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Abstract,

The properties of real-valued funetions on & Boolean ring
are ilnvestligated with the ald of three kinds of limiting processes,
based on (1) direoted sets of partitions, ordered by refinement;
(2) finite treee of successive partitions, ordered by extension;
(3) directed sets of finite subrings, ordered by inclusion.
Through (1) a theory of integration 1a developed., The integral
takes the form of a linear operator, projecting general set funo—
tions onto thelr addltive parts. Integration of real functions
with respect to non-additive "measures" then becomes possible,
Through (2) & notlion of deviation from additivity for non-additive
functlons 18 obtained, leading to & canonical decomposition:
£ =1f*+ 1 4+ ¢° of every function of finite deviation into its
superadditive, subadditive, and additive parts, Through (3),
gertain new linear operators, called "imputations", are defined,
These are also projections from general set functliona to the
addltive functlons; they have application to the problem of equit—

able distribution in economics and to the theory of n—person games,
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0. Prefaoce.

The material of this paper is arranged in seven chapters,
The first three give the negessary elementary facts about sets,
partitions, and set functions; the two chief novelties are the
concept of partition tree, in Chapter 2, and the idea of the
earrier of a set function, in Chapter 3., The fourth chapter
deals with the integration of non—-additive set functlions, and
their use in intey@ating point functions. A concluding section
relates this material to the work of Burkill on integration of
non-additive functione of intervals, In Chapter 5 partition
trees are used to measure the deviation from additivity of non—
additive set functions, and a fundamental decomposition theorem
(Theorem 21) ie thereby obtailned, The main result of the sixth
chapter 18 an inversion formula for step—function — set functions
which are completely determined by thelr values on a finite
gollection of sets (Theorem 27). The seventh chapter develops
a theory for imputation operators, The central result of the
chapter, Theorem 3%, permits their extension from the space of
step~functions to a wide, not completely delineated subspace
of the space of all set functions. An introductory seciion
describes the relation of these operators to the "problem of
imputation” in economics, and a final section gives an application

to the theory of n—person games.

I have used examples quite freely to illustrate speclal
points, and to indicate the scope and limitations of the theory.
They may be omitted without damage to the logical continuity,
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but it 18 hoped that thelr presence will make for an easier
understanding of the sub jeot maker,

References to the literature will be found in the footnotes.
In addition to the worke elted in the text, I have consulted
profitably Birkhoff's Lattlge Theory (American Mathematieal
Boelsty Colloqulum Publications, Vol, 25, New York, 1940) and

Sterpifisky's Legons gur les nombres trensfinie (Paris, 1928),
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1. Boolean rings.

"Sets" in this paper will be viewed as elements of an
abstract Boolean ring, 8. While one oan always construst
an underlying space of "points", to populate the sets ,1 we
shall not do so except, occasionally, for purposes of illustration,
In particular, our excursion into measure theory in Chapter 4§
will be wholly independent of the topological structure of

the point lpcu.z'

Probably the shortest characterization of an abstract

Boolean ring is the one due to Stone 13

a ring 8 (in the usual
algebraic sense) in which each element 1s its own square, The
binary operations of intersectlion, union, and difference must
then be defined in terms of multiplication and addition, 1If

8, T are elements of 3. we have

8nT = BST
SUT = 5T + (5+7T)

The operations on the left then combine according to the famlllar

1. See the remark at the end of this chapter,

2, Compare the treatment of measure. theory in J. von Neumann,
ra , Vol, I, Annals of Mathematics Study No, 21,
Princeton, 1950, pp. 83 et seq,

3. M, H. Stone, Theory of representations for Boolean algepbras,
Trans, Amer, Math, Soc. 40 (1936), pp. 37-11ll.
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rules of set thtnry.?" Henceforth we shall discard the algebrale,
in favor of the set—theoretic notation. The empty set, 0, 1is
the zero of the ring., The union, I, of all sets in £, may
of may not belong to f; Af it does it is the unit of the ring.z'

If SNT =5, we call S5 a subset of T, or % a
superset of 5, and write 3 < T or T 2 8, The symbols N,
U, =, €& 2 will be used with gollections of sets (denoted
by seript capitals), as well as with the sets themselves (denoted
by latin capitals). We shall use {R, 5, ..., T} to indicate
the collection whose members are just the sets R, 5, ,.., T.

The empty collection, denoted by 0; should not be confused
with the collecgion {0} or with the set O,

A subring of .the ring - 18 a subcollection of £ that is
closed under the operations U and =, An ideal is a subring
that 18 closed under intersection by arblitrary elements of 6,
Examples of ideals are B8, {0}, and the collection B, of all
subsets of a set N e fi, The empty set O 48 common to all
subrings. However, if (L is a subring of f§, then @ and
f may have the same or different units, or either & or 3,
or both, may fail to have a unit, Gimeany subcollection .& of
B, we denote by Jd  the smallest subring of & which includes
‘3; we shall say that . generates :?-.

An atom of a Boolean ring (- 18 a non—zero element whose
only subsets in (L. are itself and 0O, The collection of all

1., Addition in the ring corresponds to the "symmetric difference"”
of gets: 8+T = (3uT)-(8NnT).

2. A Boolean ring with unit i1s sometimes called a Boolean algebra.
Only in a Boolean algebra do sets have complements,



atoms of (L is denoted by Q*. A finite ring is always
generated Dy its atoms; an infinite ring, on the other hand,

may possess no atoms at all (see Lxample 6, below).

It was shown by B’l:.t:uml"I that every abstract Boolean ring 1s

isomorphic to a concrete "algebra of classes" — that is, to a
system of subsets of a set of points, For a proof, one constructs
a transfinite nested sequence of sets of B, extended as far

as possible without including the empty set. The collection, X,
of all supersets of sets in this sequence is an ultrafilter in

the sense of Bour’mkl% its cgomplement 18 a prime ideal in 3.

The collection % 48 identified with a "point® x J‘ the

rule

xe 8 if and only if 8 e X,

It is easily shown (1) that 1f two sets are distinet, then there
18 & "point" belonging to one and not the other, and (2) that if
two "points" are distinct, then there 18 a set contalning one
and not the other, 48 ocan therefore be realized as a system

of subsets of the set of such "points",

Examples
EXAMPLE 1. All Boolean rings having the same, finlte

number of elements are isomorphie. The number of elements
18 of the form 2%, n Deing the number of atoms,

1. M, H, Stone, op. cit.

2. N. Bourbaki, mwm- Pt. I, Bk, III, Ch. I,

Hermann et Cie,, Paris, 1940, pp. 25-26.
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EXAMPLE 2, Let 8 consist of all subsets of a point
get I. Then 8 has cardinal number 2", where 1
denotes the gardinal number of I,

EXAMPLE 3., Let B oonsist of all finite subsets of
an infinite point set I, Then £ and I have the same
cardinality. 8 hae no unit, and 18 generated by 1tse
atoms, If I is adjoined to B, the cardinality remains
the same, but the extended ring Bvilj] 1s no longer
génerated by its atoms,

EXAMPLE 4, Oonsider the collection of all square-—free
integers as a Boolean ring, under the operations
SYyT = lem (3, T)
SNT = ged (8, T)
8~-T = 8/ged (3, 7).

The integer 1 18 the empty set, The primes are the atoms,

and they generate the ring.

EXAMPLE 5, The Lebesgue—measurable subsets of the
closed unit interval [0, 1] form a Boolean ring, The
points are the only atoms, The sets of measure zero form

an ideal.

EXAMPLE 6, Take B as the ring generated by the
half-open intervals (a, b) | with rational endpointa,
0 <a<b<1l, This ring has no atoms, and HO elements,
The underlying point set of Stone's representation, however,
contains ¢ = 2“‘ elements., Among these one finds not
only the ordinary, geometrical points of the interval (0, 1%

but also such abstruse objects as the "point" common to the



intervals:
(‘i.*lfn]t n=1,2, «es »

This illustrates the inherent inefficlency of the
representation for an atomless ring ‘B. In the present
instance, the rational points of (0, 1] - or any other
countable, dense subset of (0, 1] = would have been 2
sufficient point basis for @, satisfying conditions (1)
and (2) on page 3.

we shall return occasionally to these examples in the

following chapters,



2, Partitions and partition trees,

DEFINITION 1. The gover of a finite collection of
sets is their union, The cover of the empty collection
& 1s the 8mpty set O,

DEFINITION 2, The product J'«?‘ of two collections
of non—-empty sets is the collection consisting of all non-—

empty sets of the form 5n T, with S r.,od, T sf

THEOREM 1, The formation of products of collections
of sets 1s assoclative and comnutative, For any collection

4 we nave
,J < J‘j and 0'4? = 0.

If the covers of the finite collections J and Ilﬂ

dls joint, then j,g'z d For any collectlions 4?, f
and %, ir J=J’-}’ and I-f-ﬂ. then = fold

We omit the proof of this theorem.,

DEFINITION 3. Given two finite collections /_f and

A, we shall say tnat Af is finer than /?T or a refinement
of 7: Af and only if they have the same cover, and

d =47

It is clear, by Theorem 1, that the refinement relation 1s
a partial ordering of the finite subcollections of 6.

