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Abstract. We propose an algorithm for fitting C
1 piecewise-Bézier

curves to (possibly corrupted) data points on manifolds. The curve is
chosen as a compromise between proximity to data points and regularity.
We apply our algorithm as an example to fit a curve to a set of low-rank
covariance matrices, a task arising in wind field modeling. We show that
our algorithm has denoising abilities for this application.

1 Introduction

This paper concerns univariate manifold-valued data approximation by means
of C1 piecewise-Bézier curves.

This task is motivated, among other applications, by parametric model re-
duction problems [1] where the data points are projectors from the full state
space to the reduced state space and hence belong to the Grassmann manifold.

We illustrate here the benefits of our algorithm by applying it to wind field
estimation, which requires to fit a curve to a set of data points belonging to
the manifold of p× p positive semidefinite (PSD) matrices of rank r. The wind
field estimation problem is motivated by applications of unmanned aerial vehi-
cles (UAV). Safe and reliable navigation of UAVs requires consideration of the
surrounding environment, in particular, the external wind conditions. The wind
field around the UAV can be modelled as a Gaussian process characterized by
a covariance matrix that is itself parameterized by external meteorological pa-
rameters (e.g., the prevailing wind in the area of interest). For each prevailing
wind, computationally expensive unsteady CFD simulations are run to estimate
the corresponding covariance matrix. We propose here to run those simulations
for only a few values of the prevailing wind, and to fit a curve to the covariance
matrices obtained to deduce covariance matrices for other prevailing winds. No-
tice that if additional information on the wind field is available (e.g., coming
from sensors onboard the UAV), it can also be incorporated in the model using,
e.g., a Kalman filter.

Interpolation and fitting on manifolds has been an active research topic in
the past few years. In particular, in Samir et al. [2], the search space is infinite-
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dimensional and the objective function is minimized with a manifold-valued gra-
dient descent; see also Su et al. [3] for an application in image processing. Absil
et al. [4] proposed interpolation techniques where the search space is restricted
to a finite dimensional space of C1 piecewise-Bézier functions. We also mention
the very recent work of Machado et al. [5] for the specific case of the sphere.

In this paper, as in [2], we consider a smoothing objective function—the
weighted sum of a data-attachment term and a roughness penalty—but, as in [4],
we restrict the search space to a class of C1 piecewise-Bézier curves. The advan-
tage with respect to [4] is that interpolation is replaced by smoothing, a more
apt framework for noisy data. The advantages with respect to [2] are (i) a lower
space complexity (the solution curve is represented by a few Bézier control points
on the manifold) and (ii) a considerably simpler method that only requires two
objects on the manifold: the Riemannian exponential and the Riemannian loga-
rithm. The other side of the coin is the suboptimality of the proposed approach,
which is due in the first place to the restricted search space, and in the second
place to the proposed computational method: it ensures optimality within the
restricted search space only if the manifold is flat. Whether the suboptimality
causes a significant lack of quality in practical applications is a topic for further
research.

The paper is organized as follows. We first recall theory about Bézier func-
tions generalized to manifolds and make a small reminder on the manifold arising
in our application. Then, we develop our generic fitting method in Section 3,
and we illustrate it on the wind field estimation problem in Section 4.

2 Background

Bézier curves. On the Euclidean space R
r, Bézier curves of degree K ∈ N

are functions parametrized by control points b0, . . . , bK ∈ R
r of the form

βK(·; b0, . . . , bK) : [0, 1] → R
r, t 7→

∑K

j=0 bjBjK(t), (1)

where BjK(t) =
(

K

j

)

tj(1−t)K−j are Bernstein polynomials (also called binomial

functions) [6]. One well-known way to generalize Bézier curves to a Riemannian
manifold M is via the De Casteljau algorithm, which only requires the Rieman-
nian exponential and logarithm; see, e.g., [7, §2].

The manifold S+(r, p). Several geometries have been proposed for the man-
ifold S+(r, p) of p × p PSD matrices of rank r (see [8, §7] for a survey), but to
our knowledge, none of them allows turning it into a complete metric space with
closed-form expressions for geodesics.

