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Abstract. We prove the following extension to twin build-
ings of a result for spherical buildings which appears in [11] :
to every weak twin building ∆, is canonically associated a thick
twin building ∆̄ whose Weyl group W (∆̄) can be considered as a
reflection subgroup of the Weyl group W (∆) of ∆ ; conversely, it
is possible to recover ∆ from the thick twin building ∆̄ and from
the inclusion W (∆̄) →֒ W (∆).

1 Introduction

(1.1) In the course of the 1950’s Jacques Tits developed the theory of buildings in order to
study groups of Lie type from a combinatorial point of view. A building was then defined as
a simplicial complex with an apartment system, and a certain thickness axiom was used in
order to prove that the apartments are actually Coxeter complexes. A more recent approach
consists in seeing a building as a metric space (∆, δ) where the metric δ takes its values in
the Coxeter group W of some fixed Coxeter system (W,S). In this new setting, the thickness
axiom is no longer needed for the basic developments of the theory, and the consideration of
weak buildings – namely buildings for which the axiom of thickness is not required – becomes
quite natural.

In 1987, R. Scharlau provided a structure theorem for weak buildings of spherical type
(see [11]), which can be seen as a definitive version of earlier results by G. Birkhoff [1],
F. Buekenhout and A. Sprague [2] and S. Rees [9]. Scharlau describes in his paper how
an arbitrary weak spherical building ∆ of type (W,S) yields a thick spherical building ∆̄
of type (W̄ , S̄) together with a geometric inclusion of (W̄ , S̄) into (W,S) (see (3.4) for the
definition of the latter notion). Conversely, given a thick spherical building ∆̄ of type (W̄ , S̄)
and a geometric inclusion of (W̄ , S̄) in some Coxeter system (W,S), then there exists a weak
spherical building ∆ of type (W,S) whose associated thick building is ∆.

It turns out that this result cannot be generalized to arbitrary buildings: in fact, it is
quite easy to produce counterexamples for buildings of universal type. The main purpose of
this paper is to prove that the result remains however true for twin buildings.
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Twin buildings were introduced by M. Ronan and J. Tits to study groups of Kac-Moody
type, which are natural infinite-dimensional generalizations of Chevalley groups. Twin build-
ings are attached to Kac-Moody groups just as spherical buildings are associated with Cheval-
ley groups. Our main result has found an application in this context to the solution of the
isomorphism problem for Kac-Moody groups over algebraically closed fields (see [3], [4]).
There, weak twin buildings appear as fixed point sets of finite subgroups of tori. The action
of the centralizer of such a subgroup on the corresponding fixed weak building and on the
associated thick frame turns out to be a crucial ingredient in the solution of this isomorphism
problem.

As we have mentioned, twin buildings generalize spherical buildings in a natural way, so
the main result of this paper does not seem surprising at first. Nevertheless, the methods
presented in [11] do not apply in the more general situation of twin buildings. Hence we also
provide a new approach to the spherical case.

To make the statement of the main result more precise, we first introduce some termi-
nology which is specific to weak buildings, and notably inspired by [11].

(1.2) Let (W,S) be a Coxeter system and (∆, δ) be a weak building of type (W,S). Two
chambers of ∆ are called thick-adjacent if they are contained in some thick panel. A gallery
γ = (x0, x1, . . . , xn) is called thin if {xi−1, xi} is a thin panel of ∆ for each i ∈ [1, n]. The set
of all ordered pairs of chambers (x, y) such that x can be joined to y by a thin gallery, is an
equivalence relation, which is called the thin-equivalence. The corresponding equivalence
classes are called thin-classes. If c ∈ ∆ is any chamber, we denote by c̄ the thin-class of c;
if Γ ⊂ ∆ is any set of chambers, we denote by Γ̄ the corresponding set of thin-classes. It is
easy to see that any apartment containing c necessarily contains the whole thin-class c̄.

Our main result is the following (see (3.4) for the definition of a geometric inclusion
between Coxeter systems).

(1.3) Theorem. Let ∆ = ((∆+, δ+), (∆−, δ−), δ∗) be a twinned pair of weak buildings of type
(W,S), for some Coxeter system (W,S). Let (c+, c−) be a fixed pair of opposite chambers
in ∆, and denote by Σ = (Σ+, Σ−) the corresponding twin apartment. Let S̄ be the set of
reflections of Σ+ corresponding to thick panels which intersect c̄+ non trivially, and denote by
W̄ the group generated by S̄. Then (W̄ , S̄) is a Coxeter system, and (∆̄+, ∆̄−) is naturally
endowed with a structure of thick twin building of type (W̄ , S̄), which is called the thick

frame of ∆ and denoted by ∆̄. If (Σ′
+, Σ′

−) is a twin apartment of ∆ then (Σ̄′
+, Σ̄′

−) is a
twin apartment of ∆̄ ; moreover, two thin-classes are opposite as chambers of ∆̄ if and only
if they contain opposite chambers of ∆.

Conversely, if ∆̄ is a thick building of type (W̄ , S̄) and (W̄ , S̄) is geometrically included
in some Coxeter system (W,S), then ∆̄ is the thick frame of a weak twin building ∆ of type
(W,S).

(1.4) Remarks.

1. In the spherical case, [11] points out that the rank of the reflection subgroup W̄ of the
finite reflection group W is bounded by the rank of this latter group; namely, we have
|S̄| ≤ |S|. This inequality is no longer true in the twin case, when the Coxeter group
W is infinite. It is well known, for example, that Coxeter systems of universal type
and arbitrary rank are geometrically included in some fixed Coxeter system (W,S)
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of rank 3 and universal type. On the other hand, the existence of thick buildings of
type (W,S) follows from the theory of Kac-Moody groups, and allows us to apply the
converse part of Theorem (1.3).

2. In [11], Scharlau describes his construction for the purpose of classifying weak spherical
buildings. Clearly, a result like Theorem (1.3) reduces such a classification to the
one of thick buildings together with geometric inclusions of reflection groups W̄ →֒
W : this is exactly the approach adopted in loc. cit. In the general framework of
twin buildings, however, a classification even in the thick case is impossible without
important restrictions on the type (see [6], [7] and [15]). Thus, the classification of
weak twin buildings cannot be realized in full generality.

3. In the special case when W is the infinite dihedral group, or in other words when ∆ is
a twin tree, the result was proved in [5].

4. As previously mentioned, we will avoid appealing to the geometric realization of the
buildings we will meet. This approach will notably lead us to give a new, purely
combinatorial, proof of the fact that two reflections in a Coxeter group stabilize a
common spherical residue of rank 2 in the corresponding thin building, whenever their
product has finite order (see (5.1)).

5. If ∆ is thin, then its thick frame ∆̄ is degenerate: it is a twinned pair of trivial
buildings possessing each exactly one chamber. The type of ∆̄ is the trivial Coxeter
system ({1}, ∅).

The author is very grateful to Bernhard Mühlherr for his kind support in the preparation
of this work.

2 Preliminaries

In this section, we recall the basic notions and fix the notation to be used throughout. The
main references are [10], [14] and [16].