DEFINITION 4. A partition of a non—empty set N is a
finite collection of non—empty, pairwise dis joint sets whose
cover 18 N, The empty sets O has the formal partition a



Given a partition ‘P of a set N, we shall sometimes
speak of the induced partition §8}+# of a subset 5 of N,
The following theorem is a direct consequence 'nf the definitions,

THEOREM 2, If P partitions S5 and @ partitions
T, then #+@ partitions S5AT, Any two partitions of the
same set have a common refinement — namely, thelr product —

which 18 again a partition of that set,

The last—mentioned property of partitions, sometimes reférred
to a8 the "Moore-Smith" property, will enable us to make use of
the techniques of directed sets:

DEFINITION 5. Let ¢g(P) be a real valued function
defined on the partitions of a fixed set N & f§. Then
the diregted 1imit of ¢, denoted by l%u giP), 1s

(a) equal to the number A with the property: for any
€ >0 there 18 a partition ‘P‘ of N such that

Ig(P) =2 < &,

for every P finer than f", Af such a number exists;
(b) equal to ¢+ (resp, -=w) Aif, for any number @,
there is a partition f; of N such that

gP) > g (resp. #(P) < p),

for every £ finer that 'fp;' or
(¢) nonexistent, if neither (a) nor (b) ecan be
satisfled.
The Moore—Smi th property of partitions guarantees that the
directed 1imit is unique when it exists.



Partition trees.

et w be a function - ¢alled a partition function -
that assoclates with each 8 ¢ B a collection w(8) € £ which
partitions 5, A colleotion £ ie sald to be glosed with
respect to w 1if S & £ always impdies w(S) ¢.Z. The
notation (w, N) will denote the smallest collegtion eontaining.

N and closed with respect to rr.i

DEFINITION 6., A partition tree i1s a finite colleection
of the form o(m, N), for some partition function w and

set N,

(iven a partition tree ﬁ: the w and N glving rise to
it are essentially determined, In fact, N must be the cover
of ZZ On a minimal utz‘ P of ;7: the function w must
operate triviallys mn(P) = §P§. For any non-minimal set 3 of
ﬂ’; w(3) must consist preclsely of all the maximal proper
subsets of & .tn ZZ For setsa 5 outside of f: the value
of w(3) 48 of course not determined,

DEFINITION T. The collection of minimal sets in a .
partition tree T(w, N) 18 a partition of the maximal set

N; we call it the ground partition of N and denote it
h}" ﬂ'{"i

We wish nu;t. to express the relationship that exists between
two trees when one can be obbained from the other by adding
partitions of the elements of the latter's ground partition,
or by a finlte sequence of such extensions, For this purpose

l, I, e,, the intersection of all such collections,
2, With respect to the partial ordering of sets by inclueion,
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we define a class of partial orderings of the partition functions,

DEFINITION 8, If w and wn' are partition functions,

then the expression

‘I'l";& w
is to mean that <=T(w', N) and TZ(w, N) are partition
trees, and that

m{(8) = w(s)

holds for all sets 8 in q(m, N) — w*(N)., It follows
that

z(v', N) 2 <z(w, N);

——

we ¢all the former partition tree an extension of the latter,

Two partition trees with the same cover, N, do not
necessarily have a common extension, The directed 1limit of a.
function of partition grees therefore cannot be defined, The
more complicated limiting process which we are foreed to go

through in Chapter 5 is based on the next two theorems,

THEOREM 3, If t(w, N) 4is a partition tree, and if
P 1e any refinement of w*(N), then a partition function

w and w'*(N) =,

n' ecan be found such that n' 2

Proof. Take the function w' as follows:

n'(s) = {s}-P, if 5 e we(),
n'(s) = {8}, if fEt‘P,

' (s) = wm(s), if 8 ¢ we(N)v P,
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(The first two cases may overlap.) One now verifies immedlately
that ' has the required properties,

THEOREM &4, If ﬂwl, N) and ﬂﬂi, N) are
partition trees, then partition functions 111' and ﬂal

can be found such that "1' 2 T, 112' 2 Ty and
wl"{ll = l,"(ll}.

Proof. Take P to be the product m, *(N)em,*(N), then

apply Theorem 3 twice,

Example,
Taking 8 as in Example 6 (page #, above), let Pn be

the collection of interwals

((x=1)2™, k2], K=1, 2, eos, 2%,

(Thus, P, partitions I.) Define w(3) to be the induced

partition [Bi-fn, where n 1s the least integer such that
‘P“n[{ﬂl'Pn] # O. Then w(8) = {8f Af and only if S ¢ Pn'
for somé n =0, 1,2, +os « It follows that <Z(w, N) 418 a

partition tree if and only if N 1s a set of the aubring
generated by the collection of intervals of the form

(o, Pﬂ-q] (p and q Aintegers).
For example, Af N = (0, 7/16] then =(w, N) 18 the tree
mniluna of the five sets

N, (0, 1/4), (1/a, 716], W/&, 3/8], (3/8, T/A6].



If on the other hand N = (0, 1/3], then =(w, N) 418 the
infinite collection:

{¥, (0, 1/m), /4, 1/3), /4, 516), (86, 1/3],

(5/16, 21/64], ... }.

11
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3« Set functions and carriers,
The real-valued functions f defined on B, subjeot to
the restriction
r(o) = o0,
form a linear aspace, which we shall denote by F,

DEFINITION 9, A set function f ¢ F 1s additive
Af, for every palr of disjoint sets 35, T in 8,

f(8uT) = f£(5) + £(7).

The additive functions form a subspace of F, denoted
hy FA.

We emphasize that this 1s "finite" additivity. Questions
involving "countable”" additivity of set functions will not
be gonaidered in thise paper.

DEFINITION 10, A set function f e F 18 sald to

be superadditive 1f, for every palr of disjoint sets
8, T in 8-

£(suT) 2 f(s) + £(T).

DEFINITION 11, A set function f e V™ is said to
be gubadditive if, for every palr of disjoint sets 8, T
in 8,

f(svuT) < f(s8) + £(T).

The superadditive and subadditive functions form convex

cones in F, whose intersection 18 FA,
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DEFINITION 12. A set function f & F 18 otone
Af, for every pair 5, T in 8 with s ¢,

r(s) = r(1).

We shall also speak cf non-negatlive, and bounded set
functions, A monotone function 1s necessarily non-negative;

& non-negative, superadditive function is monotone,

DEFINITION 13, A non-negative, additive set function,
not identlically zero, 1s called a measure.

Wwhen we say that a function is additive on the set N, we
shall mean that, if it were restricted to the subring ﬁﬂ, it

would be additive, Analogous variants of the other definitions
will also be used occasionally,

Existence of measures.
A measure 1s easily constructed on an arbitrary ring §
by means of Stone's representation theorem (see page3 )., Let
x be an element of the underlying point space; and let m(35) =1
if xe¢ 5, m(8) =0 Af x ¢ 3. Then ulurlz;r m is a measure,

EXAMPLE 7. Let £ be the collection of finite subsets
of a point set I, as in Example 1 or Example 3 (pages 3-#),
Let J(S) be the number of points in 5, for each 3,

Then J 1s a measure on 8, not necessarily bounded,

Carriers,
DEFINITION 14, A garrier of a function f e F 1is

any set N ¢ 8 such that
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t(N~ 8) = £(8)

holds for every 8 & 8.

Thus, a function vanishes on all sets that are entirely

outside any one of 1ts ecarriers,

THEOREM 5. (&) If N ocarries f, then any superset
of N wearries I,

(b) If M and N each carry f, then MN N
carries [,

(6) If M oarries f and N oarries g, and if
o« and B are real numbers, then MUN ecarries of +$E.

(d) Every set carries the function 0.

(e) If I ¢ B, then I ocarries every function,

The proofs present no difficulty.

The intersection of all ecarriers of a function need not
be a carrier of that functlion, even though it be a well defined
set of £ (see Example 8, below). The function J of Example
7 (above) has no carrier at all if I 1is infinite, Example 9
presente another instance of a function that has no carrier,

even though it vanishes on almost all sets,

EXAMPLE 8, Let f be the collection of all subsets
of an infinite set I, and define f(5) tobe 0 1if
S5 18 finite, 1 if 38 18 infinite, Then any set which is
the complemen§ of & finite set carries f, But the inter-
section of all these carriers is 0, which is not a carrier
of T,
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EXAMPLE 9. ‘I..-t R be a non-empty set in an arbltrary
ring B, Define the funotion d ¢ F tobe 1 on R
and O on all other esets, The only possible carrier of
dn i8 the unit set I: AT B has no unit, then dﬂ has

no ecarrier,

Proof. ©Ouppose N ecarries d'n' If N#1I then a non—
empty set P ocan be found whioh intersects nelther N nor R,

This produces the contradictlion:
1 :r._d,R(R) = d.R{Hn R) = QR{H a(RubP)) = dR(RUP} = 0,

EXAMPLE 10, Define o to be 1 on the supersets
of R, and O on all other sets (see Chapter 6), and put
fo =6, = do. First consider the ring $ of Example 6
(page M) ‘mmux ‘the half-open, rational sublintervale
of (0, 1]. " If V denotes the interval (0, 1//2], then
e, and fv are identical and are carried by any set of
B containing V. The intersection of all carriers is
V¥ itself, whiech is not in B, Hence nelther function
has a least carrier,

Now consider the extended ring 8' = Bvi{vj. The
functions e, and rv are now different, The former has
all supersets of V in @' as carriers, as before; the
latter has the uﬁiquo carrier I. In both cases there 1s now

a least ecarrier,
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4. Integration,

We introduce for convenience the abbreviation

J(r, J) for % £(s).
Se

Only sums over finite collections ,cf are contemplated.

DEFINITION 15. The integral over the set N of
the function f, 18 given by

,/Hr = nP' Jir, P),

the directed limit being taken over the partitions 4 of
N, ordered by refinement. (See Definition 5, page 7.)

DEFINITION 16. A function f ¢ F for which /;r
exists and 18 finite 1s sald to be integrable on N, A
function which 15 integrable on every seti 1in B 18 sala

simply to be integrable. The class of integrable functions
is denoted by FI.

