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Preface

This book iz a collection of leckures given at the Feonomics Department
at Stanford University during the fall and winter gquarters of 1975-1976.

I am very grateful to José Cordobz and Haruo Imai, who took the notes and
wrote up the lectures, and to Martin Osborne, who provided the solutions to
the exerecisesz,

Game theory has progressed tremendcusly in the thirteesn years since
these lectures were given. Yet this material, which represents a first
course in the subject, has not been supercede=d. It is guite pousible to
glve a course based on these lectures today, although undeoubtedly, here and
there some later developments could be worked in. Even at the time, the
material represented & selection; it was not fessible to cover all the
important areas in one btwo-quarter course.

The lewvel of mathematical sophisticetion of Chapters 1-T is not high;
it should be easily accessible to moat upper-level undergraduates and
graduate students majoring in ecopomics, operations rcsearch, statisties,
mathematics, and other guantitatively or formally inclined majors.

Chapter & is a little more sophisticated.

Before publication, the materizl was briefly reviewed, and a few
mipor corrections were made. It is, of course, quite likely that errors
remain. BReaders are invited 4o iInform me of any thati they find.

_ To aveld introducing new errors, and to speed the publication process,
fthe meterial was nol retyped; instead, corrections were made on the
original typescripl. This necessitated leaving some gaps in the lines.
Morcover, as the observant reader will notice, the typewriter used for the
corrections was not the same as the original. Uhis is, perhaps, not
altopgether bad---the different font signals the new meterial, much like
reconstructions are consciously differentiated at archsecnlogical sites.

In any case, I bep bhe readers’ indulgence.

1 would like o thank Stanford University, particulariy the ecconomics
section of its Institube for Mathematical Studies in the Soeial Beiences
and its director, Professor Mordecai Kurz, for cresting the cpportunity
to give theae lectures and Tor arranging to have the notes taken.

i
|
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i

Robert J. Aumann
Jerusalem, Israesl
Tishri 5749 {Scptember 1988)




Chapter 1: FYermeleo's Theorem

Jzme theory is a theory of rational belhavicr of people with.nobo-
identical interests. 1Its aresa of application extends conziderably
beyond games in the usual sense-——-it includes, for example, economics,
polities, and war. By the term “g?mﬂ" we mean any such situation,

defined by some sebt of "rules." The term "pisy" refers to & particular
cccurrence of a game. Thus cliess is a game, and several plays of chess

took place in the summer of 1972 between Fisher and Spasshky.

We begin with Zermelo’s theorem on chess,

1.1 Theorem (Zermelo [1912]}: In chess either white can force & win,

or black can force & Wwin, ov both sides can force st lesst & draw.

Iroof: We will prove Lhe result for e family of games that
ineludes chess. Each game in this Ffamily iz characterized by: (1} a
positien in ehess, (2) an indication of "who must move" (black or white],
snd {3) a positive integer u {with the understanding that if the gamc
foes not end in nate or draw within o single moves at most, then it is

declared a draw). (Chess is5 & member of this family hecause the number

Based on lectures deliveored st Stanford University in the fall of 1575
and winter of 1976. Hotes taken by Haruo Tmai, José Cordoba, and
Martin J. Osborpe.
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of moves in chess is hbounded (by the rule whereby a play of
chess cnds when the same position is repeated three times}. )}

We prove the result by induetion on n. The reason for using
the larger Family is that it strengthens the indyctive hypothesis end
s makes the induetive proof pozsible. Thisg is typical of inductive
procfs.

Suppose n = 1. If bleck moves, black can either mate on that
move, or he capnot; in the first case bBlack can foree 2 win, znd in the
second case, both pleyers force a draw. Siﬁilarly for white, FHow
sssume the theorem is correct for all @ ¥ m - 1, We wish 1o dedure
the theorem for n = m. Without loss of geperality (henceforth abbre-
viated w.l.0.g.) suppose black moves first. By the induction hypothesis,
after black has mede the first move, either black can force a win or
white can force & win or both cat Torce at lesgt a draw., 1o other words,
with each move by hlack, designated by g, there is asscciated a letter

f{p} +thot may be b, wy, or 4 (b, v and d stand respectively for

i n ]

"black can force & win," "white can foree a win," and "both can force at

least & draw™). Then there arise three mutualily exclusive and exhaus-

tive Tazesg!

{1} If there is a8 move P of black such that f(p) = b, then

black can force a win in the uriginai Enme,

{2) I for all p, £{p) = w, then vhite can forece a win in the

origingl game.




{3) Otherwise, there is no p for which f{p} = b, but there is

a p for which f£{p} = 4. Nence black can force at least a draw, aud

50 can white.
Thisz completes the proof of the theorem.

We now introduce s concept of fundsmentsal Importance in game
theory, that of strategy. Iy the term strotesy, we mean a complete plan
for playing a game {for one player), taking sll contingencies into

accowit, ineluding what 811 other players might do in the course of the

rlay.

For exsmple, in Tie-Tac—Toe the first player has at most 5 moves,

and for each move there are st most 9 pessibilities. Nevertheless he

has far more than U5 strategies. For a stralegy is a complete plan,

and the mmber of possihilities in o eomplete plan which covers oniy

the first two moves of the first player is already colh. This is because
Tor the fTirst move there are Y possibilities, and for each of the
possible responaes of the second player, player 1 has T choices for his

gecond move.

In terms of strategiss, Zermelc's theorem is illusirated in the

three tables on page 4. The rows represent strategies of white, and the

columns strateples of black. The pumbers 1,2,... dindex the strategies.

To each pair of strategies of white and black, there corresponds one of
the letters w, b and d. If white can foree a win then there exists a
strategy of white which, no matter which strategy black plays, sssures

w. I black can forece a win, then there exists a strategy of black
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Strategies
of Black

Strate-
g;:::f 1 " 3 o Strategies
I ol Black
1lw|®]w - Strate—
gieg ol :
Py 4 W a I White 1 2 3 - k - E
I3 fwlb]a rla|dar b0l B ... :
A I 2 | w|lbfd|...]v]...
. . . . Al v | wliwl---1b f-u.
k 1r w w Woaar W - - . . b
N S O ; b

White can force A& win if and eply i there Black can forece 8 win if and only

iz & row k thet is filled with w's. there is & columit k  that is
filled with 1D's.

Btretegies
of Black
Strategles
of White ;
1 2 3 - k vaa ;
1iw|dalol ... |a -
:
2 d b b - A - §
3| w w | b “an ‘e E
' . . ar
. . , d
W v
E'| w d W or d or
d d
. . . . I+]
. . . . or
. . . - d

Both can foree at least a draw if and only if there are
a eolumn k  thet does not heve & v and a row k' that
does not heve &2 b,



white . whipre

black

A "connected™ set linking black’s sides in Hex.

which, na matter which strategy white plays, assures b. If both can
foree st least m draw, then there is no strategy which assures v
to white gnd no strategy which assures b to black, but there are
strategies of white and black which assure st lesst 4 for both white

and black.

1.2 Exsmple (Hex): The following rules define the game of "Hex."
There are twoe players, white and black. The board consists of a rhombus
of dots, with angles of 60 and 120 degrecs, zs in the drawing above; two
opposite sidcs ére labelled “white," the other two "black." (For a
challenging game, the board should be larger, e.g., 11xI1), €all two
dots adjacent if each is closest to the other; thus each dot in theo
interior has six adjacent dots. The ddea is for each player to try te
link up his two sides, White moves first, by "capturing” = dot anywherc
in the rhombus. The players then take turns capturing previously
uncaptured dots (HOT necessarily adjacent to previously captured dots).
4 player wins if the dots he has captured include a "connected” set of

adjacent dots linking his two sides (as in the drawing}.

Clearly, Zermclo’s theorem applies to this game. Also,

PP R
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a little thought will show that 2 drew is impossible in this game.
Thus 'either white can foree a win or black ecan foree a win. We now
prove that in fact white can foree a win. To this end, we show that
if black could force s win, then white could force a win.

Let us define Reversed Hex to be the seme as Hex, except that

black moves First. If black could foree a win in Hex, then white could
force a win in Reversed Hex. Consider now & play of Hex. White can
play by making an arbitrary meve to begin with, subseguently ignoring
that ﬁcve and playing to win ss if he were in Heversed Hex. If st any
time his stratery dictestes accupying the point he occupied on his first
move, then he can simply occupy ancther arbitrary peoint. This will
lead to a win for him, which is a contradiction. Thus it is imposaible
Tor black to force £ win in Hex; henece white can force a win.

Hote that this is simply o proof of the existence of m wvinning
strategy for white; even for Doards of moderate size {say 12 % 12 or

13 * 13} po winning strategy for white is actually known.

1.2 Expmple (Kriegaspiel): Consider the game knowm as "Kriegsspie .
in which black and white .play cﬁess separately
withoﬁt knowing each other's position; eﬁch is informed when a move he
proposes is illegel because of the positions of the pieces of the other
player. For this game, the proof of Zermelo's theorem given above can-
not be applied, and in fact the theorem Itself probably does not hold.
The difference between chess end Kriegsspiel lies in the fact that at
each stege in chess Everf move mede up te that stuge i; knowvn by both

players, while this is not true in Kriegsspiel. This makes the




inductive step in the proof of Zermelo's theorem invelid, beesuse the
player whose turn it is to move does not know Lo what poszition his

move will lead. Technically, chess is a game of perfect information,

vharass Krlegaspiel is not.

Chapter 2: Noncgoperative Games

In the games we have discussed up to now there are 2 players
whose interests are completely opposed. It is clear that when therse are
more than 2 players, they cannot have completely oprposed interests.

This motivates the following definition.

2.1 Definition: A& geme is strictly competitive if it has two pleyers
{1 and 2) and for any two possible cutcomes =x and y, if 1 prefers

*x to y, them 2 prefers ¥ to X,

In & strictly competitive game, we can assign numbers to the out-
comes such that a higher number corresponds to an cutceme that player 1
prefers. 1f we do this in chess, then Zermelo's thenrem.aaserts that
there is & oumber v such that white can gusrantee that his peyoff will
ve gt Jeast v, and black can guarantee thet white's payoff will be no

more than +v. This motivates the following definiticn.

2.2 Definition: A number v is said to be the minimex vﬁlue of a
strictly competitive game if player 1 can gonarantee that his payoff
will be at least v, and player 2 ecan guarantee that the payofl of

pleyer 1 will be no more than v.




Hot all strictly competitive games hﬁve minimax values. For
example, the game "watching pennies," in which the peyoffs to 1 are

those glven in the following table has ne minimax value.

Flayer 2
Btrotegy 1 Strategy ¢
Strategy 1 1 -1
Flayer 1
Strategy 2 -1 i

We would now like to generalize our considerations to games that

are not necessarily strictly competitive and may lisve more than 2 players.

2.3 Definition: A game O {in stretegic form! consists of:

{1) & set N (the players);

(2) for =ach player i, a set gl (the shrategies of 1); and

i
{3)] for each player 1, a function nh, x3 - ®m {the payoff
€N )
funetion of i),
2.4 Hemark: The term "strategiec form" is used to indicate that we

have abstracted from individus?l moves and are looking only at strategies.

irf a &€ « Si (i.e. s 4is an n-tuple of strategies) and

1€y
siest (i.e. t% is a strategy of i), write sft! for the n-tuple

of gtrategies which is the same as = except that t1 is substituted

for 1i's strategy sl in s

2.5 Definition: An equilivrivm point of G is an n-tuple s of

stretegies such that for any player 1 smd for any strategy t* of i,

ni(a|td) < nis).



A two—person sero-sum game is & game ¢ with n = 2 such that

for ell strategy pairs 5, we have hl{s} + hE{s] =0, Clearly, a two-

person O-gum geme iz strictly competitive. In such & game, & pair =&

1 ans tE, hlfsltlj < hlfsj and

h2(s{t%) < K%(s) = -h'(s); or, if for any & and t°,

is an equilibriuvm point iT for any +

ni(th,5%) < ntist,s®) < mheteR)

This meang that hl{El,EEJ ia the minimax value of the game, Thus we

gee that a two-person O-sum game has 8 winimayx value 1f and only it it

hes an egquilibrdium point. We now wish to prove a proposition that
connects the existence of an eguilibrium point {or equivalently, of =
minimex value) in & two-person Q-sum game to what is called the "minimax

praperty.”

= Definiticn: 4 subaset of a Euclidean space is =zeid to be comﬁact

if it is bounded and olosed.

2.7 Remsrk:' A real-valued continucus functicn op a compact set

attains its maximum end its minimmm {the proof is left to the reader).

2.5 Propogition: Let G be atwo-person zero—sum gawe, Assume that

the 5 are compact subsets of Fuclidean spaces and the h®* arc conti-

ntwous. Then & hecessary and sufficient condition for the existence of

an equilibrium peint in & is that

max min h;(sl,sgj = min max hl{sl,sz} .
1 2 2 1
5 8 5 s
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2.9 Femark: The gquantity max min hl{sl,SEJ represents the largest
gmount that player 1 can gusrantee to himsell by pleying an appropriate
strategy. Similarly, min max hl{sl,sel represents the smallest amount
such that player 2 can pguarantes that player 1 will not obtaln more

7

than that amcunt. In "matching permies," whieh has ne mirimex walue,

these amounts are different: we have max min = -1 and min max = 1.

2.10 Remark: The compactness and continuity of the payoff Tunctions

hi are needed to assure that max min =and min max exist.

2.1r Remark: The Cartesisn product of compact sets is compact {the

proof iz left to the reader).

2 1 2

2.12 Remark: Let h be conbinaous on Sl ® B and let B end 8§

be compact. Then min h{sl,EEJ iz a conbinuens function of 51. {The
2
&

proof is left to the reader.)

Proof of Propogsiticn: We first assert that always

{1) may min > < min max h1 .
1 2 EE i

] =] 5

1

Indeed, for any s and 52 we have

mAax hl{sl,sz] > h;(sl,ﬂz}
i
5

-’

Taking the minimum owver 52 on both sides, we deduce
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min mas hl{sl,se] > min hlfsl*se]
2 1 P
8 5 5° .

Since this holds for all sl, it holds slso for an sl gt which the

right hand side sftains its maximum; hence

min max hlfsl,s ) > max min B {Hl 2

2 1 -
5 & 5 )

This completes the proof of {1}.

Assume now that € iz an equilibrium point; i.e. for a1l s
and 52,
1,1 2 1,1 ¢ i 2
hW{sT,s,) Sh{s .5 ) =vsh {s

Then for ail sl ard 52,

max min n > min hl{sl,52} » h;($l=$2} = ¥ > omax hl{sl,sg}
- - J°7q - ) 0
1 2 by 1
= & s I
> min max h (sl, 2]
2 1
5 B

Pogether with (1), this yields

max min hl = min max hl
1 2 2 1
8 B 5




Finally assume, converaely, that

max min hl = min max hl
po 1

8 -] =] B8

Suppose the maximum cn the left is achieved at sé; i.e.

mex min hl(El,SE} min hl{sﬂ,s }
1 = g
= 5 B

Similerly, lLet

and hence

min max h {sl, E} = max hlisl,sg}
2 i 1
" = 3
1 2

gnd 8%, we therefore have

b
W-(s,%) > min kb (sl &) = max Ki(s*,52) > ni(et,s7)
O a ﬂ ﬂ
E 1
5
Substituting = = 54 we getb
hlisé,sg] - max min b® = min mex bl ;
1 2 2 1
= = = 5
i, 1 2 1,1 2 1 E
W e2) « 1epsd) < B(sgye)

Thus Sﬂ

complete.

iz an equilibrium point, and the proof of the propesition is

e e e e e e e e T T L T T R A A e L e S e L e s s e b S A e
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We introduce now the concept of the "mixed extension of a game."

2,13 Exemple: Consider the game "matehing pennies,' introduced above,
The interpretation iz that each playesr shows the other one =ide of a coin.
If both players show the same side then player 1 wins. If not, player
2 wina. We heve seen that this gome has no minimax wvalue, or, equiva-
lently, no equilibrium point. As a consequence, no playing system can

be sustained by & player, sinece the other player cean oubguess it and win.
So each player ends up playing at random: l.e. eéach pleyer geoes to s
corner, tosses the coin and shows the side thus determined. Flaying at
random in this way iz equivalent to choosing strategies 1 and 2

each with probability 172, If a player plays at rondom, his expectod
peyoff iz 0, no matier what the strategy chosen by the other player is.
We potice that random pley expands the possibilities for strategy cholces,
Each player can now choose among a condinuum of shrategies——a continuwm
that we may represent by the unit interval [0,1]. We have a new game

defined by

n={1,2}
R ,
8 ={p: 0 =ps<1l} , B =1{q: 0 421}
and  Hip,a)=pa-1-(1-plg-1+(1-p)(l-all-(1-gqlp- 1

n

-

{1 - 2p}{1 - 2q}

This new game is celled the mixed extension of "metching pennies.”




w1lh-

0,14 Definition: A mixed strategy in & game ¢ 1s s strategy in

the mixed extension of the game.

Sometimes, vhen we want to cmpbasize that we sre dealing with

strategies in @, rather than mixed strategies, we call them pure

strategies.

2,15 Agsertion: The mixed extension of "matching penpies™ has a

unigue equilibrium point. The equilibrium peint is p = 172, q = 1/2.

Proof: The existence of an equilibrium point (e.p.) follows

directly from the fact that
Ly o et by o ogld
Hl{P.,EJ = I {232} Hl{E,?q} i

Sinee min Hl{p,qj iz a functicn of p with & unique maximum, the €.p.
q
is unigue.

The following is another example of g zeprg—aum game with no pure

stretegy equilibria, but with an equilibrium point in the mixed extension.

£.16 Exampie: Consider a game with peyoff matrix as below.

