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Abstract We propose an analysis of the quality of the fitting method
proposed in [7]. This method fits smooth paths to manifold-valued data
points using C1 piecewise-Bézier functions. This method is based on
the principle of minimizing an objective function composed of a data-
attachment term and a regularization term chosen as the mean squared
acceleration of the path. However, the method strikes a tradeoff between
speed and accuracy by following a strategy that is guaranteed to yield
the optimal curve only when the manifold is linear. In this paper, we
focus on the sphere S2. We compare the quality of the path returned
by the algorithms from [7] with the path obtained by minimizing, over
the same search space of C1 piecewise-Bézier curves, a finite-difference
approximation of the objective function by means of a derivative-free
manifold-based optimization method.
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tion on manifolds.

1 Introduction

We consider the problem of fitting an univariate C1 piecewise-Bézier curve to
manifold-valued data points. This problem is motivated by several applications
in engineering and the sciences, such as projection-based model order reduction
of dynamical systems that depend on one parameter [10]. In that case, the data
points are projectors from the full state space to the reduced state space and
hence belong to a Grassmann manifold. In a recent paper, Gousenbourger et
al. [7] illustrated the benefits of this approach by estimating wind fields: the task
required to fit a curve to a set of data points belonging to the manifold of p× p
positive semidefinite (PSD) matrices of rank r. We also mention the case of image
denoising, as in Bergmann et al. [3], where one seeks a two-parameter function
fitting an image with manifold-valued pixels, or the blood vessels tracking in the
eyes in Sanguinetti et al. [12] as an application to the sub-Riemannian manifold
SE(2).

? Corresponding author: pierre-yves.gousenbourger@uclouvain.be



Fitting and interpolation on manifolds has been an active research topic in
the past few years. For instance Samir et al. [11] proposed a fitting method
where the search space is infinite-dimensional. In that paper, the fitting curve
B is discretized with a small stepsize and the objective function is minimized
with a manifold-valued gradient descent. An application in image processing
can be found in Su et al. [13]. In Absil et al. [1] (interpolation) or more recently
in Gousenbourger et al. [7] (fitting), the search space is restricted to a finite
dimensional space of C1 piecewise-Bézier functions. We also mention Machado
et al. [8] for the specific case of the sphere.

The method proposed in [7] seeks a C1 piecewise-Bézier curve as in [2]. It
also considers a smoothing objective function—a roughness penalty and a data-
fitting term—as in [11]. This approach has several advantages. With respect
to [2], interpolation is replaced by smoothing, which is more apt for noisy data.
Compared to [11], (i) it reduces the space complexity (instead of being discret-
ized, the solution curve is represented by only a few Bézier control points on
the manifold) and (ii) it provides a very simple algorithm that only requires two
objects on the manifold: the Riemannian exponential and the Riemannian logar-
ithm. However, the proposed approach tends to be suboptimal for two reasons.
First, the search space is restricted to C1 piecewise-Bézier curves; and second,
the proposed computational method ensures optimality (within the restricted
search space) only if the manifold is flat.

The study of this second drawback is the subject of this paper: in particular,
we aim to evaluate the quality of the fitting curve obtained with the method
developed in [7] compared to a more accurate solution obtained with a more
general (but also slower) optimization tool (like, for instance, Manopt [5]).

The paper is organized as follows. We first recall some generalities on Bézier
curves and introduce the composite Bézier curve B we would like to fit to data
points (Section 2). In Section 3, we summarize the method from [7] and then
introduce a more acurate (but also less efficient) method based on a discretiza-
tion. We also look for an acceptable discretization stepsize. Finally, we present
results on the sphere S2 in Section 4

2 Notations and framework

We consider the case in which the data points {d0, . . . , dn} ⊂ M take values
on a manifold M and are associated with measurement parameters t0 ≤ t1 ≤
· · · ≤ tn. For simplicity, we will let ti = i, i = 0, . . . , n. We seek a composite
Bézier curve B : R → M such that B(ti) ' di, i = 0, . . . , n. We note TaM
the (Euclidean) tangent space to M at a ∈ M; TM = ∪aTaM the tangent
bundle to M; 〈·, ·〉a, the inner product in the tangent space at a and from
which we deduce the norm of v ∈ TaM, ‖v‖M = 〈v, v〉a; expa (·) : TaM →
M : v 7→ b = expa (v), the Riemannian exponential; loga (·) : M → TaM :
b 7→ v = loga (b), the Riemannian logarithm which can be viewed as the inverse
Riemannian exponential. We also introduce the notation γa,b(t) for the shortest
geodesic between a = γa,b(0) and b = γa,b(1). We assume throughout that we
can compute these objects.



