
Interpolation and fitting
on Riemannian manifolds

Pierre-Yves Gousenbourger

Thesis submitted in partial fulfillment
of the requirements for the degree of

Docteur en sciences de l’ingénieur

Dissertation committee:

Prof. Pierre-Antoine Absil (UCLouvain, Belgium) – advisor
Prof. Laurent Jacques (UCLouvain, Belgium) – advisor
Prof. Gabriel Peyré (École normale supérieure, Paris, France)
Prof. Jean-Pierre Raskin (UCLouvain, Belgium) – chair
Prof. Jean-François Remacle (UCLouvain, Belgium)
Prof. Benedikt Wirth (Universität Münster, Germany)

Version of September 15, 2020.

All unpublished material in this document is c© 2020 of the author, all rights reserved.

To my Mom, to my Dad
and to my wonderful wife.

“Sur les nombres réels repose l’analyse.”
– Beni citant Michel Willem

“Mathématiques et poésie ont beaucoup en
commun : (...) si c’est beau, simple,

frappant, c’est que vous êtes
probablement sur la bonne voie.”

– Cédric Villani

“Omnis scientia requirit mathematicam:
toute science requiert les mathématiques.”

– Roger Bacon [1214-1294]

Abstract

T
HE access to constantly increasing computational capacities has
revolutionized the way engineering is seen. We are now able to
produce a large quantity of data, thanks to cheap sensors. How-

ever, processing such data remains costly both in computational time and
in energy. One of the reasons is that the structure of the data is often omit-
ted or unknown. The search space becomes so large that finding the solu-
tion to simple problems often turns out to be finding a needle in a haystack.

A classical problem in data processing is called the “fitting problem”.
It consists in fitting a d-dimensional curve to a set of data points associated
to d parameters. The curve must pass sufficiently close to the data points
while being regular enough. When the underlying structure of the data
points (i.e., the manifold) is known, one can impose to the curve to preserve
this structure (i.e., to remain on the manifold), such that the search space is
drastically reduced.

The goal of this thesis is to develop methods to (approximately) solve
this fitting problem; the bet is to require “less” (less computational capabil-
ities, power, storage, time) by leveraging “more” knowledge on the search
space. The objective is the following: provide a toolbox that produces a
differentiable fitting curve to data points on manifolds, based on very few
and simple geometric tools, at low computational cost and storage capac-
ity, all this while maintaining an acceptable quality of the solutions.

The algorithms are applied to different illustrative problems. In 3D
shape reconstruction, the data points are organs contours acquired via MRI,
and the parameter is the acquisition depth; in wind fields estimation, the
data points belong to the manifold of positive semi-definite matrices of
given rank, and the parameters are the prevalent wind amplitudes and an-
gles. We also show the performances of our algorithms in applications for
parametric model order reduction.

| i

Acknowledgments

A
S Henry Ford said: “Coming together is a beginning; keeping together
is progress; working together is success.” With this little note, I would
like to share the success of this thesis with the people who made

it happen by closely collaborating, or just by being a helpful hand. My
sincere thanks go:

to Prof. Pierre-Antoine Absil and Prof. Laurent Jacques, my advisors, for
their wise advice, their patience and their strong support in all the
steps of my thesis; a special tribute should be given to Pierre-Antoine
for his stunning skills in explaining hard concepts in a very clear
manner; similarly, I deeply thank Laurent for his humanity and his
unconditional support in the two hard moments I had to go through;

to Prof. Benedikt Wirth, from Universität Münster who is not only an
amazing researcher with impressive mathematical knowledge, but
who is also a kind and human host: my three visits to Münster have
been fruitful, challenging and exciting; they all paved the way to
publications or seeded ideas that made my thesis grow;

to Dr. Estelle Massart, my closest collaborator at UCLouvain, for the nu-
merous and stimulating chats we had in her office (which was also
a gossip hub, by the way), the productive work we did together and
her open-mindedness; her human qualities and her deep mathemat-
ical knowledge make her a very valuable colleague;

to Dr. Ronny Bergmann, from Technische Universität Chemnitz, for his
hospitality in both Kaiserslautern and Chemnitz, as well as his trust
at the beginning of my PhD. I’ll remember and cherish two legendary

| iii

? | Acknowledgments

discussions we had: the kick-off of our joint work in Louvain-la-
Neuve on the board of the cafeteria, and the other one during the
GSI in Paris, where we finally set the notations for our paper. That
was hard work, but we made it;

to Prof. Jean-Pierre Raskin for his presidence in my jury, but also for the
freedom and the trust he left me while rethinking the way we han-
dle internships; thanks also to Prof. Jean-François Remacle and Prof.
Gabriel Peyré for their precious comments on my manuscript;

to Dr. François Rottenberg for being an amazing office mate since the very
beginning, for his (very peculiar) sense of humor, for his support and
his numerous pieces of advice, not only about research;

to the Dolphins (Dr. Amir, Anne-Sophie, Antoine, Dr. Cédric, Damien,
Dr. François, Gabriel, Dr. Kévin, Maxime, Niels, Simon, Stéphanie,
Thomas, Dr. Valerio, Victor, Vincent... and Beni), for sharing mo-
ments of joy and sadness, supporting each other but also providing
the most important thing during breaks: taking our minds off things!

to Beni, specifically, for his theories, his smile, his happiness, his energy
(positive or negative), his quotes, his “oh! I just read an article about
[insert here a random topic]”... and who never got fired, after
all;

to Anne, Astrid, Benoit, Brigitte, David, Esther, Isabelle, François, Jean,
Ludzzie, Marie, Marie-Hélène, Nathalie, Pascale, Patricia, Souley and
Viviane, our incredible administrative and technical staff, for their
patience, their smile and their availability; special thanks to Marie
for knowing everything I needed to know when I needed to know it,
and to Isabelle for the beard;

to the other members of ICTEAM and of EPL, who gave me the possibility
to do “something else” than “just some research”, who trusted me
when there was an opportunity to change something, to rise ACSEP
from the ashes, or just to give an idea;

to Prof. Michel Verleysen, our Dean, for his trust, his resilience and his
constant willingness to listen to everyone’s word;

to Myriam Banaï and Delphine Ducarme for their smile, their energy in
setting new pedagogical frameworks, their open-mindedness, their

iv |

| ?

caring ear, their constant support and... the way they have to let peo-
ple feel that every single person is special;

to my students (all of them) who gave me the privilege to know what it
feels to serve a real cause and who made me a better assistant, hence
a better researcher;

to my wife, for her support “no matter what”, her love, her courage when
I lost mine, and for never losing faith in me;

and of course, to my Mom, my Dad, my brother, my sister, and my friends
who were there to share the brightest times but also the darkest mo-
ments... or just because they sometimes politely let me explain what
I did, without understanding a single word of the problem ;-). For
this resilience and because we all need such friends and family, you
have my infinite gratitude.

This thesis is dedicated to my Mom and Dad.

This work, the related travels and conference expenses were mostly supported by (i) the
Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk Onderzoek –

Vlaanderen under EOS Project no 30468160, (ii) “Communauté française de Belgique -
Actions de Recherche Concertées” (contract ARC 14/19-060), and of course (iii) UCLouvain.

| v

Contents

1 Introduction . 1
1.1 What is the current research about manifolds? 2
1.2 What are the motivations of data fitting? 3
1.3 How to tackle the data fitting problem? 4
1.4 Why is this work different? . 7
1.5 How to read (and what to find in) this thesis? 10

2 Concerning manifolds . 15
2.1 A (not too) short introduction for the impatient 16
2.2 From a chart to a manifold . 20
2.3 A Euclidean space on manifolds: the tangent space 26
2.4 Riemannian structure of a manifold 30
2.5 Remarkable mappings on Riemannian manifolds 33
2.6 Additional numerical tools . 41

3 Interpolation with Bézier curves 47
3.1 Euclidean Bézier curves . 48
3.2 Bézier curves on manifolds . 52
3.3 Interpolation with velocity-imposed curves 56
3.4 Interpolation with composite Bézier curves 61
3.5 An application to transvaginal ultrasound 67

4 Fitting with Bézier, blended, and Bézier-like curves 77
4.1 Fitting with composite Bézier curves 79
4.2 Fitting with blended Bézier curves 90
4.3 Fitting with composite Bézier-like curves 98
4.4 Numerical examples . 107

| vii

? | Contents

4.5 An application to wind fields estimation 112
4.6 Another application to parametric model order reduction . . . 120

5 Optimality of the Bézier fitting curve 127
5.1 Some additional mathematical elements 128
5.2 Gradient of the discretized mean squared acceleration 130
5.3 Numerical considerations . 141
5.4 Validation of the fitting methods 146

6 Interpolation with Bézier surfaces 157
6.1 Euclidean Bézier surfaces . 158
6.2 Bézier surfaces on manifolds 161
6.3 Composite Bézier surfaces on manifolds 165
6.4 Control points generation for surface interpolation 178
6.5 Accelerated generation of control points 187
6.6 Numerical examples . 191

7 Fitting with blended surfaces . 199
7.1 Euclidean thin plate splines . 200
7.2 Fitting with blended thin plate splines 203
7.3 Illustrative examples . 217

8 Summary and perspectives . 223
8.1 What was it about? . 223
8.2 How well were the objectives achieved? 225
8.3 What to do next? . 229

Appendices . 233
A Coefficients for interpolation with a composite cubic curve . . 233
B Coefficients for interpolation with a hybrid composite curve . . 235
C Coefficients for fitting with a composite cubic curve 236
D Proof of equation (6.33) . 237
E Examples of geometric elements on manifolds 238

List of publications . 239

Bibliography . 243

List of symbols . 261

Index . 265

viii |

1
Introduction

A
LWAYS MORE. This is the current fashion of our society. It be-
gan after the Second World War, when the belongings became a
new sign of wealth [Des06]. Sometimes, more makes sense: more

rights, more justice, more equity, more respect, more freedom,. . . Some-
times, it is more questionable [MMRB72]: more money, more assets, more
power, more broadcasting, more Netflix, more connectivity,. . .

The sciences, and more specifically the computer sciences, make no ex-
ception to this rule. With the discovery of the new computational capabili-
ties of computers, some new “mores” emerged: more data, more computa-
tional power, more complexity. This has permitted tremendous discoveries
and revolutionized the way engineering was thought. Machine learning,
and now deep learning, permits to mimic neural networks allowing to un-
derstand and solve problems we wouldn’t have dreamed of several years
ago; finite elements were made more popular. Furthermore, the amelio-
ration of CPUs provided the necessary devices for those methods. It also
came with the drawback that this machinery requires a high computational
cost and, as a consequence, energy; it cannot be integrated in small devices
where the computational capacity is low.

Let us take a quick example of a complicated optimization problem
minx∈S f (x), constrained with many rules C(x), driven by a highly non-
linear objective function f on a large space S. A brute-force approach to
find the minimum value of f would be to generate a solution for a lot

| 1

1 | Introduction

of values of x ∈ S, check if they satisfy C(x), and then choose among
them the best solution. With enough time and energy, this approach might
work. However, if it was possible to search only on the space SC := {x ∈
S such that C(x)}, one could drastically reduce the time of search.

In this thesis, we are interested in such a nonlinear optimization prob-
lem. We consider the problem of fitting a (d-dimensional) curve to a set of
data points on a Riemannian manifold (see Chapter 2 for an introduction
to manifolds). More formally, the problem is expressed as follows.

Given data points di on a Riemannian manifoldM, i ∈Nd, associated
with time instants ti ∈ Rd, we seek a d-dimensional curve γ : Rd →M
that strikes a balance between the conflicting goals of being “suffi-
ciently straight” while passing “sufficiently close” to the data points
at the given times.

The goal of this work (that builds on previous theses at UCLouvain
[Ren13, Bou14, Mas19]) is to develop methods to (approximately) solve
this fitting problem; the bet with those methods is to require “less” (less
computational capabilities, power, storage, time) by using “more” knowl-
edge on the search space. The objective will be the following: provide a
toolbox that requires as little knowledge as possible, as little computational
cost, and as little storage capacity, but meanwhile furnishes acceptable so-
lutions.

1.1 What is the current research about manifolds?

During recent years, it has become more and more common and important
to process data from non-Euclidean spaces, in particular from Riemannian
manifolds. To cite a few applications, such data appear in computer vision
[Fle13] (shape space), to interpret colors in images [BLSW14] (sphere), or
to represent fixed rank matrices as submanifold of all matrices [Van13].

Among all applications, optimization on manifolds has gained a lot of
interest this last decade. The textbook of Absil et al. [AMS08] is proba-
bly a key element in this popularization. It summarizes several optimiza-
tion methods on matrix manifolds; it also served as basis for the devel-
opment of toolboxes (Manopt [BMAS14] in 2014, and MVIRT [Ber17] in

2 |

What are the motivations of data fitting? | 1.2

2017) providing easy access to such optimization methods. Manopt, in
particular, received positive return in many different topics of research,
with applications in low-rank modelling in image analysis [ZYZY15], di-
mensionality reduction [CG15], phase retrieval [SQW17] or even 5G-like
MIMO systems [YSZL16]. Research is still conducted in this field, enrich-
ing the toolbox month after month (for instance with proximal gradient
method [HW19]). The toolbox is currently translated to Python [TKW16]
and to Julia (manopt.jl). MVIRT stems from recent interest in manifold-
valued image and data processing: total variation regularization of phase-
valued data [SC11, SC13] or manifold-valued data [LSKC13, WDS14, HW20],
second order methods [BLSW14, BBSW16] , and total generalized variation
algorithms for manifold-valued data [BFPS18, BHSW18] are some of the
applications of this toolbox. See also [BLPS19] for a review of the recent
literature in the field of manifold-valued image processing.

Very recently, a rich variety of research has been conducted in this di-
rection, like image morphing with time-discrete geodesics [EKPR19], man-
ifold regression to predict MEG/EEG brain signals without source mod-
eling [SAV+19], dictionary learning [HHS+15], Riemannian optimization
tools [LB19, MKJS19], or even human behavior understanding [KDB+20].

Among all those applications, one in particular will be treated in this
manuscript: manifold-valued data fitting.

1.2 What are the motivations of data fitting?

The data fitting problem is motivated by various applications that require
to denoise or resample parameter-dependent data on a Riemannian mani-
foldM.

For example, a crucial task in computational anatomy is to denoise and
resample the evolution of the shape of an organ, yielding a curve fitting
problem (d = 1) on a shape manifold. In Arnould et al. [AGS+15], for
instance, different images of an organ are acquired in the space of closed
2D-shapes S at different body-depths, using MRI. The final goal is to recon-
struct the 3D volume γMRI(z) : R→ S of the imaged organ, where z is the
depth inside the human body of each MRI slice. In the same work, orien-
tations of a probe are also registered at different times by 2D transvaginal
ultrasound (TVUS) [BRP12]. Hence, another curve can be fitted to recover
the probe navigation path γTVUS(t) : R→ SE(3). Here, the manifoldM is

| 3

1 | Introduction

the set of rigid-body motions in R3.
Rigid motion has actually many other applications, like interpolation

or fitting of rotations of 3D objects lying on the special orthogonal group
M = SO(3). This problem arises in robotics for motion planning of rigid
bodies or trajectory optimization [WLS+20], or in computer graphics, to
track 3D objects [Par10]. In Cosserat rods [San10], we have d = 1 and
M = SE(3), while Cosserat shells [SNB16] require d = 2 andM = SE(3).

Curve fitting is also useful in projection-based model reduction of dy-
namical systems depending on parameters. In Pyta et al. [PA16], the dy-
namical system is the Navier-Stokes equations and depends only on the
Reynolds parameter (d = 1). The reduced model is obtained by comput-
ing several suitable projectors. Those projectors are elements of the Grass-
mann manifoldM = Gr(n, r). Finding a projector is however a time- and
memory-consuming task. Based on projectors pre-computed offline for a
small set of parameter values, fitting is used to approximate the projector
associated with a new parameter value. A new algorithm was recently
proposed by Mosquera et al. [MHHF19] for PMOR.

A similar approach is used in the wind field modeling problem (see
Section 4.5 for details). Here, a wind field is characterized by a mean field
and a covariance matrix C belonging to the manifold M = S+(n, r), the
set of positive semidefinite matrices of size n and rank r [MHA19].

In diffusion tensor imaging, a diffusion tensor is an element of the man-
ifold P(3) of 3× 3 symmetric positive definite matrices. Each tensor is ac-
quired for each voxel of a volume of interest (thus d = 3), and interpolation
can be used to infer more finely sampled data [PFA06].

Let us finally mention fitting of sphere-valued data (M = Sn−1) used
in many applications of data analysis, for storm tracking and prediction, or
the study of bird migration [SKKS14]; and also liquid crystals, which can be
described by a function from R3 into the projective space RP(2) [Muc12].

1.3 How to tackle the data fitting problem?

The problem of fitting a d-dimensional curve to data points (with or with-
out the two above-mentioned conflicting goals) has been widely consid-
ered in the literature for two specific cases.

The first one is when the manifoldM is a Euclidean space. In this case,
a preferred way to handle fitting problems is to resort to splines, i.e., to

4 |

How to tackle the data fitting problem? | 1.3

piecewise polynomials. Those functions are convenient to manipulate and
evaluate, while the interpolation error can be kept small. As the pieces are
usually of low degree, such splines avoid the Runge’s phenomenon that
plagues high-degree polynomial interpolation.

The piecewise-polynomial approach also permits a large range of vari-
ations of the fitting problem, depending on the desired degree of smooth-
ness, the admissible classes or type of polynomial pieces (like Bézier forms,
for instance), optimality criteria, etc. The book of Farin [Far02] is a conve-
nient point of entry to this vast literature.

Another approach are methods called subdivision schemes, quite popular
in some communities of computer-aided geometric design. These schemes
allow to efficiently draw curves and surfaces in Euclidean spaces: a dis-
crete set of points is recursively refined, resulting in a limit curve or sur-
face. Depending on the chosen refinement scheme, the curve may interpo-
late or just approximate the initial points. For instance, Dyn et al. [DLG87]
proposed a four-point scheme whose limit case leads to C1-interpolatory
curves; she extended it to a C2-(nearly interpolatory) scheme in [DFH05].
Deng and Ma considered more general polynomial-reproducing schemes
[DM16]. The monograph of Peters and Reif [PR08] gives a larger introduc-
tion into the topic.

The second case, more recent, is the case of manifold-valued fitting for
d = 1, i.e., curve fitting. Two schools coexist in the literature: the one that
relies on optimization of splines, and the one that relies more on construc-
tive algorithms, like subdivision schemes generalized to non-Euclidean
spaces. Such schemes and their convergence and smoothness analysis can
be found, e.g., in [Dyn09, Gro08, NYY11, WD05, WP06, WNYG07, Wei10,
Wei12]. In complicated spaces, however, the many necessary recursions
to evaluate a subdivision curve may become computationally prohibitive.
Also, subdivision schemes are typically local so that for instance curve in-
terpolation with minimal global curvature cannot be achieved. Hence, this
approach comes in contradiction with at least two goals of this work (see
Section 1.4): being computationally tractable and constructing a “straight
enough” curve.

The spline-based approach permits to better handle the two conflict-
ing goals mentioned in the beginning of this chapter (i.e., data fitting and
smoothness). It consists in encapsulating them in an optimization problem

min
γ∈Γ

Eλ(γ) := min
γ∈Γ

∫ tn

t0

∥∥∥∥
D2γ(t)

dt2

∥∥∥∥
2

γ(t)
dt + λ

n

∑
i=0

d2 (γ(ti), di) , (1.1)

| 5

1 | Introduction

where the set Γ is an admissible set of curves onM, D2

dt2 denotes the (Levi-
Civita) second covariant derivative, ‖ · ‖γ(t) is the Riemannian metric at
γ(t), and d(·, ·) is the Riemannian distance. The parameter λ (controlled
by the user or by the algorithm itself, e.g., through a cross-validation proce-

dure) sets the balance between the regularizer term
∫ tn

t0
‖D2γ(t)

dt2 ‖2
γ(t)dt (that

permits to the curve to be “sufficiently straight”) and the goodness of fit term
∑n

i=0 d2(γ(ti), di) (that permits to the curve to pass “sufficiently close” to
the data).

This approach is convenient because it generalizes well from the Eu-
clidean space. Indeed, when the Riemannian manifold M reduces to a
Euclidean space and Γ is chosen to be the Sobolev space H2(t0, tn), a classi-
cal result (see, e.g., [GS93, Theorem 2.4]) states that the solution of (1.1) is a
natural cubic spline. Specifically, it is the interpolating natural cubic spline
when λ → ∞ (see, e.g., [SM03] for its definition) and the least-squares lin-
ear regression as λ→ 0 (see [MS06, Proposition 4.5 and 4.6] for a result on
manifolds).

Several methods exist to solve problem (1.1). In Samir et al. [SASK12],
the problem is addressed nearly as is. They consider an infinite dimen-
sional Sobolev space equipped with the Palais-metric, and (1.1) is mini-
mized with a steepest-descent approach; that approach was applied to im-
age processing by Su et al. [SDK+12].

However, problem (1.1) is often too complicated to be tackled in its full
generality, so most authors make some approximations or restrictions to
transform it to a simpler problem. In Boumal et al. [BA11], the curve is
discretized with K points, reducing the search space to a product manifold
MK, and the covariant derivative is replaced by manifold-valued finite
differences. The algorithm is then applied to SO(3). Machado and Mon-
teiro [MM17] handle the specific case of the sphere. Kim et al. [KDL18] or
Hüper et al. [HS07] generalized to several spaces a technique from Jupp
and Kent [JK87] called “unwrapping and unrolling”; this technique has
the advantage to “transform” the manifold-valued problem to an equiva-
lent Euclidean problem, and solves it with classical Euclidean techniques.

The limit case where λ = 0, i.e., geodesic regression, was studied in the
work of Rentmeesters [Ren11] and Fletcher [Fle13]. In the former, the prob-
lem is solved with a gradient descent technique for Riemannian symmetric
spaces, while in the latter, the least-squares problem is studied intrinsically
as a minimization of the sum of squared geodesic distances onM. An ex-
tension of geodesic regression is polynomial regression, for which Rieman-

6 |

Why is this work different? | 1.4

nian techniques were proposed by Hinkle et al. [HFJ14] (intrinsic method)
and Lin et al. [LSZD17] (extrinsic methods).

The other limit case where λ → ∞, however, was poorly documented
before the beginning of this work. In the last two years, however, it has
gained some interest in the field. We mention the work of Bogfjellmo et
al. [BMV18] on interpolation with C2 composite cubic Bézier curves on Rie-
mannian symmetric spaces, or the very recent Hermite’s algorithm devel-
opped by Zimmermann [Zim19], as well as the Neville-Aitken approach
of Mosquera et al. [MHHF19]. Recently, Effland applied techniques using
Bézier curves to the space of images [ERS+15].

Besides these two special—but important—cases (the Euclidean case,
and the manifold-valued case for d = 1), multivariate manifold-valued fit-
ting does not appear to have been much researched. Some work can nev-
ertheless be found. Steinke et al. [SHPS08] use a technique based on thin
plate splines to produce an interpolation map between two Riemannian
manifolds. The approach is generalized in [SHS10] where, given a set of
training pairs (Xi, Yi) with the Xi’s and Yi’s on two manifolds, a mapping
is sought between these two manifolds. The mapping has to minimize a
regularized empirical risk. We also mention a related technique for volu-
metric registration presented in [JSTL07].

To be fair, the data fitting problem can also be approached in other
different ways, but they depart strongly from the work presented in this
document. Some examples can be found in [ZN19, Shi08], in the work of
Machado [MSLK10, MSM18] or Sander [San16].

1.4 Why is this work different?

In this work, we tackle the fitting problem on manifolds for curves (d = 1)
and surfaces (d = 2). The search space Γ is chosen to be a space of C1 com-
posite Bézier curves (Chapters 3, 4 and 5), Bézier surfaces (Chapter 6), or
thin plate splines (Chapter 7). The optimality of the returned curves (resp.
surfaces) is guaranteed only whenM is Euclidean (on manifolds, there is
no known closed form for optimal Bézier curves or thin plate splines, so
one would have to approximate them).

Euclidean Bézier curves have been extensively used in the CAGD (Com-
puter Aided Geometric Design) community in the past (see Farin [Far02]
for a comprehensive textbook) to model smooth curves and surfaces for

| 7

1 | Introduction

real- and vector-valued data points. They can also be used to model smooth
curves and surfaces on manifolds [PN07] (see Figure 1.1 for a Bézier surface
computed on the Riemannian space of shells with the methods proposed
in Chapter 6).

Fig. 1.1 Differentiable composite Bézier surface on the Riemannian space
of shells (Section 6.6.4) interpolating the red shapes. The gray shapes are
points on the Bézier surface driven by the control points in green. Their
location indicates where in the R2 domain they are achieved. Dataset cour-
tesy to Yeh et al. [YLSL11].

The advantages to work with Bézier functions are numerous. First,
compared to [SASK12, BA11], the search space is drastically reduced to
the so-called control points of the Bézier functions. Second, it is very sim-
ple to impose differentiability conditions for the fitting curves or surfaces
(this is appreciated in several applications mentioned in Section 1.2). Fi-
nally, an advantage compared to [SASK12, KDL18, Fle13, Ren11] consists
in the simplicity of the methods that can be produced in that framework.
Indeed, only two objects on the manifold are required: the Riemannian
exponential map and the Riemannian logarithm, while most of the tech-
niques mentioned in Section 1.3 require a gradient or heavy computations
for parallel transportation.

The present work performs fitting with the following philosophy. In-
stead of solving the highly nonlinear problem (1.1) on the manifold, one
chooses to follow a suboptimal route. As the manifold M can be locally

8 |

Why is this work different? | 1.5

approximated by a (linear) tangent space TxM around a point x, we solve
instead a local approximation of (1.1) on a set of such spaces. The solution
obtained there is then either generalized to M by interpreting the closed
form as exponentials and logarithms, either by blending together solutions
obtained in various tangent spaces.

With this approach, four cases are studied: interpolation and fitting,
respectively with d = 1 and d = 2. Higher dimensions are not consid-
ered in this thesis but a generalization to d > 2 does not seem to be too
cumbersome.

Among the several techniques developed here, the goal is to combine
most of the following desirable properties:

(i) As λ→ ∞, the data points are interpolated at the given times;

(ii) The curve (resp. surface) is of class C1;

(iii) If the manifoldM reduces to a Euclidean space, then the produced
curve minimizes (1.1), i.e., it is the natural smoothing spline (d = 1)
or the fitting thin plate spline (d = 2);

(iv) The only knowledge that the methods require from the manifold is
the Riemannian exponential and the Riemannian logarithm;

(v) The produced curve (resp. surface) is represented by O(n) tangent
vectors to the manifold (or simply points on the manifold), where n
is the number of data points;

(vi) Computing γ(t) for any given t requiresO(1) exp and log operations
once the representation by O(n) tangent vectors is available.

Those properties cannot be verified without assuming that the fitting
problem instances (i.e., the data points and associated times) are such that
the considered algorithms evaluate the Riemannian exponentials and loga-
rithms only where they are well defined (so that the resulting curve is well
defined as well) and C1 (so that property (ii) holds). This standing assump- A Hadamard

manifold is a
complete,

simply
connected

manifold, with
everywhere a
non-positive

sectional
curvature.

tion always holds whenM is a Hadamard manifold, and is in general not
a concern whenM is complete and the cut loci onM have codimension
greater than one.

This work departs thus from the others by those six properties. The
ambition is to propose techniques that are close to optimize (1.1) while
being computationally tractable, and that compute differentiable, easy-to-
store results.

| 9

1 | Introduction

1.5 How to read (and what to find in) this thesis?

There are eight chapters in this thesis, including this introduction and a
concluding chapter. The six remaining ones are organized as follows: Chap-
ter 2 introduces the principal elements of differential geometry used in this
thesis. Chapters 3 to 7 constitute the core of the thesis and the main con-
tributions: Chapters 3 to 5 concern the case d = 1 while Chapters 6 and 7
concern the case d = 2. Each time, interpolation and fitting are treated
separately. Figure 1.2 gives a “reading route” of the thesis.i

i
“TikZ/01_outline” — 2020/7/7 — 11:51 — page 9 — #1 i

i

i
i

i
i

Chapter 2

Chapter 3 Chapter 4 Chapter 5

Chapter 6 Chapter 7

Interp. Fitting

d = 1

d = 2

Fig. 1.2 Reading route of the thesis. A→ B suggests to read A before B.

Ch. 2 An introduction to manifolds

This chapter introduces formally the elements of differential geometry used
in the thesis (like the exponential map, the logarithm, the tangent space,
etc.). As the mathematical details might sometimes be tedious to manipu-
late, a first section is provided to give an intuitive idea of the key objects.
This first section should be sufficient to understand the vast majority of
the thesis, but it might be useful to have a look at the next sections to fully
appreciate the proofs provided in the document.

Ch. 3 Interpolation with Bézier curves

This chapter concerns interpolation of n manifold-valued data points asso-
ciated to time-parameters, by means of piecewise-cubic Bézier splines. The

10 |

How to read (and what to find in) this thesis? | 1.5

resulting composite cubic Bézier curve minimizes its mean squared accel-
eration when the manifoldM is a linear space. First, a reminder on Bézier
curves on the Euclidean space and on manifolds is provided.

As first contribution, we propose a method to optimize the control
points of the Bézier curve as well as a reconstruction algorithm in a way
that is consistent with the properties given in Section 1.4, inspired from the
methods published in [AGS+15]. The algorithm is afterwards applied to
a medical problem where segmented MRI slices must be interpolated in
order to reconstruct a 3D-volume of tumoral tissue. This comparison was
published in [SGJ15] in collaboration with Dr. Chafik Samir (Université de
Clermont, France).

The related publications are listed hereunder.

[AGS+15] Antoine Arnould, Pierre-Yves Gousenbourger, Chafik Samir, P.-
A. Absil, and Michel Canis. Fitting smooth paths on Riemannian mani-
folds: Endometrial surface reconstruction and preoperative MRI-based nav-
igation. In Frank Nielsen and Frédéric Barbaresco, editors, Geometric
Science of Information, volume 9389 of Lecture Notes in Computer Sci-
ences, pages 491–498, Berlin, Heidelberg, 2015. Springer. doi:10.1007/
978-3-319-25040-3_53

[SGJ15] Chafik Samir, Pierre-Yves Gousenbourger, and Shantanu H. Joshi.
Cylindrical surface reconstruction by fitting paths on shape space. In H.
Drira, S. Kurtek, and P. Turaga, editor, Proceedings of the 1st Interna-
tional Workshop on DIFFerential Geometry in Computer Vision for Analy-
sis of Shapes, Images and Trajectories (DIFF-CV 2015), pages 11.1–11.10.
BMVA Press, 2015. doi:10.5244/C.29.DIFFCV.11

Ch. 4 Fitting with blended curves

After interpolation, the technique from Chapter 3 is extended to composite
cubic fitting Bézier curves, to approach the complete problem (1.1). How-
ever, a naive generalization comes along with a problem of interpolation
when λ → ∞. This problem is related to the local injectivity radius of the
manifold and to the generalization of differentiability conditions of Bézier
curves. It justifies the creation of the blended fitting curves, presented in this
chapter as main contribution. Those fitting curves combine the six proper-
ties of Section 1.4 and are subject to a proper publication [GMA18c]:

| 11

http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.5244/C.29.DIFFCV.11

1 | Introduction

[GMA18c] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil.
Data fitting on manifolds with composite Bézier-like curves and blended
cubic splines. Journal of Mathematical Imaging and Vision, 61(5):645–
671, 2018. doi:10.1007/s10851-018-0865-2

Moreover, the fitting methods (the naive generalization and the blend-
ing approach) are applied to two real-life applications, i.e., the wind field
problem (Section 4.5) and parametric model order reduction (PMOR, Sec-
tion 4.6). Each application was the subject of publications in collaboration
with Dr. Estelle Massart (UCLouvain, Belgium, and Oxford, UK), for both,
and Dr. Nguyen Thanh Son (UCLouvain, Belgium) for PMOR:

[GMM+17] Pierre-Yves Gousenbourger, Estelle Massart, Antoni Musolas,
P.-A. Absil, Laurent Jacques, Julien M Hendrickx, and Youssef Marzouk.
Piecewise-Bézier C1 smoothing on manifolds with application to wind field
estimation. In ESANN2017, pages 305–310. Springer, 2017

[MGS+19] Estelle Massart, Pierre-Yves Gousenbourger, Nguyen Thanh Son,
Tatjana Stykel, and P.-A. Absil. Interpolation on the manifold of fixed-rank
positive-semidefinite matrices for parametric model order reduction: prelim-
inary results. In ESANN2019, pages 281–286. Springer, 2019

Ch. 5 Analysis of the quality of Bézier fitting curves

In the two previous chapters, equation (1.1) is only verified whenM is a
linear space. WhenM is not a linear space, the resulting composite cubic
Bézier curve is only a suboptimal solution of (1.1). In this chapter, we are
interested in a numerical analysis of the quality of the curves computed in
Chapters 3 and 4.

To do so, the regularizer of (1.1) is approximated by (squared) second
order absolute differences introduced in [BBSW16], the search space is lim-
ited to the composite Bézier curves presented in Chapter 3, and (1.1) is
solved via a Riemannian gradient descent.