2 2

Sy =

{gq) (1 - q)
_'si (p) 1 3
e (1-p)| & 2
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We see that there is no pure strategy equilibrium ip this geme. Let T

gud g be the mixed strategles of players 1 wsnd 2. Then

Tip,a) =pa + 1 +p(l —g}3+ (1 -plg+h+(1-pll-aqe

-bpg + p + 29 + 2

{1 - 2p}(E - 29} + 2

From this formula it can be seen that p = 1/2, o = 1/4% ie an equili-
brium point. We can also. compute it by B direct method: nemely by

computing p such that min Hl{p,q} iz mavimmn {and q such that

i |
mAX, Hlip,ql is pinimum) snd verifying that max min Hl(p,q] = min max Hl(p,q}.
Iy 2] 2 q P
We have
P+2 if p <
min Hl{p,qj =
4 -3p+Y4  if p > %

The graph of min H;{p,q] locks as follows:

Q
:rl
o) &3
2

(1.1)
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5/2. SBimilerly,

From this it is apparent that max min Hl(p,q}

P 9
. !
-2g + 3 it g 2y

mex H{p,a) = ;
P 29+2 if gz 7%

the graph of max Hl(p,q} thus looks as follows:
B

4 :
P ¥

4 _ 1 q -+

Hence min max Hl(p,q]_= 5/2, Since pex min is achieved whem p = L/2,
q P P q

and min max Hl{p,ql is mchieved when g = 1f4, it follows that
g B
(1/2,1/4) is an equilibrium point.

In the games we are going to discuss next, the ienterests of the

players are not completely divergent. They are called oom-zerg-sum games.

2,17 Lxemple: Consider the game with payoff matrix as below. UThis

) 2
game -has two pure strategy eguilibrium peinte Esi,si] end, {sé,spl.
These points remsin equilibrium peivts in the mixed extension of the game,

they correspond to p=1l,g9=1 and p=04, q~= . There 1ie however




17—

BE EI-2
1 2
() {1 - qJ
1
a7 (p) 1,1 0,0
1
55 {1 - p) 0,0 1,1

an additione]l equilibrium point, p = 1/2, g = 1/2, sinece

1

M3

Hlfp,%ﬂ for all p

and

2.1 1
H (E,q} 3 for sl q .

The expected peyoff associsted with this equilibrium point is {1f2,1/=2}
vhich is smaller than the payoff corresponding to the two other equi-
libria. This result provides a case for two posseible interpretations
of gn equilibrium point. Firet, an e.p. may be interpreted as a self-

enforeing agreement. Once such an sgreement is written down, it 1s of

ne advantage to either one of the two sides to viclate 1t. For instance,
if the two players mgree to choose the point [Bi,sfj, neither has any
advantege in moving eway from it. An sgreemept that is not an equili-
briws point will be violeted because there is an incentive to do so

and there is no enforcement mechaniem. TFhis interpretation is relevant
in sitpations like intermaticnal treaties gnd illegel collusicns on

constrained trade., Alternatively, &n e.p. can be interpreted as a




=158~

netural outcome when there is no possibility of communicetion between
the ﬁl&yers, but semehow the e.p. in question is "prominent" or "naturael;"
i.e. each player has reasen to believe that the other one will play in

accordance with it. In the case sbove the e.p. {1/2.,1/2} is such =n

( 1.2

i 2
s]»8;) or (sE,sE}.

outrome since the players cannot agree on either

2.18 Exsmple: Consider the game with payoff matrix as balow.

2 2
51 o
{q) {1-4q)
1
8] (p) 1,1 0,0
1
5, {1 - p) 0,0 2,2

The mixed extension of this game has three equilibria:

1

o
Il
b=
N

It

pure strafegies
2 2 .
F = 3— . O = E- mixved strategie= .

Note that the mixed strategy equilibrium yields a payoff that Is worse
for both players than either of the pure strategy e.p."s, 8Ho it seems
un}ikely that this e.p. will be chosen even when communicaticn is
impossible. However, in this case it seems Just as unlikely that the
pure e.p. (1,1} will be chosen, since the e.p. (2,2) is better for

toth pleyers thao all other e.p.'s.
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2,13 Exemple: In the two above examples, we dealt with purely coope-

rative situations. Cornasider now e bargeining situation.

2 2
1 o
fa) {1 - q)
sy (o) 2,1 8,0
1
8, {1 - p) 0,0 1,2

" (We may imegine

This game is sometimes called the "Battle of the Saxes.
that the husband prefers wacetioming in the mountains while the wife
prefers vacatiening by the esemside, but both prefer s vacation to staying
at thﬁt} There exist two pure strategy equilibrla g =1, 9= 1 and
p=0,4q=0, and one mixed strategy equilibrium p = /3, ¢ = 2/3. The
mived streteglee cutcome {1/3,2/3] makes the two players equally ﬁeil
for badly) off, but is mot efficient. Tt is dominmted by both of the
.tva other equilibris: Toth players are better off when moving to either
pure strategy equilibrium. Here, the main problem is one of bargaining.
Eoth pleyers heve an Incentive to reach apn egresment through bargeining,
gince it would ensure one of the two pure strategy egquilibria. However,
if an sgreement canﬁﬂt be reached (either because the bargaining process

15 unsuccessful or because communlcation is impossible), then the mixed

gtretegy equillbrium is the natursl ocubcome.
i T

2.20 Exanple (Priscners' Dilemma); Two priscners are arrested by the
police, but there ls not enough evidence to convict them. The police ask

them to give evidence agsinst each other.
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There are three possible cases (two out of ihe four situations are
gymmetric)., I one cooperates with the police and the other does not,
the outcome iz best for the one whao cosperates (he gets Treedom plus
6ide advantages, such as a job and new ideutity)and worat for the
other [he stays in Jail under hard canditiéns}. If both turn state's
evidenre, they will not be freed but will benefit from good treatment

in jail. If both de not, both will be freed but cannot get side adven-

teges.
The situstiom is expressed by the following payoff matrix:
Prisoner 2
not cooperating | coopersting with
Priscnerl with the polics the police
t .
not coopera i?g with the h,h 0,5
palice
cuoperatingrw1th the 5,0 1,1
police

(1,1} is seen to be the only equilibrium in elther pure or mixed stra-
tegies. Some questions mrise here. Why is (k,4) not celled an egnili~
brium in geme theory, since (b, 4) dominates (1,1)7 Accurdiﬁg to the
logic of geme theory, though (b,4) msy be & "good" outeome, it is not
salf-enforcing and o not "stable."

Note that in this example, one does not need the notion ef equi-
librium to justify rhe conclusion that each prisoner will turn state’s
evidonce., That is becausc turning state’s evidence is best for each
prisoner no matter what_the other one does., Thus unlike in the previous

exumples, no assemptions at all about the other player’s behavior are
needed to justify the conclusiocn.

e A A A R

b A B
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2.21 Exsmple: Consider the game with payolf matrix below.

2 o2
.l o
{8} (1 - B}
1
8] (o} 1.0 | 0,1
1 11
Sg {1 - a) 513 1,0

Like matehing pennies, this game has no pure sirategy equilibrium; unlike
metehing peonies it iz not strictly competitive. Now, let mixed strate-

gies o, B be as in the tahie,

Aszertion: If f(a,k) is an egquidibrium poinﬁ, then 0 <o < 1,

O0<p= 1,

Proof: BSupposec not; for example, let o = 0. Then B = 1;

but this is not an equilibrium point. Similarly for the other case.

If player 2 pleys si he will get (1/3){1 - a), and if he
playa E: he will get . 8o for an equilibrium {1/3){1 - @} = &, given
the claim of the sssertion. Thus ¢ = 1/h. A similar calculation for
1 wyields 8 = 2/3. HNote that to caleulate «, only the payoff of 2 is
considered, and to get B, only the payoff of 1 is. This is bhecause
for an Equilihrium the strategy of 1 has to be such that there is no
incentive for 2 to chenge his strategy, and vice wersa.

Pleyer 2's peyoff st the equilibrium point is, then, 1/k, and

player 1's is 2/3. An interesting aspect of the situation is that
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player 1} can actually gusrantee himself a payoff of 2/3 (by playing
the strategy © = 1/3), end player 2 can gusrantee himself a payoff
of 1/ {by playing the strategy B = 3/L). So et the equilibrium point,

the two playsrs get what they can guarantee themselyes: when each

player looks only at his own payoff and plays as if the game were strictly

competitive, each will receive his gquilibrium payeff. Put this behavior

g —"

dﬂesigég generate thé equilibrium strategies: 4if player 1 chooses
(1/3,2/3} and player 2 chooses (3/L4,1/4), by changing to the strateey
(0,1} player 2 can improve his ocutcome. ﬂonversély; use of the equi-
librium strategies ﬁécs not guarontes thet the players will recelve the
equilibrium payoffs: each player depends on the bhehavier of the other

to do so. In thie case, then, the equilibriuw point seems unconvinciog

Aas a recommendation for a self-enforeing agreement, since each pleyer

on his own gan guarantee the exact amount yielded by this "agreement."

Exercise 1: Find the equilibrium points and equilibriuvm payoffs
of the two-person gawe defined in the table below {each player has three

strategies}.

52 SE EE
1 2 3
1
5,1 9,0 L,5 ] 5,4
sé 5,4 1 0,07 4,5

sy | b5 | 5 | 0,0
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Exercige £: Find the equilibrium pointz and equilibrium payoffs
of the three-person game defined in the teble below (esch player has
two stretegies; pleyer 3's strategies are to choose either of the

matrices of payoffs},

2 2 2 2
1 2 1 35
1 1
sy | 3,11 | 0,0,0 s] | 0,0,0 | 0,0,0
1 1
5, | ©,0,0 | 0,0,0 gy | 0,00 | 2,2,2
3 3
By S

Exercise 31 Find the equilibrium points and equilibrium payoffs

of the two-person geme defined in the teble helow.

2 2
"1 2
si 0,0 | 1,0
sé 0,1 [ 1,1

2,23 Theoren (Mash {1951]}): The mixed extension of any geme with

finitely meny strategles has ar equillibrium point.

Proof: The proof reguires the use of the following theoren.

Theorem {Brouwer's fixed point theorem}: Let € be = compact

convex subset of a Euelidean space, Let f be s continuous function




from C iomte C. Then f has a fixed point; i.e. therg is a poiot

x in 0 for which f(x] = X.

Let W= {1,2,...,n} be the set of players and for each 1 in
R let 8% = {1,2,...,n'} be the set of pure strategles of player 1i.
Let +h . ir,.1 k n

e payoff function of player 1 te h {17, ... ».a.s] ) ER
where jk is the pure strategy chosen by player k {1 < jk < mk}. The

corresponding mixed extension is defined by:
the player set ¥ = {1,2,,..,n} ,

the slrategy space of player i: X = {Exl,xg,...,x = E :

x; >0 forell § , emd ] x, =1} , and

the payoff function of pleyer i:

1l 2 o
Il m m .
Hiixl, ,xk, ) = § ) [xll...xkk...xnnplijl,‘..,jk,...,Jn}I
J J

3= g% gt I

Xi is by definition the simplex of dimensian mi — 13 we know that
8 simplex is convex and compact. We also know that the Cartesian product
of compact convex sets iz compact and convex, so thet the Certesian pro-
ﬂﬁct of the strategy spaces X = Kl x H? ¥ou.. ® 3i X ... X is compact

-and convex. Define the following fonetion on X

gjm = pax ta,Hitx|ej} -« w1l (x)) (v xexNv LeER)(Y eSS
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J
|_...._—A-.—-—.. .

{0,0,...,0,1,0,...,0) fi.e. e

i

i
J
when the mixed strategy of 1 in

i =
- - J -
and H1{x|e3} is the value of I

where £ iz the j—th unit vector in

x {xi} iz replaced by the pure strategy ej. Hlfxiejl - 1Y (x} is,

then, the gain or loss sccruing to player 1 as a consequence of his

i i
move from X to eJ.

Define the funetion £: T+ X by

xi

i
4 T ?3{"}

3 o
fJ{x} = n

1+ ) g;fx]
=1

We see that f{x) € ¥ and that #£{x) is contifmous (H'(x) is conti-

nurous sinee 1t is & polynomial in x  and glx] 1is continuous since it

igs the maximumm of twe continuous functiens}. Bence, by Brouwer's theorem,

f has & fixed point; i.e. there is sm x in X for which f{x) = x.

For this =, for 211 i and j,

i
m .
(1) xj ngsjfx} = g;(xi

Asgertion: For ail i in N, there is a J with 1 <) < e

for which %, > 0 and g;{x} = 0.

hi
Proof':
i
i) = E igiiefel) = T sdnlixled)
(2) | H {x lexj ey) = g (] e

x>0
3




D=

If the assertion were false, then gj(x} >0 for g1l ] such that

x> 0, in which caze

J
Hi{xiej} > Hi{x] for 811 ] such that x§ >0,
50 that
(3] ¥ xiHi{x[ei} > 7 xiHi{x} = Hi{x] ¥ X = Hi(x)
;04 J i L.
xJ>D xJ>D xdbﬂ

{2} and (3} invelve a2 contradiction, so that the asserticnm is proved.

i
m
Applying the assertion, {1} lesds to } gj[x} =0 for &l i, and
J=1
53 > 0, g;[x} =0 forall i s=nd J. Hence Hlfxle;] < iz,
and for every mixed strategy y € xi,

gince

i i i

1,4, & i ooy i, .0 i
B (xly™) = I yyulxfe)) ¢ §yiii(x) = 0 (x) [y, =B lx)
3=1 1=1 1=1

i
: i)
since } ¥y = 1. Ve conclude that x is an equilibrium point, which
3=l
establishes the theorem.

Chapter 3: The Shapley Value

In this and subsequent chapters, we turn to the theory of "soopera-
_tive gemes,” vhere the focus of interest iz the wey in which the players
bargein together over the division of the availsable payoff, rather than

the way this payoff can be atteined by the use of certain strategies.




3.1 Dafinition: A& game in comlitional form consists of

1} & set K (the players}, and

2} a funection v EH + | such that v{p) = 0. EEH = {8: 5 S NW}}.

A subszet of N ie celled a coalition; v{8) is called the worth of the

coalition 8.

3.2 Agreement: If {il‘iE""’iJ} is a set of players, we will some-

times write v{ilig...i ! rather then v({il’iz""‘ij}} for the warth

4

of {il,i

2,1:-1-,5-3}-

3.3 Example {2-person bargaining game):
¥={1.2 , wW}=1 , w1 =v(2)=0 .

3.4 Example {Market for a perfectly divisible good with one buyer and

two sellers):

i, w{E3) = v{1) =+(2} =+{3) =0

¥={1,2,3} , v(®) = v(22} = v(13)

3.5 Exemple {Pure bargaining geame with n players, or unanimity game

with n players):
viK}y=1 , w(8) =20 for S # N

3.6 Example {3-person majority game):

vieay =1 , (1) =v{(2) =v(3) =0

N

= {1,2,3} , vwiN) = v{12) = v({13}
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3.7 Example {Weighted majority geme):

11 Jwte3
16
B ={1,2,34 vi(8) = s
0 ir Jw'«<
i3

A
M2

with wh=2 and w* =1, for 1 =2,3,4 .

{w" 1is the "weight" of player 1.}

3.8 Definition: Let N be the set of players. &An n-perscn weighled

majority game with weights {wl}iEH and quota gq 1is defined by

ies
v(g) =
g if E wi <.q
iss
3.9 Definition: v i3 mgnotonie if 8 2 T implies +(8} > v(T).
(Note that this does not mean that |[5] » [T| implies w(8) » v(T)

{where |S| is the cerdinality of 8).) v is supersdditive if

BNT=¢ implies w(8UT) » v{&) + +(T).

Unless specifically steted, it will not be assumed that v ia

mopotonie or superasdditive.

3.10 Definition: A goame is O-normelized if {i} =0 for all i in

N3 it is ©-1 normelized if it is O-normslized and +{¥) = 1.

3.11 Definition: 3 =and j, elements of N, mre gubstitutes in ¥

if for all 3 conteining meither i mor 3, v(8 VY {i}) = v(8 VUV {3}).
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3.12 Definition: 4n element i of W is called a pull player if

vis U{i}) = v{g) for gll S CN.

3.13 Definition: EN is the Nuclidesn space whose dimcnsien is the

cardinality of N, and whose coordinates are indexcd by the members

of N rthemselves,

We now introduce the solution concept studied in this chapter.

i

3.14  Definition: Let N = {1.,2,...,n0} and let & be the set of

all games whose player set is N. A Shapley value or value on N 15 &
function §: GH + EH satisfying the following conditions:
1. (Symmetry condition): if i =nd J are substitutes in v,
then {¢v}i = (¢v}J.
2, (Wull player condition): iIf 1 dis & null player, then

(¢v}i = Q.

n
3. (Efficiency condition): } (¢v}; = v(B).
21

k., {Additivity condition): (4{v + w}}i = {¢v}i + {¢W}i'

3,15 Bemark: {¢vli, the i-th coordinate of the image vector ¢{v)
{sometimes dencted ¢v) is interpreted as the “power™ of pleyer 1 in
the game v, or what it is worth to 1 %o participate in the geme Vv

(in brief, v's ‘"wvalue" for 1i}.

3.16 Hemark: Cenditions 1, 2, end U are weak restrictions which are

sy to accept ms "reasonable,” while 3 iz mueh stronger {to reguire an

efficient outcome in game situaticons is as strong an sssumption as requir-

ing it in e traditionsl economic problem).
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3.17 Theprem (Shapley[1953a ]}: There exists a unique value on G

for every N.

Proof: Firast we prove umiquensss, Let ¢ be & value on G .