(2.1) Buildings.

Let (W,S) be some fixed Coxeter system, and let ℓ denote the corresponding length function.
Recall that a building of type (W,S) is a set ∆, whose elements are called chambers,
endowed with a map δ : ∆ × ∆ → W called the W -distance, satisfying the following
axioms, where x, y ∈ ∆ and w = δ(x, y) :

(Bu1) w = 1 ⇔ x = y;
(Bu2) if z ∈ ∆ is such that δ(y, z) = s ∈ S, then δ(x, z) ∈ {w,ws};

if, furthermore, ℓ(ws) = ℓ(w) + 1, then δ(x, z) = ws;
(Bu3) if s ∈ S, there exists z ∈ ∆ such that δ(y, z) = s and δ(x, z) = ws.

For chambers x, y ∈ ∆, the numerical distance between x and y in ∆ is the natural
number d(x, y) = ℓ(δ(x, y)). Notice that (∆, d) is a discrete metric space.

An isomorphism (or an isometry) between two buildings of the same type (W,S) is a
bijection preserving the W -distance.
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(2.2) For c ∈ ∆ and s ∈ S, the set
{

x ∈ ∆|δ(x, c) ∈ {1, s}
}

is called an s-panel of ∆, or a panel of type s. A panel is an s-panel for some s ∈ S. Two
chambers are called s-adjacent if they are contained in some s-panel, and simply adjacent
if they are s-adjacent for some s ∈ S. More generally, for c ∈ ∆ and S ′ ⊂ S, the set

ResS′(c) :=
{

x ∈ ∆|δ(x, c) ∈ 〈S ′〉 ≤ W}

is called the S ′-residue of ∆ which contains c. Its rank is the cardinality of the set S ′;
hence, residues of rank 1 are just panels. It is a fact that an S ′-residue is itself a building of
type (〈S ′〉, S ′). Furthermore, for each residue R and each chamber c in ∆, there is a unique
chamber z of R at minimal numerical distance from c. Hence, d(c, z) = min{d(c, x)|x ∈ R}
and z is unique with respect to that property. The chamber z is called the projection of c

onto R, and is denoted by projR(c). If P ⊂ R are two residues, and c is any chamber, then
we have projP (projR(c)) = projP (c).

A finite sequence of chambers γ = (x0, x1, . . . , xn) such that two consecutive chambers
of γ are adjacent, is called a gallery of length n. The gallery γ is called minimal if
n = d(x0, xn). A subset Γ of ∆ is called convex if for all x, y ∈ Γ, any minimal gallery from
x to y is completely contained in Γ. For example, residues are convex.

(2.3) A building is called thin (resp. thick) if its panels have cardinality 2 (resp. at least
3). It is called weak if no special assumption is made concerning thinness or thickness. The
terms thin and thick are also used accordingly to qualify panels.

For example, if ∆ = W then δ : ∆ × ∆ → W : (x, y) 7→ x−1y endows the set W with
a canonical structure of thin building of type (W,S), which is denoted by Σ(W,S). It is
the only thin building of type (W,S), up to isomorphism. The group W naturally acts by
automorphisms on Σ(W,S) from the left. This action is regular. A non trivial element of W

which stabilizes some panel of Σ(W,S) is called a reflection. To each panel of Σ(W,S), there
corresponds a unique reflection of W . The set of all panels stabilized by a given reflection
t is called the wall corresponding to that reflection, and is denoted by P (t). A residue of
∆ is stabilized by t if and only if it contains a panel of P (t). We write C(t) :=

⋃

π∈P (t) π.

If {x, y} ∈ P (t), then the set H(t, x) := {c ∈ Σ(W,S)|d(c, x) < d(c, y)} is called a root
associated to t. We have Σ(W,S) = H(t, x) ⊔ H(t, y) and t(H(t, x)) = H(t, y). We also
write H(t, x) = −H(t, y) and H(t, x) = H(t, z) for all z ∈ H(t, x). Roots are convex sets
of chambers. Moreover, the wall P (t) is precisely the set of panels which intersect the root
H(t, x) in a single chamber.

(2.4) If (∆, δ) is a building of type (W,S), then any isometric image of Σ(W,S) in ∆ is
called an apartment. Apartments are convex sets of chambers, and any two chambers of
∆ are contained in some apartment. By a wall or a root in a building, we mean a wall or a
root in some apartment of that building. We will use the corresponding notations (such as
P (t), C(t) or H(t, x)) accordingly.

Let c be a chamber in ∆ and Σ be an apartment which contains c. Hence, there is an
isometry ι : Σ(W,S) → Σ. Up to replacing ι by ι ◦ w for some element w ∈ W , we may
assume that ι(1) = c. In that case, the mapping

ρΣ,c : ∆ → Σ : x 7→ ρΣ,c(x) := ι(δ(c, x))

is called the retraction of ∆ onto Σ based at c. Its restriction on Σ is the identity, and it
preserves the s-adjacency of chambers, for each s ∈ S.
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(2.5) The building is called spherical or of spherical type when W is finite. In that case,
W possesses a unique element of maximal length, denoted by w0, which is an involution.
Two chambers x, y such that δ(x, y) = w0 are called opposite.

(2.6) Chamber systems.

Let S be a set. A chamber system over S is a pair (C, (∼s)s∈S) which consists of a set C,
whose elements are called chambers, and a collection of equivalence relations on C labelled
by S. If x and y are chambers such that x ∼s y, then x and y are called s-adjacent. A
morphism between chamber systems over the same set S is just a mapping between the
underlying sets of chambers, such that s-adjacent chambers are sent to s-adjacent chambers.
Automorphisms and isomorphisms are defined as usual.

The following lemma shows that any building is a chamber system. It also insures that,
provided a given chamber system is one coming from some building of type (W,S), then it
is possible to recover the type (W,S) and the W -distance of this building from the chamber
system itself.

(2.7) Lemma. Let (∆, δ) be a building of type (W,S). Then ∆ is a chamber system of
type S where the s-adjacency is defined by x ∼s y ⇔ δ(x, y) ∈ {1, s}. The type and the
W -distance are uniquely determined by that chamber system alone.

Proof. The first part follows directly from the definition of a building. For the second part,
see Proposition (7.21) and the remark following that proposition in [17]. ¤

This lemma says in particular that if a chamber system (C, (∼s)s∈S) is isomorphic as a
chamber system to some building of type (W,S) (by considering that building as a chamber
system according to the preceding lemma), then (C, (∼s)i∈S) is itself a building of type
(W,S).

(2.8) Twin buildings.

As before, let (W,S) denote a fixed Coxeter system. A twinned pair of buildings or twin
building of type (W,S) is a pair ((∆+, δ+), (∆−, δ−)) of buildings of that type, endowed
with a W -codistance

δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W

satisfying the following axioms, where ǫ ∈ {+,−}, x ∈ ∆ǫ, y ∈ ∆−ǫ and w = δ∗(x, y):

(Tw1) δ∗(y, x) = w−1;
(Tw2) if z ∈ ∆−ǫ is such that δ−ǫ(y, z) = s ∈ S and ℓ(ws) < ℓ(w), then δ∗(x, z) = ws;
(Tw3) if s ∈ S, there exists z ∈ ∆−ǫ such that δ−ǫ(y, z) = s and δ∗(x, z) = ws.