We resort here to the quotient space geometry described in [8, §7.2], in which
each matrix S ∈ S+(r, p) is factorized as S = Y Y T , where Y belongs to R

p×r
∗ ,

the set of full rank p × r matrices. For Q orthogonal of size r, all matrices
Y Q are then equivalent because (Y Q)(Y Q)T = Y Y T = S. This geometry
results in cheap closed-form expressions for end-points geodesics. The geodesic



γ : [0, 1] → S+(r, p) : t 7→ γ(t), with γ(0) = S0 = Y0Y
T
0 and γ(1) = S1 =

Y1Y
T
1 , is given by γ(t) = γY(t)γY(t)

T , where γY(t) = (1 − t)Y0 + tY1Q
T , with

Q the orthogonal factor of the polar decomposition Y T
0 Y1 = HQ. In the Y –

representation, the Riemannian exponential and logarithm are thus expY (η) =
Y + η and logY (Z) = ZQ′T − Y , where η is restricted to the horizontal space
HY = {η ∈ R

p×r : ηTY = Y T η} and Q′ comes from the polar decomposition
Y TZ = H ′Q′.

3 Fitting method on Riemannian manifolds

On a manifold M, we aim to fit an approximating piecewise-Bézier curve B to
data points d0, . . . , dn. Its control points are chosen such that B is (i) close to
the data points and (ii) regular, i.e., its mean squared acceleration is small.

The piecewise-Bézier curve is composed of n Bézier functions. For notation
simplicity, let p0, . . . , pn ∈ M denote the endpoints of the Bézier curves and
let (b−i , b

+
i ) ∈ M2 denote the control points on the left and right of pi, as

illustrated in Fig. 1. The first segment β0(t) = β2(t; p0, b
−

1 , p1) and the last one
βn−1(t) = β2(t; pn−1, b

+
n−1, pn) of B are quadratic Bézier functions while the

other segments βi(t) = β3(t; pi, b
+
i , b

−

i+1, pi+1) are cubic. That being said, B

reads

B : [0, n] → M, t 7→ βi(t− i) on [i, i+ 1], i = 0, . . . , n− 1.

Hence, continuity of B is trivial. Letting av[(x, y), (1−α, α)] = expx (αlogx (y))
be a convex combination of x, y ∈ M with weight α ∈ R, continuous differen-
tiability is reached by taking p1 = av[(b−1 , b

+
1 ), (

2
5
, 3
5
)], pi = av[(b−i , b

+
i ), (

1
2
, 1
2
)]

(i = 2, . . . , n− 2) and pn−1 = av[(b−n−1, b
+
n−1), (

3
5
, 2
5
)], as stated in [7, 9].
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Fig. 1: Schematic representation of the piecewise-Bézier curve: red filled points cor-
respond to data points, circled green ones to control points. The first and last Bézier
segments are quadratic while other segments are cubic.



Ideally, we would like to compute B that minimizes

min
pi,b

+
i
,b

−
i

f(B) + λ
n
∑

i=0

d2(pi, di), (2)

where f(B) is the mean squared acceleration of B. The parameter λ > 0 adjusts
the balance between data fidelity and the “smoothness” of B. Note that, when
λ → ∞, (2) corresponds to the interpolation problem in [9]. However, instead
of addressing directly this difficult optimization problem where the optimization
variables are control points on M, we take a suboptimal route that consists in
finding optimality conditions when M = R

r and then generalizing those condi-
tions to an arbitrary Riemannian manifold. As mentioned in the introduction,
we will investigate in further work whether a more demanding “optimal route”
would be worth the effort in practical applications.

In the easy case where M = R
r, d(·, ·) is the classical Euclidean distance and

f(B) =

n−1
∑

i=0

∫ 1

0

‖β̈i(t)‖2dt

Under continuity and differentiability constraints, the cost minimized in (2) is
a quadratic function in the 2n variables p0, (b

−

i , b
+
i )

n−1
i=1 and pn. Therefore, the

optimality conditions take the form of a linear system (A0 + λA1)x = λCd,
where A0, A1 ∈ R

2n×2n and C ∈ R
2n×n+1 are matrices of coefficients, x =

[x0, x1, . . . , x2n−1]
T := [p0, b

−

1 , b
+
1 , . . . , b

+
n−1, pn]

T ∈ R
2n×r contains the 2n opti-

mization variables and d := [d0, . . . , dn]
T ∈ R

n+1×r contains the data points.
This problem is equivalent to x = λ(A0 + λA1)

−1Cd = Q(λ)d, or to

xj =
∑n

l=0 qjl(λ)dl. (3)

Since the problem is invariant under translation, we have
∑n

l=0 qjl(λ) = 1 for all
λ. In other words, the unknown control point xj can be seen as an affine combi-
nation of the data points dl. This also means that xj−d⋆j =