THEOREM 6, If f and g are integrable on N,
then of +@g 1s integrable on N and

_/;(dffegj = ﬂ_/;f + ang,
for any real numbers o and g.

Thus, the integral 18 a linear operator, and FI 18 a
linear subspace of F, The proof of the theorem is lmmediate,

THEOREM 7., (a) If f 4ie integrable on N, then f
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¥@integrable on every subset of N,
(b) If f is integrable on M and on N, then
f 1s integrable on MuN.

Proof, (a) Let 8 be a proper non—empty subset of N,

Given any & >0 choose ‘F‘lll 80 that
lﬂ!‘,f’)-g;fl < &

for every P finer than Pa' Write Q‘ and ‘Rl for the
induced partitions fSI'P‘ and {N _53'&' respectively.
Since Q‘u ﬂ‘ is a partition of N finer than PE. we have

late, @) » 3(£,R,) = /£l < e.
We also have
]J(f, Q] + J(f, ﬂﬁ) _/l'i” < g
for any partition Q@ of & finer than Q.+ Hence
lae, Q) = 3(r, Q)| < 2e.

The existence and‘ finiteness of the integral _/;ar is now
apparent,

(b) By part (a) we may suppose without loss of generallty
that M and N are disjoint, Given & > O we can choose Q‘
and R‘ partitioning M and N respectively so that

|a(e, Q) - '/1-1” ‘< €
[3(L, R) = /;r[ < &

hold for all refinements @ of @ anda R of R_. s5ince
the collection P, = Q,vK, 1is a partition of MvN, and any
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refinenent P of ‘P. 18 a wnion of refinements of (J; and

R,, we have
late, P) - U;lf -r./;if}] < 2&,

This shows not only that f 18 integrable on Mul, but also

wat /L, = AE + Syt

DEFINITION 17. The additive part of I ¢ ¥I 18 the
function f°e¢ F defined by

£9(3) = /;r.

THEOREM 8, The collection of sets on which & glven
function £ ¢ P 18 integrable is an ideal, on which. /f
1g additive in 5., 1in particular, Af f ¢ FI, then
£° ¢ FA: the additive part of an integrable set funotlon
is addltive,

The proof 1s an appllication of the preceding theorem, and

of the cencluding remark of 1ts proof,
THEOREM 9, If f € FA, then f ¢ ¥I and P =,
The proof is t.rivia.]..

THEOREM 10, If £ ie supersdditive, then Jof
exists and does nobt exceed f£(5), Likewlse, ¥ £ is
subadditive, then ,/‘sr exists and 18 not less than £(8).

we omit the proof. The dlfference - [f(5) - /if] tums out
in each case to be what is called in Chapter 5 the "deviation"
of f£3 it may be finite or infinlte. (see Example 11, below,)
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THEOREM 11, If f & FI 18 non-negative, then £°

is monotone,
The proof is trivial.

EXAMPLE 11, Let f ¢ F have the value 1 on all
non-empty eets, Then f 1s subadditive, But f 48 not
integrable on any set which has more than & finilte number

of subsets,

Absolutely integrable funotions.
DEFINITION 18, A funotion f & F 1s gbsolutely

integrable (AI) if |f] ¢ FI, A function f & F 18
absolutely integrable on N if |f| 18 integrable on N,

An absolutely integrable function 18 integrable, and we
have

121 s /18l
for every f & AI, 8 e .

THEOREM 12, The sum of two absolutely integrable
funotions is absolutely integrable, If

Llgl = o,

then £° 1s identically O on 'BH; conversely, 1if
£° 4s identically 0O on ‘B".'.’ then f is absolutely
integrable on N, and ,/;lltl = 0,

Proof, The first statement i1s an easy consequence of

the inequality

|£(s) + g(8)] = I£(3)] + la(s)l.
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To prove the firet part of the gecond statement, we note that
J;'Irl must vanish for all subsets of N, since the absolute
integral 18 obviously & monotone set function, Given € >0,

let £, be a partition of & £ N suen that

J(If],P) < &

holds for all P finer than fe. Then also la(e,P)| < s,
Hence f°(3) =0, ase was to be shown. To prove the second
part of the second statemént, choose P, partitioning N 80
that

la(e, Pl < ¢

holds for all P finer than P.. Let R be a subcollection
of P. 1r |J(f,R)| were greater than e, then by refining
the complementary subgollectlon F - R we would obtain a
eontradlection between the two requirements o) =0 and

rnia] =0, 3 Dbeing the cover of P —R. Therefore we have

iJ{flR}I i &

Taking R to consist, in turn, of those 5 & £ with £(3) 20,
and those with f(3) <0, ylelds the inequality

‘J“fItP> < 2e,
The result now follows.

This theorem shows that AI 18 a subspace of FI, The
absolute integral fuif[ 18 a norm, not on AI, but on the
smaller subapace of additive, absolutely integrable functions
with carrler N.
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THEOREM 13, If f e FI, then f ¢ AI Af and

only Af £° & AI.

proof, If £ & FI, then the integral of £ -1° 18
identiocally zero, By the second part of Theorem 12, f = £° ¢ AI.
Henoe, by the firet part of Theorem 12, f° ¢ AI implies that

¢ = (£-£°) +2° ¢ A1, and oconversely.

THEOREM 14, A set function 18 absolutely integrable
Af and only if it 18 integrable and 1te additive part ie

the differencge of two measures.

Proof., lLxpress f ¢ FF as the difference of two non-

negative functionst f = rl- ra, where

£, = }url + ), £, = §{|r| - 1),

If f e AI, ‘then fl and ra are abgolutely integrable, and

hence integrable, and we have

0 0_¢©
l.':m::t':L fg.

But f,° and r;' are measures, by Theorem 11. coyersely,
suppose that f° 18 the difference of two measures, By Theorem
9 they are integrable. Being non-negatille, theyiire absolutely
integrable, By Theorem 12 their aifference £° 1is therefore
absolutely integrable. By Theorem 13 the original functlon f
48 also absolutely integrable.

Not all integrable functions are absolutely integrable.

EXAMPLE 12, Define g(8) on the half-open sub-
sntervals of (0, 1] by:
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g((0, a]) = 1/a,
g((a, ®]) = 1/h -1/,

O <a<b <l. Extend g by additivity to the ring generated
by these intervals — this can be done in a unique way, Then
g 48 additive, but not the difference of measures, Hence

& 18 integrable, but |g| 48 not,

r on o (4] f .

The purpose of this sectlon is to describe how Stielt jes
integration of point functions ¢an be defined in terms of

non=-additive set functions,

THEOREM 15, If f e AI and if h 18 monotone,
then hf ¢ AI, |lMoreover, for any 8 ¢ B, we have

- 4]
/;hr = ,,gnr .

_ Proof, We shall show by separate arguments that hf° and
hf - ht® are absolutely integrable, The absolute integrability
of NWf will follow by Theorem 12, (a) For the first, it
suffices to.show that hm ¢ AI for measures m, Let P and
' be partitions of the .same set N, with ' finer than P,
Then

g n(T)m(T) = g g; n(1)m(1) < g Z n(s)a(r) = thams),
&P’ : _ P Tep! Se

T<S €5

the inequality resulting from the monotonicity of h. Therefore

0 < J(hn,P') < J(hm, P).
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We therefore have convergence to the directed limit ./,"h:. Hence
the function hm = |hm| 48 integrable. (b) Consider the funectlon
nt - ht®, By the monotonicity of h we have

0 < J(|Ine=uf®],P) < nm)I(jr- 2], P)

for any partition 4 of the set N. The right member of this
inequality converges to zero, since (f - f“}a' is identiocally
gero (Theorems 9 and 12), Therefore ./'thf -nt®| = 0, and
the function hf — hf® 418 absolutely integrable, (e) To prove
the last statement of the theorem, we need only observe that

(hf - nt%)° = o,

—Dby Theorem 12 and what we have Just proved,

Now let #(x) be a bounded, non-negative function on a
given point set I, Let # be any ring of subsets of I.
Define E‘ e F by: '

E"[H) = sup g(x);
xe 5

clearly E'“ 18 monotone., If f 18 any absolutely integrable
function on 1, then E’,r 18 integrable by Theorem 15, We

define the upper Stieltjes integral to be

,/;Iﬁd.f = _/;IE‘S.

The rest is stralghtforward: after removing the restriction to
non-negative functions ﬂ,i we can proceed to define the lower

1. Required by the particular way in which monotone set functions
were defined in Chapter 3, but not essential in the present context,
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dtielt Jes integral to be .

__/;ﬂd.f = -I/:—ﬁll.f.

When upper and lower integrals are equal, they define the
Stielt Jes integral itself, The existence of the latter will
depend in general on whether the ring T 1s fine enough to
"resolve” the function @#(x). A necessary condition for
exlstence 1s that, for every y e N,

limit [nup g(x) = Anf ﬂ(x)] = 0,

33y Xed xed
the llimlt belng taken over the directed set of sets 8 o¢ontaining
the polnt y, ordered by inclusion, This condition is not

sufficient, as the following example reveals,

EXAMPLE 13, Let f8 be the ring generated by the
collection conslsting of the subintervala of I = [0. 1]
and the indlvidual points in I. Then the condition of
the preceding paragraph 1s always met, But Af g(x) 1is
the function which 18 1 on the rational points and 0O on
the irrational points, and if f 18 ordinary Lebesgue

measure, then we have , for each N in 3,

Jypar.=0, [ogar = 1(n),

On the other hand, Af B 1s enlarged by adjoining the
get of rational points, then we have instead

;/;Iﬁdf --_/:;:ﬁdr= ./;iﬂdf = 0

for every set N s 8.
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EXAMPLE 14, The "inner measure" of subsets of the

real unit interval [0, 1] 48 a non-negative, superadditive
set function; it ie therefore absolutely integrable on the
ring of all subsets of [0, 1].  For purposes of integration
1t is useless, however, as ite additive part 18 identlically
larnj' "Outer measure”, on the other hand, ie not integrable;
indeed, every interval 18 a dis joint union of infinitely
many (non-measursble) sets of equal, positlve outer measure,
thus the integral of the outer measure on an interval 18

1nr1n1't.-.a

Fungtions of intervals.
Burk1113 has developed a theory of non-additive integration

for n-=dimensional Tuclldean space; it 18 the purpose of thils
gection to compare and connect his work with ours, We shall not
resort to formal dufihitinnn and proofs, eince hie results do not
contribute significantly to the more general theory set forth in

this paper.