Define for each coalition T C N with T # p, a game ip by
1 ir T E B
VT{S] =

ﬂ otherwise

Hote that for any real a, members of MT are null rilayers in
AV and members of T &re sybsztitutes for each other in A Hence
by the null pleyer condition, ¢{uvT}i =0 when 1€ T, and by the
symmelry condition ¢(uvTJi = ¢(uvT}J when i,} € T. Hence, by the

efficiency condition é plav, ). = {av_J(N) = av_(H) = «. Thus
Sy T1 T T

= = ‘E' .
o iéT¢{uvT}i |T[¢{uvT{i for any i €' T. Hence,

o

i
_ TET for 1 T
¢(avT}i =
v for 1 E T
Hevw, GH is g Fuclidean space of dimension EFHl - 1 end there are

EEHI -1 gomes Y. We know qs{avTJ for a1l a« &nd T, so by additi-

k k

vity we know #{ } oy ¥ } for ell linesr combinations J %, Vip of the
i=1 i . i=1 i

vT's. Henee if we prove that the vT's gre linesrly independent, we

vwill have shown uniquencss. Suppese they are not; then vwe may write




where |[T| < JTii for all i and ell T.'s are different from each

other and from T. Then

1= v, (T) = %E.v (1} = gﬂ.-n=0 .
T 1=3 Ty i=1 *

a contradiction. We therefore conclude that the vT'E are indeed
linearly independent, which completes the wunlqueness proof.

For the existence proof, suppose that the pleyers in N are
ordered, and suppose that according to this order, each player gets his

marginol ineremental worth to the coslition formed by the players pre-

ceding him. That iz, the i-th player gets
v{1,2,3,0 0,1 = 1,i) = ¥{1,2,3,...,4 = 1) ,

where 1,...,i = 1 denotes the players before 1 in the order under
consideration. The functicn on N +thus obtained does not always satisfy
the conditions of the Shapley wvelue. But if we take all possible orders
of the players and average the corresponding marginal contributions, this
gverage turns out to satisfy all the conditions of the Shapley value.
Thus, a oull player has Zero inerementsl worth in all orders, and the
aymmetry of the sct of all orderings ensures Lhat the symmetry condition
ig satisfied. The efficiency condition may also be verified, and the

additivity follows from

(v +wi(1,2,...,1 - 1,1} = (v + w}{1,2,...,0i - 1)
= Fy(1,2,.00,1 = 2,i) - v{1,2,...,4 - 131 + [w{1,2,...,i = 1,1

- wll,2,...,1 - 1))
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for sty two games v and w and any order. This establishes the
existence of & Shepley value, 50 that the proof of the theorem is now

complete. The above argument also establishes the following.

3.18 heorem (Shapley {19532]): (4v), = (1/{w|1)}ivis, Y {13} = v(g;)]
L .

where R rums over all |W|! different orders on W, and 54 is the set

of players preceding I  In the order BR.

We will now compute the Shapley wvalue for some simple games.
3.19 Example: 2-person bergaining game. One has
F={1,2} «v(2)=1 , w(l}=v(2)=0 ,

50 the formula gives:
- =L
(¢'V}l = {1’1"’}2 - o

3.20 Exemple: 3-~person mejority game. One has

N={1,2,3) v(1) = v(2) = v(3} =0 ,

v(12) = v(23) = v(31}) = v(123) = 1 ,
g¢ the formuia gives!:
_ i
{¢v)) = 4v), = bv)g = 3

Tn both these exsmples one can slsc deduce the value directly from the

symmetry and efficiency conditions.
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2.21 Example: Market with two sellers end one buyer. Here

¥ = {1,2,3} , v{123) = +(12) = v{13} =1 ,

and wv(8' =0 forall ather S CN

In order to compute the Shapiey value for this game, we first notlee that
there are 3!.= & orderings of the 3 players. BSilnce this game is &
simple game {i.s. the worth of every coslltion is either 0 or 1), the
following definition is useful: player i is & key player with respect
to the coslition 8 if w(8) =0 and v(8S U {i}) = 1. The Shapley value
for a player 1 is his average incremental worth, so we obtain it by
comput ing the proportion of orderings in which player i 1is 'a kcy player
with respect £o the set of playera vwhich precedes him in the ordering.

The six orderings are:
{1‘52’3}! {1:3:2}: {2:]—:3}: {233:1}, {3,1,2], El.l'.l.d. {3,2,1}'.

Flayer 1 is key in {2,1,3}, {2,3,1}, {3,1.2}, and {3,2,1}. 5o

(v), =3 =2

Since 2 and 3 are substitutes {¢v}2 = {¢v}3. The efficiency condi-

3
tion 18} {¢v]i = v{123} = 1, ec
i=1

(ov), = ¥)g = ¢

5o that




This example 11lustrates the fect thet the Shapley velues gives & measure
of the power of the players in s situstion free of any Institutions.
Thus, one might think that if the availabie payoff above were distributed
according to the pleyers' strengths, the cutcome would Le (1/2,1/4,1/4),
since the two sellers ¢an form g cartel which will pul them on an equal
footing with the buyer. The Shapley value, however, reflects the fact
that the buyrer is actually in & stronger poaition since each of the

sellers may be willing to deal with him separately.

A

( 3.22 ) Examples: Weighted me)ority games. The Shapley value gives
‘Eﬁﬁerésting insights into some multi-party political situstions. For
instance, the politicael arena in Israel is characterized by the exis-
tence of a large party (the Labor Party) which counts for epproximately
1/3 of the votes, whereas until severnl yesrs sgs the remaining votes
were Eplit smong many relatively small parties. In spite of the fact
that it controlled only 1/3 of the votes, however, the Lebor Party has,
since the creation of the state, alweys held 211 four major ministries
(Prime Minister, Finance, Foreign, Defense ).

To try to gain some insight into this situstion, let us compute
the Shapley value for e weighted majority game (N,v) with quote
q = 1/2 &nd e vector of weights w = (1/3,2/9,2/9,2/9). Ve get
¢v = (1/2,1/6,1/6,1/6). This result provides some understanding of the
situation in Isrmel: olthough it has only 1/3 of the votes, the Lebor

Party has half the "power" within parliament.
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Conglder next a situation in which there sre 100 partiez: one
lerge party has 1/3 of the votes, and the remaining 99 parties share
the cther 2/3 equally. The large party ie a key player in all orderings
in which there ere more than 1/l and less than 34 of the 29 players
before him. Bo he is key inm helf of the orderings, so that again 1/3
of the votes gives the large party 1/2 of the power: {¢v}l = 1/2.

How consider = situation in which there are two large parties,

each with 1/3 of the votes, and 3 small ones with 1/ of the votes each;

l.e.

We will compute the Shapley wslue for the corraesponding weighted majo-
rity game with g = le. Let the two large players be dencted by X
gnd y. For each order on the small players, one can
_characteriZE the order oo 321 the players by a pair {a,b), where =&
.I?tresp. b} is the number of small players after which x (resp. ¥}
appeara. Corresponding to a4 pair {a ,c:} .there are two orders of all
the players--one where x precedes Yy, snd one where the reverse is
true; corresponding to every other pair there is Just one order. fHence
possible orders are illustrated in the diagram below: Tor example,

the point A corresponds to the order {pl,y,pg,x,pa} {where
{pl’PE’PB] ie the ordering of the =small playersl; each position on the
diagonal corresponds to two possible orders of all players. Bo Tor
every ordering of the small players thers are 20 poseible orderings

of 8ll the playera, and x is = key player in the siX positions whiech
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P RS
) {2,
P
3 . . .
0 ©
2 . . . .
L
1 . A .
o
J . . .
© o
g 1 2 3 g

are cireled. 8o, eince the order of the asmall playera is Irrelevant at
rresent, the value of x is 6/20 = 3/10. By symmetry the value of ¥
ig also 3/10, and by symmetry and efficiency the walue of* the game is

_ (33222
AT THT T

Bo in this case, the Bhapley values imputes to each of the lerge players
a ehare of the power smaller than his share of the wvotes.

- Let us consider now & more genersl ease in which there are two
large parties {each with lfﬁ of the votes) snd n - 2 small ones of
equal size. We sre interested in the Shapley walue of this geme for n
artitrarily large. The charescterization of crderings used sbove can be
modified by letting & and b he the proportions of the smsll players
ofter which x and ¥ respectively sppear. The diagram below then

illustrates the situation, the shaded ares corresponding to those order-

inga in vhich x 1is 8 key player. The value of each of the large parties
is, then, approximately 174 when n is lerge; for n = S, it was 3/10.

I7 there is a large number of smalil parties it will, then, be better for
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them not to get together in lerger groups. The intuitive rationale is
as follows. Whatever the number of smﬁll partie=z, each lerge party
does not need all their votes to form a majority, but 1If there are Few
stn)] parties the large ones will have no choice but to bargain over
ilerge blocks of vwotes. If there is & large nurber of small parties,
the large partiee caen h&rgain for just the number of votes they need,
end can consequently offer more pex wvote: the small parties will then
gctually be more poweriul.

This result may account for encther aspect of the political scene
in Termel: +the fact that the relatively emall religicus parties have
not gotten together, but have remeined independent, in the presence of

the two large parties on the righl and on the left.

Chapter b: The Core

h.1 Definition: A payoff vector is e member of o fthe Euclidean

IHl-dimﬂnaiOnal space whose coordinetes are indexed by the members of NJ.

L.z Definition: A payoff vector x 1s celled individually rationel

{in the game {¥W,v)} if xi > v{i} for sil pleyers i € M.
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4.3 Definition: A payoff vector x  is celled proup rationsl {or

efficjent) it } Xt = w(x).
1En

L.k Remark: IT x" < v(N), then a1l players could improve their
;=i

payoff by forming the c¢oalition N; hence x is inefficient. If ¥

iz superadditive, then for any partition {Sl""’sk} of the players

k
{i.e. U §; = F and 5, N Ej = ¢ for all i # j), we have
i=l
k
v{n) > ¥ V{Si]; therefore there is no way for the players to obtain a
i=1 .

totnl payoff greater than w(N)]. Hence under the sssumption of super- i
additivity, it is to be expected that payoff vectora that sctuelly occur .

will be group raticnal. Howsver, supersdditivity will not be assumed

here unless specifically stated,

4.5 Definition: An imputation is & payoflf vector that is indivi-

dually snd group raticnal.

h.6 Definition: The core of the game (N,v) is the set of all impute-

tions x such that v(8) < } x' for &1l £ C N,
i€s

L.7 Txample: Two-person bargaining geme. We have N = {1,2}, v(N) =1,

and v{l1) = v{2) = 0. Then {xl,xE] {2 in the core if and only if

xl >0 ., xE >0 , and xl + xE =1

Bo the core is the set of all imputstions, &s shown in the disgram.
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-

2

x
1 Core of two—person bargaining geme
0 Il x1+

4.8  Example: Three-percon bargaining game. In this geme N = {1,2,3},
%)

vi{N) =1 and v{B) = 0 for all other S CN. GBo (xl,xg,x is in the

core 1f and only if

x1+x2+x3=vfﬂ}=l s xig-_v(i}zcr for g1l i€ R , end
Exiiv(S]=U for a1l 8CN , S#N
iEs

The core is therefors the set of all imputetions onee agalny it is shown
in the diagram beliow.

+

3
xi Core of three-perscn bargaining game
X2
1
1]
‘_,.,.--"'
LT




4.9  Example: Morket with 2 sellers and a buyer. In this game
w = {1,2,3}, v{123} = v(12) = v(13) = 1, and v(8) = 0 for ail other

8 CH., So x is in the core if and eniy if

Hence the core iz {({1,0,0}}.

4,10 Remark: Note that the core in the example sbove ({(1,0,0}})

differs considerably from the Shapley walue of the game considered Lhere
{which is (2/2,1/6,1/6)). One can interpret the zerc payoff to players
2 and 3 in the core allocation as the result of cubthroat ccmpetition

Lbetween them.

k.11  Hxample: 3-person majority game. Here W = {1,2,3},
v(123} = ¢(12) = v(13) = v{23) = 1, and v{i) = 0 for all i EN.
. 1 2 3 _ i
For x to be in the core, we need X +x +x =1, x > O for all
i&Ex, xl + x? > Lk, xl + x3 > 1, end x2 + xs s 1. There exists no -«

gatisfying these conditions, so the cors is empty.

We now wish to study conditions on v which will ensure that the
core of (M,v) be non-empty. Consider first & O-1 normatized 3-person

game, Let us suppose thet the core is non-empty, i.e. there exists an

imputation x = {x;,xz,xB} such that Lo p
- ™, .
At L
S \_1 . " : -
xl + xE > v{lE} s ‘H
"\"x ; i N
ta -"-.
:
1 ;
e ‘f B ¢
e ok ¢ ’
IR g / '
A fd" ‘-'—.T"(.v % ’ : 5,
= by T I_-'; '}5




. .

it +x3 > v(i3} ,

end

2 3 > v(23)

"
+
b
IR%

In this caze we have

2(x" + x° + ) > v{(12) + v(13) + v{e3) ,

or

v{H} = 1 > [VEJ..E} T Vflg} + V[EB}]

and

v(12) <1 , v{a3) g1 , v{23}s1 . - N

Lo i

S & necessary condition for a 0-1 normalized 3-person game to have a j
o ; s
-

ncn-empty core is that 1 2 (v{l2) + v{13) + v(23)]1/2 andl ¥(il) 2 1

-

for a11 {i,3} €A,

Exercise L: Prove that the conditicn l; [v{12) + v{13) + v(25)]/2

and v{iJ) £ 1 for &1l {i,]} €F i= also a sufficient condition for the

0-1 normalized 3-pereon gsme (N,v) to have a non-empty core.

Let s now consider the conditions under which & general game

(¥,v) bas s non-empty core.
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4.17 Definition:; Let 5 T N. The characteristic vector of 8 ia

the element Xz of EH defined by

$ i if i€8
g =
0] gthervise

.13 Definition: A family S of cor’itions is called balanced if

there exists m sequence of non-negative numbers {ﬂs} such that

=

R

234

{5_} are called balancine weights for 3.

=

A natural interpretation of this definition is the following.
Fach player is endowed with ome unit of time that he allocates among the
coalitions 8§ in 8 GE is the frecticn of his time that ench member

of 5§ allocates to the cosiiticn 5; the condition E E X ¥ Xy 158
ges 55 i}

feasibility condition {for every individual the sum of the amounts of
his time he spends with each coelition must equal exactly the amount of

time he is endowed with).

L.1% fTheorem (Bondareva: [1962], [1963], mnd Shapley [19671): A necessary

and sufficlent condition for the core of (¥,v)] +to be noh—=ppty is that for

all botenced families 5 &nd corresponding balancing weights {&.}

5 geg

&

ve have ) ﬁsf(E} < v(N),
BES -

Proof: We will assume that v is 0-1 normelized; the extension

to the general case 1s lefl Lo the reader.
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1. The copdltion is mecossary.

Let x be in the core. Then é = v(¥) and ¥ xt > v(8)
iSN i€s T

for all ST N. Iet S be z balanced family with weights {GS}. Then

6. T x> sv(s)
s &~ 2%

&0

i
szﬁ iés-ssx > Ségasv(sj

Since we are dealing with & finite sum we can reverse the double sunma-

tion sign:
P Foaxr=F Teat= JTxtTs,= Ix=v)
e &5 § G s e O :én
=l i
Hance

v{N) > E GSvES}
5ES

Thiz establishes necessity.

2, The condition is sufficient.

7 6.v(8) for all balenced families S and
g ®

corresponding welghts. Define & 2-person {-sum game 0z foliows.

Assume vi(H) >

Flayer

I chooses a player 1 in the game {N,v). Player II chooses &




-

copalition § din the game (N,v}, such that +w(§} » 0. The payoff

to Player-.I is:

n{i,s) =
0 otherwire
Aesertion: To order to prove tliat the conditiom is suffi-
cient, it is enough to prove that the minimax value of this Z2-person

geme is grester than or equal to 1.

Proof: If the minimax velus is greater then or egual to 1,

there is B mixed strategy x of Player I <thet yields at least 1,

oo matter which pure strategy & is chosen By Playsr II. That is,

1< Jonlie) = oy I
€N iE=s

for e21 S C N with +(8) > 0. Hence

i

vig) < x

)
i€s

for a1l 5 © N such that w{S) » 0. When vw(3) = 0, the ineguslity

holds since xi > 0 Tfor all 4. FHence

w(5) < ¥ xi
iEs

far a1l 5 C N. Tegether with the condition 'E x* = 1, this means
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thet x is in the core of the geme (N,v}), so that thet core is non-

empty. This establishes the mssertion.

So we wmust now prove that the PZ-person O-sum game has a minimax
value grester than or equal to 1. Suppose contrariwlse that the mini-
max yelue is less than 1; let it be (¢ < & < 1 {motice that £ * G,
sinee if Player I chooses e strictly positive probability for every
player, he will be guaranteed & roaitive paycffl, There iz then 8 mixed
strategy for Flayer II that guarantees thet the payoff to I will at
most be £. Let this mixed strotegy assign probability BS » {0 +o each
comlition in a family S with +(8) > ¢ for s8ll S €S, For each i,

we have

L T B
E > %-ﬂlshil,ﬁ} = Eés ;{—ST .
Ol
"o
]
=)
P2 Sés gvis)
=i

Let us define &g = BEfgv{E} for all. S € 8. Then we have

1= Z b3 .
~ gl 8
=i

In order to construct a balanced family of coslitions, define
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Consider the collection T consisting of $ =and all singletons {1}.

Thent for ail i,

Yiéo= Té, +8, =1 ,
EE']-S ﬁs 1
54 g4

1

so T is a balanced family with belancing weights {BE}. Hence by

assumption

} s.v(8) sv(m}
T

55 that, since w({i}) =0 for all i,

7 6EV{S} < v{N)

5

Bo
g
Z_S":V[N}-"l:
g &

oar
Je,<E<1
ﬁu

{we have eupposad £ < 1). But this result contradicts the faet that

16} iz o strategy for Pleyer II: we need .E 8, =1. lience
8 ez s ©




oo Ve may sum up some basic festures of the Shapley value and the
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+he minimex velues is greater than or egqual to 1, which, using the

ebove assertion, establishes suffleiency.