Two chambers x ∈ ∆+ and y ∈ ∆− are called opposite if δ∗(x, y) = 1. It can be proved
that the W -codistance δ∗ is completely determined by the opposition relation and the W -
distances δ+ and δ− (see [14]). Two residues are called opposite if they are of the same
type and contain opposite chambers. A pair of opposite residues of type S ′, endowed with
the appropriate restriction of the W -codistance, is itself a twin building of type (〈S ′〉, S ′).

(2.9)An ordered pair of apartments Σ = (Σ+, Σ−) with Σǫ ⊂ ∆ǫ for ǫ = +,− is called a twin
apartment if the restriction opΣ of the opposition relation to Σ defines a bijection between
Σ+ and Σ−. In that case, the appropriate restriction of the W -codistance δ∗ endows Σ with
a the structure of a twinned pair of thin buildings. If (c+, c−) ∈ ∆+×∆− is a pair of opposite
chambers, then there exists a unique twin apartment (Σ+, Σ−) such that (c+, c−) ∈ Σ+×Σ−.
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Abusing the notation, we often write x ∈ Σ in place of x ∈ Σ+ ∪ Σ− for a chamber x. An
apartment of ∆ǫ is called admissible if it is involved in some twin apartment. Any two
chambers of ∆ǫ are contained in some admissible apartment.

(2.10) If Σ = (Σ+, Σ−) is a twin apartment in a twin building ∆ = (∆+, ∆−, δ∗) of type
(W,S), then the group W acts naturally on both Σ+ and Σ−, and this action preserves the
restriction of the W -codistance of ∆ to Σ. Therefore, if t ∈ W is a reflection of Σ+, it is
also a reflection of Σ− and vice versa, and we say that t is a reflection of Σ. The symbol
P (t) is used to denote the union of the walls associated to t both in Σ+ and Σ−, and the
definition of C(t) is adapted accordingly. The symbol H(t, c) still makes sense for a chamber
c ∈ C(t), and denotes a root of Σ+ or Σ− depending on whether c is in ∆+ or ∆−. A pair
of roots (α, α̃) in the twin apartment Σ is called a twin root if we have α̃ = −opΣα, where
opΣ denotes the restriction of the opposition relation to Σ. If x ∈ ∆+ and y ∈ ∆− are two
chambers such that δ∗(x, y) ∈ S, then there exists a unique twin root (α, α̃) with x ∈ α and
y ∈ α̃. Moreover, if (α, α̃) is a twin root and if π is a panel in a wall associated to the root
α (resp. α̃), then for each chamber x ∈ π\α (resp. x ∈ π\α̃) there exists a unique twin
apartment which contains (α, α̃) and x (for proofs of the latter two facts, see [3], Lemmas
81 and 82).

(2.11) If (∆, δ) is a building of spherical type (W,S) and if w0 ∈ W is the element of maximal
length, then (∆+, ∆−) := ((∆, δ), (∆, w0δw0)) is endowed with a structure of twin building
of type (W,S) by defining δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W by δ∗ = w0δ on ∆+ × ∆−

and δ∗ = δw0 on ∆−×∆+. In this case, both notions of opposite chambers which have been
defined actually coincide. Two residues are called opposite in the spherical building ∆ if
they are opposite in the corresponding twin building. If Σ is an apartment of ∆ then (Σ, Σ)
is a twin apartment of (∆+, ∆−, δ∗), and so any apartment of ∆ǫ is admissible for ǫ = +,−.

We end this section by recalling a classical result for spherical buildings.

(2.12) Lemma. Let (∆, δ) be a building of spherical type (W,S). Let A and B be two
opposite residues in ∆. Then the restriction of projA to the residue B establishes a one-to-
one correspondence between the chambers of these two residues, the inverse of which is the
restriction of projB to A.

Proof. This is Theorem 3.28 in [13]. See Proposition (9.11) in [17] for a proof in the context
of chamber systems. ¤

(2.13) In particular, it follows from the lemma that opposite panels are in one-to-one
correspondence in any twin building. This fact is easy to deduce directly from Definition
(2.8): if (π+, π−) is a pair of opposite panels in some twin building (∆+, ∆−, δ∗), and if
x ∈ π+ then it follows from (Tw2) and (Tw3) that all but one chamber of π− are opposite
x; the unique chamber x̃ of π− which is not opposite x satisfies δ∗(x, x̃) = s, where s ∈ S

is the type of the panels π+ and π−. A consequence of this fact is that any twin apartment
containing x and intersecting π− also contains x̃ (and vice versa).

3 A lemma of Tits

This section recalls a lemma of Tits, which gives sufficient conditions for a group acting on
a set to be a Coxeter group.
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(3.1) Let Σ be a set, and let W be a group acting on Σ from the left. A subset D 6= ∅
of Σ is called prefundamental (or a prefundamental domain) if, for w ∈ W , we have
w = 1 whenever wD ∩ D 6= ∅. We call D fundamental (or a fundamental domain) if,
moreover, we have

⋃

w∈W wD = Σ.

(3.2) Let now Ψ be a set of roots in the thin building Σ of type (W,S). We set R(Ψ) =
{rψ|ψ ∈ Ψ} (where rψ is the reflection associated to ψ) and call Ψ 2-geometric if for all
ψ, ψ′ ∈ Ψ the set ψ ∩ ψ′ is a fundamental domain for the action of 〈rψ, rψ′〉 on Σ(W,S). It
is called geometric if it is 2-geometric and if, additionally,

⋂

ψ∈Ψ ψ is not empty.

(3.3) Lemma. Let Ψ be a geometric set of roots in a thin building Σ of type (W0, S0). Then
D :=

⋂

Ψ is a fundamental domain for the action of W := 〈R(Ψ)〉 on Σ, and (W,R(Ψ)) is a
Coxeter system. Moreover, if we set C := {wD|w ∈ W} and δ : C × C → W : (vD,wD) 7→
δ(vD,wD) := v−1w then (C, δ) is isomorphic to the thin building Σ(W,R(Ψ)).

Proof. This is essentially a consequence of Lemma 1 in [12]. See also Lemma 3.2 and
Proposition 3.3 in [8]. ¤

(3.4) In the situation of Lemma (3.3), we say that the Coxeter system (W,R(Ψ)) is geo-
metrically included in the Coxeter system (W0, S0). We write (W,R(Ψ)) →֒ (W0, S0) and
speak about a geometric inclusion between Coxeter systems.

4 Thickness of walls. Reflections and retractions

First we prove that all of the panels belonging to a given wall are in one-to-one correspondence
in a canonical way. In particular, in a weak building, these panels are either all thin or all
thick, so we can speak about thick walls. Next we see that if the weak building is actually
a weak twin building, then reflections corresponding to thick walls preserve the thickness of
the panels. Finally, we record that retractions also preserve the thickness of panels.