An"interval' R mey be defined as an n=tuple of pairs of

real nunbers:

R = <{I1. .h1]'| see 8 {ln! bn’)l

1t being unimportant whether R be considered open or closed or

1. Thie can be shown by means of the well known partition of the
unit interval into two non-measurable sets of zero inner measure
and & third set of measure O, 35ee, @.8., J. von leumann, OD.

m-p PP« 38-41, ‘
2, It seems likely that this holds for arbitrary sets of posi tive
outer measure, but I know of no proof for non-measurable pote.

3, J. C., Burkill, Functions of intervala, Froc. Lon. Math, Boe.
(2) 22 (1924), pp. 275~310. _
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neither. The "norm" of R 48 the maximum of fli-— b, |3 the

"norm" of a collection of intervals is the maximum of their
norms, The collection of i‘.l.l intervals, ‘R., generates a ring
C=%R, Let £ ve a function on R, 7The Burkill integral of
£ ona set N ¢C 48 defined to be

limit J(f,P),
A

with P restricted to partitions of ¥ which copsist of intervals
gnly, and with the limit taken as the norm of P approaches lm:'«:h..1

pefore we can apply the directed-limit concept of integration
40 sugh a function f, we must extend it appropriately from ‘R.
to C. In the one-dlimensional case, every set 05 in (o oan
be represented uniquely as a unlon of dlsjoint, non-abutting

intervals 1y, «.e , R,. U0 can therefore consletently define
r{;:) = J{f' {111’ -ew ' :‘I{i}'

In higher dimensions, a canonical partition of non=intervals into
intervals 18 not so quickly described — but 1s neverthcless
poesiblz, The accompanying figure indicates the nature of the

difficulty that nust be overcome, With a canonlical partitlion

Flgure 1.
1., This 18 his "extended integral", ‘e have not followed his
notation in &ll respeocts.
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prescribed for non-intervals &8, we then define f(3) as above,

The Burkill definition of integral, just given, 18 evidently
equivalent to the definition obtained by introducing the
extended function and permitting arbitrary partitions P, For,
with each such ‘P, an interval partition ' can be associated
by taking the union of the canonlical partitions of the elements

of #; and we have
norm P' < nora P, and Jr, P') = J(r, P).

Using this equivalent definlition, it ls easy to see that if the
Burkill integral of & funotion of intervals existe, then the
directed=limit integral of this chapter exlsts for the extended
function and is equal, (This is true because in any directed
set of partitions the norm tends to zero,) ilowever, the converse
does not holds there are functions of intervals whose extended
functions are integrable in the sense of Definition 16 (page 16),
yet whose Burkill integrals do not converge, An example is given
below,

In all cases it can be shown that the directed-limit integfal
of the extension to  of a function ou‘ﬂ is independent of the
manner in which the extension is made — 1, e,, of the particular
canonical partition prescribed for non-intervals,

Thus, the partlal ordering of partitions by refinement, as
contrasthd with thelr lilpi- ordering by decreasing norm, and
the subsequent use of directed limits, strengthens and broadens
the theory of integration of non—additive functlons of intervals
in Euclidean espace of n dimenslions, The new formulation is
also more elegant, in that reference to the norm of intervals



can be eliminated.

L.

1
EXAMPLE 15, The function g defined on the one—
dimensional intervals by

s({=1/e, 1)) = ()%, K =1, 2, eee s
g(R) = 0 all cther ReR,

has no Durkill integral on the set ((-1. 1]), since the
1imit oscillates between 1 and =1, On the sets (=1, 0)>
ana <{0, 1)), however, the Burkillf integrals existd and

are equal %o O, (Thus, the Burklll-integrable sets of a
function do not form & ring.) On the other hand, the
extenaion of g 18 integrable and absoluiely integrable

in the sense of this chapter, with g° =0,

Due to Burkill, ep. git., Pe 285,
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5. Deviation of set funetions.

In this chapter we invent an expression for the amount by
which & function falls short of being additive, The "deviation"
of a set function, a8 we shall call this quantity, 1s analogous
in many formal respects to the varistion of a functlion of a
real variable, In this analogy, the additlive set functlons are
the constants, the superadditive set functions are the monotonlie
increasing functicns, etc. Qur principal tool will be the

partition trees introduced in Chapter 2 (page 8ff),

Let f be an arbitrary set function, let N Dbe a non—
empty set in B, and let w be a partition furction on B such
that T(w, N) 1is a partitlon tree, Define the three quantlities:

D;{.(f| w) = Z max [ua r(s) - J(r, "{E}]] i

Set(m,N)

D (f, m) = Z -nin [Dr £(s) - J(r, ﬂ(ﬂ})];
" Setrr,N)

bty m = 2| £(s) = uig, ws)) .
8eT(m,N)

We then have the following theorem:
THEOREM 16, (a) wWe have
q:‘{f. n) + D;(f, ) = DN(f, n).

(b) We have

oy(f, m = op(f, W = £@) - J(r, we(N)),
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(¢) If £ 4s superadditive on N then n;{r, n) = 0.
If f 1s subadditive on N then n;{r, w) =0, If £ 1is
additive on N then D},{f; n) =0,

Proof, 8y the definitlonsa.

THEOREM 17. If «n' 2, m, then we have

of(e, w') 2 Di(f, m,
D;{f, n') 2z D.(f, .,

Proof., A8 we noted in Definition 8, on page 9, the relation
w' 2 implies that (w*, N) 2 (w, N). The inequalities of

the theorem are now obvious.

DEFINITION 19, The deviation (resp., uppor deviation,
lower deviation) of a set functlon f ¢ ¥ on a set Ne®,

denoted by

A, (resp.  AR(r). A1) ),

is the least uppar bound of D"{f, ) (resp, D;{f, n)!
D;{f, n)), taken over &all partition functione 1w for which
T(m, N) 4is a partition tree, If we admit the value +@

these quantities are well defined for every fe P and

x B,
In view of Theorem 17, these suprema have some of the quality
of directed limits, However, not having the Moore=sSmith property

-N
convergence argumenta on the properties glven in Theorems J and

for "> ", we are forced in the following proofs to base our

4 (pages 9 and 10) and in Theorem 17,
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THEOREM 186, we have

Ay = Ajin) + Ao,

Proof, The theorem asserts that the sum of the suprema is
equal to the supremum of the sum, It will sufflce to show that,
given two trees T(n*, N) and T(m , N), there is a tree <(w, N)

with the property:

e, m 2 oi(r, '),
(1) . B
D(f, m) 2 DAf, m),

&

¢hoose partition functiona wn*' _::H.ﬁ and m ' EH o according

to Theorem 4 (page 10); we intend to show that at least one of
these two funcilona has the property {}}. 3ince the ground
partitions w" '*(N) and w '#(N) are equal, we have by Theorem
16 (b) the relation:

ppf, w*') = pi(f, v"') = DG(f, «7') = D(f, v').
Call this quantity 7; then 7 >0 1implles
D;{f, ') > n;{r, '),
and 7 <0 1mplies
DR(f, v ') z Di(f, W),

In the first case take w = n*'; in the other, mw= 1w ', Then
(1) follows #ith the aild of Theorem 17,

THEOREY 19. If A, (f) 1s finite, then A (f), As(n),
and A;{-r) are superadditive set functions on 31‘.
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Proof, Suppose A“m finite, and let [Hl' H,J be a
partition of N. Let 1{«1, Hll and 1‘“&' HE} be partition

trees, Define a partition function w:
n) = {Hy, Nafs
n(T) = niiTJ for T & r‘(ni, Hl]' 1i=1, 23
w(T) earbitrary on other sets T ¢ ﬁ

Then T(m, ¥) 18 also & partition tree, consisting of the set
N and the members of the diajoint collections f{nl, Hlj and

'T.'(rrﬂ, K.)«. Hence,

2
DH{I, w) 2 DH]-{I', rrl} + D}_,E{f, ”2}'

If we take the least upper bound of both sides with respect to all
palrs Mys Tl of partition functlions whicnh generate trees on Hl

and HE respectively, then the right-hand side of the above in-

equeslity becomes the sum of the deviationa of [ on H]_ and !l'

while the left~hand side becomes something less than or equal to

the deviation of f on N. Consequently we have

Ay 2 Ay (0 v A (0.

This result establishes the finiteness of /\ (f) for a1l s e By.
A repetition of the whole argument, with "S" replaeing "N",
now establishes superadditivity, The proofs for A* and A-

are the same,

THEOREM 20, [\, (f) =0 if and only if f 1is

additive on N.

Proof, If f 18 additive on N, then AN{f} obviously
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must vanish, If f 4is not additive on N, then dis joint,
non-empty sete 5 and T exist in ‘BH with

£(s) + £(7) # r£(svn).