The following leads up to an exereise in the use of the Bondareva-

Shepley theorem.

%.15 Defipition: B8 is & winning coalition in & simple geme if
v{S)} = 1: a veto player in such a game is & player who is & member of

every winning coalition.

Exercise S5: Frove that a 0-1 normelized welghted majority game

has a non-empty core if and omly if there is at least one veto player.

Exercise 6: Find the core of a 0-1 normalized weighted malority

with p2z 1 weta players.

core as follows:

The Shapley value of g game is s single payoff vector. It

- e

is always group rational; in superaddltlve games 1t iz individually

[ I LR TP v b S TR T T RIS S L S e L B I T

vl i A L

raticnal but thls ig not necessarily 50, in general.

R et T e e e T L ST D e T

The core i & zet of payoffl vectors. It ie a subset of the =et

of imputations. It may be empty, and even when 1t is not the Bhapley

e, ey

value may not be & memher cf lt.

—— TR T DT
- T o Skt PR b
LIRSSt it i

Tntuitively the Shapley velue represents & ''reascnable com-

SRR Iy TR T ey

promise"”, whereas the core represents e set of payofl vooters which

. .
are in o certain sense "atable". There is no general relationship
LRIy

Tl = et
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between the twe, though for certein classes of games (not eonsidered
in these Lectures) s close relationship tan be esteblished.
f’r*ﬂ.r ¢y {} Lt

\.

Chapter 5: Market Games “"“wnhm_ _ e - mdu~="

[P

Let us now consider an economic applicatiom of the concepts we
have developed., The situvation we will describe ig that of a "market
game". In a market game, there is one consumption good, B production

goods and o players. Each player 1 has a production funetion

ui{xl,xe,...,xm}, dofined Tor all xj > 0 and with values in IH . The

guentity ul{xl,xe,...,xlj represents the amount of the single consump-

tion good that 1 can produce from inputs Each player

sXgn e s Xy
i &also has an endowment {&i,a;,...,a;} of production goods.

Fach coalition preduces as much of the consumption good as possible so

that
{1} v(&) = max { } u;{xi}: ) xl = ) a’ and x° >0 for all i}
iEsg i=3 iEs
i i |, . .
where { 2""’xg} and & is similarly defined.
5.1 Remark: If the u''s are continuous, then the above maximum is
attnined,

5.2 Definition: A funecbtion u ies ealled concave 1f its domain is

convex mnd for x and ¥ in the domein of w and all o in {0,1],

ufax + (1 - aly} > eu{x) + {1 - oluly) .

s S




e
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5.3 Definition: Aseume that the ui*s are concave and contioaous.

Then the game {(N,v) defined by (1) is called » market game,

5.4  Proposition {Shepley and Shubik [1968]) Every market game has

8 non-=npty core,

Proof: We will use the Bondareva-Shapley thecrem. Let 3 be a
balanced collertion of coalitions with corresponding welghts {ES}

We must prove that

I 8.v(s) < v(N)

Let wiB8) = E u?(x;} where x; is the point of the =zet
=)

{yi € Ei: ) yt o= ¥ pl} et which the function J w (¥} attains
ies i€8 - itzg

its maximwm. Define
i i . i

X o= Eésﬁsxs . . ,

34 ‘

{One can think of player i spending a fraction ES of his time in

conlition BS; xi is then his total input vector.} We can then prove

that {xi}fEH is a feasible allocation for N:

¥

xi & xl =
iéH ﬂéﬂ sés 88 séﬂ 5
g

i
=]

[

4 x

5 Iog L=

5 =8 5 &g

{Tir=—2

tl

i i i i i
6 Tate J JFsat= ] Jsa = Jalé o= Ta
sgs 5 iés F3 1€ ° &y £ © iél{ ses B i€
821 -
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(since } 8 =1 for all i). Pence
=5
831
= Tal
1SN S|

Moreoyer, the xl‘s are non-negative since they are sversges of non—
negative nmmmbers with positive waighis. 5o {xl}iEH i & feasible allo-

cation for N. Hence by the definition of v{N)

vy > Tt
=

. i .
Since u is & conceye function

Wty s 6Eui(x;}

=
=y

Hepoe

W) > § 7 8ut(x)

Y e

=Y
= Y6, } ui(xij = J §.v(5)}
/4 g5 5385 5 gg B

S0

I agv(s) < v(m
=5

So by the Pondareve-Shapley theoren the core iz pon-empty, which estab-

lishes the proposition.
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The converse of Propesition 5.k is felse——not every game with a
non-empty core is a market game. For example, the four-persen game
defined by v(1234) =2, v(8) =1 if |8[ =2 or 3, and ¥(8) =0
if [8] = 0 or 1, is not a market game, although (1/2,1/2,1/2,1/2)

is in the core.

5.5 Definition: Let ({N,v} be m geme, and T C H. The subgams
(T,VT] defined by T is the geme whose player set is T and whose

vorth function is defined by vT(s} = v(8} for al1 8 CT.

Obviously every subgame of & merket game is itself s market game,'

and so from Proposition 5.4 we cobtain

5.6 Corollary: Every subgsme of a market game has a non-empty corec.

The h-person game defined ebove has a subgame {defined by
T = {1,2,3}, say) with an empty core. This raises the questlon whether
every game, all of whose subgames have non-—emply epres, i 4 market

game, This is indeed the case; we have

5.7 Theorem (Shapley and Shubik [1969]): 4 necessary end suffiecient

condition for a game (N,v) to be & market gZame is that it and all of its

subgames have nop—empty cores.

Proof: We have already proved that the conditionm is necessary.
To prove thet the condition is sufficient, we comsider a game (N,v)
guch that it and all of 1ts subgsmes have non—emply cores. We will con-

struct s morket game such that 1ts wvalue function is precisely v.
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Define » market by % = n; gond 1 is the labor time of player i.

The epdowment of player i i1g defined by the i-ih unit vector of the

Fuelidean space K : et = SD,G,D,...,G,IPﬂ,...,G] (i.e. esch player

-

i

iz endowed with one wnit of his own labor time). The players have the

game production functiens, defined by

u{x} = ulx) = max { J aTv{T}:uT » 0 and TgmuTxT x}

{uT} A
Let

w{Z)} = max { E u{xijt E Ki = XS]
iEs k(=

{N,+) is, tihen, a market game; we will show that w(S) = v{8) for all

§ C N. By the definition of w{8},

w(8) < ulg)
=max { } a (T} ¢, > 0 and § agxn = Xa! “
{“T} TCN T T - TCH T 13
> v{5])

{teking g = 1, end og = f for mll T # 8). 5o we have proved that
w(8}) » v(s8}). In order to prove the reverse inequality, we are going

to usc the hypothesis that every subgame has e non-empty core. Ha

want to grove thet w(g) < v(8). We will first prove that w(s) < u[xS},

and then thet uw{xg} < v(8).
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Let the maximan in the definition of w by ettained at Xy

g2 that

i
(8) = {x)
w iésu %

We will show that [ u{xé} < uf ¥ x;} for a1l S < ¥, i.e. that u

€S

iz superadditive.

Aegertion: 1

a > 0, ulex} = aulx),

i€s

is homogepeous of degree 1

Proof:
ulax) = max { } uTv{T]:.uT > 0 and ) g
{uT} Ty <N
Gy
= max {a ] — V(T a
{uT} TCH TN
=amax { J Bow(T): 8,20 and ] 8
{BT} TN A
= auf{x)

{with Bp = uTKu}.

Assertion: wu

is a toncave function, i.e.

ulax + (1 - aly) » eu{x} + (1 - alufYJ-

Proof: Let

ulx) = Jaqv(T)

with EGTXT = x

s i-e. for =allL

Xp = ax}

HT

>0 and ] — Xp = x}

g = x)

for 11 1> a > O»




e

~Gl~

and

uly) = EﬂTv{TJ with EBTKT =y

By definition

wlex + (1 - e)y] > E[uuT + (1 - u}ﬂT]v(T} .

since
E{uaT + (1 - r::JBT]xT = ﬂEﬂTxT + (1 - H)EBTXT
s ax + (1 - aly
Hence

ulex + (1 -~ «dy) > afow(T) + (1 - a]EETv{T]

| %

culx) + {1 - ajuly)

Il

Fxercise T: Prove that the following is true for every con-

cave Tunctiom f En +~H =and for all m e 1:

2,3 7 7
Yoo & , n, =L=f(} ax}> a,f{x,)
+ i=1 2 oy 11T g v i

We deduce tle superadditivity of 1 from the two assertions

above;

j 1 i 301 1
alx)=n ¥ Fulxi) cn-u{] Txdenul]x
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Hence
és“-{x;] f '-l( E x;:' -
i i€5

ar

wis) < ulx ) .

by the definitions of w(S) and u{xs]. Lat us now prove that

U{XS} < v(8). We have

ulx.) = mex { ] a v{Thig, >0 , Crkm = Xa!
a {{!T}TCHT T - TéNTT 2

Let the maximum be z GTV{T}, and consider the subgames corrcsponding

to 5. B8ince E“TIT = Xgo ail the members of T of every feasille

collection are subsets of 8. Therefore if we censider each T &as n

coalition for the subgems,
logxy = 2

Trus the collection of T's is baleneed in the subgame, with balencing
walghts {uT}. So by the Bondareva-Shapley theorem applied to the sub-

gamE
Jagr(n) < v(s)
ar

u[xsj < v(g}
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Above it was esteblished that w{8) < u{xs], 50 we have

w(g)

It A

va}. This, together with the conclusion above that w(B) z v{5}

yields
v{3) = w(5) for 211 S8 CHN .
The initigl game (N,v} is then a market game {since (N,w} 4i8) and

this completes the proof of the theorem,

Chapter #: The wvop Nevmann-Morgenstern Solution

The "von Nemwmnnon-Morgenstern solution" was the first sclution
copeept to be studied {see von Neumann [1928]). It was later extensively
examined by von Nevmarmm and Morgenstern [1944], and by subéequent workers.
The ideas on which it iz founded are elesely related to those on which
the core is founded, and it will be introduced hefe an the bmsis of

these ideas, Throughout we will use x(8) to denote | xi.

165

€1 Definition: Let x snd Yy be payoff vectors, and let 5 be a

coalition. x dowminates ¥ wvie 8 {written x % y¥) il
b

sy forsll i in 8

and

x(s) < vig) .-

e

LLEIILALI AW B A
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x dominates y (written x » y) if there is sn S5 such that x »~y¥.
&

6.2 Lemma: An fmputetion ¥ 18 in the core if and only if it is

not deminated by any payoff vector.

Precf: Let y be in the core. If x >y, then v(8) > x{8}) » y(g].
B

But y(8) » v(8) since y is in the core. Thus we have a contradiction,
and there is ne x  which dominates y.
Conversely, anppose ¥ is an imputstion not in the core. Then

there ie an S such that y(5) < v(8). Define a peyoff vector x by

i, ¥(8) - y(8)

¥ = , if 1€ 5
i{ 5]
4] octhervise
Then x- > y. for all 1 €8 and
x(8) = y(8) + |g| PEL-HBL _ o(s)

8]

S0 x M0 ¥y. This proves the Lemms.
=1

6.3 lemma: Asgume that v is supersdditive. Then an impubatbion ¥

is in the core if end only if it iz not dominsted by any imputation.

Froof: The neaessity of the condition follows iﬁmediately from
Lemma 6.2 above.
For the sufficiency of the condition, let ¥ &and S be as in

the sufficiency proof of Lemma 6.2, Define a payoff vector x by

e e
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-

i V;B:_' - ﬂEl ‘ =
¥ + H if 1«5

v(N) - [v(s) + 4 wli)]
(1) + IN‘_‘SiﬁS £ i €S

Because of supersdditivity, viN) - [v(8) + J,v(i}] » ¢, s0 x is
i

individually rational; also ] x! = v(H), so x is an imputstion.
iEN

Finally, x(8) = v{5) and x » ¥, 230 the Lemma is proved.
5

Exercise 8: Show that without the sssumption of superadditivity

Lemms 6.3 is false.

The stability concept underlying the definition of the core could
be eriticized as being too strong. It does not zeem natural to exclude

a5 unstable a dominsted payoff vector when the dominating payoff wector

iz itoelf not stable. This suggests that we should focus our attention

on domination by stable imputationa.

A" Definition: A sot K of imputaticns is called a wvon Neumann-—

Morgenstern {N-M) solution {or simply = solution) of v if K is the

et of {fall Jimputations not dominated by any member of K.

6.5 Remark: K in the definition sbove mﬁy not be unigue and mey

not exist (even as the empty set).

6.6 Proposition: K 18 a selution of v if* and opnly if for sll

imputetions x and i

. e
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1. If %,y €K, then x does not dominate y. {Internal

conzistency. )
2. If y ¥ K, there is an x € K that dominates y. {Fxternsl

dominstion.)

Phe following notation allows the propositicn to be Btated more

compactly:
Dom x = the set of all peyaff vectors dominated by x;
Tom K = the set of all imputstions dominated by a member of K

.= L&EK Dom 3
X = the set of all Imputations.

Conditions 1 and 2 then become

1. ¥ < (X\Dem K}

2. KD (x\Dom X}
What the proposition says, then, ia that

¥ is & solution if and only if K = X\Dom K

The proof of the propesition is immedinte, using Definition 6.4,

(6 (Gt bl

6.7 Remark: 'The core is & subset of every N-M solution.

mamaiaarra

Let us determine the N-M solution for some simple games.

6.8 Example: Z2-person bargaining geme. We have N = {1,2}, v(N) =1,

and w(1) = v(2} = 0. We recall that the core (see L.7) iz the set of

all imputetions
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X = {{xl,xE : xl 2 0, 12 > 0, xl + x2 =1} .
gince the rcore 15 a subset of every N-M solution, if a seoliution exists
it ecan only be X. To prove that X is indeed & soluticn; we prove

thet Dom X = @#, so that X = X\bom X.

Assertion: Io any game, no imputation dominates ancther one

via & one-person ecalition.

Proof: (onsider a 0-1 normalized game (we can do so w.l.0.g.).

i

Suppose x > y. Bince 0 < x < w{i) = 0 and yi > 0, we must have

{i}
both x = 0 and xi > yl, which i= & contradicticn.
Su & one-person coalition can mnever dominate. Hence in the 2-

person bargaining game the only possible domination is via the coelifion

{1z}.

Assertion: In any game, no imputation dominstes another one

ria the coalifion i of all players.

Proof: Let x= &and ¥y be two impubations. Then x{H) = v{i)

and y{H) = v{N). But x =¥ = x{¥) > ¥{¥), =0 we have a contradiction.
N

Hence in the two-person bargaining game no iwmputation is domi-

nated, so that there is one and only cne seclution, nomely the set of all

imputations.

6.9 Example: 3-person majority game., In this game

¥=1{1,2,3}, v{N) = v{12) = {13} = w(23) = 1, and (i) =0 for sil i€ n..

e
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Two-dinenzional
simplex

(0,0,1)

{OslsD) 3 =0 {:i..,[],ﬂ}

We recall that the aet of imputetiens 1s the two-dimensional simplex,
éh-;m in the disgrams above. First consider which imputefions are domi-
nated by x. By the two assertions above, dominetion can only be via
the coalitions {12}, {23}, and {i3}. Assume ¥y is dominated by =x

via {12}. ‘Then

Xy, x >;.r2 , end x{12} z v(i2} =1 .
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Hlence any point in the area A of the diagram is Aominated in this
way (the "outside" sldes of A &are included, but the Minside" sides
are excluded). Uéing a symmetrical argument points in aress B and
¢ are dominated by x via the coalitions {13} and {23}. Fron
this it ecan be éeen that no single point can dominate all others, &0 that
no zingleton can constitute o N-¥ 2olution.
Tt can also be seen thet if X is & solution, then if X and
y are in K, the line joining x end ¥ must e parallel to one of

the sides of the trimngle of imputetions {otherwise ome point dominates

_the other). It appears, then, that either = line, or the vertlees of

an sppropriate triangle qualify as poseible solutions.
Consilder firet the vertices of a triangle. Lef them be a8, b

apd "¢ in the dingrem below, The shaded area consists of points
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dominated by &, b, or o. From this i% is clear that no such three
points cen comstitute s solution: there wlll alwsys Te points not
dominsted by any of ihem.

Consider now the aituaticn if the vertices a, b, end ¢ of the
triangle ars oriented as in the disgram below. Polnts in the shaded
ares avre dominated. So if a, b, and o are ag in the next diagram,

they will dominste all of X\{a,b,c}. Henee & solution is

K = 1{0,5:2),3,0,3),5.5,0))

:E: ! Ay
(0,0,1)
£
&
()
(/
jaﬂﬂﬂlﬂﬂl
IF/AMNY,
NI NN/
{ﬁ%ﬁﬁﬁg;é!;ﬁr1gﬁvh
V¥,
N X0
Y AN VAVAV AT O A
A S N lﬂ#ﬂ?ﬁﬁ;ﬁl

(0,1,0) ' (1,0,0)

{0,0,1)

(0,1,0) a {1,0,0)
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Now consider the possibility that e line segment parallel to
one of the sides of the triangle is a 3olution. An example is the

line joining d =and e in the diagram below. It csn be seen that

(0,0,1}

(0,1,0) _ (2,0,0)

for points on the line t¢ dominate all other imputations the set E

must be emphy: the line must be at lesst half way down the triengle.

TS

b

Hence any set

s T - R TR S TP T

' 1
Kl = {Exxl - #.— e,ck 0 L X 3 1 - el for 0 gex E

ig an N-M solution. By symmetry, the same is true of the sets

KE = {fE,X,l.— x - c}: L8 £x = 1 - ¢}
and
Kﬁ = {{1 ~x-c,e,x}i Gsx<1l=-c)

for 0O < ¢ < 1f2.