2.1 Preliminaries on Bézier curves

We first consider the trivial case where M = Rr to define the Bézier curve. A
Bézier curve of degree K ∈ N is a function β parametrized by K + 1 control
points {b0, . . . , bK} ⊂ Rr taking the form

βK(·; b0, . . . , bK) : [0, 1]→ Rr, t 7→
∑K
j=0 bjBjK(t),

where BjK(t) =
(
K
j

)
tj(1−t)K−j are the Bernstein basis polynomials (also called

binomial functions) [6]. The first control point and the last one are interpolated
by construction while the position of the other control points models the shape
of the curve. More specifically, the quadratic and cubic Bézier curves are respect-
ively

β2(t; b0, b1, b2) = b0(1− t)2 + 2b1(1− t)t+ b2t
2 (1)

β3(t; b0, b1, b2, b3) = b0(1− t)3 + 3b1(1− t)2t+ 3b2(1− t)t2 + b3t
3 (2)

One well-known way to generalize Bézier curves to a Riemannian manifold
M is via the De Casteljau algorithm. This algorithm, generalized to manifolds
by Popiel and Noakes [9, §2], only requires the Riemannian exponential and
logarithm and conserves the interpolation property of the first and last control
points.

2.2 Composite Bézier function on manifolds

We now consider a general manifoldM. As illustrated in Figure 1, the composite
Bézier function B ∈M is a C1 composition of n Bézier curves, i.e.,

B : [0, n]→M, t 7→ βi(t− i) on [i, i+ 1], i = 0, . . . , n− 1,

where βi defines a piece of B associated to the endpoints {pi, pi+1} ⊂ M. The
control points of the (i − 1)th and ith piece of B defined on the left and right
of pi are noted {b−i , b

+
i } ⊂ M, i = 1, . . . , n − 1. The first and last segments of

B are quadratic Bézier curves respectively noted β0(t) = β2(t; p0, b
−
1 , p1) and

βn−1(t) = β2(t; pn−1, b
+
n−1, pn). All the other segments are cubic and denoted by

βi(t) = β3(t; pi, b
+
i , b
−
i+1, pi+1). Note the use of the superscript to refer to the ith

segment of B while the subscript refers to the degree of the Bézier curve.
The continuity of B is trivial as B(i) = βi(i) = βi−1(i) = pi. Differen-

tiability is ensured by taking p1 = av[(b−1 , b
+
1 ), ( 2

5 ,
3
5 )], pi = av[(b−i , b

+
i ), ( 1

2 ,
1
2 )]

(i = 2, . . . , n−2) and pn−1 = av[(b−n−1, b
+
n−1), ( 3

5 ,
2
5 )], where av[(x, y), (1−α, α)] =

expx (αlogx (y)) stands for the convex combination of x, y ∈ M with weight
α ∈ [0, 1]. A proof of these properties can be found in [1].

As stated in the introduction, we would ideally like B to minimize its mean
square acceleration and its fidelity to data points. Specifically,

min
pi,b

+
i ,b
−
i

f(pi, b
+
i , b
−
i ) = min

pi,b
+
i ,b
−
i

n−1∑
i=0

∫ 1

0

‖β̈i(t)‖2Mdt︸ ︷︷ ︸
“mean square acceleration”

+λ

n∑
i=0

d2(pi, di)︸ ︷︷ ︸
“fidelity”

, (3)
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Figure 1: Schematic representation of the composite Bézier function B(t): the data
points di are represented in red; the circled green ones are control points. The first and
last Bézier segments are quadratic Bézier functions while all the other segments are
cubic Bézier functions.

where g̈(t) stands for the temporal covariant second derivative of g(t), under
continuity and differentiability constraints. The parameter λ > 0 adjusts the
balance between data fidelity and the “smoothness” of B. This balance tends to
the interpolation problem from [2] when λ→∞.

3 Methods

In this section, we first summarize the method from [7] which is a generalization
of optimality conditions holding only when M = Rr. This generalization holds
for any manifold M if it is possible to compute the exponential map and the
logarithm map. In a second time, we introduce a version f̃∆τ of the objective
f (equation (3)) obtained by discretizing the time domain of the mean square
acceleration term with a step size∆τ . We determine experimentally∆τ for which
f̃∆τ is a sufficiently good approximation of f , i.e., the relative error between f̃∆τ
and f is small. Then, in Section 4, we will compare the solution from [7] to the
minimizer of f̃∆τ .