The main contribution of this chapter is the derivation of the gradient of
the objective function of (1.1) with respect to the control points of the Bézier
spline. The gradient computation is based on the recursive structure of the
De Casteljau algorithm [PN07]. Furthermore, we achieved to keep close to
the six properties of Section 1.4, as the only required tools of the manifold
are the exponential map, the logarithmic map, and a certain Jacobi field
along geodesics.

12 |

http://dx.doi.org/10.1007/s10851-018-0865-2

How to read (and what to find in) this thesis? | 1.5

This contribution results from a collaboration with Dr. Ronny Bergmann
(Technische Universität Chemnitz, Germany), published in the following
paper.

[BG18] Ronny Bergmann and Pierre-Yves Gousenbourger. A variational
model for data fitting on manifolds by minimizing the acceleration of a
Bézier curve. Frontiers in Applied Mathematics and Statistics, 4(59):1–16,
2018. doi:10.3389/fams.2018.00059

Ch. 6 Interpolation with Bézier surfaces

Chapters 6 and 7 reproduce the approaches of Chapters 3 and 4, but in the
bidimensional case.

In this chapter, we consider the interpolation problem. The first task,
and the first contribution, is to extend the notion of manifold-valued Bézier
curves (see Chapter 3) to their manifold-valued bivariate expression. Three
different approaches are proposed, leading to different results. The second
contribution comes with a discussion on the differentiability of the piece-
wise surfaces of types I, II or III, and with a procedure and constraints to
patch Bézier surfaces in a differentiable way. Finally, we design two algo-
rithms to compute the unconstrained control points in such a way that the
resulting interpolating spline has minimal mean squared second deriva-
tive whenM is a Euclidean space. The first one involves parallel transport
(this is a costly operation) while the second one solves does not.

Both algorithms result from collaborations with Prof. Benedikt Wirth
and Dr. Paul Striewski (Münster Universität, Germany). They are pub-
lished in two articles:
[AGSW16b] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier surfaces on Riemannian
manifolds. SIAM Journal on Imaging Sciences, 9(4):1788–1828, 2016. doi:
10.1137/16M1057978

[AGSW16a] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier interpolation on Rieman-
nian manifolds. In ESANN2016, pages 95–100. Springer, 2016

Ch. 7 Fitting with blended thin plate splines

Last but not least, the loop is closed with a final chapter on bidimensional
fitting. This chapter follows the ideas of Chapter 4, but gives up on Bézier

| 13

http://dx.doi.org/10.3389/fams.2018.00059
http://dx.doi.org/10.1137/16M1057978
http://dx.doi.org/10.1137/16M1057978

1 | Introduction

surfaces to consider thin plate splines that are a more conventional gener-
alization of smoothing splines for d = 2.

The main contribution here is the definition and the analysis of blended
surfaces that satisfy the properties of Section 1.4. It is also a collaboration
with Prof. Benedikt Wirth (Universität Münster, Germany). A publication
is in preparation with extended results and analysis.

[AGW20] P.-A. Absil, Pierre-Yves Gousenbourger, and Benedikt Wirth.
Smooth surface fitting in Riemannian manifolds using patch-wise lineariza-
tion. In progress, 2020

Disclaimer: large parts of this thesis rely verbatim on the publications cited above,
specifically [GSA14, AGS+15, SGJ15, AGSW16b, AGSW16a, GMM+17, GMA18c,

BG18, MHA19, AGW20]. A complete list of the articles published during this thesis
is provided at the end of the manuscript.

14 |

2
Concerning manifolds

R
IEMANNIAN MANIFOLDS have a rich structure. They offer a natu-
ral way to represent (constrained) non-linear spaces. This prelimi-
nary chapter gives an overview of the main differential geometric

tools used in this document.
Geometric elements on Riemannian manifolds can be expressed or ex-

plained in a natural way, using analogies to the Euclidean space. However,
defining properly those notions requires to define the concept of smooth
manifold, and itself requires to come back to the notions of chart and atlas.

The definitions considered in this chapter might be tedious to manipu-
late and the intuition behind each of them is sometimes difficult to imagine.
This is why the chapter is separated in two parts. The first one (Section 2.1)
is a rough and (hopefully) intuitive presentation of the main concepts used
in the thesis. We recommend this section to every reader, especially those
who discover the field. Note that the definitions given there are of course
not rigorous. More formal definitions are given in the following sections
(Sections 2.2, 2.3, 2.4, 2.5). They can be skipped, but they constitute a solid
ground for the next chapters.

The exposition adopted here is mainly inspired from the books of Ab-
sil et al. [AMS08], do Carmo [dC92], and recently Boumal [Bou20]. If the
reader wishes to read a more complete and strong introduction to Rieman-
nian manifolds, the following textbooks are also advised [Car46, O’N66,
O’N83, Boo86, Lee97, Lee13].

| 15

2 | Concerning manifolds

2.1 A (not too) short introduction for the impatient

The point, the line, the square, the circle, the cube are basic elements of
our daily life. These are also the first geometric tools that we encounter
in the first lessons of geometry in the elementary school. We know how
to measure the length of a line segment and how to evaluate the distance
between two points, just as we can draw a straight line between these two
points. These operations are well defined in what we call a Euclidean space
E. Our three-dimensional space R3 is one of them.

More than 150 years ago, Riemann [Rie54] paved the way to a novel
branch of differential geometry that is now named after him. This geom-
etry is not Euclidean: the straight line is now curved which has a direct
impact on the measure of the distance between two points. In a first intu-
ition, one could see those spaces as smooth surfaces S embedded in E, with
no holes, no kink, no boundaries (the sphere, the plane or the torus are
classical examples of such surfaces embedded in R3).

One could think that every operation performed on those kind of spaces
is constrained to S. Indeed, if the points belonging to S are seen in the am-
bient space E, they are not free to move wherever they want. They are
limited to stick to the smooth surface S. This is the point of view that
the almighty God would take as he is seeing us, moving on our spherical
Earth, constrained to remain on its curved surface, stuck to the ground by
the gravity.

However, one could prefer another viewpoint where there is no con-
straint at all, because no other world than the surface S would exist. This
reminds us of the world we are living on. From our viewpoint of teeny
tiny humans compared to the large Mother Earth, we all can consider (in
a first approximation) that we move freely, unaware that we are restricted
to the surface of a sphere in the universe. One could also think about the
two-dimensional inhabitants of Flatland [Abb84] or the characters of Paper
Mario, who can barely imagine that there might be a third dimension and
live happily like cows in a field in their own subspace [Bou20].

Now let us take the viewpoint of the tiny humans on the surface of the
Earth. The smooth surfaces S will be called a smooth manifoldM (see Sec-manifold

tion 2.2 for a formal, yet abstract, definition). While we are traveling from
our front door to the neighbor’s, one can say that we are moving straight.
We can even represent the trip on a map, by just drawing a straight line.

16 |

A (not too) short introduction for the impatient | 2.1

At this level, the distance we have made is very small compared to the cur-
vature of the Earth. This comes with the notion that Earth can be locally
approximated as a flat space. Imagine that you just have little flat pieces
of LEGO R© but that you want nevertheless to build a sphere: you can do it,
as soon as the sphere you build is large enough compared to the pieces of
LEGO R©.

Similarly, smooth manifoldsM can be linearized locally around a given
point x (Figure 2.2). This linearization is called tangent space at x of the tangent space

manifoldM (or just tangent space) and is noted TxM. As suggested by its
name, this space is tangent at x. The point of tangency is called the root
of the tangent space. When the tangent spaces to M are endowed with
a so-called metric, i.e., an inner product for each tangent space, smoothly metric

varying from one tangent space to another, the manifold M is said to be
equipped with a Riemannian structure. The smooth manifold M is thus
called Riemannian manifold. This notion of inner product is a key to be able Riemannian

manifold
to define a distance on manifolds. In this thesis, every manifold will be
equipped with a Riemannian structure.

This leads us to a question: if manifolds can be seen locally as (flat)
vector spaces, what happens when two points are not “local enough” to
belong to a same tangent space? Indeed, the approximation of the mani-
fold by a tangent space does not stand when the distances become more
and more important: one has to take a broader point of view. When one of
our politician is traveling by plane from Brussels to New York City, it be-
come less and less accurate to consider his trip as a straight line. Of course,
the plane was only going straight, but it actually followed the curvature of
Earth. In the sense of the space “Earth”, the plane followed the simplest
path, the one which costed the least energy: a straight sphere-line. In geo-
metric language, this line is called a geodesic. Metric, geodesic and distance geodesic

are extremely related. For instance, on the sphere (which represents the
Earth), the geodesic is the great arc along the sphere between two points.
The distance is given by the length of this great arc, not by the length of the
straight line drawn through the sphere.

Both approaches have their advantages. Working on tangent spaces is
evidently most practical: the tangent space is a Euclidean space for which
rules of calculus are well defined. It is easier to work on in. Working
directly on the manifold M, on the other hand, cannot be ignored: the
(non-linear) manifold is the space where points actually belong. In many
applications, tangent spaces are exploited as much as possible. This means
that there must be a way to switch from a tangent space to the manifold

| 17

2 | Concerning manifolds

i
i

“TikZ/02_impatientEarth” — 2020/7/7 — 11:51 — page 16 — #1 i
i

i
i

i
i

g(t; x, y) Brussels
xNew York

y
ξ

Fig. 2.1 Illustration of a geodesic connecting Brussels to New York city on
the surface of Earth. The initial velocity ξ can be computed with the loga-
rithmic map as logx(y); the destination from Brussels in the direction of the
initial velocity can be reached with the exponential map as y = expx(ξ).

(and reversely). This way is called the retraction, and a remarkable one isretraction

the Riemannian exponential map expx(ξ) = y (not to be confounded withRiemannian
exponential

the matrix exponential). It can be seen as a the application that maps a
tangent vector ξ from the tangent space TxM to another point y onto the
manifold M; the other way around is accomplished by the Riemannian
logarithm logx(y) = ξ, that allows to represent a point y fromM on TxM.Riemannian

logarithm
This representation, here, is the tangent vector ξ. Those mappings are core
concepts in this thesis, because they exist on every Riemannian manifold.

Another advantage of those maps is that they are obtained by follow-
ing the geodesic starting with a given initial velocity. Let us take again this
example of the politician flying from Brussels to New York City. In a first
approximation, one could say that the plane has to follow a certain initial
direction (ξ, for instance) such that, if it follows this direction as the crow
flies, it will reach New York City. The exponential map is equivalent to the
geodesics starting from Brussels (x), in the given direction (ξ), and reach-
ing New York (y). The logarithm map is the mapping that evaluates the
direction the plane must follow in order to link Brussels to New York with
a geodesic. Then, under certain conditions, computing a geodesic between
two points x, y ∈ M can be done using only those maps. In that case, the
geodesic can be written g(t; x, y) = expx(t logx(y)), see Figure 2.1Exp-Log

In general, the exponential map is a “many-to-one” mapping, i.e., dif-

18 |

A (not too) short introduction for the impatient | 2.1

ferent tangent values can be given to expx for the same result onM. From
Brussels, one can define several tangent vectors pointing in a given di-
rection such that we reach Paris. The length of the tangent vector can be
increased in such a way that we first turn around the Earth and then finish
the trip at Paris. Two different vectors lead to the same destination. On
the other hand, the logarithmic map is always “one-to-one” where it is de-
fined. They will be an inverse of each other only if we limit the length of
the vectors we provide to expx. This maximal length is encapsulated in the
notion of injectivity radius that is properly defined later in Definition 2.51.
That definition had a serious impact on this thesis: it justifies by itself the
methods developed in Chapter 4.

A last important element to introduce is the parallel transport. Tangent parallel
transport

spaces approximate well the reality of the manifold for points “not too far
away from the root”. Therefore, it makes little sense to try to represent, in
the tangent space at Brussels, a point in the neighborhood of New York.
However, comparing tangent vectors from two tangent spaces is some-
times useful. The parallel transport Px→y(ξ) enables to transfer a vector
ξ from the tangent space at x to another one at y, following a geodesic.

All the concepts presented here are summarized in Figure 2.2, where

i
i

“TikZ/02_impatientExample” — 2020/7/7 — 11:52 — page 17 — #1 i
i

i
i

i
i

M

TxM ξ = logx(y)

ηy = Px→y(ξ)

x
y

expx(ξ) = g(1; x, y)

Fig. 2.2 Illustration of the core concepts used in this thesis: the tangent
space TxM to a manifold M is a local approximation of M by a vector
space TxM; the geodesic g(t; x, y) generalizes the idea of “straight line”
from the Euclidean space, as it corresponds to a curve with “zero accel-
eration”; the exponential map expx(ξ) and the logarithmic map logx(y),
allow to navigate from the tangent space to the manifold (and inversely);
the parallel transport Px→y(ξ) permits to move a tangent vector from one
tangent space to another, following a geodesic.

| 19

2 | Concerning manifolds

the Earth is here replaced by a more abstract representation of a manifold.
This representation will be used throughout this thesis, even if some ex-
amples will be given on the sphere. Nonetheless, keeping this “Earth”-
representation in mind will help the reader to embrace the concepts along
the chapters.

The next sections are dedicated to more formal definitions. They can be
skipped and are not necessary to understand the rest of the thesis, but they
constitute a solid mathematical ground to all the presented concepts.

2.2 From a chart to a manifold

Roughly speaking, manifolds can be seen as sets that look like the Euclidean
space in a close neighborhood. Even if we will focus later on matrix mani-
folds (i.e., manifolds whose elements are represented by matrices), we give
here a general definition.

2.2.1 General definition of a manifold

Let us consider a certain d-dimensional set M, with no particular struc-
ture yet. As this set has to be interpreted locally as a Euclidean space, it
is important to model M after Rd in a one-to-one correspondence. This
correspondence is called chart.

Definition 2.1. A d-dimensional chart on a set M is a pair (U , ϕ) wherechart (U , ϕ)

1. U ⊆ M is the domain of the chart, and

2. ϕ : U → Rd is a bijective map between U and Rd, with ϕ(U) open on
Rd.

The inverse map ϕ−1 : ϕ(U) → U is called a local parameterization of M.
Given x ∈ U , the elements of ϕ(x) ∈ Rd are called the coordinates of x in
M.

The notion of chart (U , ϕ) allows objects expressed in U to be trans-
ferred to Rd. For instance, if f : U → R, then f ◦ ϕ−1 : Rd → R, where
the methods of real analysis exist. Therefore, it makes sense to cover the
whole set M with a collection of charts such that every point x ∈ M can
be transferred to a Euclidean space. However, caution must be taken if a

20 |

From a chart to a manifold | 2.2

point belongs to the domain of two different charts, and we must impose
compatibility conditions.

Definition 2.2. Two charts (U , ϕ) and (V , ψ) of M are said C∞-compatible
(or “smooth”-compatible) if they have the same dimension d and, if they compatible

charts
are overlapping, they satisfy the following conditions:

1. ϕ(U ∩ V) is open in Rd;

2. ψ(U ∩ V) is open in Rd;

3. ψ ◦ ϕ−1 : ϕ(U) ⊂ Rd → Rd is a diffeomorphism (i.e., it is a smooth
function whose inverse is also smooth).

The function ψ ◦ ϕ−1 is also called transition map from ϕ to ψ. Compatible
charts are illustrated in Figure 2.3i
i

“TikZ/02_compatibleCharts” — 2020/7/7 — 11:52 — page 18 — #1 i
i

i
i

i
i

M

U
V

ϕ(U)

Rd

ψ(V)
ψ(U ∩ V)

Rd

ψ ◦ ϕ−1

ϕ−1

ψ

Fig. 2.3 Illustration of charts and compatible charts. The area U ⊂ M
(resp. V ⊂ M) is mapped to Rd via the bijective map ϕ (resp. ψ). When
two areas coincide like U ∩ V (darker areas), charts are said compatible if
there exists a diffeomorphism ψ ◦ ϕ−1 between ϕ(U ∩ V) and ψ(U ∩ V).

It is now possible to define the notion of atlas: a collection of compatible
charts that cover the whole set M.

| 21

2 | Concerning manifolds

Definition 2.3. An atlasA of M into Rd is a collection of smooth-compatibleatlas A

d-dimensional charts on M whose domains cover M. Two atlases A1 and
A2 are said equivalent if any pair of charts (U1, ϕ1) ∈ A1 and (U2, ϕ2) ∈ A2
are compatible (in other words, if A1 ∪A2 is still an atlas of M). Given an
atlasA, the unique setA+ of all charts (U , ϕ) such thatA∪{(U , ϕ)} is also
an atlas. This set is called maximal atlas of M.

We can now give a permissive definition of a manifold.

Definition 2.4. A smooth d-dimensional manifoldM is a pairM = (M,A+)manifold
(M,A+)

where A+ is a maximal atlas of the set M.

Note that we will simply name a manifold withM instead of M when
there is no confusion possible. Here is a basic example to illustrate our
early definitions.

Example 2.5. The vector space Rn has obviously a manifold structure
M = (Rn,A+). Indeed, its associated maximal atlas A+ is composed
of the chart (U , ϕ) where U = Rn and ϕ is the identity map ϕ : Rn → Rn :
x 7→ x. The same reasoning can be applied to the set Rn×p. Its manifold
structure is of dimension np. A possible chart is ϕ : Rn×p → Rnp : X 7→
vec(X), with vec(X) stacking the columns of X on each other.

Remark 2.6. This definition is actually only permissive and is sufficient in
most cases. However, it does not verify that the topology of the atlasA+ is
(i) Hausdorff and (ii) second-countable, i.e., [Lee13, Chap. 1]

(i) for any pair of points x, y ∈ M, there exists disjoint open subsets
U, V ⊂ M such that x ∈ U and y ∈ V,

(ii) there exists a countable basis for the topology of M.

These last two conditions are necessary to “exclude certain unconventional
topologies” [AMS08, §3.1.1]. For a complete presentation, we refer the reader
to the textbooks of Absil et al. [AMS08, §3.1.2], Brickell and Clark [BC70],
the introduction to smooth manifolds of Lee [Lee13], or to the recent and
excellent summary of Boumal [Bou20, Chap. 8].

2.2.2 Smooth maps and submanifolds

In this thesis, we will mainly work with smooth manifolds. We define
now the notion of smooth mapping. In the following, consider two smooth
manifoldsM = (M,A+) andN = (N,B+), respectively of dimension dM
and dN .

22 |

From a chart to a manifold | 2.2

Definition 2.7. A mapping f : M 7→ N is of class Ck if, for any point smooth map

x ∈ M, there exists a chart (U , ϕ) of M and a chart (V , ψ) of N such that
x ∈ U , f (U) ⊂ V and

f̂ = ψ ◦ f ◦ ϕ−1 : RdM → RdN : ϕ(U) 7→ ψ(V)

is of class Ck. The function f̂ is called the local expression of f in the charts
(U , ϕ) and (V , ψ). A map of class C∞ is called smooth.

It is very easy to characterize a smooth real function whose domain is
M by generalizing this definition. Let f : M → R. If f ◦ ϕ−1 is smooth,
then f is a smooth function onM. The same applies to manifold-valued
functions B : R → M, and smoothness is assessed if ϕ ◦ B is smooth.
Functions like B are in the core of this work, as the main goal is to fit C1

curves to data points on a manifoldM.
The next definitions are worth being stated as most of the manifolds

present in this work are embedded submanifolds of the vector space Rn×p.

Definition 2.8. We say thatN is an embedded submanifold, a regular subman- embedded
submanifold

ifold, or simply a submanifold of M if N ⊆ M and if and only if [AMS08,
Prop. 3.3.2] around each point x ∈ N, there exists a chart (U , ϕ) of M such
that

N ∪ U = {x ∈ U : ϕ(x) ∈ RdN × {0}}.

In other words, N ∪ U is an intersection between a dN dimensional
plane and ϕ(U). The rest of the coordinates are filled with zeros.

Example 2.9. In her thesis, Massart [Mas19] gives the following exam-
ple of hyperplanes embedded in Rd. Consider a hyperplane N := {x ∈
Rd, such that xi = 0} for one certain i taken within {0, . . . , d}, and the lin-
ear manifoldM = (Rd, ϕ : x 7→ x) defined in Example 2.5. For all x ∈ N,
ϕ(x) = x ∈ Rd−1 × {0}. Therefore, we can give a manifold sturcture to N
as N = (Rd−1, ϕ).

Example 2.10. Another intuitive example of embedded submanifolds is
the case of the sphere Sd−1, embedded in the Euclidean space Rd restricted
to unit norm vectors.

Example 2.11. Hyperspheres are in fact one-dimensional versions of the
Stiefel manifold. This manifold is extensively described in [AMS08, §3.3.2].
It is a submanifold of the linear space Rn×p, p ≤ n defined as St(n, p) := Stiefel

manifold
St(n, p){X ∈ Rn×p such that X>X = Ip}, where Ip is the identity matrix of size p.

| 23

2 | Concerning manifolds

The structure inherited byN fromM is a strong tie between the “mother”
manifold and the submanifold. Indeed, a smooth function defined onM
and restricted to N will remain a smooth function on N . This is of partic-
ular interest for matrix manifolds, as they are all embedded submanifolds
of the linear space Rn×p.

2.2.3 Product and quotient manifolds

Instead of extracting a subset from an existing set, one could also join two
sets together in order to create a unique manifold called product manifold.

Definition 2.12. Consider the charts (U , ϕ) ∈ A+ and (V , ψ) ∈ B+. The
structure of the product manifoldM×N is given by all the charts obtainedproduct

manifold
as (U × V , ϕ× ψ), with ϕ× ψ : (x, y) 7→ (ϕ(x), ψ(y)).

Another way to restrict the dimension of a manifold is to characterize a
set by means of equivalence relations. For instance, one could be interested
in working with subspaces of Rd. A subspace S can be represented by an
infinite number of equivalent matrices whose columns form the basis of S.
The interest of quotient manifolds is to summarize all those matrices as anquotient

manifold
equivalence class of points.

Definition 2.13. An equivalent relation is an operator ∼ on a set M. It satis-
fies three properties, for all x, y, z ∈ M:

1. x ∼ x (by reflexivity);

2. x ∼ y if and only if y ∼ x (by symmetry);

3. x ∼ y and y ∼ z implies x ∼ z (by transitivity).

Two points satifying x ∼ y are said to be equivalent. With such a relation,equivalence

we can associate to each point x ∈ M an equivalence class containing x, also
called fiber of x denoted byfiber

[x] := {y ∈ M such that y ∼ x}.

The quotient set of M (or the set of all equivalence classes of M) is de-
noted by M/ ∼= {[x], x ∈ M}. It is composed of subsets of M. This
quotient set can take several smooth manifold structures, which is unique
under certain conditions defined in [AMS08, §3.4]. We will then talk about
a quotient manifoldM/∼.

24 |

From a chart to a manifold | 2.2

Quotient manifolds are extensively used and defined in the work of
Massart to which we refer the reader [MA18, MHA19, Mas19].

We finish this section by presenting some examples of manifolds em-
bedded in the Euclidean space or quotient of the Euclidean space. From
the choice of the structure given to the manifold (embedded or quotient)
depends the expressions of the different tools expressed on the manifold
(geodesics, exponential map, metric,. . .), see [MHA19] for an example on
the manifold of positive semi-definite matrices of fixed rank (Example 2.18).

Example 2.14. The orthogonal group is an embedded submanifold of Rd×d orthogonal
group Oddefined as

Od = {X ∈ Rd×d such that X>X = Id}.
Example 2.15. The special orthogonal group SO(n) is a subspace of On special

orthogonal
group SO(n)restricted to all isometries of On that preserve the orientation of the space.

In short
SO(n) = {X ∈ On such that det(X) = 1}.

Example 2.16. The Stiefel manifold St(n, p) defined in Example 2.11 can Stiefel
manifold

be seen as a quotient manifold of the orthogonal group. Indeed, the equiv-
alence class is

[Q] =

{
Q
(

Ip 0
0 Qn−p

)
such that Qn−p ∈ On−p

}
.

We often note it St(n, p) = On/On−p.

Example 2.17. The Grassmann manifold is a typical example of a quotient Grassmann
manifold
Gr(n, p)manifold. Indeed, Gr(n, p) is the set of all p-dimensional subspaces of Rn.

Representing a subspace of Rn is usually done as the space spanned by the
columns of a given matrix X ∈ St(n, p), i.e., an orthogonal basis. However,
an infinite number of matrices can represent the subspace as soon as they
are rotated by a matrix Q ∈ Op. We can then say that XQ ∼ X, where
X ∼ Y means that there exists a Q ∈ Op such that X = YQ (in other
words, X ∼ Y ⇔ span(X) = span(Y). The Grassmann manifold can thus
be defined as Gr(n, p) = St(n, p)/Op. For an alternative definition of the
Grassmann manifold, we refer to [AMS08, §3.4.4].

Example 2.18. As a last example, let us consider the manifold of fixed-
rank positive-semidefinite matrices (see Chapters 3 and 4 for an applica- S+(n, p)

tion), defined as

S+(n, p) = {X ∈ Rn×n such that X � 0, rank(X) = p},

| 25

2 | Concerning manifolds

for p ≤ n. Several representations exist for this manifold. They are equiva-
lent, but have all their advantages and disadvantages (for instance, in some
representation, there is no easy way to compute an exponential map). To
name but a few, the manifold S+(n, p) can be identified as

• a quotient R
n×p
∗ /Op where R

n×p
∗ is the manifold of matrices of full

column rank [MA18];

• an embedded submanifold in Rn×n [VAV09];

• a quotient (St(n, p)×Pp)/Op, where Pp is the set of positive definite
matrices [BS09];

• a homogeneous space [Van13].

We refer the reader to the thesis of Massart [Mas19, Chap. 8] for a complete
discussion.

In the next chapters, we will define notions like tangent spaces, geodesics,
logarithm and exponential maps. These tools can be derived in general using
charts, but this implies intricate calculus which can be avoided by exploit-
ing the structure of the linear space in which the manifold is embedded.
Actually, the notion of chart will never be used in practice, even though it
was crucial to introduce the rigorous notion of manifolds. This work deals
with matrix manifolds where the tools of differential geometry do not de-
pend on the choice of a chart: only the structure of the manifold matters.

2.3 A Euclidean space on manifolds: the tangent space

The notion of tangent space on manifolds relies on the notion of tangent
vector, a generalization of the directional derivative of a real-valued func-
tion f : M → R, in the direction η. When M is a Euclidean space, the
directional derivative, is defined simply as

D f (x)[η] = limt→0
f (x + tη)− f (x)

t
.

However, the operation f (x + tη)− f (x) requires a vector space structure
that does not make sense whenM is a nonlinear manifold.

In [AMS08, §3.5], several approaches are presented. We keep here the
one where x+ tη is interpreted as any curve γ : R→M : t 7→ γ(t) passing

26 |

A Euclidean space on manifolds: the tangent space | 2.3

through x, with γ(0) = x. Therefore, f (γ(t)) becomes a smooth curve from
R → R where the directional derivative is well-defined in the (tangent)
direction given by the curve γ. But before we can define it properly, we
must introduce the notion of smooth curve on a manifold.

Definition 2.19. A smooth mapping γ : I ⊆ R→M : t 7→ γ(t) is called a
curve onM. curve

The definition of tangent vector is extracted from [AMS08, §3.5.1].

Definition 2.20. Consider x, a point on a manifold M and γ : R →
M a smooth curve such that γ(0) = x. Consider also the set F (M) of
all smooth real-valued functions on M, and more specifically the subset F (M),

Fx(M)Fx(M) ⊂ F (M) of all smooth real-valued functions defined in a neighbor-
hood around x. A tangent vector ξx toM at x is the mapping tangent vector

ξx

γ̇(0) : Fx(M)→ R : f 7→ γ̇(0) f :=
d
dt

f (γ(t))
∣∣∣∣
t=0

.

It is also called the tangent vector to the curve γ at t = 0. The curve γ is said
to realize the tangent vector ξx.

We can now give a constructive definition of the tangent space.

Definition 2.21. The tangent space TxM to M at x ∈ M is the set of all tangent space
TxM

tangent vectors toM at x.

We call the point x the root of the tangent space (in several manuscript,
it is also called the foot). When it is clear from the context, we will often
omit the subscript x of the tangent vectors. However, we will never forget
it when defining the tangent space TxM. A tangent space, its root and
some tangent vectors are illustrated in Figure 2.4.

Property 2.22. Given ξ, η ∈ TxM and a, b ∈ R, TxM has a vector space
structure as (aξ + bη) f = a(ξ f) + b(η f).

A proof is given in [AMS08, p.34], where they pose ξ = γ̇1(0), η =

γ̇2(0) and define a curve γ(t) = ϕ−1(aϕ(γ1(t)) + bϕ(γ2(t))).

Note 2.23. The aforementioned definition of tangent space is constructive
and intuitive, as it gives the (useful) idea that tangent vectors point towards
a direction from a given point x. However, this definition was initially
possible because of the vector space structure of tangent spaces, which is

| 27

2 | Concerning manifolds

i
i

“TikZ/02_tangentSpace” — 2020/7/7 — 11:52 — page 24 — #1 i
i

i
i

i
i

M

ξ(t)

η(t)

χ(t)

TxM

ξx
ηx

χx

x

Fig. 2.4 Illustration of a tangent space TxM and of several tangent vec-
tors ξx, ηx and χx as velocities of the manifold-valued curves ξ(t), η(t) and
χ(t). The point x is called the root of the tangent space onM.

easy to imagine whenM is embedded in Rn×p. This is a strong hypothesis.
If we abandon it, one has to rely on the notion of chart. Tangent spaces are
defined in their full generality as equivalent classes of curves belonging to
the set Γx = {γ : R → M such that γ ∈ C1, γ(0) = x}. Consider a chart
(U , ϕ) onM such that x ∈ U and γ1, γ2 ∈ Γx. We define the equivalence
∼ on Γx as

γ1 ∼ γ2 ⇔
d
dt

ϕ(γ1)(t)
∣∣∣∣
t=0

=
d
dt

ϕ(γ2)(t)
∣∣∣∣
t=0

i.e., γ1 and γ2 are equivalent if ϕ ◦ γ1 and ϕ ◦ γ2 have the same derivative
for all ϕ. See [AMS08, Prop. 3.5.2] for a proof of the equivalence. Then,
the tangent space is defined as the quotient space TxM = Γx/ ∼ and a
tangent vector to M at x is given by the equivalence class [γ]. Given the
chart (U , ϕ), the following bijective map

θ
ϕ
x : TxM→ Rn : [γ] 7→ θ

ϕ
x ([γ]) =

d
dt

ϕ(γ(t))
∣∣∣∣
t=0

,

“induces a linear space structure over TxM” [Bou20]. This notion of tan-
gent vector naturally induces a notion of directional derivative that recon-
ciles the two approaches. Indeed, for f ∈ Fx(M) and ξ = [γ], we have

D f (x)[ξx] =
d
dt

f (γ(t))
∣∣∣∣
t=0

= ξx f ,

28 |

A Euclidean space on manifolds: the tangent space | 2.3

which turns out to correspond to Definition 2.20.

Interestingly, when M is an embedded manifold represented as the
level set of a constant function g(x), then the tangent space is TxM =

ker(Dg(x)) [AMS08, p.40].

Example 2.24. LetM = Sn−1 = {x ∈ Rn such that g(x) = x>x = 1}. The Sn−1

tangent space on the sphere Sn−1 is given by

TxM = {η ∈ Rn such that η>x = 0}.

Indeed, let γ : t 7→ γ(t) be a curve on Sn−1. It follows that γ(t)>γ(t) = 1
and that γ̇(t)>γ(t) + γ(t)>γ̇(t) = 2γ̇(t)>γ(t) = 0, where γ̇(t) ∈ Tγ(t)M.

Example 2.25. Consider the special orthogonal groupM = SO(n) from
Example 2.15. The tangent space on this group is SO(n)

TXM = {Z = XΩ such that Ω ∈ Skewn}.

Indeed, the curve X : t 7→ X(t) satisfies X(t)>X(t) = In, where In is
the identity matrix of size n. Therefore, Ẋ(t)>X(t) + X(t)>Ẋ(t) = 0. It
imposes that Z = Ẋ(t) = XΩ, where Ω is skew-symmetric, i.e., Ω> = −Ω.

For the sake of completeness, we define the notions of tangent bundle
and of vector field, directly related to tangent spaces.

Definition 2.26. The set of all tangent vectors is called the tangent bundle. tangent bundle
TM

It is defined as
TM :=

⋃

x∈M
TxM.

The projection π : TM → M : ξ 7→ π(ξ) := x extracts the root of the
tangent vector ξ ∈ TxM.

The set TM admits a manifold structure. This is quite easy to build
given a chart (U , ϕ) ofM. Then, the mapping

ψ : ξ 7→ (ϕ1(x), . . . , ϕd(x), ξϕ1, . . . , ξϕd),

is a chart of TM with domain π−1(U) [AMS08, §3.5.3].
We are now able to define vector fields as smooth mappings fromM to

TM. Just as scalar fields assign a scalar to each point x ∈ M, vector fields
assign a tangent vector ξ ∈ TxM to each point x ∈ M.

| 29

2 | Concerning manifolds

Definition 2.27 (Vector field). A vector field is a smooth mapping ξ :M→
TM : x 7→ ξx that assigns to each point x ∈ M a tangent vector ξx ∈vector field

TxM. The set of all vector fields is noted X (M). For two vector fields
ξ, η ∈ X (M) and a smooth function f ∈ F (M),

1. the application of the vector field to f is noted ξ f , such that (ξ f)(x) :=
ξx(f);

2. the addition of two vector fields is given by (η + ξ)x := ηx + ξx;

3. the product of a vector field by f (not to be confounded with the ap-
plication) is (f ξ)x := f (x)ξx.