PP PP ST
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To sum up, there are two different types of solutions.

{1} The symmetric solution K = {(G,lKE,lz"E},{lz’E,U,lFE‘},{lf.Esle,ﬂ}}

Here two out of the three pleyers get together in a coalition and divide
the payoff eguslly between themselves; the three players are symmetric.

{2) Digeriminstery sclutions. Two pleyers get together, give an

amount less than helf to the third player, snd bargein over the remaining

payaff, Here one individual is estracized; i.e. excluded from the bar-
gaining pfuaess.

Two Features of thesze solutions are noteworthy:

{1} An N-M solution can be interpreted as & stable form of
organization for society. Here, two forms of organizetion in which the
same people are treated differently are both stable,

{2} The hehavior of the people involved in bergsining is quali-
tatively different in the two forms of organization. When the three
people are in symmetric positions and two get together, neither one will
settle for less vhan 1/2 einece each cen say: "If I.don't get my due
share, I will go along with the third player end get it from him." Iom
the discriminatory cese, the bergaining process is differsmt: by common

conzent the third player is ostroacized.

Let us now examine the N-M soluticn for & more general class of

majority gemes. -

6.10 Definition: A weighted majority geme with weights (w'} ey and
yucts ¢ is called strong if for all &, either & or S is wioning,

but not both.
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.11 Definition; A mipnimal winning coalition is & coriition S such

that no strict subaet of 8 is winnine.

£.12 Remark: Note that a given veighted majority game (M,v} does
not determine unique weights and qnota. For ingtance, [q; Wl,WE,WE]

= [5; 2,3,4] generates the seme gawe sz [2; 1,1,1] (nameiy the 3-

person majority game).

6,13 Definition: A representation of & welghted malority game (N,v)

is a zet of non-negative numbera {q; wl,wg,...,wp] guch that v({8) =1
if and only if z W > q.
k=1

6.1}  Definition: A weighted majority game is ecalled homopeneous if it
has a representatica in which I wh = g for all winimal winning cosli-

ph=2]
tions 5.

.15 Remark: A strong weighted majority geme may not be homogenecus.

Exercise 9@ OConsider the welghted majority game determined by ihe
representation [5; 2,2,2,1,1,11. {1,2,3} is a minimsl winning coali-
tion, but ite tobal weight © exceeds the guota 5. Frove that there is

no representation which makes this game homogenecus.

6,16 Theorem {von Neumann and Morgenstern [1944}): Consider a strong homo-

. . 1 n
weneous weighted majority game with a homopenecus represemtation [q; w ,....w ]

Let q = 1. For each mininal wirning coalition 5. define
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i W if i EEB
YS =
0 gthervise .

Let K = {ys: 8 is a minimal winning coslition}. %hen K 3is a

solution.

Proof: We first prove the internal consistency of X. Let ©

and T be minimal winning coalitions. Assume that

Yo i ¥ o
84T

U +will have to be a subset of 5 =since yg =0 for 1¥58. If U

0

is o proper subset of § then it is a lesing coslition, so v(U)

and hence

yé =0 for all i in U,

in which cade ¥g could nol dominate Yo vig U. Hepce I = 8.

Suppose now that T NS # . Let JET i 3. Then

i1 which cesa once ugain ¥ could not dominete Fpr Hence T N5 = §.
But since the game iz strong, two disjoint Wwinning coalitions cannot
axizt. Hence there is no U much that ¥g -~ Yo s and the set X is

I
internally consistent.
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We now prove that the external domination conditicon is satisfied.
Tet =z bé any imputation. ILet T De the set of all 1 such that
i i

v > gz, If T ie winning, then T has & minimal winning subset 3

and y,» z, with y € K. If T is losing, then INT is winning
5

(thT ={1: w < z*}}, Let § be & minimal winning subset of T,

Then

lwg=FTwe< T we §ote T e Jot=32b=1
€8 T HE€MT T EmTr T ERT = =N

{using the fmet that the game is lmmogeneuus]. Ho E z- = 0 and
W for 1€ 8
a fer 1& 5 .
We conclude that 2z = yg. Hence either 2 & K or there exists Y E X

such that y.. % z. Henee the condition of external domination is satisfied.
B
(=]

This completes the proof of the fheorem.

The sciluticn im this case can be interpreted in the following woy:
a minimal winoing coalition forms ond its members divide the payoff

according to the homogenecus weights.
6,17 Exomple: Market with one buyer and two sellers. In this game
N=1{1,2,3} , w{N)=v(12)=+v(13)=1 ,

and

e et e oot o 8 e enea Tt AT RO A
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{1,0,0) {1,0,0)
core of game

points dominate points dominated ¥
Py x via wy x via {1,2}
{-133} x aL
W\\\\( WW”
{0,0,1} (0,1,0} (0,0,1} (0,3,0)
Diggram 1 Diagram =
{1,0,0)
(0,0,2) (0.1,0)
Diagram 3

viz23) = v{i} = v{2) = v(3) = 0

Sinece v(23) = 0, and because of the assertions made in Exemple 6.8, domi-
nation can only be vla the coslitions {2,2} and {1,3}. Alsoc, we know
that the core of this game is {{1,0,0}} {see Example h4.9}, and that this
is conteired in every sclution. Onece again the set of imputaticns is

represented by the triangle shown in Disgram 1 (it hes been re-oriented
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{1,0,0) (1,0,0)
{0,0,1} (0,1,0) (0,0,1) glly  {0,2,0)
1035
Diagram U Diggram 5
{1,0,0)
(0,0,1) T (0,1,0)
Diagram b

for elegance in presecntetion). The set of imputations domineted by the
imputation x is shaded. In Diagram 2 the set of imputations dominated
by the imputations x and y is shaded. From this it can be seen thet

in order to satisfy the conditien of externalldmmination one needs every

point on some curve from the point (1,0,0) +to the holtom of the triangle.

At the same time, in order to satisfy the conditiocn ofjinternel consis-

teney, it mpst be the case that all points on the curve below any given

point lie between the two straight lines through = parallel to the

PR
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sloping sides of the trlangle, Thua the curve in Disgram 3 is a solu-
tion, while the curve in Diegrem b is not.

It iz possible to give an interpretation to these solutions.
‘First consider the case given in Disgram 5. Here one can argue that
the two gellers form & cartel, bargaining as = single vwait with the
tuyers, end splitting the payoff they extract from him equally. Cases
in which the solution is curvilinear can be interpreted as a situa-
tion where the sellers form a cartel, but split their payoff according
to some nonlinear scheme. For example, the solution in Disgram &
representé a éituﬂtiﬂn where players 2 and 3 split the payolff to
their cartel equally if it is less than some mumber, with all of any
excess mhove this guantity going to pleyer 2. The restrietion on
the shape of & curve which is a aolution means, in this interpretation,

that the payoffs to playeras 2 and 3 must cach be nondecreasing in

the payoff to the cartel.

In thie example, then, one can interpret the salutions as pre-

gy

dicting the formation of & cartel. We will now ceonsider a whole elaas

of games for which some sort of cartelization is predieted. First,

aome definitions which will be used are presented.

6.18 Definitionm: A permutstion of the pleyers is & one-one mapping

# fom. N to N,

6.10 Definitlon: A set X of payoff vecters is aymmetric if for each

iz € K and each permutstien n of the pleyers, wx € K whers

{rx}* = x“(i) for g1l 1 € N.
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6.20 Defigition: An imputation x € ' is monctonic if X'z x

for &1} 1 = l,...,n - 1.

§.21 [Exewple: (nk) games. These games are defined by |%] =n =na

1 ir |8 2 x
v(8) ={ -

8] otherwise ,

with ¥ 2 {n + 1)/2. (Tt can be seen that &n {n,k} game is & non-
strong weighted majority geme.) We will, for simplicity, econcentrate
on the game for which n =10 and k= 8; our considerations generalize

without difficulty to the general case {see Bott {1953]).
Assertion: A soiution of the {10,8) game is given by

K={x: m= al,al,al,ag,ag,ae,aB,EB,nB,G} for scme W,

o e R R e e m e ] AT

= [0,1) for i=1,2,3, and 3 f ot = 1} . :
1=l :
Froof: B8inca X I1s symmeiric, it contains & monotonie impu—
tation and we can confine our abtention to such imputations. Let x
and y be monotonic imputetions. Then it is clear that in this casze
¥ dominates ¥y if and only if there exists a minimal winning coalition
8§ such that xi > yi for g1l i € 8. Hence there is some permutation
of x vwhich dominmtes ¥y AT and only if the first eight pembers of x

ars larger respectively than the last eight members of ¥.




{a)

in K;

wa have to find en x Ino

guch & ¥

i

x

in order

to show thet ¥

1

Since v F

Then

¢lesrly contained in K, and x

copndition

= 3y3 + 3y5 + 3y + e = Eyl

-3

"

Faternal Domipation:

K such that

it+2

E S :Bl

for 1i=1,..:

is shown in the disgram gbove.

Let ¥ Dbe a monotonic imputation not

Ey the remark above,

ie dominated by en imputation in K. Let

10

I{y ~y3}+z(y -y1+z{y Fleyo .

i=] 1-T

K, & » 0. Let

(7 +Ey° + £ ¥3+E:f6+55 r 1837+ 2 ¥+ 57 + 50
g 9’ 9’ ¥ 9’ g? Ele 9’ g*

2 =

i it+e
=¥

of external dominaticon is satisfled,

for i =1,...

=1, s0 x iz an impulation; 1t is

8. Hence the
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(b) Internel Consistency: Suppose x and y sare monotonic

imputﬂtiﬁns in ¥ and some permutation of x  dominetes y. TFhen

xi > yi+2 fer 4 =1,...,8. But then xl > 33, xh P yé end xT > y?a

s0 thot x; > yl, xﬁ > yh, and xT B yT, in which case Ix' » Eyl.
Hence x cannct be en imputatien, and this contradiction establishes

internsl conzistency.

The proof of the masertion is now complete.

Tt ean in fact be shown that K is the unique symmetric solution

of the (10,8) game {see Bott [1953]).
6.22 Dofinition: In & simple game 5§ is blocking 1T M5 is losing.

Tn the zbove example an interpretation is that the players get
together in minimsl bBlocking conditions. in sﬁrung welghted majority
games it was found above (Theorem 6.16) that the solution predicted the
forwation of minime]l winning coalitions. However, in such gsmes =
coalition is minimel winning 1f and only_if it i3 blocking, =co that
Example &.21 indicates that the significani aspect of these coalitions

i6, in fuet, thet they are minimal blocking.

Chepter T: Pargsiniog Bels

7.1 Example: Congider the game (N,v} where

H=1{1,2,3} , v{i})=0 forall i ,

v{12) = v(13) = v{123) =1 , und v{23) = é-

LA I L A L I R A AT e A e mem e faemn




While 2 and 3 ere in sywmetdrie positions in this geme, if appears

fhat 1 is in A stronger posltion. Two problems can be consldered: whet
coalitions will formf:; and how will the members of the cosliticns soc formed
divide their worth among themselves? There is no uniguely "correct' way
of dealing with these problems, but the "Bargsining Set" represents one
approéfh to the second problem, teking the coalitions which form as given.
Consider the case where 1 end 2 get together in a coalition. Suppose
that they are conmsidering the payoff vector (2/3,1/3,0}. FPlayer 1 can

say that this is oot satisf&ctqry aingce he could pet together with player 3
and establish the payorf vector {5/6,0,1/6}, vhich would benefit both
himself and player 3. But pleyer 2 cen reply that he could alsc offer 1/6
to player 3, establishing the payoff vector {0,1/3,1/6), where he 1s as well
off ns he was before, snd 3 ie as well off as he would be in player 1%
rroposed devisting payoff vector. However, player 1 could propose esteblishing
(0.6.0,0.2) together with player 3, so that if player 2 were to give 3

as much as he gets in this payoff vector he would have to get less himself
than he did in the original payoff vector which was being considered:

v{23) = 1/2, so the most 2 could get if he gave 0.2 to player 3,

would be 0.3, while originelly he got 1/3. In this way the superior
Mstrength”" of player 1 is revesled, and he might suggest that {0.7,0.3,0)
represents a ressonable split of the proeeeds between himself and pleyer 2.
But exactly as ebove, 1 could threaten with (0.7L,0,0.28), for exasmple,
which 2 could not mateh., So it appemrs thet player 1 will receive an
2VeEn lﬁrger payoff. Consider, then, the payoff vector (0.8,0.2,0) as

a candidate for agreement Tetween 1 and 2. Io this case it is possible
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for pleyer 2 to thresten with {0,1/4,1/h), a threat which player 1 i=
uneble t01mntch, since if he gives 32 at least 1/h, at most 3/%

{< 0.8) will be left for himself. Consider, however, the payoff vector
(3/4,1/4,0): if player 1 threatems to Join with 3, at the same time
ineressing his payoff from 3/4, he will have to give 3 at most 17k,
while player 2 cBn &lways counter such a move by -threatening to Join with
3, giving him 1/% while meinteining his own payoff., Similarly, if player
2 threatens to join with 3, and at the Zame time increases his payoff,
then he can give 3 at most 1/L, while player 1 can always counter such
s move by threatening to join with 3, giving him 1/k, and maintaining
his own payoff at 3/L. In this way neither 1 nor 2 can chject in a
convineing way to the payoff vector fth,lfh,D], and the arguments above
indicate thet this is the only payoff veetor for which this is so (for the
grouping of players wnder congideration): 1% is, in fﬁét, the unigue

member of the "Bargaining Sct" in the case where players 1 and 2 get together

-4n a coalition.

The arguments used above are gimilar to those used when the guestisn
of whether & peyofi vector Is in the core is being considered; but there,
only the original threats to deviate are consldered; the reasoning behind
the "Bargsining Set" poes beneath the surface of this sort of argument and
coneiders the posaibility that thrests by some players are "eounterbalzneed"
by threats from other players. Thus, the core is the set of payoff vectors
to vhich there iz no objection, while the "Bargaining Set" is the set of
payoff vectors to which there is no Justified objection. We can pow

define these notions precisely.




7.2 Definltion: A eoslition structure is s partition B = {Bl’BE""’Bk}

-
td

il

=

of the set N of players {i.e. Ei ﬁ'BJ =f for i# ) and i
i

fl
el

T.3 Definition: Xg = {x EEH: J-:{Ej_} = vEBiJ for i =1,....,k and

xi > v({i}} for a2l i €N}.

"

T.h Bemurk: fThe coundition x{Bi] = v(Bi] for i = 1,....k means that
the totel worth of each coalition Bi is completely divided up between
the members of the coalition, and xI > v{{i}) 1is the indlviduel ratio-

nality condition. In the example above, B = {12,3}; another example

iz B = {¥}, in vhich case KE = X{H} = {x € Eﬂ:xfﬂ} = v(N}] and

. > v{{s}) for 1€ N}. Thus Xk colncides with the set of imputations.

N}

7.5 Definition: OCiven a geme (N,v}, & coalition structure B, s payeff

vector x € Xz, & set B €8 and tvo members i and § of B, an
objection of 1 against J ponsists of A et 5 containing 1 Dbut not

B

j, and & point ¥ € E° such that yl > xi, yﬂ zx  for all & €3, and

y(B8) z vis}.

7.6 Remark: The interpretation is that 1 gets together with a group
of pleyers not including J and realizes a payoff vector in which he
obtains more than he is getting at present, while the other members of

the group get at least as much az they are et present getting.

T.7 Pefinition: A countercbjection te ¥y by ] consists of a set
J J

T rontaining ] but not i, & point z & E1II such that g° > x*,

o > < for all % €T, 2 > v¥ forall fLe€sNT and (1) 5 w{(T).
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An objection is Justified if there is no counterobjection to 1%. The payoff

veector x is In the Bargaining Set M = M{v,B} if there is mo justified

oblection to it.

Thus,'iﬁ the example above, M(v, {12,3}) = {{3/k,1/4,0)}. An
important question iz whether the Bargaining Set is nonempty for any B
when Xp £ f. Peleg [1963] and [1967] solved the problem originally, usiﬁg
s fixed point argument. Maschler and Peleg [1966] later found a completely
different algebralc existence proof, and later still Sehmeidler [1969)
devized g still sispler proof, which is followed here. Befors that is

prescnted, consider another cxanple.

7.8 Expmple: Conslder the weighted majority game [3; 2,1,1,1] (i.e.

VES} ={1 if 'H{S} > 3

1.2 3 4. _
0 othorwise where (w v w %} ={2,12,1,1)]. Suppose the

ecoalition structure is B = {12,3,4}. It isg eclear that every point in
the Bargaining Set will be of the form fer,1 = 2,0,0), Oblections of
.1 sre of the Torm (a + £.0,1 - & - e,0}, and the smaller ¢, the betier
they are {i.e. the more difficult fo countercblect to). For player 2 to
be able to cowntercbject he must join with 3 and U, give himself

1 - «, and have at least 1 - o - € left over Lo give to player 3

{he need give player % nothing, since that is what he is getiing at

presept). I.e. it must be the case that
vi2ak} - (1 - ) 22 ~o -« for all € >0 ,

or

1
M3

1-31+azxl-a-¢e for gll e >0 , ar o
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Wow consider an objectlon by 2. If he objects with (0,1 -o-e,a-¢,
player 1 can easily countervobject by getting together with ; a "good" oh)ee -
tion by 2 is (0,1 « o - g {a - e)/2,(a - €}/2). Then player 1 can
eounterablect if w{13) -~ = L {e - e)/2 for gl £ > 0 {(he only has to
gat together with one player to obtain a worth of 1), or if 1-a: (e~-e)f2
for all e > 0O, cf,if a 2f3, This exhausts the possibilities for objection
so there are no justified oblectiens to {a,l - o,0,0) if « & [1/2,2/3].