The five seta N, 9v7T, N- (8vT), 3, and T oconstitute a
partition tree 2' = 7(w, N) for which the quantity nncr, )
18 positive (see Figure 2). lence ﬂﬂ{ﬂ >0,

sel N=(5vT)

/\

8 T

Figure 2,

Using thls theorem and Theorem 12 (page 19) it 1s easy to

ghow that the funotl onal

Nell = A0+ At

{8 a norm on the linear &pace of apnolutcly integrable set
funotions with carrier N and with finite deviation on K, We
shall not pursue this application of the deviation in the present

paper.

Any function whose deviation on all sots 3 & 8 is finlte

ecan be expressed as the sum of three functions r“‘, £ !"‘l

—=the first two defined by



) = Ao,

£7(s) = -A;‘m,

and the third belng the remainder: fﬁ =f - -1,
DEFINITION 20, The functions f  and £ Just defined

are ealled the guperadditive and gubadditive parts, respec-
tively, of the funetion f,

The next theorem asserts that t" i8 the additive part of f,
as defined earlier (Definition 17, page 18).

THEORLM 21, If the deviatlion on all sets of f 18
finite, then f 18 integrable and £° = t"?: hence

£ = £+ 174 29,

- Proof, Fix N :‘8, e >0, 3ince the deviation of f 18
finite, we can find partition functions n”*, w  with

0 < A;{r}-n;(r, ) < &,
o s Ay - De(f, 1) < &

Exactly as in the proof of Theorem 10, we can find a single

partition function n which satlsfies both sets of inequalities
at once, Moreover, by Theorem iTi i w Z, then n' will
also serve in place of n° and w in the above inequalities,

Inserting ', and swbtmding, we obtain

[AZ® - o2, v - Asie) » oge, v | < e

Theorem 16 (b) (page 29) mand the definition of r’ enable us to
rewrite this as follows:
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la(e, n'o(n)) - )] < e

By Theorem 3 (page 9) we see that the partition w'*(N) oan be
an arbitrary refinement of the partition w*(N), Taking the
latter as the fz of our usual procedure, we see that the
integral /Lf exlsts and ie equal to r#(N). This completes

the proef,

It 18 obvious (Theorem 19) that r* 1s superadditive and
£ subadaltive, We show next that thelr integrals are identically

zero.

THILOREM 22, 1 the deviation on all sets of f 18
finlte, then £* and £ are integrable and their additive

parts are identlcally O,

Proof., Fix N E‘B, ¢ >0, and choose w 80 that

(1) A;{r} -ph(f, w') <

holds for every ' v, We assert that

2
(2) a(e*, n'r()) = e,
for every such n', Juppose this is not the case for some

' 2 "o Let Ry, ees y Ry be the elements of the ground
partition of T(v', N). Then we have

gf+(“1’ = ZA};‘{Q > e,

The strict 1naﬁuality neans that we are able to construct trees

2;= T(m, Ry) on the sets R, which satisfy



(3) gg’l(f, "1’ > &,

The collection consisting of the union of the ZI and the tree

T(rw', N) 48 again a tree; let us call it -<(n", N). (See Figure 3,)

. /(ll\

.‘- T{i‘.l H) .
/ / R
S S ™,
ANENA A
- TR - 7.
Figure 3.

The partition function w" 48 described by saying that it agrees
with n' on the non-minimal sets of 7T(m'y N) and with m, on
all sets of /?1-. i=1,2, ..., n, Therefore, by definition

(page 29),
" *- '
n;{r, ™) = D(f, ') + g D;.l(f' ).

This equation, together with the inequalities (1) and (3), ylelds
the absurdity:

og(r, ) > Age),

thereby establishing the assertion (2)., To complete the proof,
we simply note that the partition w'*¢(N) ocan be taken to be any
refinement of mn*(N) whatever, by Theorem 3 (page 9). Therefore
the directed limit converges to zero — that is, /Lf* =o0.
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By a similar argument, flt" =0,

This theorem and some earlier results can be neatly expressed
together by considering the superscript aymbols "o, Me", "',
as operators in the space of functions of finite deviatlion,

THEOREM 23. The operators denoted by "o", "+", "=,

applied to functions of finite deviation yleld functions of
finite deviation, They combine agcording to the rulesi

v
" = o it w#E Y,
Y

.

Proof. A function f of finite deviation 1s integrable
(Theorem 21), and Theorem 20 (page 32) shows that the deviation
of £° 1s finite. Theorem 16 (b) (page 29) applied to the non-

negative, superadditive function £* gives us
n;(r**, w) < f£*(N),

showing that the deviation of f* 18 finite — similarly for .
The first rule of combination is derived from Theorems 16 (e), 20,
and 22 (pages 30, 32, 35); the second is derived from the first
with the ald of Theorem 21, thus:

t** = - -t = ¢

£~ = £ - . =,
— and fpom Theorem 9 (page 18).
Rem&rk., Although these operators behave algebralecally like

orthogonal projections, they do not, of course, decompose the
linear space of functions of finite deviation into three comple—



38
mentary, orthogonal subspaces. The functions £* and £ 1le
in opposing cones which span the same pubspace, orthogonal to
the subspace of additive functions. Also, the operators "+

and "-" are not linear,

A funotion of finite deviation can be decomposed in many
ways into an additive, a superadditive, and a subaddltive function,

the latter two with integral zero, For example, we have
£ = (£*+g) + (£ -g) » 1°,

where g 18 any superadditive function with g° = 0, Wwhat
distinguishes the decomposition of Theorem 21 ia that 1t
minimizes the sweeed=tme deviations of the componentsa, We oan
express this fact aleo by the statement, that no non-additlve,
superadditive function h exists such that f* = h is super—
additive and f + h 1s subadditive.

Gharacterization of the functions of finite deviation.
The functions of finite deviation form an important class of
integrable set functions, In the case of a finite ring of sets
they obviously take 1n_111 get functions., The extent of thils
class in general may be judged by the following theorem, which

is an easy consequenge of our previous results,

THEOREM 24, The olass of functions of finlte
d-ulﬁ.ﬁn 18 precisely the subspace of F spanned by the
integrable, superadditive functioms.

Proof. For any superadditive function T, whether integrable
or not, we have, by Theorem 16 (b) and (¢) (pages 29-30),

py(f, m) = f(N) - J(£, ne(n)).
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By Theorem 10 (page 18), /;f existe; hence we may pass to the
1imit (using Theorems 3 and 17 in the usual way) and obtain

Ajie) = t) = /it

Thus, integrability of r‘ assures that f has finite deviation,
It follows that &ll functions in the subspacge spanned by the
integrable, superadditive functions also have finite deviatlion,
Conversely, Theorem 21 (page 34) shows how every function of
finite deviation can be bullt up out of superaddltive, integrable

funotions,

Examples.

Example 11 (page 19) exhibits a subadditive funotion whose
integral is infinite, and whose deviation 1s therefore infinite,
This shows that the word "integrable" is essential in the state—
ment of Theorem 24,

Example 12 (page 21) presents an additive funetion which
18 not absolutely integrable; Example 15 (below), on the other
hand, pr;unu an absolutely integrable function whose deylation
is infinite, Hence, having finite deviation 18 nelther necessary
nor sufficlent for s&bsolute integrability, ' |

EXAMPLE 16, Take B as the ring of Lebesgue—measurable
subsets of the real line, and let m & FA Dbe the Lebesgue
measure, Define f Dby:

(1) r(s) = g(u(s))

where #(&) =0 for « rational and (%) =& for «
irrational. Then f 18 integrable and absolutely integrable,
and £° = 0, However, the deviation of f on every set of

1 Le., Tiniteness of ./'}f.



positive measure is infinite,

Praér (of the last statement), Let 8 have positive
measure, Construet a partition tree T(m,, S) with the structure
indicated in the flgure, The measures of 3 32.. eee 5

/\
/\

/\

Figure 4,

are made alternately rational and irrational, The measures of the

a—{i-rl]

H’i are made smaller than m(8), for 1=1,2, ,.., n,

8o that thelr total measure is less than m(38)/2, COlearly we
have

Ds(f, mg) > n (a(s) /.

Letting n 1increase beyond all bounds, we sée that the deviation
of £ on 8 18 infinite,

The foregoing example promis an observation on the general
behavior of set functions related to a measure by an equation of
type (1)3 For such a function to be integrable it 18 necessary
and sufficient that ¢g() have a right—hand derivative at o(= 0,
For the function to have finlte deviation on sets of positive

measure it 1s necessary (as the proof above shows) that ¢ be of
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bounded variation in every interval; and it is sufficient that
#§ be the difference of two convex functions having right—hand
derivatives at &= ﬁ. (ve are assuming in this discussion
that § 418 right—continuous at o(= 0, and that #(0) =0,)
Counterexamples exist showing that neither of these conditions
18 both necessary and sufficlent,

A more systematic exploration of this zone of contact
between the theorfes of set functions and functions of a real
variable uaulﬁ lead us away from our main subject, and we there-—
fore postpone further investligation of this interesting toplc

to another occasion,



6. Step-functions,

Our tools for probing into the nature of non-additive set
functions have so far included the partitions — for the integral
= and the partition trees — for the deviation, In Chapter
T, where the imputation operator is defined, we shall need also
the finite subrings of B, In the present chapter we use finite
subringe to uncover the pesential properties of a very speclal
class of set functions, called "step—functions", whose deviation
not only is finite, but 18 concentrated at a finite number of
lpntl.‘t The main result 1s the inversion formula of Theorem
27 (page 44, below); this w!.il be useful in Chapter 7, and le
interesting in its own right as well,

DEFINITION 21, The inglusion function of a non—empty
set R e B, denoted by .. 18 given by:
{-R{BJ = 1 Af 8 2 R,
tR{ﬂJ = 0 it 32 R,

We see immediately that if R 1s an atom of B, then ey 1s
additive, If R 418 not an atom of B, then . 1s superadditive,
with integral '/;'R =0 for every 5 & 8 and deviation
A.(-HJ =1 for every N 2R,
DEFINITION 22, A step—function is a finite linear
comblnation of lneclusion funetlons, The linear space of

step—functions 1s denoted by K,

1., However, on a finite ring all functions are step—~functions,.
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THEOREM 25, The inclusion functions are linearly
Aindependent, and hence form a basis for E,

Proof. duppose that there existed non—zero coefficlents

g"ﬂ'n = 0,

J veing a finite collection of sets, Let R' 5@ & minimal

°’R such that

element of J « 'Then

ix"
z o{,nIH{.x} = “R' # 0.
This contradiction esatablishes the theorom.

