the subgroup Uα < G̃ is again
denoted by Uα. It turns out that the system {Uα}α∈Φ is a root group system of type E for G.

This construction is due to J. Tits [Tit90, �9]. An alternative description, with detailed
computations, and a generalization to other types of root data (with any right-angled Coxeter
group as Weyl group), is carried out in [RR06].

3. Kac-Moody theory

The purpose of this section is to indicate that Kac-Moody theory provides a wide variety of
examples of groups endowed with a root group datum with in�nite Weyl groups. The origin of
this theory lies in the classi�cation of �nite-dimensional simple Lie algebras over C. A key tool in
this classi�cation is the existence of a Cartan decomposition, namely a root space decomposition
with respect to a certain abelian subalgebra whose adjoint action is diagonalizable, and called a
Cartan subalgebra. A basic idea in Kac-Moody theory is to construct a family of Lie algebras
by generators and relations, where the relations impose the existence of a Cartan decomposition.
Carrying out this idea, V. Kac was able to construct a continuous family of �nitely generated
simple Lie algebras. Our �rst goal is to explain this construction.

3.1. Constructing Lie algebras with a Cartan decomposition. We start with a matrix
A = (aij)ni,j=1 ∈ Rn×n of rank l and consider a triple (hR,Π,Π∨) where hR is a R-vector space of
dimension 2n − l, Π = {α1, . . . , αn} is a linearly independent subset of h∗R, Π∨ = {α∨1 , . . . , α∨n}
is a linearly independent subset of hR and the relation

〈αj , α∨i 〉 = aij

holds for all i, j ∈ {1, . . . , n}. Note that such a triple always exists and is unique up to isomor-
phism. Next we consider a Lie algebra g̃(A) generated by {ei, fi | i = 1, . . . , n} and a basis of
hR, submitted to the following relations:

[ei, fj ] = δijα
∨
i (i, j = 1, . . . n),

[h, h′] = 0 (h, h′ ∈ hR),
[h, ei] = 〈αi, h〉.ei (i = 1, . . . , n;h ∈ hR),
[h, fi] = −〈αi, h〉.fi (i = 1, . . . , n;h ∈ hR).

A fundamental result by V. Kac is the following:

Theorem. Let ñ+ (resp. ñ−) be the subalgebra generated by {ei | i = 1, . . . , n} (resp. {fi | i =
1, . . . , n}). Let also h = hR ⊗ C, Q =

∑n
i=1 Zαi and Q+ =

∑n
i=1 Z+αi. We have the following:

(i) g̃(A) = ñ− ⊕ h⊕ ñ+.
(ii) ñ+ (resp. ñ−) is freely generated by {ei | i = 1, . . . , n} (resp. {fi | i = 1, . . . , n}).
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(iii) With respect to the adjoint h�action, one has a decomposition

g̃(A) =
( ⊕
α∈Q+\{0}

g̃α
)
⊕ h⊕

( ⊕
α∈Q+\{0}

g̃−α
)
,

where g̃α = {x ∈ g̃(A) | [h, x] = 〈α, h〉.x for all h ∈ h}.
(iv) The assignments ei 7→ −fi, fi 7→ −ei (i = 1, . . . , n), h 7→ −h (h ∈ h) extend to an

involutory automorphism ω̃ ∈ Aut g̃(A).
(v) Amongst all ideals intersecting h trivially, there is a unique maximal one, say r.

Proof. See [Kac90, Theorem 1.2]. Here, we merely note that (v) follows rather quickly from
the root space decomposition (iii). Indeed, let U be any nontrivial ideal of g̃(A) intersecting h

trivially and let u ∈ U be a nonzero element. By (iii), we have u =
∑k

i=1 ui, where ui ∈ g̃αi and
αi ∈ ±Q+ for each i = 1, . . . , k. Since h is not a �nite union of hyperplanes, there exists h ∈ h
such that the scalars αi(h) (i = 1, . . . , k) are all distinct. Now, for each j ∈ N we have

(ad h)j(u) =
k∑
i=1

〈αi, h〉j .ui ∈ U.

Since the matrix (〈αi, h〉j)ki,j=1 has nonzero determinant (it is a Vandermonde matrix), it follows
that ui ∈ U for each i = 1, . . . , k. In other words, the root space decomposition (iii) induces a
similar decomposition of U . This shows that the sum of all ideals intersecting h trivially is itself
an ideal intersecting h trivially. This is nothing else than the clever use of a classical trick to
show that the restriction of a diagonalizable endomorphism is still diagonalizable. �

We de�ne a Lie algebra g(A) as the quotient g̃(A)/r, where r is the maximal ideal of (v).
As a consequence of the latter theorem, it is not di�cult to establish the following (see [Kac90,
Proposition 1.7]):

Corollary. The Lie algebra g(A) is simple if and only if detA is nonzero and for each i, j ∈
{1, . . . , n} there exists a sequence of indices i = i0, i1, . . . , is = j such that aij−1ij is nonzero for
each j = 1, . . . , s.

Note that it is an open problem to determine whether the matrix A (up to a permutation of
the indices preserving A) is an invariant of the isomorphism class of the Lie algebra g(A). This
is only known for special classes of matrices, all of which are generalized Cartan matrices (see
Sect. 3.2 below).

The root space decomposition (iii) above induces a decomposition g(A) =
⊕

α∈Q gα. Note
that by the de�nition of g(A) we have g0 ' h and we will in fact identify the latter two algebras.
Thus the decomposition of g(A) is in fact a root space decomposition for the adjoint action of h.
We de�ne Φ = {α ∈ Q\{0} | gα 6= 0}; elements of Φ are called roots. We also set Φ± = Φ∩Q±,
where Q− = −Q+.

The rule

(3.1) [gα, gβ] ⊂ gα+β,

valid for arbitrary α, β ∈ h∗, shows that for each root α ∈ Φ+, the root space gα is the linear
span of elements of the form

[. . . [[ei1 , ei2 ], ei3 ] . . . , eis ]
such that αi1 + · · ·+ αis = α. Consequently, we obtain the obvious bound

(3.2) dim gα 6 n
heightα

for any α ∈ Φ+, where by de�nition

height(
n∑
i=1

λiαi) = |
n∑
i=1

λi|

for any α =
∑n

i=1 λiαi ∈ Q. The above description of gα also shows that

(3.3) dim gαi = 1 and dim gλαi = 0
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for any i = 1, . . . , n and λ ∈ Z, λ > 1. Similar statements hold for negative roots and fi instead
of ei. A quick way to establish this is by applying the involution ω of g(A), induced by the
involution ω̃ ∈ Aut(g̃(A)) mentioned in point (iv) of the theorem.

Finally, we remark that, in view of the root space decomposition of g(A), the subalgebra xi
generated by ei and fi is 3-dimensional. Now, if aii = 0, then xi is isomorphic to a Heisenberg
Lie algebra. If aii 6= 0, then xi is not solvable and, hence, it must be isomorphic to sl2(C).

3.2. Kac-Moody algebras.

3.2.1. The root basis and its canonical root system. The Lie algebra g(A) is called aKac-Moody
algebra if the matrix A is a generalized Cartan matrix, namely if A ∈ Zn×n and moreover
aii = 2, aij 6 0 and aij = 0 ⇔ aji = 0 for all i 6= j ∈ {1, . . . , n}. This is equivalent to the
requirement thatB(A) = (Π,Π∨) be an integral root basis. Note thatB(A) is free by assumption.
Let S = S(B(A)) and W = W (B(A)) be the Weyl group of B(A). By Theorem 1.1.4(i), for all
distinct α, β ∈ Π we have o(rαrβ) = 2, 3, 4, 6 or ∞ according as Aα,βAβ,α = 0, 1, 2, 3 or > 4. In
particular the set Φ(B(A)) is a reduced root system by Lemma 1.2.1(i). We will see in the next
subsection that that the root system Φ(B(A)) has in fact a Lie theoretic interpretation in the
present context.

3.2.2. Lifting the Weyl group. A basic fact on Kac-Moody algebras is that they satisfy Serre's
relations:

(ad ei)1−aij ej = 0 and (ad fi)1−aij fj = 0
for all i 6= j. This follows from basic computations in sl2(C)-modules, see [Kac90, �3.3]. An
immediate consequence is the following:

Lemma. The operators ad ei and ad fi are locally nilpotent on g(A) for all i = 1, . . . , n.

Proof. Recall that a linear operator A ∈ End(V ) of a vector space V is called locally nilpotent if
every vector v ∈ V is contained in a �nite-dimension A-stable subspace U such that the restriction
of A to U is nilpotent. In view of the de�nition of g̃(A) and g(A), we have (ad ei)2h = 0 for any
h ∈ h. In view of Serre's relations, it follows that for any generator x of the Lie algebra g(A)
there is an integer Nx such that (ad ei)Nxx = 0. Now, using Leibniz' rule (note that ad ei is a
derivation of g(A) by Jacobi's identity), one deduces by a straightforward induction on iterated
commutators of the generators of g(A) that ad ei is locally nilpotent. Similar discussions apply
to ad fi. �

From the lemma it follows that

exp ad ei =
∞∑
m=0

1
m!

(ad ei)m

is a well-de�ned automorphism of g(A).

Now, for each i ∈ {1, . . . , n}, we consider the automorphism

ri = exp ad ei. exp ad−fi. exp ad ei ∈ Aut(g(A)).

Note that ri stabilizes the subalgebra xi ' sl2(C) and acts on it as the involution ei 7→ −fi,
fi 7→ −ei, α∨i 7→ −α∨i . Furthermore, straightforward computations show that

ri(h) = h− 〈αi, h〉α∨i
for all h ∈ h. In particular, the automorphism ri preserves h and, consequently, preserves the
corresponding root space decomposition of g(A). In other words ri induces a permutation of Φ,
which we denote by r∨i . In fact, one can easily compute the action of r∨i on Φ by transforming the
equation [h, x] = 〈α, h〉.x (satis�ed by all h ∈ h, x ∈ gα and α ∈ Φ) by ri. Routine computations
then show that

r∨i (α) = α− 〈α, α∨i 〉.αi.
This extends to a linear action of r∨i on h∗ which is nothing but the dual action of ri. The
following result sums up the preceding discussion:
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Proposition. The canonical B(A)�root system Φ(B(A)) identi�es in a canonical way to a subset
reΦ of the set of roots Φ of the Lie algebra g(A). �

Note that we recover the fact that Φ(B(A)) is reduced thanks to Equation (3.3).

A remarkable feature of Kac-Moody theory is that Φ is real, i.e. Φ = reΦ, if and only if g(A)
is �nite-dimensional, in which case it is a well understood semisimple Lie algebra, see [Kac90,
Th. 5.6]. The elements of imΦ = Φ\ reΦ are called imaginary roots.

An important open problem of the theory is to compute the dimension of the root space gα
for α imaginary; recall that Equation (3.2) provides a rough upper-bound. In view of (3.3), we
have dim gα = 1 for any α ∈ reΦ. For such a root α ∈ reΦ, we set

Uα = 〈exp adx | x ∈ gα〉

which is a well-de�ned one-parameter subgroup of Aut(g(A)) since adx is locally nilpotent by
the lemma above.

Note also that for each i, the re�ection rαi of the root basis B(A) coincides with the restriction
of r∨i to the R-form h∗R of h∗. The Weyl group W < GL(h∗R) is thus isomorphic to the subgroup
of GL(h) (resp. GL(h∗)) generated by the corresponding restrictions of the ri's (resp. r∨i ). Note
however that the subgroup of Aut(g(A)) generated by the ri's is not isomorphic to W , but to
an extension of W by an elementary abelian 2-group of rank n. This extended Weyl group is
studied by J. Tits in [Tit66].

3.3. Root group data for Kac-Moody groups. Maintain the notation of the previous sub-
section. We let moreover G be the subgroup of Aut(g(A)) generated by the Uα's. The group G
is called the adjoint Kac-Moody group of type A over C.

Theorem. The tuple {Uα}α∈ reΦ is a root group datum for G, satisfying also (RGD3)lin.