Hence the Bargaining Bet is M{v,{12,3,k}) = {({n,1 - u,D,G}}l32§ﬂ§2;3+

Exercige 10: Find M{v, {123l}} for the weighted majority game

[3; 2,1,1,1].
Exercise 11: Find M{v, {123}} for the game defined in Exawple 7.1.

Now, instead of conzidering the details of the procedure invelved
in establishing whether or not a payoff vector is in the Bargaining Set,

one could desl with s "rough" messure of the "strength” of a player {his
ability to object to a payoff vector x, or to counterobject to an

objection to x}, as follows:

T.9 Definition: wv(8) - x{8) is the excess of the coalition B,
Given W, B, B €B,1i snd J In B, 8 Di,and jE€S,

sij(x} = max {v(3) - x(8): 8§ 2i and 3 P 4} is the

maximm excess of I ageinst .

7.10 Definition: The Kernel, K, {given v s&nd B} is the set of all

payoff vectors x £ IE such that for all B, cEF,and i and J 1in Bk’
J -

either s;, g8y oF = v({3}).
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T.11 EHemerk: x will be in the Kernel if for sell I and Jj elther

L.

Eij Sji — 4d,e., 1i's strength vis-a-vis j 1is not greater than j's

strength vis—a-visa 1 —— or it is greater, but j 1is at his perseonal

minimom in any case, s0 that 1 cannot convinecingly suggest that Jj's

rayoff be reduced.

7.12  Theorem (Daviz and Maschler [1965]): %he Kermel is a subset of the

Bargaining Set.

Proof: Let x< Kermel. Let 1, J € Ek B and let ¥y, 5 be :
an cbjection of 1 against j. Then ¥(8) £ v(5), and from the definitiem '
of 25 v{8) - x(8) = Biqe Sc:

{a} If ¥ = v{{j}), then j can countercbject by himself-—-

ie. (0,...,0,v({31),0,...,0},{]} ie & countercbiecticn to ¥ by J.

(b) Otherwise x% » v{{3}) =ana iy 25,52 v(8} - x(B); but

max {v(8) - x(8);8 235, 8 P i}, so there existse T with J €T,

11l

...'ji

i €10, such that v(T) - x{T) > v(8} - x{8). Also, v(8) - x(8) 2 y{8} - x({8)
Trom the gbove. 8o there exists T such that (T} - x(T) 2 y(8) - x(8),
or w{T) z y(8} + x(T} - xf{s) = ¥(8) - x(5) + x(T\8} + x{T N 8).

mut  y{(8) - x(8) 2 ¥(sT) - x(8NT) =ince y{S} » x[8). Eo

w(T) » y{8 N T} + x(T\S). Hence 3} can give to everyone in T N B

at least as much as they get in ¥y, a0d Lo those in TS at least as

much as they get in x. Hence ] can counteroblect.

Henee in all cases ] can countercblect to amy objection of i —-
2o any peint in the Kernel is cortainly in the Bargainlpng Set. 5o the

theorem is proved.
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713 Example: Let us compule the Kernel for the coslition strueture
B = {12,3,4} in the case of the weighted majority game considered above
{[3: 2,1,1,11). We know that the Bargeining Set M{v,{12,3.4}) =

{{e,1 - e¢,0,0)] The Kernel K is o subset of M. When does

1/2ga52/3
an imputstion x = {a,l - 2,0,0} belong to the Kernelt? We have to

1
1 -, w1y - =x{14} =21 - a, and (234} - x{13L) = 1 - a. Hence

(x}

compute le{x] and 4, (%), We know v{1) - x{1) = ~u, v{13) -x{13)=

max {v(8) - x{8}:5 31, 5 23} =1 - a. In the same way,

12

I

EEl{x} o, Hence one possible point in the Kerpel is an x such that

ElE{x} = SEl{x}, which leads to¢ o = 12, It is the only point since the
pondition xj = v{{j}] leads to two imputations (0,1,0,0} . and (1,0,0,0}

outside the Bargeining Set, and a fortiori outside the Kernel. Se

¥ = {(1/2,1/2,0,0})}. Note that this point is in no sense the "ecenter” of
the Bargaining Set, and that, in particular, the advantage of player 1

over player 2, which is reflected in the Bargalning Set, does not show

up in the Kernel.

The concept of excess ywes iwmpliecit in the definition of the
Bargaeinitg Set, and explicit in the definitdon of the Kermel. In wolh
definitions, however, there is the idea of an wnderlying specific bar-
gaining process between agents 1 and J§,. We are golng to introduce a
nev solution concept, the Nuclealus, which abandons the idea of dielogue
between i &nd |} &nd for which the concept of excess, &S 4 meoasure
of chjecting power, is central, Let us consider a game (H,v} with =
eoalition structure B .Fbr B given x € KE there exist 2" excéssas

{v(8) - x(8)}gq- Oiven X, let ue index the coalitions S C N so that
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v(s)) - x(8)} » vi{8,) - x(8,) 2 ... 2 v{SQH} - xfsgn}l .

and et us define e{x}:=(v{sl}-vx{51}, VESE}-nx(SEL---,v{EEn}-xESEHJ}E E

Let Bi be the i-th ecoordinate of @.

7.1k Definition: Let E' be a Tuclidesn space, and x and ¥ two

pointe in E'. We define the lexicographie order 7 on E° in the

following way: X r if There exlsts i such that XJ = yJ for all

J «i and X, *¥ie X is then seid to be lexicographically greater than

7.15 Defigition: For a game {N,v} and for a given coalition structure
B, the Nueleolus Nufl,v,B) is the set of all x in 'XE sueh that there
isnoe ¥ in *g with 8(x) 3z 6{y). Henmce = point in the Muclectus is

a lexicographlic minimen of & over XB.

7.16 HRemark: The Nucleolus may be interpreted in the folloving way:

the excess messzures the "dissstisTaction" of a ccoalition O with the pro-

posed accomnodation x; v(8) -~ x(8) 1s the difference between what
the comlition eould get alone and what it would get if the accommodation
were actwally implemented. B reprezents a given structure of society

t

any payoff veetor x in Xp fully Ugptisfies" any coalition in B. If

we think of the loudness of §'s complaint against x as proportional
to its dissatisfaction, the Nueleclus mey be considered as the result
of the follewing process: the "judee" (or the "government™) minimizes

the loudest complaint; subject to achicving this, he ninimlzes the

2

Tl
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aecond loudest eomplaint; and so forth. Then the FNucleolus is the set
of points &t which the overall loudness of cowplaints is & minimum {in
the lexicogrephic gense), given the structure of zociety. The ides af
individnal bargaining, egsential in the eoncepts of the Kerpel and the

Bargaining Set, is not present here.

How, we want to prove the nonemptiness of the Bargaining Set. We
will prove that the Hucleolus is nonempty and that the Nuclsolus is &

subset of the Bargeining Set.

7.17T Theorem (Schmeidler {196¢]): The Nucleclus Nu(H,v,B) 1is nonempty

(if Xg is nonempty).

Praaf: First we establish the féllmring.

Lemma - Schueidler [16691): Let Ty afpae v sfy be r continuous

funetions en fome space. For a givem x, define :'Lkl:x} for k = 1,...,.r

such that fil(x}tx] z fieijfx} 2 -z fi}.:{x}{xl} Zover 2 fir{x}{x'.,'

Then fi (x]{x} ie a continumons function of x for all k = 1,...,r.
k

Proof: filfx}{x} = max [flfx],f {x},-..,fr'[x}]- Hence fil{x}fx}

15 continuous, being the maximum of & finite number of comtinuous funetions.

fiE{x}[x} = min {mex [fE{x),fE(x] yh s ,fr{xll] , M8 [fllfx} ,f3{:«'} yoan ,fr(x}] yesns

max [f,{x),f (x}, .. ()]}

BD fi (x){x} is the minimum of r functions which ere continuous, each
2

being the maximum of r - 1 coontinucus function; henee it is continuous.
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Similarly, I, (x}(x} is continuous for k = 1,...,n. This proves the
k

lenma.

Hew we have the following.
{e]) ﬂlfx} is continuous and XB ie a compact 2=et (since it

is defined by a finite number of weak inequalities). Let

Ly = min {Hl{x}:x = HB} and Xl = {x & Kﬁzﬂlfx] = ﬁl] .

Then Xi is nonemphy.

{b) Eg{x) is continuons by the Lemma above, X, 1is elosed, being

1

the inverse image of a closed set {r} under s continuous fonction; it

is compact, being a closcd subset of a compact set. 8o, letting

¢, =min {0(x)x €} and X, = {x € Xre,(x) = g}

KE is seen te be ponempty.

(e} Similarly for i = 3,...,2%, Di(x} is continuous. Let

]
=
1]

min {Bi{xjtx = KE} and X, = {x & Ki_l:ﬁi{x} = ;i}

Then, as above, if X1 # ¢, X, # f. So by induction, X5 £ § for all

i= l,...,En. So Mu =X is nonempty, and the theorem i3 true.
n
2

7.18  fTheoren (Schoeidler [196%2)): The Mucleoclus Mu is a subsst of

the Kernel X.
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Proof: Let x € Nu. BSuppose x & K. Then there exist i

Ji(x} end x> v({]}).

Let p and 4 he the smallest indices for whieh

end J in B € B8 such that siJ{x} > 8

Eij':"} = v{EP] - x(SP} and EJi(xl = v{Sq} - xfﬂq}

. _ - i € g8 i&E5 ,
Then V{SP} x(EP} >'Y{Sq] x{Sq] fand i EP, i€ pi L & a

JE Eq}. Since xJ > ¥({j}) there exista ¢ > 0 =uch that ¥ is in

HE vhere

i1

; i + - +
¥ = {xl,...,x X E,xi 1,...,:{‘ji 1,xj J+L &

— XY T e gE

For r© <1, xfﬁr} = y{Sr} heranse either both i aﬁd J &are in
8, or neither i mor } isin 8. {If not, the condition EiJ{x) =
V{SP] - X{SPi would be contradicted,) Hence Br{xJ = Er{y)q

For r =3, VfSP] - F(SP} = v{SP} - x{EP} - &. Hence for e
sufficiently small Ep{x} > Ep{y}. 8o, finally, there existz ¥y in X
such that €{x} > e{y). This contredicts the fact that x is in the

Rueleolus, and the proof of the theorem iz complete.

T.19 Hemark: Theorems T.12, 7.17, and 7.18 imply that the Bargaining

Bet is nonempty for any coalition structure B (s0 long &s IE £ Bl

The Hurleolus has meny other interesting properties, among which

are the following, which will not be proved here.

T.20 Theorem (Schmeidlsr [1968])): The Bucleclus conteins only one peint.

T.21. Theorem (Kohlberg [1971l] and Schmeidler [1963]): The Nucleolus is

g contipuons funetion of .

T R
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7.22 Remark: HNeither the Kernel mor the Bargeining Set is necessarily

a continuous function of v [see Btearns [1968]).

7.03  Theorem {Peleg {1968]): Far B = {W}, the Nucleolus of a homo-

genecus strong weighted majordity game consists of the normalized homogs-

necns welghts.

The FKernel has the following interesting property:

7.2k  Theorem (Maschler and Peleg [1966]1}: or B = {N}, if the Kernel

——

and the core are nonempty, then the intersection of the Kernel ani the core

is nopempty.

Moreover, & point in the Kernel represents an exact compromize within
the core between s peir of players. More precisely, let x = {xl,...,xn}
be in the core. The set [y yk=xk for k # i, k # j and y{¥W}==x(W)}
is a line. The intcrsection of this set with the core is a segment. A
point belongs to the intersection of the Kernel and the core if and only

if it iz the midpoint of all such {g} segments, for come X in the core.

Chepter 8: Repeated Qames

When a gams is repested many times, it seems that some sort of
"sopperstive"” behavior might be induced: if a player deviates tfrom & par-
ticunlar strategy &t some point in erder to incresase his own payoff, the
other players mey be able to act in such o way that he 15 penalized In
every subsequent pley of the game. Te formalize these ideas, let G be

a game in strategic form (see Defimition 2.3}, The gupergame G¥ of G
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ia then the game each pluy of which conaists of an infinite sequence of

plays of (. One might then expect that the cutcomes in G¥ geperated

by nomncooperative soluticn concepts f4.2. opnes in which it is assumed that

contracta cammot be enforced) are related to the outcomes in ¢  generated

by cooperative szcluticn concepts {where it is assumed that contracte can

be enforced)., To examine this guestion, use the following notations for G:
f1) ®=1{1,...,n} i3 the set of players,

1 {3 the (finite) set of strategies of player ij; & is &n

element of Ei and & = (UI,UE,...,UH) e » izt

1N
{3) h: &=+ EN is the wector of players' payoff functions.

(2} I

1

L, and
The player set for G¥ is also N = {1,...,n}; the strategy sets
and payoff functions ars defined below.

8.1 Definition: A pure strategy in C* (or a pure super-strategy] for
i i

player i is e gequence of functlons f;,fg,... where fk: ZXEX .., XTI,

k-1
8.2 Repark: Ao essumphtion implicit in the definition is that at the
k-th play each player knows the strategies which were used by the other
players in the k - 1 previous pleys. This iz information vwhich i3 not
necessarily revealed by the outeome at each play of the game, and so the
assumpticon is & strong one. However, 1t is made merely for convenience

here, and weaker ascumptions are sufficient to demonstrate mauy of the

resuits.

Now, one might consider defining mixed strategies in G*  az before.
However, & difficulty arises. Consider those pure strategies of player 1

in G* which are segquences of conztant funections fi. Foar esch k, the
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aet of fi had the cardinality of Ei, so that the set of a2ll such pure
strategies, being the Cartesian product of denumerably many coplies of Ei,

has the cardinality of the continuum. Hence defining mixed ztretegles as
probability distributions as before would not be straightforward. For this
reason we will think of a mixed strategy as a random devies for choosing a
pure strategy: {t will te a random varieble —- a functien from a samplc space
into the space of pure strategies. Thus, for each B C W let ﬂs be &
Samplc Space. {Thiz space has to allow sufficient randomization possibilities,
which ie the ease If it i= a ecpy of ([0,11.8B,1}, where B is the set of
Porel subsets of [0.1] and XA is Lebesgue measure; cach coalition can

then randomize independently of every other coalitien.) a° is the lottery

which the coalition § .can cbserve, on which it can haze its randomizotion.

Define
ot = x2® ema o= xa® .
8=i oCn
) . 3 i 8
et weE$ and let " be the projection of w onto f°. Then w = {w }SEﬁ

iz the informatieon availeble to player i,

.3 Tefinition: A ropdomized super-strategy of i is & sequence F'oof
functions f- with £-5 (B X E X ... x L% ® = E,
k x K - 1

8.4 Remark: MNote that the sample space at is not.indexed bty the serisl

nupber k of the play. This means that the randomization ig based only on
- the realization mi in ﬂi; this allews independent randomization at each

play k of the game since {10,11,8,3) ic isomorphic to the Cartesian

product of denumerably many coples of itself.
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Now let an n-tuple F = {Fl,...,Fp) of randomized super-strategies

be given. Deafine m sequence ﬂl,ue,..- of n-tuplee of randomized atrategie

in G &8s followa:
o,(w) = (Frluh) hta®) . )
and

g {w) = {fi(ffl(m} srens@ 5la) R RACHT N ) o))

for k =2,3,... .

Define a seguence of random payoffs by

n

(o, (w}}

()

and Iet

E(EE} (whers E 1is the expectation operator)

H (F)

IH
One might then consider taking the expected average payoff 1im ) Hk{F]Hm
wre k=1
&5 the payoff in the supergame. However, this limit does not always exist.
In fact, there is no need to define a peyoff function for G*: we can merely

define equilibrivm points in the following ways.

5.5 Definition: An n-tuple F, of randomized super-strategies is an

upper equilibrium pelnt in G* 1If;

m
1. .} Iﬁ*{m}fm converges to a constant L{F,] with probability
k=1
one (L(F,) 1is referred to as the payoff to the upper e.p.}, and
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i
.2, for each 1 &nd each randemized super-strategy F of i

there is no ¢ * 0 such that Tor infiniteiy many m

i

m L . -
E {EFw!F {mjjl . Ll{F*} + ¢ with positive probebility .
=i |

8.6 Definition: 4&n n-tuple P, of rendomized super-strategies is a

lower equilibrium point in G* If:
m .
1.} hi*{m)fm sonverges to a constant L(F,) with probability
k=17
one (L{Fg) is referred to as the payoff to the lower e.p.), and

2, for each i and each randomized super-strategy T of i

there is no € » {1 such that for al) but Tinitely many m
™ i . .
2 ¥ (h£*1F {wh)* > LY(P,) + ¢ with probobility one .
m, b

8.7 Remark: An upper e.p. is clearly a lower e.p., but the reverse i=
not necessarily true. However, we will estsblish below (Theorem 8.14) that
the set of payoffs to upper e.p.'s coinmides with the set of payofis to

lower e.p.'s.

8.8 Remark: An upper e.p. corresponds to an "optimistic” outlook by each

pleyer: ¥ will not be an upper e.p. if player 1 has & strategy F.  for

iD
o FIFG 5

which there i= an e » {1 such that for Infinitely many m, E {yk (w})™/m

=1

> LliF*] + ¢ with positive probability, yet such a deviation might benefit
player 1 oniy very infreguently, Similarly, a lower e.p. corresponds to

a "pessimistic’ outleok hy each pleyer.

PR




oy
We will now formalire two notions of equilibrium vhich consider devi-
ations by sete of pleyers.