Many algorithms on manifolds exploit the vector space structure of tan-
gent spaces as local vector space approximation ofM. To do so, the points
on M are mapped to a given tangent space TxM, where computation is
done, and then the result is mapped back toM thanks to a retraction.

Definition 2.28. Let R be a smooth mapping from the tangent bundle TM
toM and Rx be the restriction of R to TxM. R is a called a retraction onMretraction

if

1. for 0 ∈ TxM, Rx(0) = x;

2. for ξx ∈ TxM and γ : R→M : t 7→ Rx(tξx), then γ̇(0) = ξx.

In general, there is an infinity of possible choices of retraction. For in-
stance, on the sphere Sn−1, one could simply define

Rx : TM→M : ξ 7→ Rx(ξx) =
x + tξx

‖x + tξx‖F

as an acceptable retraction. In this thesis, we will principally use a remark-
able retraction called the exponential map that follows a geodesic (see for that
Definitions 2.48 and 2.46, respectively. These two objects only exist on Rie-
mannian manifolds: this is the subject of the next section.

2.4 Riemannian structure of a manifold

In data processing, it is central to measure the similarity between two data
points. This comes with the notion of distance. Such distance varies de-
pending on the geometry of the space where the data belong. Riemannian

30 |

Riemannian structure of a manifold | 2.4

manifolds are manifolds where the tangent space is equipped with an inner
product that implies a norm and thus a length.

We continue to consider a manifoldM, a point x ∈ M and its tangent
space TxM.

Definition 2.29. An inner product 〈·, ·〉x on TxM is a bilinear, symmetric inner product

positive-definite form on TxM. In other words, let ξ, ζ, η ∈ TxM, a, b ∈ R.
The following properties are respected

1. 〈aξ + bζ, η〉x = a〈ξ, η〉x + b〈ζ, η〉x;

2. 〈ξ, η〉x = 〈η, ξ〉x;

3. 〈ξ, ξ〉x ≥ 0, with 〈ξ, ξ〉x = 0 if and only if ξ = 0.

The inner product induces the norm ‖ξ‖x =
√
〈ξ, ξ〉x of a tangent vector norm

ξ ∈ TxM.

When every tangent space to M is equipped with an inner product
smoothly varying with x ∈ M, we speak of Riemannian metric g(ξ, η) metric

for ξ, η ∈ TxM. The Riemannian metric is often interchangeably noted
g(ξ, η) = gx(ξ, η) = 〈ξ, η〉 = 〈ξ, η〉x.

Definition 2.30. A pair (M, g) with M a manifold and g a Riemannian
metric onM is a Riemannian manifold. Riemannian

manifold

The metric implies a notion of distance between two points on the Rie-
mannian manifold (to be exact, the manifold must be connected to define
the distance) and a notion of length of a curve.

Definition 2.31. The length of a curve γ : [a, b] → M on a Riemannian
manifold (M, g) is

L(γ) =
∫ 1

0

√
g(γ̇(t), γ̇(t))dt , (2.1)

and its energy is given by

E(γ) =
∫ 1

0
g(γ̇(t), γ̇(t))dt. (2.2)

Let Γ be the set of all curves joining two points x and y onM, the Rieman-
nian distance is then simply Riemannian

distance

dM :M×M→ R : (x, y) 7→ dM(x, y) := inf
Γ

L(γ).

| 31

2 | Concerning manifolds

In this thesis, the distance is usually simply denoted by d(x, y), but the
notation dM(x, y) is used when it makes sense to specify the considered
distance.

Remark 2.32. When the Riemannian manifold M is Hausdorff (see Re-
mark 2.6), the Riemannian distance turns M into a metric space, i.e., the
distance can be seen as a metric onM (it is symmetric, positive definite, and
respects the triangle inequality) [AMS08, p. 46].

Example 2.33. The Euclidean metric is of course the canonical scalar prod-
uct 〈η, ξ〉 = η>ξ. The distance between two points x, y ∈ Rn is dRn(x, y) =√
‖(x− y)‖2.

Example 2.34. When the sphere Sn−1 is seen as an embedded manifold
on Rn, the metric is inherited from the canonical Euclidean one gx(ξ, η) =

ξ>η. The distance is the arc length between two points, i.e., dSn−1(x, y) =

arccos x>y. Note that, in this case, the metric does not depend on the root
of the tangent space. This is not always the case for other manifolds.

Note 2.35. Let (U , ϕ) be a chart ofM. The components of the metric in
the chart are given by gij := g(Ei, Ej) ∈ R, where Ei is the ith coordinate
vector field, i.e., coordinates such that any vector field ξ ∈ X (M) can be
written ξ = ∑i ξiEi. Therefore, for ξ, η ∈ X (M), one has

g(ξ, η) = ∑
i

∑
j

gijξiηj.

Thanks to the inner product, we can also introduce the notion of gradi-
ent of a real-valued function onM that can only be defined based on the
inner product. The definition is extracted from [AMS08, Eq. (3.31), p. 46].

Definition 2.36. Let f : M → R be a real-valued function on a manifold
M, x ∈ M and ξ ∈ TxM. The (Riemannian) gradient ∇M f (x) ∈ TxM of fRiemannian

gradient
∇M f (x) at x is defined as the tangent vector that fulfills

〈∇M f (x), ξ〉x = D f (x)[ξ] for all ξ ∈ TxM. (2.3)

It is interesting to note that the Riemannian gradient depends on the
chosen metric while the directional derivatives do not. The notion of Rie-
mannian gradient will be exploited mainly in Chapter 5.

32 |

Remarkable mappings on Riemannian manifolds | 2.5

2.5 Remarkable mappings on Riemannian manifolds

Optimization and fitting on manifolds strongly rely on second order in-
formation (or acceleration) of a curve. For instance, to perform the New-
ton’s algorithm on a manifold, the notion of “derivative of the gradient” is
needed in order to compute the Hessian of the cost function. In the case of
fitting or interpolation on manifolds, one of the key element is the geodesic,
i.e., a curve with “zero acceleration”. Geodesics will be extensively used in
this work, and are also implied in the notions of exponential map and vector
transportation.

2.5.1 Connections

To define properly the notion of geodesic, we need to introduce another
(more abstract) concept: the affine connection. A connection is just an ad-
ditional structure that, roughly speaking, permits to compare vectors in
tangent spaces or nearby points.

We first present connections on general manifolds but quickly move to
the so-called Levi-Civita connection that is defined on Riemannian mani-
folds. We also present the derivative of a vector field, and, just after, the
acceleration of a curve.

Definition 2.37. An affine connection on a manifoldM is the mapping affine
connection ∇

∇ : X (M)×X (M)→ X (M) : (ξ, η) 7→ ∇ηξ,

satisfying the following three conditions. For f , g ∈ F (M), ξ, η, χ ∈
X (M) and a, b ∈ R, we have

1. F (M)-linearity: ∇ f η+gχξ = f∇ηξ + g∇χξ;

2. R-linearity: ∇ξ(aη + bχ) = a∇ξη + b∇ξ χ;

3. Product rule (Leibniz’ law): ∇ξ(f η) = (ξ f)η + f∇ξ η.

Note that the symbol ∇ used here is not to be confused with the Eu-
clidean gradient operator. It is often called “nabla” or “del” [AMS08, p.
94].

Definition 2.38 (Lie bracket). The Lie bracket [ξ, η] of two vector fields ξ, η ∈ Lie bracket

| 33

2 | Concerning manifolds

X (M) is the mapping [·, ·] : X (M)× X (M) → X (M) : (ξ, η) 7→ [ξ, η]

defined as
[ξ, η] f := η(ξ f)− ξ(η f),

where ξ f has to be understood as the application of ξ to f as defined in
Definition 2.27

Definition 2.39. Let ξ, η ∈ X (M) be two vector fields onM. The vector
field ∇ηξ is called the covariant derivative of ξ with respect to η for the affinecovariant

derivative
connection ∇. For ηx ∈ TxM, we have that (∇ηx ξ) = (∇ηξ)x ∈ TxM.

In other words, at a point x ∈ M, (∇ηξ)x captures how the vector field
ξ varies at x in the direction ηx.

Example 2.40. The canonical connection (also named Euclidean connection)
corresponds to the directional derivatives in Rn. For η, ξ ∈ X (Rn), this
connection is defined as

∇ηξ := lim
t→0

ξx+tηx − ξx

t
.

Connections are thus often viewed as suitable generalization of the classi-
cal directional derivative.

Every second-countable Hausdorff manifold admits an affine connec-
tion [AMS08, Prop. 5.2.1]. Actually, there exists an infinity of affine connec-
tions, but some of them may be a better choice depending on the context.
A remarkable one, called equivalently Riemannian connection or Levi-Civita
connection, arises when the Riemannian structure is added on top of the
general definition of the affine connection.

Theorem 2.41 (Levi-Civita). Let (M, g) be a Riemannian manifold and η, ξ, χ ∈
X (M). There exists a unique affine connection ∇ (called Levi-Civita connec-Levi-Civita /

Riemannian
connection tion or Riemannian connection) that satisfies the two following properties:

1. ∇ηξ −∇ξη = [η, ξ] (symmetry),

2. χg(η, ξ) = g(∇χη, ξ) + g(η,∇χξ) (compatibility with the Riemannian
metric).

Note 2.42. Every affine connection can be expressed as a table of real val-
ues directly related to the choice of charts (in practice, this representation
can be cumbersome, but we mention it for the sake of completeness and
refer to Absil et al. [AMS08] or Lee [Lee13] for more details). If we consider

34 |

Remarkable mappings on Riemannian manifolds | 2.5

the canonical basis (e1, . . . , en) ∈ Rd and one of the possible connections
on Rd, we can compute the n2 covariant derivatives of one basis element
with respect to another. The kth component of the (i, j)th covariant deriva-
tive is noted Γk

i,j := ∇ei ej. They are called the Christoffel symbols in the Christoffel
symbols

basis (e1, . . . , en). The Euclidean connection (Example 2.40) obviously cor-
responds to Γk

i,j = 0 as ei ⊥ ej when i 6= j. If we consider again the basis
of n coordinate vector fields {Ei} ∈ X (M), i = 1, . . . , n, of Remark 2.35,
and a chart (U , ϕ) ∈ M, we can characterize the connection thanks to the
Christoffel symbols. Indeed, the n2 vector fields are given by

∇Ei Ej =
n

∑
k=1

Γk
ijEk.

Here, the basis (E1, . . . , En) is transferred to a Euclidean basis (e1, . . . , en)

through the chart as ei = Dϕ(x)[(Ei)x], x ∈ U , from which one can com-
pute the associated Christoffel symbols.

2.5.2 Acceleration and geodesics

As connections encapsulate the notion of second order derivative, they en-
able to generalize the concept of straight lines (in Rd) to the concept of
geodesics (on a manifoldsM), i.e., a curve with “zero acceleration”.

On the Euclidean space, one would verify that

d2

dt2 γ(t) = 0, ∀t.

On manifolds, we have only presented the definition of the velocity γ̇(t) of
a curve (see Definition 2.20). Indeed, the mapping t 7→ γ̇(t) is the velocity
vector field along the curve γ at t. Similarly, we must properly define the
acceleration of a curve γ : R→M at t. For this though, we must clarify the
notion of derivation of a vector field.

Theorem 2.43 (Vector field derivation [AMS08, p. 102]). Consider a Rieman-
nian manifold (M, g) equipped with a connection ∇, and a C2 curve γ : R →
M : t 7→ γ(t). Let ξ, η ∈ X (M), f ∈ F (R) and a, b ∈ R. There exists a
unique operator D

dt : X (γ)→ X (γ) : ξ 7→ D
dt ξ satisfying

1. D
dt (aξ + bη) = a D

dt ξ + b D
dt η (linearity),

2. D
dt (f ξ) = f ′ξ + f D

dt ξ (product with a smooth function),

| 35

2 | Concerning manifolds

3. D
dt (η ◦ γ)(t) = ∇γ̇(t)η (composition).

Definition 2.44. Consider a Riemannian manifold (M, g) equipped withLevi-Civita
second
covariant
derivative

a connection ∇, and a C2 curve γ : R → M : t 7→ γ(t). The acceleration
vector field of a curve γ is the operator D2

dt2 given by

D2

dt2 γ :=
D
dt

γ̇.

When the connection∇ is the Levi-Civita connection, this operator is called
the Levi-Civita second covariant derivative.

Often in the literature, the acceleration is also noted ∇γ̇(t)γ̇(t).

Note 2.45. The Levi-Civita second covariant derivative can also be com-
puted via the Christoffel symbols (this approach is still cumbersome in
most of the practical cases, but it offers a good alternative when simple
and intuitive solutions do not exist). In a coordinate chart (U , ϕ) ofM, let
(x1(t), . . . , xd(t)) := ϕ(γ(t)) correspond to the coordinates in ϕ of a curve
γ(t) : R→M. The kth component of the acceleration reads

(
D2

dt2 γ

)k

:=
d2

dt2 xk(t) +
d

∑
i=1

d

∑
j=1

Γk
ij

d
dt

xi(t)
d
dt

xj(t),

where Γk
ij are the Christoffel symbols of the affine connection of (U , ϕ) eval-

uated at γ(t). Note also that the velocity γ̇(t)k = d
dt xk(t) does not depend

on the affine connection.

The following definitions directly follow from this notion of accelera-
tion.

Definition 2.46. A geodesic on M equipped with a connection ∇ is a C2geodesic

curve γ : R→M : t 7→ γ(t) with zero acceleration (for all t in the domain)
in the sense of this connection.

Of course, different connections will produce different geodesics.

Remark 2.47. The paths γ minimizing the energy (2.2) subject to the end-
point conditions γ(0) = x and γ(1) = y for x, y ∈ M, are called minimizing
geodesics and their length is the Riemannian distance dM(x, y). When it ex-
ists and is unique (a generic property when the manifold is complete [IT98]),
the minimizing geodesic is denoted by g(t; x, y). Note also that, as g(t; x, y)
minimizes (2.2), it also minimizes (2.1) as mentioned in [dC92, Chapter 3].

36 |

Remarkable mappings on Riemannian manifolds | 2.5

2.5.3 Exponential and logarithmic maps

According to [O’N83, Chap. 3, Lemma 22], for any tangent vector ξx ∈
TxM, there exists an interval I ∈ R around 0 on which there exists a
unique geodesic γ(t) satisfying γ(0) = x and γ̇(0) = ξx. This geodesic
enables to define a remarkable retraction on Riemannian manifolds called
the exponential map.

Definition 2.48. Let (M, g) be a Riemannian manifold equipped with a
connection ∇. Let x ∈ M, ξx ∈ TxM and consider the unique geodesic
γ(t) from [O’N83, Chap.3, Lemma 22], satisfying γ(0) = x and γ̇(0) = ξx.
The mapping expx : TxM → M : ξ 7→ expx(ξ) := γ(1) is called the Riemannian

exponential
expx(ξ)

Riemannian exponential map.

The exponential map is thus a retraction onM, i.e., it permits to map a retraction

tangent vector from TM toM. Furthermore, the exponential map gener-
alizes well the idea of moving “straight” in the direction of a given tangent
vector, as it follows a geodesic. In many applications, it is very useful to
map points fromM to TM via an “inverse retraction”. The inverse of the
exponential map is called the logarithmic map. However, the exponential
map is usually a many-to-one mapping. For instance, think about a cylin-
der of radius r: it is possible to build as an infinity of geodesics between
two points a and b by looping around the cylinder. The initial tangent vec-
tors at a have a norm equal to v + k2πr, k ∈ Z, where v is the shortest
distance between a and b, but the end-point will always be b.

Definition 2.49. Let x, y ∈ M. If, among all tangent vectors ξx satisfying
expx(ξx) = y, the shortest one is unique, then this tangent vector is called Riemannian

logarithm
logx(y)logarithmic map (or logarithm map) and is denoted by logx(y).

The exponential and the logarithmic map are illustrated in Figure 2.2.

Note 2.50. Like in the Note 2.45, the Christoffel symbols allow to compute
the exponential map when there is no other simple solution. Computing
the exponential maps reduces to computing the point at t = 1 of the curve
obtained by the following differential equation in the chart (U , ϕ)

d2

dt2 xk(t) +
d

∑
i=1

d

∑
j=1

Γk
ij

d
dt

xi(t)
d
dt

xj(t) = 0, for k = 1, . . . , d.

In general, solving this equation is computationally expensive (sometimes,
even the Christoffel symbols have no closed form either). In this thesis,

| 37

2 | Concerning manifolds

we will consider “nice” manifolds where the exponential map comes in a
closed-form solution.

Exponentials and logarithm maps are central to this thesis, as they are
the principal maps that permit to pass from or to a tangent space or a man-
ifold. In that case, one wants to ensure that for x, y ∈ M, we can have
expx(logx y) = y. In order to ensure the well-posedness of the exponential
and logarithmic map, we must restrict the domain of the exponential map.
This comes with the notion of injectivity radius.

Definition 2.51. The local injectivity radius is the largest value rx ∈ R suchinjectivity
radius

that the exponential map is a diffeomorphism over the ball Bx(rx) ⊂ TxM.
The injectivity radius of a manifoldM is the infimum over x ∈ M of all the
local injectivity radii. The cut locus of x ∈ M is the set of points y ∈ Mcut locus

such that y = expx(tξx) is a minimizing geodesic for t ∈ [0, 1], but is no
more minimizing for t = 1+ ε. The shortest distance from x to its cut locus
is rx.

The definition of the injectivity radius allows to give conditions such
that the exponential map and the logarithmic map are inverse functions.

Proposition 2.52. Let x, y ∈ M be two points, and rx be the injectivity radius
at x. Consider the sets Dx := {ξx ∈ TxM : ‖ξx‖x < rx} and Dx := {y ∈
M : dM(x, y) < rx}, and the restricted logarithmic maps and exponential maps
defined as

expx : Dx →M : ξx 7→ expx(ξx) , (2.4)

logx : Dx → TxM : y 7→ logx(y) . (2.5)

Then expx ◦ logx is the identity on Dx and logx ◦ expx is the identity on Dx.
Furthermore, for x ∈ M, y ∈ Dx, one can compute the minimizing geodesic
between x and y as g(t; x, y) = expx(t logx(y)).Exp-Log

2.5.4 Weighted geodesic average

In the following chapters, we will consider Bézier curves and the De Castel-
jau algorithm. To generalize this to bidimensional curves (i.e., surfaces),
we will need the notion of weighted geodesic average between points on
M. The weighted averages in metric spaces can be traced back to Fréchet
[Fré48]. On Riemannian manifolds, they have been analyzed under var-

38 |

Remarkable mappings on Riemannian manifolds | 2.5

ious names (Riemannian center of mass, Riemannian barycenter, Karcher
mean, Riemannian average, etc. [Kar77]). Karcher mean

Definition 2.53. Let n ∈N. A weighted geodesic average of points x1, . . . , xn ∈ geodesic
averageM for convex combination weights w1, . . . , wn ∈ [0, 1] with ∑n

i=1 wi = 1 is
any point x ∈ M solving

min
x∈M

J(x) = min
x∈M

n

∑
i=1

wid2(xi, x).

If the minimizer exists and is unique, it will be denoted as

av[(y1, . . . , yn), (w1, . . . , wn)].

In the Euclidean space, the weighted geodesic average is a convex com-
bination of the points x1, . . . , xn ∈ Rd. It is straightforward to check that

av[(x1, . . . , xn), (w1, . . . , wn)] =
n

∑
i=1

wixi .

Likewise, the bilinear interpolation of points xij ∈ Rd, i, j ∈ {0, 1}, at coor-
dinates (t1, t2) ∈ [0, 1]2 can be expressed as a weighted geodesic average

(1− t1)(1− t2)x00 + (1− t1)t2x01 + t1(1− t2)x10 + t1t2x11

= av[(x00, x01, x10, x11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)] .

On a Riemannian manifold, minimizing J(x) requires to use geometric
optimization procedures like those described in Absil et al. [AMS08] and
implemented in the toolbox Manopt [BMAS14]. These methods require
the derivative of J(x) which is given by [Kar77, §1.2.] distance

(derivative)

dJ
dx

(x) = −
n

∑
i=1

wi logx xi ∈ TxM .

Note that, according to [AGSW16b, Remark 3], the weighted average
between two points x1, x2 ∈ M reduces to a geodesic

av[(x1, x2), (1− w, w)] = x̂ = g(w; x1, x2). (2.6)

It can be expressed as g(w; x, y) = expx(w logx(y)). Exp-Log

The weighted averaging permits to introduce the notion of proper sub-

| 39

2 | Concerning manifolds

set, which will be a very useful tool to prove the existence of Bézier curves,
later on (see Chapters 3 and 6).

Definition 2.54 (Multigeodesic convexity [AGSW16b, Def. 5]). A subset U ⊂
M is called multigeodesically convex if it contains any weighted geodesic
average of any of its points. The multigeodesically convex hull, co(U), of aconvex hull

set U ⊂M is the smallest multigeodesically convex set C ⊂M containing
U.

Definition 2.55 (Proper subset [AGSW16b, Def. 11]). We call a subset U ⊂
M proper if the weighted geodesic averages between any finitely manyproper set

points in U are unique and smoothly depend on the points and the weights.

Proper neighborhoods to x ∈ M always exist [AGSW16b, Prop. 12].

2.5.5 Parallel transport

As last concepts of this section, we present the notion of weighted geodesic
average, of vector transportation and parallel transportation along a curve.
These maps allow to move a tangent vector from one tangent space to an-
other, the latter preserving some isometry.

Definition 2.56. Consider a manifoldM and a mapping

T : TM⊕ TM→ TM : (ξ, η) 7→ Tη(ξ),

where TM⊕ TM = {(ξ, η) such that ξ, η ∈ TxM, x ∈ M} is the Whitney
sum. The mapping T is a vector transportation if it satisfies the followingvector

transportation
conditions for all x ∈ M, η, ξ, χ ∈ TxM and a, b ∈ R:

1. There exists a retraction R (associated with T) onM such that Tη(ξ) ∈
TR(η)M (associated retraction),

2. T0(ξ) = ξ (consistency),

3. Tη(aξ + bχ) = aTη(ξ) + bTη(χ) (linearity).

A particular vector transportation is called the parallel transport along a
curve γ (usually, a geodesic). This transportation ensures that the vector
remains constant while moving along the curve.

Definition 2.57. Consider a Riemannian manifold (M, g) equipped with a
connection ∇. Let x ∈ M, ξx ∈ TxM and γ : R→M such that γ(0) = x.
The parallel transport of ξx along γ is the unique vector field ξ : R → TMparallel

transport
satisfying ∇γ̇(t)ξ = 0.

40 |

Additional numerical tools | 2.6

We also refer to Section 5.2.1, where the so-called Jacobi fields are de-
fined and are used as derivatives of geodesics.

Remark 2.58. For algorithmic reasons, one could want to transport a vec-
tor from the tangent space at x to the tangent space at y. To do so, a usual
notation is parallel

transport
Px→y(ξx)Px→y(ξx) = Tlogx(y)

(ξx)

that is, the vector field that moves ξx along the geodesic g(t; x, y) and that
is evaluated at t = 1.

Remark 2.59. In general, exponential maps and logarithm maps can be
very costly to compute (and parallel transportation even more). For com-
putational reasons, it is sometimes recommended to approximate the ex-
ponential by a simpler (yet less accurate) retraction. This is usually done
in optimization, like in the steepest gradient algorithm, where one has to
move in a given direction at every step. In that case, using a retraction
is useful because the retraction is applied in many iterations and the step
is usually “sufficiently small”, such that any loose retraction is close to
a geodesic. However, in this project, exponentials and logarithm will be
called as few times as possible; furthermore, using a retraction might lead
to give up on the principal quality of the reconstructed path: its differentia-
bility. One goal of this work will be to analyze the number of exponentials
and logarithm computed. This number will become a measure of the com-
plexity of our algorithms, as the main part of the computational time will
be caused by the evaluation of those maps.

Many other concepts can be defined and derive from the affine connec-
tion. For instance, the concepts related to the curvature of a manifold is a
key to measure how far the manifold departs from a (flat) Euclidean space.
It serves for instance to evaluate the distance of solutions computed on a
tangent space compared to the one computed directly on a manifold. How-
ever, those concepts will not be used in this thesis, so we refer the reader
to textbooks like [O’N83, Lee97] for a detailed presentation.

2.6 Additional numerical tools

We finish this chapter by introducing some additional numerical tools.
They are used along this thesis but didn’t fit well in the previous sections.

| 41

2 | Concerning manifolds

We present here the Riemannian finite differences (one possible generaliza-
tion of the Euclidean finite differences) and present a way to compute dis-
crete geodesics. Some examples of geometric elements can be found in the
Appendix E.

It is possible to exploit the Euclidean structure of tangent spaces to gen-
eralize the finite differences to manifolds.

Definition 2.60. Let γ : R → M : t 7→ γ(t) be a curve onM and h ∈ R

be a step size. The two first order finite differences on M are generalizedRiemannian
finite
differences as [Bou20]

γ′(t) '
logγ(t)(γ(t + h))− logγ(t)(γ(t− h))

2h
;

γ′′(t) '
logγ(t)(γ(t + h)) + logγ(t)(γ(t− h))

h2 .

In many interesting manifolds, the standard Riemannian operators can
be expressed as closed formulae [AMS08, BA11, Ren11] or can be estimated
via retractions as in [BMAS14]. More complicated manifolds (like the man-
ifold of triangulated shells illustrated in Figure 2.5) require a numerical
approximation of these operators.

The next definitions are summarized from the work of Rumpf and Wirth
[RW15] and concern discrete geodesic calculus.

Definition 2.61. LetM be a smooth Riemannian manifold. A discrete dis-
tance onM is a smooth application W : M×M → R that approximatesdistance

the squared Riemannian distance as

d2(x, y) = W[x, y] +O(d3(x, y)), x, y ∈ M. (2.7)

To ensure the efficiency of the numerical methods, it is important to
choose W easy to evaluate.

Definition 2.62. Consider a (n + 1)-tuple of (n + 1) points (x0, . . . , xn) on
M. This tuple is called discrete n-path between x0 and xn. Its length L and
energy E are defined as

L[x0, . . . , xn] =
n

∑
i=1

√
W[xi−1, xi], (2.8)

E[x0, . . . , xn] = n
n

∑
i=1

W[xi−1, xi]. (2.9)

42 |

Additional numerical tools | 2.6

The (n + 1)-tuple minimizing the energy of the discrete n-path is called a
discrete n-geodesic: geodesic

min
x1,...,xn−1∈M

E[x0, x1, . . . , xn−1, xn]. (2.10)

In [RW15] it is shown that discrete geodesics approximate the true con-
tinuous geodesics as n → ∞. A discrete n-geodesic is represented in Fig-
ure 2.5.

Now that the discrete n-geodesic is defined, it is possible to express the
discrete analog of the weighted geodesic average of Definition 2.53.

Definition 2.63. Consider a set of k points X = {x1, . . . , xk} ∈ M. The
discrete weighted average of the set X is the point x ∈ M solving average

min
x∈M

min
xj

i∈M
i=1,...,n−1,

j=1,...,k

k

∑
j=1

wjE[x, xj
1, . . . , xj

n−1, xj]. (2.11)

When the optimal point x is found, (x, xj
1, . . . , xj

n−1, xj) is the discrete

n-geodesic from x to xj, and E[x, xj
1, . . . , xj

n−1, xj] is the discrete approxima-
tion of the squared Riemannian distance d2(x, xj).

To define the discrete logarithm, we will require M to be identified
with a subset of some embedding Banach space B such that, for a discrete
n-geodesic (x0, . . . , xn) with x0 = xA and xk = xB, the difference x1 − x0 is
well-defined.

Definition 2.64. The discrete logarithm
(

1
n LOG

)
is defined as discrete

logarithm
(

1
n LOG

)
xA

(xB) = x1 − x0, (2.12)

Fig. 2.5 Discrete 4-geodesic between two triangulated shells (Section 6.6).
The mesh data used in this figure was made available by Robert Sumner
and Jovan Popovic, MIT Computer Graphics Group.

| 43

2 | Concerning manifolds

where 1
n is to be interpreted as part of the symbol

(
1
n LOG

)
x
(y).

Under certain regularity assumptions on the Riemannian metric and
the functional W, it can be shown that n

(
1
n LOG

)
xA

(xB) tends to logxA
(xB)

when n tends to infinity [RW15].

Finally, we define the discrete exponential map EXPn. For a discrete k-
geodesic (y0, . . . , yk), we expect EXPn to reflect the properties of its contin-
uous counterpart, i.e., to satisfy EXPn

x0
(v) = xn where v =

(
1
n LOG

)
x0
(xn).

Definition 2.65. Let v ∈ B and let

EXP1
x(v) = (1

1 LOG)−1
x (v) = x + v,

EXP2
x(v) = (1

2 LOG)−1
x (v).

The discrete exponential map is defined recursively asdiscrete
exponential

EXPn
x(v) = EXP2

EXPn−2
x (v)(ṽ) with ṽ = EXPn−1

x (v)− EXPn−2
x (v). (2.13)

Note that EXP2 is non-trivial and is here simply expressed as the inverse
of the discrete logarithm. It remains then to determine a way to compute
this object. It follows from the definition of (1

2 LOG) that x2 = EXP2
x0
(v)

satisfies
x0 + v = argminx∈M (W[x0, x] + W[x, x2]) .

Therefore, x2 can be obtained by solving the corresponding Euler-Lagrange
equation

x2 ∈ M : ∂2W[x0, x0 + v] + ∂1W[x0 + v, x2] = 0. (2.14)

Finally, we present the discrete parallel transport. To transport a vector
along a discrete curve, we use a first order approximation of the parallel
transport called Schild’s ladder.

Definition 2.66. Let (x0, . . . , xn) be a discrete curve inM and v0 ∈ Tx0M,
the vector to transport from x0 to xn. The discretely transported tangent vec-Schild’s ladder

parallel
transport tor vi at a point xi, i ∈ {1, . . . , n}, is computed recursively following the

44 |

Additional numerical tools | 2.6

algorithm illustrated in Figure 2.6:

xp
i−1 = EXP1

xi−1
(vi−1),

xmid
i = EXP1

xp
i−1

(
(1

2 LOG)xp
i−1

(xi)
)

,

xp
i = EXP2

xi−1

(
(1

1 LOG)xi−1(xmid
i)

)
,

vi = (1
1 LOG)xi (xp

i).

i
i

“TikZ/02_schilds_ladder” — 2020/7/7 — 11:52 — page 41 — #1 i
i

i
i

i
i

xi−1

xi

vi−1

xp
i−1

xp
i

vi

xmid
i

Fig. 2.6 Illustration of one iteration of Schild’s ladder, approximating the
parallel transport of a vector along a discrete curve (x0, . . . , xn).

To find a numerical solution to the discrete geodesic (2.10), the discrete
averaging (2.11) and the discrete exponential (2.14) (all other equations are
trivial to solve), a Newton’s method can be used. These discrete Rieman-
nian operators are used in Sections 6.6.3 and 6.6.4. Note that as these ob-
jects require to solve an optimization problem, they are usually costly to
compute.

| 45

3
Interpolation with

Bézier curves

I
NTERPOLATION ON MANIFOLDS with composite Bézier curves is the first
contribution of this thesis. The journey started with my Master thesis
(summarized in a publication [GSA14]); it was then followed by the

Master thesis of Arnould (and published in collaboration [AGS+15]); fi-
nally, it has been consolidated in [GMA18c]. In those three works, the
composite Bézier curve interpolates n + 1 data points by means of n Bézier
curves. Initially, the first and last segments of the composite Bézier curves
were quadratic while all the others were cubic. In [GMA18c], all curves are
cubic, such that some remarkable properties are achieved.

In short, the approach works as follows. Given the manifold-valued
data points d0, . . . , dn at increasing parameter-values t0 < t1 < · · · < tn
(without loss of generality, we will always set ti = i, i = 0, . . . , n), one
seeks the interpolating C1 composite cubic Bézier curve B : [t0, tn] → M
minimizing (1.1) for λ→ ∞, i.e.,

min
B

∫ tn

t0

∥∥∥∥
D2B(t)

dt2

∥∥∥∥
2

B(t)
dt s.t. B(ti) = di. (3.1)

The first two sections of this chapter are dedicated to reminders on
Bézier curves (Section 3.1) and on their generalization to manifolds (Sec-

| 47

3 | Interpolation with Bézier curves

tion 3.2). In Section 3.3, the approach of [GSA14] will be recalled as a back-
ground necessary to the application proposed in Section 3.5. The main con-
tributions of this chapter are Section 3.4 and Section 3.5. The former sum-
marizes and analyzes an interpolation technique by means of composite
cubic Bézier splines. It is mainly based on the journal publication [GMA18c,
§3]; the latter is a comparison of the interpolation methods described in
Section 3.3 and [AGS+15], applied to a medical application called transvagi-
nal ultrasounding. This last section is based on a collaboration with Dr.
Chafik Samir (Université de Clermont, France) [SGJ15].