∑n

l=0 qjl(λ)(dl−d⋆j ),
by translation with respect to a reference point d⋆j . As the Euclidean difference
can be seen as a logarithm map on a general manifold M, a simple and natural
way to generalize (3) to M is to (i) use the Riemannian logarithm to map the
data to the tangent space at the reference point d⋆j , (ii) compute the weighed
means in the tangent space, and finally (iii) use the Riemannian exponential to
map the obtained points back to the manifold M. This yields

xj = expd⋆
j

(

n
∑

l=0

qjl(λ)logd⋆
j
(dl)

)

. (4)

Observe that we recover (3) when M = R
r: indeed, we obtain xj = d⋆j +

(
∑n

l=0 qjl(λ)(dl − d⋆j )), where d⋆j cancels out. This cancellation does not occur
in general on nonlinear manifolds; by default, we choose d⋆j := di for xj being a

control point b−i , b
+
i or pi.

Finally, the curve B is reconstructed using the De Casteljau algorithm (as
mentioned in Section 2).



4 Numerical results

θi

building

Fig. 2: Given a prevailing wind
θi, local wind orientation might
change among the domain, spe-
cially when an object (here a build-
ing) perturbs it.

Now, we apply the proposed algorithm to
the wind field estimation problem (see Fig-
ure 2). We work on a set of n = 33 covari-
ance matrices C(θi) of size 3024 × 3024 ob-
tained from unsteady CFD simulations and
corresponding to 33 prevailing wind orienta-
tions θi = kπ/64, k ∈ {0, 1, . . . , 32}. For now,
the magnitude of the wind field remains fixed,
and further work will aim at extending our ap-
proach to develop surface fitting tools, so that
both the prevailing wind magnitude and ori-
entation are allowed to vary simultaneously.
Using a singular value decomposition, we re-
duce the rank of C(θi) to r = 20 by factoriz-
ing it as C(θi) ≃ Y (θi)Y (θi)

T ∈ S+(20, 3024);
hence Y (θi) ∈ R

3024×20
∗

. Our algorithm is
implemented to directly work on the Y (θi),
which has also the advantage of reducing the
computational cost associated with basic matrix operations (notice that in this
application, it is not even necessary to build the matrix C(θi), and one can
instead obtain directly Y (θi) from the simulations).

We construct the piecewise-Bézier curve B(θ) ∈ S+(20, 3024) based on data
from a training set ST = {C(θi)}i∈IT , where IT = {1, 3, 5, . . . , 33} and use the
remaining data as a validation set SV = {C(θi)}i∈IV , with IV = {2, 4, . . . , 32}.
We measure the fitting error of B(θ) compared to data from SΩ (Ω ∈ {T, V })
as a relative mean squared error (MSE) in dB:

MSE(B(θ)) = 10 log

(

∑

i∈IΩ
||C(θi)−B(θi)||

2
F

∑

i∈IΩ
||C(θi)||2F

)

. (5)

We represent its evolution with respect to the parameter λ in Figure 3 (left).
Not surprisingly, the MSE computed on the training set decreases when λ grows,
as problem (2) is closer and closer to interpolation. Correspondingly, the MSE
computed on the validation set at the limit λ → ∞ measures the model error,
i.e., the inability of the piecewise-Bézier interpolation technique to recover the
hidden data.

The main advantage of our method is its robustness to corrupted data. To
illustrate this, we artificially added some noise to the data. Consider a new

matrix C̃(θi) = C(θi)+0.05N(θi) with N(θi)lm
iid
∼ N (0, 1) for l,m = 1, . . . , 3024.

The corrupted matrices C̃(θi) are then factorized into C̃(θi) ≃ Ỹ (θi)Ỹ (θi)
T

similarly as above. This artificial noise results in an MSE(C̃(θ)) of about −9 dB
compared the (not corrupted) data points.

We compute the curve B̃(θ) based on the corrupted data from the set S̃T :=
{C̃(θi)}i∈IT and measure the MSE of B̃(θ) compared to the original data from



SΩ (Figure 3, right). We observe an optimal balance λopt between data fitting
and curve smoothing with about 5 dB of MSE reduction compared to the noise
level.
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Fig. 3: Mean squared error (MSE) obtained on the training and validation sets,
without (left) or with (right) additional noise on the data. When no noise is present
on the data (left), the error on the training set decreases with λ as the model tends
to interpolation. When noise is added to data (right), our method shows denoising
capacities with up to 5 dB of MSE reduction compared to the noise level.
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