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1 The problem

This problem of curve fitting is addressed on a Rieman-
nian manifold M. The data points d0, . . . , dn ∈M are
associated with real-valued time-parameters t0 < t1 <
· · · < dn. Fitting a curve γ in this setting involves two
main constrains: proximity to the data points, and the
smoothness of γ.

A popular way to tackle this problem is to encapsulate
those constraints into an optimization problem like

min
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dt2

∥∥∥∥2

γ(t)

dt+
λ

2

n∑
i=0

d2
(
γ(ti), di)

)
, (1)

where Γ is an admissible space of curves γ : [t0, tn] →
M, D2

dt2 is the Levi-Civita second covariant derivative,
‖·‖γ(t) is the Riemannian metric at γ(t) and d(·, ·) is
the Riemannian distance. The proximity and regularity
constraints are balanced via the parameter λ ∈ R.

Several methods exist to perform numerical optimiza-
tion on manifolds. We refer to the textbook [1] for
details. The problem was tackled in different ways this
last decade [4, 8, 6]. We consider here the case where
Γ is a set of composite Bézier curves (see [5, 7] for de-
tails). Within this setting, the search space is dras-
tically reduced to the so-called control points of the
Bézier curve, and it becomes quite easy to impose C1

time-differentiability to γ.

Solving (1) onM reduces to a highly nonlinear problem
on the product manifoldMM , where M is the number
of control points of γ. We present here the results of [3].
We derive a closed-form of the gradient of Bézier curves
with respect to their control points.

2 Gradient of the discretized regularizer

The regularizer E =
∫ tn
t0

∥∥∥D2γ(t)
dt2

∥∥∥2

γ(t)
dt is approxi-

mated by second order finite differences. A definition
and the derivative of those finite differences are intro-
duced in Bačák et al. [2]. The curve is discretized with

N + 1 equispaced points. We note Ẽ this approxima-
tion. To evaluate the gradient of Ẽ, it remains to derive
the manifold-valued gradient of a Bézier curve γ, w.r.t.
its control points. As Bézier curves are obtained as a
composition of geodesics (with the De Casteljau algo-
rithm [5]), their derivative is given as a concatenation
of adjoint Jacobi fields.

We finally solve problem (1) with a standard gradient
descent. We show that our solution is computationally
competitive with existing techniques and that it outper-
forms the current fitting methods using Bézier curves
(as the one proposed in [7]) when the data points are
not constrained to a given neighbourhood.
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