Note also that the methods described in this chapter will be generalized
to bidimensional interpolation (see Chapter 6).

3.1 Euclidean Bézier curves

In this section, we briefly summarize the concept of Bézier curves in a Eu-
clidean space Rm. We also define the composite Bézier curve and the condi-
tions needed to obtain C1-continuity along this curve. Finally, we present
the De Casteljau algorithm that evaluates Bézier curves in a recursive way
and admits a well-known generalization to manifolds [PN07]. More details
about Bézier curves can be found in [Far02].

Bézier curves in Rm are nothing else than polynomials expressed in a
particular basis.

Definition 3.1 (Bézier curve). Let b0, . . . , bK ∈ Rm, K ∈ N, be a sequencecontrol point

of control points. The Bézier curve βK : [0, 1]→ Rm of degree K is defined asBézier curve
βK

βK(·; b0, . . . , bK) : [0, 1]→ Rm, t 7→
K

∑
j=0

bjBjK(t), (3.2)

where K is called the order of the curve (K = 3 for cubic Bézier curves) and
BjK(t) denotes the jth Bernstein polynomial of degree K,Bernstein

polynomial

BjK(t) =
(

K
j

)
tj(1− t)K−j. (3.3)

Example 3.2. The linear Bézier curve β1(t; b0, b1) is just the (straight) line
segment

β1(t; b0, b1) = (1− t)b0 + tb1 (3.4)

48 |

Euclidean Bézier curves | 3.1

connecting the control points b0 and b1. The explicit formulae for the
quadratic (see Figure 3.1) and cubic Bézier curves read

β2(t; b0, b1, b2) = b0(1− t)2 + 2b1(1− t)t + b2t2, (3.5)

β3(t; b0, b1, b2, b3) = b0(1− t)3 + 3b1(1− t)2t + 3b2(1− t)t2 + b3t3, (3.6)

for given control points b0, b1, b2 ∈ Rm and an additional point b3 ∈ Rm for
the cubic case.

Property 3.3 (Convex hull). The Bézier curve fully lies inside the convex
hull of its control points b0, . . . , bK, since for each fixed t, the weights BjK(t)
form a partition of unity and thus can be interpreted as convex combina-
tion coefficients (Figure 3.1).

i
i

“TikZ/11_curve_average” — 2020/7/7 — 11:52 — page 45 — #1 i
i

i
i

i
i

b0

b1

b2

β2(
1
4 ; b0, b1, b2)

t|
0

|
11

4
1
2

3
4

Fig. 3.1 Computation of a quadratic (K = 2) Bézier curve via equation
(3.2) as a weighted mean of all control points. Control points are indicated
by filled black dots; the Bézier polygon is shown as gray dashed lines.

Property 3.4 (Continuity and differentiability). The Bézier curve interpolates
the first (b0) and last (bK) control points. Its velocity (i.e., time-derivative)
β̇K at t = 0 (resp. t = 1) is tangent to the segment joining its two first (resp.

| 49

3 | Interpolation with Bézier curves

two last) control points (see Figure 3.1). That is:

βK(0; b0, . . . , bK) = b0, (3.7)

βK(1; b0, . . . , bK) = bK, (3.8)

β̇K(0; b0, . . . , bK) = K(b1 − b0), (3.9)

β̇K(1; b0, . . . , bK) = K(bK − bK−1). (3.10)

A simple algorithm to evaluate βK(t; b0, . . . , bK) =: x[K]0 at time t ∈ [0, 1]
is the so-called De Casteljau algorithm [Far02, §4.2]. As it is based only on
convex combinations of two points, it has a simple geometric interpreta-
tion: every step of the algorithm consists in joining two points by a straight
line and evaluating it at the right position, given by the weights. The algo-
rithm is defined in Defintion 3.5 and is represented in Figures 3.2 and 3.3.

Definition 3.5 (De Casteljau algorithm). The De Casteljau algorithm on RmDe Casteljau

reads

x[0]i := bi for i = 0, . . . , K

x[k]j := (1− t)x[k−1]
j + tx[k−1]

j+1 for k = 1, . . . , K

and j = 0, . . . , K− k.

Several Bézier curves can be joined to form a composite Bézier curve.

Definition 3.6 (Composite Bézier curve). Consider a sequence (βi
Ki
)N−1

i=0
of N Bézier curves of degree Ki, i = 0, . . . , N − 1, determined by control
points bi

0, . . . , bi
Ki
∈ Rm. The composite Bézier curve B is defined ascomposite

Bézier curve

B : [0, N]→ Rm, t 7→ βi
Ki
(t− i; bi

0, . . . , bi
Ki
), i = btc, (3.11)

where btc is the largest integer i ≤ t, with an exception for bNc := N − 1.

Remark 3.7. For simplicity, we restrict ourselves to composite curves whose
pieces are defined on intervals [i, i + 1], i ∈ Z, but the step to define them
on any interval [ti, ti+1] is direct.

The next proposition follows directly from (3.7) and (3.8).

Proposition 3.8 (Continuity of the composite Bézier curve). The composite
Bézier curve made of N segments is continuous if the last and first control points
of every two consecutive Bézier curves are the same. We introduce them as pi :=
bi

Ki
= bi+1

0 , i = 0, . . . , N − 2.

50 |

Euclidean Bézier curves | 3.1

i
i

“TikZ/11_decasteljau” — 2020/7/7 — 11:52 — page 46 — #1 i
i

i
i

i
i

b0

b1

b2

x[1]0

x[1]1

x[2]0 = β2(
1
4 ; b0, b1, b2)

t|
0

|
11

4
1
2

3
4

Fig. 3.2 Geometric interpretation of the De Casteljau algorithm [Far02]
applied to a quadratic Bézier curve β2(t; b0, b1, b2) ∈ R2. At each step,
one computes a convex combination (or weighted mean) of two consecutive
points. Control points are indicated by filled black dots; the Bézier polygon
is shown as gray dashed lines.i

i
“TikZ/11_bezier_decasteljau” — 2020/7/7 — 11:52 — page 46 — #1 i

i

i
i

i
i

b0

b1

b2

b3

x[1]0

x[1]1

x[1]2
x[2]0

x[2]1

x[3]0 = β3(
1
3 ; b0, b1, b2, b3)

Fig. 3.3 Construction of a cubic Bézier curve via the De Casteljau algo-
rithm.

| 51

3 | Interpolation with Bézier curves

In addition to continuity, we state now conditions for B to be contin-
uously differentiable at t = i (differentiability is ensured on the rest of
the domain since Bézier curves are polynomials). We introduce the nota-
tions b−i for the second to last control point of the (i− 1)th Bézier curve of
B (namely, bi−1

Ki−1−1), and b+i for the second control point of the ith Bézier

curve (i.e., bi
1). The conditions follow from (3.9) and (3.10).

Proposition 3.9 (Differentiability of the composite Bézier curve). The com-
posite Bézier curve is differentiable at t = i if the following C1-conditions hold:

differentiability
conditions

pi =
Ki−1b−i + Kib+i

Ki−1 + Ki
, i = 1, . . . , N − 1. (3.12)

Geometrically, this condition means that pi, b−i and b+i must be aligned.

Example 3.10 (Composite curve of two pieces). A composite Bézier curve
composed of two segments of degree K is expressed as

B : [0, 2]→ Rm : t 7→
{

βK(t; bl
0, . . . , bl

K) if t ∈ [0, 1]

βK(t− 1; br
0, . . . , br

K) if t ∈ (1, 2]
(3.13)

and is continuous if and only if br
0 = bl

K. It is first order differentiable if

and only if bl
K =

bl
K−1+br

1
2 .

Example 3.11 (C1-composite cubic Bézier curve). A composite cubic Bézier
curve B is represented in Figure 3.4. B : [0, 5] → R is composed of five
cubic Bézier curves and is defined as B(t) = β3(t− i; pi, b+i , b−i+1, pi+1) for
i = btc. Continuity is trivial. Continuous differentiability is given by pi =

0.5(b−i + b+i), i = 1, . . . , 4.

3.2 Bézier curves on manifolds

We can now recall the definition of composite Bézier curves on manifolds.
Crouch [CKS99] and Lin and Walker [LW01] proposed a generalization
of the De Casteljau algorithm on Lie Groups and on Riemannian man-
ifolds. See also [BF01, NYP13]. Furthermore, the C1-conditions on the
composite Bézier curve can be obtained thanks to the work of Popiel and
Noakes [PN07]. We briefly review these results.

52 |

Bézier curves on manifolds | 3.2

i
i

“TikZ/11_fitting_framework” — 2020/7/7 — 11:52 — page 47 — #1 i
i

i
i

i
i

t|
0

|
1

|
2

|
3

|
4

|
5

p0

b+0

b−1

p1 b+1

b−2

p2 b+2

b−3 p3

b+3

b−4

p4

b+4

b−5

p5

Fig. 3.4 Schematic representation of a composite cubic Bézier curve
B : [0, 5] → M, for M = R, composed of five segments. The control
points (green circles) fully determine the curve; continuous differentiabil-
ity is reached at the junction pi of the segments if the consecutive control
points (b−i , pi, b+i), i = 1, . . . , n − 1, are aligned on a geodesic (the blue
arrows draw the first derivative of B).

Fig. 3.5 A composite cubic Bézier curve B : [0, 3] → S2. The end
points pi, i = 0, . . . , 3, (cyan) and intermediate points b±i (green) deter-
mine its shape; continuous differentiability is illustrated by the logarithmic
maps logpi

(
b±i
)
, i ∈ {1, 2} (blue arrows).

The following definition generalizes the Bézier curves to manifolds. It
makes use of the De Casteljau algorithm (Definition 3.5) and only requires
Riemannian exponentials and logarithms.

| 53

3 | Interpolation with Bézier curves

Definition 3.12 (Bézier curve on manifold). Consider a set of control points
b0, . . . , bK ∈ M, K ∈ N, such that the convex hull co(b0, . . . , bK) is proper
(see Definition 2.55).

To compute the Bézier curve βK(·; b0, . . . , bK) : [0, 1] → M of order K atBézier curve
on manifolds

time t, we introduce the points x[0]i = bi and iterate the construction of
further points. For k = 1, . . . , K and j = 0, . . . , K− k, we haveDe Casteljau

x[k]j := βk(t; bj, . . . , bj+k)

= g(t; x[k−1]
j , x[k−1]

j+1)

= exp
x[k−1]

j

(
t log

x[k−1]
j

x[k−1]
j+1

)
,

as the jth point of the kth step of the De Casteljau algorithm. Finally, we
obtain βK(t; b0, . . . , bK) := x0

[K]. Note that, the exp-log formulation of xk
jExp-Log

gives a geodesic between xk−1
j and xk−1

j+1 , and replaces the straight line from
Definition 3.5.

Example 3.13. The De Casteljau algorithm is illustrated on Fig. 3.3 for a
Euclidean cubic Bézier curve β3(t; b0, b1, b2, b3). The general cubic Bézier
curve can be explicitly expressed on a manifoldM as

β3(t; x[0]0 , x[0]1 , x[0]2 , x[0]3) = g
(

t; g
(
t; g(t; x[0]0 , x[0]1), g(t; x[0]1 , x[0]2)

)
,

g
(
t; g(t; x[0]1 , x[0]2), g(t; x[0]2 , x[0]3)

))

= g
(
t; g(t; x[1]0 , x[1]1), g(t; x[1]1 , x[1]2)

)

= g(t; x[2]0 , x[2]1)

= x[3]0 .

Remark 3.14. Another way to generalize Bézier curves is to rely on aver-
ages. Indeed, (3.2) generalizes well to

βK(t; b0, . . . , bK) = av[(bj)j=0,...,K, (BjK(t))j=0,...,K].

Similarly, the geodesics used in the De Casteljau algorithm can be replaced
by x[k]j = av[(x[k−1]

j , x[k−1]
j+1), (1− t, t)], for k = 1, . . . , K and j = 0, . . . , K− k.

Popiel and Noakes [PN07] have shown that properties (3.7)–(3.10) carry

54 |

Bézier curves on manifolds | 3.2

over to manifolds in the following form:

βK(0; b0, . . . , bK) = b0, (3.14)

βK(1; b0, . . . , bK) = bK, (3.15)

β̇K(0; b0, . . . , bK) = K logb0
(b1) , (3.16)

β̇K(1; b0, . . . , bK) = −K logbK
(bK−1) . (3.17)

These properties confirm that the first and last control points of the manifold-
valued Bézier curve are interpolated. They also mean that the first (resp.
last) temporal derivative of the curve is tangent to the geodesic joining the
two first (resp. two last) control points of the curve.

We can now generalize the composite Bézier curve to manifolds.

Definition 3.15 (Composite Bézier curve on manifold). Let the sequence
of control points (pi = bi

0, b+i = bi
1, . . . , b−i+1 = bi

Ki−1, pi+1 = bi
Ki
)N−1

i=0 ∈
M define a sequence of N manifold-valued Bézier curves (βi

Ki
)N−1

i=0 with
βi

Ki
: [0, 1]→M for all i. The composite Bézier curve B : [0, N]→M is de-

fined analogously to the Euclidean case, i.e., according to equation (3.11).

The next proposition states the conditions for a composite Bézier curve
to be of class C1. Along with the fact that Definition 3.12 only requires
exponential and logarithm maps, the simplicity of these C1 conditions is
the main motivation for resorting to composite Bézier curves in order to
generalize C1 piecewise-polynomial curves to manifolds.

Proposition 3.16 (Continuity and differentiability). The composite Bézier curve
composed of N segments on a manifoldM is continuous if bi

Ki
= bi+1

0 , for i =
0, . . . , N − 2. It will be C1-continuous if differentiability

conditions

Ki−1 logpi

(
b−i
)
= −Ki logpi

(
b+i
)

, i = 1, . . . , N − 1. (3.18)

Similarly to (3.12), this condition holds if pi is on a geodesic between
b+i and b−i and satisfies

pi = g
(

Ki
Ki−1+Ki

; b−i , b+i
)

. (3.19)

Example 3.17 (C1 composite cubic Bézier curve on manifold). We consider
the same composite cubic Bézier curve as in Example 3.11, but now on a
Riemannian manifoldM. The curve is defined as B : [0, 5] → M : B(t) =

| 55

3 | Interpolation with Bézier curves

β3(t− i; pi, b+i , b−i+1, pi+1), for i = btc. Continuity is again trivial. Continu-
ous differentiability is verified if

pi = g(0.5; b−i , b+i), i = 1, . . . , 4. (3.20)

Example 3.18 (Composite cubic Bézier curves on the sphere). The compos-
ite cubic Bézier curve B(t) : [0, n] → M is C1 if pi = g(1

2 ; b−i , b+i). SeeS2

Figure 3.5 for an example onM = S2 with n = 3 segments.

Another option to generalize the Bézier curves is to resort to geodesic
averaging, as defined in Definition 2.53. Indeed, this is a natural gener-
alization of the Euclidean definition 3.1. This approach, however, is in
practice computationally more expensive than the De Casteljau algorithm
because it requires to solve an optimization problem at each evaluation of
the curve βK. Therefore, this generalization will not be used in this chapter.
However, it will be extensively discussed in Chapter 6; in the same chap-
ter, we will also discuss how to generalize the De Casteljau algorithm to
the bidimensional case.

Note also that, if the De Casteljau algorithm and the averaging method
provide equivalent solutions on a Euclidean space, this is generally not
true anymore on general manifolds. As an example of this, we refer to
Figure 3.6.

3.3 Interpolation with velocity-imposed curves

Now that Bézier curves are introduced on manifolds, it is possible to add
data points into the equation. This section is a summary of the method com-
municated in [GSA14]. It is not a proper contribution of this thesis, but pre-
senting the idea underlying this method is important to fully understand
the application in Section 3.5.

Recall that we consider n + 1 data points d0, . . . , dn associated with
time-parameters t0, . . . , tn with ti = i, i = 0, . . . , n. In this section, we
will interpolate those data points with a composite Bézier curve B definedhybrid Bézier

curve
as

B(t) =





β2(t− i; di, b−i+1, di+1), i = 0

β3(t− i; di, b+i , b−i+1, di+1), i = 1, . . . , n− 2

β2(t− i; di, b+i , di+1), i = n− 1.

(3.21)

56 |

Interpolation with velocity-imposed curves | 3.3

i
i

“TikZ/11_curve_sphere” — 2020/7/7 — 11:52 — page 50 — #1 i
i

i
i

i
i

b0

b3

b1

b2

Fig. 3.6 In a Euclidean space, the averaging method is equivalent to the
De Casteljau algorithm. However, they will usually not lead to identical
results if they are generalized to manifolds (like the sphere). Here, the cu-
bic Bézier curve is clearly different: the dashed curve is obtained with the
weighted mean and the solid one with the De Casteljau algorithm. Inter-
polation and control points are indicated by filled and open circles, respec-
tively; the Bézier polygon is shown as gray dashed lines.

Observe that the composite curve is hybrid: the first and last segments are
quadratic while all the other are cubic; furthermore, we set pi = di.

As the first and last control points of each segment are the data points,
interpolation is ensured by equations (3.14) and (3.15). As a result, the
optimization problem (3.1) reduces to finding the remaining control points
b−i , b+i ∈ M, i = 1, . . . , n − 1, such that the mean square acceleration of
B is minimized under the differentiability conditions (3.18). This problem,
however, leads to a time-consuming non-linear constrained optimization
problem on manifolds.

To overcome this difficulty but still satisfying the differentiability con-
ditions, the idea of the method is to fix the vector velocity vi of the curve,
i = 1, . . . , n− 1, at the intermediate interpolation points. That way, all the
remaining control points are determined. The remaining task is then re-
duced to choosing those velocities. The problem is even more simplified as
follows: the velocity directions are chosen arbitrarily (the manner to choose
them is left to any suitable heuristic), such that only the velocity magni-

| 57

3 | Interpolation with Bézier curves

tudes must be optimized.
On a Euclidean space, minimizing the mean square acceleration of B

under those constraints permits to express those magnitudes as the solu-
tion of a tridiagonal system of linear equations. We then generalize this
linear system to manifolds and use it to set the magnitudes to the veloci-
ties at the intermediate interpolation points. Even though the velocities are
chosen in a suboptimal way and magnitudes are suboptimal on nonlinear
manifolds, the results proposed in Section 3.5 indicate that the method pro-
duces acceptable visual results while remaining computationally tractable.

3.3.1 Computation of the control points in Rm

Let us consider the Euclidean spaceM = Rm, and let us specify, at each
intermediate data point di, a unitary velocity direction vi (‖vi‖ = 1) cho-
sen arbitrarily, and magnitude coefficients αi ∈ R to be optimized, for
i = 1, . . . , n − 1. For instance, the velocities can be chosen as the uni-
tary orientation vector of the bisector of the angle between di−1 − di and
di+1 − di. Namely, one can choose

vi :=
v+i − v−i
‖v+i − v−i ‖

, (3.22)

where v−i := (di−1 − di)/‖di−1 − di‖ and v+i := (di+1 − di)/‖di+1 − di‖.
The control points associated to the hybrid composite Bézier curve arecontrol point

easily identified as

b−1 = d1 −
3
2

α1v1, (3.23)

b+i = di + αivi, i = 1, . . . , n− 2, (3.24)

b−i = di − αivi, i = 2, . . . , n− 1, (3.25)

b+n−1 = dn−1 +
3
2

αn−1vn−1. (3.26)

Observe that the differentiability conditions (3.9) and (3.10) are satisfied,
since Ḃ(i) = 3αivi, i = 1, . . . , n− 1. The setup is represented in Figure 3.7.

As the second order covariant derivative is simply the second deriva-
tive in Rm, the optimization problem (3.1) is reduced to a simple scalar
optimization problem in the n − 1 variables αi, i = 1, . . . , n − 1. Lengthy

calculations yield that x =
[
α1 . . . αn−1

]>
is the solution of a linear sys-

58 |

Interpolation with velocity-imposed curves | 3.3

i
i

“TikZ/11_hybridCurveSetup” — 2020/7/7 — 11:52 — page 52 — #1 i
i

i
i

i
i

b+i−1

b−i b+i

b−i+1

vi vi

| ||
αi αi

di−1

di

di+1

Fig. 3.7 Illustration of the construction of the hybrid composite Bézier
curve B(t) in R2. The path is fully determined by the velocity vectors at
the intermediate data points.

tem A · x = C, where A is a tridiagonal matrix whose entries are given (in
Matlab notation) as

A(1, 1 : 2) =
[
12v>1 v1 3v>2 v1

]

A(i, i− 1 : i + 1) =
[
v>i−1vi 4v>i vi v>i+1vi

]

A(n− 1, n− 2 : n− 1) =
[
3v>n−2vn−1 12v>n−1vn−1

]

and where C is given (also in Matlab notation) as

C(1) = 3d>2 v1 − 2d>0 v1 − d>1 v1

C(i) = (di+1 − di−1)
>vi

C(n− 1) = 2d>n vn−1 + d>n−1vn−1 − 3d>n−2vn−1.

3.3.2 Generalization to manifolds

To generalize this result to a general manifold M, the problem 3.1 is not
tackled directly (it would be way too complicated). Instead, the conditions
(3.23–3.26), the velocity evaluation (3.22) and the entries of the matrices A
and C are adapted such that they make sense onM (keeping the geometric
interpretation, though).

The unit norm vectors vi are now computed in Tdi
M thanks to the log-

arithmic map. Indeed, the velocities v+i and v−i are vectors in Tdi
M, as the

differences a− b can be interpreted as the logarithmic map logb(a) in the

| 59

3 | Interpolation with Bézier curves

Euclidean space. Therefore, we have got that

v−i = −
logdi

(di−1)

‖ logdi
(di−1) ‖M

and

v+i =
logdi

(di+1)

‖ logdi
(di+1) ‖M

.

Equations of the form b = p + αv, like in Equations (3.23–3.26), are
generalized as b = expp(αv).

Finally, in the matrices A and C, inner products v>i vj are replaced by
the inner product 〈vi, ṽj〉 inM, where ṽj = Pdj→di

(vj). The expressions of

the form (dj − di)
>vi are replaced by 〈logdi

(
dj
)

, vi〉. This yields

A(1, 1 : 2) =
[
12〈v1, v1〉 3〈v2, ṽ1〉

]

A(i, i− 1 : i + 1) =
[
〈vi−1, ṽi〉 4〈vi, vi〉 〈vi+1, ṽi〉

]

A(n− 1, n− 2 : n− 1) =
[
3〈vn−2, ṽn−1〉 12〈vn−1, vn−1〉

]

and

C(1) = 3〈logd1
(d2) , v1〉 − 2〈logd1

(d0) , v1〉
C(i) = 〈logdi

(di+1)− logdi
(di−1) , vi〉

C(n− 1) = 3〈logdn−1
(dn−2) , vn−1〉 − 2〈logdn−1

(dn) , vn−1〉

Then, this hybrid composite Bézier curve is reconstructed with the mani-
fold version of the De Casteljau algorithm (Definition 3.12).

3.3.3 Differentiability of the hybrid composite curve

There is no guarantee that the coefficients αi will remain optimal in a non-
linear manifold M. However, optimality holds when M is Euclidean.
This suggests that the results should remain qualitatively adequate on suf-
ficiently flat manifolds. A confirmation is provided by the experiments
presented in Section 3.5.

Theorem 3.19 (C1 interpolation). Consider the data points d0, . . . , dn ∈ Mdifferentiability
conditions

associated with the parameter values ti = i, i = 0, . . . , n. The hybrid composite
Bézier curve B(t) fulfills the following properties:interpolation

60 |

Interpolation with composite Bézier curves | 3.4

(i) B(i) = di, i = 0, . . . , n;

(ii) B(i) is differentiable at t ∈ [0, n] if αi < ri, where ri is the injectivity radius
ofM at di.

Proof. Property (i) is direct by construction of the curve (3.21). Property
(ii) is ensured also by construction. Indeed, each Bézier curve compos-
ing the composite curve is differentiable on its domain. At t = i, i =

1, . . . , n − 1, we get differentiability by construction of the control points
b+i = expdi

(αivi) and b−i = expdi
(−αivi) and by properties (3.16–3.17).

Indeed, if αi < ri, then we have that logdi

(
b+i
)
= αivi = − logdi

(
b−i
)

by
reciprocity of the exp and log maps.

3.4 Interpolation with composite Bézier curves

In this section, we consider interpolation with a composite cubic Bézier
curve

B(t) = β3(t− i; di, b+i , b−i+1, di+1), i = btc. (3.27)

The method to determine the control points of the n− 1 segments of Bézier
is similar to [AGS+15] but the main difference is that all pieces are now
cubic curves, such that the final composite Bézier curve is the natural cubic
spline when the manifold is a Euclidean space.

As in Section 3.3, the first and last control points of each segment are the
data points, so interpolation is still ensured by equations (3.14) and (3.15).
The remaining degrees of freedom when building B are the control points
b+i , b−i+1 ∈ M, i = 0, . . . , n− 1. We face the same problem as in Section 3.3:
minimizing the mean square acceleration of B under the differentiability
conditions (3.18) is generally unfeasible on manifolds, at least not in an
acceptable computational time. Therefore, we approximate the optimal so-
lution by proceeding as follows: we consider the case whereM = Rm and
compute the optimal (Euclidean) control points (b+i , b−i+1), i = 0, . . . , n− 1,
of B such that (3.1) is minimized. This, of course, is an “easy” problem that
can be solved in closed form.

Then, the optimality conditions on the control points are generalized to
a manifoldM.

Since the composite cubic Bézier curve encompasses all cubic splines,
the optimal control points correspond to the interpolating natural cubic

| 61

3 | Interpolation with Bézier curves

(which is known to minimize the mean squared acceleration under inter-
polation conditions [GS93, Theorem 2.3]), and thus satisfy the differentia-
bility conditions of Proposition 3.9.

Of course, the resulting C1 interpolating composite cubic Bézier curve is
not guaranteed to have a minimal mean squared acceleration, even among
all C1 interpolating composite cubic Bézier curves. However, by construc-
tion, it is optimal when the manifold is Euclidean. Hence, it can be ex-
pected to be close to optimal when the manifold is “sufficiently flat”.

3.4.1 Computation of the control points

Let us consider the case M = Rm and the data points d0, . . . , dn ∈ Rm

at parameter-values ti = i, i = 0, . . . , n. The optimization problem (3.1)
becomes

min
Γ

∫ n

0
‖B̈(t)‖2

2dt, (3.28)

as the covariant second derivative D2·
dt2 is the classical time-derivative on

Rm, and the manifold-valued norm is the classical 2-norm. The search
space Γ is reduced to the space of composite cubic Bézier curves ΓB on
Rm that interpolate the data points, namely,

ΓB = {B(t) = β3(t− i; di, b+i , b−i+1, di+1), i = btc}.

The remaining optimization variables are

Γ′B = {b+0 , b−1 , . . . , b+n−1, b−n }.

The differentiability constraints (3.18), on Rm, read b+i = 2di − b−i (Propo-
sition 3.9). Hence, the only remaining degrees of freedom of the Euclidean
problem are {b+0 , b−i }, i = 1 . . . , n, which will be our optimization vari-
ables.

In summary, the optimization problem reduces to

min
Γ′B

∫ n

0
‖B̈(t)‖2

2dt, s.t. b+i = 2di − b−i , (3.29)

for i = 1, . . . , n− 1.
This problem is actually quadratic in its n + 1 variables, as B(t) de-

pends linearly on the control points. Furthermore, it can be split into m
smaller scalar problems in each of the components of Rm. The optimality

62 |

Interpolation with composite Bézier curves | 3.4

conditions of (3.29) take then the form of m independent linear systems,
that we formulate as A · X = C · D, where X = [b+0 , b−1 , b−2 , . . . , b−n]T ∈
R(n+1)×m contains the remaining optimization variables, D = [d0, . . . , dn]T

∈ R(n+1)×m contains the data points of the problem, and A, C ∈ R(n+1)×(n+1)

are matrices of coefficients. The details are given in Appendix A.
The solution of this linear system is given by

X = A−1 · C · D =: W · D.

In other words, each control point xi of X is obtained as a simple weighted control point

sum of the data points (di)
n
i=0:

xi =
n

∑
j=0

wijdj, i = 0, . . . , n. (3.30)

To generalize this result to Riemannian manifolds, we do not solve the
manifold-valued version of (3.29) directly (note that this will actually be
done in Chapter 5) but we rather generalize the optimality conditions (3.30)
to get a formula to compute the control points onM. Note that the result-
ing piecewise-Bézier curve is not guaranteed to be a solution of (3.1), except
ifM is flat (see Proposition (3.21)).

To do so, we observe that ∑n
j=0 wij = 1. This property can be deduced

from the fact that the problem is invariant to translations. Indeed, one can
write identically the shifted optimality conditions (3.30) as

xi − dref =
n

∑
j=0

wij(dj − dref), i = 0, . . . , n,

for any dref. These differences can be interpreted as Riemannian logarithms
loga(b) = b− a on the Euclidean space. In other words, one can interpret
the shifting of the optimality conditions as a mapping of the point xi to the
tangent space Tdref

M at dref. reference point

Consider now a general manifoldM, the list of data points d0, . . . , dn ∈
M, the search space Γ′B ⊆ M2n and the remaining optimization variables
xi ∈ M, i = 0, . . . , n. The optimality conditions (3.30) are naturally gener-
alized as

x̃i = logdref
(xi) =

n

∑
j=0

wij logdref

(
dj
)
∈ Tdref

M, (3.31)

for i = 0, . . . , n. Then, xi = expdref
(x̃i).

| 63

3 | Interpolation with Bézier curves

The remaining task consists now in choosing a suitable reference point
dref for each variable xi. A first possible choice is to use the same refer-
ence point for all variables. However, for points far from dref, the tangent
space Tdref

M will generally be a bad approximation ofM, and the result-
ing curve may be of poor quality. Instead, we propose to choose a different
reference point for each xi, such that the most important data points av-
eraged in equation (3.31) (i.e., the data points associated with the largest
weights wij) are well approximated on Tdref

M. In the case of the control
point xi = b−i , i = 1, . . . , n, the largest weight is wii, so dref = di. For
x0 = b+0 , the same rule is applied and dref = d0.

In view of the differentiability constraints (3.18), we get the other con-
trol points as

b+i = expdi
(−x̃i) , i = 1, . . . , n− 1, (3.32)

and the final composite Bézier curve B is reconstructed with the De Castel-
jau algorithm (see Definition 3.12).

The previous development results in the following definition for an in-
terpolating composite cubic Bézier curve on manifold.

Definition 3.20 (Interpolating C1 composite cubic Bézier curve on mani-
fold). The proposed composite cubic Bézier curve B : [0, n] → M, inter-Interpolation

with a
composite
Bézier curve

polating the manifold-valued data points d0, . . . , dn at parameter values
t0 = 0, . . . , tn = n, is defined as

B(t) = β3(t− i; di, b+i , b−i+1, di+1), i = btc,

where β3 is as in Definition 3.12. The control points b+0 , b−i for i = 1, . . . , n
are defined by (3.31), with dref = di, while the remaining control points b+i ,
i = 1, . . . , n− 1, are defined by the C1 conditions (3.32).

The full algorithm to generate the curve of Definition 3.20 is presented
in Algorithm 1.

3.4.2 Properties of the interpolating curve

As mentioned in the introduction, we seek a C1 interpolating curve that
results in a low value of the cost function of (3.1). We see here how the
curve of Definition 3.20 fulfills these specifications.

Proposition 3.21 (Natural cubic spline). ForM = Rm, the interpolating com-natural cubic
spline

posite cubic Bézier curve B : [0, n] → Rm of Definition 3.20 is the natural cubic

64 |

Interpolation with composite Bézier curves | 3.4

Algorithm 1 Interpolating C1 composite cubic Bézier curve approaching
the solution of (3.1).

Require: d0, . . . , dn ∈ M, A and C from Appendix A
Init: s0 = . . . sn = 0.
W ← A−1C % matrix of weights
for i = 0, . . . , n do

dref ← di % reference point
for j = 0, . . . , n do

sj ← logdref

(
dj
)

% mapping to Tdref
M

end for
x̃ ← ∑n

k=0 wiksk % cp generation
x ← expdref

(x̃) % mapping toM
if i 6= 0, i 6= n then

b−i ← x
b+i ← expdref

(−x̃) % C1 condition (3.18)
else if i = 0 then

b+0 ← x
else {i = n}

b−n ← x
end if

end for
% De Casteljau algorithm (Definition 3.12)
B(t) = β3(t− i; di, b+i , b−i+1, di+1), i = btc.

| 65

3 | Interpolation with Bézier curves

spline that minimizes the mean square acceleration under the interpolation condi-
tions.

Proof. By construction.

Theorem 3.22 (C1-interpolation). Consider the data points d0, . . . , dn ∈ Mdifferentiability
conditions

associated with parameter values ti = i, i = 0, . . . , n. The composite cubic Bézier
curve B(t) : [0, n]→M of Definition 3.20 fulfills the following properties:

(i) B(i) = di, i = 0, . . . , n;

(ii) B(t) is differentiable at t ∈ [0, n] if ‖x̃i‖ < rdi
, i = 1, . . . , n− 1, where rdi

is the injectivity radius ofM at di.

