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1 Introduction

The problem of fitting a regression curve to manifold-
valued data is formulated. This problem has applica-
tions in any field where denoising or resampling is re-
quired. We consider the general case in which the data
points (d0, . . . , dn) are evaluated on a manifoldM and
are associated to measurement parameters t0 ≤ · · · ≤
tn. We also consider that the curve is a smooth (i.e.,
C1) composite Bézier curve B : R →M to reduce the
search space. This abstract summarizes the method
proposed in [1].

A very close problem is interpolation, already applied
to parametric model reduction problems [2] where the
data points belong to the Grassmann manifold. We il-
lustrate the benefits of our fitting method by estimating
wind fields characterized by convariance matrices, i.e.,
data points belonging to S+(r, p), the manifold of p× p
positive semidefinite (PSD) matrices of rank r. These
data points (di) are estimated based on solutions of
computationally expensive CFD simulations. They are
associated to some physical parameters, e.g., prevaling
wind orientations or magnitude (ti). The idea is to
run the simulations for a few values of the parameter
and then estimate the covariance matrices via the fit-
ted curve for other prevailing winds. We show that our
method succeeds in approaching the ground truth when
the data is corrupted by noise (Figure 1).

2 Bézier smoothing on manifolds

On the Euclidean space Rr, the ith Bézier curve of
degree K ∈ N in the fitting composite curve B is a
function parametrized by control points bi0, . . . , b

i
K ∈ Rr

of the form

βi
K(·; bi0, . . . , biK) : [0, 1]→ Rr, t 7→

K∑
j=0

bijBjK(t), (1)

where BjK(t) =
(
K
j

)
tj(1− t)K−j are Bernstein polyno-

mials (also called binomial functions) [3]. Bézier curves
can be generalized to a Riemannian manifold M via
the De Casteljau algorithm, which only requires the
Riemannian exponential and logarithm to replace the
straight line.

We construct the piecewise-Bézier curve in the same
manner as in [4, (5)] but we relax the interpolation
constraint by adding a data fidelity term. The problem
becomes minbiK

f(B) + λ
∑n

i=0 d2(pi, di) where the pa-
rameter λ adjusts the balance between data fidelity and
the “smoothness” of B, pi = bi0 = bi−1

K for applicable i
and f(B) is the mean square acceleration of B. In Rr,
in view of the translation invariance of the problem, the
optimal control points can be expressed as affine com-
binations of the data points. We generalize this result
to manifolds with the technique developped in [4].
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Figure 1: Mean squared error (MSE) obtained on training
and validation sets, with artificial noise of 8 dB added to
the data. Our method shows denoising capacities (here we
observe 5 dB of MSE reduction compared to the noise level).
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