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Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds∗
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Abstract. We generalize the notion of Bézier surfaces and surface splines to Riemannian manifolds. To this end
we put forward and compare three possible alternative definitions of Bézier surfaces. We furthermore
investigate how to achieve C0- and C1-continuity of Bézier surface splines. Unlike in Euclidean space
and for one-dimensional Bézier splines on manifolds, C1-continuity cannot be ensured by simple
conditions on the Bézier control points: it requires an adaptation of the Bézier spline evaluation
scheme. Finally, we propose an algorithm to optimize the Bézier control points given a set of points
to be interpolated by a Bézier surface spline. We show computational examples on the sphere, the
special orthogonal group, and two Riemannian shape spaces.
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Notation. The following table lists the notations used in this article.
M Manifold

Rd Euclidean space of dimension d

Ck Continuous differentiability up to derivative k

γ Curve on a manifold M
L[γ] Length of a curve on a manifold M
E[γ] Energy of a curve on a manifold M
TxM Tangent space at a point x ∈M
expa (b) Exponential map. a ∈M, b ∈ TaM
loga (b) Inverse exponential map. a, b ∈M
Pa→bv Parallel transport of a vector v from TaM to TbM. a, b ∈M
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EXPa(b) Discrete exponential map. a ∈M, b ∈ TaM
LOGa(b) Discrete inverse exponential map. a, b ∈M
〈a, b〉 Scalar product between a, b ∈ TxM
d(a, b) Distance between a, b ∈M
b Control point of a Bézier function. For curves, it is indexed as bj and

for surfaces bij . b
mn
ij is the ijth control point of the patch m,n

βK Bézier function of order K (curve or surface)

βI Bézier function of type I (average over all control points)

βII Bézier function of type II (average as one-dimensional curves in one
direction, and then in another)

βIII Bézier function of type III (de Casteljau’s algorithm)

BjK jth Bernstein polynomial of order K

b Intermediate point in de Casteljau’s algorithm

B Bézier spline composed of several Bézier functions

w Weight

av[(x1, . . . , xn), (w1, . . . , wn)] Geodesic average of points xi ∈M with weights wi ∈ R
vm,ni,j (r, s) Mapping of a point i, j in the patch m,n to the tangent space of the

control point bm+r,n+s
0,0

1. Introduction. During recent years, it has become more and more common and im-
portant to process data from non-Euclidean spaces, in particular from Riemannian manifolds.
Examples for the use of manifold-valued data include the exploration of Riemannian shape
spaces in computer vision [14], the interpretation of colors in images as data on the color
circle S1 [4], the representation of fixed rank matrices as a submanifold of all matrices [40],
and many more.

This paper concerns multivariate manifold-valued interpolation. More precisely, given
data points pi1,...,id on a manifold M associated with nodes (i1, . . . , id) ∈ Zd of a Cartesian
grid in Rd, we seek a smooth (i.e., C1) function B : Rd →M such that B(i1, . . . , id) = pi1,...,id .

This problem is motivated by several applications in engineering and the sciences. In
projection-based model order reduction of a dynamical system that depends on d paramet-
ers, a possible approach consists in computing a suitable projector (hence, an element of a
Grassmann manifold) for values of the parameters falling on a grid, then resorting to inter-
polation in order to generate a projector for other values of the parameters [30]. In diffusion
tensor imaging, a diffusion tensor (hence, an element of the manifold of 3× 3 symmetric pos-
itive definite matrices) is acquired for each voxel of the volume of interest (thus d = 3), and
interpolation can be used to infer more finely sampled data [27]. In Cosserat rods [34], we have
d = 1 and M = SE(3)—the group of rigid-body motions in R3—while Cosserat shells [35]
require d = 2. Let us finally mention liquid crystals, which can be described by a function
from R3 into the projective space RP2 [24].

Two special cases of manifold-valued interpolation have been widely considered in the
literature. One of them is when M is a linear manifold, i.e., a Euclidean space. A preferred
way of handling Euclidean interpolation problems is by resorting to piecewise-polynomial (or
spline) interpolation functions. Indeed, polynomial functions are convenient to manipulate
and evaluate, and the piecewise approach makes it possible to keep interpolation errors small
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while using polynomial pieces of low degree, avoiding the problem of Runge’s phenomenon
that plagues high-degree polynomial interpolation. Within the realm of piecewise-polynomial
interpolation, countless variations occur according to the sought degree of smoothness, re-
strictions on the admissible classes of polynomial pieces, optimality criteria, and also the
form—one of them being the Bézier form—in which the polynomials are expressed. The book
of Farin [13] is a convenient point of entry to this vast literature.

The other special case of manifold-valued interpolation is when d = 1. The interpolation
problem then reduces to interpolating time-labeled data points on M by a curve that goes
through these points at the prescribed instants. This problem has received a fair amount of
attention in the literature. Recent contributions can be found in [33, 19, 39, 3].

Besides these two special—but important—cases, multivariate manifold-valued interpola-
tion does not appear to have been much researched, in spite of the above-mentioned applic-
ations. Steinke et al. [37] use a thin-plate-spline technique to produce an interpolation map
between two Riemannian manifolds. The approach is generalized in [38] where, given a set of
training pairs (Xi, Yi) with the Xi’s and Yi’s on two manifolds, a mapping is sought between
these two manifolds that minimizes a regularized empirical risk. We also mention a related
technique for volumetric registration presented in [20].

In the context of computer-aided geometric design, another technique based on subdi-
vision schemes has been widely studied during the past decades in order to efficiently draw
curves and surfaces in Euclidean space (cf. the monograph [28] for an introduction into the
topic). Here, a discrete set of points is recursively refined, resulting in a limit curve or surface,
which, depending on the chosen refinement scheme, may interpolate or just approximate the
initial points. For instance, Dyn, Levin, and Gregory propose a four-point scheme with C1-
interpolatory limit curves [12] and extend it to a C2-nearly-interpolatory scheme in [11], while
Deng and Ma consider more general polynomial-reproducing schemes [9]. Such schemes and
their convergence and smoothness analysis can also be generalized to non-Euclidean spaces
based on similar operations as we use in this work [41, 17, 42, 26]. In complicated spaces,
however, the many necessary recursions to evaluate a subdivision curve or surface may be-
come computationally prohibitive (yet, at least in the Euclidean case, several subdivision
schemes also admit direct evaluation formulas which can lead to conceptually different al-
gorithms). Also, subdivision schemes are typically local so that for instance curve inter-
polation with minimal global curvature cannot be achieved. Therefore we will here take a
different, Bézier-based viewpoint (note though that for a priori given fixed control points,
Bézier curves and surfaces can also be interpreted as resulting from corresponding subdivision
schemes).

In this paper, we present a technique to perform multivariate manifold-valued interpolation
by means of C1 piecewise-cubic-Bézier functions (see Figure 1 for an example). We thereby
extend the previously mentioned benefits of piecewise-polynomial interpolation to manifold
codomains. When d = 1, the proposed method reduces to a strategy very close to the one
developed in [3, 16]. The only difference is that in these articles the two extreme segments
are chosen to be quadratic Bézier curves and not cubic Bézier curves. The proposed method
can thus almost be viewed as a multivariate extension of [3, section 2]. For simplicity of the
exposition, we focus on the bivariate case (d = 2), but the transition to higher values of d
appears to be considerably less intricate than the transition from d = 1 to d = 2.
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Figure 1. Differentiable Bézier spline surface on the Riemannian space of shells (section 6.4) interpolating
the red shapes. The gray shapes are points on the Bézier surface driven by the control points in green. Their
location indicates where in the R2 domain they are achieved.

The development of the proposed bivariate manifold-valued technique requires more work
than one might anticipate. The first task is to propose a bivariate extension of the well-
known [23, 8, 25, 29] manifold-valued Bézier curves that constitute the pieces in [3]. We
provide three approaches leading in general to different results (see section 3, Definition 4),
in which the essential component is a weighted geodesic average.

Next comes the question of gluing these Bézier patches together in a smooth (C1) way.
The problem is substantially more difficult than in [3] because the interfaces are no longer
isolated points but instead regions of dimension 1. The conditions for C0-continuity of multiple
Bézier surfaces patched together are the same as in Euclidean space, namely, that the control
points of adjacent patches coincide at the interface; however, the classical conditions on the
control points for C1-continuity in Euclidean space exhibit a linear dependence which turns
into an incompatibility on manifolds. As a result, the classical conditions can, in general,
not be satisfied. In addition, those conditions are not sufficient to ensure C1-continuity on
a manifold. We overcome this difficulty by “discarding” the control points that lie on the
interfaces. We show in Theorem 18 that C1 gluing can then be achieved for two of the three
Bézier surface definitions.

For the interpolation problem, we provide a technique to fix the remaining leeway on
the control points in such a way that the resulting interpolation function has minimal mean
squared second derivative when the codomainM reduces to a Euclidean space. The outcome
is then an advanced method to address the bivariate manifold-valued interpolation problem,
whose sophistication makes it a promising tool towards making the most of expensively ac-
quired data in applications such as those mentioned above.
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The paper is organized as follows. After a reminder in section 2 on the Euclidean case,
piecewise-Bézier curves and surfaces on manifolds are introduced and analyzed in section 3.
The interpolation technique is presented in section 4. We briefly introduce all necessary nu-
merical tools in section 5, and in section 6 we show some numerical applications in the context
of motion modeling and shape exploration in shape spaces. Conclusions are drawn in section 7.
For the reader’s convenience, a glossary of notations is given at the very end of the article.

2. Reminder on Euclidean piecewise-Bézier curves and surfaces. This section is a brief
summary of Bézier curves and surfaces in the Euclidean space Rn. A detailed exposition can
be found in [13]. For a sequence of control points b0, . . . , bK ∈ Rn, the corresponding Bézier
curve βK(·; b0, . . . , bK) : [0, 1]→ Rn is defined as

(1) βK(t; b0, . . . , bK) =
K∑
j=0

bjBjK(t),

where K is called the order of the curve (K = 3 for cubic Bézier curves) and BjK(t) denotes
the jth Bernstein polynomial of degree K,

(2) BjK(t) =

(
K

j

)
tj(1− t)K−j .