B.g Definition: 4An n-tuple F, of randomized super-strategies is an

upper etrong egquilibrium point in G¥ if:

m
1. |} %i*{m}fm converges to a constant L{F,} with probability one,
k=1
and 2. there is ne coalliion &, no |S|-tuple of randomized super—
strategies FS of §, andno e » O such that for infinitely many m for

gl i in 8
m = . .
=3 ) {EE*EF ()} > Ll{F*) + € with positive probability
M y=1

B.10 Tefinition: inp-tuple F, of randomized super-strategies ie &

lewer streng equilibrium point in G%®  if:

It
1. ) hE*{m}fm converges to a constant L(F,) with probability one,
k=17
and 2. there is no ccalition 8§, no |S{-tuple of randomized super—
strategies Fs of &, and no € > 0, such that for all but finitely many

m forell i in S

m bai
%: ¥ {EE*IF {mj}i > Li{F*] + & with probability one
=1

Before exmmining the equilibrium payoffs in G¥, we will examine the
set of feasible payoff vectors in G. Iet ¢ €1I; then h{u) € E' is the

vector of payoffs to pleyers in G, Iet

P={hiv): o €i) gnd D = convex hull of P

Aoy payoff in D can be attained by the plgyers using Jointly mixed strategies.

e e s S LT BT
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8.11 Exsample: Consider the gawe G defined in the table below. We have

P = 1(1,0),(0,1),(0,0)} mnd D=1{x€E: x* ¢x* <1, x 20 amd x 2z 0,
as shown in the diagram. Those points atteipable by independent rendomize-
tion comprise the set A = {{xl,xgl: xl = afi, x2 = (1 - )1 ~8), a £[0,1]

and B € [0,1]1}; in order to attain all points in D the two players will

have to correlate their strategies. For exsmple, to ettain the payoff veclor
{1/2,1/2), +they will have to play T and L together with probsbility 1/2,

and B and R together with probability 1/2.

8.12 Definition: The minimsx payoff to player 1 in G 1is

d° = min max E[hi(u,T]] .
T g -

where g (resp. 1} runs over the randomized strategies of 1 {resp.

hv{i}) in O.

One can interprat at as a payoff which player 1 cen guarantee
himself: even if the playerz in RV{i} get together and act so as to make

his payoff a3 small as possible, he will be sble to obtain di.

£.13 Example: Consider a three-perscon game G where player 3's payoffs

pre As in the tables below. Then in order to minimize player 3's payoff,
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players 1 and 2 heve to randomize between the sirategy peirs (T,L} &nd

{B,R): they cannot do so by rendomizing independently.

L R L E

T{ -1 ] T| O 0

E 0 0 B ] -1
3's first strategyr 3's second strategsy

B.14 Theoren: The set of payoffs to upper e.p.'s coincides with the set

of payoffe to lower e.p.'s and is equal o D° = {xED: ¥ > a* for sll i €N}

To prove the theorem we need the following.

8.15 ILomma: Consider s two—person zerc-sum geme G with minimax value V.

Iet © be an optimal stratesy for player 1 in G, and swuppose that in the

supergame G* player 1 uses the rendomized super—strategy Fl whiech

involves the use of an independent copy of & at each stage. Let FE he

any randomized super-stratepy of player 2 in 6% (in perticwlar, the stra-

tegles 2 uses in succeszive plays of & mey not be independent}. Then

m
with probability one lim inf I {h:{m)]lfm 2 V.
k=1~

Proof: Lot the etrategy which pleyer 2 uses at stage k  be T, -

Then we lnow that
F.1
Eiigk} Ifl’fl""’gk—l’fk-l} >v for all k .,
Define

x (u) = (o)) + v = BB ey () vy () gy 0)ag ()
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F 1 . —
Then x (u) 5 (B {w))” for a1l % and E(fklfl’fl"‘"fk—l’fk-lj = v
for all k. Also, X and X, are uneorrelated for any k and £ {with

k#2%): for k>R
E(x, x,) = E{Eifkfglfﬂ}} = E(rB(x %)) .

But .E{Jfki:fﬂ} = v since x, is 8 fanction of 0y ,Tyseeesly 15T - So
E(x %) = vB{x)) = ¥ = B{x, YE{x,)

Eb we pan zpply the Stroﬁg Law of Lerge Numbsrs to deduce that
N
lim J === v  with probability one
m
k=1
F, .1
so that, with % (w) z(h ())" for all k,

m ( ()
lim inf s

k=1

I
-

This establishesz the lemma.

Proof of Theorem: The theorem is eguivelent to the following three

statements:
(1) {uper e.p.'s} C {lower e.p.’'el},
{2) {peyoffs to leser e.p.'s} & D', and

(3) b' € {payoffs to upper e.p.'sk.

(1) is immediate.

{2} ie the result of the following.
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Assertion: {payoffs to lover e.p.'s} C D.

Proof: Let T, be a lower e.p. We have hi*(m} €D for s11 k,

m

50 E h:*(m}fm clh for m= 1,2,.... Hence the closedness of D ensures
k=1~

that L(F,) € D. This proves the assertion.

Aosertion: If x is e payoff to a lower e.p. ithen xi = & for

all 1 € N.

Proof: Let ¥, be & lover e.p. with pasyoff x. By the definition

of ﬂi, i has a strategmy Ui such that for a1l strategies TH\{i} at stage

- k
1 \ .
k of the supergawe, E[hifrg {1},ui}} > &*. 8o if at each stage player

e

uses an independent copy of ui, lemma 8.15 guarsntess that 'LliF*) = ¥ *

[ IR
e

which esteblishes the asaertion.
These two assertions together entail the truth of (2).

(3} cen be proved as follows. Let x €D'. Then there exist nen-

negative real numbers o summing to one and members E.j of ¥ such thab

Jaj(£,) = x and X > a forall i€N., 1t o(w') be the mixed
j - -

gtrategy in G which involves the plsyers using the pure strategy § 1 with

probability «,, for el1 3, so that E[h(aﬂfwﬂl}] = x. Define F, by

j,
{a“{m“}}i iIf o, = ofad) for ell R < k-1
! N o ]
L Rk 1 'Ly = : v
.1t -1 Ti,(wﬂh{ll}} otherwiee

whera the ﬁf(uﬂ} are Independent copies of UH{mH}, i' is the firat player

.

to deviate from the strategy UH{mN} in the previcus plays (first in time;
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if there are more than opne such, first in serial number), and Ti, is e

= ) 1
correlated strategy of M {i'} with max E[h' (U,Ti,}] = g
o N

over randomized strategies of 1% in é}. Suppoze 1' deviates from F,

{¢ runing

f

[ ] 51
at stage £, and uses the strategies ﬂ; for k= 2,8+1,,...; et P

-

denote his super-strategy. Then

W

I IS | ]
8ln’ (o, J(r,),)) s foraell k2 8+l ,

where the (Ti')k are independent copies of 1.,. So by lemma 8.15

Ft z

]
(w)) /{m - 2) £d with probability one. Hence

? F
1im sup (h ¥
k=Rk+1 Ek

for 'i' condition ? of Definition 8.5 is met. Hence no player can gain
by devialing from the stirategy UN(MH}, and so F, is on upper e.p. with

payoff x. This establishes (3).
This completes the proof of the theorsam,

8.16 Example: Consider the Prizoners' IMlemma game, with payoff matrix
as below (aee Example 2.20). The set D is the parallelogram with vertices
consizting of the four peyoff vectors in the table; D' iz the subset of D

with Ex;,xel

1w

(1,1}, since 1 is the minimax payeff of both players.

e a
D'l 'UE
11 y,h
D'l * {:'55
o | 5.0 0 1.1
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Theorem 8,14 atates that the set of payoffs to e.p.'s in the supergame
conzisting of en infinite string of repetitions of the Prisoncerz' Dilerma
game consists precisely of D'. This contrasts with the eguilibrium pay-
off vector in the Prisopers' Dilemma game when it is played Dncé, which

is just (1,1},

Now let

vﬂ(ﬁ} =& e F°: there exists & randomized strategy o> of 8

in @ such that for a1l randomized strategies GEHS of
. a :
M\ in G apd for el 1 in I, xléE[hi{u“,dms}]}.

This is Just the set of all payoff wvectors which & caon guarantee for itself.

8.17 Definition: %he a—core of G is the core of v {(i.e. a-core of

G= {x €D {I?SCHH?&Y’E?“(S} g.t. yi::-}:i‘u"iES}}}.

Wext, let

vE(S] = {x° €X°: for each randomized UI'I"-.E of W\S in G, there

exists a rendomized strategy GS of 8 dn G such thet

for all i in 8, x' < Bl o® o) 1},

This is the set of all payoff vectors that M\S camnot prevent § from

getting.

B.18 Definition: The g-core of G is the core of Vg {i.e. B-core of

G = {x € D: wscm(afevﬁtsy s.t. yis>ad vi€g)}).
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.19 Remark: VﬁES} C VB{S), so (B-core of v} € (o-vore of v},

Tt would seem that Yo iz s mwore patural construct then ?E, but in
copnection with repested pAames, it is vE that turns out to e more signd-

fiesnt. Thus, we have the following.

8.0  Theorem (fumann [1950]1): The set of payoffs to upper strong e.p.'s

in G% gcoincides with the set of payoffs to lower strong e.p.'s in (%,

erd with the B-core of G,

Proof: From the defindtions we con immediately deduce that

[upper strong equilibrium peyoffs} C {lower strong equilibrium pasyoffsl .

The theorem is then eguiwvalent to the follawing two stateménts:
{1} {lower strong equilibrium payoffs} ¢ f-core, and

{(2) B-core C'{upper strong equilibrium payoffs}.

To establish (1}, suppose that F, is a lower strong e.p. with payeff
¥, and x & p-core. To #ay that x €& B-core means that there exists a
coglition & and y € VE[Sﬁ with yi > % forall iE€8;y€ VB{E]

means thai

for each randomized strategy TN\E of ME in G there exists s

randomi %ed strategy GS nf § in O with E[hi{ﬁS,Tﬂ\S}] Y

B

for g11 i €32

So for each sequence of n-tuples of strategies Ul""‘dk-l’ there exlsts a

randomized strategy GS: a® + g8 for & in play k of the game such that

for al1 1 €58
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Bl (e5(u%) £ (o, )l 2

* g k-1

Now ﬂefine.supergﬂme strategles Fi for 1 €E8 a8 followa:
l i, B
(a} ffw3=ﬂ{w];

{p) fi(ﬁ 9

i, 8
G 20 r sl o) = 67} for k=23,

Then E[{hk*[FE{mJ}l] kS vy for alt 1€ 8 and for sll stages k. But

: yl ¥ xi for a1l 1 € 8§, ao Lemma_B.lE ensures that for all but finitely

many @, for some € > O

1 B R|P
m L

()% > %' 4 ¢ with probebility one ,

contradicting the fact that F, is a lower strong equilibrium payoff. This

establishes (1).
In order to prove {2), we will use the following.

tagertion: JYor each x € B-core and each 8 C M, there exisis &

randomized strategy tﬂﬂs of HK\& 4in G such that for each randomized

atrategy US of 8 in G +there exists sn 1 €8 such that

Bih* (o° ‘“Sn

Proof: ©Since x € B-core, there is no ¥ € VB{EJ guch that

s

vt > & forall 1 €5. Bo for all € > 0, there is a strateey 1_~  of

M5 such that for aach stretegy US of § there is sn 1 €8 with

E[hl(us,rﬂks}] < x" + g. The 1 for which this is true will depend on e,

tat 835 e ‘tends to zero through a denuvmerable sequence there will be 8n i

such that the atatement is true for infinitely many terms of the sequence,
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end Tor this 1 we will have inegusality in the limit, establishing the

azgertion.

Now we can prove (2}, Tet x € f-core. Let -:rHl:n.'lH] be n strategy

of ¥ in G for which E[h{ﬂN{mHJ}} = x. By the assertion, for esach

8B CH there exists g randomized strategy TmS of M\& din G such that

-

for each vandowized strategy GS of 8 in & +there is an 1 €8 such

i B
that E[ni (0%, 5} < . We will use the strategies o and TO'° o

define & raodomized super-stretegy F, as follows:
K, N N, N
{a) Ty (e} = o {a"), & copy of o {w);

{t) et Sk be the set of players who have used a strategy other

than thelir component aff ON in cne or more of the. plays l,..-.k-1. Then

fmsk{g- R ek SR
¥ N AL S "4 k
Ms s : H\SJ
l:where -'Ek is a copy of T , independent of T 3 for = -1} )

and

fﬁk{il,...,€khl,m} = Eg(mﬂ) ir g=¢

{where the UH ore independent copies of GH}. Suppose that after play

2k
£ -1 no new players deviate from gﬂ; let Sjl, =8, end let FS ke the

'rand.c-'_miz&d super-stratesy of o, pi being the stretegy & uszes at play

E for kii.

Let © be the set of !E|—tup1es of expected peyoffsz to members of

. A .
S in G wvhieh 8 ean attain when MN\B uses the strategy TN 5. C is &
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convex subset of ES, and x 18 not in the interior of © (if it were,

there would exlst & strategy o of § such that EIhlqu,TH\E}] > xi for

ell i €8). Bo by the Supporting Hyperplane Theorem there exists p € EE,

F # 0, such that

) Pi.vi z ) Pixi
ies ies

for all ¥y €C

Since there e no 2 € € such that 2z >> x, We can deduaee that there 1= &

supporting p with p » 03 i.e. there exists p *» 0 such that

E plE[hi{pi,Tixs}] < E p x- for all strategies pE of 8
i€s = =z -
for a21 % ; L
Hence Dy lemms 8.15,
i, 8 :

T iB {Ek’lﬂﬂg} i1
iim sup ) I - = Jrx

k=t i&5 m - ie8

Bo there exists no & * { .such that for infinitelymany m for all i €85

m[F*{rﬁ
Ellk

" k=1

(o))

- » x* + £ with positive probability .
Hence F, is en upper'strong equilibriue point with payoff x.

Tn this argument we have asswmed that 5 is e constant. In fact it
may be a random varisble {whether a player devistes or not may depend on

the strategies the other players have used in previous stages), so that the

s

S RSP PR LR EEE R
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p above will be random, and the expectetions will all be conditionel. The
line of argument neesds no madification, however, and we leave it to the
reader o make the nccessary notetional changes.

This completes the proof of {2), o thot the theorem is established.

8.21 Example: Consider the Prisonersz' Dilemma game onee again, with pay-
off matrix as given in Example 8.16. We find that the f—core of thils game

consists of the line segments ab and be shown in the diagram, so by

2
i{l,l .
o L0} 1
w

Theorem 8.20 the points on these lines are the strong equilibrivm payoffs in
the supergeme, en cutecome which contrasztz once again with the noncocperative

outconmes in the game when it is played once.

Appendlx to Chapter A: Annoteted Biblicgrephy on Hewented Games

fe) PBRepeated Gomez snd Cooperation:

Phree papers in this area are Aumann [1959], [19617, and [1967].
The first introduces the peterial examined sbove, but anslyzes mixed stre—
tegies in the supergame a3 probability dstributiona rather than random

variables, and iz consequently difficult to resd. The =ccond analyres the
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:
t-core end the B—core in the case where side payments are not allowed; ihe ;
H
worth of & coalition is then the set of peyoff vectors to its members E
which it can attain, rather than a zingle smount which can he distributed -
within the coalitién in any way. The third paper surveys many of the

topics discussed in these lectures for games without side payments. An . i

application of the idea that repetition leads to outcomes reflecting coop-

erstion is contained in Kurz [19'.??].

{b} BStachastic Games:

Stochastic games were the first sort of repeated games to be analyeed.
A stochastic game is s finite set of Z2-—person zero-sum games, each play of
the game leading to a payoff and the assignmenﬁ of some game in the set, the
letter being pleyed at the next stage. 50 each player can naneuver for pay-
offs and for stbsequent games. Shapley [1953b] analyzes the case where the
payoffs are disccuntei, and Gillette [1957} examines the ﬁase where they are
not. S&ince then a greab deal of work has been devoted to stochastic games;
it is so voluminous thet it cannot possibly all be reviewed here. Dramatic
progress has recently been made by Bewley and Kohlberg [1976a] and [1976b]

in studying the wndiscounted case.

{2} Repeated Oames with Incomplete Information:

Tn theze games one game out of a knowm set is rlayed repeﬁiedly, each
player having only limited informetieon about which game is being played.
Fach player will then be interested not cnly in obteining & high peyoff in
the short term, but in ensuring that he cen dn 50 over & long period by

playing so as to concesl aeny infermstion he has vhiech the other pleyers do
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not have (if pleyers' interests sre opposed) or by pleying sc as to reveal
information {if his interestz coineide with those of others}.

A2 an example of a situation where interests are opposed, assume
the met of games counsists of two pero-sim two-person gamee with payoffs to

player 1 as shown in the tables below. Flayer 1 {the row player) knows

1 O 0 0]
0 { 0 1
Game 1 Game =

which game is being plnyéﬂ, but playesr 2 does not (we sssume thet player 2
doss not know the payoff he receives at the end of any play; this payoff is
just deponsited inte his bank aceount). If player 1 salwsays plays his top
strategy. it will be clear Lo player £ that game 1 is being played, =a the
best strategy for player 1 will inwvolve his playing his bottom strategy some
of the time, In order to avoid reveeliing hisz information to player 2.

Fow roneider a situstion where ployers! intereats ecineide. The
games in the set are the twe whose payoff matrices mre showm below. Player
1 {théjrﬁw player} has ome strategy, and player 2 has two, Assume that
pleyer 1 knows which game 1g being pleyed, but player 2 does not. Ewven

though players' interests colneide, the outcome will not be efficient in

1,1 ] O,0 . 0,0 | 1,1

Game 1 o Came 2




this case asince the fact that player 1 hes only one strategy meens that he
cannot signal to player 2 the information he has sbout the game being played;
there iz no way for the players teo coordinete their metlions. If, however ,
pleyer 1 has two strategies, the ftwo games being Game 3 and Came 4, whose
payoff matrices are shown below, then there is some possibility for coordi-
nation: whenever the trus game is Came 3 {resp. k) vlayer 1 can play his
top (resp. bottom) strategy, and if he does so, player 2 can pley his left

(resp. right) hand strategy. The resulting equilibrium peint will be eafficient.