3.1 Summary of the optimality conditions from [7]

In [7], the problem (3) is not directly addressed on a manifold M. The (subop-
timal) solution is obtained in two steps.

Step 1. The problem is considered on M = Rr where d(·, ·) and ‖.‖M are
the classical Euclidean distance and norm, respectively. Hence (3) is a quad-
ratic function in the 2n variables p0, (b−i , b

+
i )n−1
i=1 and pn. Therefore, its op-

timality conditions take the form of a linear system (A0 + λA1)x = λCd,
where A0, A1 ∈ R2n×2n and C ∈ R2n×n+1 are matrices of coefficients, where
x = [x0, x1, . . . , x2n−1]T := [p0, b

−
1 , b

+
1 , . . . , b

+
n−1, pn]T ∈ R2n×r contains the 2n



optimization variables, and where d := [d0, . . . , dn]T ∈ Rn+1×r contains the data
points. The solution reads x = Q(λ)d, or

xj =

n∑
l=0

qjl(λ)dl, (4)

with Q(λ) ∈ R2n×n+1, a matrix of coefficients depending on λ.

Step 2. Because (3) is invariant to translation on Rr, the conditions (4) can be
generalized to any Riemannian manifold. Indeed, xj−d?j =

∑n
l=0 qjl(λ)(dl−d?j ),

by translation with respect to a reference point d?j . The generalization arises by
interpreting the Euclidean difference as a logarithm map on a general manifold
M. Thus, a simple and natural way to generalize (4) to M is

xj = expd?j

(
n∑
l=0

qjl(λ)logd?j (dl)

)
. (5)

By default, d?j := di when xj is one of the control points b−i , b+i or pi.
Finally, the curve B is reconstructed using the De Casteljau algorithm (as

mentioned in Section 2).

3.2 Discretization of the mean square acceleration on manifolds

In comparison to Section 3.1, we here solve (3) directly on an arbitrary manifold
M. However, there is no simple expression of the Bézier curves βi onM, which
means that it is not possible to express its mean squared acceleration in general.
To overcome this difficutly, we replace f by a version f̃∆τ where the accelera-
tion of the curves is approached by a Riemannian second order finite difference
(generalized with the log map from the Euclidean finite differences as in [4]),
and the integration is replaced by a classical trapezoidal rule. The new objective
function f̃∆τ (pi, b

+
i , b
−
i ) now reads

M−1∑
k=1

∆τ

∥∥∥∥ logB(tk) (B(tk−1)) + logB(tk) (B(tk+1))

∆τ2

∥∥∥∥2

M
+ λ

n∑
i=0

d2(pi, di), (6)

where ∆τ = n
M . As there is also no general expression of the Riemannian gradi-

ent of f̃∆τ with respect to p0, (b−i , b
+
i )n−1
i=1 and pn, we solve this problem with

a Riemannian derivative-free optimization method, like the Particle Swarm Op-
timization algorithm provided in Manopt [5].

As there is no exact solution of (3) on a general Riemannian manifold, there
is also no way to determine with precision the stepsize ∆τ for which f̃∆τ is close
enough to f on M. To overcome this, we determine an acceptable ∆τ on the
Euclidean space and then use this stepsize to optimize (6) onM. This behavior
is illustrated in Figure 2. We can see that a stepsize of ∆τ ' 10−2 is already
acceptable on the Euclidean space for f̃∆τ to approach f with a relative error of
less than 1%.

We will now use this stepsize to compare x∗, the solution (5) from Section 3.1,
to x̃∗, the solution obtained with (6).
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Figure 2: On the Euclidean space, the continuous objective function (3) is approached
by its discretized version (6) when ∆τ tends to be small. A stepsize of ∆τ = 10−2

already leads to a relative error of less than 1% on a random set of data points.

4 Results

In this section, we evaluate the quality of the method from [7] (Section 3.1)
on the sphere S2. To do so, we compare its solution x∗ with the solution x̃∗

obtained by optimizing the discretized version of the objective function given in
equation (6). This comparision is easily extendable to other manifolds provided
that the log and exp map can be computed.

Data points and error evaluation. Consider the points a = [0, 0, 1]T and b =
[1, 0, 0]T and the geodesic γa,b : [0, 1] → M : t 7→ γa,b(t). We construct S = 20

sets (indexed by m) of n ∈ {3, . . . , 10} data points (d̂mi )ni=1, m = 1, . . . , S aligned
and equispaced on the geodesic γa,b(t) and then slightly disturbed with a noise
η. Specifically,

d̂mi =
dmi + η

‖dmi + η‖
, i = 1, . . . , n, m = 1, . . . , S,

such that dmi = γa,b(
i−1
n−1 ), and η ∼ N (0, (0.1)2), as shown on Figure 3, left.

For each set m and each number of data points n, we compute x∗m,n ∈ S2×2n,
the solution from [7] given by equation (5), and x̃∗m,n ∈ (S2)2n, the solution
to the problem (6) with a discretization stepsize ∆τ = 10−2. We evaluate the
distance εm,n of the objective value obtained with x∗m,n and x̃∗m,n in (6) as

εm,n =
f̃∆τ (x̃∗m,n)− f̃∆τ (x∗m,n)

f̃∆τ (x̃∗m,n)
, (7)

with ∆τ = 10−4.
Note that two different stepsizes are used to evaluate the relative distance

ε: a larger one (∆τ = 10−2) to compute x̃∗ and another one (∆τ = 10−4) to



evaluate the quality of the solutions. We chose a larger stepsize in the minimiz-
ation because solving (6) with a derivative free algorithm becomes less and less
tractable when ∆τ decreases. However, f̃∆τ approaches the actual manifold-
valued objective function (3) when ∆τ is small. Thus, we used a finer stepsize
the evaluate the quality of x∗ in (7).

Results. On Figure 3 (right), we represent the mean E(n) and the standard
deviation of the distances (εm,n)Sm=1, for each number n of data points. We can
observe that the fast algorithm from [7] returns results close to the optimum in
the case of this geodesic-like proof of concept, even if still slightly suboptimal
(relative error of about 1% of the cost f̃). Indeed, this proof of concept might
be too easy as data points are chosen close to a geodesic and Figure 3 (right)
could be so good only in this case. However, finding a solution to the discretized
problem with the particle-swarm optimization is less and less tractable for n
growing and ∆τ decreasing. This is why the main advantage of [7] is its efficiency
to compute an acceptable solution to (3) in a very short computation time.
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Figure 3: Left - the data points (red) are a noisy version of points (black circles) aligned
on a geodesic (blue line). The Bézier curve computed via [7] based on the data points
(red) is in dashed line. Right - the fast algorithm from [7] returns solutions close
to optimum. The relative error E(n) is about 1% (solid) with a standard deviation
(dashed) of 2%.

5 Future work

The seeked goal in this paper was to evaluate the suboptimality of the fitting
curve computed by the fast algorithm from [7]. We showed as a proof of concept
that the method proposed in [7] approaches x̃∗ with a very satisfactory small
relative error of 1% of the cost f̃ on the sphere S2, when the data points lie close
to a geodesic.



Different pieces of work can be considered for the future. For instance, it
may be worth considering a more advanced configuration of the data points to
evaluate better the limits of the method. Estimating a theoretical upper bound
on |f(xopt)−f(x∗)|, where xopt is the actual (and not numerical) solution of (3)
is also left for future work. Furthermore, using a derivative-free optimization
tool appeared to be time-consuming: a gradient-based approach could be in-
vestigated, exploiting the iterative structure of the De Casteljau algorithm to
approach the gradient of a general Bézier curve on M.
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piecewise-Bézier surfaces on Riemannian manifolds. SIAM Journal on Imaging
Sciences 9(4), pp. 1788–1828 (2016)

[2] Arnould, A., Gousenbourger, P.Y., Samir, C., Absil, P.A., Canis, M.: Fitting
Smooth Paths on Riemannian Manifolds : Endometrial Surface Reconstruc-
tion and Preoperative MRI-Based Navigation. In: F.Nielsen, F.Barbaresco (eds.)
GSI2015. pp. 491–498. Springer International Publishing (2015)

[3] Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of
cyclic data and applications in variational denoising. SIAM Journal on Imaging
Sciences 7(4), pp. 2916–2953 (2014)

[4] Boumal, N.: Interpolation and regression of rotation matrices. In: Nielsen, F. and
Barbaresco, F. (ed.) Geometric Science of Information. vol. 8085. Springer Berlin
Heidelberg (2013)

[5] Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for
optimization on manifolds. Journal of Machine Learning Research 15, pp. 1455–
1459 (2014), http://www.manopt.org

[6] Farin, G.: Curves and Surfaces for CAGD. Academic Press, fifth edition (2002)
[7] Gousenbourger, P.Y., Massart, E., Musolas, A., Absil, P.A., Jacques, L.,

Hendrickx, J.M., Marzouk, Y.: Piecewise-Bézier C1 smoothing on manifolds with
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