The Bézier curve fully lies inside the convex hull of its control points b0, . . . , bK , since for each
fixed t, the BjK(t) form a partition of unity and thus can be interpreted as convex combination
coefficients (Figure 2 left). The curve interpolates the first and last control points, and its
initial and final velocity are tangent to the initial and final line segments between the control
points (Figure 2),

βK(0; b0, . . . , bK) = b0, β̇K(0; b0, . . . , bK) = K(b1 − b0),

βK(1; b0, . . . , bK) = bK , β̇K(1; b0, . . . , bK) = K(bK − bK−1),

where β̇ denotes the time derivative of β.
De Casteljau’s algorithm offers a method to evaluate bK0 = βK(t0; b0, . . . , bK) at a time t0 ∈
[0, 1],

(3)
b0
j = bj , j = 0, . . . ,K,

bkj = t0 bk−1
j+1 + (1− t0) bk−1

j , k = 1, . . . ,K, j = 0, . . . ,K − k.
Note that the operations employed above are only convex combinations with coefficients t0
and 1−t0 so that the algorithm has a simple geometric interpretation (Figure 2 right). Several
Bézier curves can be joined to form a Bézier spline: for two Bézier curves βK(t; bl0, . . . , b

l
K),

βK(t; br0, . . . , b
r
K) : [0, 1]→ Rn, the composite spline curve

B : [0, 2]→ Rn : t 7→
{
βK(t; bl0, . . . , b

l
K) if t ∈ [0, 1],

βK(t− 1; br0, . . . , b
r
K) if t ∈ (1, 2],

(4)

is continuous if and only if br0 = blK and first order differentiable if and only if blK =
blK−1+br1

2 .
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Figure 2. Computation of a quadratic (K = 2) Bézier curve via (1) as a weighted mean of all control
points (top left) and via de Casteljau’s algorithm (3) as a recursively iterated weighted mean of point pairs (top
right). In Euclidean space both methods are equivalent, but they will usually not lead to identical results if they
are generalized to manifolds as the sphere (bottom, showing a cubic Bézier curve). The dashed curve is obtained
with the weighted mean and the solid one with de Casteljau’s algorithm. Interpolation and control points are
indicated by filled and open circles, respectively; the Bézier polygon is shown as gray dashed lines.

The idea of Bézier curves extends also to higher dimensions; see, e.g., [13, section 5.5]. For
a family of points (bij)i,j=0,...,K ⊂ Rn, the corresponding Bézier surface βK(t1, t2; (bij)i,j=0,...,K) :
[0, 1]2 → Rn is defined by

(5) βK(t1, t2; (bij)i,j=0,...,K) =
K∑
i=0

K∑
j=0

bijBiK(t1)BjK(t2).

Again, for fixed t1 and t2 this can be interpreted as a convex combination of all control points
bij (Figure 3 left). We directly see that the Bézier surface boundary consists of the four
Bézier curves with control points b0,j , bK,j , bj,0, bj,K , j = 0, . . . ,K, respectively. We can also
interpret a Bézier surface as a one-parameter family of Bézier curves,

βK(t1, t2; (bij)i,j=0,...,K) =

K∑
j=1

(
K∑
i=1

bijBiK(t1)

)
BjK(t2)

= βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K),(6)
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Figure 3. Computation of a cubic Bézier surface via (5) as a weighted mean of the control points (left),
via (6) through a one-parameter family of Bézier curves (middle), and via de Casteljau’s algorithm (7) (right).

which allows an evaluation just based on the computation of Bézier curves (Figure 3, middle).
De Casteljau’s algorithm gives an alternative way to compute such Bézier surfaces. In sug-
gestive matrix notation, it takes the following form,

(7)

b0
ij = bij , i, j = 0, . . . ,K,

bkij = (1− t1 t1)

(
bk−1
i,j bk−1

i,j+1

bk−1
i+1,j bk−1

i+1,j+1

)(
1− t2
t2

)
, k = 1, . . . ,K, i, j = 0, . . . ,K − k,

and yields bK00 = βK(t1, t2; (bij)i,j=0,...,K). Here again, points bkij are obtained as convex

combinations of bk−1
ij , bk−1

ij+1, bk−1
i+1j , and bk−1

i+1j+1. This combination leads once more to a
simple geometric interpretation (Figure 3 right).

Two Bézier surfaces βK(t1, t2; (blij)i,j=0,...,K) and βK(t1, t2; (brij)i,j=0,...,K) can be joined

Ck-continuously in the t1-direction via

(8) B : [0, 2]× [0, 1]→ Rn : (t1, t2) 7→
{
βK(t1, t2; (blij)i,j=0,...,K) if t1 ∈ [0, 1],

βK(t1 − 1, t2; (brij)i,j=0,...,K) if t1 ∈ (1, 2]

if for all j = 1, . . . ,K the sequence pairs (blj,0, . . . , b
l
j,K), (brj,0, . . . , b

r
j,K) induce a one-dimensional

Ck-continuous Bézier spline via (4). An analogous condition holds if the two surfaces are to
be matched smoothly in the t2-direction (see [13, section 16.1]).

3. Piecewise-Bézier surfaces on manifolds. The generalization of Bézier curves to a
manifold setting was previously studied. For instance, Lin and Walker [23] proposed a manifold
version of de Casteljau’s algorithm. The conditions of continuity and differentiability were
studied by Popiel and Noakes [29]. Here, we aim to generalize the concept of a Bézier surface
to a Riemannian manifold M. To this end, we briefly introduce some standard notions of
Riemannian geometry (a more detailed exposition is found in standard textbooks, e.g., [10]).
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The Riemannian metric gy(·, ·) in a point y ∈M is an inner product on the tangent space
TyM toM in y, and it depends smoothly on y. The length and energy of a path γ : [0, 1]→M
are defined as

L[γ] =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt,(9)

E[γ] =

∫ 1

0
gγ(t)(γ̇(t), γ̇(t)) dt,(10)

where the dot denotes (time) differentiation.
We call geodesics the paths γ that minimize the energy E[γ] for fixed endpoints γ(0) =

y0 ∈M, γ(1) = y1 ∈M. The length L[γ] is also minimized by those paths [10].
The Riemannian distance d(y0, y1) between any two points y0, y1 is the minimum path

length of a path from y0 to y1. For d(y0, y1) small enough, the connecting geodesic is unique.
We shall assume that M is finite dimensional, connected, and geodesically complete. By the
Hopf–Rinow theorem this implies that every two points onM can be connected by a geodesic.
The logarithm of y1 with respect to y0 is defined as the initial velocity of the geodesic γ from
y0 to y1,

(11) logy0 (y1) = γ̇(0).

The exponential map of v ∈ Ty0M is the point reached at t = 1 by the geodesic γ starting
from y0 with initial velocity v,

(12) expy0 (v) = γ(1).

Bézier surfaces can be transferred to a manifold setting in different ways, where each
approach generalizes a particular evaluation scheme for Bézier surfaces in Euclidean space.
In this section, we introduce three possible definitions of Bézier surfaces in a Riemannian
manifoldM. We also examine the conditions and techniques to achieve C0- and C1-continuity
when patching multiple Bézier surfaces together.

3.1. Bézier surface definitions based on geodesic averaging. To extend Bézier surfaces
to metric spaces M, we mainly use the weighted average between points y1, . . . , yn ∈ M as
the core concept. This tool can replace naturally not only convex combinations, but also
multilinear interpolations. Thanks to this, we will propose three ways to compute Bézier
surfaces on manifolds and analyze their well-posedness.

Definition 1 (weighted geodesic average). Let n ∈ N. A weighted geodesic average of points
y1, . . . , yn ∈ M for convex combination weights w1, . . . , wn ∈ [0, 1] with

∑n
i=1wi = 1 is any

point y ∈M solving

min
y∈M

n∑
i=1

wid
2(yi, y).

If the minimizer exists and is unique, we denote it by av[(y1, . . . , yn), (w1, . . . , wn)].
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Note that weighted averages in metric spaces can be traced back to Fréchet [15]. On
Riemannian manifolds, they have been analyzed under various names—Riemannian center
of mass, Riemannian barycenter, Karcher mean, Riemannian average, geodesic average—in
particular by Karcher (see, e.g., [22]).

Remark 2 (convex combinations and multilinear interpolation). In the Euclidean space, the
weighted geodesic average is the same as a convex combination of the points y1, . . . , yn ∈ Rd.
Indeed, it is straightforward to check that

av[(y1, . . . , yn), (w1, . . . , wn)] =
n∑
i=1

wiyi.

Likewise, the bilinear interpolation of points yij ∈ Rd, i, j ∈ {0, 1}, at coordinates (t1, t2) ∈
[0, 1]2 can be expressed as a weighted geodesic average

(1− t1)(1− t2)y00 + (1− t1)t2y01 + t1(1− t2)y10 + t1t2y11

= av[(y00, y01, y10, y11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)].

Remark 3 (weighted geodesic average of two points). For two points y1, y2 ∈ M with
weights 1 − w,w ∈ [0, 1] and any y ∈ M, the Young-type inequality (1 − w)2d2(y1, y) +
w2d2(y2, y) ≥ 2(1− w)wd(y1, y)d(y2, y) implies

(1− w)d2(y1, y) + wd2(y2, y) ≥ (1− w)w(d(y1, y) + d(y2, y))2

≥ (1− w)wd2(y1, y2)

= (1− w)d2(y1, ŷ) + wd2(y2, ŷ)

for ŷ the point on the connecting geodesic between y1 and y2 with d(y1, ŷ) = wd(y1, y2) and
d(y2, ŷ) = (1− w)d(y1, y2). Thus we obtain the explicit formula

(13) av[(y1, y2), (1− w,w)] = ŷ = expy1
(
wlogy1 (y2)

)
.

The definitions of Bézier surfaces on manifolds are generalizations of (5)–(7). Note that
(5) represents a convex combination and each iteration step in (7) represents a bilinear
interpolation.

Definition 4 (generalized Bézier surface). Given control points bij ∈ M, i, j = 0, . . . ,K,
we define a corresponding generalized Bézier surface of types I–III via

βIK(t1, t2; (bij)i,j=0,...,K) = av[(bij)i,j=0,...,K , (BiK(t1)BjK(t2))i,j=0,...,K ],(14)

βIIK(t1, t2; (bij)i,j=0,...,K) = βK(t1; (βK(t2; (bij)j=0,...,K))i=0,...,K),(15)

βIIIK (t1, t2; (bij)i,j=0,...,K) = bK00,(16)

where βK(·; (bm)m=0,...,K) denotes a Bézier curve in M and where bK00 is defined recursively
via de Casteljau’s algorithm,

b0
ij = bij , i, j = 0, . . . ,K,

bkij = av[(bk−1
ij , bk−1

i,j+1, b
k−1
i+1,j , b

k−1
i+1,j+1), (w00, w01, w10, w11)], k = 1, . . . ,K, i, j = 0, . . . ,K−k,
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Figure 4. The Bézier surfaces of types I to III differ from each other. Here this is visualized on the sphere
S2 by mapping a curve (left) or a grid (right) on the parameterization domain onto the Bézier surface. Types
I to III correspond to the solid, dashed, and dotted lines, respectively. Note, though, that the Bézier surface
boundaries coincide. The control and interpolation points of the Bézier surface are displayed in the left picture;
the gray dashed lines indicate the control point grid. Note that the curves deviate by more than 10−2 which
lies far above our computational precision (the weighted averaging according to Definition 1 is performed by
Newton’s method with accurracy 10−7). Figure 5 highlights further differences between different types of Bézier
surfaces.

with weights

w00 = (1− t1)(1− t2), w01 = (1− t1)t2, w10 = t1(1− t2), w11 = t1t2.