Proof. (i) follows from (3.14) and (3.15) (Property 3.16). Let us prove (ii). By
definition, the Bézier curve is differentiable on its domain [PN07]. There-
fore, there only remains to prove that the composite Bézier curve is differ-
entiable at t = i, i = 1, . . . , n− 1, i.e., at the points where two consecutive
segments join. Consider i ∈ {1, . . . , n − 1}. As ‖x̃i‖ < rdi

, we have that

logdi

(
b−i
)
= logdi

(
expdi

(x̃i)
)
= x̃i = − logdi

(
expdi

(−x̃i)
)
= − logdi

(
b+i
)
.

By equations (3.16) and (3.17), one has

dB(t)
dt

∣∣∣∣
t=i−

=
dB(t)

dt

∣∣∣∣
t=i+

.

Remark 3.23. Note that the control points also satisfy the conditions given
in [PN07, Thm. 3], as b−i and b+i respect the isometry centered at di, by
construction.

Proposition 3.24 (Minimal representation of the interpolating curve). The
interpolating curve (Definition 3.20) is uniquely represented by n + 1 tangentminimal

representation
vectors.

Proof. All the control points mentioned in Definition 3.20 are obtained from
the n + 1 tangent vectors x̃i ∈ Tdi

M, i = 0, . . . , n, as stated in the relevant
parts of Algorithm 1.

Proposition 3.25 (Exponential and logarithm maps required). The numberExp-Log
complexity

of exponential and logarithm maps required to compute the interpolating curve
(Definition 3.20) is

66 |

An application to transvaginal ultrasound | 3.5

• n(n + 1) logarithms for the construction of the minimal representation of
the curve of Proposition 3.24;

• 8 exponential and 6 logarithm maps to reconstruct the curve B(t), for a
given parameter value t, given that minimal representation.

Proof. The n(n + 1) logarithms maps are required for the evaluation of
equation (3.31). Then, the reconstruction of the curve at a given time t
requires 1 exponential map for b−btc, 1 exponential map for b+btc, and 6 addi-
tional exponential and logarithm maps for the De Casteljau algorithm.

3.5 An application to transvaginal ultrasound

To illustrate the methods presented in Sections 3.3 and 3.4, we apply them
to transvaginal ultrasound medical imaging as interpolation on the shape transvaginal

ultrasound
space.

In this application, we consider 2D-slices (the data points d0, . . . , dn)
extracted from some medical imaging at a given depth in the body (these
are the parameters z0, . . . , zn ∈ R associated to the data points). The data
points lie on a space of 2D closed shapes S , a manifold that is presented in
the following subsections.

This section results from a collaboration with Dr. Chafik Samir (Univer-
sité de Clermont, France) who provided the toolbox to compute geometric
elements on the shape space S . The related publication is [SGJ15].

3.5.1 Some words of motivation

The problem of surface reconstruction from 3D images has been widely
studied because of its importance in medical imaging. It also has appli-
cations in computer graphics, mechanical simulations, virtual reality, and
many more, particularly, to reconstruct a surface from a set of 3D point
clouds [BXZ08]. For example, one can use a variational formulation using
PDEs and compute the solution as an implicit surface, which is usually the
zero level set of a sufficiently smooth function [ZOF01]. In that specific
case, the resulting surface construction is controlled by adding physics-
inspired constraints depending on geometry or external forces.

However, in practice, the observed data is acquired as 2D image slices,
like in MRI where a flat image of inside the body is acquired at a certain

| 67

3 | Interpolation with Bézier curves

depth. In that case, one can often find convenient planar boundary rep-
resentations of objects of interest, but a 3D reconstructed volume would
be an improvement compared to four or five slices of a given anatomical
object. In general, the real data slices are partially (and manually!) seg-
mented by an expert. This is where the methods presented in this chapter
make sense: one needs to perform surface reconstruction by computing an
“optimal” fitting (in a sense) between the boundaries, taking into account
their parameterization and the non-linearity of their spatial evolution.

Note that there exists modern reconstruction algorithms that allow the
acquisition of full 3D anatomies, but the 3D surface reconstruction during
the post-processing phase is often difficult because the resolution of the
imaging device is often inadequate, or because the anatomical object was
not perfectly placed in the scanner.

3.5.2 The shape space S
In order to apply the methods proposed in this chapter to the shape space
S , one needs to (i) define this space, (ii) equip its tangent space with a
metric, and (iii) express the formulae of the exponential map and of the
logarithmic map.

The data points di are seen as closed planar curves in the Riemannian
framework of elastic shape analysis. This framework consists in metrics
and models in which shapes are invariant to arbitrary rotation, scaling,
translation, and re-parameterization (i.e., two rotated curves are consid-
ered equivalent, for instance). The Riemannian structure is therefore ex-
pressed as a quotient manifold, as we will see later. We refer to [SK16] for
a complete analysis or to [JKSJ07, SKJJ11] for summaries.

Consider a level-set curve τ : [0, 1] → Rm. The level-set is represented
by (i) its parameterization τi, (ii) its length li and (iii) its starting point
τ(0). As li and τ(0) belong to Euclidean spaces, their interpolation is quite
straightforward. The hard part of the work consists in interpolating the
parameterization elements τi.

To achieve rotation and translation invariance, the parameterized level-set
is represented by a function q : [0, 1]→ Rm as

q(s) =
τ̇(s)√
‖τ̇(s)‖Rm

∈ Rm. (3.33)

By doing this transformation, the curve τ is now seen as a set q of local

68 |

An application to transvaginal ultrasound | 3.5

descriptors of the geometry of the curve, which makes the representation
q invariant to rotations and translation. Indeed, q is built based on the the
tangent velocity vector of τ normalized by the square-root of the instan-
taneous speed along the curve. The representations are equivalent, as the
original curve τ can be reconstructed using

τ(s) = τ(0) +
∫ s

0
‖q(t)‖q(t)dt.

Observe that, to come back from q to τ, one needs to store the starting point
τ(0) of the curve τ. The representation in q is thus independent from the
starting point (which implies an invariance to translations) and the curve
is represented by velocity vectors (which implies invariance to rotations).

The scale invariant shape representation is given by normalizing the
function q by its magnitude as

q√∫ 1
0 〈q(s), q(s)〉ds

,

where 〈·, ·〉 is the standard Euclidean inner-product in R2. Due to this unit-
scaling constraint, the space of all translation, rotations and scale-invariant
shapes becomes a Hilbert sphere denoted by Q [SK16, SGJ15]. Formally,
the space Q is defined as

Q :=
{

q ∈ L2 such that q : [0, 1]→ R2 and
∫ 1

0
〈q(s), q(s)〉ds = 1

}
.

Consider now that the functions q are always normalized.

The last step is to constraint Q to be invariant to re-parameterizations.
This last invariance is the reason why the analysis done here is called “elas-
tic” shape analysis. Re-parameterization gives rise to a change in speed of
the curve without changing its shape. It is given by γ ∈ Γ (not to be con-
founded with the geodesic defined in Chapter 2) where

Γ = {γ : [0, 1]→ [0, 1] s.t. γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}.

One can specify the action of the re-parameterization of a shape q by γ as
q · γ = (q ◦ γ)

√
γ̇.

Finally, the elastic shape space of open curves is defined as the quotient
space SO = Q/Γ. The space of elastic closed curves is simply given by im-

| 69

3 | Interpolation with Bézier curves

posing a closure constraint on the curves. In the representation in curves,
the constraint reads

∫ 1
0 τ̇(s)ds = 0 and in the coordinate representation, it

is
∫ 1

0 q(s)‖q(s)‖ds = 0.
Hence, the elastic shape space of closed curves is given by the quotientshape space

space
S := QC/Γ,

where QC is the set Q limited to the closed curves.

3.5.3 Geometric elements on the shape space

To define the geometric elements on the shape space (like the exponential
map and the logarithm map), one first has to define a metric on TqS . Actu-
ally, the metric on TqQ is sufficient (we refer to the book of Srivastava and
Klassen [SK16] for a complete justification).

As Q is a Hilbert sphere, its tangent space is defined as TqQ = { f ∈
L2 such that f ⊥ q}. It is equipped with a Riemannian metric that mea-
sures infinitesimal lengths on the shape space. Given a pair of tangent
vectors f , g ∈ TqQ the metric is defined as,metric

〈 f , g〉S =
∫ 1

0
〈 f (s), g(s)〉ds. (3.34)

Since this metric is invariant to re-parameterizations, it is acceptable for
TqQ.

Given a shape q1 and a tangent vector f ∈ TqQ equipped with the met-
ric (3.34) (and thus a norm ‖ · ‖), the exponential map at q1 in the directionexponential

map
f is defined as [SK16]

q2 = expq1
(f) := cos(‖ f ‖)q1 + sin(‖ f ‖) f

‖ f ‖ .

Unfortunately, there is no closed form (yet) of the geodesic between twogeodesic

shapes q1 and q2. There exists one, if the initial velocity vector f ∈ TqQ is
known, however. The formula is [SK16], for t ∈ [0, 1],

g(t; q1, q2, f) = cos
(

t cos−1〈q1, q1〉S
)

q1 + sin
(

t cos−1〈q2, q2〉S
)

f . (3.35)

In practice, on the shape space S , the geodesic is computed using a
path-straightening method that initially connects the two points q1 and q2

70 |

An application to transvaginal ultrasound | 3.5

using an arbitrary path in Q and then iteratively straightens it to form the
shortest path by minimizing a certain energy of the path [JKSJ07]. At each
step of the path straightening, a re-parameterization γ∗ has to be done. It
is found via the minimizer

γ∗ := argmin
γ∈Γ

∫ 1

0
‖q1 − γ · q2‖2ds.

An efficient way to find it is to solve this optimization problem with dy-
namic programming. The geodesic path is then given by substituting q2 by
q2 · γ∗ in (3.35).

The logarithm map is afterwards given by approximating ġ(0; q1, q2, f) logarithmic
map

with finite differences.
Note that, at this step, the logarithm map necessitates that the geodesic

is computed entirely before, which leads to computational time that is
barely tractable. Nonetheless, when there is no need to obtain the solu-
tion in a snap, the results presented in the next section are encouraging.

3.5.4 Results

Finally, let us apply the methods from Sections 3.3 and 3.4 to a data set on
the shape space S . To present a fair comparison between the two meth-
ods, the reconstructed curve B will be, in both cases, the one defined in hybrid Bézier

curve
Equation (3.21). This means that the solution obtained in Section 3.4 must
be slightly modified, i.e., the coefficients of the matrix A and C change as
given in Appendix B, and the vector of unknowns is limited to the control
points b−i and b+i for i = 1, . . . , n. The technique is specifically detailed
in [AGS+15], and already applied to a shape space example.

Here, the data points are endometrial tissue surfaces obtained from
MRI slices (see [SGJ15] for technical details about aquisition). In our ex-
periments, the magnetic resonance images (MRI) have an average size of
400× 400× 5 with a voxel resolution of 0.5× 0.5× 5 mm3. An expert iden-
tified and selected the slices before extracting level-set curves. The seg-
mentation was performed by a pelvic radiologist and then confirmed with
a gynaecologist. Each planar closed curve (di ∈ S) representing the en-
dometrial tissue surface is associated with a constant real parameter ti = zi,
the depth at which the endometrial tissue surface is imaged. Examples of
extracted level-sets are shown in Figures 3.8(a) and 3.9(a).

We are interested in two examples of cylindrical surface reconstruc-

| 71

3 | Interpolation with Bézier curves

(a) (c) (d) (e)

(b) (f) (g) (h)

Fig. 3.8 a: original curves, b: reconstructed surface SMRI , c: ‖ṠMRI(z)‖,
d: ‖S̈MRI(z)‖, e: ‖∇2SMRI(r, θ)‖, f: ‖∇rSMRI(r, θ)‖, g: ‖∇θSMRI(r, θ)‖,
and h: ‖∇SMRI(r, θ)‖. The two first rows correspond to the solution from
Section 3.4, the two next to the solution from Section 3.3 and the last two
to a piecewise-geodesic curve.

72 |

An application to transvaginal ultrasound | 3.5

(a) (c) (d) (e)

(b) (f) (g) (h)

Fig. 3.9 a: original curves, b: reconstructed surface SMRI , c: ‖ṠMRI(z)‖,
d: ‖S̈MRI(z)‖, e: ‖∇2SMRI(r, θ)‖, f: ‖∇rSMRI(r, θ)‖, g: ‖∇θSMRI(r, θ)‖,
and h: ‖∇SMRI(r, θ)‖. The two first rows correspond to the solution from
Section 3.4, the two next to the solution from Section 3.3 and the last two
to a piecewise-geodesic curve.

| 73

3 | Interpolation with Bézier curves

tion. Three fitting paths are compared on the shape space: (i) the solution
from Section 3.4 applied to hybric composite Bézier curves (3.21) (as de-
scribed in [AGS+15]), (ii) the solution from Section 3.3 and (iii) a piecewise-
geodesics solution (i.e., a solution obtained by computing a geodesic be-
tween each two consecutive data points).

To summarize, we reconstructed the smooth endometrial surface SMRI
in three steps. First, a radiologist selects different slices di (with i = 0, . . . , 3)
at different depths zi, and segments curves as boundaries of an interest
zone on each slice. Second, we represent each curve as a point on the shape
manifold S . The starting point of each curve is aligned with the other, and
the length of each curve is normalized. Third, we apply the three methods
to reconstruct SMRI , for each example.

In Figures 3.8 and 3.9, the solution from Section 3.4 corresponds to the
first two rows, the one from Section 3.3 correspond to the rows 3 and 4, and
the piecewise-geodesic curve is displayed in rows 5 and 6. To give an idea
about the quality of the reconstructed surface, different outputs are given
and numbered accordingly. The surfaces SMRI (b) are reconstructed from
a set of curves (a). The norm of the velocity of the fitting path ‖ṠMRI(z)‖ iscurve velocity

is represented in (c), and the norm of its acceleration ‖S̈MRI(z)‖ is given incurve
acceleration

(d). In (e), the Laplacian map ‖∆SMRI‖ is displayed, and in (f), the norm of
the gradient along the radial curves ‖∇rSMRI‖. We also show the norm of
the gradient along the circular curves ‖∇θSMRI‖ (g), and ‖∇r,θSMRI‖ as a
function (2D map) of (r, θ) (h).

One can observe that the three methods are interpolating the data points,
as expected. The piecewise-geodesic method is continuous but not differ-
entiable at the data points. Moreover, its resulting path has a low velocity
cost between any two original curves which is due to the geodesic con-
necting them (minimizing the piecewise lengths). However, at the data
points, the velocity and the acceleration change drastically, which results
in a big cost in the acceleration of the curve. Quite the contrary, the two
other methods provide smooth paths with smaller acceleration at the data
points. More specifically, they lead to roughly the same velocities but the
acceleration cost is slightly smaller when the method of Section 3.4 is ap-
plied. This makes of course sense, as this method is less restricted when
optimized (recall that the velocity is suboptimally imposed in Section 3.3).
By the way, this method leads also to better visual reconstruction results as
shown in Figure 3.8, (e) and (h); we observe less sharpness at data points
(Figure 3.9, (f) and (g)).

However, in the majority of applications, data points are never acquired

74 |

An application to transvaginal ultrasound | 3.5

perfectly, so it makes little sense to interpolate them exactly. The topic of
the next chapter will concern fitting on manifolds, where data points can
be approached more or less given a fitting parameter λ.

This chapter is based on the papers [GSA14] and [GMA18c] for the theoretical parts, and
on [SGJ15] for Section 3.5. They are sometimes cited verbatim.
The references of these papers are

[GSA14] Pierre-Yves Gousenbourger, Chafik Samir, and P.-A. Absil. Piecewise-Bézier
C1 interpolation on Riemannian manifolds with application to 2D shape morphing. In
International Conference on Pattern Recognition (ICPR), pages 4086–4091, 2014. doi:
10.1109/ICPR.2014.700

[SGJ15] Chafik Samir, Pierre-Yves Gousenbourger, and Shantanu H. Joshi. Cylindrical
surface reconstruction by fitting paths on shape space. In H. Drira, S. Kurtek, and P.
Turaga, editor, Proceedings of the 1st International Workshop on DIFFerential Geometry
in Computer Vision for Analysis of Shapes, Images and Trajectories (DIFF-CV 2015),
pages 11.1–11.10. BMVA Press, 2015. doi:10.5244/C.29.DIFFCV.11

and

[GMA18c] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil. Data fitting on
manifolds with composite Bézier-like curves and blended cubic splines. Journal of Math-
ematical Imaging and Vision, 61(5):645–671, 2018. doi:10.1007/s10851-018-0865-2

The figures can be reproduced based on the code provided in the toolbox available at this
link address:

https://github.com/pgousenbourg/manint

| 75

http://dx.doi.org/10.1109/ICPR.2014.700
http://dx.doi.org/10.1109/ICPR.2014.700
http://dx.doi.org/10.5244/C.29.DIFFCV.11
http://dx.doi.org/10.1007/s10851-018-0865-2
https://github.com/pgousenbourg/manint

4
Fitting with Bézier, blended,

and Bézier-like curves

T
HE NATURAL NEXT STEP after interpolation on manifolds is obvi-
ously fitting. Indeed, in most of the applications, data points are
subject to external noise and shouldn’t be interpolated. On the

contrary, it is often useful to generate a fitting curve that strikes a balance
between being straight enough (minimizing the mean squared acceleration,
for instance) and passing close enough to the data points while not interpo-
lating them exactly.

In this context, the next major contribution of this thesis consists in a
generalization to fitting of the method exposed in Section 3.4. The results
of this generalization have been published in [GMA18c] in collaboration
with Estelle Massart, from UCLouvain. The minimization problem to solve
is now regularizer λ

min
B

∫ tn

t0

∥∥∥∥
D2B(t)

dt2

∥∥∥∥
2

B(t)
dt + λ

n

∑
i=0

d2(B(ti), di), (4.1)

where B is a composite curve. Four methods will be presented in this chap-
ter. Like in Chapter 3, the data points d0, . . . , dn are associated with param-
eter values t0 < t1 < · · · < tn.

The main result of this chapter consists in the presentation of the so-
called composite blended curve, which combines the six desirable properties
of the introduction. We recall them.

| 77

4 | Fitting with Bézier, blended, and Bézier-like curves

(i) As λ→ ∞, the data points are interpolated at the given times;

(ii) The curve is of class C1;

(iii) If the manifoldM reduces to a Euclidean space, then the produced
curve is the natural cubic spline that minimizes the energy func-
tion (4.1) over the (infinite-dimensional) Sobolev space H2(t0, tn);

(iv) The only knowledge that the method requires from the manifold is
the Riemannian exponential and the Riemannian logarithm;

(v) The produced curve is represented by O(n) tangent vectors to the
manifold (or simply points on the manifold);

(vi) Computing B(t) at any t requires O(1) exponential and logarithm
once the representation by O(n) tangent vectors is available.

The first section of this chapter (Section 4.1.1) consists in a naive gener-
alization of the technique presented in Section 3.4. In this section, an anal-
ysis is also given and limitations are highlighted (namely, the interpolation
property is not always met).

Section 4.2 presents a solution to these limitations with the blending
method. It consists in building polynomial pieces by solving the optimiza-
tion problem (4.1) in various tangent spaces and then blending together
corresponding pieces by means of carefully chosen weights in order to
satisfy all the above-mentioned properties. Though it stems from Bézier-
related considerations, the method to construct the blended cubic spline
fairly departs from the composite Bézier approach used for interpolation in
Chapter 3. Indeed, it can be described without appealing to Bézier curves
(any fitting curve on the tangent space is acceptable). Hence, the curve ob-
tained at the limit λ→ ∞ is in general not the interpolating Bézier curve.

Other (yet less good) solutions are then presented in Section 4.3. Even
if each of them fails to satisfy at least one of the properties, those are never-
theless worth considering because they are not necessarily inferior in prac-
tical applications (see Section 4.4 for numerical examples).

Like in Chapter 3, the chapter is concluded with two real-life applica-
tions. The first one concerns fitting of wind fields, a work made in col-
laboration with the MIT and published in [GMM+17]. The second one
concerns parametric model order reduction, published in [MGS+19], with
Dr. Thanh Son Nguyen (UCLouvain, Belgium). Both application result
from a close collaboration with my colleague Estelle Massart (UCLouvain,
Belgium) who provided me with codes to compute geometric elements on
the manifolds of positive semidefinite matrices of given rank.

78 |

Fitting with composite Bézier curves | 4.1

4.1 Fitting with composite Bézier curves

In this section, we generalize the result of Section 3.4 to the fitting problem.
We seek now the C1 composite cubic Bézier curve B : [0, n] → M defined
as

B(t) = β3(t− i; pi, b+i , b−i+1, pi+1), i = btc, (4.2)

minimizing (4.1) for λ > 0. Note that, compared to Section 3.4, the data
points di are no longer the end-points of the Bézier curves.

Instead of solving the problem (4.1) directly and similarly to Chapter 3,
we use a suboptimal route: we first determine optimality conditions on
the control points of B, such that (4.1) is minimized whenM is Euclidean.
Then, we generalize these conditions to any manifold M. However, we
will see that this method sometimes fails to satisfy the first property we re-
quired in the introduction, namely, the fact that the curve obtained should
interpolate the data points when λ→ ∞.

4.1.1 Control points generation for cubic Bézier curves

Similarly as in Section 3.4, one needs to determine the position of the 3n+ 1
control points of B.

We consider the Euclidean case M = Rm and the data points di ∈
Rm corresponding to parameter values ti = i, i = 0, . . . , n. Now, we also
consider λ > 0, the regularization parameter. The problem (4.1) becomes
then

min
B∈Γ′B

∫ n

0
‖B̈(t)‖2

2dt + λ
n

∑
j=0
‖dj − pj‖2

2, (4.3)

where the search space is the set of control points

Γ′B = {p0, b+0 , b−i , pi, b+i , b−n , pn}n−1
i=1 ,

satisfying the differentiability constraints

pi =
b−i + b+i

2
, i = 1, . . . , n− 1. (4.4)

Since in Rm the set of C1 composite cubic Bézier curves encompasses
the cubic splines, the optimal control points correspond to the well-known

| 79

4 | Fitting with Bézier, blended, and Bézier-like curves

cubic smoothing spline, see, e.g., [GS93, Theorem 2.4].

The cost function (4.3) is a quadratic function in its control points. Fol-
lowing the same path as in Section 3.4, we decouple the problem into m in-
dependent problems, and we formulate these as (A0 + λA1) · X = λC · D
where

X =
[

p0, b+0 , b−1 , b+1 . . . , b+n−1, b−n , pn

]T
∈ R(2n+2)×m

contains the 2n + 2 remaining control points to optimize, stored as row
vectors, and where D =

[
d0, . . . , dn

]T ∈ R(n+1)×m contains the data points.
The matrices A0, A1 ∈ R(2n+2)×(2n+2) and C ∈ R(2n+2)×(n+1) are matrices
of coefficients. They are given in Appendix C.

The Euclidean optimality conditions X = λ(A0 + λA1)
−1C · D =: W ·

D are weighted combinations of the data points, so that each optimization
variable xi of X satisfies

xi =
n

∑
j=0

wijdj, i = 0, . . . , 2n + 1, (4.5)

where ∑n
j=0 wij = 1.

Consider now the points d0, . . . , dn on a Riemannian manifoldM, the
search space Γ′B ⊆ M3n+1 and the optimization variables xi ∈ M, i =

0, . . . , 2n + 1. Similarly to Section 3.4, the optimality conditions (4.5) be-
come

x̃i = logdref
(xi) =

n

∑
j=0

wij logdref

(
dj
)
∈ Tdref

M, (4.6)

for i = 0, . . . , 2n + 1. The control point xi is finally obtained by xi =control point

expdref
(x̃i). To minimize distortions due to the lifting of the data on the

tangent space Tdref
M and back on the manifold, we choose dref as the clos-reference point

est data point from the control point xi. Namely, dref = dj, if xi = b−j or

b+j , j = 1, . . . , n − 1, and we choose dref = d0 (resp. dref = dn) for the

case xi = p0 or xi = b+0 (resp. b−n or pn). Afterwards, one can retrieve pi,
i = 1, . . . , n− 1 with the differentiability constraints (3.20):

pi = g(0.5; b−i , b+i), i = 1, . . . , n− 1. (4.7)

The associated composite Bézier curve B(t) : [0, n] → M is finally recon-
structed with the De Casteljau algorithm presented in Definition 3.12.

The previous reasoning leads to the following definition for a fitting

80 |

Fitting with composite Bézier curves | 4.1

composite cubic Bézier curve on a manifold.

Definition 4.1 (Fitting C1 composite cubic Bézier curve on manifold). For
a given value of the parameter λ > 0, the composite cubic Bézier curve Fitting with a

composite
Bézier curveB : [0, n] → M, fitting the manifold-valued data points d0, . . . , dn at pa-

rameter values t0 = 0, . . . , tn = n, is defined as

B(t) = β3(t− i; pi, b+i , b−i+1, pi+1), i = btc,

where β3 is as in Definition 3.12. The control points p0, b+i , b−i+1, pn, i =

0 . . . , n− 1, are defined by (4.6) with dref = di, while the remaining control
points pi, i = 1, . . . , n− 1, are defined by (4.7).

The full algorithm to generate a fitting composite cubic Bézier curve on
manifold is presented in Algorithm 2.

An example of a composite cubic Bézier curve fitting a set of data points
on R2 is given in Figure 4.1a, and on the sphere S2 in Figure 4.1b. Both
results were obtained with the exact same code. The only difference was
the definition of the exponential and logarithm maps. Exponential and
logarithm maps on S2 are given in Table E.1 (Appendix E).

4.1.2 Properties of the fitting composite cubic Bézier curve

We present here some properties of the fitting composite cubic Bézier curve
of Definition 4.1.

Proposition 4.2 (Natural cubic spline). WhenM = Rm, the composite cubic natural cubic
spline

Bézier curve B : [0, n] → Rm of Definition 4.1 is the cubic smoothing spline that
minimizes (4.1) over the Sobolev space H2(0, n).

Proof. By construction.

Theorem 4.3 (C1 interpolation when λ → ∞). Consider the data points differentiability
conditions

d0, . . . , dn ∈ M associated with parameter values ti = i, i = 0, . . . , n, and the
control points p0, b+0 , b−i , pi, b+i , b−n , and pn, i = 1, . . . , n− 1. Let r = infa∈M ra
be the injectivity radius ofM. The composite cubic Bézier curve B(t) defined in
Definition 4.1 satisfies the following properties:

(i) If λ → ∞ and ‖x̃i‖M < r
2 , for x̃i defined by (4.6) then dM(B(i), di) =

dM(pi, di)→ 0;

(ii) B(t) is differentiable at t ∈ [0, n].

| 81

4 | Fitting with Bézier, blended, and Bézier-like curves

Algorithm 2 Fitting C1 composite cubic Bézier curve approaching the so-
lution of (4.1).

Require: d0, . . . , dn, λ > 0, A0, A1 and C (Appendix C).
Init: s0 = · · · = sn = 0.
W ← (A0 + λA1)

−1C % matrix of weights

for i = 0, . . . , n do
dref ← di % reference point
for j = 0, . . . , n do

sj ← logdref

(
dj
)

% mapping to Tdref
M

end for
x̃ ← ∑n

k=0 w(2i)ksk % cp generation
ỹ← ∑n

k=0 w(2i+1)ksk
x ← expdref

(x̃) % mapping toM
y← expdref

(ỹ)
if i 6= 0, i 6= n then

b−i ← x
b+i ← y
pi ← g(0.5; x, y) % C1 condition (3.20)

else if i = 0 then
p0 ← x
b+0 ← y

else {i = n}
b−n ← x
pn ← y

end if
end for
% De Casteljau algorithm (Definition 3.12)
B(t) = β3(t− i; pi, b+i , b−i+1, pi+1), i = btc.

82 |

Fitting with composite Bézier curves | 4.1

i
i

“TikZ/12_euclidean_stairs” — 2020/7/7 — 11:52 — page 73 — #1 i
i

i
i

i
i

λ = 100 λ = 108

λ = 10

(a) On the Euclidean space R2

i
i

“TikZ/12_sphere_triangle_old” — 2020/7/7 — 11:52 — page 73 — #1 i
i

i
i

i
i

λ = 100 λ = 108

λ = 10

(b) On the sphere S2.

Fig. 4.1 Composite cubic Bézier curve fitting a set of data points on a
manifold M for different values of the regularization parameter λ. Top:
on the Euclidean space R2. Bottom: on the sphere S2. The (solid red) data
points are fitted by the (blue) curve defined by the (circled green) control
points. Fitting becomes interpolation when λ→ ∞.

| 83

4 | Fitting with Bézier, blended, and Bézier-like curves

Proof. By the standing assumption from the introduction, the data points
are such that the exponential and the logarithm are well defined. We show
property (ii) by construction as logpi

(
b+i
)
= − logpi

(
b−i
)
. Thus, we just

have to verify property (i). By hypothesis, b−i and b+i both lie in the set
Ddi

(r
2) := {y ∈ M : dM(di, y) < r

2}. Due to the triangle inequality,

dM(b−i , b+i) ≤ dM(di, b−i)+ dM(di, b+i) < r. Hence (b−i , b+i) 7→ expb−i

(
1
2 logb−i

(
b+i
))

is continuous. Since interpolation holds on the Euclidean case when λ →
∞, we have that limλ→∞ x̃i = − limλ→∞ ỹi (see Algorithm 2). Hence, di
is the midpoint of the minimizing geodesic between x := limλ→∞ b−i and

y := limλ→∞ b+i , i.e., di = expx

(
1
2 logx(y)

)
. It follows that limλ→∞ pi =

di.

This theorem shows that, when λ → ∞, the composite cubic Bézier
curve B of Definition 4.1 interpolates the data points if they are not too spread
out, since ‖x̃i‖M is then small for all i. Otherwise, interpolation as λ → ∞
may not hold, and we show some examples in the next section.

4.1.3 Lack of interpolation when λ→ ∞

A first illustration of the limitation suggested by Theorem 4.3(i) can be ob-
served on S+(p, q), the manifold of positive semidefinite matrices of size pS+(n, p)

and rank q, equipped with the metric from [VAV09, §7.2]. A second illus-rank

tration will be also given on the unit circle S1.

Example 4.4 (Lack of interpolation on S+(p, q)). The S+(p, q) manifold
arises in the development of efficient and safe navigating tools for UAV’s
(unmanned aerial vehicles). These navigating tools rely on faithful models
for the wind field.wind field

For this example, we consider 33 data points Ci, i = 1, . . . , 33 on the
manifold S+(3024, 20), and associated to parameters θi = (i − 1)π/64.
The data points are covariance matrices that represent the wind field, ex-
tracted from [GMM+17]; the parameter corresponds to the orientation of
the prevalent wind in an area of interest (see Section 4.5 for a detailed
description of the application of S+(p, q) to wind fields). The manifold
S+(p, q) is here seen as a quotient manifold R

p×q
∗ /O(q), where R

p×q
∗ is the

set of full rank matrices of size p× q, and O(q) is the manifold of orthog-
onal matrices of size q × q. This quotient manifold is endowed with the
metric proposed in [VAV09, §7.2]; the geometric elements used for this ex-

84 |

Fitting with composite Bézier curves | 4.1

ample are the result of the work of Dr. Estelle Massart [MA18, MHA19]
(actually, the example itself was done in collaboration with her).

Applying Algorithm 2 with λ = 108 to those data, we observe in Fig-
ure 4.2 that the composite cubic Bézier curve B(θ) does not interpolate
one of the data points, the interpolation error at that point being several interpolation

orders of magnitude higher than at the other points. The reason of this in-i
i

“TikZ/12_psd_fail” — 2020/7/7 — 11:53 — page 76 — #1 i
i

i
i

i
i

0 20 40 60 80

10−8

10−7

10−6

10−5

10−4

10−3

angle θ (degree)

E
(C

(θ
i)

,B
(θ

i)
)

Fig. 4.2 Interpolation error between the curve B(θ) and the data points
C1, C3, C5, . . . , C33 ∈ S+(3024, 20) extracted from [GMM+17]. The parame-
ter λ is set to 108. We observe that the error made on the data point C13 is
several orders of magnitude higher than the error made on the others.

terpolation error is directly related to Theorem 4.3 whose hypotheses are
not met. Indeed, there is no guarantee that ‖x̃i‖M < r

2 . Actually, we can
even show that, for the metric considered here, the local injectivity radius injectivity

radius
around a point a ∈ S+(p, q) is equal to the square root of the smallest non-
zero eigenvalue of a, which means that it tends towards zero as a tends
towards the border of the manifold.

The next example deals with the circle S1, a manifold whose injectivity
radius is equal to π. We provide a configuration of data points that violates
the assumptions of Theorem 4.3, and for which interpolation is indeed not
achieved.