It follows that every function e &€ L has a unlque

representation
1 e = o all Q.

DEFINITION?@3. The finite collectlion 6°(e) of sets
whiah occur in the representation (1) of e 1s called the
gpegtrun of e, The finlite ring o{e) gonerated by o-e)

is called the gpegtrum ring of e,

. THEOREM 26, The set N ¢ 8 48 a carrier of e ¢ E
1f and only 4f N contains the cover of ¢’(e).

Proof. If N ocontains the cover of e¢%e), then N carries
¢ as a consoguance of Theorem 5 (c), page 14, OSuppose that N
doep not contaln the cover of eofe). let R'emElE$ Dbe minimal
among the sets of eofe) which are not contained in N, We then

verify that



e(NAR') = eR') -~ .
Therefore N does not ecarry e.

THEOREM 27. Let Q& be any finite subring of 0
which contains o0- (e), and let J(T) denote the number of
atoms of (1 contained in T. Then the coefficlents &,

in the representation (1) are given hyl

Xz = a{-n”“‘s’ats}.

Proof, Given e ¢ E and @ 2o(e), the numbers «_ such

e = ; “R'H

are uniquely defined for all R 1n (L (some of them may of course

that

pe 0). Define the function e' by

o = ;[&Zdn{-n"m"ﬁ}ets)] -

To prove the theorem we must show that e' =e, Let T be any

set in . Then

ot(1) = > (=1) 3 FS)g(s).
qu! E.:

Reversing order of summation glves

o' (1) = ; [; (1) 3B ()3 B)g(s),
ﬂ.T [+

SERET

1. Wwe recall that a.n denotes the subcollection of A consisting
of subsets of R.
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where we have made use of the additivity of J 1in splitting

up the exponent., Let T' Dbe the cover of a‘r’ it 18 the

largest set of (. contained in T. If 5 e, 18 a proper
subset of T', then 1t is easy to show that the expression in
brackete vanishes = it becomes an alternating sum of binomial
coefficients, Therefore the only surviving term of the entire

summation 18 the one with 3 =R =T7"', giving us
e'(r) = e(T').

But, clearly, ep(T') =e_(T) holds for every R ¢ 2, and Q@
includes the spectrum of e, by hypothesis, Hence e(T') = e(T).

This completes the prnnr.l

The nature of the formula of Theorem 27 suggests that 1if

of. were sultably defined for sets R outslde cl, it would

R
be a sort of inversion of the function e, This 1s essentlally
what the next definition accomplishes, exeept that a factor of

{..1]'1{“} has been divhded out for convenlence,

DEFINITION 24. Let A be a finite subring of B;
let J be derined as in Theorem 27; let f Dbe any set
function. The inversion in & of f, denoted by r%
is the step—function defined by

% = ;{-1}-1(5)1-(3; 0.

THEOREM 28, If e s E and  2e¢(e), then 'Ed-:"

Proof. By Definition 24 and Theorem 27,

1. The footnote on page 42 is a corollary to Theorem 27,
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THEOREM 29, For any fe¢ P and T s Q,

£%%) = f£(1).

Proof, The argument is essentially a reproduction of the
proof of Theorem 27, speclalized %o Te 4,

It i8 a trivial observation that the directed limit
fa.
1im £ (8),
o

taken over the finite subrings a of B , partially ordered by
inclusion, exists and is equal to f(8), for every 5 & 8. 1t
18 only in this sense that the atep—function £44 gan be regarded
as an approximation to f, The error f = f‘m" is qulte
uneontrolled on the sets of f§ -4, unless perhaps f satisfies

some sort of continuity condlitlon,

THEOREM 30. If f 48 adaltive, then f% vanishes
on ar -ﬂ.‘-

THEOREM 31, If e is a step-function, and if ad 1is
the spectrum ring of e, then a 1is I.ilﬂ the spectrum

ring of %,

We omit the proofs.

Example from number theory.

EXAMPLE 17. Let B be the ring of square-free integers
(Example 4, page 4)., Let J(T) denote the nuuber of prime
divisors of T. Let f be any set functlon on B with
carrier ll;. then f 18 a step—~function with o-(f) &BH.
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we therefore have

£(s) = éﬂﬂﬂol(a} - %«H

for all &8 ¢ 6N - i.,8.,, for all 8|N. Theorem 27 now

a (1) 3R ¢ )

for all S|N, This 18 the well=known MBbius inversion

rumula.}

tells us that

The carrier N ocan be increased indefinitely, or
dispensed with entlirely. The formula remains valld for

functions defined over all integers 1if the conventlion

is adopted for integers V wlih square divieors,

:L. see T. H-.aon MMIM New York # Stock-
holm, 1951, page 2



7. Imputations,

introduotion.

This chapter introduces certaln operators on set functions,
which we call imputagions, They take the form of llnear projections
onto the subspace of additive set function; in this property they
resemble the integration operator of Chapter 4, However, an
imputation leaves fixed a function on its carriers, adjusting
the values on the smaller sets to achieve additivity, In contrast,
the additive part (integral) of a set function depends only on
how it behaves on the atoms and infinitesimal sets of the ring;
it 18 in fact the additive function which best approximates the
original function on those sets,

A few remarks are in order concerning the type of problem
whioch these operators are designed to solve, and the origin of
the term "imputation”", In economics one 18 freguently led to
consider "bundles" of heterogeneous, but related, goods (or ser—
viges, production factors, ete.), and to assign to each bundle a
price, cost, or other measure of value, A complete scheme of such
values 18 evidently a set function, The non-additivity of these
set functions has long been ‘numim by economists, though under
a variety of names (e,g,, "complementarity", "law of diminishing
returns”, "cheaper by the dozen") depending on the context, and
the direction of the deviation from additivity,

The "problem of imputation" i1s the problem of how to appor—
tion, or impute, the total value of a bundle among 1ts component
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4 A solution to the problem may be expressed as an addlitive

items.
set function, equal to the original on the full bundle, but in
general different on the sub-bundles, One of our imputation
operators can be viewed as & rule of apportionment which solves

the imputation problem for a given Boolean ring of bundles of
goods, whatever the initial assignment of values, However, before
a particular operator can be singled out as the "natural" solution,
the relative importances of the varlous items must be known, and

expressed as a measure (or sequence of measures) on the ring,

In the case where the "bundles" are coalitions of individual
firme or people engaged in competitive activity, the imputation
problem becomes the problem of determining the value of an n—person
game, We shall return to this subject 1in the final section of
this chapter,

¥ f a .
We first define imputation for the inclusion functions; then
extend the definition by linearity to the step~functions, It will
be necessary for the time being to stick to functions ;th!.oh vanish

on all sets of measure 2zero,

DEFINITION 25, A set function f ¢ F 1s sald to be
absolutely gontinuous with respect to the measure m on (S)
if m(s) =0 implies f(S) =0, The subspace of absolutely
ecntinuous functions 1s denoted h:} F(m)3 the subspace of
absolutely continuous step~functions by E(m),

1. An authoritative account of the imputation problem, though
hardly in mathematical terms, may be found in the article Zurech-
nung by H. Mayer, pp. 1206-1228, HandwBrterbuch der Steatewlasen~
schaften, 4th ed., Vol. 8, Jema (1928).
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THEOREM 32. A step—function 1s absolutely continuous
Af and only if the measure of every set in ite spectrum is

Pﬂ"-ti“n

We omit the prpof, Note that a funotion in E(m) may have

sets of measure sero in i1ts spectrum ring.

DEFINITION 26, Given a4 measure m on B and a set

R with m(R) >0, then the imputation of the inclusion
function .H’ written e %, 1s the set function defined

R *
by
o = m{l'ln g
.R {ﬂ} —(rm—lc

DEFINITION 27. Given a measure m on € and a step—

then the ilmputation of e 1s the function

function e e E(m):

m m
" = o _e
Rec{e) R R
We state some of the elementary properties of imputatione
on E(m), omitting the proofs, which.are routine in character,
wWhen we extend the definition of inputaiion to wider clasees of
functions we shall do so in such a way that these properties

remain valid,

THEOREM 33. (a) If £ is additive, then f" =f, 1In
any case, " is additive,
(b) If 4 and @ are real numbers, then



(xf + ps)' = ul" +{35‘.