All these three types reduce to the classical Bézier surface if the manifold is the Euclidean
space M = Rd. However, they will generally differ from each other on general manifolds
(Figure 4).

In the above definition of βIIK we have not yet specified how Bézier curves inM are defined.
Here we can again either employ a generalization of (1),

βK(t; (bj)j=0,...,K) = av[(bj)j=0,...,K , (BjK(t))j=0,...,K ],

or use a definition via de Casteljau’s algorithm as in [23, 16], where βK(t; (bj)j=0,...,K) = bK0
for

b0
j = bj , j = 0, . . . ,K,

bkj = av[(bk−1
j , bk−1

j+1), (1− t, t)], k = 1, . . . ,K, j = 0, . . . ,K − k.

All three approaches have their advantages and disadvantages.
The evaluation of βIK entails solving a rather complex optimization problem. However, it

does not suffer from the drawbacks of the other two approaches.
In comparison to βIK , an evaluation of βIIIK via de Casteljau’s algorithm only requires the

comparatively simple computation of weighted geodesic averages with four points. Unfortu-
nately there does not seem to be a straightforward way to patch multiple Bézier surfaces of
type III together C1-continuously (this will be discussed in section 3.4).

Finally, the evaluation of βIIK requires only weighted averages of two points as it is based
on the one-dimensional de Casteljau’s algorithm. When simple analytical formulas exist for
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Figure 5. The two possible construction methods (15) and (17) for Bézier surfaces of type II produce,
in general, different results (their boundaries always coincide, however). Here the difference is shown on the
sphere with the same conventions as in Figure 4: the solid line corresponds to computing vertical splines first,
the dashed line to computing horizontal splines first.

the Riemannian exponential and logarithm (e.g., for M = Sm; see also [31]), this method is
very avantageous since the averaging can be based on (13). However, unlike the surfaces of
types I and III, the definition of βIIK is not symmetric, because it does not satisfy the relation

βK(t1, t2; (bij)i,j=0,...,K) = βK(t2, t1; (bij)
T
i,j=0,...,K).

In the definition of βIIK , instead of first computing the Bézier curve with respect to t2, one
could alternatively compute first the Bézier curves βK(t1; (bij)i=0,...,K) for each j to obtain
new control points for a Bézier curve which is then evaluated at t2,

(17) βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K).

In general, both approaches will yield different surfaces (Figure 5) so that there is a choice to
be made about along which variable of (t1, t2) to interpolate first.

3.2. Well-posedness and smoothness of Bézier surfaces. In order to analyze the well-
posedness of βIK , βIIK , and βIIIK (Definition 4), we now present generalizations of standard
notions in Riemannian geometry.

Definition 5 (multigeodesic convexity). A subset U ⊂ M is called multigeodesically convex
if it contains any weighted geodesic average of any of its points. The multigeodesically convex
hull, co(U), of a set U ⊂M is the smallest multigeodesically convex set C ⊂M containing U .

Remark 6. A multigeodesically convex set is a generalization of a geodesically convex
set, i.e., a set that contains any weighted geodesic average of any pair of its points. Thus,
by definition, any multigeodesically convex set is also geodesically convex. However, the
opposite inclusion is false in general: consider, for instance, R3 with the Euclidean metric
gx(v, v) = ‖v‖2, only with the difference that the metric is smaller, say gx(v, v) = α‖v‖2
with some 0 < α < 1 for x in a neighborhood of the three lines connecting the origin with
yi = (cos 2iπ

3 , sin
2iπ
3 , 1), i = 1, 2, 3 (Figure 6). We claim that for α ∈ (

√
3/2 − 1,

√
2 − 1)

the triangle spanned by 2y1, 2y2, and 2y3 is geodesically convex, but not multigeodesically
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y2

2y2

y1

2y1

y3

2y3

(0, 0, 0)

Figure 6. Illustration of the counterexample given in Remark 6. The gray color indicates areas where the
metric is smaller than the Euclidean metric.

convex. Indeed, it is straightforward to check that for α <
√

2 − 1 the average of 2y1, 2y2,
and 2y3 is close to the origin,

av[(2y1, 2y2, 2y3), (1
3 ,

1
3 ,

1
3)] ≈ (0, 0, 0).

Since the triangle does not contain this average, it cannot be multigeodesically convex. How-
ever, the shortest geodesic between any two points of the triangle is fully contained in that
triangle, so it is geodesically convex. In particular the geodesic between two triangle corners,
which is the most critical case, is the straight connecting line as long as α >

√
3/2− 1.

Remark 7. In our definition of the convex hull, we require every weighted average to be
contained. This is conceptually different from, e.g., [21, Def. 3.3.1], where not every, but only
one of the shortest geodesics between two points needs to be contained. Consequently, in
contrast to the geodesic hull in [21, Def. 3.3.1], the multigeodesically convex hull co(U) always
exists as the intersection of all multigeodesically convex sets containing U .

Remark 8. The multigeodesically convex hull co(U) can, in general, not be obtained as
the set of all weighted geodesic averages of points in U : taking U = {y1, y2, y3}, the latter
will contain the origin, but not the point (0, 0, 1), while the former contains both. This differs
from Euclidean space.

The following theorem ensures that one can always find a weighted geodesic average,
thereby proving part of the well-posedness of geodesic averages (which is necessary to justify
our approach). The remaining issues of uniqueness and smooth data dependence can only be
expected to hold under more restrictive conditions and are treated further below.

Theorem 9 (existence of weighted geodesic averages). LetM be a smooth finite-dimensional
geodesically complete Riemannian manifold. For any points y1, . . . , yn ∈ M and weights
w1, . . . , wn ∈ [0, 1],

∑n
i=1wi = 1, a weighted geodesic average exists.

Proof. This is a simple application of the direct method in the calculus of variations.
Set J [y] =

∑n
i=1wid

2(yi, y) and consider a minimizing sequence yj , j ∈ N, with J [yj ] →
infy∈M J [y] monotonically as j → ∞. Without loss of generality, let w1 6= 0. Due to
d(y1, y

j) ≤ 1
w1
J [yj ] ≤ 1

w1
J [y1], the sequence yj is bounded. Hence the Hopf–Rinow the-

orem implies that yj is precompact, i.e., yj converges (up to a subsequence, which we again
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denote by yj for simplicity) to some y ∈M. The limit y is a weighted geodesic average, since
by the continuity of d(·, ·) we have J [y] = limj→∞ J [yj ] = infy∈M J [y].

Remark 10. An analogous result for infinite-dimensional manifolds M is much harder
to obtain and probably requires assumptions similar to the ones in [32] for the existence of
geodesics. There the manifold needs to be modeled over a Hilbert space V which is compactly
embedded in another Banach space Y . The inner product of V needs to be globally equivalent
to the Riemannian metric gy(·, ·), and gy(·, ·) has to depend Lipschitz continuously on y ∈ Y .

Definition 11 (proper subset). We call a subset U ⊂ M proper if the weighted geodesic
averages between any finitely many points in U are unique and smoothly depend on the points
and the weights.

Proposition 12 (existence of proper neighborhoods). For every y ∈ M there is a proper
multigeodesically convex neighborhood.

Proof. In the following proof, experts will recognize several familiar, classical arguments
from [22] and [2]. Let us again set J [y] =

∑m
i=1wid

2(yi, y). For all ρ > 0 small enough the ball
Bρ(y) of radius ρ around y is geodesically convex. By [22, Thm. 1.2], for y1, . . . , yn ∈ Bρ(y)
the energy J has a (local) minimizer in the interior of Bρ(y). Now let ∆ denote an upper
bound on the sectional curvatures of M in a neighborhood of y and let r be the injectivity
radius of expy. If ρ ≤ ρ0 with ρ0 = min(r, π

4
√

∆
) for ∆ > 0 and ρ0 = r else, J is strictly convex

on Bρ(y) by [22, Thm. 1.2] and thus the minimizer is unique.
Now take U = Bρ0/3(y), then for any points y1, . . . , yn ∈ U and any convex combination

of weights w1, . . . , wn, the energy J has a unique global minimizer which lies inside U . Indeed,
the minimizer cannot lie outside Bρ0(y) since for any ŷ ∈M\Bρ0(y) we have J [ŷ] ≥ n(2

3ρ0)2 >
J [y1], and inside Bρ0(y) the energy J is strictly convex. Thus U is multigeodesically convex
and every weighted average of points from U is unique.

As for the smoothness of averages in U , note that by [22, Thm. 1.2] the weighted geodesic
average b = av[(y1, . . . , yn), (w1, . . . , wn)] is characterized as that point b̃ ∈ M for which
0 = gradJ [b̃] = −2

∑n
k=1wk logb̃ yk. For an easier exposition we replace b̃ = expb v for some

v ∈ TbM. Then the above optimality condition turns into

0 =
n∑
k=1

wk logexpb v
yk =: F (v, y1, . . . , yn, w1, . . . , wn).

By the implicit function theorem, this last condition can be solved for v in a neighborhood of
(0, y1, . . . , yn, w1, . . . , wn) if ∂F

∂v (0, y1, . . . , yn, w1, . . . , wn) is regular, and the resulting function
v(y1, . . . , yn, w1, . . . , wn) is smooth if F is smooth. Since b is unique, in a neighborhood of
b, the function expb v describes the weighted geodesic average for different input points and
weights.

The smoothness of F is clear, based on the smoothness of the Riemannian exponential
and logarithmic maps. The regularity of ∂F∂v (0, y1, . . . , yn, w1, . . . , wn) follows directly from [22,

Thm. 1.2], which also states that d2

dt2
J [y(t)] ≥ c‖dy

dt ‖2 for any geodesic y, where the constant
c > 0 depends on the sectional curvature of the manifold and on ρ0. Thus we have

gb

(
∂F

∂v
(0, y1, . . . , yn, w1, . . . , wn)v, v

)
=

d2

dt2
J [expb(tv)]t=0 ≥ c‖v‖2
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so that ∂F
∂v (0, y1, . . . , yn, w1, . . . , wn) is symmetric positive definite and thus invertible by the

Lax–Milgram theorem.

Corollary 13 (existence of Bézier surfaces). Let control points (bij)i,j=0,...,K ∈ M be given.
If co({bij}i,j=0,...,K) is proper, then βIK , βIIK , and βIIIK in Definition 4 are well-defined and
define smooth surfaces in co({bij}i,j=0,...,K) ⊂M.

Proof. First we note that, if the weighted geodesic averages involved in the computation of
the Bézier surfaces are well-defined (i.e., they exist and are unique), then the Bézier surfaces
are well-defined and lie in the convex hull of their control points by definition. The existence
of all averages follows from Theorem 9, their uniqueness and smoothness from the properness
of co({bij}i,j=0,...,K).