Proof. Condition (RGD0) holds by construction. For (RGD1), note that U+ stabilizes the sub-
algebra n+ generated by the ei's. Moreover, the group U−αi stabilizes the subalgebra xi. It
follows that U−αi 6⊂ U+, otherwise U−αi would stabilize xi ∩ n+ = gαi , which is absurd. A
similar argument shows that Uαi 6⊂ U−, hence (RGD1) holds. Condition (RGD2) is satis�ed as
follows from the preceding discussion on the automorphisms ri ∈ Aut(g(A)). Moreover (RGD4)
is empty since Φ is reduced. It remains to establish (RGD3)lin. To this end, for any prenilpo-
tent pair {α, β} ⊂ reΦ we let g[α,β] be the vector space generated by all root spaces gγ with
γ ∈ [α, β]lin = Φ ∩ (R+α + R+β). Thus we have g[α,β] =

⊕
γ∈[α,β]lin

gγ and g[α,β] is �nite-
dimensional since nilpotent sets of roots are necessarily �nite by Sect. 1.2.2. Moreover, the rule
(3.1) shows that g[α,β] is in fact a nilpotent subalgebra.

Let now Ũ[α,β] be the simply connected complex Lie group with Lie algebra g[α,β]. Thus

Ũ[α,β] is nothing but the set g[α,β] endowed with a composition law (u, v) 7→ u ∗ v given by
the Baker-Campbell-Hausdor� formula. We also denote by U[α,β] the subgroup of Aut(g(A))
generated by exp adx for x ∈ g[α,β]. Now, it follows from the de�nitions that there is a canonical
homomorphism

ϕ : Ũ[α,β] → U[α,β].

Furthermore, denoting by Ũγ the one-parameter subgroup of Ũ[α,β] with Lie algebra gγ for

each γ ∈ [α, β], we have ϕ(Ũγ) = Uγ and we obtain a product decomposition

Ũ[α,β] =
∏

γ∈[α,β]lin

Ũγ

induced by the decomposition of g[α,β]. Routine computations then show that the Lie alge-

bra of the commutator group [Ũα, Ũβ] is contained in
∑

γ∈]α,β[lin
gγ , which yields [Ũα, Ũβ] ⊂∏

γ∈]α,β[lin
Ũγ . Transforming by ϕ, we deduce that axiom (RGD3) is satis�ed. �
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3.4. Generalizations to arbitrary �elds and non-split groups. In a similar way as complex
semisimple Lie groups may be de�ned over arbitrary �elds following Chevalley's construction,
J. Tits [Tit87] has shown that similar constructions may be performed in the Kac-Moody context.
A key point in this construction is to show that the simply connected nilpotent Lie groups Ũ[α,β]

that appeared in the proof of Theorem 3.3 are in fact the groups of C-points of nilpotent group
schemes de�ned over Z [Tit87, Prop. 1]. In somewhat less precise terms, this means that the
commutation relations in Ũ[α,β] may be written with integral coe�cients in a similar way as in
the classical case [Ste68, Lemma 15]. These integral coe�cients may then be used to write down
a Steinberg type presentation for a group over an arbitrary ground �eld, see [Tit87, �3.6].

In fact, Tits' construction associates a group functor

GB : Rgs→ Gps

on the category of commutative unitary rings to every integral root basis B = (Π,Π∨) such that
Π is �nite. Given any �eld k, the group GB(k) is naturally endowed with a family of subgroups
{Uα}α∈Φ(B), all isomorphic to the additive group of k, which is a root group datum for a subgroup
GB(k)† of GB(k) [Rém02c, Prop. 8.4.1]. This root group datum satis�es moreover (RGD3)lin.
The functor GB is called a Tits functor. The value of a Tits functor on a �eld k is called a
split Kac-Moody group over k.

An important feature of Tits functors is that their restriction to the category of �elds is
completely characterized by a short list of axioms inspired by the scheme-theoretic de�nition of
linear algebraic groups [Tit87, Theorem 1]. One of these axioms is that the complex Kac-Moody
group GB(C) has a natural adjoint action on the Lie algebra gA, where A = A(B) is the Cartan
matrix of the root basis B.

The analogy with the theory of reductive algebraic groups can be pushed one step further:
Kac-Moody groups admit non-split forms which also possess naturally root group data. The
non-split forms may be obtained by an algebraic process of Galois descent, which is de�ned and
studied in [Rém02c, Chapters 11�13], or by using other twisting methods which do not �t into
the context of Galois descent: see [Hée90] for Steinberg-Ree type constructions and [Müh99],
[Müh02] for some others. In all cases, one obtains groups endowed with root group data; the
Weyl group is generally in�nite, and the underlying root basis might be of in�nite rank as well.

We will not give more details about these constructions here. We merely mention that some
of the groups they yield admit rather concise presentations, which allow to recover them in more
direct manner, see Sect. 8.2 below.

4. Root group data, buildings and BN-pairs

There are several equivalent de�nitions of buildings which are all of di�erent �avour and bring
each a speci�c enlightenment to the theory. Here we present two of them and sketch some of
their most basic features. Detailed accounts on the theory may be found in standard references:
[Tit74] classi�es the spherical buildings in connection with the theory of algebraic groups and
their twisted analogues, [Wei03] takes into account simpli�cations made possible by the use of
the Moufang property (as suggested by the addenda in [loc. cit.]), [Ron89] exploits the notion
of a chamber system as introduced in [Tit81]. Finally, the book [AB] will present all the main
viewpoints on buildings and a careful study of the relationships with combinatorial group theory,
while [Dav08] provides a thorough treatment of the topological and metric viewpoints on Coxeter
groups and buildings.

4.1. BN-pairs from root group data. Let us �rst introduce the de�nition and the basic
properties of BN -pairs, another (less precise but of course more general) structure in group
combinatorics.

4.1.1. Axioms of a BN -pair. Let G be a group. A BN-pair (or Tits system) [Bou07b, IV.2]
for G is a pair B,N of subgroups of G, together with a set S of cosets of N modulo B ∩ N ,
which satisfy the following axioms:

(BN1): G = 〈B ∪N〉 and B ∩N �N .
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(BN2): The elements of S have order 2 and generate the group W := N/B ∩N .
(BN3): For all s ∈ S and w ∈W , we have sBw ⊂ BwB ∪BswB.
(BN4): For each s ∈ S, we have sBs 6⊂ B.

It follows from the axioms that the group W is a Coxeter group and that (W,S) is a Coxeter
system [Bou07b, Ch. IV, �2, Th. 2]. Another important consequence is the following decompo-
sition of G, called Bruhat decomposition [Bou07b, Ch. IV, �2, Th. 1]:

G =
⊔
w∈W

BwB.

In other words, the double cosets of B in G are in one-to-one correspondence with the elements
of W .

An important concept associated with BN -pairs is that of a parabolic subgroup. Given
any subset J ⊂ S, it follows from the axiom (BN3) that the set PJ =

⊔
w∈WJ

BwB is a subgroup
of G containing B, which is called a standard parabolic subgroup of type J . In fact, it
follows from the Bruhat decomposition that any subgroup of G containing B is obtained in this
way [Bou07b, Ch. IV, �2, Th. 3].

4.1.2. BN -pairs from root group data. As before, let now B = (Π,Π∨) be a root basis and
E = (B,Φ) be a root datum. Let also G be a group endowed with a root group datum {Uα}α∈Φ

of type E. We will also assume in this subsection that Φ = Φ(B) is the canonical root system of
B; in particular it is reduced. This assumption causes no loss of generality in view of Lemma 2.4.

In order to construct BN -pairs for G, we introduce the following additional notation:

T = 〈µ(u)µ(v) | u, v ∈ Uα\{1}, α ∈ Π〉,

N = 〈µ(u) | u ∈ Uα\{1}, α ∈ Π〉.T

and

B± = T.U±.

Clearly T normalizes each root group Uα, in particular B+ and B− are subgroups of G and
we have U± � B±. Given α ∈ Π and u ∈ Uα\{1}, we denote by rα the coset µ(u).T ⊂ N/T .
Note that this is indeed independent of the choice of u ∈ Uα\{1}. Finally we set

S = {rα | α ∈ Π}.

The expected relation between root group data and BN -pairs is the following statement:

Theorem. The tuple (B±, N, S) is a BN -pair for G.

The proof of this theorem is surprisingly di�cult. The methods involved are completely
elementary, but the complete proof is a very clever, quite technical, and fairly indirect one,
due to J. Tits. The hardest point is to prove that for a root group datum as above, we have:
B+ ∩ U− = {1}. For this (and for other purposes among which are amalgamation theorems),
J. Tits developed a combinatorial theory of coverings of partially ordered sets [Tit86a], which
we sketch very brie�y in 5.1. For a careful analysis of the proof, we recommend [AB, 8.6], which
in fact contains the most detailed written treatment of this proof (to our knowledge); see also
[Rém02b, �3] for reasonably detailed version suggested by [Abr96].

Corollary. We have B− = NG(U−).

Proof. Since U− is normal in B− by de�nition, we have B− ⊂ NG(U−). In view of the theorem,
this implies thatNG(U−) = P−J for some J ⊂ S since every subgroup containing B− is a parabolic
subgroup. Now if J 6= ∅, then rα ∈ J for some α ∈ Π and hence Uα ∈ P−J = NG(U−). But we
have just seen in the proof of (BN4) that Uα 6⊂ NG(U−). Thus J = ∅ and NG(U−) = B−. �
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4.2. Coset geometries. The purpose of the next sections is to show that a group G endowed
with a root group datum possesses two natural actions on two distinguished buildings, which
are associated to G via BN -pairs constructed from the root group datum. Actions on buildings
are very helpful in exploring the structure of the groups acting, as it will become clear in the
subsequent study of G.

As we will see below, the construction of the building associated to a group with a BN -pair is
a special example of a coset geometry associated to a group endowed with an inductive system
of subgroups, and it is appropriate to start by de�ning the latter concept.

The coset geometry is obtained by the following construction. Let G be a group and let
{Ga}a∈F be a system of subgroups indexed by some set F (in such a way that Ga 6= Gb for
a 6= b). The index set F is partially ordered by the inclusion of subgroups:

a 6 b ⇔ Ga ⊂ Gb.

We view {Ga}a∈F as an inductive system, all of whose morphisms are inclusion maps. The coset
geometry of G with respect to {Ga}a∈F is the set

Y =
⋃
a∈F

G/Ga

which is partially ordered by the reverse inclusion:

gGa 6 hGb ⇔ gGa ⊃ hGb.

The poset (F op,6) = (F,>), which is the dual of (F,6), is thus isomorphic to a sub-poset of
(Y,6).

Recall that (F op,6) has the structure of an (abstract) simplicial complex if any two
elements of F op have an in�mum and if any nonmaximal element a of F op coincides with the
in�mum of the set of elements strictly greater than a. In that case, the poset (Y,6) also inherits of
the structure of a simplicial complex, which is called the simplicial coset geometry associated
with the system {Ga}a∈F , and whose simplices are all the elements of Y , so that the order ≤
becomes the inclusion of simplices. The vertices of this complex are the minimal (nonempty)
simplices, or equivalently, the cosets of the maximal subgroups in the system {Ga}a∈F . The
diagram of the poset Y (i.e. the graph with vertex set Y such that the vertices x, y form
an edge if and only if x 6 y or y 6 x) is nothing but the 1-skeleton of the �rst barycentric
subdivision of the simplicial coset geometry.

A typical example is the case of an amalgam G = A ∗C B where C = A ∩ B. In that case,
the (simplicial complex associated to the) coset geometry is easily identi�ed with the Bass-Serre
tree associated to the amalgam.

Another example, important to us, is the standard Coxeter complex of a Coxeter system
(W,S). This is de�ned as follows. Let F be the set of all proper subsets of S ordered by inclusion
and consider the inductive system {WJ}J∈F , whereWJ = 〈J〉. We haveWI ∩WJ = WI∩J for all
I, J ∈ S, where WI = 〈I〉. Moreover WJ =

⋂
I∈F,I)JWI for all nonmaximal J ∈ F . Thus (F,6)

is an abstract simplicial complex; in fact it is just a simplex. The standard Coxeter complex is
the simplicial coset geometry associated with {WJ}J∈F . Note that the maximal simplices in this
complex are the cosets of W∅ = 1, and are thus naturally in one-to-one correspondence with W .