(e) If N oarries f, then N also carries fm,
and £(N) = £(N).
1
(d) If o« A48 a positive number, then f =fu,
() If m(8) =0, then f£(3) =0,

Ihe fundamental formula for Smputetlons.
We now proceed to derive an explicit expression for the
function r". when f 18 in E(m),

THEOREM 34, Let m be a measure on 3; let f be
a funetion in E(m); let A be a finite subring of B
contalning ¢ (f); and let J(3) denote the number of atoms

of (Il contained in S, Define ocertain constants H’u, for

sets S ¢ O of positive measure, as follows:

~yd(Q)
¥g = ;E%E;L%_Qf'

Qn8=0

Then we have

() = n(p) myﬂ[r{a) - £(s=2)],
S20P

for all atoms P of (. of positive measure,

Proof. Write £ in the form

f = é“ﬂ.n'

1. lNote that F(xm) = F(m),
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8ince f ¢ E(m), we have m(R) =0 only Af a:HtO. By the
definitions,

9(z) = a&nl‘&ﬂ—)ﬂ= Emnﬂ%}.

m(R)>0 p

Upon inserting the expression for “F from Theorem 27 (page 44)
and manipulating the result, we obtain the formula of the theorem,
The ddtalls of the manipulation are as follows:

(p) = ;{;ﬂtm“ﬁ’r{a)}}%

RaP .
o ; {g (=) (B8 ) %ER(-““H)”T)‘; e
82p 4P
= (=1) I F=8) [o(3) = £(8-P ';'.{ﬂ
;{;ﬂ freo) - £e-n] ¢ 28
R2P  S2P
3(R=8)
-] _
= n(2) g { 2 hix g[ﬂs) - t(s-2]
32p R23
= P f(8) - f(5=P)]. Q. E. D,
a )%B’E[{ ) )]
52

In order to eatablish an important propertiy of the constants

i
J‘a. we shall need the following lemma,

LEMMA, If the real numbers "1' "2' - xn, ¥y, and

) are all positive, then the sum

1. We only need the oase A=1, However, the more general result
is easlier to prove.
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= ¥ -2
‘n(,' }) g (‘ij IEH':Z... (, * 111‘ e *xlr‘)

...-:1'5:1

1
is positive, If any x, = 0, with the others non-negative
and y swéssh positive, then ﬂn(.‘f. a) =0,

Froof, The argument 1is l.n induction on n. The result is
immediate for n =@. Suppose that ¢ (¥, ) 1s positive

for all positive values of y and M, Then
3P0 A = =24 (241 < 0.

Thus, ‘n—l

other hand, we have the recursive relationship

is a strictly decreasing funotion of y. On the

#n(Jt A) = ‘l‘l-l(:f’ A) - ‘n—lty’xﬂ' 2,

obtained by separating out those terms of the sum which involve

X+ [Henoce ﬁn{,r, A) Ais positive, as was to be shown, The

same relatlonship shows that ’n =0 if x =0. By the symmetry
of ﬁn. the same must be true for any X » d =1,2, ¢sey N

Thie completes the proof,

THEOREM 35, The constants Yﬂ of Theorem 34 are non-
neagtive, and
Y, = 3
= '3 m(R)
S2R
for any set Re Q with m(R) > 0. Moreover, ¥, =0

Af and only Af there is an atom of (@, not contalned in

3, having zero measure.

—— a

1. It is understood that the inner sum reduces to y = when »r =0,
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Proof, To prove the firet and last statements, we apply the
lomma, setting X, X5, eeey X, equal to the measures of the
atoms of & not contained in 5, and y=m(3), A =1, To
ompute the sum of the !’a. we first observe that the definition
of ’(S is indifferent to the number of atoms inside 3, or to
their individual measures: Therefore we may as well assume that
'R 18 an atom of (I, since R 1is contained in all the sets 3
considered in the sum., Now consider the quantity e, (R).
According to the original definition (page 50) it equals 1,
According to Theorem 34 (page 51) it 18 equal %o

n(R) ; fs[-ntal - e (3-R)],
82R

a(R) 2 Vg
SR

Equating these two amounts ylelds the deslred reault.

which reduces to

The last two theorems reveal that f (P) is a weighted
average of differences f(T) - ff-P), Af P 1i» an atom of a
sufficiently fine, finite subring of 8. This observation
leads quiskly to two further properties of imputations,

THEOREM 36, If £ is superadditive, then ™(s) > £°(s)
for a1l S e B; Af £ 1is subadditive, then f(3) < £°(3)
for all 5 s B,

THEOREM 37. If £ 48 monotone, then ™ 1e non-

negative, and hence monotone,
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The proofs are immediate, These properties, like those of

Theorem 33, will remain valid for imputations defined on more
extensive classes of functions (page S5Tff, below).

The formula of Theorem 34 can be used to find f"(3) for
an arbitrary set 5 in 8 : one merely takes & to include S
a8 well as the members of ¢(f), and adds up the values of ™ on
the atoms of @A contained in 8, However, the nexi theorem
enables ue to avoid making (@ larger than the spectrum ring of
f. Instead, to compute r'l&), we add up the values of r' on all
the atoms of @A, welghting each term according to the proportion
of the atom which 18 contained in &,

THEQOREM 38, If f e E(m), 4f P 18 an atom of a
finite ring contalning o(r), and Af Q 18 any subset of
F, then

5{%}1"(?} it m(p) >0,
Q) =

0 ir m{P] =0,

Proof., If m(P) = 0, then also m(Q) =0, Hence Q) =0
by Theorem 33 (e). On the other hand, Af =m(P) >0, then we have

20 - M

for every set R 4in o-(f), Dbecause either (a) RaP =P and
RAQ = Q or (b) RAP=RnQ = 0, The result now follows
from Definitions 26 and 27 (page 50).

EXAMPLE 18. Coneider the case of a finite ring B
having n atoms, Let J(8) denote the number of atoms in 3.
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Then J 4is & measure, and E(J) = F: all functions are
absolutely continuous step-functions, If P 18 an atom,

then we have the formula
1(8) =1) (= J(3)N :
tip) = 2&;; Ad [£(s) = £s=-2)].
82F
In this sum the total welight assigned to sets 5 of measure
j(8) = k, for each k=1,2, ..., n, 1is exactly 1/n,

This formula has application to the theory of n-—person

games (see below),.

Proof oi formula, We have

J(Q} q
el m
¥ = 3(s uQ) g‘(‘ﬂ'(q) = #in, 8,
where we have put q = J(Q), 8 = J(8), and m=n=s, We must
show that
- (8=1). m:
(1) g(m, 8) -‘—rn):)-r '

We progeed by induotion on 8, For s =1 we have

1
(mel)g(n, 1) = gt-n" (qa1) = 1 -r;t-n (5:1) = 1,

as required, For the inductive step, we need the identity

d(nsl, 8) = @g(m, 8) - g(m, 841),

derived in the same way as its counterpart in the proof of the

lemma on pages 52-53. Assuming (1) to have been established for

a particular 8 and for all m 2> O, we now obtain the result

for 8 + 1l
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gim, s4l) = #(m, 8) = g(psl, 8)

L ]

il+m+Ej! .
Having thus evaluated rh. we obtain the desired formula from
the formula of Theorem 34 (page 51).

We now enlarge the domain of deflnition of the imputation
operators, Our method will be to approximate the function f & F(m)
by functions of the form r““'.l (e nnallj' that £%% 15 the
step—-function with spectrum contained in 4 that agrees with
f on all the sets of 4,) The limit of the imputations of f“,
as Q. is enlarged and refined, is defined to be the imputation
of T,

THEQREM %9, If f 1is absolutely continuous, and if
@ 1e a finite subring of ﬁ, then £%% 1s absolutely

continuous (with respect to the same measure),

Proof, Let R be any set in & with m(R) = 0; we shall
show that R 18 not in the spectrum of f£%%, The coefficient of

@, 4in the representation of %% 18 given by

oLy = ;' (-2 8) gae

(Theorem 27, page 4#). B3ut m(8) =0 forall S e dR, by the

R

monotonieity of m, Hence f(3) =0, Hence r""{u) = 0, Hence

————

1., BSee Theorem 29, page 46,



Xp =0, Henoe R ¥ o (2%%),

DEFINITION 28, Let f be absolutely continuous with
respect to the measure m on 8, Then f 1s sald to be
ipputable Af the directed limit

dg = lm (£2H(s),
a

taken over the finite subrings & of 8 partially ordered
by inclusion, exlsts for every 35 & £, The imputation g™
of £ 1s then given by f£°(8) = A,

THEOREM 40, The definltion Just given, applled %0
step~functions, i4 cocnsistent with Definition 27 (page 50).
Theorens 33, 36 and 37 (pages 50, 51 and 54) are valid for
all imputable functions in F(m).

We omit the proof,

No independent characterization of the clase of imputable
functions 48 Xnown at present. The absolutely continuous step—
functions are imputablej and it 1s easy %o whow that the absoclutely
gontinuous additive functions are all imputable, The example
given below of a non-imputable function is non—-integrable as
un." It may be conjectured that all (absolutely continuous)

integrable functions are imputable,

In general one might expect that the Amputabllity of a set
funetion would depend on the cholce of measure. we are unable to
provide an example of this phenomenan,

EXAMPLE 19, Let £ be identically 1 on all non—
empty sets of 8, Then, if B 18 the ring generated by

—

1. See Example 11, page 19.
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the half-open intervale (a, b] in (0, 1], and if m
is the usual Lebesgue measure, then f is not imputable,

Proof, Let O be a finite subring of B and let P be an
atom of (., Then we have

(2% (?) = w(2)y, = I{Pl[l-hrf*m* eoe ].