3.3. C0-patching. As in Euclidean space, two generalized Bézier surfaces can be patched
together via the generalization of (8) to a manifold M,

(18) BY : [0, 2]× [0, 1]→M : (t1, t2) 7→
{
βYK(t1, t2; (blij)i,j=0,...,K) if t1 ∈ [0, 1],

βYK(t1 − 1, t2; (brij)i,j=0,...,K) if t1 ∈ (1, 2]

for Y = I, II, or III (and analogously for patching in the t2-direction). The Bézier spline will
be C0-continuous under the same conditions as in the Euclidean space.

Theorem 14 (C0-continuity). For Y = I, II, and III, the patched Bézier surface BY in M
is continuous if blK,j = br0,j for j = 0, . . . ,K.

Proof. The generalized Bézier surfaces (Definition 4) are smooth (Corollary 13), hence
it remains to consider the continuity at the interface of the two domains, i.e., at t1 = 1.
From the definition of the Bézier surfaces βY , it immediately follows that only the con-
trol points blK,j and br0,j are involved in the corresponding weighted averages. Furthermore,

βYK(1, t2; (blij)i,j=0,...,K) and βYK(0, t2; (brij)i,j=0,...,K) are the Bézier curves in M defined by the

control points (blK,j)j=0,...,K and (br0,j)j=0,...,K , respectively. Thus, if those control points co-
incide, the corresponding curves coincide too.

Remark 15. In Riemannian spaces where logarithm and exponential maps are very easy
to compute, one might be tempted to replace the weighted geodesic averages in the definitions
of βIK and βIIIK by the similar and simpler expression

av[(y1, . . . , yn), (w1, . . . , wn)] ≈ expy
(
w1 logy y1 + · · ·+ wn logy yn

)
,

which performs a weighted average in the tangent space at some y ∈M. For instance, in the

definition of βIIIK we might redefine bkij = expbk−1
ij

(∑
(r,s)∈{i,i+1}×{j,j+1} logbk−1

ij
wrsb

k−1
rs

)
, in

which case the following can be observed.
• The curve βIIIK (0, t2; (brij)i,j=0,...,K) is still a Bézier curve with control points (br0,j)j=0,...,K .

The involved weighted geodesic averaging reduces to two-point averages at each step of
the recursive process. By (13), the two-point averages computed by the new or the old
formula are identical.



1802 P.-A. ABSIL, P.-Y. GOUSENBOURGER, P. STRIEWSKI, AND B. WIRTH

Figure 7. Two cubic Bézier surfaces computed on the sphere with de Casteljau’s algorithm modified as in
Remark 15. At the interface where control points coincide, the surfaces do not match up continuously due to
the simplification of weighted geodesic averaging.

• The curve βIIIK (1, t2; (blij)i,j=0,...,K) is not a Bézier curve with control points (brK,j)j=0,...,K .
Here, the averaging is based on the tangent space at a different point than the two of
which the weighted average is computed.

As a consequence of this second observation, C0-continuous patching of Bézier surfaces is no
longer possible (Figure 7), even in symmetric spaces such as the sphere.

3.4. C1-patching challenges. In contrast to C0-continuity, which is easily achieved, C1-
patching represents a challenge. Indeed, the corresponding conditions in the Euclidean space
[13] cannot be used, as we will see. In the following we will always choose the outermost
control points of each Bézier surface patch such that C0-continuity is ensured. The Euclidean

conditions blK,j =
blK−1,j+b

r
1,j

2 for C1-continuity now generalize to the Riemannian setting as

(19) blK,j = av[(blK−1,j , b
r
1,j), (

1
2 ,

1
2)]

for all j. However, there are multiple problems with this generalization. Consider four Bézier
surfaces that are patched together as a bidimensional spline B : [0, 2]× [0, 2]→M via

(t1, t2) 7→


βYK(t1, t2; (bbl

ij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [0, 1],

βYK(t1 − 1, t2; (bbr
ij )i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [0, 1],

βYK(t1, t2 − 1; (btlij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [1, 2],

βYK(t1 − 1, t2 − 1; (btrij)i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [1, 2],

(20)
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bl

trtl

br
bbl
K−1,K−1 bbl

K,K−1

bbr
1,K−1

bbl
K−1,K bbl

K,K bbr
1,K

btlK,1 btr1,1

btlK−1,1

bbl
K−1,K+1

btr−1,1

bl

trtl

br
a−1,−1

a0,−1

a1,−1

a−1,0 a0,0 a1,0

a−1,1

a0,1 a1,1

a0,0

ã0,0

a−1,1 = a0,1 = a1,1

a−1,0 a1,0

a−1,−1 a1,−1
a0,−1

Figure 8. Left: C1-conditions of (21) at the interface of four Bézier surface patches. Along each dashed
line, the middle point should be the average of the end points. Middle: renaming scheme for the control points.
Right: illustration of the counterexample from Proposition 16.

where the superscripts bl, br, tl, tr stand for bottom left, bottom right, top left, and top right,
respectively. The conditions of type (19) for C1-continuity near the midpoint now read (cf.
Figure 8 left)

(21)

bbl
K,K−1 = av[(bbl

K−1,K−1, b
br
1,K−1), (1

2 ,
1
2)],

bbl
K−1,K = av[(bbl

K−1,K−1, b
tl
K−1,1), (1

2 ,
1
2)],

bbl
K,K = av[(bbl

K−1,K , b
br
1,K), (1

2 ,
1
2)],

bbl
K,K = av[(bbl

K,K−1, b
tl
K,1), (1

2 ,
1
2)],

btlK,1 = av[(btlK−1,1, b
tr
1,1), (1

2 ,
1
2)],

bbr
1,K = av[(bbr

1,K−1, b
tr
1,1), (1

2 ,
1
2)].

These are six equations in nine control points. In Euclidean space the equations are linearly
dependent so that there are only five independent equations and one can choose four of the
nine control points as independent variables. In the Riemannian setting, however, the linear
dependence of the six equations turns into an incompatibility: in general it is not possible to
satisfy all six equations (unless several control points collapse to single points in M).

A special situation occurs in symmetric spaces (spacesM such that for every ŷ ∈M there
exists an isometry Iŷ :M→M which maps any geodesic y : [0, 1]→M with y(1

2) = ŷ onto
Iŷ(y) : t 7→ y(1− t)). As the following proposition shows, in those spaces one can always find
a nondegenerate set of control points satisfying the above six equations. However, instead of
four one can only choose three of the nine control points freely. In the following propositions,
for simplicity we will write

bbr
i,K+j = btlK+i,j = btrij = bbl

K+i,K+j = aij

for i, j ∈ {−1, 0, 1} (see Figure 8, middle). The control points with indices below 0 or beyond
K simply indicate control points in the neighboring Bézier surface patches; aij refers to control
points in a specific area where four patches meet.
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Proposition 16. Let M be a symmetric space. Of the nine control points aij, i, j =
{−1, 0, 1}, let a0,0, ai1,j1 , ai2,j2 be given with (i1, j1) 6= −(i2, j2), |i1| = |j1|. One can find
the other six control points such that (21) is satisfied.

If instead four control points are given initially, those can, in general, not be complemented
with five other control points such that (21) is satisfied.

Proof. To prove the first part, we complement the six equations (21) with the following
additional two equations,

a0,0 = av[(a−1,−1, a1,1), (1
2 ,

1
2)], a0,0 = av[(a−1,1, a1,−1), (1

2 ,
1
2)].

Now we have eight equations for the nine control points, where each equation expresses one
control point as the midpoint on the geodesic between two other control points. The equations
of the form a0,0 = av[(aij , a−i,−j), (

1
2 ,

1
2)] just establish the relation

aij = Ia0,0(a−i,−j), i, j ∈ {−1, 0, 1},

for the isometry Ia0,0 of the symmetric space. Thus, there are actually only two unknown
control points left, the others being fixed by the above identity. Furthermore, the remaining
four equations,

a−1,0 = av[(a−1,−1, a−1,1), (1
2 ,

1
2)] and a1,0 = av[(a1,−1, a1,1), (1

2 ,
1
2)]

as well as a0,−1 = av[(a−1,−1, a1,−1), (1
2 ,

1
2)] and a0,1 = av[(a−1,1, a1,1), (1

2 ,
1
2)]

are redundant due to the identity stated before. It is therefore straightforward to check that
two of them may be chosen to determine the desired two control points.

For the second part, a simple counterexample suffices. Consider the unit sphere M = S2

with a−1,1 = a1,1 = (0, 0, 1)T , a0,0 = (
√

2
2 , 0,

√
2

2 )T , and a−1,0 = (1
2 ,−1

2 ,
√

2
2 )T (Figure 8 right).

Choosing four of the equations in (21), it is straightforward to compute in this order

a0,1 =
(

0
0
1

)
, a0,−1 =

(
1
0
0

)
, a−1,−1 =

( √
2

2

−
√
2
2

0

)
, a1,−1 =

( √
2

2√
2

2
0

)
.

If we now set a1,0 = av[(a1,−1, a1,1), (1
2 ,

1
2)], then the constraint a0,0 = av[(a−1,0, a1,0), (1

2 ,
1
2)] :=

ã0,0 is violated.

Apart from the incompatibility of the equations around a0,0, we do not necessarily achieve
C1-continuity for Bézier surfaces of types I to III even if control points satisfying all the above
conditions can be found. This observation is illustrated in the top line of Figure 10.

Proposition 17. The conditions (19) are not sufficient to ensure C1-continuity of the patched
Bézier surface (18) of types I, II, or III.

Proof. Types I and III. We first give a counterexample for types I and III. Consider
K = 1 in which case βIK and βIIIK coincide and each Bézier surface is just obtained by weighted
geodesic averaging between four control points. Let us write blij ≡ bri−1,j ≡ bij and choose

bij = (i, j) in Euclidean space R2. Let the metric be slightly decreased somewhere along the
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b00 b10 b20

b01 b11 b21

y

b00 b10 b20

b01 b11 b21

Figure 9. Illustration of the two manifolds from the counterexamples in Proposition 17. A gray region
indicates a deviation from the Euclidean metric.

connecting line between b00 and y = (1, 1
2). That way, the geodesic from b00 to y is still a

straight curve in R2 but has a shorter length than in the Euclidean space (Figure 9 left).
Denote the patched Bézier spline surface by B(t1, t2) and consider the point (t1, t2) = (1, 1

2).
In the Bézier surface patch defined by b00, b01, b10, b11 and the one defined by b10, b11, b20, b21,
we have, respectively,

B(t1, t2) = av[(b00, b01, b10, b11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)],

B(t1, t2) = av[(b10, b11, b20, b21), ((2− t1)(1− t2), (2− t1)t2, (t1 − 1)(1− t2), (t1 − 1)t2)].