Example 4.5 (Lack of interpolation in S1). Consider the set of data points sphere S1

| 85

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_circle_fail_why” — 2020/7/7 — 11:53 — page 77 — #1 i
i

i
i

i
i

ξ

(x, y) = (cos ξ, sin ξ)

γ(t)

γ̄(t)
logb−2

(
b+2
)

logd2

(
b−2
)

logd2

(
b+2
)

d0

d1 d2

d3

d4
b−2

b+2

(a) Representation of the data set used for the counter-example on the circle, as
well as the two curves γ and γ̄, for i = 2. The injectivity radius of the circle S1 is
π. As the geodesic length Lγ̄ = | logd2

(
b−i
)
|+ | logd2

(
b+i
)
| > π, the geodesic γ̄ is

not minimizing, while γ = g(t; b−i , b+i) is. The consequence of this is that pi 6= di.

i
i

“TikZ/12_circle_fail” — 2020/7/7 — 11:53 — page 77 — #1 i
i

i
i

i
i

0 1 2 3 4

−2π

− 3π
2

−π

−π
2

0

time-parameter t

an
gl

e
ξ
(t
)

(b) The curve ξ(t) = tan−1(B(t)) (solid blue) obtained by applying Algorithm 2
to the (solid red) data points, with λ = 108, does not interpolate all data points.
Specifically, ξ(2) 6= tan−1(d2).

Fig. 4.3 Second counter-example for interpolation by the fitting curve of
Definition 4.1, when λ→ ∞.

86 |

Fitting with composite Bézier curves | 4.1

d0, . . . , d4 represented on Figure 4.3a. The position of the data points d0 and
d4 has been chosen respectively on the lower half circle and the upper half
circle (here, at ξ0 = −120◦ and ξ4 = 120◦). The data point d2 corresponds
to an angle ξ2 = 0◦, while data points d1 and d3 correspond respectively to
angles ξ1 = 179◦ and ξ3 = 181◦.

On Figure 4.3b, we represent the curve obtained when we try to inter- cut locus

polate the set of data points from Figure 4.3a with Algorithm 2. At time
t = 2, the angle ξ is equal to −π, instead of the desired value 0. Indeed,
following (3.20), p2 = −π is the midpoint of the shortest endpoint geodesic
between the control points b−2 and b+2 . Unfortunately, as indicated on Fig-
ure 4.3a, d2 = 0 is the midpoint of a non-minimizing geodesic γ̄ between
b−2 and b+2 (because ‖ logd2

(b−2)‖ > r
2 , as well as ‖ logd2

(b+2)‖), while the
midpoint of the shortest geodesic γ between the two data points is given
by ξ = −π. Therefore, d2 is not interpolated by B(t). interpolation

4.1.4 Alternative definition of the control points to ensure interpolation
while losing differentiability

To overcome this limitation for any general manifold, we propose now a
solution that enforces the fitting curve to interpolate the data points when
λ → ∞, regardless of the curvature of the manifold. This new condi-
tion will fix the interpolation problem, but we will see that this conditions
yields to a loss of the differentiability condition that we had before. As a
consequence of that, it will be necessary to modify the De Casteljau algo-
rithm (usually used at the reconstruction step) to propose a new definition
of Bézier curves, compatible with the new C1-condition (see Sections 4.2
and 4.3).

The solution to have interpolation modifies the definition of the inter-
mediary control points pi, i = 1, . . . , n− 1, as follows.

Proposition 4.6 (Interpolation conditions). Let us consider the tangent vectors
b̃+i and b̃−i ∈ Tdi

M, i = 1, . . . , n− 1, computed by (4.6). To interpolate the data
points di when λ→ ∞, the control points pi, can be computed as (see Figure 4.4)

pi = expdi

(
b̃−i + b̃+i

2

)
, i = 1, . . . , n− 1. (4.8)

Proposition 4.6 is nothing more than another way to generalize the Eu-

| 87

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_pi_choice_for_fitting” — 2020/7/7 — 11:53 — page 78 — #1 i
i

i
i

i
i

M

γi(t)

g(t; b−i , pi)

g(t; pi, b+i)

di

b−i b+i
pi

Tdi
M

γ̃i(t)

d̃i = 0

b̃−i b̃+i
p̃i

Fig. 4.4 Choice of the point pi with the interpolation conditions (4.8). As
p̃i ∈ Tdi

M is in the middle of the straight line γ̃i(t) joining b̃−i and b̃+i ,
limλ→∞ pi = di. Furthermore, γi(t) = expdi

(γ̃i(t)) is differentiable at pi

even if b−i , pi and b+i are not aligned on the same geodesic.

clidean conditions of differentiability (3.12). The two resulting definitions
for the control points pi, i = 1, . . . , n− 1, are equivalent on the Euclidean
space, while they are not on a general Riemannian manifold. The differ-
ence compared to (4.7) is that here the C1 condition is directly computed in
the tangent space at di, and not at b−i .

Applying these new interpolation conditions results in the following
definition for the fitting composite cubic Bézier curve.

Definition 4.7 (Fitting composite cubic Bézier curve on manifold–II). For
a given value of the parameter λ > 0, the composite cubic Bézier curveFitting with a

composite
Bézier curve B : [0, n] → M, fitting the manifold-valued data points d0, . . . , dn at pa-

rameter values t0 = 0, . . . , tn = n, is defined as

B(t) = β3(t− i; pi, b+i , b−i+1, pi+1), i = btc.

The control points p0, b+i , b−i+1, pn, i = 0, . . . , n− 1, are defined by (4.6) with
dref = di. The remaining control points pi, i = 1, . . . , n− 1, are computed
as in Proposition 4.6. The Bézier curve β3 is reconstructed according to
Definition 3.12.

88 |

Fitting with composite Bézier curves | 4.1

We now list a set of properties that are verified by the fitting curve of
Definition 4.7.

Proposition 4.8. The composite cubic Bézier curve B(t) of Definition 4.7 inter-
polates the data points when λ→ ∞. interpolation

Proof. We show here that B(i) → di, i = 0, . . . , n, when λ → ∞. Let i ∈
{1, . . . , n − 1}. When λ → ∞, the weights wij in equation (4.6) are such
that limλ→∞ b̃+i = − limλ→∞ b̃−i . Therefore, limλ→∞ p̃i = 0 = d̃i, and thus
limλ→∞ pi = di. For i ∈ {0, n}, interpolation is ensured by construction.

Proposition 4.9 (Minimal representation of the fitting curve). The fitting curve minimal
representation

of Definition 4.7 is uniquely represented by 2(n + 1) tangent vectors.

Proof. The proof is similar to the one of Proposition 3.24. The control points
are obtained from the 2(n + 1) tangent vectors x̃, ỹ ∈ Tdi

M, i = 0, . . . , n,
as stated in the relevant parts of Algorithm 2.

Proposition 4.10 (Exponential and logarithm maps required). The number of Exp-Log
complexity

exponential and logarithm maps required by the fitting curve of Definition 4.7 is

• n(n + 1) logarithms for the construction of the minimal representation of
the curve of Proposition 4.9

• 10 exponential maps and 6 logarithm maps to reconstruct the curve B(t),
for a given parameter value t, given that minimal representation.

Proof. The n(n+ 1) logarithms maps are required for the evaluation of (4.6).
The reconstruction of the curve at a given value of t require 4 exponential
maps (to obtain the representation on the manifold of the 4 control points
associated to the segment i = btc), and the De Casteljau algorithm requires
6 additional exponential and logarithm maps.

Proposition 4.11. The composite cubic Bézier curve of Definition 4.7 is in gen-
eral not differentiable at pi.

Proof. Consider a set of data points di ∈ R2, i = 0, . . . , n, and the corre-
sponding parameter values t0 = 0, . . . , tn = n. Let B be the fitting curve
(Definition 4.7), for a given value of λ. Without loss of generality, we fix
i, and consider that the associated data point di is equal to (0, 0). As-
sume now that the data points belong actually to a manifold M similar
to R2. More precisely, letM be the Euclidean space R2 except in a small

| 89

4 | Fitting with Bézier, blended, and Bézier-like curves

region between b−i and b+i where the metric is smoothly reduced such that
dM(b−i , b+i) < dR2(b−i , b+i) = ‖b+i − b−i ‖, as represented in Figure 4.5. Fi-
nally, let us denote by x̃ the representation in Tdi

M = R2 of a point x ∈ M.

i
i

“TikZ/12_pi_choice_eucl_fail” — 2020/7/7 — 11:53 — page 80 — #1 i
i

i
i

i
i

di

pi

b−i

b+i
p′i

Fig. 4.5 Proposition 4.6 is not compatible with the differentiability con-
straints, as the middle of the geodesic between b−i and b+i is p′i and not
pi.

Proposition 4.6 states that p̃i := logdi
(pi) is obtained as p̃i = 0.5(b̃−i +

b̃+i). As di = (0, 0), we observe immediately that b+i = b̃+i , as well as
b−i = b̃−i . However, pi = 0.5(b−i + b+i) does not correspond to the midpoint
p′i = g(0.5; b−i , b+i) of a (possibly non-minimizing) geodesic g between b−i
and b+i . This is due to the shrinking of the metric in the above-mentioned
area. Therefore, the two velocities limε→0

d
dt B(i − ε) = − logpi

(
b−i
)

and

limε→0
d
dt B(i + ε) = logpi

(
b+i
)

are in general different in TpiM, which re-
sults in the non-differentiability of the curve.

On the one hand, the new fitting curve of Definition 4.7 recovers the
interpolation property as λ→ ∞, but on the other hand, losing differentia-
bility is a major drawback.

In the next section, we propose a new curve definition, obtained using
a so-called blending process, in order to overcome this drawback.

4.2 Fitting with blended Bézier curves

We now present a way to construct a differentiable curve B(t) that satisfies
the six properties mentioned at the beginning of this chapter. The method
is also less costly than those of Section 4.1, as it requires fewer exp and

90 |

Fitting with blended Bézier curves | 4.2

log evaluations to evaluate the curve at a given parameter value t. We still
resort to Bézier curves, but here it is merely for convenience in order to
reuse (4.6); actually all the Bézier curve are now computed in (Euclidean)
tangent spaces and are thus nothing else than polynomials expressed in a
specific form.

4.2.1 Blending technique

The basic idea of this method is that the control points of the ith curve of
B(t) are computed in the tangent spaces of the data points di and di+1.
A (Euclidean) Bézier curve is computed on each of these tangent spaces
and then mapped to the manifold. These two solutions are finally blended
together onM, via a carefully chosen weighted mean that will be defined
in a moment. This last step of this sketched algorithm gives its name to the
reconstructed blended curve B. We provide now a more formal description
of this method.

Definition 4.12 (Blended curve). Let dref,1, dref,2 ∈ M be two different
reference points. Consider two sequences of tangent vectors b̃0, . . . , b̃K ∈ reference point

Tdref,1
M and b̂0, . . . , b̂K ∈ Tdref,2

M named control vectors. The blended curve control vector

βK : [0, 1]→M of degree K is defined as blended curve

βK(t) = av[(L(t), R(t)), (1− w(t), w(t))], (4.9)

where L(t) (resp. R(t)) is the local curve at the reference point dref,1 (resp. local curve

dref,2. They are expressed as

L(t) = expdref,1

(
β̃K(t; b̃0, . . . , b̃K)

)
(4.10)

R(t) = expdref,2

(
β̂K(t; b̂0, . . . , b̂K)

)
(4.11)

and where w(t) = 3t2 − 2t3 is a given weight function. The curve β̃K (resp.
β̂K) is called the tangent curve in Tdref,1

M (resp. Tdref,2
M). tangent curve

β̃K

Remark 4.13. In order to obtain the differentiability property of Theo-
rem 4.18, the weight function w(t) has to be chosen such that βK(0) = L(0), weight

function w(t)
βK(1) = R(1), β̇K(0) = L̇(0), and β̇K(1) = Ṙ(1). This is achieved when
w(0) = 0, w(1) = 1, w′(0) = 0, and w′(1) = 0. Among all functions w that
satisfy these conditions, we opted for the one that minimizes the mean
square second derivative

∫ 1
0 (w

′′(t))2dt. This choice of weight can also be

| 91

4 | Fitting with Bézier, blended, and Bézier-like curves

seen as the minimizing one when then pieces L(t) ∈ R and R(t) ∈ R are
constant, such that the resulting curve B now minimizes

∫ 1
0 ‖B′′(t)‖2dt.

Remark also that w(t) ∈ [0, 1], for any t ∈ [0, 1]. The weighting function is
represented in figure 4.6i

i
“TikZ/12_optimalWeights” — 2020/7/7 — 11:53 — page 81 — #1 i

i

i
i

i
i

0 1

L(t)

R(t)

B(
t)
=
(1
− w(

t))
L(

t)
+

w (
t)R

(t)

Fig. 4.6 Optimal blending of two constant curves L(t), R(t) in R.

Proposition 4.14 (Continuity of the blended curve). The blended curve (Defi-
nition 4.12) is well defined and smooth under the assumption that the exponential
and the logarithm map involved are well defined and smooth. This holds in partic-
ular ifM is geodesically complete and if the distance dM(L(t), R(t)) < r∗(t),
where r∗(t) = max(rR(t), rL(t)), for all t ∈ [0, 1]. Furthermore, it interpolates

the point b0 = expdref,1

(
b̃0
)

and the point bK = expdref,2

(
b̂K

)
.

Proof. The first claim is direct by composition. For the second claim, as
dM(L(t), R(t)) < r∗(t), the weighted average between L(t) and R(t) never
crosses the cut loci of the points, so that the blended curve is never discon-
tinuous. Interpolation is obtained as follows. As w(0) = 0, then βK(0) =

av[(L(0), R(0)), (1, 0)] = L(0) = b0, and similarly for βK(1), as w(1) =

1.

The natural next step is now to define the notion of composite blended
curve.

92 |

Fitting with blended Bézier curves | 4.2

Definition 4.15 (Composite blended curve). Consider now the sequence
(βi

Ki
)n−1

i=0 of n blended curves. The composite blended curve B(t) is the curve

B : [0, n]→M, t 7→ βi
Ki
(t− i), i = btc. (4.12)

Consider now the data points d0, . . . , dn ∈ M corresponding to param-
eter values ti = i, i = 0, . . . , n, and the regularization parameter λ > 0.
Our objective is now to define the blended cubic spline B(t) = βi

3(t − i),
i = btc minimizing (4.1) whenM is flat. To do so, one has to choose the
two reference points and find the control vectors of each blended curve.

Without loss of generality, consider the ith blended curve βi
3(t) of B(t).

We define its intermediate functions L(t) and R(t) as

L(t) = expdi

(
β̃K(t; p̃i, b̃+i , b̃−i+1, p̃i+1)

)
(4.13)

R(t) = expdi+1

(
β̂K(t; p̂i, b̂+i , b̂−i+1, p̂i+1)

)
, (4.14)

where we have chosen dref,1 = di and dref,2 = di+1.
The control vectors of the Euclidean Bézier curves on Tdi

M and Tdi+1
M

are obtained such that they are cubic smoothing splines on their respective
tangent spaces. In other words, the control vectors x̃ ∈ { p̃i, b̃+i , b̃−i+1, p̃i+1}
(resp. x̂) correspond to the tangent vectors computed using equation (4.6)
with dref = di (resp. dref = di+1) on Tdi

M (resp. Tdi+1
M). Finally, in

view of Proposition 3.9 and the C1 (actually C2) property of a natural cubic
spline, the remaining control vectors are

p̃i =
b̃−i + b̃+i

2
, i = 1, . . . , n− 1, (4.15)

and accordingly for p̂i.
We can now define the blended cubic spline.

Definition 4.16 (Blended cubic spline). For a given value of the parameter
λ > 0, the proposed blended cubic spline B : [0, n]→M fitting the manifold- Fitting with a

composite
blended curvevalued data points d0, . . . , dn ∈ M at parameter values t0 = 0, . . . , tn = n,

is defined as
B(t) := βi

3(t− i), i = btc,
where βi

3(t − i) is as in Definition 4.12. The intermediate functions L(t)
and R(t) of βi

3 are defined by (4.13) and (4.14), and their control vectors are
computed on Tdi

M and Tdi+1
M using (4.6) and (4.15).

| 93

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_blended” — 2020/7/7 — 11:53 — page 83 — #1 i
i

i
i

i
i

M

di
di+1pi

pi+1

L(t) R(t)

B(t)

Tdi
M

p̃i

b̃+i
b̃−i+1

p̃i+1

Tdi+1
M

p̂i

b̂+i

b̂−i+1

p̂i+1

Fig. 4.7 Illustration of the reconstruction of the blended cubic spline (Al-
gorithm 4). The points (p̃i, b̃+i , b̃−i+1, p̃i+1) and (p̂i, b̂+i , b̂−i+1, p̂i+1) are com-
puted respectively in the tangent space of di and di+1 according to (4.6)
and (4.15). The points L(t) and R(t) (black circles) are obtained as the map-
ping to M of the Euclidean Bézier curve obtained on Tdi

M and Tdi+1
M

respectively. Finally, these points are averaged onM via equation (4.9) to
obtain the value of the blended cubic spline B(t) (blue dot).

The whole method is summarized in Algorithms 3 and 4, and this last
algorithm is represented on Figure 4.7.

4.2.2 Properties of the composite cubic blended curve

We now analyze the properties of the composite cubic blended curve.

Lemma 4.17. Consider the tangent spaces Tdi
M, i = 1, . . . , n − 1 and the

control vectors p̂i−1, b̂+i−1, b̂−i , p̂i = p̃i, b̃+i , b̃−i+1, and p̃i+1 obtained by (4.6)
and (4.15). The curve γ̃ : [0, 2]→ Tdi

M : t 7→ γ̃(t) given by

γ̃(t) =

{
β3(t; p̂i−1, b̂+i−1, b̂−i , p̂i) for t ∈ [0, 1]

β3(t− 1; p̃i, b̃+i , b̃−i+1, p̃i+1) for t ∈ [1, 2],

is a natural cubic spline on Tdi
M.

94 |

Fitting with blended Bézier curves | 4.2

Algorithm 3 Control points generation for the blended cubic spline of Def-
inition 4.16.
Require: d0, . . . , dn, λ > 0, A0, A1 and C (Appendix C).

Init: s0 = · · · = sn = u0 = · · · = un = 0.
W ← (A0 + λA1)

−1C % matrix of weights
dref,2 = d0.
for j = 0, . . . , n do

uj = logdref,2

(
dj
)

end for

for i = 0, . . . , n− 1 do
dref,1 ← di % reference points
dref,2 ← di+1
for j = 0, . . . , n do

sj ← uj % mapping to Tdref,?M
uj ← logdref,2

(
dj
)

end for
for j = 0, . . . , 3 do

x̃j ← ∑n
k=0 w(2i+j)ksk % cp generation

x̂j ← ∑n
k=0 w(2i+j)kuk

end for

% first point of the segment
if i = 0 then

p̃0 ← x̃0 and p̂0 ← x̂0
else

p̃i ← 0.5(x̃0 + x̃1) % C1-condition
p̂i ← 0.5(x̂0 + x̂1)

end if

% last point of the segment
if i = n− 1 then

p̃n ← x̃3 and p̂n ← x̂3
else

p̃i+1 ← 0.5(x̃2 + x̃3) % C1-condition
p̂i+1 ← 0.5(x̂2 + x̂3)

end if

% inner points of the segment
b̃+i ← x̃1 and b̂+i ← x̂1

b̃−i+1 ← x̃2 and b̂−i+1 ← x̂2
end for

| 95

4 | Fitting with Bézier, blended, and Bézier-like curves

Algorithm 4 Reconstruction of the C1 blended cubic spline of Defini-
tion 4.16 at time t
Require:

i ∈ {0, . . . , n− 1}, t ∈ [i, i + 1],
(p̃i, b̃+i , b̃−i+1, p̃i+1) ∈ Tdi

M,
(p̂i, b̂+i , b̂−i+1, p̂i+1) ∈ Tdi+1

M

w← 3t2 − 2t3

x̃ ← β3(t; p̃i, b̃+i , b̃−i+1, p̃i+1), x ← expdi
(x̃)

ŷ← β3(t; p̂i, b̂+i , b̂−i+1, p̂i+1), y← expdi+1
(ŷ)

z← av[(x, y), (1− w, w)]
return z

Proof. By construction of the control points, the curve γ̃ corresponds to
two successive pieces of the optimal fitting curve in the Euclidean space
Tdi
M for the data points logdi

(
dj
)
, j = 0, . . . , n. This optimal fitting curve

is known to be a natural cubic spline; see, e.g., [GS93].

Theorem 4.18. Consider the data points d0, . . . , dn ∈ M associated with thedifferentiability
conditions

parameter-values ti = i, i = 0, . . . , n. The blended cubic spline B(t) : [0, n] →
M of Definition 4.16 satisfies the following properties:

(i) B(i)→ di when λ→ ∞, for i = 0, . . . , n;

(ii) B(t) is well defined and smooth under the assumptions from the intro-
duction, i.e., that the exponential and the logarithm map are well defined
and smooth. This holds in particular ifM is complete and, on each piece,
dM(L(τ), R(τ)) < r∗(τ), r∗(τ) = max(rR(τ), rL(τ)), for all τ ∈ [0, 1].

(iii) whenM is a Euclidean space, B(t) is the cubic smoothing spline that min-natural cubic
spline

imizes (4.1) over the Sobolev space H2(0, n).

Proof. By Proposition 4.14, βi
3(0) = pi and βi

3(1) = pi+1, for i = 0, . . . , n−
1. Therefore, B(i) = pi. When λ → ∞, p̃i = 0 ∈ Tdi

M by (4.6) and (4.15),
so pi = di ∈ M, and property (i) is verified ∀i. The proof of property
(iii) is direct from Lemma 4.17, as Td0Rm = Td1Rm = · · · = Tdn Rm. Let
us now prove property (ii). Again by Proposition 4.14, B is C1 on t 6= i.
There remains to show that B(t) is differentiable at t = i. For i ∈ {0, n}
differentiability is trivial. Let i ∈ {1, . . . , n− 1}. Consider the curve γ̃(t) of
Lemma 4.17 and γ(t) = expdi

(γ̃(t)). By definition, w′(t) = 0 at t ∈ {0, 1}.

96 |

Fitting with blended Bézier curves | 4.2

Therefore,

d
dt

B(t)|t=i+ =
d
dt

av[(Li(t), Ri(t)), (1− w(t), w(t))]|t=0+

=
d
dt

Li(t)|t=0+ =
d
dt

γ(t)|t=1+ ,

where Ri(t) and Li(t) are the intermediate functions (4.13) and (4.14) of the
ith blended curve of B. Similarly,

d
dt

B(t)|t=i− =
d
dt

Ri−1(t)|t=1− =
d
dt

γ(t)|t=1− .

As expdi
(·) is a smooth mapping, γ(t) is differentiable at t = 1, so B(t) is

differentiable at t = i, ∀i.

Remark 4.19. Note that the condition of Theorem 4.18, (ii), is not easy to
check in practice. Let us pose L̃(t) and R̂(t), the smoothing splines com-
puted in Tdi

M and Tdi+1
M, respectively, evaluated at t = s− i, s ∈ [i, i+ 1].

Let t be given. By the triangular inequality, one can say that

dM
(

L(t), R(t)
)
≤ ‖L̃(t)‖+ dM(di, di+1) + ‖R̂(t)‖.

By definition, the smoothing splines read

L̃(t) =
3

∑
i=0

n

∑
j=0

Bi3(t)Dijd̃j,

and accordingly for R̂(t). We pose ∆ = maxij dM(di, dj). As Bi3(t) ≥ 0 and
∑3

i=0 Bi3(t) = 1, one has

dM
(

L(t), R(t)
)
≤ (n + 1)max

ij
(Dij)

(
2∆
)
+ ∆.

The condition of Theorem 4.18, (ii), is verified if

∆ ≤ r∗(t)
1 + 2(n + 1)maxij(Dij)

.

This condition can be checked a priori. It is sufficient for arbitrary man-
ifolds with nonzero injectivity radius, but it is by no means necessary. In
practice, we observed that the property (ii) holds true in all experiments we

| 97

4 | Fitting with Bézier, blended, and Bézier-like curves

conducted, and we were not even able to choose the data points malicously
enough to make it wrong.

Proposition 4.20 (Minimal representation of the curve). The blended cubicminimal
representation

spline of Definition 4.16 is uniquely represented by 6(n− 1) + 8 tangent vectors.

Proof. The curve is represented by the following tangent vectors:

• 4 vectors p̃0, b̃+0 , b̃−1 , b̃+1 ∈ Td0M

• 6 vectors p̃0, b̃+0 , b̃−1 , b̃+1 , b̃−2 , b̃+2 ∈ Td1M

• 6(n− 3) vectors b̃−i−1, b̃+i−1, b̃−i , b̃+i , b̃−i+1, b̃+i+1 ∈ Tdi
M, for i = 2, . . . , n−

2;

• 6 vectors b̃−n−2, b̃+n−2, b̃−n−1, b̃+n−1, b̃−n , p̃n ∈ Tdn−1M

• 4 vectors b̃−n−1, b̃+n−1, b̃−n , p̃n ∈ TdnM.

Proposition 4.21 (Exponential and logarithm maps required). The numberExp-Log
complexity

of exponential and logarithm maps required by the blended cubic spline (Defini-
tion 4.16) is

• n(n + 1) logarithms for the construction of the minimal representation of
the curve of Proposition 4.20

• 3 exponential maps and 1 logarithm map to reconstruct the curve B(t), for
a given parameter value t, given that minimal representation.

Proof. The n(n + 1) logarithms maps are required for the representation of
the data points dj, j 6= i, in the tangent space Tdi

M. The reconstruction
of the curve at a given value of t requires 2 exponential maps to map on
the manifold the values of the Euclidean Bézier curves computed in the
tangent spaces at di and di+1, with i = btc, and one additional logarithm
and exponential map, for the weighted average of those two values.

4.3 Fitting with composite Bézier-like curves

This section is dedicated to present two other ideas fixing the differentia-
bility issue identified in Proposition 4.11. The approaches are based on the

98 |

Fitting with composite Bézier-like curves | 4.3

observation that the curve

γ̄i : [0, 2]→M : γ̄i(t) =

{
g(t; b−i , pi) for t ∈ [0, 1],

g(t; pi, b+i) for t ∈ [1, 2]

(see Figure 4.4) is not differentiable at t = 1. This curve, however, is used at
the first step of the De Casteljau algorithm to reconstruct Bézier curves of B
afterwards (Definition 3.12). A natural (but naive) idea to fix this problem
would be to replace these two geodesics (in the De Casteljau algorithm) by
any differentiable curve γi(t) : [0, 2] → M satisfying γi(0) = b−i , γi(1) =

pi and γi(2) = b+i (for instance, γ(t) = expdi
(γ̃(t)) from Lemma 4.17).

We explain here why this approach does not fix the differentiability
problem identified in Proposition 4.11. Then we show how this approach
can be modified in order to obtain C1 fitting curves satisfying the interpo-
lation property as λ → ∞: the trick is to replace the De Casteljau method
by a more general algorithm. However, the curve obtained will no longer
reduce to a natural cubic spline in the caseM = Rm.

This section relies on the notion of blossom of a recursive function. Blos-
soms can be viewed as a manner to generalize the De Casteljau algorithm.
Indeed, at each step of the recursion, one can choose a different function
and a different evaluation time, while the De Casteljau algorithm is limited
to performing only geodesics at a given time t. The section is composed
of two parts. We first recall the general theory and remarkable theorems
about blossoms. Then, we present and analyse two new fitting methods
based on that theory.

4.3.1 Blossom functions

Blossoms are conceptual mathematical objects described, e.g., in [Far02,
LW01]. We refer the reader to these documents for more details and ex-
tend here the results to a more general setting that will be useful to our
developments.

Definition 4.22 (Manifold-valued blossom). Let x0, . . . , xK ∈ M, K ∈ N,
be a set of points associated with the parameter values t0, . . . , tK ∈ [0, 1].
Consider a set of smooth functions fi(·; x, y) : [0, 1] → M, i = 1, . . . , K endpoint

function fisuch that fi(0; x, y) = x and fi(1; x, y) = y for all i. We will later refer
to such functions as endpoint functions. The associated recursive function

| 99

4 | Fitting with Bézier, blended, and Bézier-like curves

hK(·; x0, . . . , xK) : [0, 1]→M is defined as

hi(t; x0, . . . , xi) = fi
(
t; hi−1(t; x0, . . . , xi−1), hi−1(t; x1, . . . , xi)

)
,

with h0(t; xj) = xj, j = 0, . . . , K. The notion of blossom is a generalization
of hK, where different values of t can be used at each step of the recursion.
The blossom of hK is thus the map ψK : RK+1 →M given byblossom ψi

ψi(t0, . . . , ti; x0, . . . , xi) =

fi
(
ti; ψi−1(t0, . . . , ti−1; x0, . . . , xi−1),

ψi−1(t0, . . . , ti−1; x1, . . . , xi)
)
, (4.16)

with ψ0(t0; xj) = xj for all j. Observe therefore that

ψK(t, . . . , t; x0, . . . , xK) = hK(t; x0, . . . , xK). (4.17)

Example 4.23 (De Casteljau algorithm). One can of course define a blossom
for the Bézier curves of degree K on manifolds, based on the De Casteljau
algorithm (Definition 3.5). In that case, the curve fi(·; x, y) = g(·; x, y) isDe Casteljau

the geodesic between x and y, for all i.

Proposition 4.24 (Endpoint interpolation and velocity). For any set of data
points x0, . . . , xK ∈ M, the following properties hold:

(i) hK(0; x0, . . . , xK) = x0,

(ii) hK(1; x0, . . . , xK) = xK,

(iii) ḣK(0; x0, . . . , xK) =
K

∑
i=1

d
dt

∣∣∣∣
t=0

fi(t; x0, x1),

(iv) ḣK(1; x0, . . . , xK) =
K

∑
i=1

d
dt

∣∣∣∣
t=1

fi(t; xK−1, xK).

(v) if fi(·; x, y) ∈ C1 and is smooth in x, y, hK(·; x0, ·, xK) ∈ C1 as well.

Proof. Properties (i) and (ii) follow directly from the definition of the func-
tions fi: indeed, one has fi(0; x, y) = x and fi(1; x, y) = y, for all i. Proper-
ties (iii) and (iv) are proven in a similar way as [PN07, Theorem 1]. By (4.17)
one has

ḣK(0; x0, . . . , xK) =
K

∑
i=1

∂

∂ti

∣∣∣∣
ti=0

ψK(0, . . . , 0, ti, 0, . . . , 0; x0, . . . , xK).

100 |

Fitting with composite Bézier-like curves | 4.3

As fi(0; x, y) = x for x, y ∈ M, one has, by [PN07, Lemma 3 (ii)],

ψK(0, . . . , 0, ti, 0, . . . , 0; x0, . . . , xK) = fi(ti; x0, x1).

As a result, we obtain

ḣK(0; x0, . . . , xK) =
K

∑
i=1

d
dt

∣∣∣∣
t=0

fi(t; x0, x1).

(iv) is obtained symmetrically. Finally (v): the smoothness of hK is pre-
served by composition.

4.3.2 Bézier-like fitting curves

In this section, we propose two modifications of the classical De Casteljau
algorithm (Definition 3.12) in order to produce a fitting curve for a set of
data points d0, . . . , dn associated with parameters t0 = 0, . . . , tn = n. The
underlying idea is to modify the functions fi used to construct the function
hK from Definition 4.22.

Definition 4.25 (Bezier-like fitting curve – type I). Let λ > 0. For i ∈
{0, . . . , n − 1}, we define p̃i, b̃+i ∈ Tdi

M and b̂−i+1, p̂i+1 ∈ Tdi+1
M, the

vectors computed with (4.6) and (4.15) in their respective tangent spaces.
We consider the corresponding points pi, b+i , b−i+1 and pi+1 ∈ M. The cu-
bic Bézier-like curve h3(·; pi, b+i , b−i+1, pi+1) : [0, 1] → M is recursively com- Bézier-like

curve
puted, according to Definition 4.22, with the following endpoint functions:

f1(t; pi, b+i) := γi(1 + t),

f1(t; b+i , b−i+1) := g(t; b+i , b−i+1),

f1(t; b−i+1, pi+1) := γi+1(t),

fk(t; x, y) := av[(x, y), (1− w(t), w(t))], k = 2, 3,

where w(t) = 3t2− 2t3 and γi : [0, 2]→M, γi(t) := expdi

(
(2−t)

2 b̃−i + t
2 b̃+i

)

is a straight line on Tdi
M, mapped to M. As illustrated in Figure 4.4,

γ(1) = pi. Observe that, in a mild abuse of notation, the definition of f1
depends on the name of its arguments.

The composite cubic Bézier-like curve of type I B(t) is then defined accord-
ing to Definition 3.15. This definition is illustrated in Figure 4.8.

| 101

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_bezierLike_one” — 2020/7/7 — 11:53 — page 91 — #1 i
i

i
i

i
i

M

di
di+1pi

pi+1

b+i
b−i+1

x1
0

x1
1

x1
2

expdi
(γ̃i(1 + t))

Tdi
M

b̃+i

p̃i

Tdi+1
M

b̂−i+1

p̂i+1

Fig. 4.8 Composite Bézier-like curve of type I. The first step of the algo-
rithm is a hybrid method where the first (resp. last) geodesic is replaced
by the curve γi(1 + t) (resp. γi+1(t)). The middle one is still a classical
geodesic between b+i and b−i+1. The next steps of the algorithm are classical
weighted averagings.

Remark 4.26. This definition of Bézier-like curve is directly related to the
interpolation conditions (4.15) but not restricted to cubic curves. Indeed,
it can be easily generalized to curves of degree K, where f1(t; pi, b+i) and
f1(t; b−i+1, pi+1) would correspond to the Euclidean operation mapped to
M, while the “other” (endpoint) functions f1(t; x, y) would be classical
geodesics between x and y.

