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Abstract – Given a set of data points lying on a smooth mani-
fold, we present methods to interpolate those with piecewise Bézier
splines. The spline is composed of Bézier curves (resp. surfaces)
patched together such that the spline is continuous and differen-
tiable at any point of its domain. The spline is optimized such that
its mean square acceleration is minimized when the manifold is
the Euclidean space. We show examples on the sphere S2 and on
the special orthogonal group SO(3).

1 Introduction
Given a set of data points (pk) in a manifoldM associated to
nodes (k) ∈ Zs of a Cartesian grid in Rs, we seek a C1 function
B : Rs →M such that B(k) = pk. In this paper, we consider
the cases where s ∈ {1, 2}, i.e. curves and surfaces.

This interpolation problem is motivated by several applica-
tions, as more and more acquired data tends to be constrained to
smooth manifolds. In Pennec et al. [8], diffusion tensor images
are assumed to lie on the manifold of positive definite matri-
ces. Bergmann and Weinmann [4] propose inpainting models
for images whose color pixels lie on the 2-sphere.

Manifold modeling appears in many other different fields in-
cluding image modeling and processing [9] or optimization [1].
Its advantages are that (i) problem solutions are searched on
spaces of much lower dimensionality compared to the ambient
domain, with a direct and positive impact on algorithm perfor-
mances in computational time, memory and accuracy; (ii) com-
plex objects are represented by vectors of small size; and (iii)
close formulas can be found for problems on manifolds while
complex iterative procedures are required on Euclidean spaces.

Interpolation on manifold does not appear much in the liter-
ature. Popiel and Noakes [10] propose a manifold version of
Bézier curves based on the work on Rr of Farin [6]. Boumal et
al. proposed optimization algorithms for curve fitting on man-
ifolds with the toolbox Manopt [5]. More recently, Solomon
et al. [11] developed a Wasserstein distance-based method to
interpolate probability distributions evaluated on manifolds.

In this paper, we summarize different techniques to interpo-
late data points on manifolds by means of a C1 piecewise-cubic
Bézier spline [7, 3, 2], as illustrated in Figure 1. In Sec. 2, we
define Bézier splines on manifolds and give continuity and dif-
ferentiability conditions. We show in Sec. 3 how these splines
can be optimized to have a small global energy. We present
numerical examples in Sec. 4.
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Figure 1: 1-D schematic representation of a three-pieces cubic Bézier spline
with its continuity and differentiability constraints.

2 Bézier curves and surfaces
We first recall the definitions of Bézier curves and surfaces
on the Euclidean space and we generalize them to manifolds.
Then, we give conditions to achieve interpolation, continuity
and derivability of the spline.

Curves and surfaces on the Euclidean space Rr. Let
Bk3(t) be Bernstein polynomials and b = (b0, . . . , b3) ⊂ Rr

be a set of control points. Cubic Bézier curves are functions
β3(·,b) : [0, 1]→ Rr of the form

β3(t;b) 7→
∑3

i=0 biBi3(t). (1)

Cubic Bézier surfaces β3(·,b) : [0, 1]2 → Rr are their bivari-
ate extensions with b = (bij)i,j=0,...,3 ⊂ Rr

β3(t1, t2;b) =
∑3

i,j=0 bijBi3(t1)Bj3(t2), (2)

Control points bij are interpolated when i, j ∈ {0, 1}.

Curves on a manifolds. We generalize (1) to a smooth,
connected, finite-dimentional Riemannian manifoldM (where
M = Rr is included) in two different ways. First, since Bern-
stein polynomials form a partition of unity, one remarks that
the Bézier curves are a weighted average of the control points

β3(·;b) : [0, 1]→M, t 7→ av[(bi)i=0,...,3, (Bi3(t))i=0,...,3],
(3)

where av[(y0, . . . , yn), (w0, . . . , wn)] is the weighted geodesic
average x = argminy

∑n
i=0 wid2(yi, y) with the geodesic dis-

tance d. Necesseraly, when d is the Euclidean distance, defi-
nition (3) reduces to equation (1). This model is introduced in
Absil et al. [2].

The second generalization of (1) to the manifold setting is
based on the De Casteljau algorithm (see Farin [6] for details in
Rr) where the Euclidean straight line is replaced by geodesics.
Popiel and Noakes [10] proposed a manifold version of the al-
gorithm and Arnould et al. [3] applied it to shape analysis.

Surfaces on manifolds. Similarly, we generalize (2) toM in
three different ways. First, Bézier surfaces can be interpreted
as a one-parameter family of Bézier curves

β3(t1, t2;b) =
∑3

j=0

(∑3
i=0 bijBi3(t1)

)
Bj3(t2)

= β3(t2; (β3(t1;bj))j=0,...,3),

where bj = (bij)i=0,...,3. That formulation allows an evalua-
tion based on curves as stated above.

A second interpretation of surfaces extends equation (3) as
Bézier surfaces are convex combinations of their control points

β3(t1, t2;b) = av[(bij)i,j=0,...,3, (Bi3Bj3)i,j=0,...,3]. (4)

Here again, the Euclidean Bézier surface is recovered with the
classical Euclidean averaging.

The last generalization is also based on a geodesic extension
of the De Casteljau algorithm (Farin [6]). All these methods
are developed in Absil et al. [2].
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S = {(t1, t2) : t1 = 1 + cos(3πt2)}

Figure 2: Differentiable piecewise-cubic Bézier surfaces. Left: M = R3. The Bézier spline is composed of different Bézier surfaces (blue and yellow). It
interpolates the (red) data points and is parametrized by the (green) control points. Middle: M = S2. Data points (red) are interpolated on the 2-sphere by a
cubic Bézier spline. The (blue) curve is a smooth 1D-path on the surface. Right: M = SO(3). Data points (red) are orientations of a rigid body, represented as
points on the special orthogonal group. The (blue) surface interpolates them.

Smooth splines on manifolds. A Bézier spline corre-
sponds to several Bézier curves (βm

3 )m=0,...,M (or surfaces
(βmn

3 )m,n∈{0,...,M}×{0,...,N}) patched together (see Figure 1
for an example). For curves, the spline is continuous and in-
terpolates the data points if bm3 = bm+1

0 = pm+1 for m =
1, . . . ,M − 1. Surfaces are continuously patched if their con-
trol points are the same at the shared border. Data points pmn

are interpolated if bm,n
00 = pm,n

Differentiability of curves is achieved by constraining pm to
be in the middle of the geodesic between bm2 and bm+1

1 . For
surface, an equivalent bidimensional constraint exists on the
Euclidean space, but its manifold version does not hold for
surfaces: Absil et al. [2] hence introduced a modified defini-
tion of the Bézier surfaces such that C1 splines can be com-
puted on any Riemannian manifold. Setting b = (bij)i,j∈I and
I = {−1, 1, 2, 4}, one redefines

β3(t1, t2;b) = av [b, (wi(t1)wj(t2))i,j∈I ] (5)

with slightly modified weights

wi(t) =


1
2B03(t) if i = −1,
B13(t) +

1
2B03(t) if i = 1,

B23(t) +
1
2B33(t) if i = 2,

1
2B33(t) if i = 4.

3 Optimal splines
In Section 2, we showed that Bézier splines offer the possibility
to interpolate a set of data points. In this section, we show how
the control points of the Bézier curves (resp. surfaces) can be
optimally chosen to obtain a “good-looking” spline.

To do so, we first optimize the control points of the spline
inM = Rr such that (i) the energy of the spline is minimum
(i.e. the sum among all patches of the mean square acceleration
of Bézier functions

∫
[0,1]s

‖β̈m
3 (t,b)‖2dt ) and (ii) the spline

is continuous, differentiable and interpolates the data points.
The solution of this optimization problem reduces to a linear
system. We then generalize this solution to manifolds.

In Gousenbourger et al. [7], the control points minimize

f [bm] = F̂ [β0
2 ] +

∑M−2
m=1 F̂ [β

m
3 ] + F̂ [βM−1

2 ].

The points bm2 , pm and bm+1
1 , m = 1, . . . ,M − 1, are aligned

on a geodesic whose direction is arbitrarily fixed. The length
of these geodesics, however, are not specified and can be opti-
mized.

In Arnould et al. [3], the constraint are relaxed and rewrit-
ten in terms of the control points only. In other words, on Rr,
we set bm1 = 2pm − bm−12 . After optimization, bm−12 appears
to be a weighted sum of the data points. Due to translation
invariance, we generalize the result to manifolds using the in-
verse exponential map. The exponential map and its inverse
are operators of differential geometry. Examples of those are
available in [1].

In Absil et al. [2], we propose a method minimizing the en-
ergy of a bivariate manifold valued Bézier spline

f [bmn] =
∑M−1

m=0

∑N−1
n=0 F̂ [β

mn
3 ].

In Rr, the optimal control points can be expressed as affine
combinations of the data points because the problem is invari-
ant to translations. On manifolds, we express the problem on a
product of (Euclidean) tangents spaces using a technique close
to the one proposed in Arnould et al. [3].

4 Examples
On Figure 2, we show results on (left) the Euclidean space,
(middle) the sphere and (right) the space of orthogonal orienta-
tions SO(3) also named special orthogonal group. All results
represent a Bézier surface computed by geodesic averaging of
the control points. The control points are generated with the
method proposed in Absil et al. [2]. On the special orthogo-
nal group SO(3 for instance (Figure 2, right) we are able to
smoothly interpolate different orientations of the truck (red) by
a Bézier surface (blue). The continuity and derivability of the
curve is easy to see on the left and middle figures.

5 Conclusion
We summarized different interpolative methods on manifolds.
These methods are generalizations of piecewise-Bézier splines
in the Euclidean space to general manifolds. We showed that
data points are interpolated continuously and differentiably
with a minimal knowledge of the geometry of the manifold.
We also showed a way to choose the control points to obtain a
good-looking (i.e. as flat as possible) spline.



References
[1] P.-A. Absil, R. Mahony and R. Sepulchre. “Optimization

algorithms on Matrix Manifolds”. Princeton University
Press, Princeton, NJ, 2008.

[2] P.-A. Absil, P.-Y. Gousenbourger, P. Striewski, B. Wirth.
“Differentiable piecewise-Bézier surfaces on Riemannian
manifolds”, Technical report UCL-INMA-2015.10-v1,
Université catholique de Louvain, 2016. Accepted with
minor changes in SIIMS (SIAM).

[3] A. Arnould, P.-Y. Gousenbourger, C. Samir, P.-A. Absil,
M. Canis. “Fitting Smooth Paths on Riemannian Man-
ifolds: Endometrial Surface Reconstruction and Pre-
operative MRI-Based Navigation”, In F.Nielsen and
F.Barbaresco, editors, GSI2015, Springer International
Publishing, 491–498, 2015.

[4] R. Bergmann and A Weinmann. “A Second Order TV-
type Approach for Inpainting and Denoising Higher Di-
mensional Combined Cyclic and Vector Space Data”,
arXiv 1501.02684v1, 2015.

[5] N. Boumal, B. Mishra, P.-A. Absil and R Sepulchre.
“Manopt, a Matlab toolbox for optimization on mani-
folds”, Journal of Machine Learning Research, 15, 1455–
1459, 2014.

[6] G.E. Farin, “Curves and Surfaces for CAGD”, Morgan
Kaufmann editor, Academic Press, fifth edition, 2002.

[7] P.-Y. Gousenbourger, C. Samir and P.-A. Absil.
“Piecewise-Bézier C1 interpolation on Riemannian
manifolds with application to 2D shape morphing”,
International Conference on Pattern Recognition (ICPR),
4086–4091, 2014.

[8] X. Pennec, P. Fillard and N Ayache. “A Riemannian
framework for tensor computing”, International Journal
of Computer Vision, 66(1):41–66, 2006.

[9] G. Peyré. “Manifold models for signals and im-
ages”, Computer Vision and Image Understanding,
113(2):249–260, 2009.

[10] T. Popiel and L. Noakes, “Bézier curves and C2 inter-
polation in Riemannian manifolds”, “J. Approx. Theory,
148(2):111–127, 2007.

[11] J. Solomon, F. De Goes, G. Peyré, et al. “Convolutional
wasserstein distances”, ACM Transactions on Graph-
ics, Association for Computing Machinery, 34(4), 66:1–
66:11, 2015.