(4.1) Lemma. Let (Σ, δ) be the thin building of type (W,S) and t be a reflection of Σ. Let π

and π′ be panels belonging to the wall P (t). Then there exists panels π = π0, π1, . . . , πn = π′

in P (t) such that, for i = 1, . . . , n, πi−1 and πi are contained in a common spherical residue
of rank 2, in which they are opposite.

Proof. Let x, x′, y, y′ ∈ C(t) be chambers such that π = {x, y}, π′ = {x′, y′} where x and x′

belong to the same root associated to t. Set α := H(t, x) = H(t, x′). Let v = δ(x, y) and
choose s ∈ S such that ℓ(sδ(x, x′)) < ℓ(δ(x, x′)) = d(x, x′). Let R = Res{s,v}(x). Then, by
definition of s, we have projR(x′) 6= x. Let x1 = projR(x′) and y1 = projR(y′). Hence, we
have x1 ∈ α and y1 ∈ −α. Furthermore, by definition of a root, we have d(x′, x) < d(x′, y)
and thus projπ(x′) = x; similarly we have also projπ(y′) = y. The composition law for
projections now implies that projπ(x1) = x and projπ(y1) = y. In particular x1 6= y1, whence
d(x1, y1) = 1. Therefore π1 := {x1, y1} is a panel, which also belongs to P (t). Thus π and π′

are two panels of the rank 2 residue R which belong to the wall P (t). It is easy to see that
the only thin buildings of rank 2 possessing such walls are the spherical ones, and that two
panels belonging to the same wall in a such a rank 2 residue are opposite in that residue.
The conclusion follows from an easy induction. ¤
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(4.2)Corollary. Let (∆, δ) be a weak building, and let t be a reflection. The panels belonging
to P (t) are either all thick or all thin. We speak respectively about thick walls and thin

walls.

Proof. This follows from Lemma (2.12) which states the existence of canonical bijections
between panels lying on a given wall. ¤

We now prove that in a given twin apartment of a weak twin building, reflections through
thick walls preserve the thickness of each panel in that apartment.

(4.3)Lemma. Let (∆+, ∆−, δ∗) be weak twin building, let Σ = (Σ+, Σ−) be a twin apartment
and let t be a reflection of Σ such that the wall P (t) is thick. Then t maps thick panels onto
thick panels and thin panels onto thin panels.

Proof. Let (α, α̃) be a twin root of Σ associated to t, let π ∈ P (t) and choose a chamber
z ∈ π\Σ, which is possible since the wall P (t) is thick by assumption. Let Σ′ = (Σ′

+, Σ′
−)

be the unique twin apartment containing (α, α̃) and z (see (2.10)). Let π̃ = opΣ′(π), and
let z̃ ∈ Σ′ be the unique chamber of π̃ which is not opposite z. Let β (resp. β̃) be the root
complementary to α in Σ′

+ (resp. complementary to α̃ in Σ′
−). Hence (β, β̃) is a twin root

of Σ′ which is opposite to (α, α̃) in that twin apartment. Moreover, it is the unique twin
root which contains z and z̃. Define finally Σ′′ = (Σ′′

+, Σ′′
−) to be the unique twin apartment

containing z and (−α,−α̃) ⊂ Σ. Hence, z̃ ∈ Σ′′ (see (2.13)) and therefore, the twin root
(β, β̃) is contained in Σ′′.

Let now x be a chamber in Σ+. If x belongs to α then it is easy to deduce from the
definitions that

t(x) = opΣ′′ ◦ opΣ′(x).

Similarly, if x belongs to −α then

t(x) = opΣ′ ◦ opΣ′′(x).

Since there are canonical one-to-one correspondences between opposite panels in any twin
building (see (2.13)), we deduce that t preserves the thickness of the panels whose trace on
Σ+ is either in α or in −α. Obviously, all of the other panels of Σ+ are in P (t), and so t

leaves them invariant. The case of the action of t on Σ− is similar. ¤

We now study how retractions behave with respect to the thickness of panels. Notice
that by definition, the image of a panel under a retraction always consists of two distinct
chambers in some (other) panel.

(4.4) Lemma. Let (∆+, ∆−, δ∗) be weak twin building, let Σ = (Σ+, Σ−) and Σ′ = (Σ′
+, Σ′

−)
be twin apartments such that there is a sign ǫ ∈ {+,−} and chamber c ∈ Σǫ ∩ Σ′

ǫ. Then the
restriction of the retraction ρΣǫ,c to Σ′

ǫ is an isomorphism preserving the thickness of panels.
In particular, retractions onto admissible apartments map thick panels to thick panels and
thin ones to thin ones.

Proof. Without loss of generality, we may assume that ǫ = +. Suppose first that Σ and
Σ′ share a twin root (α, α̃). Let (−α,−α̃) be the twin root opposite (α, α̃) in Σ and (β, β̃)
be the twin root opposite (α, α̃) in Σ′. As in the proof of the preceding lemma, there is a
unique twin apartment Σ′′ = (Σ′′

+, Σ′′
−) which is the union of (−α,−α̃) and (β, β̃).

Now, let z ∈ Σ′
+. If z ∈ α then ρΣǫ,c(z) = z, but if z ∈ β then ρΣǫ,c(z) = t(z), where t

denotes the reflection of Σ′ corresponding to α. The conclusion follows from Lemma (4.3)
in this case.
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In the general situation, choose a sequence of twin apartments Σ = Σ0, Σ1, . . . , Σn = Σ′

such that Σi−1 and Σi share a twin root (αi, α̃i) with c ∈ αi. Such a sequence exists in view
of Proposition 5 of [14] (this can also be seen directly by an easy induction on the length
of a minimal gallery from c′ = opΣ′(c) to a chamber of Σ−). Repeated applications of the
above-proven special case now produce the desired conclusion. ¤

5 Pairs of reflections in a Coxeter system

In this section, we recall a well known result about pairs of reflections in Coxeter systems.
This result can be seen as a consequence of the fact that finite subgroups of Coxeter groups
are always contained in spherical parabolic subgroups, or, alternatively, of the geometric
representation of finite Coxeter groups. Nevertheless, we give here a more elementary and
purely combinatorial proof of the same result.

(5.1) Lemma. Let (Σ, δ) be the thin building of type (W,S), and let t1 and t2 be two
distinct reflections. Also, let α2 be a root associated to t2. Then the following statements are
equivalent:
(i) the order of the product t1t2 is finite;
(ii) there exist panels π and π′ in P (t1) such that π ⊂ α2 and π′ ⊂ (−α2).

If these statements are satisfied, then t1 and t2 stabilize a common rank 2 residue of spherical
type.