Lemma 4.27. Let x, y ∈ M and w(t) = 3t2 − 2t3. Let z := f (t; x, y) =

av[(x, y), (1− w(t), w(t))]. Then

d
dt

∣∣∣∣
t=s

f (t; x, y) = 0, for s ∈ {0, 1}.

Proof. The optimality condition of z = f (t; x, y) are given by [Kar77, Thm
1.2]:

0 = logz(x) (1− w(t)) + logz(y)w(t) := F(t, z).

102 |

Fitting with composite Bézier-like curves | 4.3

By the implicit function theorem, one has Implicit
function
theorem

(summary):
let y = f (x)

and
F(x, f (x)) = 0,

for f and F
smooth.

Hence, ∂ f
∂x =

−Dy F(x, y)−1 ∂F
∂x .

d
dt

f (t; x, y) = − (DzF(t, z))−1 DtF(t, z),

where DtF(t, z) = (logz(y)− logz(x))w′(t). As w′(t) = 6t − 6t2, we see

that DtF(t, z)|t=0 = DtF(t, z)|t=1 = 0, and d
dt

∣∣∣
t=s

f (t; x, y) = 0 for s ∈
{0, 1}.

Theorem 4.28. Consider the data points d0, . . . , dn ∈ M associated with the differentiability
conditions

parameter-values t0 = 0, . . . , tn = n. The composite cubic Bézier-like curve B(t)
of type I (Definition 4.25) satisfies the following properties:

(i) B(i)→ di, when λ→ ∞;

(ii) B(t) is differentiable for t ∈ [0, n].

Proof. As av[(x, y), (1, 0)] = x and av[(x, y), (0, 1)] = y, the cubic Bézier-
like curves h3 from Definition 4.25 are recursive functions as defined in
Definition 4.22. Therefore, we can apply Proposition 4.24 (i–ii). By con-
dition (4.15), we prove (i) because p̃i → 0 when λ → ∞, so pi → di.
For condition (ii), let i = 1, . . . , n − 1. B(t) is smooth for t 6= i, as h3 is
smooth (Proposition 4.24 (v)). For t = i, we have by Lemma 4.27 that
d
dt

∣∣∣
t=s

fk(t; x, y) = 0, for s ∈ {0, 1}. Therefore, by Proposition 4.24 (iii–iv),
one has

dB(t)
dt

∣∣∣∣
i−

=
dγi(t)

dt

∣∣∣∣
1−

and
dB(t)

dt

∣∣∣∣
i+

=
dγi(t)

dt

∣∣∣∣
1+

.

As γi(t) is differentiable, so is B(t).

Remark 4.29. In Definition 4.25, one could be tempted to simply use clas-
sical geodesics in place of fk(t; x, y), k = 2, 3. However, by Proposition 4.24
the left and right velocities of B at t = i will in general not be the same:
indeed, as shown in Proposition 4.11, b−i , pi and b−i are not always aligned.

Proposition 4.30 (Minimal representation of the curve). The fitting Bézier-like minimal
representation

curve of Definition 4.25 is uniquely represented by 2(n + 1) tangent vectors.

Proof. The proof is similar to the one of Proposition 4.9, the same tangent
vectors can be used to represent the curve.

| 103

4 | Fitting with Bézier, blended, and Bézier-like curves

Proposition 4.31 (Exponential and logarithm maps required). The number ofExp-Log
complexity

exponential and logarithm maps required by the fitting Bézier-like curve of Defi-
nition 4.25 is

• n(n + 1) logarithms for the construction of the minimal representation of
the curve;

• 8 exponential maps and 4 logarithm maps to reconstruct the curve B(t), for
a given parameter value t, given that minimal representation.

Proof. The proof is here also similar to the one of Proposition 4.10. The
differences between the two methods is that two geodesics are spared at
the first step of the algorithm.

One strength of the method is that differentiability of the composite
curve B (Definition 4.25) at t = i depends only on the differentiability of
γi. The curve γi(t) can be replaced by any differentiable curve between
b−i and b+i and such that γ(0.5) = pi. This property is possible because
d
dt av[(x, y), (1− w, w)]|t=s = 0, for s ∈ {0, 1} and w(t) = 3t2 − 2t3. Then,
most of the computation of the pieces of B(t) can be transferred to the
tangent spaces Tdi

M and Tdi+1
M, i = 0, . . . , n − 1. For cubic curves, for

instance, the curve γi : [0, 2]→M can be the mapping toM of γ̃i(t), com-
posed of two C1-patched quadratic Bézier curves computed on the tangent
space of di, as

γ̃i(t) =

{
β2(t; b̃+i−1, b̃−i , p̃i) for t ∈ [0, 1]

β2(t− 1; p̃i, b̃+i , b̃−i+1) for t ∈ [1, 2],
(4.18)

where x̃ is the point x ∈ M represented in Tdi
M. The resulting curve h3

would thus be an averaging of the two curves γi(t) and γi+1(t), as repre-
sented on Figure 4.9.

This leads us to the following definition.

Definition 4.32 (Bézier-like fitting curve – type II). Let λ > 0. For i ∈
{0, . . . , n− 1}, let pi, b+i , b−i+1, pi+1 be the control points computed with (4.6)
and (4.8), and let x̃ = logdi

(x) ∈ Tdi
M and x̂ = logdi+1

(x) ∈ Tdi+1
M,

the representation of these control points in the corresponding tangent
spaces. Let also b̃−i+1 = logdi

(expdi+1
(b̂−i+1)), i = 0, . . . , n − 1, and b̂+i =

logdi+1
(expdi

(b̃+i)), i = 0, . . . , n − 1. The cubic Bézier-like curve (type II)Bézier-like
curve

104 |

Fitting with composite Bézier-like curves | 4.3

y(t) : [0, 1]→M is computed with the following iterative procedure:

x̃L
i := β2(t; p̃i, b̃+i , b̃−i+1)

x̂R
i := β2(t; b̂+i , b̂−i+1, p̂i+1)

xL
i := expdi

(
x̃L

i

)

xR
i := expdi+1

(
x̂R

i

)

y(t) := av[(xL
i , xR

i), (1− w(t), w(t))]

where w(t) = 3t2 − 2t3. The composite cubic Bézier-like curve (type II) B(t) is
then defined as (3.11). This definition is illustrated at Figure 4.9.i

i
“TikZ/12_bezierLike_two” — 2020/7/7 — 11:53 — page 94 — #1 i

i

i
i

i
i

M

di
di+1

b+i

b−i+1

Tdi
M

0̃

b̃+i b̃−i+1

Tdi+1
M

0̂

b̂+i

b̂−i+1

Fig. 4.9 Composite Bézier-like curve of type II. The first step of the al-
gorithm consists in mapping on the manifold the quadratic Bézier curves
computed on the tangent spaces Tdi

M and Tdi+1
M. The value of the com-

posite Bézier-like curve is then obtained by a classical weighted averaging
of these two points (black circles).

Remark 4.33. The exponential and logarithm map evaluations represent
usually the major part of the computation effort. Indeed, these maps are
not always closed form and might require lengthy iterative procedures to
be evaluated (e.g., on the space of shapes [KDL18]). A direct way to spare
2n − 2 Exp-Log evaluations is to compute the control points directly on

| 105

4 | Fitting with Bézier, blended, and Bézier-like curves

the dedicated tangent space, to avoid transfers from one tangent space to
another, as in Algorithm 3. The curve will remain C1 by Properties 4.24,
(iii–iv).

Theorem 4.34. Consider the data points d0, . . . , dn ∈ M associated with thedifferentiability
conditions

parameter-values t0 = 0, . . . , tn = n. The composite cubic Bézier-like curve B(t)
of type II (Definition 4.32) satisfies the following properties:

(i) B(i)→ di, when λ→ ∞;

(ii) B(t) is differentiable for t ∈ [0, n].

Proof. The proof is similar to the proof of Theorem 4.28. The condition (i) is
reached via Proposition 4.24 (i–ii) and condition (4.8). Let i = 1, . . . , n− 1.
Differentiability for t 6= i is trivial. For t = i, condition (ii) follows from
Lemma 4.27: as γi(t) = expdi

(γ̃i(t)) (Equation (4.18)) is differentiable, so
is B(t).

Proposition 4.35 (Minimal representation of the curve). The fitting Bézier-likeminimal
representation

curve of Definition 4.32 is uniquely represented by 2(n + 1) tangent vectors.

Proof. The proof is similar to the one of Proposition 4.9, the same tangent
vectors can be used to represent the curve.

Remark 4.36. There is no need to store the tangent vectors b̃−i+1 = logdi
b−i+1

and b̂+i = logdi+1
b+i , as they can be recovered afterwards. Indeed, b̃−i+1 =

logdi

(
expdi+1

b̂−i+1

)
, and b̂+i = logdi+1

(
expdi

b̃+i
)

.

Proposition 4.37 (Exponential and logarithm maps required). The number ofExp-Log
complexity

exponential and logarithm maps required by the fitting Bézier-like curve of Defi-
nition 4.32 is

• n(n + 1) logarithms for the construction of the minimal representation of
the curve of Proposition 4.35

• 5 exponential maps and 3 logarithm maps to reconstruct the curve B(t), for
a given parameter value t, given that minimal representation.

Proof. The n(n+ 1) logarithm maps are required to represent the data points
dj in the tangent space Tdi

M, j 6= i. At the reconstruction step, 2 exponen-
tials and 2 logarithms are required to compute b̂+i and b̃−i+1, as mentioned
in Remark 4.36. Finally, 2 exponential maps are required to map x̃L

i and x̂R
i

toM, and the averaging of these two points costs 1 exponential map and
1 logarithm map.

106 |

Numerical examples | 4.4

Remark 4.38. A last thing to remark about Definitions 4.25 and 4.32 is
that the reconstructed composite cubic Bézier-like curves no longer reduce
to natural cubic splines whenM = Rm. This will be shown numerically
in the next section.

4.4 Numerical examples

In this section, we compare the four fitting methods described in this chap-
ter. That is, the Bézier fitting curve from Definition 4.7 (Bézier), the blended
fitting curve from Definition 4.16 (Blended), and the Bézier-like fitting curves
defined in Section 4.3, i.e., Definitions 4.25 (BL-I) and 4.32 (BL-II).The goals
of the tests we have performed are twofold. The first goal is to validate nu-
merically some of the target properties from the introduction. We consider
here two such properties: property (i) (interpolation of the data as λ→ ∞),
see Section 4.4.1, and property (iii) (recovering of the natural cubic spline
in the Euclidean case), see Section 4.4.2. The second goal of this section is to
compare the curves regarding the value of the optimization problem (4.1).
This is done in Section 4.4.3, for two different manifolds: the sphere S2 and
the special orthogonal group SO(3).

As a comparison, we also consider the simpler approach in which the
fitting curve is entirely computed in a unique tangent space Tdref

M. One
of the drawbacks of this approach is that the result usually depends on
the tangent space chosen. In short, we compute the optimal (Euclidean)
smoothing spline in Tdref

M using the control points (4.6) and the condi-
tion (4.15), with a unique dref = dmid, where dmid = dn/2 if n is even, and

dmid = g(0.5, d(n−1)/2, d(n+1)/2)

if n is odd. This (Euclidean) fitting curve is then mapped back toM. The
latter method will be referred to as LC (for Local Curve) in our results.

4.4.1 Validation of property (i): interpolation as λ→ ∞

We consider the two data sets from Section 4.1.3 (namely, the unit circle S1 sphere S1

represented on Figure 4.3a and the wind field data, lying on S+(3024, 20)). Wind field,
S+(n, p)

We compute the different fitting curves for λ → ∞ on these datasets. Sim-
ilarly to Section 4.1.3, the parameter λ is set to 108.

| 107

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_circle_success_compare” — 2020/7/7 — 11:53 — page 96 — #1 i
i

i
i

i
i

0 1 2 3 4
−2π

−3 π
2

−π

−π
2

0

time-parameter t

an
gl

e
ξ
(t
)

Angle of the Bézier-like curve on S1

Opt
Blended
Bézier
BL-I
BL-II
LC

(a) The five methods interpolate the data points.i
i

“TikZ/12_circle_success_detail” — 2020/7/7 — 11:53 — page 96 — #1 i
i

i
i

i
i

0 1 2 3 4
−2π

−3 π
2

−π

−π
2

0

time-parameter t

an
gl

e
ξ
(t
)

Angle of the Bézier-like curve on S1

Blended
L(t)
R(t)

(b) Explanation of the behavior of the blended cubic spline.

Fig. 4.10 Comparison of the five methods on the counter-example of Sec-
tion 4.1.3, on S1. Top: the fitting parameter is set to λ = 108. In accordance
with Proposition 4.6, the data points are almost interpolated by all meth-
ods. We see that the local curve LC can lead to a drastically different result.
Bottom: The blended cubic spline is computed, at each time, as a weighted
average of L(t) and R(t) (see Definition 4.12). The fact that the two curves
are computed on two different tangent spaces results here in strong differ-
ences between them after projection on the manifold.

108 |

Numerical examples | 4.4

The resulting curves are represented in Figure 4.10a and Figure 4.11.
These two figures indicate that all the methods satisfy the interpolation
property, for both datasets. Moreover, Figure 4.10a indicates that all the
methods tend to behave in a similar way, except the local curve LC, which
leads to a considerably different result. This can be explained by the fact
that the data points are spread out on S1. Therefore, the mappings logdmid

(di),
i = 0, . . . , 4, are in general very distorted representations of the data points
di ∈ S1. It can also be observed on Figure 4.11 that the errors for the lo-
cal curve are larger on the boundaries of the interval, i.e., in the region in
which the distortions expected from the mapping into the tangent space
Tdmid

M are the largest.
As a comparison, we computed the optimal solution on the circle (Opt).

Indeed, on that particular manifold, is it possible to compute the optimal
solution to (4.1). The only particularity of the circle, with respect to the
Euclidean space, is that two points distant of an angle 2π are equivalent.
So, we can solve the problem (4.1) in two steps: first, compute the optimal
representative for the angles characterizing the data, which is a combina-
torial problem, and then, compute the composite Bézier curve in R that fits
those values.

By comparing the mean squared accelerations of the different curves
(Bézier: 52.2, Blend: 66.7, BL-I: 56.3, BL-II: 34.2, LC: 71.9, Opt: 17.8), we
observe that BL-II performs surprisingly well. We see that the blended
cubic spline performs a bit less good, but as we show in Section 4.4.3, this is
generally not observable when working with other (randomly generated)
datasets. Actually, we expect this acceleration to be due to the choice of
the data points, that are in our case far away from each other. Indeed, this
causes here a large difference between the two blended curves L(t) and
R(t), as represented in Figure 4.10b (see for instance between the points
at t = 0 and t = 1). This difference highlights here the importance of
the reference points chosen in all proposed methods. How to tackle this
problem while keeping the properties (i–vi) is still an open question.

4.4.2 Validation of property (iii): natural cubic splines in the Euclidean
case

Figure 4.12 illustrates the curves obtained for a fitting task (λ = 102), on the
bidimensional Euclidean space R2. We verify here that the blended curve, natural cubic

spline
the local curve and the Bézier curve are the natural cubic spline, and that

| 109

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_psd_success” — 2020/7/7 — 11:53 — page 97 — #1 i
i

i
i

i
i

0 5 10 15

10−8

10−7

angle θ

E
(C

(θ
i)

,B
(θ

i)
)

Interpolation error on the wind field data

Bézier
Blended

BL-I
BL-II
LC

Fig. 4.11 The five reconstruction methods interpolate the data points of
the counter-example on S+(3024, 20) of Section 4.1.3, when condition (4.8)
is respected. As a comparison, Figure 4.2 shows the situation when condi-
tion (4.8) is not respected.

the curves obtained via BL-I and BL-II differ from the optimal solution.
Each component of the data points di = (di,x, di,y) ∈ R2, i = 0, . . . , 5, was
chosen randomly as di,x, di,y ∼ N (0, 1).

We know by Theorem 4.18 and Proposition 4.2 that B(t) is the natural
cubic spline B?(t) when it is reconstructed as a composite blended cubic
curve (Blended), or as a classical Bézier curve (Bézier and LC), as shown
in Figure 4.12a. Figure 4.12b shows us that the curves reconstructed by the
methods from Section 4.3 (BL-I and BL-II) are not the natural spline B?(t)
and that their speed and their path differ strongly.

Figure 4.12a also suggests that all methods would return the same curve
position at t = k

2 , k ∈ Z. Indeed, as w(0) = 0, w(0.5) = 0.5 and w(1) = 1,
the curves reconstructed by all methods are identical there.

4.4.3 Mean acceleration of the curves

We compare here the acceleration of the different curves, on two manifolds:
the sphere S2 and the special orthogonal group SO(3). For each manifold,sphere S2

SO(3) we generated randomly N = 1000 geodesics γk : [0, 1] → M. From these

110 |

Numerical examples | 4.4

i
i

“TikZ/12_euclidean_path_diff” — 2020/7/7 — 11:54 — page 98 — #1 i
i

i
i

i
i

0 2 4
0

0.05

0.1

parameter [t]

‖B
(t
)
−

B
?
(t
)‖

Curve differences on R2

Blended
Bézier
BL-I
BL-II
LC

(a) Differences between the curves on the Euclidean space R2.i
i

“TikZ/12_euclidean_path_speed” — 2020/7/7 — 11:54 — page 98 — #1 i
i

i
i

i
i

0 1 2 3 4 5

−1

−0.5

0

0.5

parameter [t]

s(
t)
−

s?
(t
)

Speed differences on R2

Blended
Bézier
BL-I
BL-II
LC

(b) Differences between the speed of the curves on the Euclidean space R2.

Fig. 4.12 All methods do not satisfy property (iii), i.e., not all of them
reduce to the natural cubic spline whenM is a Euclidean space (here,M =
R2). Top: the curves B(t) computed by BL-I and BL-II are different from
the natural cubic spline B?(t). Bottom: naturally, their speed s(t) then
differ from the speed s?(t) of the natural cubic spline

| 111

4 | Fitting with Bézier, blended, and Bézier-like curves

geodesics, we extracted 6 points xp,k = expγk(p/5)(v), p = 0, . . . , 5, where
v ∈ Tγk(p/5)M is a random vector whose components are distributed ac-
cording to a classical normal law N (0, 0.12) of mean 0 and standard devi-
ation 0.1. On each data set (xp,k)

5
p=0, with k = 1, . . . , N, we built the five

fitting curves at 1000 equispaced times t ∈ [0, 5], and evaluated the accel-
eration B̈k(t) of each of them using finite differences (see Definition 2.60):

B̈k(ti) =
logBk(ti)

(Bk(ti+1)) + logBk(ti)
(Bk(ti−1))

∆τ2 , ∆τ = ti − ti−1.

Figure 4.13a displays, for the sphere S2, the mean acceleration of the
curves E[‖B̈(t)‖], estimated by averaging the results on the N datasets
given by

E[‖B̈(t)‖] ' 1
N

N

∑
k=1
‖B̈k(t)‖.

This figure indicates that the local surface LC results on average in a curve
with a considerably larger acceleration than the four other methods.

Figure 4.13b presents the results of the same tests, but on the special
orthogonal group SO(3). We observe here similar results as on the sphere.

4.5 An application to wind fields estimation

Let us now consider a real-life fitting application to compare the five meth-
ods presented in this chapter. The application concerns wind field fitting,
as already mentioned in Section 4.1.3.

In this application, the data points are lying on the set of positive semi-
definite matrices of size p and rank q, noted S+(p, q). More specifically,S+(n, p)

p = 3024 and q = 20. The data points represent covariance matrices
C0, . . . , Cn corresponding to wind fields in a certain area of interest. Theywind field

are associated to the parameters θ0, . . . , θn representing the prevailing wind
orientation in the area.

This section is the result from a close collaboration with Estelle Massart
(UCLouvain, Belgium) and Antoni Musolas (MIT, USA). Estelle provided
the elements of differential geometry on S+(p, q) while Antoni provided
the dataset of covariance matrices.

112 |

An application to wind fields estimation | 4.5

i
i

“TikZ/12_sphere_mean_accel” — 2020/7/7 — 11:54 — page 99 — #1 i
i

i
i

i
i

0 1 2 3 4 5

0

2

4

6

t

E
[‖

B̈
(t
)‖
]

Mean acceleration on S2 (1000 samples)

Blended
Bézier
BL-I
BL-II
LC

0 1 2 3 4 5

0

2

4

6

t

E
[‖

B̈
(t
)‖
]

Mean acceleration on S2 (1000 samples)

Blended
Bézier
BL-I
BL-II
LC

(a) Mean acceleration on the sphere S2.i
i

“TikZ/12_so3_mean_accel” — 2020/7/7 — 11:54 — page 99 — #1 i
i

i
i

i
i

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

t

E
[‖

B̈
(t
)‖
]

Mean acceleration on SO(3) (1000 samples)

Blended
Bézier
BL-I
BL-II
LC

(b) Mean acceleration on SO(3).

Fig. 4.13 Average acceleration of the curves, computed on 1000 random
datasets, with λ = 100. The blending cubic spline outperforms the meth-
ods BL-I, BL-II and LC.

| 113

4 | Fitting with Bézier, blended, and Bézier-like curves

4.5.1 Some words of motivation

The wind fields estimation problem is motivated by applications related
to the use of unmanned aerial vehicles (UAV). It appears that the current
market proposes more and more uses of drones. To name a few, one couldi

i
“TikZ/12_wind_field” — 2020/7/7 — 11:54 — page 100 — #1 i

i

i
i

i
i

θi

building

Fig. 4.14 Given a prevailing
wind θi, local wind orientation
might change among the do-
main, specially when an object
(here a building) perturbs it.

think to military use of surveillance
drones, commercial use of delivery UAV
for big companies present on the Inter-
net and many more. Hopefully, UAV can
also be used for health and care, as it has
been demonstrated in Rwanda, where
drones deliver medical supplies to hospi-For instance,

drones are
used by the
company
Zipline to
deliver blood:
https://
flyzipline.
com/company/

tals in the whole country, reducing dras-
tically the need of on-site storage and, at
the same time, waste and money.

In order to make UAV fly safely and
reliably, it is of tremendous importance
to take the surrounding environment
into account. The external wind con-
ditions, in particular, have an obvious
impact on the control of the wings of
drones, for instance.

The wind field around the UAV can be modeled as a Gaussian process
characterized by a covariance matrix. The covariance matrices depend on
external meteorological parameters. In this case, the orientation of the pre-
vailing wind in the area of interest is considered, but other parameters can
enter in line, like the amplitude (or the force) of the prevailing wind, the
temperature, etc. For each value of the parameters, computationally ex-
pensive unsteady CFD (Computational Fluid Dynamics) simulations mustCFD

be run to estimate the corresponding covariance matrix. The cost of this
computation is so high that, even for powerful processors, it is barely pos-
sible to obtain a solution in less than one hour.

The goal of this application is to reduce the computational time needed
to estimate a covariance matrix. To do so, the strategy is quite simple: the
CFD simulations are run only for a few values of the parameter, and then
a curve is fitted to the obtained covariance matrices. That way, covariance
matrices can be deduced for other values of the parameter. If the fitting
method is computationally non-invasive and the estimation acceptable, the
goal is met.

114 |

https://flyzipline.com/company/
https://flyzipline.com/company/
https://flyzipline.com/company/

An application to wind fields estimation | 4.5

Note that this strategy is actually the core business of Parametric Model
Order Reduction (PMOR) in general (see Section 4.6). This task arises
mainly in problems of fluid dynamics and applied to Galerkin methods.
In that case, the data points are projectors from the full state space to the
reduced state space and hence belong to the Grassmann manifold [PA16].

4.5.2 The manifold S+(p, q)

The set of p× p positive semi-definite matrices of rank q admits a manifold
structure and is noted S+(p, q). As mentioned in Example 2.18, several S+(n, p)

geometries have been proposed to define S+(p, q). We refer to [Van13, §7]
for a survey, but also to [VAV09, BS09] for detailed approaches. However,
none of those approaches allows to turn S+(p, q) into a complete metric
space with closed-form expressions for geodesics.

In their work, Massart et al. [MA18] resort to the quotient space geom-
etry described in [Van13, §7.2] (i.e., S+(p, q) ' R

p×q
∗ /Op) but endow the

tangent spaces with a very simple metric (the trace of the product of the
two tangent vectors). This allows to compute easily the elements of Rie-
mannian geometry; for instance, the geodesic can be computed in closed
form. The main advantage of this representation is the low computational
cost associated to each operation on the manifold. Indeed, each matrix
S ∈ S+(p, q) can be factorized as S = YY>, where Y belongs to R

p×q
∗ (the

set of full rank p × q matrices). This means that every operation is per-
formed on a Y instead of S, which reduces drastically the dimension of the
space where the calculus is done, specially when q � p. With this ap-
proach, the exponential map reduces to a sum of two p× q matrices, while
the logarithm map requires, in addition, a polar decomposition of a q× q
matrix.

The geometric elements are obtained as follows. Let S = YY> for
S ∈ S+(p, q) and Y ∈ R

p×q
∗ . The quotient structure is highlighted by

the following property: for Q orthogonal of size q, all matrices YQ are
then equivalent because (YQ)(YQ)> = YY> = S. For two tangent vec-
tors η, ξ ∈ TSS+(p, q), the metric is defined as 〈η, ξ〉Y = tr(η>ξ). The metric

end-point geodesic g(·; S0, S1) : [0, 1] → S+(p, q) : t 7→ g(t; S0, S1), with geodesic

g(0; S0, S1) = S0 = Y0Y>0 and g(1; S0, S1) = S1 = Y1Y>1 , is given by
g(t; S0, S1) = gY(t)gY(t)>, where

gY(t) = (1− t)Y0 + tY1Q>,

| 115

4 | Fitting with Bézier, blended, and Bézier-like curves

with Q the orthogonal factor of the polar decomposition Y>0 Y1 = HQ. In
the Y–representation, the Riemannian exponential and logarithm are thusexponential

map
logarithmic
map expY(η) = Y + η

and
logY(Z) = ZQ′> −Y,

where η is restricted to the horizontal space HY = {η ∈ Rp×q : η>Y =

Y>η} and Q′ comes from the polar decomposition Y>Z = H′Q′.
A last element to define is the projection operator

Π : S+(p, k)→ S+(p, q), (4.19)

that returns, for a PSD matrix of rank k ≥ q, the closest PSD matrix of
rank q. This last tool will be particularly useful in Section 4.6.

The identification of S+(p, q) as the quotient manifold R
p×q
∗ /Oq has

already been used in several works in the past. For instance, Bonnabel et
al. [BMS10] and Meyer et al. [MBS11] used this description to perform re-
gression model learning via first-order optimization algorithms on S+(p, q);
the work of Mishra et al. [MMS11] focuses on gradient descent and trust re-
gions methods to tackle the low-rank matrix completion problem ; sparse
principal component analysis is studied by Journée et al. [JBAS10] using
optimization on S+(p, q).

4.5.3 Results

The dataset used here is the one of [GMM+17], already presented in Sec-
tion 4.1.3. It is made of 33 covariance matrices C(θi) of size 3024× 3024,
i = 1, . . . , 33, corresponding to 33 different orientations θi = (i− 1)π/64.
All of them are obtained from unsteady CFD simulations. Note that, for
now, the magnitude of the wind field remains fixed. If it weren’t, bidimen-
sional methods would be needed, and that will be the point of Chapters 6
and 7. Using a singular value decomposition, the rank of C(θi) is reduced
to q = 20 by factorizing it as

C(θi) ' Ci = Y(θi)Y(θi)
> ∈ S+(3024, 20).

Hence Yi = Y(θi) ∈ R3024×20∗ (note that it is not even necessary to build
C(θi), as Y(θi) can instead be directly obtained from the simulations).

116 |

An application to wind fields estimation | 4.6

The composite curves B(θ) ∈ S+(3024, 20,) are computed based on one
out of three data points from the data set. This forms the training set

ST = {C(θi)}i∈IT ,

where IT = {1, 4, 7, . . . , 33}. The rest of the dataset is used as a validation
set

SV = {C(θi)}i∈IV ,

with IV = {2, 3, 5, 6, . . . , 31, 32}. The fitting error of B(θ) is compared to
data from SΩ (Ω ∈ {T, V}) as a relative mean squared error (MSE) ex-
pressed in dB:

MSE(B(θ)) = 10 log

(
∑i∈IΩ

||Ci − B(θi)||2F
∑i∈IΩ

||Ci||2F

)
. (4.20)

The evolution of this error with respect to the parameter λ is illustrated
in Figure 4.15a. Not surprisingly, the MSE computed on the training set
decreases when λ grows, as problem (4.1) is closer and closer to interpola-
tion. Correspondingly, the MSE computed on the validation set at the limit
λ → ∞ measures the model error, i.e., the inability of the composite curve
to recover the hidden data.

The main advantage of the fitting methods is their robustness to cor-
rupted data. To illustrate this, artificial noise is added to the data. Con-

sider a new matrix C̃i = C(θi) + 0.05N(θi) with N(θi)lm
iid∼ N (0, 1) for

l, m = 1, . . . , 3024. The corrupted matrices C̃i are then factorized into
C̃i ' ỸiỸ>i similarly as above. This artificial noise results in an MSE(C̃(θ))
of about −9 dB compared the (not corrupted) data points.

The composite curves B̃(θ) are now computed based on the corrupted
data from the set S̃T := {C̃i}i∈IT . The MSE of B̃(θ) is computed accordingly
and compared to the original data from SΩ (see Figure 4.15b). One can
observe an optimal balance λopt between data fitting and curve smoothing
with about 5 dB of MSE reduction compared to the noise level.

Note also that, as expected, when the training set is made of more data
points (like one out of two), the methods perform better, as one can see in
Figures 4.16a and 4.16b (here, the result is obtained only with the blended
curve). However, the gain is approximately 1 dB only, for a lot of data
added to the training set. One can also see that the optimal parameter λ do
not change so much from one case to the other.

| 117

4 | Fitting with Bézier, blended, and Bézier-like curves

i
i

“TikZ/12_wind_field_blended” — 2020/7/7 — 11:54 — page 103 — #1 i
i

i
i

i
i

10−3 1 103 106

-100

-50

0

validation set

training set

interpolation

λ

M
SE

[d
B]

LC
Blended
Bézier
BL-I
BL-II

(a) Without additional noise.i
i

“TikZ/12_wind_field_noisy_blended” — 2020/7/7 — 11:54 — page 103 — #1 i
i

i
i

i
i

10−3 1 103 106

-10

-5

validation set

training set

interpolation

artificial noise

λopt

4dB

λ

M
SE

[d
B]

LC
Blended
Bézier
BL-I
BL-II

(b) With additional noise.

Fig. 4.15 Fitting error of the five methods applied to the wind field prob-
lem from [GMM+17]. The training set is made of one point out of three
from the full dataset; the validation set is made of all remaining data points.
The mean square error (MSE) is obtained on the training and validation
sets, depending on the value of the regularization parameter λ. All the fit-
ting methods considered behave similarly on this fitting problem. (a): The
error on the training set decreases as λ increases (the problem becomes an
interpolation problem), while the error on the validation set reaches a con-
stant level (due to the inability of the model to recover the left out data).
(b): Data have been corrupted with a Gaussian perturbation applied to the
covariance matrices: C(θi) ← C(θi) + 0.05N(θi), with N(θi)lm ∼ N (0, 1).
This artificial noise amounts to adding an MSE of about−9 dB on the train-
ing set. The error displayed is computed with respect to the original (non-
corrupted) data. As λ→ ∞, the error on the training set reaches a constant
level (noisy data are interpolated). For λ > 1, the error on the validation set
reaches a smaller value, with an optimal denoising parameter at λ ' 10.

118 |

An application to wind fields estimation | 4.6

i
i

“TikZ/12_result_wind_true” — 2020/7/7 — 11:54 — page 103 — #1 i
i

i
i

i
i

10−3 10−1 101 103 105

−80

−60

−40

−20

0

training set

validation set

interpolation

λ

M
SE

[d
B]

(a) Without additional noise.i
i

“TikZ/12_result_wind_noised” — 2020/7/7 — 11:54 — page 103 — #1 i
i

i
i

i
i

10−3 10−1 101 103 105

−15

−10

−5
training set

validation set

artificial noise

λopt

interpolation

5dB

λ

M
SE

[d
B]

(b) With artificial noise.

Fig. 4.16 Fitting error of the blending method applied to the wind field
problem from [GMM+17]. The difference with Figure 4.15 is that the train-
ing set is now made of one point out of two from the full dataset. In (a), no
corruption is added to the dataset. In (b), as in Figure 4.15, data have been
corrupted with a Gaussian perturbation applied to the covariance matrices:
C(θi) ← C(θi) + 0.05N(θi), with N(θi)lm ∼ N (0, 1). The artificial noise
amounts to adding an MSE of about −9 dB on the training set. The de-
noising reaches here better values (-5 dB instead of 4 dB), as expected, but
the behavior of the method remains similar. The optimal lambda moves to
λ ' 1.

| 119

4 | Fitting with Bézier, blended, and Bézier-like curves

4.6 Another application to parametric model order reduction

As a second real-life fitting application, we consider parametric model or-
der reduction. In this application, the goal is to replace very large dynami-
cal system by a drastically smaller one while still representing sufficiently
well the physics.