For example, if W is in�nite dihedral and S = {s1, s2} is a Coxeter generating set, then the
standard Coxeter complex is a simplicial line, which is simply the Bass-Serre tree of the amalgam
W = 〈s1〉 ∗ 〈s2〉.

4.3. Buildings as simplicial complexes. Given a Coxeter system (W,S), a building of type
(W,S) is a simplicial complex X together with a collection A of subcomplexes, all isomorphic to
the standard Coxeter complex of (W,S), such that the following conditions are satis�ed:

(Bu1): Any two simplices are contained in some A ∈ A.
(Bu2): Given any two A,B ∈ A, there is an isomorphism A→ B �xing A ∩B pointwise.
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The maximal simplices of X are called chambers; the set of all chambers is denoted by
Ch(X ). The subcomplexes in A are called apartments. The Coxeter group W is called the
Weyl group of X .

A �rst basic property of buildings is the existence of a type function typ : X → P(S)
associating a subset of S to each simplex in X in such a way that each vertex is mapped to a
maximal proper subset of S and for every simplex σ we have typ(σ) =

⋂
v∈σ typ(v). It is clear

by construction that the standard Coxeter complex is endowed with such a type function: we
can simply set wWJ 7→ J for every w ∈ W and J ⊂ S. Now, transporting this type function
to an apartment of X , we can extend it in a coherent way to the whole of X using (Bu1) and
(Bu2). Moreover, the isomorphisms in (Bu2) may always be assumed to be type-preserving [AB,
Prop. 4.6]. The type of a chamber is the empty set.

The star of a simplex σ ∈ X is called a residue. It is itself a building whose apartments are
the traces on St(σ) of apartments in A. The type of this building is given by (WJ , J) where
J = typ(σ).

4.4. The Weyl distance. An important feature about buildings is that the set of chambers is
endowed with a so-called Weyl distance. Given a Coxeter system (W,S) and a set C, a map
δ : C ×C →W is called a Weyl distance if it satis�es the following conditions, where x, y ∈ C
and w = δ(x, y):

(WD1): w = 1 if and only if x = y.
(WD2): Given z ∈ C such that δ(y, z) = s ∈ S, we have δ(x, z) ∈ {w,ws}; furthermore,

if `(ws) > `(w), then δ(x, z) = ws.
(WD3): Given s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

As we have seen above, the set Ch(A) of chambers in any apartment of a building X of type
(W,S) can be identi�ed with W . Consider the map

δW : W ×W →W : (x, y) 7→ x−1y.

It is immediate to check that δW is a Weyl distance. Note moreover that the composite map
` ◦ δW : W ×W → W is nothing but the (combinatorial) distance in the Cayley graph of W
with respect to S. Now one can transport the Weyl distance δW on Ch(A) for each apartment
A ∈ A of X . In view of the axioms (Bu1) and (Bu2), one veri�es easily that this allows one
to construct a well-de�ned Weyl distance δ : Ch(X ) × Ch(X ) → W . One also checks that the
composed map d = ` ◦ δ is a discrete metric in the usual sense, which is called the numerical
distance on Ch(X ).

The existence of a Weyl distance is in fact a characterizing property of buildings: any set
endowed with a Weyl distance may be identi�ed with the set of chambers of some building.

4.5. Buildings from BN-pairs. Given a group G with a BN -pair (B,N, S) and Weyl group
W = N/B ∩ N , let F be the set of proper subsets of S ordered by inclusion and consider
the inductive system {PJ}J∈S consisting of the standard parabolic subgroups of G. We have
PI ∩ PJ = PI∩J and moreover PJ =

⋂
I∈F,I)J PI for all nonmaximal J ∈ F . Thus, as before, F

is a simplicial complex. Let X be the simplicial coset geometry associated with {PJ}J∈S . Let
also A0 be the simplicial coset geometry associated with the inductive system {N ∩ PJ}J∈F of
subgroups of N . Then A0 is isomorphic to the Coxeter complex of type (W,S) and may be
identi�ed in a canonical way with a subcomplex of X . Let A =

⋃
g∈G g.A0. It turns out that

(X ,A) is a building of type (W,S); property (Bu1) is not di�cult to deduce from the Bruhat
decomposition.

The Weyl distance of X is also easy to identify: it is the map δ : Ch(X )×Ch(X )→W de�ned
by

δ(gB, hB) = w ⇔ Bh−1gB = BwB.

This de�nition makes sense again thanks to the Bruhat decomposition of G.
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Part II. Group actions on buildings and associated structure results

5. First structure results from actions on buildings

It is an old matter in group theory to try to obtain a presentation for a group that acts
naturally on a space by preserving some structure, e.g. of topological or geometric nature. For
example, in the case of a group Γ acting by homeomorphisms on an arcwise connected and
simply connected topological space X possessing an arcwise connected open subset U such that
Γ.U = X, a precise presentation for Γ is given in [Mac64]. An interesting special case is when the
Γ-action is proper and totally discontinuous and U is compact: in that case (under some mild
extra condition) the given presentation of Γ turns out to be �nite. This is especially relevant
to algebraic topology: the fundamental group of a topological space has a natural action on
the universal cover, which is of course simply connected. Thus this method provides a way of
obtaining presentations for fundamental groups.

This circle of ideas also lies behind Bass-Serre theory, which characterizes group amalgams in
terms of actions on trees. Very early on, Tits realized that these ideas could be e�ciently used
in the context of buildings (recall that trees are indeed special examples of buildings!). This is
what we want to explain in this section.

5.1. Covering theory for partially ordered sets. We now describe a very �exible method in
the spirit of the ideas describe above, which applies in particular to all coset geometries. One of
the goals is to make sense of a notion of simple-connectedness for posets in such a way that, under
suitable hypotheses, the coset geometry (Y,6) is simply connected if and only if G = lim

−→
Ga.

We follow [Tit86a]; see also [Rém02b, Ch. 3].

We consider the category O whose objects are posets and whose morphisms are non-decreasing
maps which are descending bijections. In other words, a non-decreasing map f : (A,6) →
(B,6) is a morphism of O if and only if for any a ∈ A, the appropriate restriction of f induces
a one-to-one map

{x ∈ A | x 6 a} → {y ∈ B | y 6 f(a)}.
In the case of posets of simplices in simplicial complexes, this condition requires that the mor-
phisms be simplicial maps.

A morphism f : (E,6) → (B,6) is called a covering if f is an ascending bijection. In
other words f is a covering if and only if for any a ∈ A, the appropriate restriction of f induces
a one-to-one map

{x ∈ A | x > a} → {y ∈ B | y > f(a)}.
Again, in the language of simplicial complexes, this means that f induces a one-to-one map

on the link of every simplex.

A covering f : (E,6)→ (B,6) of a poset (B,6) is called a universal cover if E is connected
(i.e. the associated diagram is connected) and f factors through every other covering of (B,6).
A poset (A,6) is called simply connected if the identity map de�nes a universal cover.

All basic properties of classical covering theory can be extended to the present context without
di�culty, such as:

• existence and uniqueness of path-liftings (with a base-point);
• surjectivity of coverings whenever the base is connected;
• existence and uniqueness of universal covers (for based posets);
• a covering f : (E,6) → (B,6) such that E is connected and B is simply connected is
automatically an isomorphism.

Let now (A,6) be a poset and G be a group acting on A by automorphisms. A subset F of
A is called a fundamental domain for the G-action on A if F contains exactly one elements
of every G-orbit and if, moreover, one has a 6 b ∈ F ⇒ a ∈ F for every a ∈ A. Given a
fundamental domain F , let us consider the system {Ga}a∈F of stabilizers of points of F . By the
de�nition of a fundamental domain, it is readily seen that a 6 b⇒ Ga ⊃ Gb for all a, b ∈ F .
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We now consider the group G̃ which is the direct limit of the system {Ga}a∈F and the asso-
ciated coset geometry (Ã,6). In order to avoid confusion, we denote by G̃a the canonical image
of Ga in G̃. Let also π : G̃→ G be the canonical map and de�ne α : Ã→ A by

α(gG̃a) = π(g).a

for any a ∈ F . One veri�es that α is a covering and that Ã is connected whenever F is connected.
More importantly, we have the following [Tit86a, Prop. 1]:

Proposition. The map α : Ã → A is a universal cover whenever F is simply connected. In

particular, if F is simply connected, then the poset Ã is simply connected and G ' G̃ if and only
if A is simply connected. �

5.2. Buildings are simply connected. Let now (W,S) be a Coxeter system and (X ,A) be a
building of type (W,S). Let S2 be the set of all subsets J (possibly empty) of S of cardinality
at most 2 and such that WJ = 〈J〉 is �nite. Let

|X |2 = {σ ∈ X | σ is a simplex of type J for some J ∈ S2},
ordered by inclusion.

Since by de�nition, the group W is the inductive limit of the system {WJ}J∈S2 , it follows
from Proposition 5.1 that the poset realization |W |2 of an apartment of type (W,S) is simply
connected. Consequently, we obtain:

Proposition. The poset realization |X |2 is simply connected.

Proof. Let f : E → |X |2 be a covering. We must show that there exists a morphism h : |X |2 → E
such that f ∩ h = id. Let σ0 be a base chamber in |X |2 and choose σ1 ∈ f−1(σ0). Given
any τ ∈ |X |2, there exists by (Bu1) an apartment A containing both σ and τ . Since |A|2 is
simply connected, one deduces, by considering the restriction of f to the connected component of
f−1(|A|2) containing σ1, that there exists a morphism hA : A→ f−1(A) such that f ◦hA = id|A|2
and hA(σ0) = σ1. In view of (Bu2) and the uniqueness of path-liftings, it follows that for any
other apartment B containing σ0, we have hA|A∩B = hB|A∩B. In particular hA(τ) does not
depend on the choice of the apartment A. Set h(τ) = hA(τ). Now one veri�es easily that the
map h : |X |2 → E is a morphism and the equality f ◦ h = id follows by construction. �

One immediately deduces a decomposition as amalgamated sum for groups acting chamber-
transitively on buildings. Indeed, a chamber is obvisouly simply connected and if the action
is type-preserving and chamber-transitive, then any chamber is automatically a fundamental
domain. Thus Propositions 5.1 and 5.2 apply. For example, if G is a group with a BN -pair
(B,N, S), then G is the amalgamated sum of the standard parabolic subgroups of type J for
J ∈ S2.

5.3. Applications to root group data. Let us now come back to a group G endowed with
a root group datum {Uα}α∈Φ of type E = (B,Φ), whose Weyl group is denoted by W . We let
(X−, δ−) be the building associated with the negative BN -pair (B−, N, S) of G. Our present
goal is to apply the technology we have just described to study the U+-action on X−.

We �rst recall the existence of an order ≤ on W de�ned as follows:

z 6 w ⇔ `(w) = `(z) + `(z−1w).

This is called the Bruhat ordering of W . Using the solution of the word problem in Coxeter
groups, this is seen to be equivalent to the existence of a reduced word s1 . . . sn representing w
as a product of elements of S, such that z = s1 . . . sj for some j 6 n (or z = 1).

Now, for each w ∈W , we consider the following subgroup of U+:

Uw = 〈Uγ | γ ∈ Φw−1〉.
Using Lemma 1.1.5, it is easily seen that if z 6 w, then Uz 6 Uw for all z, w ∈ W . In other
words, the system {Uw}w∈W is an inductive system of subgroups. As we will see in the sequel,
the following result and its proof have many useful consequences concerning the structure of G:
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Theorem. The group U+ is isomorphic to lim
−→

Uw.

Proof. Let Ũ = lim
−→

Uw. Denote by Ũw the canonical image of Uw in Ũ and by π : Ũ → U+ the

canonical homomorphism. Consider the set X̃ consisting of all ordered pairs (uŨw, wWJ) such
that u ∈ Ũ , w ∈ W , and J ∈ S2 is such that w is maximal in wWJ for the Bruhat ordering.
Equivalently, the latter condition means that w is of maximal length in wWJ ; it is a well known
fact that there is such a unique element [Bou07b, Ch. IV, �1, Exerc. 3].

We de�ne a partial order 6 on X̃ as follows:

(uŨw, wWI) 6 (vŨz, zWJ) ⇔ wWI ⊃ zWJ and v−1u ∈ Ũw.
The condition wWI ⊃ zWJ implies z ∈ wWI and hence z 6 w and Uz ⊂ Uw. Thus the

order 6 is well-de�ned. Obviously there is an order-preserving action of Ũ on X̃ de�ned by
g : (uŨw, wWI) 7→ (guŨw, wWI).

Let now X− be the negative building of G, namely the building associated with the BN -pair
(G,B−, S) as in Theorem 4.1.2. Consider the map

ν : X̃ → |X−|2 : (uŨw, wWI) 7→ π(u)wP−I ,

where P−I denotes the standard negative parabolic subgroup of type I.

The essential points are that X̃ is connected and ν is a covering map. The veri�cation of these
points is slightly technical but straightforward; details may be found in [Rém02b, Th. 3.5.2].
Then it follows from the covering theory of posets (see Sect. 5.1) that ν is an isomorphism.
Moreover ν is clearly π-equivariant by construction.

Let us now compare some point-stabilizers in X̃ and |X−|2. For w ∈W , we have clearly

Stab
Ũ

(Ũw, w) = Ũw.

On the other hand, we have ν(Ũw, w) = wB− and

StabU+(wB−) = {u ∈ U+ | uwB− = wB−}
= {u ∈ U+ | w−1uwB− = B−}
= U+ ∩ wB−w−1.

From these facts, it follows clearly that

(5.1) π−1(U+ ∩ wB−w−1) = Ũw.

In particular, for w = 1 we get π−1(U+ ∩ wB−w−1) = {1} from which it follows that π is
injective. �

Corollary. We have the following:

(i) For each w ∈W , we have U+ ∩ wB−w−1 = Uw. In particular U+ ∩B− = {1}.
(ii) B+ ∩B− = T .
(iii) We have U−α 6⊂ U+ for each α ∈ Π. In particular, the system {U−α}α∈Φ is a root group

datum of type E for G and (B+, N, S) is a BN -pair.
(iv) We have T =

⋂
α∈ΦNG(Uα).

Proof. (i). The �rst assertion follows by transforming (5.1) under π. The second assertion is the
special case of the �rst one with w = 1.

(ii). Consider g = tu ∈ B+ = T.U+ and suppose that g ∈ B− = T.U−. Then u ∈ t−1B− = B−
hence u = 1 by (i), whence g ∈ T as desired.

(iii). The fact that U−α 6⊂ U+ follows from (i). The second assertion becomes then clear. In
particular, we may apply Theorem 4.1.2 and its corollary. This shows that (B+, N, S) is indeed
a BN -pair for G and that B+ = NG(U+).

(iv). Let T̃ =
⋂
α∈ΦNG(Uα). The inclusion T ⊂ T̃ follows from the de�nitions. Note that

T̃ ⊂ NG(U+) ∩NG(U−). By Corollary 4.1.2 and (iii), we obtain T̃ ⊂ B+ ∩B−. Thus T̃ ⊂ T by
(ii). �
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5.4. Relationship between the positive and the negative BN-pairs. The fact that the
positive and negative BN -pairs of G have the subgroup N in common is not coincidental. In
fact there is a tight relationship between these two BN -pairs, more precisely described by the
following:

Proposition. The following assertions, as well as similar assertions with + and − interchanged,
hold:

(i) For all w ∈W and s ∈ S such that `(ws) < `(w), we have

B+wB−sB− = B+wsB−.

(ii) For each s ∈ S, we have B+s ∩B− = ∅.
(iii) One has a Birkho� decomposition, namely the map

W → B+\G/B−;w 7→ B+wB−

is bijective.

Proof. (i) is established by considerations similar to those used in the proof of Theorem 4.1.2.

For (ii), proceed as follows. Assume that n = b.b′ for some b ∈ B+, b′ ∈ B− and n ∈ N such
that n.T = s ∈ S. Let α ∈ Π such that s = rα. We have Uα = nU−αn

−1 hence

Uα
b = b′U−α.

Since b ∈ B+ normalizes U+, the group Uαb is contained in U+. Similarly, we have b′U−α ⊂ U−
and the equality above shows that Uα ⊂ b(U+ ∩U−). By Corollary 5.3, we have U+ ∩U− = {1}.
This yields Uα = {1} which violates (RGD0). Hence (ii) is proven.

Assertion (iii) is deduced from (i) and (ii) in a similar way as the Bruhat decomposition is
obtained from the axioms of BN -pairs. Details may be found in [Abr96, Lemma 1]. �

Using this result, we may know answer the question: when are B+ and B− conjugate in G?

Corollary. The group B+ and B− are conjugate in G if and only if W is �nite.

Proof. Assume thatW is �nite and let w0 be the longest element. It is well known that Φw0 = Φ+

from which it follows that U+ = Uw0 and hence w0U+w
−1
0 = U−. Thus w0B+w

−1
0 = B− as

desired.

Assume now that gB+g
−1 ⊂ B− for some g ∈ G. Using the Birkho� decomposition of G, it

follows that wB+w
−1 ⊂ B− for some w ∈ W . Since U+ ∩B− = {1} by Corollary 5.3, it follows

that w.Φ+ ⊂ Φ−, that is to say, Φ+ = Φw. By Lemma 1.1.5, the set Φw is �nite. Thus Φ+ is
�nite and so is Φ = Φ+ ∪ −Φ+. Consequently W is �nite. �

Remark. When the group G is a Kac-Moody group, then G admits an (outer) automorphism
which swaps B+ and B−. Such an automorphism can be constructed as a lift of the Cartan-
Chevalley involution of the corresponding Lie algebra, see Theorem 3.1(iv). However, it is not
clear that such an automorphism exists for any group endowed with a root group datum, although
the whole theory is `symmetric' under a sign change swapping + and −.

5.5. More on the subgroup Uw. We maintain the assumptions and notation of the preceding
subsections (see 4.1.2).

Lemma. Let w ∈W and write w as a reduced expression w = rα1 . . . rαn where αi ∈ Π for each
i. Let moreover β1 = α1 and βi = rα1 . . . rαi−1αi for each i = 2, . . . , n. Then the product set
Uβ1Uβ2 . . . Uβn coincides with the subgroup Uw and each element u ∈ Uw has a unique writing as
a product u = u1 . . . un with ui ∈ Uβi for each i = 1, . . . , n.

Furthermore, if Uα is nilpotent for each α ∈ Π, then so is Uw for each w ∈W .

Proof. Recall from Lemma 1.1.5(iii) that Φw−1 = {β1, . . . , βn}, so the equality Uw = Uβ1Uβ2 . . . Uβn
follows by induction on `(w) using (RGD3). Details may be found in [Rém02c, Lemma 1.5.2(iii)].

Now suppose that some u ∈ Uw may be written in two di�erent ways u = u1 . . . un = v1 . . . vn.
Note that Uβ1 . . . Uβn−1 = Uwrαn is a subgroup of G. Thus, arguing by induction on `(w),
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it su�ces to show that Uβn ∩ Uwrαn = {1}. Conjugating Uβn ∩ Uwrαn by (an element of G
representing) the Weyl group element rαnw

−1, we obtain the subgroup Uαn ∩ V where V =
rαnw

−1Uwrαnwrαn . By de�nition of Uw we have V ⊂ U−, hence Uαn ∩ V ⊂ U+ ∩ U−, which is
trivial in view of Corollary 5.3(i). The desired uniqueness result follows.

We have seen that the set Uβ1 . . . Uβn−1 is a subgroup of Uw which coincides with Uwrαn . In
fact, using (RGD3) one sees that Uβ1 . . . Uβn−1 is normal in Uw. Similarly Uβ2 . . . Uβn is a normal
subgroup of Uw. Therefore, assuming the nilpotency of each root group, the nilpotency of Uw
follows by induction on `(w), using a standard criterion for nilpotency [Hal76, Th. 10.3.2]. �

Remark. When G is a split Kac-Moody group over C with Lie algebra gA (see Sect. 3.3),
then Uw is a complex nilpotent Lie group of dimension `(w). Its Lie algebra is the subalgebra
gw =

∑
α∈Φw

gα of gA. It turns out that in this case, the nilpotency degree of Uw is bounded
above by a constant depending only on G (in fact: on the generalized Cartan matrix A), but
not on w: this is the main result of [Cap07]. It implies that a similar bound exists for all split
or almost split Kac-Moody groups over arbitrary �elds.

Here is another characterization of root group data (of �nite rank) with �nite Weyl group:

Proposition. Assume that root groups are nilpotent and that the boot basis B is of �nite rank.
Then W is �nite if and only if U+ is nilpotent.

Proof. We have seen in the proof of Corollary 5.4 that if W is �nite, then U+ coincides with Uw
for some w ∈W . Thus the `only if' part is clear in view of the proposition.

Suppose now that the Weyl group W is in�nite. Let α be a simple root. Then, since W is
an in�nite Coxeter group, there exists a positive root, say β, such that the associated re�ections
rα and rβ generate an in�nite dihedral group: this is well known, a proof may be found e.g.
in [NV02]. Up to replacing β by rα(β), we may � and shall � assume that {α;β} is a non-
prenilpotent pair of positive roots. In order to prove that U+ is not nilpotent, it is enough
to show that F is isomorphic to the (centre-free, hence non nilpotent) free product Uα ∗ Uβ .
This follows from the general fact, stated in [Tit90, �4, Proposition 5], that if {γ; δ} is a non-
prenilpotent pair of roots, then the canonical map Uγ ∗ Uδ → G is injective. The proof follows
closely the idea of the proof of Theorem 5.3: the group F is analyzed by means of its (discrete)
action on the negative building. More precisely, as suggested by [loc. cit., comment after Lemme
3], it is not di�cult to construct an F -invariant subset of that building which features a treelike
structure. This tree is in fact isomorphic to the Bass-Serre tree of the amalgam F , which shows
the desired injectivity. �

5.6. The Weyl codistance. In the same way as positive and negative Bruhat decompositions
of G allow to de�ne the Weyl distance on Ch(X+)×Ch(X+) and Ch(X−)×Ch(X−) respectively,
the Birkho� decomposition allows to de�ne a map

δ∗ : Ch(X+)× Ch(X−) ∪ Ch(X−)× Ch(X+)→W

by
δ∗(gB+, hB−) = w ⇔ B−h

−1gB+ = B−wB+

and similarly for + and − interchanged. Using Proposition 5.4, one sees that the mapping δ∗

is a Weyl codistance, which means that it enjoys the following properties, as well as similar
properties obtained by swapping + and −, where x ∈ Ch(X+) and y ∈ Ch(X−):

(WCod1): δ∗(x, y) = δ∗(y, x)−1.
(WCod2): If δ∗(x, y) = w and δ−(y, z) = s ∈ S with `(ws) < `(w) for some z ∈ Ch(X−),

then δ∗(x, z) = ws.
(WCod3): If δ∗(x, y) = w, then for each s ∈ S, there exists z ∈ Ch(X−) such that
δ−(y, z) = s and δ∗(x, z) = ws.

A Weyl codistance de�ned on a pair of buildings of the same type is also-called a twinning
between these buildings. Two chambers are called opposite if their Weyl codistance is 1.
More generally, simplices of the same type are called opposite if they are contained in opposite
chambers. Since the parabolic subgroups of G (i.e. subgroups containing some conjugate of B+

or B−) are the simplex-stabilizers, the opposition relation may also be de�ned between parabolic
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subgroups of G. Roughly speaking, two parabolic subgroups are opposite if their intersection is
as small as possible.

Here is an example of the usefulness of the Weyl codistance:

Proposition. We have:
⋂
w∈W wB+w

−1 ⊂ B−.

Proof. By de�nition of δ∗, we have

(5.2) δ∗(wB+, B−) = w for all w ∈W.
We claim that the latter property characterizes the chamber B− ∈ Ch(X−). Suppose indeed that
an element g ∈ G is such that δ∗(wB+, gB−) = w for all w ∈ W . Let z = δ−(gB−, B−), where
δ− is the Weyl distance of X−. Let z = sn . . . s1 be a reduced decomposition of z in elements si
of S. It follows from (WD2), (WD3) that there exist elements g0, g1, . . . , gn ∈ G, with g0 = 1 and
gn = g, such that δ−(gi−1B−, gi) = si. By (5.2) we have δ∗(zB+, B−) = z and a straightforward
induction on i using (WCod2) shows that δ∗(zB+, giB−) = zs1 . . . si for each i = 1, . . . , n. In
particular δ∗(zB+, gB−) = 1. By our assumption on g, we have also δ∗(zB+, gB−) = z, whence
z = 1. In view of (WD1) this implies that g ∈ B− and the claim is proven.