Proof. Assume first that (ii) holds. By Lemma (4.1), there exist panels π = π0, π1, . . . , πn =
π′ in P (t1) such that, for i ∈ [1, n], πi−1 and πi are contained in a common spherical residue
of rank 2 that we denote by Ri. Choose a chamber x ∈ π, and let y ∈ π′ ∩ H(t1, x). Then
there exists a gallery (x = c0, c1, . . . , cm = y) joining x to y and which is entirely contained
in H(t1, x) ∩ (

⋃n

i=1 Ri). By hypothesis we also have x ∈ α2 and y ∈ −α2, so this gallery
must cross the wall P (t2). In other words, there is an i ∈ [1,m] and a j ∈ [1, n] such that
the panel {ci−1, ci} belongs to P (t2) and is contained in Ri. By construction the residue Ri

also contains panels which belong to P (t1), so Ri is a spherical residue of rank 2 which is
stabilized by both t1 and t2. The group generated by t1 and t2 has a finite orbit, so it is
finite since W acts sharply transitively on Σ. Hence (i) holds.

If (ii) does not hold, then all panels of P (t1) are contained in α2 (switching the notations
for α2 and −α2 if necessary). It follows from what we have already proved that all panels of
P (t2) are contained in α1, where α1 denotes one of the roots associated to t1.

To prove that −α1 ⊂ α2 and −α2 ⊂ α1, we now assume that there is a chamber x ∈
(−α1) ∩ (−α2). Let y ∈ (−α1) be a chamber contained in a panel which belongs to P (t1);
hence y ∈ α2 by assumption. A minimal gallery from x to y must cross the wall P (t2) but
it is also entirely contained in −α1 by the convexity of a root. This says there is a panel of
P (t2) contained in −α1, which is a contradiction.

Finally, set A = α1 ∩ α2. An easy induction on m shows both that any product of m

factors t1t2t1 . . . maps A into −α1 and that any product of m factors t2t1t2 . . . maps A into
−α2. In particular, for each nonzero m we have (t1t2)

m(A) ∩ A = ∅ whence t1t2 has infinite
order. ¤

(5.2) It follows from this lemma and its proof that if t1t2 has infinite order, then C(t1) (resp.
C(t2)) is completely contained in one of the roots associated to t2 (resp. t1), say α2 (resp.
α1), and that α1 ∩ α2 is a fundamental domain for the group 〈t1, t2〉.
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6 More on thin-classes

We develop in this section more specific material necessary for the forthcoming proof of
Theorem (1.3).

(6.1) Since any minimal gallery joining two thin-equivalent chambers must be a thin gallery,
thin-classes are convex sets of chambers. Now consider an apartment Σ in a weak building
∆. If t is a reflection of Σ such that P (t) is thick, then the thin-class of a chamber c ∈ Σ is
completely contained in one of the roots corresponding to t. This root is denoted by H(t, c̄).
If the set C(t)∩ c̄ is not empty, then the reflection t is said to border the thin-class c̄. Hence,
a reflection borders a thin-class only if the wall corresponding to that reflection is thick.

From now on, we denote by ∆ = (∆+, ∆−, δ∗) a weak twin building of given type (W,S).

(6.2) We also say that two distinct thin-classes are adjacent if they contain thick-adjacent
chambers. If π is a thick panel, then π̄ is called a class-panel and π is said to be a support
for π̄. Note that each thin-class in π̄ contains exactly one chamber of π. The next lemma
shows that any two distinct thin-classes in π̄ determine the set of all possible supports for π̄.
In particular, given two adjacent thin-classes, it makes sense to speak about “the” class-panel
containing them.

(6.3) Lemma. Let π and π′ be thick panels of ∆. If x and y are distinct chambers in π

such that x̄ and ȳ both belong to π̄′, then π̄ = π̄′.

Proof. We have to show both that if z ∈ π then z̄ ∈ π̄′, and conversely that if z ∈ π′ then
z̄ ∈ π̄.

Let Σ = (Σ+, Σ−) be a twin apartment containing x and y. We may assume that
x, y ∈ Σ+. Let t be the reflection of Σ which stabilizes π. Let (α, α̃) be the twin root of Σ
corresponding to t and such that x ∈ α. Thus we have x̄ ⊂ α and ȳ ⊂ −α. By Lemma (4.3),
the reflection t maps x̄ onto ȳ. Since both x̄ ∩ π′ and ȳ ∩ π′ are non-empty by assumption,
π′ also belongs to P (t).

Obviously, we may assume that z is distinct from x. There is then a unique twin apart-
ment Σ′ = (Σ′

+, Σ′
−) containing (α, α̃) and z. Denote by t′ the reflection of Σ′ to which

(α, α̃) is associated. By assumption and Lemma (4.3), t′ maps x̄ onto z̄. Because π′ is in
P (t) = P (t′) and π′ ∩ x̄ 6= ∅, we deduce that π′ ∩ z̄ 6= ∅. Hence z̄ ∈ π̄′.

The converse statement follows by symmetry. ¤

7 Proof of Theorem (1.3).

The idea of the proof is as follows. We first focus on the twin apartment Σ = (Σ+, Σ−),
and prove that the sets of the corresponding thin-classes has a natural structure of thin twin
building of type (W̄ , S̄) (see (7.1)). Next, we use retractions to define a structure of thick
chamber system on ∆̄+ and ∆̄−. This structure is then used to define a W̄ -distance on ∆̄+

and on ∆̄−. The key idea for that purpose, is to use twin apartments. The set of thin-classes
of the chambers in a given twin apartment, is endowed with an induced structure of chamber
system over S̄. We observe that those chamber systems are actually all isomorphic to the
thin building of type (W̄ , S̄), just as (Σ̄+, Σ̄−) is.

The proof is presented as a succession of lemmas and corollaries. The hypotheses and
notations of Theorem (1.3) are kept throughout.
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(7.1) Lemma. The ordered pair (W̄ , S̄) is a Coxeter system, and Σ̄ := (Σ̄+, Σ̄−) has a
canonical structure of thin twin building of type (W̄ , S̄).

Proof. We apply Tits’ lemma. To this end, we first consider the set Ψ of all roots of Σ+ of
the form H(t, c̄+) for a reflection t which borders c̄+. This gives R(Ψ) = S̄. We now prove
that Ψ is a 2-geometric set of roots.

Let ψ, ψ′ ∈ Ψ and denote by t and t′ the corresponding reflections of Σ. Assume first
that tt′ has finite order, and let R be a spherical residue of rank 2 of Σ which is stabilized
by t and t′ (see (5.1)). To prove that R ∩ ψ ∩ ψ′ is a fundamental domain for the action of
〈t, t′〉 on R, it suffices to prove that there exists no reflection r ∈ 〈t, t′〉 such that R ∩ ψ ∩ ψ′

intersects C(r). Assume on the contrary that such a reflection r exists. This means that
R∩ψ ∩ψ′ contains a panel of P (r) as a subset. Now choose a chamber y ∈ C(t)∩ c̄+ (resp.
y′ ∈ C(t′) ∩ c̄+), and let z = projR(y) (resp. z′ = projR(y′)). We have z ∈ C(t) ∩ ψ (resp.
z′ ∈ C(t′) ∩ ψ′). If α denotes the root associated with r and containing z, then z′ ∈ −α; in
other words, z and z′ are separated by the wall P (r). This implies that y ∈ α and y′ ∈ −α,
so any gallery from y to y′ must cross the wall P (r). But since r is conjugate to t or t′,
the latter wall is thick by (4.3), which contradicts the fact that y and y′ are thin-equivalent
(since they both belong to c̄+). This proves that R∩ψ∩ψ′ is a fundamental domain for the
action of 〈t, t′〉 on R. Now, since ψ ∩ ψ′ = {x ∈ Σ+|projR(x) ∈ ψ ∩ ψ′ ∩ R} and 〈t, t′〉 acts
faithfully on R that ψ ∩ ψ′ is fundamental for the action of 〈t, t′〉 on Σ+.

Now suppose the order of tt′ is infinite. By definition of Ψ, there exists a chamber
y ∈ ψ ∩ C(t) ∩ c̄+ (resp. y′ ∈ ψ′ ∩ C(t′) ∩ c̄+). Hence y and y′ are thin-equivalent, and so
y, y′ ∈ ψ ∩ ψ′ since P (t) and P (t′) are thick. Lemma (5.1) gives C(t) ⊂ ψ′ and C(t′) ⊂ ψ.
By (5.2), this implies that the pair {ψ, ψ′} is geometric. Hence Ψ is a 2-geometric set of
roots.

Now we prove that
⋂

Ψ = c̄+. Observe that the inclusion c̄+ ⊂
⋂

Ψ is obvious. Assume
there exists x ∈ (

⋂

Ψ)\c̄+. Let γ = (x = x0, x1, . . . , xn = c+) be a minimal gallery. Since
c 6∈ c̄+ the gallery γ cannot be thin, and there is an i ∈ [1, n] such that xi−1 and xi are
thick-adjacent. Let j be the maximal such i. If t denotes the reflection of Σ which switches
xj−1 and xj, then we have H(t, xj) = H(t, c̄+) ∈ Ψ while x ∈ H(t, xj−1) = −H(t, xj). Thus,
x 6∈ H(t, c̄+) which contradicts the fact that x ∈

⋂

Ψ, so we have
⋂

Ψ = c̄+.
By Lemma (3.3), (W̄ , S̄) is a Coxeter system and Σ̄+ has a natural W̄ -codistance δ̄+

which endows it with a structure of a thin building of type (W̄ , S̄). Then define two thin-
classes in Σ̄+ ∪ Σ̄− to be opposite if they contain opposite chambers, the opposition of
classes establishes a one-to-one correspondence between Σ̄+ and Σ̄−. Henceforth, there are
canonical W̄ -valued functions δ̄− and δ̄∗ such that (Σ̄−, δ̄−) is a thin twin building of type
(W̄ , S̄) and that (Σ̄+, Σ̄−, δ̄∗) is a thin twin building of the same type, whose opposition
relation is precisely the one we have just defined. ¤

(7.2)We are now able to define a structure of chamber system on ∆̄+ and ∆̄−. Two adjacent
thin-classes x̄ and ȳ are called s̄-adjacent, where s̄ ∈ S̄, if the class-panel containing them
is sent into an s̄-class-panel of Σ̄ under the retraction ρΣ+,c+ or ρΣ−,c− . Notice that, by
Lemma (4.4), the image of that class-panel under ρΣ+,c+ or ρΣ−,c− determines a unique class-
panel of Σ̄, which has a well defined label in S̄ thanks to Lemma (7.1). It is straightforward to
check that the s̄-adjacency of thin-classes endows ∆̄+ and ∆̄− with a structure of a chamber
system over S̄. Therefore, any subset of ∆̄ǫ also inherits of a structure of chamber system
over S̄, for ǫ = + or −.
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(7.3) Lemma. Let Σ0 = (Σ0
+, Σ0

−) be a twin apartment of ∆. Assume that each reflection
t of Σ0 such that P (t) is a thick wall induces an isomorphism of the chamber system Σ̄0

+ or
Σ̄0

−. Assume also that there is a chamber c ∈ Σ0
ǫ for some sign ǫ such that the retraction

ρΣ0
ǫ
,c induces a morphism of chamber systems ∆̄ǫ → Σ̄0

ǫ . Then we have the following:

(i) for each chamber d ∈ Σ0
ǫ , the retraction ρΣ0

ǫ
,d also induces a morphism of chamber

systems ∆̄ǫ → Σ̄0
ǫ ;

(ii) if Σ1 = (Σ1
+, Σ1

−) is another twin apartment such that c ∈ Σ1
ǫ , then the retraction ρΣ1

ǫ
,c

also induces a morphism of chamber systems ∆̄ǫ → Σ̄1
ǫ . Moreover, the restriction

of the retraction ρΣ0
ǫ
,c to Σ1

ǫ induces an isomorphism of chamber systems Σ̄1
ǫ → Σ̄0

ǫ .
In particular, each reflection t′ of Σ1 such that P (t′) is a thick wall induces an
isomorphism of the chamber system Σ̄1

ǫ .

Proof. The structure of a chamber system on ∆̄ǫ is simply a labelling of its class-panels.
Now, by Lemma (6.3), a class-panel is completely determined by any of its supports, so the
image of such a support under a retraction is a support of the image of the class-panel itself.
Thus we may restrict our consideration to images of thick panels under retractions. Let π

be any thick panel of ∆̄ǫ, and let x = projπ(c).
For (i), notice first that it suffices to prove the result in case d is adjacent to c because

apartments are convex. Let s = δǫ(c, d). There are two cases.
First assume that δǫ(c, x) = sδǫ(d, x). Then we have

ρΣ0
ǫ
,c(x) = ρΣ0

ǫ
,d(x).

Define a chamber y ∈ π as follows: if projπ(d) 6= x, then y = projπ(d) and if projπ(d) = x,
then y is any chamber of π distinct from x. It is easy to check that

ρΣ0
ǫ
,c(y) = ρΣ0

ǫ
,d(y),

which gives
ρΣ0

ǫ
,c(π) = ρΣ0

ǫ
,d(π),

so ρΣ0
ǫ
,d preserves the type of the class-panel π̄.

Assume now that δǫ(c, x) = δǫ(d, x). In this case, we have projπ(d) = x. Let π′ be the
s-panel containing c and d. Since c 6= d, we know that projπ′(x) is neither c nor d, and,
particularly, that π′ is thick. Let t be the reflection of Σ0 switching c and d. We have

ρΣ0
ǫ
,d(x) = t(ρΣ0

ǫ
,c(x)),

whence
ρΣ0

ǫ
,d(π) = t(ρΣ0

ǫ
,c(π)),

since projπ(d) = x. Therefore ρΣ0
ǫ
,d preserves the type of the class-panel π̄, because t preserves

the types of the class-panels in Σ̄0
ǫ by assumption.

For (ii). the assumption clearly implies in view of Lemma (4.4) that the restriction of
the retraction ρΣ0

ǫ
,c to Σ1

ǫ induces an isomorphism of chamber systems Σ̄1
ǫ → Σ̄0

ǫ . It is also
apparent that the restriction of the retraction ρΣ1

ǫ
,c to Σ0

ǫ is the inverse mapping of the
restriction of ρΣ0

ǫ
,c to Σ1

ǫ . Since the inverse mapping of an invertible morphism of chamber
systems is itself a morphism of chamber systems, and because we have

ρΣ1
ǫ
,c = ρΣ1

ǫ
,c ◦ ρΣ0

ǫ
,c,

we deduce that ρΣ1
ǫ
,c induces a morphism of chamber systems ∆̄ǫ → Σ̄1

ǫ . ¤

Observe that the twin apartment Σ, together with its chambers c+ or c−, satisfies the
hypotheses of the preceding lemma (see (7.1) and (7.2)).
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(7.4) Corollary. Let Σ′ = (Σ′
+, Σ′

−) be any twin apartment of ∆. Then Σ̄′ = (Σ̄′
+, Σ̄′

−),
endowed with its induced structure of chamber system, is a thin twin building of type (W̄ , S̄).

Proof. The proof rests on (2.7). Thanks to Lemma (7.1), we already know the result
for the twin apartment Σ = (Σ+, Σ−). Now let d+ ∈ Σ′

+ and choose a twin apartment
Σ′′ = (Σ′′

+, Σ′′
−) such that c+ and d+ both belong to Σ′′

+. By Lemma (7.3)(ii), we see that Σ̄′′
+

(endowed with its induced structure of chamber system) is isomorphic to Σ̄+, namely that
it is a thin building of type (W̄ , S̄). We may now apply the part (i) of that lemma, with
Σ̄′′

+ (resp. c+) playing the role of Σ+ (resp. c). As a result, we can apply the lemma a third
time, now with d+ in the role of c (and still Σ̄′′

+ in the role of Σ+). This finally shows that
Σ̄′

+ is isomorphic to Σ̄+. Thus Σ̄′
+, endowed with its induced structure of chamber system,

is a thin twin building of type (W̄ , S̄). The corresponding W̄ -distance is also denoted by δ̄+.
Similarly, Σ̄′

− is a thin building of type (W̄ , S̄), with corresponding W̄ -distance denoted by
δ̄−. Finally, define two thin-classes of Σ̄′ to be opposite if they contain opposite chambers.
This induces a well defined W̄ -codistance on Σ̄′, that we also denote by δ̄∗. The result clearly
follows. ¤

End of the proof.
For ǫ ∈ {+,−}, we define δ̄ǫ : ∆̄ǫ× ∆̄ǫ → W̄ as follows: For x and y in ∆ǫ, choose an admis-
sible apartment Σ′

ǫ containing them both. Hence x̄ and ȳ both belong to Σ̄′
ǫ. By Corollary

(7.4) applied to Σ̄′
ǫ, the expression δ̄ǫ(x̄, ȳ) makes sense in Σ̄′

ǫ. Now, by Lemma (7.3)(ii), this
element of W̄ is actually independent of the choice of the admissible apartment Σ′

ǫ. Thus δ̄ǫ

is a well defined mapping ∆̄ǫ × ∆̄ǫ → W̄ .
Let now x ∈ ∆+ and y ∈ ∆−, and choose Σ′ = (Σ′

+, Σ′
−) to be a twin apartment

containing x and y. By Corollary (7.4) applied to Σ̄′
+, the expression δ̄∗(x̄, ȳ) makes sense

in Σ̄′ and is equal to δ̄−(ȳ, x̄′) ∈ W̄ , where x′ = opΣ′(x). But, if Σ′′ = (Σ′′
+, Σ′′

−) is another
twin apartment containing x and y, and if x′′ = opΣ′′(x), then δ̄−(ȳ, x̄′) = δ̄−(ȳ, x̄′′) thanks
to Lemma (7.3)(ii). Thus δ̄∗(x̄, ȳ) is actually independent of the choice of Σ′, and δ̄∗ is a well
defined mapping (∆̄+ × ∆̄−) ∪ (∆̄− × ∆̄+) → W̄ .

It is now clear that axioms (Bu1), (Bu3), (Tw1) and (Tw3) are satisfied. Let us now
prove (Bu2) for δ̄ǫ. Let thus x, y and z be chambers of ∆ǫ such that δ̄ǫ(x̄, ȳ) = w̄ ∈ W̄

and that δ̄ǫ(ȳ, z̄) = s̄ ∈ S̄. Thus ȳ and z̄ belong to the same s̄-class-panel π̄. Without
loss of generality, we may assume that y and z belong to π (which is a support for π̄). Let
d = projπ(x). If d ∈ {y, z} then x̄, ȳ and z̄ are all subsets of a common admissible apartment,
and (Bu2) follows from Corollary (7.4) in that case. Otherwise, choose admissible apartments
Σǫ and Σ′

ǫ containing x, y, and x, z respectively. Thus Σǫ and Σ′
ǫ both contain d̄. We have

ρΣǫ,x(z) = y, which implies, by Lemma (7.3)(ii), that δ̄ǫ(x̄, ȳ) = δ̄ǫ(x̄, z̄) in that case. Thus
(Bu2) holds. The proof of (Tw2) is similar. The fact that ∆̄+ and ∆̄− are thick is obvious
by construction.

This concludes the proof of the first part of Theorem (1.3).

It remains to prove the converse statement. Hence, let ∆̄ = ((∆̄+, δ̄+), (∆̄−, δ̄−), δ̄∗) be
a thick building of type (W̄ , S̄) and assume given a geometric inclusion of Coxeter systems
(W̄ , S̄) →֒ (W,S). Thus we may identify S̄ with the set of reflections R(Ψ) of W , where Ψ
is a geometric set of roots in Σ(W,S); hence, W̄ itself is identified with a subgroup of W .
We set D :=

⋂

Ψ. We have to construct a twin building ∆ = ((∆+, δ+), (∆−, δ−), δ∗) of type
(W,S) whose thick frame is isomorphic to ∆̄. For that purpose, we define

∆ǫ := ∆̄ǫ × D
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and
δǫ : ∆ǫ × ∆ǫ → W : ((x, c), (y, d)) 7→ c−1 · δ̄ǫ(x, y) · d

for ǫ ∈ {+,−}. The latter expression makes sense because D consists of chambers of Σ(W,S),
which are actually elements of W . Finally, we put

δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W : ((x, c), (y, d)) 7→ c−1 · δ̄∗(x, y) · d.

We have to prove that (∆+, δ+) and (∆−, δ−) satisfy the axioms (Bu1)–(Bu3) and that
∆ = ((∆+, δ+), (∆−, δ−), δ∗) satisfies the axioms (Tw1)–(Tw3).

Let ǫ ∈ {+,−}.
Let (x, c), (y, d) ∈ ∆ǫ and assume that δǫ((x, c), (y, d)) = 1. This implies that δ̄ǫ(x, y)d = c

and, hence, that c ∈ D ∩ (δ̄ǫ(x, y)D). Therefore, we obtain δ̄ǫ(x, y) = 1 because D is a
fundamental domain for W̄ . This proves that (∆ǫ, δǫ) satisfies (Bu1).

The fact that ∆ satisfies (Tw1) follows immediately from the definition of δ∗ and the fact
that ∆̄ satisfies (Tw1).

Now, we prove that (Bu2) and (Tw2) hold.
Let (y, d), (y′, d′) ∈ ∆ǫ and assume that s := δǫ((y, d), (y′, d′)) ∈ S. We distinguish two

cases.

Case 1: ds ∈ D.
By the definition of s, this implies that ds ∈ D ∩ (δ̄ǫ(y, y′)D) and thus, that δ̄ǫ(y, y′) = 1
because D is a fundamental domain for W̄ . Therefore, we have y = y′ and ds = d′.

Given (x, c) ∈ ∆ǫ, then, setting w := δǫ((x, c), (y, d)), we obtain

δǫ((x, c), (y′, d′)) = δǫ((x, c), (y, ds))
= c−1δ̄ǫ(x, y)ds

= ws,

which shows that (∆ǫ, δǫ) satisfies (Bu2) in this case.
Similarly, given (x, c) ∈ ∆−ǫ, then, setting w := δ∗((x, c), (y, d)), we obtain

δ∗((x, c), (y′, d′)) = ws, thereby showing that ∆̄ satisfies (Tw2) in this case.

Case 2: ds 6∈ D.
In Σ(W,S), the chamber d ∈ D is s-adjacent to ds 6∈ D. Since D is a fundamental domain
for W̄ , we deduce that the only element s̄ of W̄ such that ds ∈ s̄D is the reflection s̄ = dsd−1

that stabilizes the s-panel containing d. Hence, ds ∈ (s̄D)∩(δ̄ǫ(y, y′)D) from which it follows
that δ̄ǫ(y, y′) = s̄ and that d = d′. We also remark that s̄ belongs to S̄ in view of Lemma
(3.3).

Let us check (Bu2). Given (x, c) ∈ ∆ǫ, then δǫ((x, c), (y′, d′)) = c−1δ̄ǫ(x, y′)d. Since
s̄ ∈ S̄ and since (∆̄ǫ, δ̄ǫ) satisfies (Bu2), it follows that δ̄ǫ(x, y′) ∈ δ̄ǫ(x, y){1, s̄}. Setting
w := δǫ((x, c), (y, s)), we obtain

δǫ((x, c), (y′, d′)) ∈ c−1δ̄ǫ(x, y){1, s̄}d′ = {w,ws}

because s̄ = dsd−1 and d = d′. Thus the first part of (Bu2) holds in this case.
Let us now consider the additional assumption that ℓ(ws) = ℓ(w) + 1. Let d denote

the numerical distance of Σ(W,S). Then we have ℓ(w) = d(c, δ̄ǫ(x, y)d) < d(c, δ̄ǫ(x, y)ds) =
ℓ(ws). This means that in Σ(W,S), the chambers c and δ̄ǫ(x, y)ds = δ̄ǫ(x, y)s̄d are separated
by the wall P (t̄), where t̄ = δ̄ǫ(x, y)s̄(δ̄ǫ(x, y))−1. Since t̄ ∈ W̄ , we deduce that the wall
P (t̄) separates also D from δ̄ǫ(x, y)s̄D. By the last statement of Lemma (3.3), this implies
that ℓ̄(δ̄(x, y)s̄) = ℓ̄(δ̄(x, y)) + 1, where ℓ̄ denotes the length function of the Coxeter system
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(W̄ , S̄). Thus we have δ̄ǫ(x, y′) = δ̄ǫ(x, y)s̄ because (∆̄ǫ, δ̄ǫ) satisfies (Bu2). Again setting
w := δǫ((x, c), (y, s)), we now obtain

δǫ((x, c), (y′, d′)) = c−1δ̄ǫ(x, y)s̄d = ws.

This proves that (∆ǫ, δǫ) satisfies (Bu2).
Let us now check (Tw2). Given (x, c) ∈ ∆−ǫ, then we put w := δ∗((x, c), (y, d)) and we

assume that ℓ(ws) < ℓ(w). By a discussion similar to the one of the preceding paragraph,
this implies that ℓ̄(δ̄∗(x, y)s̄) < ℓ̄(δ̄∗(x, y)), where ℓ̄ denotes again the length function of the
Coxeter system (W̄ , S̄). Since s̄ ∈ S̄ and since ∆̄ satisfies (Tw2), it follows that δ̄∗(x, y′) =
δ̄∗(x, y)s̄. Thus we obtain

δ∗((x, c), (y′, d′)) = c−1δ̄∗(x, y)s̄d = ws.

This shows that ∆ satisfies (Tw2) in this case.
We now check that (Bu3) and (Tw3) hold.
Let (y, d) ∈ ∆ǫ and let s ∈ S. As before, we distinguish two cases.

Case 1′: ds ∈ D.
We have δǫ((y, d), (y, ds)) = s. Moreover, by the discussion of Case 1 above, we know that for
all (x, c) ∈ ∆ǫ we have δǫ((x, c), (y, ds)) = δǫ((x, c), (y, d))s. Hence, (∆ǫ, δǫ) satisfies (Bu3)
in this case.

Similarly, for all (x, c) ∈ ∆−ǫ we have δ∗((x, c), (y, ds)) = δ∗((x, c), (y, d))s. Hence, ∆
satisfies (Tw3) in this case.

Case 2′: ds 6∈ D.
As in Case 2 above, this implies that s̄ := dsd−1 ∈ S̄.

Given (x, c) ∈ ∆−ǫ, then there exists y′ ∈ ∆̄ǫ such that δ̄ǫ(y, y′) = s̄ and that δ̄ǫ(x, y′) =
δ̄ǫ(x, y)s̄, because (∆̄ǫ, δ̄ǫ) satisfies (Bu3). Thus (y′, d) ∈ ∆ǫ and we have δǫ((y, d), (y′, d′)) = s

and δǫ((x, c), (y′, d)) = δǫ((x, c), (y, d))s. This shows that (∆ǫ, δǫ) satisfies (Bu3).
Finally, given (x, c) ∈ ∆−ǫ, then there exists y′ ∈ ∆̄ǫ such that δ̄ǫ(y, y′) = s̄ and

that δ̄∗ǫ(x, y′) = δ̄∗ǫ(x, y)s̄, because ∆̄ satisfies (Tw3). Thus (y′, d) ∈ ∆ǫ and we have
δǫ((y, d), (y′, d′)) = s and δ∗((x, c), (y′, d)) = δ∗((x, c), (y, d))s. This shows that ∆ satisfies
(Tw3).

We have shown that ∆ is a twin building of type (W,S). The fact that the thick frame
of ∆ is isomorphic to ∆̄ is immediate by construction of ∆ and by definition of the thick
frame. This concludes the proof of Theorem (1.3). ¤
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[6] B. Mühlherr. On the existence of 2-spherical twin buildings. Habilitationsschrift, Uni-
versität Dortmund, 1999.
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