In this application, we consider again data points lying on S+(p, q) (see
Section 4.5.2). Here, the data points represent positive semidefinite solu-
tions of Lyapunov equations, truncated to a certain rank q, and stored in
matrices P0, . . . , Pn ∈ S+(p, q) and Q0, . . . , Qn ∈ S+(p, q). They serve to
build projector matrices to reduce the dynamical system to a low dimen-
sional space. They are associated to the abstract parameters µ0, . . . , µn, cor-
responding to a parameter driving the dynamics of the system.

This application was proposed by Dr. Nguyen Thanh Son (UCLouvain,
Belgium) who also provided the dataset used here, and the geometric tools
on S+(p, q) were provided by Dr. Estelle Massart (UCLouvain, Belgium).

4.6.1 Some words of motivation

Model order reduction (MOR) is a well known tool to simulate large-scaleMOR

systems [Ant05]. Its purpose is to compute a model of smaller order (by
design, faster to simulate) that represents accurately enough the behav-
ior of the full-order system. Indeed, working with the full-order system
is often computationally untracktable [LW02]. The reduced-order model
is usually obtained via projection-based methods such as balanced trun-
cation (further described in Section 4.6.2), proper orthogonal decompo-
sition, Krylov subspace-based moments matching or H2-norm optimiza-
tion [Ant05]. Those methods provide two matrices VProj and WProj that
project the large-scale system into a smaller state space.

In many cases, the system depends on parameters representing, e.g.,
physical, material or environmental properties [Wik]. Parametric model
order reduction (PMOR) computes a parameterized reduced model thatPMOR

approximates the behavior of the full-order system in a given parameter
range. The example of Section 4.5 follows a logic close to parametric model
order reduction, except that, here, no projectors are computed: only low-
rank matrices are manipulated.

A classical technique of PMOR is made of two steps: an offline step,

120 |

Another application to parametric model order reduction | 4.6

which can take as much time as necessary, and an online step, which is
supposed to run fast. In the offline step, the reduced-order models are ob-
tained for a subset of parameter values. These models are afterwards used
to recover the reduced models for other parameter values by interpolation
during the online step. The interpolation is done on representatives of the
models, e.g., the projection matrices VProj and WProj, the reduced-system
matrices, or the reduced transfer functions. For more details, see [BGW15].

In this application, the step of interest is of course the online step, as
the main advantages of the methods presented in this chapter is their com-
putational efficiency. For the offline step, the chosen reduction method is
balanced truncation. The most computationally expensive part of this al-
gorithm is the evaluation of the solutions P and Q to a pair of Lyapunov
equations. Those solutions can, in fact, be approximated by low-rank pos-
itive semi-definite matrices, i.e., points on S+(p, q). Those low-rank ap- S+(n, p)

proximations are thus computed for a few values of the parameters (in the
offline step). Then, for other values of the parameters, the pre-computed
solutions are interpolated (during the online step) on S+(p, q).

4.6.2 Theory on parametric model order reduction

The theory on PMOR and balanced truncation can be found in details in
the work of Antoulas [Ant05]. This section is just a quick summary.

Consider an asymptotically stable linear parameterized system:

E(µ)ẋ(t, µ) = A(µ)x(t, µ) + B(µ)u(t),
y(t, µ) = C(µ)x(t, µ),

(4.21)

where µ ∈ [α, β] is a parameter representing, for instance, physical, ma-
terial or environmental properties; E(µ) ∈ Rp×p is nonsingular, A(µ) ∈
Rp×p, B(µ) ∈ Rp×m, C(µ) ∈ Rs×p, for s, m � p. The vectors x(t, µ) ∈ Rp,
u(t) ∈ Rm and y(t, µ) ∈ Rs are respectively the state, the input and the
output vectors of the system. The goal of PMOR is to approximate sys-
tem (4.21) with a parametric reduced-order model

Ẽ(µ) ˙̃x(t, µ) = Ã(µ)x̃(t, µ) + B̃(µ)u(t),
ỹ(t, µ) = C̃(µ)x̃(t, µ),

(4.22)

where x̃(t, µ) ∈ Rr is the reduced state vector, ỹ(t, µ) ∈ Rs is the approx-
imated output, Ẽ(µ) and Ã(µ) are now instances of Rr×r, B̃(µ) ∈ Rr×m,

| 121

4 | Fitting with Bézier, blended, and Bézier-like curves

C̃(µ) ∈ Rs×r. Of course, r � p. In the following, the µ-dependency will be
omitted for readability.

Balanced truncation is a three-step method to compute the reduced-
order model. First, one has to find the low-rank approximate solutions
P = XX> and Q = YY> of the Lyapunov equations

EPA> + APE> = −BB>,
E>QA + A>QE = −C>C,

(4.23)

where X ∈ Rp×kX , Y ∈ Rp×kY , in which kX and kY depend on µ as well.
For this application, equations (4.23) are solved with a low-rank ADI solver
detailed in [LW02]. Secondly, the singular value decomposition Y>EX =

UΣV> has to be computed. This SVD is truncated to a given rank r such
that Σ̃ = diag(σ1, . . . , σr) is composed of the r first largest singular values
{σi}r

i=1, and Ũ and Ṽ are respectively the truncation of U and V to their r
first columns. The projection matrices of the reduced-order model are then
given by

WProj = YŨΣ̃−1/2,
VProj = XṼΣ̃−1/2.

(4.24)

Finally, the reduced model (4.22) is obtained by projection: Ẽ = W>Proj EVProj,

Ã = W>Proj AVProj, B̃ = W>Proj B, and C̃ = CVProj.
The truncation rank r is generally not chosen randomly, as it is re-

lated to the error between the (Laplace) transfer function H̃(s, µ) of the
reduced model (4.22) and H(s, µ), the one of the full-order model (4.21).
The Laplace transfer function H(s) of a system gives the relation between
X(s), the Laplace transform of the state vector, and Y(s), the Laplace trans-
form of the output vector. The relation is given by Y(s) = H(s)X(s). In
this case, the transfer function of the full-order system is

H(s, µ) = C(µ)(sE(µ)− A(µ))−1B(µ),

and accordingly for H̃. That way, it can be chosen relatively to a given
tolerance ε as

‖H − H̃‖H∞ ≤ 2
(
σr+1 + · · ·+ σmin(kX ,kY)

)
< ε.

For a transfer function G, ‖G‖H∞ is the supremum, over the frequencies,
of the magnitude of G.

Instead of computing the solutions P and Q of (4.23) for each value of

122 |

Another application to parametric model order reduction | 4.6

µ, some solutions Pi and Qi are precomputed; they are associated to some
parameter values µi, i = 0, . . . , n. Then, the solutions P (respectively Q)
associated to other parameter values are estimated by interpolation of the
Pi (respectively the Qi). The precomputed solutions Pi and Qi are positive
semi-definite and have a rank kXi and kYi , respectively. As the set of all
positive semi-definite matrices is not a manifold [MA18], the rank of the
matrices must be truncated to a given rank q, such that the data points
will all belong to S+(p, q). For instance, to interpolate the Pi, one chooses
q = min({kXi}n

i=0). This step induces of course a loss of information, but
which turns out to be mild in practice. Hence, the interpolated points are
P̃i := X̃iX̃>i , where X̃i is made of the q first columns of Xi. By the design
of the low-rank ADI method [LW02], these columns contain the dominant
information of the low-rank solution. To interpolate the Qi, the rank q is
chosen as q := min({kYi}n

i=0).
Finally, once the interpolant P̃ and Q̃, associated to µ, are known, the

construction of the reduced system (4.22) is considerably cheap, compared
to the resolution of the Lyapunov equations.

4.6.3 Methods used for comparison

For this application, the composite cubic blended curve will be compared
to four other interpolation methods presented hereunder. Consider that
the points to interpolate are for now points d0, . . . , dn ∈ M and associated
to times t0 < t1 < · · · < tn ∈ R.

Interpolation in the ambient space. This first approach consists in run-
ning Euclidean interpolation algorithms in the ambient space in whichM
is embedded (i.e., Rp×p for this application). This means that points are
interpolated disregarding their geometry. The result is then projected back
on M, using a projection operator ΠM (in this case, the projector (4.19)).
The curve will be noted Plin

AS(t) and corresponds to a piecewise linear in-
terpolation in the Ambient Space.

Interpolation with a local curve. A second approach consists in classi-
cal a three-step procedure, also known as the exp-log algorithm: (i) all the
data points are mapped to a tangent space based at an arbitrary point dref,
using the logarithm map logdref

; (ii) Euclidean interpolation is performed
on those points (for instance, with a cubic spline); (iii) the result is finally

| 123

4 | Fitting with Bézier, blended, and Bézier-like curves

mapped back on the manifold using the exponential map expdref
. The curve

Pcub
LC (t) is obtained with this strategy. It is noted like this because interpola-

tion is done with a cubic Local Bézier Curve, computed on a given tangent
space Tdref

M. Two possible choices are considered for the tangent space:
dref = d0 or dref = db(n)/2c. Note that this method is a degenerate ver-
sion of the composite cubic blended curve, where the same tangent space
is considered for all pieces.

Piecewise geodesic splines and blended curves. Just like blended curves
do not perform all the computations on one single tangent space (which
can generate significant deviations when some points are far from the root
of the tangent space), the Piecewise Geodesic spline PPG(t) consists in a
concatenation of geodesics between two consecutive data points. The com-
posite cubic blended curve will be noted PBlend(t) and is run for λ = 108

(i.e., in its interpolating version).

4.6.4 Results

In this experiment, the full-order model (4.21) is the one-parameter anemome-
ter [Wik] where p = 29008, and µ ∈ [0, 1] corresponds to the fluid ve-
locity. The low-rank ADI method [LW02] is run to solve the Lyapunov
equations (4.23) (with tolerance ε = 10−8) for 21 values of the parameter
µ given by {µ1, . . . , µ21} = {0, 0.05, . . . , 1}. This provides the training set
{PADI

1 , . . . , PADI
21 }. The rank of the solutions returned by the solver varies

from 25 to 39, so that the common rank is fixed to q = 25. The results com-
pare the ability of the five interpolation methods to recover PADI at test
values for µ.

Figure 4.17a shows the relative error Erel(µ) between the predicted ma-
trices P(µ) and the ADI solutions PADI(µ), truncated to a rank q = 25:

Erel(µ) =
‖P(µ)− PADI(µ)‖F

‖PADI(µ))‖F
.

The test set is made of 40 points, and has no intersection with the train-
ing set, for which Erel is zero. The best trade-off between computation
time and accuracy seems to be the cubic interpolation in the tangent space
Pcub

LC (µ), choosing Pref as the midpoint of the data set (LC3-M). However,
this method is sensitive to the choice of the tangent space: when Pref is set
to P1 this leads to significantly larger errors (LC3-1). The blended curve,

124 |

Another application to parametric model order reduction | 4.6

which intrinsically combines several tangent spaces, does not present this
drawback, and reaches the same accuracy as LC3-M. The fact that Pcub

LC (µ)

and PBlend(µ) are similar when the tangent space is based at the midpoint
of the data set indicates that the curvature of the manifold is small around
the data points considered. For the same reason, the piecewise linear in-
terpolation in the ambient space Plin

AS(µ) (LinP) is almost as accurate as the
piecewise geodesic spline PPG(µ) (PG).i
i

“TikZ/12_apps_pmor_error” — 2020/7/7 — 11:54 — page 110 — #1 i
i

i
i

i
i

0 0.5 1

1e-3

1e-4

1e-5

1e-6

µ parameter

Blend

PG

LC3-1

LC3-M

LinP

(a) Relative error Erel on the test set.

i
i

“TikZ/12_apps_pmor_time” — 2020/7/7 — 11:54 — page 110 — #1 i
i

i
i

i
i

0 5 · 10−2 0.1

time [s]

(b) Average interpolation time

Fig. 4.17 Comparison of the five interpolation methods considered.
The training set is made of 21 values of the parameter µ given by
{µ1, . . . , µ21} = {0, 0.05, . . . , 1}. The test set is made of 40 values of µ and
has no intersection with the training set for which the relative error Erel is
zero. The composite cubic blended curve performs best but requires the
highest effort of computation; however, its result are not sensitive to the
choice of the reference tangent space on which data are projected. In com-
parison, when the reference point is well chosen, the exp-log solution is
extremely fast and reliable, while extremely bad when it is badly chosen.

Figure 4.17b compares the computation times required to obtain a value
of the different curves at one arbitrary value of µ and during the online
phase. That is, all the computations independent of µ were done offline
and not considered in those timings. The curve PBlend(µ) is the most ex-
pensive one. However, those values have to be compared with the average
time to compute the matrix PADI(µ) using the ADI solver (i.e., without
interpolation), which is here around 10s. Hence, the blending procedure
represents an improvement of approximately a factor 100 compared to the
ADI solution; all other methods take half of the time needed by the blended
curve.

| 125

4 | Fitting with Bézier, blended, and Bézier-like curves

This chapter is mainly based on the paper [GMA18c] for the theoretical parts, and
on [GMM+17] and [MGS+19] for applications in Sections 4.5 and 4.6 respectively. They
are sometimes cited verbatim.
The references of these papers are

[GMA18c] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil. Data fitting on
manifolds with composite Bézier-like curves and blended cubic splines. Journal of Math-
ematical Imaging and Vision, 61(5):645–671, 2018. doi:10.1007/s10851-018-0865-2

[GMM+17] Pierre-Yves Gousenbourger, Estelle Massart, Antoni Musolas, P.-A. Ab-
sil, Laurent Jacques, Julien M Hendrickx, and Youssef Marzouk. Piecewise-Bézier C1

smoothing on manifolds with application to wind field estimation. In ESANN2017, pages
305–310. Springer, 2017

and

[MGS+19] Estelle Massart, Pierre-Yves Gousenbourger, Nguyen Thanh Son, Tatjana
Stykel, and P.-A. Absil. Interpolation on the manifold of fixed-rank positive-semidefinite
matrices for parametric model order reduction: preliminary results. In ESANN2019, pages
281–286. Springer, 2019

The figures can be reproduced based on the code provided in the toolbox available at this
link address:

https://github.com/pgousenbourg/manint

126 |

http://dx.doi.org/10.1007/s10851-018-0865-2
https://github.com/pgousenbourg/manint

5
Optimality of the

Bézier fitting curve

I
N THE TWO PREVIOUS CHAPTERS, techniques for fitting and interpola-
tion have been presented to approximate the acceleration-minimizing
curve passing close to the data points. The focus was oriented to the

computational efficiency of the methods rather than to the quality of the
minimizing curve.

This chapter intends to evaluate the quality of the fitting (or interpolat-
ing) composite Bézier curves from Definitions 3.20 and 4.1, compared to
the manifold-valued optimization problem

min
B

∫ n

0

∥∥∥∥
D2B(t)

dt2

∥∥∥∥
2

B(t)
dt +

λ

2

n

∑
i=0

d2(B(i), di). (5.1)

In this chapter, each data point di is associated to an integer time i, for
simplicity. This is the next contribution of this thesis.

The principal result of the chapter is the derivation of the gradient of the
differentiable composite Bézier curve B : [t0, tn] → M that satisfies (5.1),
while fitting the set of manifold-valued data points at their associated time-
parameters. By extension, the gradient of (5.1) itself is derived.

The approximating model to (5.1) is obtained in the following way. The
Levi-Civita second covariant derivative is approximated by a discretized

| 127

5 | Optimality of the Bézier fitting curve

(squared) second order absolute differences introduced in [BBSW16]; the
quality of the approximation depends only on the number of sampling
points. The gradient is then built as a recursion of Jacobi fields that, for
numerical reasons, are implemented as a concatenation of so-called adjoint
Jacobi fields. At the end, the philosophy of the previous chapters is pre-
served, as the optimization algorithm is only based on three tools on the
manifold: the exponential map, the logarithmic map, and a Jacobi field
along geodesics.

The first section of the chapter (Section 5.1) defines quickly the discrete
mean squared acceleration (MSA) that approximates the regularizer of (5.1); it
also gives some additional mathematical elements to complete Chapter 2.
Then, Section 5.2 is dedicated to the derivation of the gradient of the MSA
of a composite Bézier curve with respect to its control points.

In Section 5.3, we present the corresponding gradient descent algo-
rithm, as well as an efficient gradient evaluation method, to solve (5.1)
for different values of λ. The limit case where λ → ∞ (interpolation) is
studied as well. Finally, in Section 5.4, we validate, analyze and illustrate
the performances of the algorithm for several numerical examples on the
sphere S2 and on the special orthogonal group SO(3). We also compare the
solution to the curves obtained via Definitions 3.20 and 4.1.

This chapter is the result of a collaboration with Dr. Ronny Bergmann
(Technische Universität Chemnitz, Germany).

5.1 Some additional mathematical elements

Evaluating the Levi-Civita second covariant derivative of a curve γ : [0, 1]→Levi-Civita
covariant
derivative M is still a complicated task, as already mentioned in the previous chap-

ters. The idea here is to avoid this difficulty by discretizing γ(t) and ap-
proximating its MSA ∫ 1

0

∥∥∥D2γ(t)
dt2

∥∥∥
2

γ(t)
dt, (5.2)

with the second order absolute finite differences introduced by Bačák et
al. [BBSW16].

Consider three points x, y, z ∈ M and the set of mid-points of x and z

Cx,z :=
{

c such that c = g(1
2 ; x, z)

}
,

128 |

Some additional mathematical elements | 5.1

for all (not necessarily shortest) geodesics g(·; x, z) connecting x and z. The
manifold-valued second order absolute finite differences are defined by finite

differences

d2[x, y, z] = min
c∈Cx,z

2dM(c, y). (5.3)

It is equivalent, on the Euclidean space, to ‖x− 2y + z‖ = 2‖ 1
2 (x + z)− y‖.

This definition is illustrated in Figure 5.1.

i
i

“TikZ/13_secondOrder_eucl” — 2020/7/7 — 11:54 — page 115 — #1 i
i

i
i

i
i

y

z

x
c(x, z)

(a) On the Euclidean space R2

i
i

“TikZ/13_secondOrder_sphere” — 2020/7/7 — 11:54 — page 115 — #1 i
i

i
i

i
i

y

x z

c(x, y)

(b) On the sphere S2

Fig. 5.1 Geometric interpretation of the second order finite differences.

The time domain [0, n] is discretized by N ∈ N equispaced points The
discretization
times tk must

not be
confused with
the parameters

ti = i
associated

with the data
points.

t0, . . . , tN , with step size ∆t = t1 − t0 = 1
N . The normed acceleration is

approximated by

∥∥∥D2γ(ti)

dt2

∥∥∥
γ(ti)
≈ 1

∆2
t

d2[γ(ti−1), γ(ti), γ(ti+1)], i = 1, . . . , N − 1.

By the trapezoidal rule, the MSA is given by

∫ 1

0

∥∥∥D2γ(t)
dt2

∥∥∥
2

γ(t)
dt ≈

N−1

∑
i=1

∆td2
2[γ(ti−1), γ(ti), γ(ti+1)]

∆4
t

.

For (composite) Bézier curves γ(t) = B(t), the regularizer of (5.1) depends
on the control points b. The discretized MSA A(b) finally reads discretized

MSA

A(b) :=
N−1

∑
i=1

d2
2 [B(ti−1), B(ti), B(ti+1)]

∆3
t

. (5.4)

| 129

5 | Optimality of the Bézier fitting curve

This chapter will extensively use the notions of directional derivatives
and gradients (defined in Chapter 2). However, one has to introduce sev-
eral short-hand notations that are specific to this chapter. Let f (x, y) :
M×M → R be a multivariate functions. In that case, the variable along
which the directional derivative is computed must be specified. We de-
note by Dx f [ξ](x, y) ∈ Tf (x,y)M the directional derivative of f evaluateddirectional

derivative
Dx f [ξ](x, y) at (x, y), with respect to its variable x and in the direction ξ ∈ TxM. We

use the short hand Dx f [ξ] = Dx f [ξ](x, y) whenever this directional deriva-
tive is evaluated afterwards again at x. Identically, the x-component of the
gradient of f at (x, y) will be denoted by ∇M,x f (x, y). We shorten this no-
tation as ∇M,x f = ∇M,x f (x, y) when this gradient is seen as a function of∇M,x f

x and y.
The notion of chain rule on manifolds will also be a core element. The

following definition is extracted from [AMS08, p. 195].

Definition 5.1 (Chain rule). Let f : M→M, h : M→M be two functions
on a manifoldM and F : M→M, x 7→ F(x) = (f ◦ h)(x) = f (h(x)), their
composition. Let x ∈ M and η ∈ TxM. The directional derivative DxF[η]chain rule

of F with respect to x in the direction η is given by

DxF[η] = Dh(x) f
[
Dxh[η]

]
, (5.5)

where Dxh[η] ∈ Th(x)M and DxF[η] ∈ TF(x)M.

5.2 Gradient of the discretized mean squared acceleration

In order to minimize the discretized MSA A(b), we aim to employ a gra-
dient descent algorithm on the product manifold MM, where M is the
number of elements in b. In the following, we derive a closed form of the
gradient∇M,bi

A(b) of the discretized MSA (5.4). This gradient is obtained
by means of a recursion and the chain rule. In fact, the derivative of (5.3) is
already known [BBSW16], such that it only remains to compute the deriva-
tive of the composite Bézier curve.

The section is organized in four parts. We first recall the theory on Ja-
cobi fields in Section 5.2.1 and their relation to the differential of geodesics
(with respect to start and end point). As geodesics are the principal in-
gredient of the De Casteljau algorithm, Jacobi fields become the principal
ingredient in the derivation of a Bézier curve. In Section 5.2.2, we apply the

130 |

Gradient of the discretized mean squared acceleration | 5.2

chain rule to the composition of two geodesics, which appears within the
De Casteljau algorithm. We use this result to build an algorithmic deriva-
tion of the differential of a general Bézier curve on manifolds with respect
to its control points (Section 5.2.3). We extend the result to composite Bézier
curves in Section 5.2.4, including their constraints on junction points pi to
enforce the C1 conditions from Property 3.16, and finally gather these re-
sults to state the gradient ∇MA(b) of the discretized MSA (5.4) with re-
spect to the control points.

5.2.1 Jacobi fields as derivative of a geodesic

The differential Dxg(t; ·, y) of a geodesic g(t; x, y), t ∈ [0, 1], with respect to
its start point x ∈ M, can be expressed using the notion of Jacobi fields.
Conversely, the differential with respect to the end point y ∈ M of the
geodesic is simply obtained by taking the reversed geodesic g(t, y, x) =

g(1− t; x, y).i
i

“TikZ/13_jacobi” — 2020/7/7 — 11:55 — page 117 — #1 i
i

i
i

i
i

ξ = Jg,ξ(0)

Jg,ξ(τ)

Jg,ξ

g(·; x, y)

ζ(0)
ζ(ŝ)

x

y

Γg,ξ(ŝ, 0)

Γg,ξ(s, 0) = γx,ξ(s)

Γg,ξ(s, τ)

g(τ; x, y)

Fig. 5.2 Schematic representation of the variation Γg,ξ(s, t) of a geodesic
g w.r.t. the direction ξ ∈ TxM. The corresponding Jacobi field along g and
in the direction ξ is the vector field Jg,ξ(t) = ∂

∂s Γg,ξ(s, t)|s=0.

We denote by γx,ξ , the geodesic starting in γx,ξ(0) = x and with direc-
tion D

dt γx,ξ(0) = ξ ∈ TxM. We introduce ζ(s) := logγx,ξ (s)
y, the tangential

vector in Tγx,ξ (s)M pointing towards y. Then, the geodesic variation Γg,ξ(s, t) geodesic
variation Γg,ξ

of the geodesic g(·; x, y) with respect to the tangential direction ξ ∈ TxM

| 131

5 | Optimality of the Bézier fitting curve

is given by

Γg,ξ(s, t) := expγx,ξ (s)
(tζ(s)) , s ∈ (−ε, ε), t ∈ [0, 1],

where ε > 0. The corresponding Jacobi field Jg,ξ along g, represented inJacobi field Jg,ξ

Figure 5.2, is then given by the vector field

Jg,ξ(t) :=
D
∂s

Γg,ξ(s, t)
∣∣∣
s=0

that represents the direction of the displacement of g if x is perturbed in a
direction ξ.

We directly obtain Jg,ξ(0) = ξ, and Jg,ξ(1) = 0 as well as Jg,ξ(t) ∈
Tg(t;x,y)M. Furthermore, since Γg,ξ(s, t) = g(t; γx,ξ(s), y) the chain rule
gives

Dxg(t, ·, y)[ξ] =
D
∂s

g(t; γx,ξ(s), y)
∣∣∣
s=0

=
D
∂s

Γg,ξ(s, t)
∣∣∣
s=0

= Jg,ξ(t). (5.6)

In symmetric spaces, Jacobi fields can be computed in closed form, asA spaceM is
symmetric if
for every
x ∈ M there
exists an
isometry
Ix :M→M
mapping any
geodesic
γ : [0, 1]→M
with γ(1

2) = x
onto Ix(γ) :
t 7→ γ(1− t).

summarized in the next Lemma. This gives a convenient way to compute
derivatives of geodesics in such spaces.

Lemma 5.2. [BBSW16, Prop. 3.5] Let M be a m-dimensional Riemannian
manifold. Let g(t; x, y), t ∈ [0, 1], be a geodesic between x, y ∈ M, η ∈
TxM be a tangent vector and {ξ1, . . . ξm} be an orthonormal basis (ONB) of
TxM that diagonalizes the curvature operator of M with eigenvalues κ`, ` =

1, . . . , m. For details, see [dC92, Chap. 4.2 and 5, (Ex. 5)]. Let further denote
by {Ξ1(t), . . . , Ξm(t)} the parallel transported frame of {ξ1, . . . , ξm} along g.

Decomposing η = ∑m
`=1 η`ξ` ∈ TxM, the derivative Dxg[η] becomes

Dxg(t; x, y)[η] = Jg,η(t) =
m

∑
`=1

η` Jg,ξ`(t),

where the Jacobi field Jg,ξ` : R → Tg(t;x,y)M along g and in the direction ξ` is
given by

Jg,ξ`(t) =





sinh
(

dg(1−t)
√−κ`

)
sinh(dg

√−κ`)
Ξ`(t) if κ` < 0,

sin
(

dg(1−t)
√

κ`

)
sin(dg

√
κ`)

Ξ`(t) if κ` > 0,

(1− t)Ξ`(t) if κ` = 0,

(5.7)

132 |

Gradient of the discretized mean squared acceleration | 5.2

with dg = dM(x, y) denoting the length of the geodesic g(t; x, y), t ∈ [0, 1].

The Jacobi field of the reversed geodesic ḡ(t) := g(t; y, x) = g(1 −
t; x, y) is obtained using the same orthonormal basis and transported frame
but evaluated at s = 1 − t. We thus obtain Dyg(t; x, y)[ξ`] = Dyg(1 −
t; y, x)[ξ`] = Jḡ,ξ`(1− t), where

Jḡ,ξ`(1− t) =





sinh
(

dgt
√−κ`

)
sinh(dg

√−κ`)
Ξ`(t) if κ` < 0,

sin
(

dgt
√

κ`

)
sin(dg

√
κ`)

Ξ`(t) if κ` > 0,

tΞ`(t) if κ` = 0.

Note that Tg(t)M = Tḡ(1−t)M. Therefore Ξ`(t) ∈ Tg(t)M, ` = 1, . . . , m, is
an orthonormal basis for this tangent space.

5.2.2 Derivative of coupled geodesics

LetM be a symmetric Riemannian manifold. The result of Lemma 5.2 is
used to directly compute the derivative of coupled geodesics, i.e., a function coupled

geodesics
composed of g1(t) := g(t; x, y) and g2(t) := g(t; g1(t), z). By Definition 5.1,
we have

Dxg2(t)[η] = Dg1(t)g(t; ·, z)
[
Dxg1(t)[η]

]

and by (5.6), we obtain

Dxg2(t)[η] = Jg2,Dx g1(t)[η](t),

where the direction of variation used in the Jacobi field is now the deriva-
tive of g1(t) in direction η. Similarly, we compute the derivative of a re-
versed coupled geodesic g3(t) := g(t; z, g1(t)) as

Dxg3(t)[η] = Dg1(t)g(t; z, ·)
[
Dxg1(t)[η]

]
= Jḡ3,Dx g1(t)[η](1− t).

Note that the Jacobi field is here reversed, but that its direction of varia-
tion is the same as the one of the Jacobi field introduced for g2(t). In a
computational perspective, it means that we can use the same ONB for the
derivatives of both g3 and ḡ3 Furthermore, in this case, the direction of
variation is also computed by a Jacobi field since Dxg1(t)[η] = Jg1,η(t).

To summarize, the derivative of g2 (resp. g3) on symmetric spaces is
obtained as follows. Let {ξ [1]1 , . . . , ξ

[1]
m } be an ONB of TxM for the inner Ja-

| 133

5 | Optimality of the Bézier fitting curve

cobi field along g1, and {ξ [2]1 , . . . , ξ
[2]
m } be an ONB of Tg1(t)M for the outer

Jacobi field along g2 (resp. g3). As η = ∑m
`=1 η`ξ

[1]
` ∈ TxM, and stating

J
g1,ξ [1]`

(t) = ∑m
l=1 µlξ

[2]
l ∈ Tg1(t)M, the derivative of g2 (resp. g3) with re-

spect to x in the direction η ∈ TxM reads

Dxg2(t)[η] =
m

∑
l=1

m

∑
`=1

J
g2,ξ [2]l

(t)µlη`, (5.8)

and accordingly for g3.

5.2.3 Derivative of a Bézier curve

Sections 5.2.1 and 5.2.2 introduced the necessary concepts to compute the
derivative of a general Bézier curve βK(t; b0, . . . , bK) (see Definition 3.12)
with respect to its control points bj. For readability of the recursive struc-
ture investigated in the following, we introduce a slightly simpler notation
and the following setting.

Let K be the degree of the Bézier curve βK(t; b0, . . . , bK). We fix k ∈
{1, . . . , K}, i ∈ {0, . . . , K− k} and t ∈ [0, 1]. We introduceDe Casteljau,

geodesic

g[k]i (t) := g(t; g[k−1]
i (t), g[k−1]

i+1 (t)) = β
[k]
i (t; bi, . . . , bi+k), (5.9)

for the ith Bézier curve of degree k in the De Casteljau algorithm, and
g[0]i (t) = bi. Furthermore, given x ∈ {bi, . . . , bi+k}, we denote byderivative η

[k]
i

η
[k]
i := Dxg[k]i (t)[η], (5.10)

its derivative with respect to one of its control points x in the direction
η ∈ TxM.

Remark 5.3. Clearly any other derivative of g[k]i with respect to x = bj,

j < i or j > i + k is zero. In addition we have η
[0]
i = Dxg[0]i [η] = η for

x = bi and zero otherwise.

Theorem 5.4 (Derivative of a Bézier curve). Let k ∈ {1, . . . , K} and i ∈Bézier curve,
Jacobi field {0, . . . , K − k} be given. The derivative η

[k]
i = Dxg[k]i (t)[η] of g[k]i with respect

to its control point x := bj, i ≤ j ≤ i + k, and in the direction η ∈ TxM is given

134 |

Gradient of the discretized mean squared acceleration | 5.2

by

η
[k]
i := Dxg[k]i (t)[η] =





J
g[k]i ,η[k−1]

i
(t) if j = i,

J
g[k]i ,η[k−1]

i
(t) + J

ḡ[k]i ,η[k−1]
i+1

(1− t) if i < j < i + k,

J
ḡ[k]i ,η[k−1]

i+1
(1− t) if j = i + k.

Proof. Let t ∈ [0, 1] and x = bj, i ≤ j ≤ i + k. For readability we set

a := g[k−1]
i (t), b := g[k−1]

i+1 (t), and f := g[k]i (t) = g(t; a, b). Note that while f
depends on the control points bi, . . . , bi+k and is a Bézier curve of degree k,
both a and b are Bézier curves of degree k− 1. The former does not depend
on bi+k, and the latter is independent of bi.

We prove the claim by induction. For k = 1 the function g[1]i is just a
geodesic. The case i < j < i + 1 does not occur and the remaining first and
third cases follow by the notation introduced for k = 0 and Lemma 5.2.

For k > 1 we apply the chain rule (5.5) to Dx f [η] and obtain

Dx f [η] = Da f
[
Dxa[η]

]
+ Db f

[
Dxb[η]

]
.

Consider the first term Da f
[
Dxa[η]

]
and j < i+ k. By (5.6) and the notation

from (5.10), one directly has

Da f
[
η
[k−1]
i

]
= J

f ,η[k−1]
i

(t).

For j = i + k, clearly Dxa[η] = Da f [Dxa[η]] = 0, as a does not depend
on bi+k.

We prove the second term similarly. For j > i, by applying the chain
rule and using the reversed Jacobi field formulation of Lemma 5.2 for the
derivative of a geodesic with respect to its end point, we obtain

Db f
[
η
[k−1]
i+1

]
= J

f̄ ,η[k−1]
i+1

(1− t).

Finally, as Dxb[η] = Db f [Dxb[η]] = 0 for x = bi, the assumption follows.

Figure 5.3 represents one level of the schematic propagation tree to
compute the derivative of a Bézier curve.

| 135

5 | