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Abstract – We present a method to compute a fitting curve B to
a set of data points d0, . . . , dm lying on a manifold M. That curve
is obtained by blending together Euclidean Bézier curves obtained
on different tangent spaces. The method guarantees several prop-
erties among which B is C1 and is the natural cubic smoothing
spline when M is the Euclidean space. We show examples on the
sphere S2 as a proof of concept.1

1 Introduction
We address the problem of curve fitting on a Riemannian man-
ifoldM. From a set of data points d0, . . . , dm ∈M associated
with times t0, . . . , tm on a given time-interval [0, n], we seek a
C1 curve B : [0, n] → M that is “sufficiently straight”, while
approximating “sufficiently well” the data points at the given
times.

Curve fitting on manifold appears in several applications
where denoising or resampling time-dependent data is required.
For instance, in Arnould et al. [2], the evolution of an organ is
observed by interpolating several contours of a tumoral tissue
on a shape manifold. Regression is also of interest in prob-
lems where 3D rigid rotations of objects are involved, as in
motion planning of rigid bodies or in computer graphics [9]. In
that case, the manifold would be the special orthogonal group
SO(3).

A widely used strategy to address the fitting problem in gen-
eral is to encapsulate the fitting and straightness constraints in
a single optimization problem

min
γ∈Γ

Eλ(γ) :=

∫ tm

t0

∥∥∥∥D2γ(t)

dt2

∥∥∥∥2

γ(t)

dt+ λ

m∑
i=0

d2(γ(ti), di),

(1)
where Γ is an admissible set of curves γ onM, D2

dt2 is the (Levi-
Civita) second covariant derivative, ‖ · ‖γ(t) is the Riemannian
metric at γ(t), and d(·, ·) is the Riemannian distance. The pa-
rameter λ permits to strike the balance between the regularizer∫ tm
t0
‖D2γ(t)

dt2 ‖
2
γ(t)dt and the fitting term

∑m
i=0 d2(γ(ti), di).

This problem has been tackled in different ways in the past
few years. We cite for instance Samir et al. [10] that ap-
proached the solution of problem (1) with a manifold-valued
steepest-descent method on an infinite dimensional Sobolev
space equipped with the Palais-metric. In Boumal et al. [3], the
search space is reduced to the product manifold MM , as the
curve B is discretized in M points, and the covariant derivative
from (1) is approached with finite differences on manifolds. A
technique for regression based on unwrapping and unrolling
has been recently proposed by Kim et al. [7]. Finally, we men-
tion Lin et al. [8], who proposed a polynomial regression tech-
nique based on projections on tangent spaces.

The limit case when λ→∞ concerns interpolation. We cite
here several works that solve this problem by means of Bézier
curves [2, 1]. In those works, the search space Γ is reduced
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Figure 1: The curve B(t) is made of natural cubic splines computed on differ-
ent tangent spaces. The cubic splines can be obtained equivalently as Bézier
curves, using a technique close to [2]. They are then blended together with
carefully chosen weights.

to composite cubic Bézier splines B and the optimality of (1)
is guaranteed only when M = Rr. However, the main ad-
vantages of these methods are twofold: (i) the search space is
drastically reduced to the so-called control points of B (see,
e.g., [5] for an overview on Bézier curves); (ii) they are very
simple to implement on any Riemannian manifold, as only two
objects are required: the Riemannian exponential and the Rie-
mannian logarithm, while most of the other techniques require
a gradient or heavy computations of parallel transportation.

Our method aims to extend these works to fitting, and is
extensively described in [6] for the case where m = n. We
build several polynomial pieces by solving the problem (1) on
carefully chosen tangent spaces, and then blend together these
curves in such a way that B (i) is differentiable, (ii) is the natu-
ral cubic smoothing spline whenM is a Euclidean space, (iii)
interpolates the data points if m = n when λ → ∞. Further-
more, we assess that the method is easy-to-use, as (iv) it only
requires the knowledge of the Riemannian exponential and the
Riemannian logarithm onM; (v) the curve can be stored with
only O(n) tangent vectors; and, finally, (vi) given this repre-
sentation, computing γ(t) at t ∈ [0, n] only requires O(1) ex-
ponential and logarithm evaluations.

We present here the above-mentioned method and give re-
sults for fitting on the sphere S2. We refer to [6] for more details
and for the proof of the six properties.

2 Method

Framework. Consider a Riemannian manifoldM and a set
of m + 1 data points d0, . . . , dm ∈ M associated with pa-
rameters t0, . . . , tm over an interval [0, n]. Our method relies
on computations on tangent spaces. For this, we define the
points d(i), i = 0, . . . , n, where d(i) = dki is the data point
whose associated parameter tki is the closest to t = i. We de-
note Td(i)M its associated tangent space. Consider finally the
search space Γ from (1) reduced to the space of C1 composite
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(a) Smoothing curve B : [0, 4] → M fitting 100 data points.
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(b) Fitting curve B : [0, 9] → M, with λ = 108.

Figure 2: The data points (red dots) are fitted by a C1 composite blended spline B(t) (blue). The blended spline is here represented as a Bézier curve conducted
by its control points (green circles).

curves
B : [0, n]→M : fi(t− i), i = btc,

where the functions fi : [i, i + 1] → M are called blended
functions. They are given by

fi(t− i) = av[(Li(t), Ri(t)), (1− w(t), w(t))],

for i = 0, . . . , n and where av[(x, y), (1 − a, a)] is a Riema-
niann weighted mean. The fitting technique we present here
consists in computing the functions Li(t), Ri(t) and choos-
ing the weight function w(t) such that the six above-mentioned
properties are met.

Optimal curves. The functions Li(t) and Ri(t) are ob-
tained as follows. We note x̃ = Logd(i) (x) and x̂ =
Logd(i+1) (x), the representation of the point x ∈ M in the
tangent spaces at d(i) and d(i + 1) respectively. We define
Li(t) = Expd(i)

(
B̃(t)

)
and Ri(t) = Expd(i+1)

(
B̂(t)

)
,

where B̃(t) is the natural cubic spline fitting the data points
d̃0, . . . , d̃m on Td(i)M, and accordingly for B̂(t). Note that
B̃(t) (resp. B̂(t)) are therefore solutions of (1) on the corre-
sponding tangent space.

Riemannian averaging. Finally, the choice of the weight
function w(t) is of high importance in order to meet the dif-
ferentiability property. The weight function must thus be cho-
sen such that Li(0) = fi(0), Ri(1) = fi(1), L̇i(0) = ḟi(0)
and Ṙi(1) = ḟi(1). This is obtained for w(1) = 1, and
w(0) = w′(0) = w′(1) = 0. Among all the possible weight
functions, we choose w(t) = 3t2 − 2t3.

The blending method is represented in Figure 1.

3 Results
We show two examples on S2. Figure 2a presents a smoothing
curve fitting 100 noisy points at times ti ∈ [0, 4] with λ = 100.
Figure 2b shows the fitting curve obtained for 10 data points
at times ti = i, i = 0, . . . , 9, for λ = 108. We observe in
both cases that the curve is C1 (property (ii)) and that the data
points are interpolated (property (iii)) when λ → ∞. Property

(i) is obtained by construction. Properties (iv-vi) are shown and
proved in [6]. Additionnal examples on the special orthogonal
group SO(3) or on the manifold of positive semidefinite matri-
ces of size p and rank q, S+(p, q), are also provided in [6].
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