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Abstract — We present a method to compute a fitting curve B to
a set of data points do, . . ., d,, lying on a manifold M. That curve
is obtained by blending together Euclidean Bézier curves obtained
on different tangent spaces. The method guarantees several prop-
erties among which B is C' and is the natural cubic smoothing
spline when M is the Euclidean space. We show examples on the
sphere S? as a proof of concept.!

1 Introduction

We address the problem of curve fitting on a Riemannian man-
ifold M. From a set of data points dy, . . . , d,,, € M associated
with times to, . . ., t,, on a given time-interval [0, n], we seek a
C! curve B : [0,n] — M that is “sufficiently straight”, while
approximating “sufficiently well” the data points at the given
times.

Curve fitting on manifold appears in several applications
where denoising or resampling time-dependent data is required.
For instance, in Arnould et al. [2], the evolution of an organ is
observed by interpolating several contours of a tumoral tissue
on a shape manifold. Regression is also of interest in prob-
lems where 3D rigid rotations of objects are involved, as in
motion planning of rigid bodies or in computer graphics [9]. In
that case, the manifold would be the special orthogonal group
SO(3).

A widely used strategy to address the fitting problem in gen-
eral is to encapsulate the fitting and straightness constraints in
a single optimization problem
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where I' is an admissible set of curves v on M
Civita) second covariant derivative, || - || is the Riemannian
metric at y(t), and d(-, -) is the Riemannian distance. The pa-
rameter A\ permits to strike the balance between the regularizer
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Th1s problem has been tackled in different ways in the past
few years. We cite for instance Samir et al. [10] that ap-
proached the solution of problem (1) with a manifold-valued
steepest-descent method on an infinite dimensional Sobolev
space equipped with the Palais-metric. In Boumal et al. [3], the
search space is reduced to the product manifold M | as the
curve B is discretized in M points, and the covariant derivative
from (1) is approached with finite differences on manifolds. A
technique for regression based on unwrapping and unrolling
has been recently proposed by Kim et al. [7]. Finally, we men-
tion Lin et al. [8], who proposed a polynomial regression tech-
nique based on projections on tangent spaces.

The limit case when A — oo concerns interpolation. We cite
here several works that solve this problem by means of Bézier
curves [2, 1]. In those works, the search space I' is reduced
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Figure 1: The curve B(¢) is made of natural cubic splines computed on differ-
ent tangent spaces. The cubic splines can be obtained equivalently as Bézier
curves, using a technique close to [2]. They are then blended together with
carefully chosen weights.

to composite cubic Bézier splines B and the optimality of (1)
is guaranteed only when M = R". However, the main ad-
vantages of these methods are twofold: (i) the search space is
drastically reduced to the so-called control points of B (see,

g., [5] for an overview on Bézier curves); (ii) they are very
simple to implement on any Riemannian manifold, as only two
objects are required: the Riemannian exponential and the Rie-
mannian logarithm, while most of the other techniques require
a gradient or heavy computations of parallel transportation.

Our method aims to extend these works to fitting, and is
extensively described in [6] for the case where m = n. We
build several polynomial pieces by solving the problem (1) on
carefully chosen tangent spaces, and then blend together these
curves in such a way that B (i) is differentiable, (ii) is the natu-
ral cubic smoothing spline when M is a Euclidean space, (iii)
interpolates the data points if m = n when A\ — oco. Further-
more, we assess that the method is easy-to-use, as (iv) it only
requires the knowledge of the Riemannian exponential and the
Riemannian logarithm on M; (v) the curve can be stored with
only O(n) tangent vectors; and, finally, (vi) given this repre-
sentation, computing (¢) at t € [0, n] only requires O(1) ex-
ponential and logarithm evaluations.

We present here the above-mentioned method and give re-
sults for fitting on the sphere S2. We refer to [6] for more details
and for the proof of the six properties.

2 Method

Framework. Consider a Riemannian manifold M and a set
of m + 1 data points dy,...,d,, € M associated with pa-
rameters t, . .., t,, over an interval [0, n]. Our method relies
on computations on tangent spaces. For this, we define the
points d(i), ¢ = 0,...,n, where d(i) = dy, is the data point
whose associated parameter ¢y, is the closest to ¢t = 7. We de-
note T3;) M its associated tangent space. Consider finally the
search space I' from (1) reduced to the space of C! composite
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(a) Smoothing curve B : [0, 4] — M fitting 100 data points.

B

(b) Fitting curve B : [0,9] — M, with A = 108.

Figure 2: The data points (red dots) are fitted by a C! composite blended spline B(t) (blue). The blended spline is here represented as a Bézier curve conducted

by its control points (green circles).

curves
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where the functions f; : [i,i + 1] — M are called blended
functions. They are given by

filt =) = av[(Li(t), Ri(t)), (1 — w(t), w(t))],

fori = 0,...,n and where av[(z,y), (1 — a,a)] is a Riema-
niann weighted mean. The fitting technique we present here
consists in computing the functions L;(t), R;(t) and choos-
ing the weight function w(¢) such that the six above-mentioned
properties are met.

Optimal curves. The functions L;(t) and R;(t) are ob-
tained as follows. We note z = Logg () and & =
Logg(i11) (), the representation of the point z € M in the
tangent spaces at d(i) and d(i + 1) respectively. We define

Li(t) = Expyg (B(t)) and Ri(t) = Expygsi (B(t)),
where B(t) is the natural cubic spline fitting the data points

do, ..., dp on T4(iyM, and accordingly for B(t) Note that
B(t) (resp. B(t)) are therefore solutions of (1) on the corre-

sponding tangent space.

Riemannian averaging. Finally, the choice of the weight
function w(t) is of high importance in order to meet the dif-
ferentiability property. The weight function must thus be cho-
sen such that L;(0) = £i(0), R;(1) = fi(1), Li(0) = £i(0)
and R;(1) = fi(1). This is obtained for w(l) = 1, and
w(0) = w'(0) = w'(1) = 0. Among all the possible weight
functions, we choose w(t) = 3t — 2t3.
The blending method is represented in Figure 1.

3 Results

We show two examples on S2. Figure 2a presents a smoothing
curve fitting 100 noisy points at times ¢; € [0, 4] with A = 100.
Figure 2b shows the fitting curve obtained for 10 data points
attimes t; = 4,7 = 0,...,9, for A = 108. We observe in
both cases that the curve is C! (property (ii)) and that the data
points are interpolated (property (iii)) when A — co. Property

(i) is obtained by construction. Properties (iv-vi) are shown and
proved in [6]. Additionnal examples on the special orthogonal
group SO(3) or on the manifold of positive semidefinite matri-
ces of size p and rank ¢, Sy (p, q), are also provided in [6].
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