Now, since H =
⋂
w∈W wB+w

−1 �xes the chamber wB− for each w ∈ W and since δ∗ is
clearly G-invariant, it follows that H �xes B−. Equivalently, we get H ⊂ B− as desired. �

Corollary. The kernel of the action of G on X+ (resp. X−) is the center of G and we have
Z(G) ∩ U+ = Z(G) ∩ U− = {1} and Z(G/Z(G)) = {1}.

Proof. Let K =
⋂
g∈G gB+g

−1 be the kernel of the action of G on X+ and let Z be the center of
G.

Clearly Z ⊂
⋂
α∈ΦNG(Uα), hence Z ⊂ T ⊂ B+ by Corollary 5.3(iv). Since Z is normal in G

we deduce Z ⊂ K.

Conversely, by the lemma we have K ⊂ B− hence K ⊂ T by Corollary 5.3(ii). In particular K
normalizes Uα for each α ∈ Φ. Conversely, each Uα clearly normalizes K, from which we deduce
[K,Uα] ⊂ K ∩Uα ⊂ T ∩Uα = {1}, where the latter equality follows again from Corollary 5.3(i).
Thus K ⊂

⋂
α∈ΦCG(Uα) = Z by (RGD0).

Note that since K ⊂ T and T ∩ U+ = T ∩ U− = {1}, it follows that the canonical projection
π : G → G/Z maps the system {Uα}α∈Φ to a root group datum for G/Z. By construction the
buildings associated with G and G/Z coincide and G/Z acts faithfully. Thus G/Z is center-free
by the above. �

6. Group topology

6.1. Topological completions. The existence of BN -pairs and, hence, of building-actions, for
a group G endowed with a root group datum allows one to construct other groups obtained
by some simple process of topological completion. The idea behind this is the following: the
isometry group of a metric space is naturally endowed with a structure of topological group, the
topology being that of uniform convergence on bounded subsets. Since buildings are in particular
discrete metric spaces (the metric is given by the numerical distance), this provides a topology
for any group acting on a building or, more precisely, for the quotient of the group by the kernel
of the action. Here, in order to avoid the necessity of replacing G by a quotient, we proceed as
follows.

Let X+ be the building associated with the positive BN -pair (B+, N, S) of G. Let c+ = B+

be the chamber �xed by B+. For each n ∈ N, we de�ne
U+,n = {g ∈ U+ | g.c = c for each chamber c such that d+(c, c+) 6 n}.

Thus U+,n is the kernel of the action of U+ on the ball of radius n centered at c+ in Ch(X+).
Consider now the map dist+ : G×G→ R+ de�ned by

dist+(g, h) =
{

2 if h−1g 6∈ U+

2−n if h−1g ∈ U+ and n = max{k ∈ N | h−1g ∈ Uk}.
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By de�nition, for all g ∈ G we have dist+(1, g) = 0 only if g belongs to U+ and acts trivially
on X+. By Corollary 5.6, this implies that g = 1. Moreover, it is straightforward to check that
dist+ satis�es the triangle inequality. Therefore dist+ is a left-invariant metric on G. Let G+

denote the completion of the metric space (G, dist+) and let ϕ+ : G → G+ be the inclusion
map. The extension of dist+ to G+ is again denoted by dist+. Clearly the space G+ is discrete
whenever X+ is of �nite diameter, which happens if and only if W is �nite.

As usual, the preceding discussion may be done with the sign − instead of +, thereby providing
a complete metric space (G−,dist−) and an inclusion map ϕ− : G→ G−.

Proposition. Let ε ∈ {+,−}. The following assertions hold:

(i) The topology de�ned by the metric distε makes G into a topological group. In particular
Gε is a topological group which is totally disconnected.

(ii) Let B̂ε (resp. Ûε) be the closure of Bε (resp. Uε) in Gε. Then B̂ε ' T n Ûε.

(iii) The system (B̂ε, N, S) is a BN -pair of Gε. The corresponding building is canonically
isomorphic to Xε. The kernel of the action of Gε on Xε is the center Z(Gε) and Z(Gε) =
Z(G) is a discrete subgroup of Gε.

(iv) The homomorphism ϕε : Gε → Aut(Xε) is continuous and open, where Aut(Xε) is
endowed with the topology of uniform convergence on bounded subsets (i.e. the bounded-
open topology). Moreover ϕε is proper if and only if Z(G) is �nite.

(v) The subgroup U−ε is discrete in Gε.
(vi) The subgroup (ϕε × ϕ−ε)(G) is discrete in Gε ×G−ε.

Proof. (i). It is immediate to check that {Uε,n}n∈N satisfy the standard axioms of a system of
neighborhoods of the identity in G, see [HR79, Th. 4.5]. Thus G is indeed a topological group
and so is Gε; moreover, the map ϕε is obviously an injective homomorphism.

For n ∈ N, denote by Ûε,n the closure of Uε,n in Gε. It follows easily from the de�nitions that

(6.1)
Ûε,n = {g ∈ Gε | distε(1, g) 6 n}

= {g ∈ Ûε | g.c = c for each chamber c such that dε(c, cε) 6 n}.

Since any open subgroup of a topological group contains the identity component, we have
(Gε)◦ ⊂ Ûε,n for each n ∈ N. By (6.1), the subgroups Ûε,n intersect trivially, whence (Gε)◦ = {1}.
Thus Gε is totally disconnected.

(ii). Since T normalizes Uε, it also normalizes Ûε. Moreover T is a discrete subgroup of Gε by
Corollary 5.3(i). Thus T.Ûε is a closed subgroup containing Bε, whence B̂ε ⊂ T.Ûε. Since the
reverse inclusion obviously holds, we obtain B̂ε = T.Ûε. It remains to show that T ∩ Ûε = {1}.
Note that for any nontrivial t ∈ T , we have distε(1, t) = 2 by Corollary 5.3(i). Hence the desired
result follows from (6.1).

(iii). The subgroup of Gε generated by B̂ε ∪ N contains Ûε, hence it is open. Therefore it is
closed. But clearly it contains G, whence Gε = 〈B̂ε∪N〉. Moreover, it follows from (ii) and (6.1)
that G ∩ B̂ε = Bε. Therefore, we have T ⊂ B̂ε ∩ N ⊂ Bε ∩ N ⊂ T . Thus (BN1) holds. Now
axioms (BN2) and (BN4) are immediate and (BN3) follows from the corresponding property of
G by taking closures.

Consider the map

fε : G/Bε → Gε/B̂ε : gBε 7→ gB̂ε.

Since G∩ B̂ε = Bε, it follows that fε is injective. On the other hand, for any g ∈ Gε, there exists
g′ ∈ G such that g−1g′ ∈ Ûε by the de�nition of Gε. This shows that fε is surjective. Since the
BN -pairs of G and Gε have the same Weyl group (more precisely: the same N and S), it follows
that fε is a canonical isomorphism between the corresponding buildings.

Let K =
⋂
g∈Gε gB̂εg

−1 be the kernel of the action of Gε on Xε. Note that Ûε acts faithfully

on Xε by (6.1), hence K ∩ Ûε = {1}. Since K ⊂ B̂ε, it follows that K normalizes Ûε. Conversely
Ûε obviously normalizes K, so we deduce [K, Ûε] ⊂ K ∩ Ûε = {1}. Since G is generated by
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conjugates of Ûε as follows easily from (BN1) and (ii), we deduce that K ⊂ Z(Gε). Since Z(Gε)
normalizes B̂ε we obtain Z(Gε) ⊂ B̂ε because (B̂,N, S) is a BN -pair. Hence Z(Gε) ⊂ K.

Let now k ∈ K and write k = t.u according to (ii). Since Gε/K is nothing but the completion
of G/Z(G), we deduce by applying (ii) to Gε/K that t and u both belong to K. We have seen
above that K ∩ Ûε is trivial. This shows that K ⊂ T ⊂ G. Therefore Corollary 5.6 yields
K = Z(G).

(iv). It su�ces to check the continuity of ϕε at 1. This property is an obvious consequence
of the de�nition of the topology on Gε. The fact that ϕε is open essentially follows because
the restriction of ϕε to the open subgroup Ûε is injective and maps it to an open subgroup of
Aut(Xε). Since Z(G) is a discrete subgroup of Gε by (iii), it is clear that ϕε can be proper
only if Z(G) is �nite. Assume conversely that Z(G) is �nite and let C ⊂ Aut(Xε) be a compact
subset. Let B = ϕ−1

ε (C) and let (xn)n>0 be any sequence of points in B. Up to extracting, we
may assume that the sequence

(
ϕε(xn)

)
n>0

converges to some c ∈ C. Since ϕε has �nite �bers,
there are �nitely many points b1, . . . , bk such that ϕε(bi) = c. Now, it is clear by the pigeonhole
principle that (xn)n>0 has a subsequence converging to bi for some i ∈ {1, . . . , k}.

(v). We have U−ε ∩ Ûε ⊆ U−ε ∩ Uε = {1} by Corollary 5.3(i). Since Ûε is an open subgroup of
Gε, it follows that U−ε is discrete.

(vi). Similarly Ûε × Û−ε is an open subgroup of Gε ×G−ε. On the other hand we have

(ϕε × ϕ−ε)(G) ∩ (Ûε × Û−ε) ⊆ Uε ∩ U−ε = {1}.
The proof is complete. �

The example to keep in mind here is the group G = SLn
(
k[t, t−1]

)
, where k is an arbitrary �eld,

see Sect. 2.7. The completions G+ and G− are then respectively SLn
(
k((t))

)
and SLn

(
k((t−1))

)
.

Note also that if the Weyl groupW is �nite, then the buildings X+ and X− have �nite diameter,
hence are bounded. Therefore, in that case the topologies de�ned by dist+ and dist− are discrete
and we have G+ = G = G−. It is only for an in�nite Weyl group that the completions G+ and
G− are potentially bigger than G.

Remark. It is known that the completed group SLn
(
k((t))

)
has the property of being tran-

sitive on the complete system of apartments in the positive building X+ associated to G =
SLn

(
k[t, t−1]

)
. The complete system of apartments consists of all subsets A of Ch(X+) such

that the restriction of the Weyl distance to A is Weyl�isometric to (W, δW ), where W is the
Weyl group of X+. It is however not clear in general that the analogue of this property holds
for the action of the completion G+ on the positive building X+ associated to any group G
endowed with a root group datum. Nevertheless, in the special case when G is a split or almost
split Kac-Moody group, it is indeed true that G+ acts transitively on the complete system of
apartments of X+: this property may be deduced from [CR06, Prop. 4].

6.2. Levi decompositions. At this point, it is appropriate to make a digression concerning
the structure of parabolic subgroups of G and its topological completions. The decompositions
B+ = T nU+ and B̂+ = T n Û+ (see Corollary 5.3 and Proposition 6.1 respectively) are special
cases of semi-direct decompositions which apply to all parabolic subgroups of spherical type of
G and its completions.

Let J ⊂ S be such that WJ = 〈J〉 is �nite. Let ΦJ = {α ∈ Φ | rα ∈ WJ} be the associated
�nite root subsystem. We de�ne

LJ = T.〈Uα | α ∈ ΦJ〉,
and, for ε ∈ {+,−},

Uε,J = Uε ∩ wJUεw−1
J and Ûε,J = Ûε ∩ wJ Ûεw−1

J ,

where wJ denotes the unique element of maximal length inWJ (which is an involution). Let also
Pε,J be the parabolic subgroup of type J and sign ε in G and let P̂ε,J be the parabolic subgroup
of type J in Gε.
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Theorem. For any ε ∈ {+,−}, the following assertions hold:

(i) Parabolic subgroups of type J admit a Levi decomposition:

Pε,J = LJ n Uε,J and P̂ε,J = LJ n Ûε,J .

