Wind field estimation via C! Bézier smoothing on manifolds
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1 Introduction

The problem of fitting a regression curve to manifold-
valued data is formulated. This problem has applica-
tions in any field where denoising or resampling is re-
quired. We consider the general case in which the data
points (dp, ..., d,) are evaluated on a manifold M and
are associated to measurement parameters tg < --- <
t,. We also consider that the curve is a smooth (i.e.,
C') composite Bézier curve B : R — M to reduce the
search space. This abstract summarizes the method
proposed in [1].

A very close problem is interpolation, already applied
to parametric model reduction problems [2] where the
data points belong to the Grassmann manifold. We il-
lustrate the benefits of our fitting method by estimating
wind fields characterized by convariance matrices, i.e.,
data points belonging to S4 (7, p), the manifold of p X p
positive semidefinite (PSD) matrices of rank r. These
data points (d;) are estimated based on solutions of
computationally expensive CFD simulations. They are
associated to some physical parameters, e.g., prevaling
wind orientations or magnitude (¢;). The idea is to
run the simulations for a few values of the parameter
and then estimate the covariance matrices via the fit-
ted curve for other prevailing winds. We show that our
method succeeds in approaching the ground truth when
the data is corrupted by noise (Figure 1).

2 Bézier smoothing on manifolds

On the Euclidean space R”, the ith Bézier curve of
degree K € N in the fitting composite curve B is a
function parametrized by control points bl .. ., b’k e R"
of the form

K
Bic(1bh, - i) £ [0,1] = R” £ > i Bjc(t), (1)
j=0

where Bk (t) = (I]{) t7(1 —t)%~J are Bernstein polyno-
mials (also called binomial functions) [3]. Bézier curves
can be generalized to a Riemannian manifold M via
the De Casteljau algorithm, which only requires the
Riemannian exponential and logarithm to replace the
straight line.

We construct the piecewise-Bézier curve in the same
manner as in [4, (5)] but we relax the interpolation
constraint by adding a data fidelity term. The problem
becomes miny; f(B) + A7, d?(pi, d;) where the pa-
rameter A adjusts the balance between data fidelity and
the “smoothness” of B, p; = b} = bi;l for applicable 4
and f(*B) is the mean square acceleration of B. In R”,
in view of the translation invariance of the problem, the
optimal control points can be expressed as affine com-
binations of the data points. We generalize this result
to manifolds with the technique developped in [4].
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Figure 1: Mean squared error (MSE) obtained on training
and validation sets, with artificial noise of 8 dB added to
the data. Our method shows denoising capacities (here we
observe 5 dB of MSE reduction compared to the noise level).
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