Obviously, b := B(1, 1
2) = (1, 1

2), and the optimality conditions for both averages are [22,
Thm. 1.2]

0 = (1− t1)(1− t2) logb b00 + (1−t1)t2 logb b01 + t1(1−t2) logb b10 + t1t2 logb b11 =: F (t1, t2, b),

0 = (2− t1)(1− t2) logb b10 + (2− t1)t2 logb b11 + (t1 − 1)(1− t2) logb b20 + (t1 − 1)t2 logb b21,

where logb bi,j = bi,j − b except for logb b0,0 = ζ(b0,0− b) with some ζ ∈ (0, 1). Solve the latter
equation to yield b = B(t1, t2) = (2− t1)(1− t2)b1,0 + (2− t1)t2b1,1 + (t1−1)(1− t2)b2,0 + (t1−
1)t2b2,1 so that the right derivative ∂B

∂t1
at (t1, t2) = (1, 1

2) equals (1, 0). The left derivative can
be obtained via the implicit function theorem as

∂B

∂t1
= −(DbF (1, 1

2 , b))
−1Dt1F (1, 1

2 , b) = Dt1F (1, 1
2 , b)

= − logb b00 + logb b01 − logb b10 − logb b11

2
= ζ

(1
2
1
4

)
+

( 1
2

−1
4

)
6=
(

1

0

)
.

Here we have used that around b = (1, 1
2) the function F is given by F (1, 1

2 , b) = 1
2 logb b10 +

1
2 logb b11 = 1

2(b10− b) + 1
2(b11− b). Thus, the Bézier surfaces are not patched C1-continuously,

even though all conditions (19) are satisfied.
Type II. For a counterexample in the case of Bézier surfaces of type II, we again take K = 1

and the same control points as before. This time we consider the Euclidean metric with the
modification that it is slightly decreased somewhere in between b00 and (b00 + b01)/2: the
connecting geodesic from b00 to b01 is given by t 7→ (0, f(t)) with f(t) > t in the interval (1

2 , 1)
(Figure 9 right). We have β1(t2; bi0, bi1) = (i, t2) for i 6= 0 and β1(t2; b00, b01) = (0, f(t2)).
Obviously, for t1 ≥ 1 we obtain B(t1, t2) = (t1, t2), while for t1 ∈ [0, 1] and t2 ∈ (1

2 , 1) we have
B(t1, t2) = (t1, (1− t1)f(t2) + t1t2), yielding a discontinuous first derivative at t1 = 1.
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Unfortunately, in the case of βIIIK , no straightforward remedy can be found to modify
de Casteljau’s algorithm in a way that is consistent with Bézier surfaces in Euclidean space
and, at the same time, allows us to have C1-continuity. For Bézier surfaces of types I and II,
however, one can find such a remedy, as described next.

3.5. C1-patching solution. We propose now a way to overcome the different problems
presented in the previous section. For notational simplicity, let bmnij ∈ M be the ijth control
point of the mnth Bézier surface, where i, j ∈ {0, ...,K} and (m,n) ∈ {0, ...,M} × {0, ..., N}.
We intend to patch the Bézier surfaces together to a C1-continuous spline surface according
to

(22) BY : [0,M ]× [0, N ]→M :

(t1, t2) 7→ βYK(t1 −m, t2 − n; (bmnij )i,j=0,...,K) on (t1, t2) ∈ [m,m+ 1]× [n, n+ 1]

for Y = I, II. As before, we will also allow indices outside the usual range, using the identific-
ation

bmn−1,j = bm−1,n
K−1,j , bmnK+1,j = bm+1,n

1,j , bmnj,−1 = bm,n−1
j,K−1 , bmnj,K+1 = bm,n+1

j,1 .

Let us additionally define fictional points beyond the domain boundary as

b0,n−1,j = exp
b0,n0,j

(
−log

b0,n0,j

(
b0,n1,j

))
, bM,n

K+1,j = exp
bM,nK,j

(
−log

bM,nK,j

(
bM,n
K−1,j

))
,

j = 0, . . . ,K, n = 0, . . . , N,

bm,0j,−1 = exp
bm,0j,0

(
−log

bm,0j,0

(
bm,0j,1

))
, bm,Nj,K+1 = exp

bm,Nj,K

(
−log

bm,Nj,K

(
bm,Nj,K−1

))
,

j = −1, . . . ,K + 1, m = 0, . . . ,M.

In fact, in Euclidean space the conditions

bmnK,j =
bmnK−1,j + bmnK+1,j

2

imply that the control points bmnK,j can be ignored altogether; indeed, in (5) one may simply

replace any bmnK,j by
bmnK−1,j+b

mn
K+1,j

2 . The analogous holds true for the control points bmni,K , bmni,0 ,

and bmn0,j . Note that this trick will restore C1-continuity in the Riemannian setting as detailed
below, but it may also be interesting in the Euclidean setting since it allows one to neglect
conditions (19) and obtain a differentiable piecewise-Bézier surface nevertheless. Following
this idea we obtain a generalized Bézier surface as a weighted average of bmnij , i, j ∈ I, with
I = {−1, 1, 2, . . . ,K − 1,K + 1} as

(23) βIK(t1, t2; (bmnij )i,j=0,...,K) = av
[
(bmnij )i,j∈I , (wi(t1)wj(t2))i,j∈I

]
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with weights

wi(t) =



1
2B0K(t) if i = −1,

B1K(t) + 1
2B0K(t) if i = 1,

BiK(t) if i = 2, . . . ,K − 2,

BK−1,K(t) + 1
2BKK(t) if i = K − 1,

1
2BKK(t) if i = K + 1,

0 if i ∈ {0,K}.
Under the same conditions as earlier, every Bézier surface patch is a smooth function into the
multigeodesically convex hull of the control points.

Similarly, in (6) the one-dimensional Bézier curves can be computed just based on bmnij ,
i, j ∈ I, i.e., we define

(24) βIIK(t1, t2; (bmnij )i,j=0,...,K) = βK(t1; (βK(t2; (bmnij )j=0,...,K))i=0,...,K),

where the one-dimensional Bézier curves are either computed as

βK(t; (bj)j=0,...,K) = av[(bj)j=I , (wj(t))j=0,...,K ]

or via the alternative modification of de Casteljau’s algorithm, where βK(t; (bk)k=0,...,K) = bK0
with

b0
0 = av[(b−1, b1), (1

2 ,
1
2)],

b0
j = bj , j = 1, . . . ,K − 1,

b0
K = av[(bK−1, bK+1), (1

2 ,
1
2)],

bkj = av[(bk−1
j , bk−1

j+1), (1− t, t)], k = 1, . . . ,K, j = 0, . . . ,K − k.
In Euclidean space, all definitions are equivalent to the original Bézier surface as long

as the control points satisfy the conditions for C1-continuity. In the manifold case, where
the conditions (21) can at most be satisfied approximately, the above definitions lead to C1-
continuity as shown in Figure 10 and the following theorem. Let us emphasize once more that
the C1-smoothness holds regardless of whether or how well any conditions of type (19) are
satisfied.

Theorem 18. The patched Bézier surface spline (22) with βIK or βIIK defined as above is
C1-continuous.

Proof. Each single patch is C1-continuous by the proof of Corollary 13. Also, C0-continuity
follows as before, so it remains to show that the normal derivatives at all interfaces between
two adjacent Bézier patches coincide.

Consider the interface between patch (0, 0) and (1, 0) at t1 = 1, t2 ∈ [0, 1]. The proof for
the other interfaces works analogously.

In case of type I Bézier patches, we have

b := BI(t1 = 1, t2) = av
[
(b0,0ij )i,j∈I , (wi(1)wj(t2))i,j∈I

]
= av

[
(b1,0ij )i,j∈I , (wi(0)wj(t2))i,j∈I

]
.
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×
(a) type I (b) type II (c) type III×Figure 10. The conditions (19) do not suffice to ensure differentiability (top, visualized using a piecewise

Bézier surface composed of two patches) while the remedy from Theorem 18 permits us to construct C1 surfaces
of type I and type II (bottom). The visualization is analogous to Figure 4 left; the dotted lines show tangents to
the curve from either side of the interface between the two Bézier patches.

The optimality conditions for both averages read [22, Thm. 1.2]

0 =
∑
i,j∈I

wi(t1)wj(t2) logb b
0,0
ij =: F1(t1, t2, b),

0 =
∑
i,j∈I

wi(t1 − 1)wj(t2) logb b
1,0
ij =: F2(t1, t2, b).

By the implicit function theorem, the left and right derivatives of BI with respect to t1 at
(1, t2) are given as

∂BI

∂t1

∣∣∣∣
(1−,t2)

= −(DbF1(1, t2, b))
−1Dt1F1(1, t2, b)

= −(DbF1(1, t2, b))
−1

K
2

∑
j∈I

wj(t2)(logb b
0,0
K+1,j − logb b

0,0
K−1,j)

 ,

∂BI

∂t1

∣∣∣∣
(1+,t2)

= −(DbF2(1, t2, b))
−1Dt1F2(1, t2, b)

= −(DbF2(1, t2, b))
−1

K
2

∑
j∈I

wj(t2)(logb b
1,0
1,j − logb b

1,0
−1,j)

 .
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Noting that F1(1, t2, b) = F2(1, t2, b) for all b ∈ M and the definition of the b0,0ij for i /∈
{0, . . . ,K} we see that ∂BI

∂t1

∣∣∣
(1−,t2)

= ∂BI

∂t1

∣∣∣
(1+,t2)

.

In the case of type II Bézier patches we note that

∂
∂tβ

II
K(t = 0; (bj)j=0,...,K) = logb b1 for b = av[(b−1, b1), (1

2 ,
1
2)],

∂
∂tβ

II
K(t = 1; (bj)j=0,...,K) = logb bK+1 for b = av[(bK−1, bK+1), (1

2 ,
1
2)].

Thus we have

∂BII

∂t1

∣∣∣∣
(1−,t2)

= logb(t2) β
II
K(t2; (b0,0K+1,j)j=0,...,K),

∂BII

∂t1

∣∣∣∣
(1+,t2)

= logb(t2) β
II
K(t2; (b1,01,j )j=0,...,K)

for b(t2) = av[(βIIK(t2; (b0,0K−1,j)j=0,...,K), βIIK(t2; (b0,0K+1,j)j=0,...,K)), (1
2 ,

1
2)]. Again, the derivat-

ives from either side coincide.

In the next section we propose a way to choose the control points such that the interpol-
ating surface has the least squared acceleration when the manifold reduces to the Euclidean
space.

4. Control point generation for two-dimensional piecewise cubic Bézier interpolation
on manifolds. Given data points

pmn ∈M, (m,n) ∈ {0, . . . ,M} × {0, . . . , N},
we would like to interpolate them by a smooth surface B : [0,M ]×[0, N ]→M with B(m,n) =
pmn, consisting of C1-continuously patched cubic Bézier surfaces on each domain [m,m+ 1]×
[n, n+ 1] as in (22). To this end we need to generate appropriate control points

bmnij for m,n ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} and i, j = 0, . . . , 3.

The control points must respect the interpolation constraints for m = 0, . . . ,M − 1, n =
0, . . . , N − 1,

(25) bmn0,0 = pm,n, bmn3,0 = pm+1,n, bmn0,3 = pm,n+1, bmn3,3 = pm+1,n+1,

as well as the C0-patching constraints of Theorem 14,

(26) bm,n3,j = bm+1,n
0,j and bm,nj,3 = bm,n+1

j,0

for j = 0, . . . , 3. Furthermore, the resulting spline surface shall be C1-smooth and must thus
be generated by the approach of Theorem 18.

To make the interpolating surface as nice as possible, we would like to optimize the position
of the control points such that the mean squared second derivative of the parameterized spline
surface is minimized. This, however, is a highly complicated nonlinear optimization problem.
Instead, we consider a much simpler approximation: we formulate the problem of finding the
optimal control points in Euclidean space (similarly to [16]), in which case the optimization
problem reduces to the solution of a linear system. We then transfer this linear system to the
manifold case. The following subsections elaborate this idea.
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4.1. Variational formulation of control point generation in Rn. In the Euclidean space
Rn, we would like to minimize the objective function

(27) F [B] =

∫
[0,M ]×[0,N ]

∥∥∥∥ ∂2B

∂(t1, t2)

∥∥∥∥2

F

d(t1, t2) =
M−1∑
m=0

N−1∑
n=0

∫
[0,1]×[0,1]

∥∥∥∥ ∂2βmn3

∂(t1, t2)

∥∥∥∥2

F

d(t1, t2),

where ‖ · ‖F is the Frobenius norm on (2 × 2 × n)-tensors, ∂2·
∂(t1,t2) is the Hessian operator

for any bivariate function, and βmn3 is the cubic Bézier surface defined on the patch (m,n)
and based on the control points bmnij . For notational simplicity, we will just denote it by β
when no confusion is possible. Note that the constraints (25) will automatically ensure the
interpolation of the data points.

Expressing each single Bézier surface patch with the help of Bernstein polynomials ac-
cording to (5), the objective function turns into a quadratic function in the control points
bmnij ,

(28) F [B] =
M−1∑
m=0

N−1∑
n=0

F̂ [βmn],

where the energy F̂ for a Bézier surface with control points bmnij , i, j ∈ {0, . . . , 3}, is defined
as

(29) F̂ [βmn] =
3∑

i,j,o,p=0

αijopb
mn
ij · bmnop

with · indicating the Euclidean dot product. Denoting the Frobenius inner product on 2× 2
matrices by A : B =

∑2
i,j=1AijBij , the coefficients αijop in the above energy are given by

(30) αijop =

∫
[0,1]2

[
∂2Bi3(t1)Bj3(t2)

∂(t1, t2)

]
:

[
∂2Bo3(t1)Bp3(t2)

∂(t1, t2)

]
d(t1, t2),

where the explicit Hessian of the Bernstein polynomial products can be expressed as

(31)
∂2Bi3(t1)Bj3(t2)

∂(t1, t2)
=

(
∂2Bi3(t1)
∂2t1

Bj3(t2) ∂Bi3(t1)
∂t1

∂Bj3(t2)
∂t2

∂Bi3(t1)
∂t1

∂Bj3(t2)
∂t2

Bi3(t1)
∂2Bj3(t1)
∂2t2

)
.

Note that the coefficients αijop can be readily computed analytically and are independent of
the configuration.

To later be able to transfer this formulation to the manifold setting, we would like to
express every control point of a given patch as its difference with the four interpolation points
of the patch. These differences will be later translated into Riemannian logarithms. Since the
objective function F [B] only contains derivatives, the contributions F̂ [β] of its single Bézier
patches are invariant under a uniform translation of the control points. Hence

(32) F̂ [βmn] =
1

4

∑
r,s∈{0,1}

3∑
i,j,o,p=0

αijopv
mn
ij (r, s) · vmnop (r, s),
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bmn2,1

pmn pm+1,n

pm,n+1 pm+1,n+1

vmn2,1 (0, 0) vmn2,1 (1, 0)

vmn2,1 (0, 1)
vmn2,1 (1, 1)

Figure 11. Geometric interpretation of variables vmnij (r, s).

where we introduced the auxiliary variables for the differences (see Figure 11)

(33) vmnij (r, s) = bmnij − pm+r,n+s

for i, j = 0, . . . , 3, r, s = 0, 1, m = 0, . . . ,M−1, and n = 0, . . . , N−1. Note that for symmetry
reasons we shifted the control points by each corner of the corresponding patch and then took
the average of the four energy values resulting from those four shifts.

To summarize, the total energy can be represented as

(34) F [B] =
M−1∑
m=0

N−1∑
n=0

∑
r,s∈{0,1}

3∑
i,j=0

(L(V ))mnij,rs · vmnij (r, s)

with V = (vmnij (r, s))
(m,n)∈{0,...,M−1}×{0,...,N−1}
i,j∈{0,...,3}, r,s∈{0,1} and the linear operator L

(35) (L(V ))mnij,rs =
1

4

3∑
o,p=0

αijopv
mn
op (r, s).

This energy has to be minimized for the control points bmnij or, equivalently, the vmnij (r, s)
under interpolation, continuity, and smoothness constraints (25), (26), and (21).

4.2. System reduction by constraint elimination. Before minimizing (34), we would like
to eliminate all constraints (25), (26), and (21) in order to reduce the number of degrees of
freedom and to reach a simpler unconstrained minimization problem. To this end, without
loss of generality, we consider as independent the control points

bmnkl with (k, l) ∈ Q = {(1, 0), (0, 1), (1, 1)}, (m,n) ∈ D = {0, . . . ,M} × {0, . . . , N}.

Conditions (25), (26), and (21) then uniquely determine all the remaining control points, e.g.,
bmn−1,1 = 2bmn0,1 − bmn1,1 . In the above, we again extended our notation to allow control point
indices outside {0, . . . , 3} (cf. Figure 8 left), with the interpretation

bmnkl = bm,n−1
k,3+l = bm−1,n

3+k,l = bm−1,n−1
3+k,3+l
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patch m− 1, n− 1

patch m,npatch m− 1, n

patch m,n− 1

pmn

umn1,0

umn1,1
umn0,1

2umn1,0

−umn1,1

bmn1,−1

Figure 12. Geometric interpretation of operator S.

for k, l ∈ {−1, 0, 1}, where points bmnij with (m,n) /∈ {0, . . . ,M − 1} × {0, . . . , N − 1} are just
ficticious additional control points.

Equivalently to the bmnkl , (k, l) ∈ Q, (m,n) ∈ D, we consider the translated control points

(36) umnkl = bmnkl − pmn, (k, l) ∈ Q, (m,n) ∈ D,

as our independent arguments. Those will be the arguments we optimize. In the following, we
will express the energy variables vmnij (r, s) in terms of these umnkl . This requires two operators:

1. The linear operator S generates umnkl for (k, l) ∈ {−1, 0, 1}2 \Q from the conditions of
C1-continuity (21) (cf. Figure 12):

(37) S : (umnkl )
(m,n)∈D
(k,l)∈Q 7→ (umnkl )

(m,n)∈D
k,l∈{−1,0,1} :



umn−1,1 = 2umn0,1 − umn1,1 ,

umn0,0 = 0,

umn−1,0 = −umn1,0 ,

umn−1,−1 = −umn1,1 ,

umn0,−1 = −umn0,1 ,

umn1,−1 = 2umn1,0 − umn1,1 ,

umnkl = umnkl for (k, l) ∈ Q.

2. The operator T̃ maps the set of vectors umnkl onto the set of vectors vmnij (r, s) by
exploiting the relation

vmnij (r, s) = um̃ñkl + (pm̃ñ − pm+r,n+s),

where m̃, ñ, k, and l satisfy

(m̃, ñ) = (m+ ai, n+ aj) and (k, l) = (i− 3ai, j − 3aj) for ai =

{
0 if i ∈ {0, 1},
1 if i ∈ {2, 3}.
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pmn
pm+1,n

pm,n+1
Ppm+1,n→pm,n+1u

m+1,n
−1,1

um+1,n
−1,1

wmn2,1 (0, 1)

v m
n2,1 (0, 1)

z m
n2,1 (0, 1)

Figure 13. Geometric interpretation of operator T̃ . The variables vmnij (r, s) (cf. Figure 11) are constructed
as follows: (i) a vector umnkl in pmn is transported to another interpolation point p, and (ii) to this vector one
adds the difference between p and pmn.

To this end we first introduce the notation

wmnij (r, s) = um̃ñkl ,(38)

zmnij (r, s) = pm̃ñ − pm+r,n+s,(39)

which seems cumbersome at first but is needed for an easy transfer to the manifold
setting. Abbreviating

U ≡
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
, V ≡

(
vmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

,

W ≡
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

, Z ≡
(
zmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

,

and introducing the linear operator

(40) T : U 7→W

we finally obtain

(41) T̃ : U 7→ V = T (U) + Z.

Note that the operator T can be interpreted to operate on each patch (m,n) separately
as follows (this interpretation forms the basis for the transfer to the manifold setting):
T translates any vector um̃ñkl , which belongs to a control point of the patch, from its
base point pm̃ñ to all four patch corners pm+r,n+s, (r, s) ∈ {0, 1}2, resulting in the four
new vectors wmnij (r, s), r, s ∈ {0, 1}. Of course, in Euclidean space this translation is
trivial, however, it will turn into a nontrivial parallel transport in the manifold setting.
The map T̃ is illustrated in Figure 13.
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The total energy (34) of Bézier curves in Euclidean space can thus be rewritten as

F [B] =
1

4

M−1∑
m=0

N−1∑
n=0

∑
r,s∈{0,1}

3∑
i,j=0

(LT̃SŨ)mnij,rs · (T̃ SŨ)mnij,rs for Ũ = (umnkl )
(m,n)∈D
(k,l)∈Q

and is minimized by

(42) Ũopt = −(S∗T ∗LTS)−1(S∗T ∗LZ),

where a superscript asterisk denotes the adjoint operator (note that L is self-adjoint). Indeed,
letting (·; ·) denote the natural inner product on Cartesian products of vector spaces (such
that for instance F [B] = (LT̃SŨ ; T̃ SŨ) = (L(TSŨ + Z);TSŨ + Z)), this is easily seen from
the first order optimality condition

0 = (LTSΦ;TSŨopt + Z) + (LTSŨopt + LZ;TSΦ)

= 2(LTSŨopt + LZ;TSΦ) = 2(S∗T ∗LTSŨopt + S∗T ∗LZ; Φ)

for all variations Φ of Ũopt.

4.3. Transfer to the manifold setting. It remains to transfer the different operators and
the final formula (42) for control point generation to a Riemannian manifold setting.

• The umnkl were defined in (36) as the difference between two Euclidean points. Their
generalization to the Riemannian setting is given by

umnkl = logpmn (bmnkl ) ,

for k, l ∈ Q, m = 0, . . . ,M −1, and n = 0, . . . , N −1. This means that we will actually
optimize over tangent vectors umnkl to the manifold and only afterwards convert them
into control points bmnkl .
• The operator L defined in (35) can now be interpreted as an operator from B into

itself, where B is the Cartesian product of tangent spaces,

B =
ą

i,j=0,...,3
r,s∈{0,1}

m=0,...,M−1
n=0,...,N−1

Tpm+r,n+sM.

• The operator S in (37) is now considered as an operator on tangent spaces.
• Formula (39), which defines the components of Z, is generalized to the manifold setting

as

(43) zmnij (r, s) = logpm+r,n+s
(pm̃ñ) .

• Operator T from (40) is redefined as the parallel transport of the variables umnkl to the
corners of the corresponding patch,

T :
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
7→
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

, wmnij (r, s) = Ppm̃ñ→pm+r,n+su
m̃ñ
kl ,

where Px→y denotes the Riemannian parallel transport from x ∈ M to y ∈ M. We
used the same notation as in (38).
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• The operator T̃ from (41) is transferred to the manifold setting using the manifold
versions of T and Z.
• The adjoint operators S∗ and T ∗ are given by

S∗ :(umnkl )
(m,n)∈D
k,l∈{−1,0,1} 7→ (umnkl )

(m,n)∈D
(k,l)∈Q :


umn1,0 = umn1,0 − umn−1,0 + 2umn1,−1,

umn1,1 = umn1,1 − umn−1,1 − umn−1,−1 − umn1,−1,

umn0,1 = umn0,1 − umn0,−1 + 2umn−1,1,

T ∗ :
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

7→
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
,

um̂n̂kl =
∑

r,s∈{0,1}
m∈m̂+Ak
n∈n̂+Al

Ppm+r,n+s→pm̂n̂w
mn
k+3(m̂−m),l+3(n̂−n)(r, s),

where A−1 = {−1}, A0 = {−1, 0}, and A1 = {0}.
The algorithm for generating the control points on a Riemannian manifold M now proceeds
as follows.

1. Compute Z = (zmnij (r, s))ijmnrs via (43).
2. Compute S∗T ∗LZ and solve (42) for Uopt by a conjugate gradient iteration.
3. Compute all umnkl for k, l ∈ {−1, 0, 1} and (m,n) ∈ D via SUopt.
4. Compute all control points bmnkl ∈ M for k, l ∈ {−1, 1} and (m,n) ∈ D. Note that all

other control points are not used in the Bézier spline evaluation (23) or (24) and are
thus irrelevant.

In the last step of the algorithm, the computation of the control points has to be performed
in a way that ensures B(m,n) = pmn. This requires a different procedure for Bézier splines
of type I or II.

• For Bézier splines of type I we simply use

bmnkl = exppmn (umnkl ) , k, l ∈ {−1, 1}, (m,n) ∈ D,

since this automatically satisfies BI(m,n) = av[(bmn−1,−1, b
mn
−1,1, b

mn
1,−1, b

mn
1,1 ), (1

4 ,
1
4 ,

1
4 ,

1
4)] =

pmn.
• For Bézier splines of type II we set

bmnk0 = exppmn (umnk0 ) ,

bmnkl = expbmnk0

(
Ppmn→bmnk0 u

mn
0l

)
, k, l ∈ {−1, 1}, (m,n) ∈ D.

Then,

BII(m,n) = av

[(
av

[
(bmn−1,−1, b

mn
−1,1),

(
1

2
,
1

2

)]
, av

[(
bmn1,−1, b

mn
1,1

)
,

(
1

2
,
1

2

)])
,

(
1

2
,
1

2

)]
= av

[
(bmn−1,0, b

mn
1,0 ),

(
1

2
,
1

2

)]
= pmn.
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initial control points, F [B] = 8.185 optimized control points, F [B] = 4.932

Figure 14. Optimal placement of control points (circles) for given interpolation points (dots) on the sphere
obtained by the algorithm described in section 4. The left graphs show the configuration before optimization
(control points bmnkl for (k, l) ∈ Q, m,n ∈ {0, 1} obtained by geodesic averaging between the interpolation
points), the right graphs after optimization.

An example is provided in Figure 14. The favorable impact of the symmetric formulation (32),
where the control points are shifted by each corner of the corresponding patch, is illustrated
in Figure 15.

5. Numerical implementation on Riemannian manifolds. A numerical implementation
of the approaches from sections 3 and 4 requires computing weighted geodesic averages
(av[·, ·]), exponential maps (exp), logarithms (log), and parallel transports (P·→·) on a Rieman-
nian manifoldM. In this section we state how those operations are performed in our numerical
examples. First we consider the case of simple manifoldsM in which there are closed formulas
for exp, log, and P·→·; then we briefly recall the discretization and numerical procedures from
[32] for manifolds where this is not the case.

5.1. Weighted geodesic averaging on manifolds with explicit logarithm. According to
Definition 4, Bézier surfaces of type I are obtained as a weighted averaging of the control
points of the patch. This weighted geodesic average (cf. Definition 1) corresponds to the
minimization problem of the form

βI(t1, t2) = argmin
x∈M

J(x), J(x) =

K∑
i=0

K∑
j=0

wij(t1, t2)d2(bij , x).

On manifolds embedded in the Euclidean space without constraints, this problem can be
solved using a quasi-Newton approach. For other matrix manifolds, different solutions are
available, like the iterative Riemannian optimization procedures described in Absil, Mahony,
and Sepulchre [1] (with the exponential map as retraction). These algorithms are implemented
in the toolbox Manopt [7]. Equivalently, one could also use standard tools for constrained
optimization.
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F [B] = 22.16 F [B] = 15.96

Figure 15. Instead of transporting the vectors to all four corners of a patch, vectors could also be transported
to a single corner in each patch. However, such a modification to the algorithm described in section 4 will,
in general, yield configurations with a higher energy. The two figures on the left show the result of a modified
version of the algorithm, in which all vectors are transported to the bottom left vertex in each patch. The other
two figures show the result obtained by the unmodified algorithm.

These methods require the evaluation of the objective function J(x) as well as its deriv-
ative, which by [22, section 1.2.] can be calculated as

dJ

dx
(x) = −

K∑
i=0

K∑
j=0

wij(t1, t2) logx bij ∈ TxM.

5.2. Discrete approximation of Riemannian operators. In many interesting manifolds
the standard Riemannian operators can be expressed as closed formulas [1, 6, 31] or can be
estimated via retractions as in [7]. However, more complicated manifolds (like the manifold
of triangulated shells; cf. Figure 16) require a numerical approximation of these operators. To
this end we make use of the discrete geodesic calculus from [32]. We briefly recall it in this
section.

Discrete distance. Let M be a smooth Riemannian manifold. Consider a smooth applica-
tion W :M×M→ R which approximates the squared Riemannian distance as

(44) d2(y1, y2) = W [y1, y2] +O(d3(y1, y2)), y1, y2 ∈M.

To ensure the efficiency of the numerical methods, it is important to choose a W which is
easy to evaluate. Note also that (44) implies straightforwardly that the second derivative of
W coincides with the Riemannian metric gy = ∂2

1W [y, y].
Discrete geodesic. Consider now a (k + 1)-tuple (y0, . . . , yk) with yj ∈M for j = 0, . . . , k.

This tuple is called the discrete k-path between y0 and yk. Its length L and energy E are
defined as

L[y0, . . . , yk] =
k∑
j=1

√
W [yj−1, yj ],(45)
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Figure 16. Discrete 4-geodesic between two triangulated shells (cf. section 6). The mesh data used in this
figure were made available by Robert Sumner and Jovan Popovic, MIT Computer Graphics Group.

E[y0, . . . , yk] = k
k∑
j=1

W [yj−1, yj ].(46)

The (k+ 1)-tuple minimizing the energy of the discrete k-path is called a discrete k-geodesic:

(47) min
y1,...,yk−1∈M

E[y0, y1, . . . , yk−1, yk].

In [32] it is shown that discrete geodesics approximate the true continuous geodesics as k →∞.
A discrete k-geodesic is represented in Figure 16.

Discrete weighted average. Now that the discrete k-geodesic is defined, it is possible to
express the discrete analog of the weighted geodesic average av[(y1, . . . , yn), (w1, . . . , wn)] as
the point y ∈M solving

(48) min
y∈M

min
yij∈M

j=1,...,k−1,
i=1,...,n

n∑
i=1

wiE[y, yi1, . . . , y
i
k−1, y

i].

At optimality, (y, yi1, . . . , y
i
k−1, y

i) is the discrete k-geodesic from y to yi, and E[y, yi1, . . . , y
i
k−1,

yi] is the discrete approximation of the squared Riemannian distance d2(y, yi).
Discrete logarithm. In the following, we require M to be identified with a subset of some

embedding Banach space B such that, for a discrete k-geodesic (y0, . . . , yk) with y0 = yA and
yk = yB, the difference y1 − y0 is well defined. We define the discrete logarithm

(
1
kLOG

)
as

(49)
(

1
kLOG

)
yA

(yB) = y1 − y0,

where 1
k is to be interpreted as part of the symbol

(
1
kLOG

)
. Under certain regularity assump-

tions on the Riemannian metric and the functional W , it can be shown that k
(

1
kLOG

)
yA

(yB)

tends to logyA(yB) when k tends to infinity [32].

Discrete exponential. We now aim at defining a discrete analog EXPk of the exponential
map. For a discrete k-geodesic (y0, . . . , yk), we expect EXPk to reflect the properties of its
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yk−1

yk

vk−1
ypk−1

ypk
vk

ymid
k

Figure 17. Illustration of one iteration of Schild’s ladder, approximating the parallel transport of a vector
along a discrete curve (y0, . . . , yn).

continuous counterpart, i.e., to satisfy EXPky0(v) = yk, where v =
(

1
kLOG

)
y0

(yk). To achieve
this, let v ∈ B. Let also

EXP1
y(v) = (1

1LOG)−1
y (v) = y + v,

EXP2
y(v) = (1

2LOG)−1
y (v).

The discrete exponential map is defined recursively as

(50) EXPky(v) = EXP2
EXPk−2

y (v)
(ṽ) with ṽ = EXPk−1

y (v)− EXPk−2
y (v).

Note that EXP2 is nontrivial and is here simply expressed as the inverse of the discrete
logarithm. It remains then to determine a way to compute this object. It follows from the
definition of (1

2LOG) that y2 = EXP2
y0(v) satisfies

y0 + v = argminy∈M (W [y0, y] +W [y, y2]) .

It follows that y2 can be obtained by solving the corresponding Euler–Lagrange equation

y2 ∈M : ∂2W [y0, y0 + v] + ∂1W [y0 + v, y2] = 0.(51)

Discrete parallel transport. To transport a vector along a discrete curve, we use a first order
approximation of the parallel transport called Schild’s ladder. Let (y0, . . . , yn) be a discrete
curve in M and v0 ∈ Ty0M, the vector transport from y0 to yn. The transported tangent
vector vk at a point yk, k ∈ {1, . . . , n}, can be computed recursively following the algorithm
illustrated in Figure 17:

ypk−1 = EXP1
yk−1

(vk−1),

ymid
k = EXP1

ypk−1

(
(1

2LOG)ypk−1
(yk)

)
,

ypk = EXP2
yk−1

(
(1

1LOG)yk−1
(ymid
k )

)
,

vk = (1
1LOG)yk(ypk).

To find a numerical solution to the problems of the discrete geodesic (47), the discrete
averaging (48), and the discrete exponential (51) (all other equations are trivial to solve), we
use a Newton’s method. These discrete Riemannian operators are used in sections 6.3 and
6.4. Note that as these objects require solving an optimization problem, they usually take
long to compute.
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Table 1
Riemannian operators for Sd−1; cf. [31].

Set Sd−1 = {x ∈ Rd : x>x = 1}
Tangent space TxSd−1 = {v ∈ Rd : x>v = 0}
Inner product 〈v1, v2〉x = v>1 v2

Distance d(x, y) = arccos(x>y)

Exponential expx (v) = x cos(‖v‖) + v
‖v‖ sin(‖v‖)

Logarithm logx (y) = (Id−xx>)y√
1−(x>y)2

arccos(x>y)

Parallel transport Px→y(v) = −x sin(‖ξ‖) + ξ
‖ξ‖ cos(‖ξ‖)ξ>v +

(
Id − ξξ>

‖ξ‖2

)
v, ξ = logx (y)

Figure 18. A rectangular map of the world is smoothly mapped onto the sphere via a Bézier spline surface,
only fixing a few interpolation points.

6. Numerical examples. We finally present here some examples of Bézier spline surfaces
computed on specific manifolds such as the sphere, the special orthogonal group, or the space
of shells. For reasons of computational efficiency (especially on manifolds for which no closed
formulas of Riemannian operators are available), the shown examples all represent a Bézier
surface of type II.

6.1. The sphere Sd−1. Table 1 recalls the explicit formulas of the Riemannian operators
needed to optimize the control points and evaluate a Bézier spline on the sphere Sd−1. A first
computational example on the sphere S2 has already been shown in Figure 14.

As a second example we consider image transfer from the plane onto the sphere. Figure 18
shows a rectangular map of the world, which serves as the parameterization domain of a
smooth Bézier spline surface on the sphere. The surface parameterization then provides a
one-to-one map between points on the rectangle and points on the sphere, which can be used
to map the world image onto the sphere.

6.2. The special orthogonal group SO(d). Table 2 summarizes the analytic formulas for
the necessary Riemannian operators. Figure 19 displays a cubic Bézier spline surface in SO(3)
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Table 2
Riemannian operators for SO(d); cf. [6].

Set SO(d) = {X ∈ Rd×d : X>X = I, det(X) = 1}
Tangent space TXSO(n) = {H ∈ Rd×d : X>H +H>X = 0}
Inner product 〈H1, H2〉 = trace

(
H>1 H2

)
Distance d(X,Y ) = ‖ log

(
X>Y

)
‖F

Exponential expX (H) = X exp
(
X>H

)
Logarithm logX (Y ) = X log

(
X>Y

)
Parallel transport PX→Y (H) = Y X>H

Figure 19. Cubic Bézier spline surface in SO(3) visualized as rotations of an object. Interpolation points
in red, optimized control points in green, points on the surface in gray.

interpolating a random set of interpolation points (red) based on the methods presented in
sections 3.4 and 4 (the optimized control points are shown in green). Note that the spline
surface is smooth and roughly follows the control points, but it does not go through them, as
expected.
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Figure 20. Smooth torus in SO(3) given by a cubic Bézier spline surface (visualization as in Figure 19).

A second example is given in Figure 20, which shows a closed Bézier surface of genus one.
Here, the first line is composed of an SO(3) point rotated t1×90 degrees around the z-axis. In
the direction t2, the data points of the first line are rotated t2× 90 degrees around the x-axis,
which gives a torus effect to the figure. The control points have also been optimized, but the
method from section 4 was slightly adapted to account for the periodic boundary: we imposed
u0,n
k,l = uM,n

k,l and um,0k,l = um,Nk,l for k, l ∈ {−1, 0, 1} and (m,n) ∈ {0, . . . ,M} × {0, . . . , N}.
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Figure 21. Smooth interpolation on the space of open polygonal curves P. Interpolation points in red,
optimized control points in green, points on the surface in gray (shapes are from the Kimia database [36]).

6.3. The space of open polygonal curves P. We consider two shape spaces as further
examples. The first is the shape space P of all polygonal curves in the plane with a fixed
number n of segments. Here, two shapes are considered equal if they differ only by a rigid
motion. A shape γ ∈ P can therefore be identified with its segment length and angle rep-
resentation (`1, . . . , `n, α1, . . . , αn−1) ∈ R2n−1, where `j denotes the length of the jth polygon
segment and αj the angle between segment j and j + 1. The tangent space TγP = R2n−1 can
be seen as the space of all length and angle variations.

Instead of a Riemannian metric and with regard to section 5.2, we directly specify an
energy functional W acting on two shapes γ1, γ2 ∈ P, γi = (`i1, . . . , `

i
n, α

i
1, . . . , α

i
n−1), i =

1, 2, by

W [γ1, γ2] =

n∑
j=1

(`1j − `2j )2

`1j
+ 2

n−1∑
j=1

(α1
j − α2

j )
2

`1j + `1j+1

.

The Riemannian metric, for which this W is supposed to approximate the squared Riemannian
distance, can be obtained as the second derivative,

gy(v, w) =
d

dt1

d

dt2
W (y, y + t1v + t2w)

∣∣∣
t1=t2=0

,

and it has a physical interpretation of energy dissipation during shape deformation [32]. Our
calculations are now based on the discrete approximations from section 5.2.

Figure 21 shows a Bézier spline surface in the space of polygonal curves with optimized
control points. The interplation points are segments of silhouettes from the Kimia data-
base [36].
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Figure 22. Differentiable piecewise-Bézier interpolation in the space of triangulated shells. Interpolation
points in red, optimized control points in green, points on the surface in gray.

6.4. The space of discrete shells Sh. As a second example, we consider the space of
shells Sh, as described in [18]. In the continuous case, a shell Sh is given by an oriented C2

surface S in R3, called the midplane of Sh, and is defined as the set

Sh = {p+ λν(p) | p ∈ S, λ ∈
(
−h

2 ,
h
2

)
⊂ R},

where ν(p) denotes the normal at a point p ∈ S. The space of shells Sh comprises all images
φ(Sref

h ) of a reference shell Sref
h under orientation preserving diffeomorphisms φ. The tangent

space at S ∈ S consists of smooth displacement fields ψ : S→ R3, and it can be equipped with
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a Riemannian metric that describes the physical energy dissipation during the deformation of
Sh; for details we refer to [18].

The discretized analog, also described in [18], is a discrete shell Mh, by which we mean a
triangulated surface in R3, represented by a tuple (Nh, Th) ∈ (R3)m×({1, . . . ,m}3)n, m,n ∈ N.
Here, Nh represents the vertex positions and Th encodes the triangulation (each component
(Th)l = (i, j, k) indicates that (Nh)i, (Nh)j , and (Nh)k form a triangle). The space of discrete
shells can be equipped with a discrete analog of the Riemannian metric on S. Given a
triangle T , we assign to each vertex a local index ranging from 0 to 2. This allows us to define
the edge set ET of T as the set of directed edges connecting the nodes i − 1 and i (counted
modulo 3). Eh is defined to be the union of the edge sets ET over all triangles T .

A deformation of a discrete shell Mh can now be viewed as a mapping φ : Nh → R3. We
define the discrete deformation energy W̃ [φ] of φ by

W̃ [φ] = h
∑
T∈Th

Wmem(QTmem[φ])AT + h3
∑
E∈Eh

Wbend(QEbend[φ])AE

for some physical energy densities Wmem and Wbend (specific examples are given in [18]).
Here, AT denotes the area of the (undeformed) triangle T , while for a given edge E ∈ Eh,
AE = 1

3(AT1 + AT2) denotes an area fraction of the two adjacent triangles T1 and T2. The
operators QTmem[φ] and QEbend[φ] describe in-plane strain and bending and are given by

QTmem[φ] = Bmem
φ,T −Bmem

id,T , Bmem
φ,T =

1

8A2
T

2∑
i=0

(Iφj + Iφk + Iφi )ei ⊗ ei, j=i+1(mod 3),

k=i+2(mod 3),

QEbend[φ] = Bbend
φ,E −Bbend

id,E , Bbend
φ,E =

θφ(E)

AE

e⊗ e
‖E‖ .

Here, ei denotes the result of a clockwise rotation of Ei by π/2 in the plane induced by T .
Similarly e is the result of a clockwise rotation of E by π/2 in the plane induced by one of the
adjacent triangles. By Iϕk we denote the squared length of the deformed edge Ek, and θφ(E)

stands for the dihedral angle at the deformed edge φ(E).
The discrete geodesic calculus from section 5.2 can now be employed with the energy

W [S1, S2] = W̃ [φ] for that φ with φ(S1) = S2,

which approximates the squared Riemannian distance in the space of discrete shells [18].
Figure 1 already showed a differentiable piecewise-Bézier surface interpolating between six

given hand shapes (mesh data made available by Yeh et al. [43]). Similarly, Figure 22 shows
a piecewise-Bézier interpolation surface between 3× 3 interpolation points (the interpolation
points in this figure are meshes made available by Bergou et al. [5]). The control points in
Figure 22 have been optimized using the algorithm from section 4.

7. Conclusions. We have proposed different generalizations of piecewise-Bézier surfaces
in Euclidean space to Riemannian manifolds, all based on geodesic averaging. For those
generalizations it is nontrivial to ensure differentiability across the different Bézier patches.
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We have achieved differentiability by interpreting control points on the boundary of Bézier
patches as weighted averages of interior control points. We have furthermore put forward an
approach to optimize the control point positions in the Riemannian manifold so as to obtain
a Bézier surface with small second derivative. Future work might address methods to achieve
higher order smoothness of Bézier splines (in principle, similar concepts as in the current
work can be expected to apply) or alternative definitions of smooth curves and surfaces in
Riemannian manifolds such as curves and surfaces with minimal curvature.

Acknowledgments. The authors thank Behrend Heeren and Martin Rumpf for providing
the code framework for calculations in shell space.
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