(ii) The group Ûε,J is the closure of Uε,J in Gε and P̂ε,J is the closure of Pε,J .
(iii) We have:

Uε,J =
⋂

g∈Pε,J

gUεg
−1 and Ûε,J =

⋂
g∈P̂ε,J

gÛεg
−1.

Proof. We refer to [Rém02b, Th. 6.2.2] for the statements in G and [RR06, Lemma 1.C.2] for
the corresponding extensions to Gε. �

The group LJ is called a Levi subgroup of Pε,J (resp. P̂ε,J). The group Uε,J (resp. Ûε,J)
is called the unipotent radical of Pε,J (resp. P̂ε,J). Note that the group LJ is discrete in Gε
by (i), since Ûε,J is open by de�nition. Moreover, assertion (iii) shows that Ûε,J acts trivially on
ResJ(Bε).

Remark. We emphasize the importance of the assumption that the type J of the parabolic
subgroups to which the Levi decomposition applies be such thatWJ is �nite. It is to be expected
that such a decomposition fails in general for other types of parabolic subgroups. However, if
the strengthened commutation relation axiom (RGD3)lin holds (see Remark 4 in Sect. 2.1), then
parabolic subgroups of all types admit a Levi decomposition by [Rém02b, Th. 6.2.2].

6.3. The group Û+ and other projective limits. Given a collection V of groups (e.g. �nite
groups, nilpotent groups, solvable groups), we say that a totally disconnected group G is pro-V
if every continuous discrete quotient of G is in V . We also de�ne p-groups to be groups all of
whose elements have order a power of p; in particular, p-groups need not be �nite.

Proposition. Suppose that for each α ∈ Π, the root group Uα is �nite (resp. solvable, a p-group).

Then Û+ is pro�nite (resp. pro-solvable, pro-p).

Proof. We give only a sketch. Supplementary details may be found in [RR06, Th. 1.C(ii)] and
[CR06, Prop. 3]. The family {Û+,n}n>0, as de�ned in (6.1), is a basis of open neighborhoods of
the identity in Û+ consisting of normal subgroups. Furthermore, by de�nition of the topology,
the quotient Û+/Û+,n is isomorphic to U+/U+,n for each n. Hence it su�ces to show that the
successive quotients U+,n/U+,n+1 have the desired property (i.e. are �nite, solvable, p-groups).
This is done by induction on n.

Let c ∈ Ch(X+) be a chamber at numerical distance n from B+ and let g ∈ G be such that
g.B+ = c. We have gB+g

−1 = StabG(c) ⊃ U+,n. Hence, for each s ∈ S, the group U+,n is
contained in the parabolic subgroup Ps(c) := gP+,{s}g

−1 of type {s}. The latter group admits
a Levi decomposition, so we get a homomorphism ϕs,c : U+,n → Ls(c), where Ls(c) is a Levi
subgroup of the parabolic subgroup Ps(c). An induction on n using Theorem 6.2 shows that
U+ ∩ StabG(c) is actually contained in the unipotent radical of StabG(c).

Under the canonical projection of Ps(c) onto Ls(c), the latter group is mapped onto a �unipo-
tent� subgroup Us(c) which turns out to coincide with gUs(B+)g−1, where Us(B+) = g〈Uβ | β ∈
Φs〉g−1. By (RGD3), the root groups Uβ for β ∈ Φs are mutually centralizing. To summarize,
we obtain a homomorphism:

ϕs,c : U+,n → Us(c),

where Us(c) is isomorphic to a quotient of the direct product
∏
β∈Φs

Uβ . In view of Theo-
rem 6.2(iii), the kernel of ϕs,c acts trivially on Res{s}(c). Therefore, the intersection

⋂
s∈S Ker(ϕs,c)

acts trivially on the ball of numerical radius 1 centered at c. Therefore, it follows that⋂
s,c

Ker(ϕs,c) = U+,n+1,
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where the intersection is taken over all s ∈ S and all c ∈ Ch(X+) such that d+(c,B+) = n.
Hence the product homomorphism (de�ned componentwise)∏

s,c

ϕs,c : U+,n →
∏
s,c

Us(c)

induces an injection of the quotient U+,n/U+,n+1 into the product
∏
s,c Us(c). All the desired

assertions follow, modulo the fact that if each Uα is �nite, then the ball of radius n centered
at B+ is �nite. The latter fact is clear since the assumption implies that the ball of numerical
radius 1 is �nite and since G is transitive on Ch(X+). �

The above proposition shows that, thanks to root group data with �nite root groups, we can
obtain (most presumably) interesting families of pro�nite groups. In the case when root groups
are moreover p-groups, the corresponding group Û+ is pro-p and a natural question is to compare
such a group with well-known examples, e.g., analytic groups over local �elds. This is a subtle
question because the local �elds for which the question is relevant are of positive characteristic
(the group U+, hence Û+, contains a lot of torsion elements). Here is a �rst result showing that
Kac-Moody theory shall provide new interesting examples of pro-p groups.

Theorem. For any su�ciently large prime number p, there exist Kac-Moody groups G over the
�eld Z/pZ such that:

(i) each root group is isomorphic to the additive group (Z/pZ,+);
(ii) the group U+ enjoys Kazhdan's property (T) � in particular, it is �nitely generated;

(iii) the completion Û+ is a Golod-Shafarevich pro-p group.

Part (ii) is due to J. Dymara and T. Januszkiewicz [DJ02]; Part (iii) is due to M. Ershov
[Ers06, Theorem 1.6]. On the one hand, a �nitely generated group Γ which is Golod-Shafarevich
at p has the property that its pro-p completion Γ̂p admits a presentation with remarkably few
relations with respect to the number of generators [loc. cit., Introduction]. The reason why it is
connected to the previous discussion is that in this case the group Γ̂p contains a non-abelian free
pro-p group, which cannot be analytic. On the other hand, Kazhdan's property (T) is a property
with many equivalent characterizations (in terms of isometric actions on separable Hilbert spaces,
of unitary representations etc) [dlHV89]; it is satis�ed by most lattices in semisimple Lie groups
and can be used to prove that for most of these (center-free) lattices any proper quotient has
to be �nite. Therefore the existence, observed by M. Ershov, of groups combining Kazhdan's
property (T) and a Golod-Shafarevich presentation is rather surprising. We refer to [Ers06, Sect.
8] for a deeper discussion on the usefulness in discrete group theory of the Kac-Moody groups in
the above theorem.

To sum up, at this stage we already know that the completion procedure described in 6.1
provides totally disconnected locally pro-p groups which look like simple algebraic matrix groups
over local �elds (at least from a combinatorial viewpoint), but are new in general since their
pro-p Sylow subgroups, which are their maximal compact subgroups up to �nite index, are not
analytic groups over local �elds.

6.4. Lattices. When the root groups Uα (α ∈ Π) are �nite, the group Û+ is compact open
by Proposition 6.3 and, hence, G+ is locally compact. Therefore G+ admits a Haar measure
denoted Vol [Bou07a, Ch. VII, �1, Th. 1] and it makes sense to talk about lattices, i.e. discrete
subgroups Γ such that Vol(G+/Γ) is �nite [Bou07a, Ch. VII, �2, n◦5].

We already know some discrete subgroups of G+ and G+ ×G− by Proposition 6.1. In order
to check whether the covolume of these is �nite, the following simple criterion is useful:

Proposition. Let G be a locally compact group acting continuously and properly by automor-
phisms on a locally �nite building X with �nitely many orbits on Ch(X) (as before, the group
Aut(X) is endowed with the bounded-open topology). Let C be a set of representatives of the
Γ-orbits in Ch(X). A discrete subgroup Γ ⊂ G is a lattice in G if and only if the series∑

c∈C

1
|StabΓ(c)|
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converges.

Proof. We refer to [Ser77, p. 116] and note that the idea to apply Serre's argument to automor-
phism groups of buildings already appeared in [Bou00, Prop. 1.4.2]. �

The following result is due to the second author in [Rém99]; similar results were obtained by
Carbone-Garland [CG99].

Theorem. Let G be a group with �nite center, endowed with a root group datum {Uα}α∈Φ with
Φ reduced such that Uα is �nite for each α ∈ Π and that∑

w∈W
(1/q)`(w) <∞,

where q = minα∈Π |Uα| (a su�cient condition is: q > |S|). Then U+ is a lattice in G− and G is
a lattice in G+ ×G−.

Proof. Let us �rst consider the group U+. By the Birkho� decomposition G is the disjoint
union of subsets of the form U+.w.B− where w runs over W . This means that the set C =
{w.B− | w ∈W} is a set of representatives of the U+-orbits in Ch(X−). By Corollary 5.3(i), we
have StabU+(w.B−) = U+ ∩ wB−w−1 = Uw. By the proposition (see also Proposition 6.1(iv)),
the group U+ is a lattice in G− if and only if

∑
w∈W

1
|Uw| <∞.

Let us now consider the action of G on X = X+ ×X−. The product X is a building of type
(W,S). Its chamber set Ch(X) is Ch(X+) × Ch(X−). The G-action on X preserves the Weyl
codistance. Moreover, by the Birkho� decomposition, it is Weyl co-transitive in the following
sense: for any x, x′ ∈ Ch(X+) and y, y′ ∈ Ch(X−) such that δ∗(x, y) = δ∗(x′, y′) there exists
g ∈ G such that (g.x, g.y) = (x′, y′). Therefore, it follows that the set {(B+, w.B−) | w ∈ W}
is a set of representatives for the G-orbits in Ch(X). Moreover we have StabG(B+, w.B−) =
B+ ∩ wB−w−1 = T.Uw by Corollary 5.3. Combining Corollary 5.6 with [Tit90, Th. 1], we see
that the quotient T/Z(G) is �nite, hence so is T because Z(G) is �nite by hypothesis. It follows
again from the proposition that G is a lattice in G+ ×G− if and only if

∑
w∈W

1
|Uw| <∞.

It remains to evaluate the sum z =
∑

w∈W
1
|Uw| . In view of Lemma 5.5, we have |Uw| > q`(w),

where q = minα∈Π |Uα|. Therefore z 6
∑

w∈W (1/q)`(w) as desired.

Note that
∑

w∈W x`(w) =
∑

n>0 |W (n)|xn, whereW (n) = {w ∈W | `(w) = n}. Since we have
|W (n)| 6 |S|n, the condition q > |S| is clearly su�cient for

∑
w∈W (1/q)`(w) to converge. �

For the theory of lattices in Lie groups we refer to [Rag72], and for the more advanced and
speci�c theory of lattices in semisimple Lie groups we refer to [Mar91]. These references are the
guidelines for the study of lattices arising from the theory of root data with �nite root groups
as below, at least for the part of the study which relies on analogies with arithmetic groups
[Rém02a].

7. Simplicity results

7.1. Tits' transitivity lemma. It is an elementary fact on permutation groups that if a group
G acts transitively and primitively on a set X (e.g. G is 2-transitive), then any normal subgroup
of G acts either trivially or transitively. If a group G has a BN -pair, it is not quite true that its
action on the chambers of the corresponding building is primitive, but it is indeed true that a
chamber-stabilizer has very few over-groups: as mentioned in Sect. 4.1.1, any subgroup containing
B is a standard parabolic subgroup. This should shed some light upon the following:

Lemma. (Tits' transitivity lemma) Let G be a group with a BN -pair (B,N, S) and X be
the associated building and W be the Weyl group. If the Coxeter system (W,S) is irreducible,
then any normal subgroup of G acts either trivially or transitively on Ch(X).

Proof. See [Tit64, Prop. 2.5] or [Bou07b, Ch. IV, �2, Lemma 2]. �
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In fact, this very useful result might be seen as a variant of a previously known and quite
classical theme, according to which groups admitting a su�ciently transitive action on a set
shall be submitted to strong restrictions concerning their normal subgroups. To be more precise,
we need to introduce some further notions (they will be useful � and still relevant to simplicity
� when discussing some local actions on trees): the action of a group G on a set X is called
quasi-primitive if G, as well as any non-trivial normal subgroup of G, acts transitively on X.
This is the case if the action is primitive, namely if the only equivalence relations on X which
are compatible with the G-action are the trivial ones; note that primitivity itself is implied by 2-
transitivity. In fact, denoting by G† the subgroup of G (acting on X) generated by the stabilizers
of the various elements x in X, we have the following implications:

G acts 2-transitively on X ⇒ G acts primitively on X ⇒ G acts quasi-primitively on X,

which �nally implies that G = G† or that G acts simply transitively on X. A variant of this
is the well-known Iwasawa's lemma: let G act quasi-primitively on X such that there exists a
G-equivariant map T : X → {abelian subgroups of G}; x 7→ Tx with G = 〈Tx : x ∈ X〉. Then for
any normal subgroup N/G acting non-trivially on X, we have: N ⊇ [G,G]. This is a well-known
elegant way to prove the projective simplicity of linear groups (using unipotent subgroups).

In Tits' speci�c lemma, some combinatorial structure (namely, the building structure) is
needed on the set on which the group acts, but the transitivity condition is not as strong as
it is for classical simplicity criteria.

As a �nal remark concerning 2-transitive (or slightly less transitive) group actions, we note
that one of J. Tits' earliest works is the generalization of projective groups by means of multiple
transitivity properties [Tit52]. J. Tits proves in this work that if a group G acts sharply n-
transitively on an arbitrary set X, with n > 4, then the set is �nite and either the group is a
symmetric or alternating group with its standard action, or the set has at most 12 points and
there are very few examples, only with n = 4 or 5. The example of Moufang sets [dMS07],
as de�ned by him in 1992, therefore provides a nice way to see that J. Tits' latest subjects of
interest are in close connection with the very earliest ones.

7.2. Topological simplicity of topological completions. Tits' original use of his transitivity
lemma was to obtain a proof of abstract simplicity applying uniformly to all isotropic simple
algebraic groups. The notion of a BN -pair (and later that of a root group datum) was created
by him precisely in order to obtain such a uniform theory. Recall that in the context of algebraic
groups, the Weyl group W is �nite (see Sect. 2.6), the group U+ is nilpotent (see Lemma 5.5)
and G coincides with the completions G+ and G−. However, letting Tits' arguments work in the
more general context of arbitrary root group data, one obtains the following statement:

Theorem. Let G be a group endowed with a root group datum {Uα}α∈Φ of irreducible type.
Assume that the completion G+ is topologically perfect (i.e. [G+, G+] is dense in G+) and that
Uα is solvable for each α ∈ Π. Then G+/Z(G+) is topologically simple (i.e. any closed normal
subgroup is trivial).

Proof. LetH be a normal subgroup of G+ not contained in Z(G+). In view of Proposition 6.1(iii)
and Tits' transitivity lemma, we have G+ = H.B̂+. Since B̂+ normalizes Û+ it follows that every
conjugate of Û+ in G+ is of the form hÛ+h

−1 for some h ∈ H. By Proposition 6.1(ii) and (iii),
the group G+ is clearly generated by all these conjugates, hence we obtain G+ = H.Û+. It
follows that

(7.1) G+/H = H.Û+/H ' Û+/H ∩ Û+.

Assume now that H is closed. Since G+ is topologically perfect, so is the continuous quotient
G+/H. On the other hand, the group Û+ is pro-solvable by Proposition 6.3, hence the derived
series of Û+ penetrates every open neighborhood of the identity in Û+. Clearly this property is
inherited by any continuous quotient. Therefore, the only continuous quotient of Û+ which is
topologically perfect is the trivial one. Now, it follows from (7.1) that H = G+. �
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Remark. It is in good order to wonder when the condition that G+ be topologically perfect
is ful�lled. If G itself is abstractly perfect, then G+ is clearly topologically perfect since G
is dense in G+ by de�nition. Now for G to be perfect, it su�ces that each rank one group
Xα = 〈Uα ∪ U−α〉 be perfect since G is generated by those. This happens for example when G
is any split Kac-Moody group over a �eld k of order > 3, since then Xα ' SL2(k). However,
G+ turns out to be topologically perfect in many circumstances, even when G is not abstractly
perfect. We refer to [CR06, Sect. 2.2] for su�cient conditions ensuring that G+ is topologically
perfect. These conditions are ful�lled by all split or almost split Kac-Moody groups over arbitrary
�elds (as long as the Weyl group is in�nite), as well as by most root group data obtained by
exotic constructions, such as those mentioned in Sect. 2.8, see [CR06, Sect. 2.1].

7.3. Abstract simplicity of topological completions. As demonstrated by L. Carbone,
M. Ershov and G. Ritter [CER06], in the case when Û+ is a pro�nite group, the arguments
of the proof of Theorem 7.2 may be pushed further in order to obtain abstract simplicity of the
completion G+. In fact, the latter reference deals primarily with the case when Û+ is pro-p.
Using some results of Dan Segal's [Seg00], this can be extended to the more general case when
Û+ is pro-solvable:

Theorem. Maintain the assumptions of Theorem 7.2 and assume moreover that Uα is �nite for

each α ∈ Π and that Û+ is topologically �nitely generated (i.e. Û+ possesses a �nitely generated
dense subgroup). Then G+/Z(G+) is abstractly simple.

Proof. By Proposition 6.3, the group Û+ is pro�nite. By [Seg00, Corollary 1], the group [Û+, Û+]
is closed, hence Û+/[Û+, Û+] is a �nitely generated abelian pro�nite group. Moreover the group
Û+ is topologically generated by U+, which is itself generated by {Uα | α ∈ Φ}. Since all
root groups are �nite and since there is �nitely many of them up to conjugacy, it follows that
Û+/[Û+, Û+] is of �nite exponent. It must therefore be �nite since it is �nitely generated. Thus
[Û+, Û+] is of �nite index in Û+, hence open by [Seg00, Theorem 1], since Û+ is itself open in
G+. Now it follows that the derived group [G+, G+], which contains [Û+, Û+] is open, hence
closed. By assumption, this implies that G+ is abstractly perfect, namely G+ = [G+, G+].

The arguments of the proof of Theorem 7.2 may now be repeated, thereby establishing (7.1).
In order to conclude, it remains to prove that a �nitely generated pro-solvable (pro�nite) group
has no nontrivial perfect quotient, which is indeed true by the proposition below. �

Remark. Again, one should ask when it actually happens that Û+ is topologically �nitely
generated. This is discussed in [CER06, Sect. 6 and 7], where some su�cient conditions are
given in the case when G is a split Kac-Moody group over a �eld. Here we merely mention that
the case when (W,S) is 2-spherical (i.e. o(st) < ∞ for all s, t ∈ S) is especially favourable,
because then the group U+ is (mostly) abstractly �nitely generated, see Theorem 8.1(i) below,
and hence its closure Û+ is of course topologically �nitely generated.

The following statement is a consequence of Dan Segal's results proven in [Seg00]. Since it is
of independent interest but not explicitly stated in [loc. cit.], we include it here:

Proposition. Let G be topologically �nitely generated pro-solvable (pro�nite) group. Then G
has no nontrivial perfect quotient.

Proof. Let H be a normal subgroup of G such that G/H is perfect. Thus we have G = H.[G,G].
Since G is topologically �nitely generated, the derived group [G,G] is closed by [Seg00, Corol-
lary 1] and, hence, the quotient G/[G,G] is a topologically �nitely generated abelian pro�nite
group. Since it is generated by the projection of H, it follows right away that there exist �nitely
many elements h1, . . . , hd ∈ H such that G = 〈h1, . . . , hd〉.[G,G].

Let now N be an open normal subgroup of G. Thus G/N is a �nite solvable group generated
by the projections of h1, . . . , hd. Using the last equation in [Seg00, p. 52], we obtain that

[G,G] =
( d∏
i=1

[hi, G]
)∗f(d)

.N
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for some f(d) ∈ N, where the notation ∗f(d) is used to denote the image of the f(d)th Cartesian
power under the product map. Since the latter equation holds for any open normal subgroup N ,
we deduce from [DdSMS99, Prop. 1.2(iii)] that

[G,G] =
( d∏
i=1

[hi, G]
)∗f(d)

.

Since the map G→ G : g 7→ [hi, g] is continuous and G is compact, the set [hi, G] is closed in G.
Hence the big product in the right-hand side of the latter equation is closed and we obtain

[G,G] =
( d∏
i=1

[hi, G]
)∗f(d)

.

Since H is normal, we have [hi, G] ⊂ H for each i, from which we �nally deduce that [G,G] ⊂ H.
Since we have G = H.[G,G] by assumption, it �nally follows that G = H as desired. �

At this stage, we note that Kac-Moody groups over �nite �elds provide, through their geomet-
ric completions, intriguing topological groups. Indeed, they are often abstractly simple, locally
pro-p and share further (combinatorial) properties with adjoint simple algebraic groups over local
�elds of positive characteristic. This is a probably non-exhaustive list of arguments supporting
the analogy with classical matrix groups, but we also saw that the maximal compact subgroups
of some of them contain �nite index subgroups which are Golod-Shafarevich and hence contain
free pro-p subgroups. It would be interesting to provide further arguments supporting and/or
disproving this analogy, from the point of view of representation theory for instance.

7.4. Weyl transitivity of normal subgroups. The previous simplicity results deal only with
the topological completions. No such general simplicity results should be expected for the un-
complete group G. Indeed, recall from Sect. 2.7 that the group G = SLn(k[t, t−1]) possesses a
root group datum, but it is far from simple in view of the existence of evaluation homomorphisms.
However, in the context of root group data, Theorem 7.2 may be used to obtain a strengthening
of Tits' transitivity lemma.

Before stating it, we introduce the following de�nition: a group G, acting on a building X with
Weyl distance δ, is called Weyl transitive if for any x, y, x′, y′ ∈ Ch(X) such that δ(x, y) =
δ(x′, y′), there exists g ∈ G such that (g.x, g.y) = (x′, y′). It is an immediate consequence of
the Bruhat decomposition that if G has a BN -pair, then G is Weyl transitive on the associated
building. The following result is a straightforward consequence of Theorem 7.2:

Corollary. Let G be a group endowed with a root group datum and assume that the hypotheses
of Theorem 7.2 hold. Then any normal subgroup of G is either central or Weyl transitive on X+.

Proof. Let H be a normal subgroup of G which is not contained in Z(G). Let H denote the
closure of H in G+. By Proposition 6.1(iii) and Theorem 7.2, we have H = G+, hence H is dense.
The point-stabilizers of G+ for its diagonal action on Ch(X+)×Ch(X+) are open in G+. Since
H is dense, it follows immediately that H and G+ have the same orbits in Ch(X+)× Ch(X+).
The result follows, since G+ is Weyl transitive on X+ by Proposition 6.1. �

Coming back again to the group SLn
(
Fq[t, t−1]

)
, it follows from the corollary that it contains

Weyl transitive subgroups of arbitrarily large �nite index, since it is residually �nite. More
information on Weyl transitivity and other families of examples may be found in [AB06] and
[AB, Sect. 6].

7.5. Simplicity of lattices. As mentioned in the previous section, the discrete group G should
not be expected to be simple in general. It was shown in [CR06] that the existence of �nite
quotients for G is related to the geometry of its Weyl group. In fact, building upon earlier
work of Y. Shalom [Sha00], Bader-Shalom [BS06] and B. Rémy [Rém05], the following result was
proven in [CR06, Theorem 19]:

Theorem. Let G be a group with a root group datum {Uα}α∈Φ with Φ reduced of �nite rank such
that:
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• Uα is �nite and nilpotent for each α ∈ Π,
•
∑

w∈W (1/q)`(w) <∞, where q = minα∈Π |Uα|,
• (W,S) is irreducible,
• W is not virtually abelian (i.e. W is not of spherical or of a�ne type).

Then G/Z(G) is in�nite, �nitely generated and virtually simple. All of its �nite quotients are
nilpotent and factor through (i.e. are quotients of) the direct product

∏
α∈Π Uα. �

The fact that G embeds as an irreducible lattice in G+ × G− (see Theorem 6.4) enables one
to appeal to the results of Y. Shalom [Sha00], Bader-Shalom [BS06] and B. Rémy [Rém05].
Combining them all, it follows that any noncentral normal subgroup of G is of �nite index.
On the other hand, if W is not virtually abelian then the geometry of the associated Coxeter
complex enjoys some form of combinatorial hyperbolicity which may be exploited to obtain strong
obstructions to the existence of �nite quotients of G, see [CR06]. All together, these arguments
yield the theorem above.

It is the right place to mention that a construction of �nitely presented torsion free groups
as lattices in product of buildings (in fact, trees), standing by the (rich, but fortunately not
complete!) analogy with irreducible lattices in products of simple Lie groups, was �rst due
to M. Burger and Sh. Mozes [BM00b]. The groups they construct are fundamental groups
of �nite square complexes; in fact, they are uniform lattices for products of two trees. An
important tool in the study of these simple lattices is the projections on factors. This amounts
to investigating the closures of the projections of these lattices in the full automorphism group
of a single tree [BM00a]. For this, a general structure theory is developped for closed non-
discrete groups acting on trees: if the local actions (i.e. the actions of vertex stabilizers on the
spheres around the vertices) are su�ciently transitive on large enough spheres, then a strong
dichotomy holds for closed normal subgroups [loc. cit., lines 20-22 of the introduction]. This is
where transitivity properties for group action are back as one of the main conditions: (quasi-
)primitivity, 2-transitivity appear in the above theory at local level, but also as a condition on
the action on the asymptotic boundaries of the trees under consideration [loc. cit., �3]. We
�nally note that these groups cannot have property (T) since they act nontrivially on trees, as
opposed to many simple Kac-Moody lattices who often do enjoy property (T), and are �nitely
presented.

For the general problem of constructing in�nite �nitely generated groups, we recommend the
concise but instructive historical note in [Rat04].

8. Curtis-Tits type presentations and existence results

We have already encountered presentations of groups with BN -pairs as a corollary of Propo-
sition 5.2. It turns out that for groups with a root group datum, there often exist much more
economical presentations, called Curtis-Tits type presentations.

For groups with a �nite Weyl group, these were �rst obtained by R. Curtis and J. Tits. This was
extended to the case of certain in�nite Weyl groups by P. Abramenko and B. Mühlherr [AM97].
When all root groups are �nite, this presentation happens to be �nite. Homological �niteness
properties of groups with a root group datum were extensively studied by P. Abramenko; we
refer to [Abr04] for a survey of some known results. In this section we focus on the Curtis-Tits
type presentations. We mention in passing some facts on Steinberg-type presentations for the
universal central extensions, and conclude with some remarks on existence of root group data
for groups given by a Curtis-Tits type presentation.

8.1. Curtis-Tits and Steinberg type presentations of the universal central extension.
The set-up is the following. As before, we let G be a group with a root group datum {Uα}α∈Φ

of type E = (B,Φ) and assume that Φ = Φ(B) is the canonical root system of B.

We will assume moreover that the Coxeter system (W,S) is 2-spherical, i.e. o(st) < ∞ for
all s, t ∈ S. As a justi�cation for this assumption, let us just mention the fact that the group
SL2

(
Fq[t, t−1]

)
is �nitely generated but not �nitely presented, see [Beh98]. As we know from

Sect. 2.7, this group is endowed with a root group datum with in�nite dihedral Weyl group.
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Another condition that we will take as a hypothesis is the following:

(∗) Xα,β/Z(Xα,β) 6∈ {B2(2), G2(2), G2(3), 2F4(2)} for all α, β ∈ Π.

The importance of this condition comes from the following:

Lemma. Suppose that (W,S) is 2-spherical. Then Condition (∗) holds if and only if for all
α, β ∈ Π, α 6= β, we have

[Uα, Uβ] = 〈Uγ | γ ∈]α, β[〉.

Proof. See [Abr96, Prop. 7]. �

Note that the inclusion ⊂ in the previous lemma is covered by axiom (RGD3); the essential
point is that (∗) allows to express root subgroups as commutators.

In order to simplify notation, we make the following convention: given a set of roots Ψ ⊂ Φ,
we denote by UΨ the group generated by all Uγ with γ ∈ Ψ.

Theorem. Suppose that (W,S) is 2-spherical, that S is �nite and that (∗) holds. Then we have
the following:

(i) U+ = 〈Uα | α ∈ Π〉; in particular U+ is �nitely generated if all root groups are �nite.
(ii) If (W,S) is 3-spherical (i.e. any triple of elements of S generates a �nite subgroup of

W ) and if |Uα| > 16 for each α ∈ ΠΦ then U+ is the direct limit of the inductive system
formed by the Uα and U[α,β], where α, β ∈ Π; in particular U+ is �nitely presented if all
root groups are �nite.

(iii) Let G̃ be the direct limit of the inductive system formed by the Xα and Xα,β in G, where

α, β ∈ Π. Then G̃ is endowed with a root group datum and the kernel of the canonical

homomorphism G̃→ G is central. In particular, G is �nitely presented if all root groups
are �nite.

(iv) Let St(G) be the direct limit of the inductive system formed by the Uα and U[α,β], where
{α, β} ⊂ Φ is a prenilpotent pair such that o(rαrβ) is �nite. If (W,S) is irreducible and
|S| > 3 and if |Uα| > 5 for all α ∈ Π, then St(G) → G is a universal central extension
of G. In particular, the center Z(St(G)) (and hence Z(G)) is �nite if all root groups are
�nite.

Proof. For (i), one shows by induction on `(w) that Uw.α ⊂ 〈Uβ | β ∈ Π〉 for all α ∈ Π such that
w.α > 0. The point is to view Uw.α as a subgroup of a commutator of root subgroups which
are already known to be contained in 〈Uβ | β ∈ Π〉 by induction. This uses the lemma and the
2-sphericity of (W,S). For (ii), we refer to [DM06, Cor. 1.2]. A statement similar to (iii) was �rst
obtained in [AM97]. For a complete proof of the above, see [Cap05, Theorem 3.7]. Statement
(iv) follows from a combination of [Cap05, Theorem 3.11] and the results of [dMT06]. �

Remark 1.: P. Abramenko has proved that, provided (∗) holds, the group U+ is �nitely
presented if and only if (W,S) is 3-spherical [Abr04]. Thus the presentation in (ii)
should not be expected to hold when (W,S) is not 3-spherical. More information on the
(homological) �niteness properties of G may be found in Abramenko's book [Abr96] or
in the survey paper [Abr04].

Remark 2.: We emphasize that the relations which present the Steinberg group are not
all commutation relations of G but only those commutation relations which appear in
rank two Levi subgroups of spherical type (i.e. with �nite Weyl group).

8.2. Existence and classi�cation results. One way of interpreting Theorem 8.1(iii) is by
saying that the group G is completely determined by triple the (E,X ,K) consisting of the root
datum E, the inductive system X = {Xα, Xα,β | α, β ∈ Π} and the (central) kernel K of the
homomorphism G̃→ G. This motivates the following de�nition.

A local datum is a triple D = (E,X ,K) consisting of the following data:

• a root datum E = (B,Φ) of 2-spherical type and of �nite rank;
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• an inductive system X of groups parameterized as follows: for each γ ∈
⋃
α,β∈Π Φ{α,β},

a group Uγ and for all distinct α, β ∈ Π, a group Xα,β such that {Uγ}γ∈Φ{α,β} is a root
group datum of type E{α,β} for Xα,β ; all morphisms of the inductive system X are
inclusions;
• a subgroup K of the center Z(G̃), where G̃ is de�ned as the direct limit of the inductive
system X .

Given a local datum D , the inductive limit G̃ = G̃(D) is called its universal enveloping
group and the quotient G(D) = G̃/K is called the enveloping group. The subgroup K =
K(D) is called the kernel of D .

Thus local data provide excellent candidates for being classifying data of all groups G with a
twin root datum with 2-spherical Weyl group satisfying the condition (∗). In order to make this
correspondence a genuine classi�cation of the isomorphism classes of groups endowed with such
a root group datum, there are two questions to answer:

Question 1.: Given a local datum, is its enveloping group endowed with a root group
datum?

Question 2.: Given two non-isomorphic local data, are their respective enveloping groups
non-isomorphic?

Both problems are still incompletely solved. In order to make a precise statement of some of
the known information, let us make some additional de�nitions. The local datum D is called
locally �nite if Uγ is �nite for each γ ∈ Π. It is called locally split if Xα,β is a split Chevalley
group of rank 2 for all distinct α, β ∈ Π. Furthermore, we let LS be the collection of all local
data which are locally �nite or locally split and which satisfy condition (∗).
Theorem. We have the following:

(i) For each D ∈ LS, the enveloping group G(D) is endowed with a twin root datum of type
E such that the associated local datum coincides with D .

(ii) Let D1,D2 ∈ LS be such that G(D1) is in�nite and the root datum of D1 is of irreducible
type. Let also ϕ : G(D1) → G(D2) be an isomorphism. Then there exists a bijection
σ : Π1 → Π2, a sign ε ∈ {+,−}, an inner automorphism Ad g of G(D2) and for each
root α with ±α ∈ Π, an isomorphism ϕα : Uα → Uεσ(α) such that the diagram

Uα
ϕα

//

��

Uεσ(α)

��

G(D1)
Ad g◦ϕ

// G(D2)

commutes for each root α with ±α ∈ Π, where the vertical arrows are the canonical
inclusions. In particular, for all distinct α, β ∈ Π, the restriction of Ad g ◦ ϕ to Xα,β

is an isomorphism onto Xεσ(α),εσ(β). Moreover, the isomorphism Ad g ◦ ϕ induces an
isomorphism between the universal enveloping groups of D1 and D2 which maps the kernel
K(D1) to the kernel K(D2).

Proof. Statement (i) is a reformulation of the main result of [Müh99]. Once (i) is known to
hold, part (ii) follows from the results of [CM06] and [Cap06] and the fact that G(D2) can be
embedded in a Kac-Moody group by [Müh99]. More precisely, the statement above is obtained
by an argument which goes along the following lines.

First, it follows from (i) that the group G(D) is �nitely generated if and only if D is locally
�nite. Therefore, we may assume that D1 and D2 are either both locally �nite or both locally
split (and in�nite). The case of locally �nite ones is covered by [CM06, Theorem 5.1 and
Corollary 3.8]. In fact, technically speaking the latter reference requires all root groups to be of
order at least 4, but this assumption can be bypassed by taking advantage of the fact that Weyl
groups are assumed to be 2-spherical in the present context.

Now, for locally split D , it essentially follows from (i) (see [Müh99]) that G(D)/Z(G(D))
is in fact a split adjoint Kac-Moody group. The desired statement then follows from [Cap06,
Theorem A]. �
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Remark 1.: The results of B. Mühlherr [Müh99] quoted above are originally stated in
the setting of twin buildings, but they can be easily reformulated in the setting of root
group data. We refer to [Tit92] for details on the translation from one context to the
other. B. Mühlherr has designed a program to extend the results of [Müh99] to all
local data satisfying (∗) and has successfully carried out large parts of this program, see
[Müh02]. Let us mention here that, in order to check that the enveloping group G(D)
is endowed with a root group datum, the main di�culty is to prove that axiom (RGD1)
is ful�lled. Indeed (RGD0) trivially holds, (RGD2) is satis�ed by construction, and
arguments similar to those of the proof of Theorem 8.1(iii) show that (RGD3) holds as
well. Now, in order to prove that (RGD1) is also satis�ed, it su�ces to show the subgroup
U+ of G(D) is residually nilpotent. This is because the rank one group Xα = 〈Uα∪U−α〉
is never nilpotent (see Corollary 5.6); in fact Xα is quasisimple unless it is �nite of very
small order. However, the residual nilpotency of U+ is delicate to establish. The way
it is done in [Müh99] is by realizing the inductive system of rank two groups of D in
a certain large group which is known to possess a root group datum (mostly the latter
group is a split Kac-Moody group). This allows to embed U+ in some unipotent radical
of this larger group. Now the latter group is residually nilpotent as a consequence of
Proposition 6.3, hence so is U+.

Remark 2.: The article [CM06] quoted above is concerned with the isomorphism problem
for groups endowed with locally �nite root group data, while [Cap06] deals with the case
of split Kac-Moody groups. None of these references makes the assumption that the Weyl
group is 2-spherical.

Remark 3.: The only reason for the assumption thatG(D1) is in�nite and D1 of irreducible
type in Theorem 8.2(ii) is to avoid the exceptional isomorphisms between small �nite
Chevalley groups. Of course, the conclusions of that theorem are known to hold for all
su�ciently large �nite Chevalley groups: this is all classical, see [Ste68].
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