1.1 0,0
1,1 0,0
Coge 3
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0,0 { 1,1
0,0 | 1,1

Gams 4

The same outcome would result if player 1 could signal to player 2 in

some other way. But if the psyoffs are modified slightly a new problem arises. E

Thus consider the case where the gemes are Cawes 5 and 6.

0,1 0,0
i,1 4,0
Game <

i.1,0 |.1.1
1.1,0 1,1
Gampe O

& situation where

player 2 plays his left hand strategy if player 1 signals that game 5 is belng

played will not be sustaineble as an equilibrium point in this case because
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there will then always be an incentive for player 1 to signal thed geme 5
i3 being played when in fact game & is being played, In this case, then,

there 148 no efficient egquilibrium point even though there is the possibility

of signalling.

Some papers which analyze repeasbed games with incomplets information
are Aumenn and Maschler [1§66], [1967], and [1968], Stearns {1967], Kohlberg
[1975a] and {1975b], Mertens and Zamir [1971/72), and Zemir [1971/72] and

{1973]. Agmin, the literature is oo voluminous to review completely here.

Chapter Q: Some Fipal Remarks

& topic which we have nobt eovered is ubility theory. When we intro-

duced the payoff natrix in two-person gemes the nusbers we assigned were only
intended to reprezent players' orderings over the possible outcomsz,. How-
ever, subseguently it was necessary to interpret the pgyoffe as representing
prefercnce intensities, . Thus, when considering the mixed extenslen of a
game we deslt with expected gayaffs, which are sums of peyoffs weighted by
probabilities, and when we anelyzed cooperstive gsmes we assumed there existed
numbers representing the "worth" of each coslition. We can Justify such
procedures by eszuming that payoffs are in money units and that each player
has & utility function which i3 linear in teras of money. TFor e detalled
treatmwent of the problem see Luce and Raiffs [1957].

We Liave alao not studied some nﬁher interesting topics. Zermelo's

theorem invelves a game in extensive form, where the sequentlal structure of

the players' moves is considered in detail. 0Ganes in coalitional form
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without side payments are slsc of Interest, as are games with a contipuum

.of pleyérs; the latter can he used to formaliee economic situations of pure

competition.

Sclutionz to ]i:merciamsll"r

1. Consider the game defined in the table below. Let & {resp. Bi}
be the probability that player 1 (resp. 2) uses strategy 1. Then the only
e.p. of the game is {ul,ug,us; 61,52.53] = {1/3,1/3,1/3; 1/3,1/3,1/3}, the

equilibrium payoff being (3,3).

s 55 sg
si 0,0 ] 4,5 | 5,k
sy 5. | 0.0 b5
s; L P s,k | 0,0

Proof: By inspection there is no pure strategy e.p. Let
{ul,ug,uE; 51,52,53} be a mixed strategy e.p. Then glven [&l,dE,HB} it
must be the case that the expected payoff to pleyer 2 if he uses any of
his pure stretegies is the same {otherwise he would chocse a pure strategy,

in which case it would slso be best for player 1 to choose a pure strategy,

so that we would not have a mixed strategy e.p.). Hence we need

lma2 + 5:13 = Sul + lma = hul + 50, s

L‘IIPSI.:t;ipliE-El by Martin J. Oshorne.
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or, remembering that oy + o, + oy = 7, ﬂl = o, = ﬂ3 = 1{3. By symmetry
we can then deduce that Bl = BE = ﬂ3 = 1/3. The payofi to ployer 1 ut
this e.p. is W1/3)} + 5(1/3) = 3, ms is the payoff to pleyer 2. Hence
the only e.p. of the gome is {1/3,1/3,1/3; 1/3,1/3,1/3), the equilibrium

payoff being (3,3).

2. Consider the game defined in the tables below. Ilet o {resp. B, y) be
the probability that Dplayer 1 {resp. 2, 3) uses his first strategy. Then

the e.p.'s of this game are (a,B,v) = (1,1,2}, {&,B,y} = {0,0,0), and

{a,8,v) = (2-+2,0-¥2,2-¢2}. The tgrrespondling equilibrium payoffs are (1,1,1},

(2,2,2), and {¥Z,/2,/2).

Proof: f{u,8,y) = (1,1,1) end f{a,8,y} = (0,0,0} are clearly pure
atrategy e.p.'s, with payoffs (1,1,1) and ({2,2,2}. PTD find mixed strategy
e.p."5, let players 1 a.nd o choose probabilities o =ndé f. Then in =
mixed strategy e.p. player 3 muost get the same peyoff when he uses either

of his pure strategics {[otherwise he would choose a pure strategy, which

EE EE
1 o
1
sy ] 1,1,1 § ©,0,0 0,0,0 | 0,0,0
1
s, | 0.0,0 | 0,0,0 0,0,0 | 2.2,2
3 ¢ v —~ 3
1 Fa

would induce pleyers 1 and 2 to do the same, and we would have a pure stra-

tegy e.p.). Hence we want
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o = 2(1 - e){1 - B}

By symmetry the corresponding conditions when the other players mre considered

are
gy = 2{(1 - v){1L - o} and By = 2(1 - 81 - v}

The unigque solution {«,B,Y) € [0,1]3 of these three equations is {a,8,7)
= (2-v2 2-v2,2-v2), snd the corresponding equilibrivm payoff is {vZ,v2,42).

Thus the e.p.'s and.equilihfium payoffs are precisely those stated above,

3. Consider the game defined in the talle below. Iet a {resp. E} be

the probebility that player 1 {resp. 2) pleys his first strategy. Then

every (a,B) im [D,l]2 is an e.p.; the equilibriuwm payoff corresponding

to f{o,B) iz {2 -8, 1 ~al.

Troof: Using the arguments of Exercises 1 and 2 it is immediate that

the shove assertion is correct.

2 2
1 2
si q,0 1,0
sé 0,1 | 1,1
4. Ir 1z [w(12} + v(13) + v{(23}]/2 and v(1j} <1 for all pairs

'{i,1} C {1,2,3}, then the 0-1 normalized 3-persen geme ({1,2,3},v)

has a nonempty rcore,
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Proof: {s) Suppose that +{12) + v{13) > 1. Then

x = {v(12) + v(13) -1, 1 - +(13},1 ~ w(12)}

is a member of the core: x— > 0, x2 > 0, x3 >0 and xl + xE + x3 = 13 and

" % = {12}, X+ %0 = v{13], and xE + x5 =2 - v{22) - ¥{13) > v{23).

(t} Suppose that v(12) + v(13) < 1. Then
x = (0,1 - v(13),v{13)}

is A member of the core: xl o, xE a, x3 > 0 and xl + 12 + x3 = 1; and

< + x? =1 - w{13) » v{12), K+ xS v{13) and xg + xS =21 >

v
Ny

v
L
—
i
(L]
T
.

Hence in all cases the core is nonempty.

5. 4 -1 normalized welghted mejority game has a nonempty ecore if

and only 1f 1t has at least one veto player.

Proof: A 0=l normalized weighted mﬂjﬁrity game (N,v) is defined

by

[
1.;..
L]
«
W

e

v(g} =

with q such that v{i}) =0 for 212 1 €N and (M) =1,

(=) Jufficlency: HNumber the players in such a way that wl > wE 2 aan

wn. Then if there is at leasf one veto player, player 1 is such & player

[

—

i.e.. v(8) =0 if 1 ¢ 8}, Hence x = {1,0,0,...,0) 18 in the core:

Bt =1, it >0 for all i, and
1€N
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My
[

It -
163

I
o

{1 if 1 €8 , in which case v(5) 2

¢ if 1 g8 , in vwhich case v(8)

This establishes sufficliency.
(b) Necessity: Suppese thers are no vete players. Conzider the
collection of coalitiona S = (WM {1}, M{z},...,"{n}} with balancing

weights &, = 1/(n - 1) for sl S €35, We have

8
n -1
n -1
1 1
I:S = Exz =¥ .
&8 g% “n -1 abfe8 Tn -1 i N

as § 4=z & balanced collection. Since there are no veto players v(is) =1

for all B8 € 3, s0 E ﬁsv[S] =nf{pn-1) > 1 = v(N}. Hence by the Boodareva-
58
Shapley theorem the core of (N,v) is empbty. This cstsblishes necessity.

&, The core of a 0O-1 normalized weighted majoriiy game with veto

a;,a? .,8",0,0,...,0) with ot > 0

gu

pleyers 1,...,p is O = {x: x={

for 811 1 and E a’ = 11.
i=1

Proof: If x € €, then it 15 clearly an imputation. Tet 8 be such

i
that (8} = 13 then {1,2,...,p} €8, s0 Lx =1=v(s). let & be such
- i 165 1 2 o
that w(8) = 0. Then 7 x > 0= v{8)., Hence any x = (a8 ,8 ,...,a S0,0,.--,0}
; i€s "
with & > 0 for a?l i and E g = 1 is in the core of the game, and the

i=1
core consista of solely such points.

T. For every concave function f£: En + I and for a]1 m > 1,

1]

moo. . m . . m
ol ¥ a*x) 2 ¥ alfl{x’) if o€ ET and iglal 1.

i=t T i=l
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Proof: We proceed by induetion oo .
{a} For m=1 the result is immediate.

{b} Assume the result is true for 211 m fr- 1, and take o £ E:

F i
with E a =1, Then

3=1
¥ oii rel g r T,
#f ¥ atxt) =1{ § ot x + oo x
i=1 i=1
r-1 1
= £[(1 - o) ] ()" + oK)
i=2 1 -
g{l—u]f[z {“ 91 + a2 (x")
=1 1 -af
{by the coneavity of 1)
Tl 1 ¥
But ) o' /{1 -} =1,amd a/{1-a") 20 for 4=1,...,¥ -1, so that
1=3

the truth of the result for m =1 ~ 1 ensures that

r-1 ii
f
I e B E{E—(-’-‘—h
i=2 1 - & i=1 1 - u
—1 i1 rhl rog 1
Hence f{ § ax) > I o f(x’) ¢ o'P(x¥) = § e f{x"). Hence the result ie
i=1 T oi=l i=1

true for m= r.

(e} and (b} together entail the verity of the result for =11 m 2 1.

B. Lemmte 6.3 is False without the sssumption of superadditivity.

Froof: QConaider the following game {N,v):

F=11,2,3) , +~(l}=2 , v(2)=v¥[3}=0 ,

v{12)

I

v{13) = v(23) = 3 , end v{123) =
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Tf x is to be in the core of (N,v) then xl > (1) = 2,

x? + 5 2 v{23) = 3, end o+ x‘? ' %

“

= L; hence the core i1s empty. But

the imputation (2,1,1) is not dominated by any lmputation: the only
coalition which can dominate It is "{2,3}, but in eny imputetion x} > 2,

ag it is not dominated by sny imputation. This esteblishes the claim.

. There is no homogenecus representation of the weighted malorily game

one of whose representations is {53 2,2,2,1,1,1].

Proof: We went to find a representation [gq; wl,...;wﬁ] such that

E vi = q for all mpinimal winning corlitions 8. That is, we want
iss

{1} wl + wE + w3

I

q

and

(2} wi -+ w‘j + wk' a

where (i,3) € 1{(1,2),(2,3),(3,1)} and k € {4,5,6}. Adding the equations
in (2} we obtain E{wl + W + wﬁ} + 3wk =3¢ for X = h,5,6. Using {1)
this gives Ewk =q for k=4,5,6, so that wk = g/3 for k = 4,5,6. But
then wh + wﬁ + wﬁ = g, so that {h,5,6} is winning, which is not the case
in the original game. This establishes thet no homogenecus representation

of the game exista.

10. M{v,{1234}) for the weighted majority game [3; 2,1,1,1] is

{{e,(1 - a}/3, (1 -a}/3, (1 -e)/3lys5 ¢ o < W7
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Proof: Let x = (e,B,v,8) be a payoff vector. There are three sorts
of objections to consider: (a) those among players 2, 3 end 4; (b} those
between players 2, 3 and 4 and player 1; sand (e) those between player 1 and

one of the players 2, 3 and L.

(a) Let an ohjection of 2 against 3 be of the form {1-f-€,B+e,0,0).

Such an ﬁbjection exiats if 1-B-€ 2 & for some € » 0, or if a+p <1.
Player 3 can countercbject with (1-v,0,v,0) if 1.y > 1-f-e for ell

e >0, or if B > ¥. So there is no Justified objection of 2 mgeinst 3 if

{1} either o+ B =1 , or B

[

Y

The consideration of objections of 2 against 4, 3 peainst 2, 3 agalnst L,

L ageinst 2; and I against 3 leads to the conditions

(2} either a + B

n
pL
a
H
™
nw
S
L

{3} elther a+vy=1 , or vy 328 and y>4& , and
(4) elther a+6=1 , or §>8 and 2y ,

for there to be no Justified objectiem,

(b} Comsider an cbjection of 2 against 1 of the form (0, +e,{1-prel/2,

{1-8-¢)/2); such an objection exists if 1-8-¢ 2 2y for some ¢ > 0 and
1-$-c 2 25 for some & > 0, or if 2y < 1-8 and 28 <1 -f, Flayer 1
cen counterobiect with (o,0,1-e,0) if 1-ua > (1-f-e)f2 for g1t £ *» 0,

or if 2a £ 14+ f. Hence there is oo Justified objectiem to x if
{5) 1-Bs2y gr 1-8:<28 or 20251 ~8

Consideration of objections of 3 and B sgainst 1 leads to the conditions

e nsans s s e AT L S A AT A AR R R
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(6) 1L -y =26 or 1-Y 26 or 2051 -y , end

na
Ha

(1) 1 -6<28 or 1 -86<2y or 2¢a21-6

[{I,
i)
A

Next let x = (1,0,0,0). Then (5) is violated, so x 1is mot in the
Bargaining Set, Also, if x = {e,1 -o,0,0) with «<l, {2} is violated. Hence
a+f < 1, and by symuetry we can deduce that oty «1 and o+d <1, Bo
from conditions (1)-(4) we conclude that § = v = 6. 8o any point in the
Bargaining Set is of the form fa,{1-a}/3, (1-0}/3, (L-a}/3) with @ <l.

(c) Comsider en objection of 1 against 2 of the form (o+€,0,1 —0—€,0}3
such an objection a.l{rays exists since B = {1-a)/3., Player 2 can counter-
object with (0,{1-a}/3,1~ a-€,(1- e)/3} if 5{(1-a«}/3-e £1 for all
e >0, orif az 2/5. The consideration of objlections of 1.&55.11:151:- 3 and b by
symmetry ylelds the seme concslusion.,

Hence B = (1-2}/3 5 1/5, so the first two conditions in (5) are not
sntiafied; for the last one to be satisfied we need 2a 2 1+ {1-a)/3 or
@ < b/7, and conditions {6) and {7} lend to the seme result.

Thiz exhausts all possibilities for object_ions, go the Bargeining Set

is (e {1 - a)/3, {1 ~a}/3, (1 - ﬂ'”ﬂeﬁ <w < b7 as was to De shown.

11. M{v,{123}) for the geme defined in Example T.1 1s {{2/3,1/6,1/6)}.

Proof: Consider & psyoff vector x = (a,8,y). There are three sorts
of ocbjections to examine: {(a} 2 mgainst 3, and 3 ppainst 2; (b) 2 and 3
against 1; and {¢) 1 agalnst 2 and 3.

{a} Consider an objection of 2 against 3 of the form {1-B-2,8+€,0}}

such an oblection exists unless «+8 = 1. Flayer 3 can counteroblect with
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{1-v,0,v}) if 1-7v »1-B-g, 0r if y 2 B. BSo there is no Justified

objection of 2 zgainat 3 if

(1) pither @+ B =1 or y <8

By symmetry there iz no justified objection of 3 egrinst 2 if

{(2) either 0o+ 8=1 or B <y . ' .

fl A

(b) Consider an objection-of 2 against 1 of the form (0,8 +e,—§—-3 ~e}s
such an objection exists iT ?EJ-'--B-E > v, or 1f B+y < i/2. 3o no oblection
exists if B+y > 1/2, Plaaref 1 can counteraobject with (o,0,1-a) if

l-n > %’-E —g, or if o Y ﬁ+%, Hence there is no justified oblection of 2

azeinst 1 if

[0 b=t

{3} either E+~f§%- T @B+

By aymuetry there is no Justified objection of I mgainst 1 if

(L) either g+ 1y > v+

=
lﬂ
H
L=
LF

{e} Finally, coosider &n o'b.jecti.ﬂn of 1 against 2 of the form
(a+e,0,1-0~-€). Buch an chjection exists if I -g-¢ * v, 8¢ there can

be no abjection only if y+a = 1. Player 2 can cownbercbject with

H

W:B:‘%- B) if ‘fl..j- B z2l-a-g, or if a 2 E+E. Henee there is no

Justified cbjection of 1 against 2 if

{5} either o+ 7y =1 or u‘__n-_5+-:-{-

3
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By symmetry there iz no justified objection af I ageinst 32 if
— 1
(6) either e+ g=1 or a>v+3 .

Now suppose x = (1,0,0). Then {3) ie viclated; hence @ < 1. Con-
gider x = (a,1-0,0) with a«<1l; then {2) is violeted. Hence a+f <1, end
by symmetry oa+y < 1. So conditions (1} and (2} ensure that B8 =y. B8o
any point in the Bargsining Set is of the form (x,{1 -ea}fz, (2 -a)f2),
Conditions (5) and {6} then tmply that o > 2/3. Hence B+Y 2 1/3, so
that conditions (3} and (b} fmply that & < 2/3. MHence the Bargaining Bet

conaists of the single point (2/3,1/6,1/6), as claimed.
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