If m(P) is sufficiently amall in comparison with the measures
of the other atoms of (, then this quantity will be as close as
we please to 1. But €M™ 1s & non-negative, additive funotion,
whose value on the cover of 4 4is 1, (Theorem 33, pages 50-51,)
Therefore, Af S 18 any set in B other than O or I, and Af
Q' 1s any fixed, finite subring of B, we can choose & to
include @' and such that (£%*)(3) 18 as close to O as we
please, by merely constructing a very small atom gutside 5. Ve
can algo make (£%)™(s) as close to 1 as we please by con—
structing a very small atom inajlde 3., It follows that the
directed limit

11a (£24)%(s)
a

diverges, for all S e B, S5 #0, I, The proof Las made use of
the fact that every non—empty set in f possesses subsets of
arbitrarily amall neasure; also the fagt that there are no non—

empty sets of measure zero,

In working with the directed limit of Definition 28, it is
nearly always essentlial to discover how the constante V¥, (as
defined in Theorem 34, page S51) change when (L is peplaced by a
more inelusive, finite ring 4'. The next theorem fills this
need. It should be pointed out that any finite ring that includes
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(L can be reached from (L by a finite chain of extensions of
the two elementary types considered in the theorem: (a) splitting
an existimg atom in two; and (b) introducing & new atom outside
the cover of the existing set,

THEOREM 41. (a) Let @' Dbe the ring obtained from
the finite ring ( by adjoining two sets F, and 7,
which partition an atom P of &, Let 3 be a set of
Q. not containing P, with m(s) > 0. Then
]
¥g = ¥g ¢ r.‘:’:uj?l : "Qupz

and

Y

L]
sop = ¥

SvP'’

where Y and ¥' are defined as in Theorem 34 with
respect to the rings & and ', respectively.

(b) Let @' Dbe the ring obtained from the finite
ring (O by adjoining & set P, not contalned in the cover
of 4. Let 5 be a set of A with wm(3) >0, Then

rﬂ - rf'} bl réul' ’
where ¥ and ¥y are defined as above,

Proof. Construct the step—function d e E(m) which 18 1
on the set S5, O on all nt.hu" sets of Cl. and whose spectrum
18 contained in Q. The behavior of 4 on Q' 1s deseribed by:

{d(aur]_} = d(supp) = 4(8) = 1

a(T) = © (all other Ted').
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Let Q be an atom of f:II15 of positive measure, Using the ring
@ in the formula of Theorem 34 (page 51), we find that

(@) = m(Q) V.
Using the ring @', we find that

@ = 2@ ¢ w3, ¥ig,]

kLquating the two gives us the first equation of (a), The second
equation follows at once from the definition, since 3; does
not depend on what the atoms inside 5 are like., The proof of
(b) follows exactly the same method.

Genexellized lmputatlons.

In this section we outline an extenslion of imputations to
functions which are not absclutely continuous, The ldea 1ls to
set up a secondary measure on the ‘a‘f#& of sets whose original
measure was O, and, if necessary, a third measure for the sete
for which the first two measures were O, and so on, In general
we oend up with a transfinite hierarchy of measure funoum-.l

DEFINITION 29, The zerp ring XZ(am) of & measure m
48 the ideal of sets 5 with n(S) = 0.

et m denote a hi!rlrﬂ'l,:r of functions mg, where § runs
over the ordinals less than some fixed ordinal ©, such that
each mg 18 a measure defined on precisely the ideal 86"

61 = ﬂ'l
mz(us-}.
S'<d

The word 'measurd' is used in this section in a lltahuy modified

m&jﬁuﬁ 28 %n Tadal *of "% s ana addd tEve , "Ron-
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and such that B8, 1s the null ideal {0}, It is convenient %o

set m () oqual to © for sets 3 outside of B8;. Then there
will be a unique ordinal J., for each non-empty set R in B,
sueh that 0 <ng (R) < @,

R

DLFINITION 30. Lot 'ni be given by

from this, define o8 for all e ¢ E by linearity (compare
pefinition 27 (page 50)); finally, for all f ¢ F for which

the 1imite exist, let the generalized imoutation f® be
defined by

M3) = 1im (£ %(s),

the directed limit being taken over the finite subrings Q@ of
B, partially ordered by inclusion.

The ordinawy lmpytations correspond to the case o =2 -—that
u.wmmm-rummm; B consists of a single

measui¢ funocvion m,.

THEOREM 42, The counterparts of Theorems 33, 36, and
37 (pages 50, 51 and 54) hold for generalized imputations,

ye omit the proofs, The generalized form of Theorem 33 (e)
1s vaguous (or meaningless), Next we describe the generalization
of the formula of Theorem 34, L

iIf £ 1s a step—-function, then 1ts spectrun o{f) oan be
analyszed as follows:



.j‘ = o(f)n [GI-Z(-,J]

into a finite number of collections of sets having the same JH.
Then £ itself can be broken up into a finite sum:

f = ;f‘..

where u‘[f‘} -j:.

THEOREM 43, Let (L be a finite subring of 3 containing
oflf), £ ¢ E, and loet P be an atom of & Then we have

o) = m 2) 2 [£5 (9) - 5 (8-2)).
ozp

The oconstants :’a are defined as in Thoorem 34, using the
measure I;P with the convention 1/ = 0. In particular,

¥, =0 for 5 outside BF'
2

We omit the proof.

A measure hierarchy can be designed to produce a ranking of
the atoms of 8, as descrided in the next example,

EXAMPLE 20, Lot P bo an atom of 8., Let my be
identical with the inclusion function 'P on the 1deal
B5,. Ten, 1r % exists, we have

(1) fp) = ua [re) - 16-2)],

the directed 1imit being taken over inoreasing 5 & 3&,
partially ordered by inclusion., In particular, if the ideal



B‘r has & unit — eall it I;' -~ then we have
M) = £(8 ) -1, =2).
2 2

If every mee B is of this "atomic" form, then ¥ well-
orders the gtoms of 8. (Such an ® 48 possible if and
only if every set in £ contains at least one element of
ﬁ *,) The generalized imputation rE is then completely
determined by (1), applied to all P effe,

Proof of (1), Let OL be a finite subring of &, containing
P. The J'P-uammmt of £ turns out to be

f‘dJP(T} = f£(7) - £(T=P)

for sets T in A~ 6;9. (This calculation makes use of the
inversion formula of Theorem 27, page 44,) Let O denote the
unit of an J;P. Applying Theorem 43, and noting that ¥,
vanishes for all T s d oxcopt S5 and that m;P(Pj = m;P (8) =1,
we obtalin

(#)8@) = 250 - 22 (5 -p)
= £(3) - £(3=-2),

As (L is enlarged, the unit 5 of A~ B;P inecreases indefinitely
within 3&. Hence the directed limit of Definitlon 30 for f‘{r)

reduces to the form (1),

Application to the theory of mames.
The theory of von Neumann and Morgenatemm represents an

n-person game by a superadditive set function v e E with a
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finite carrier N contalning n atoms, corresponding to the
‘players., The number v(8) represents the amount of money that
the "coalition" & can win by best play, assuming that the
other players act in direct opposition to the interests of the

1

goalition,

An outcome of a partlcular play of the game (ilneluding
poseibly payments made among the players outside the formal
apparatus of the game) ocan be expressed by an n-veetor, specify—
ing the winnings of each plnytrua we prefer here to use the
gorresponding additive set function, which specifies the winnings
of each coalition, Such an outeome function of course does not
have to refer to & particular play of the pamej 4t can also be
used to represent a predioted ocutoome, or a recommended outoome, .
By a value of the game, we shall mean & set functlion interpreted
in this way,

Let ue suppose that there 1s a value operator, mapplng each
game Vv onto a4 value V, It seems reasonable to demand the

followlng properties of the operatorig
(a) ¥(N) = Ww(N), and N carries ¥V,

(b) If v 1e additive, then V = v,

hl

(e) For all &, ¥(3):x v(s).

(d) If an automorphism of ‘B maps v onto itself,
then 1t alsc mepa V onto itselr,

“;; J. von Neumann and O, Morgenstern, Theory of Games and Egonomig
Behavior, Princeton (1944, 1947).

2. This vector i1s an "imputatlion" in the sense of von Neumann and
Morgenstern,



(e) If w 48 more favorable to the coalition T
than v, 4in the sense that

w(8) » v(8) 4dmplies 527
w(s) < v(s) implies 8nT = O,
then W(T) 2 V(7).

(f) wxa v = "ERZ

However, one soon discovers that property (e) 48 too strong; 1t

18 not possible in general o satlefy all ooallitions at once., We

therefore weaken (e) to (c¢'):
(e') For all atoms P, V(p) 2 v(2).

We have shown ilnuhani that (&), (d4) and (f) determine a

unique value operatoryj namely the imputation
¥V = v

based on the measure J, J(&) being the nuaber of atoms in 8.
Properties (b), (¢) and (e) are then easlly verified from Theorems
‘33 (a) and 36 (pages 50 and 54) and the formula in LExample 18
(page 55-56), respectively.

It is easy to imegine games or game—like situations in which
the symmetry assumptlion (d) is not appropriate, because of differ—
ences in the external characteristics of the players, (Internal

differences are accounted for in the funection v!) For example,

1., L. S, Shapley, A yalue for n-person games, Annals of Mathematlcs
Study Neo. 28: "Contributions to the Theory of Games, 11", Princeton
(1953), The paper contalns & number of examples,
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individuals might be competing with corporations, or governments,
or ﬁﬂ‘lllhi be differences in "bargaining ability", or II;H
other skill factor, These cases might be handled by means of
imputatlion operators based on measures other than the symmetrie
measure J. The efflect would be to callbrate the players

acoording to their performance in the "pure bargaining" game

?=.H¢

However, the derivation of the value, v™, would involve the
further assumption that whenever two players meet in any pure

bargaining game e SSN, the ratio of the shares they obtain

3!
le the same, If one or more of the players received nothing in
the game e,, we would find it natural to replace the single

measure by a finlte hlerarchy, and use generalized imputations,.
In the extreme case, the players would be arranged in a definite

order ’1' - PE’ sas g ¥ and the value would be given by

nl‘
?{P’.J = '{{?11 esay Pé) - ""{{Pll seny ’1—1”‘
This solution i8 not negessarily advantageous to Enl for example,

in the simple ma jority voting game with n > 3 he would receive
nothing.



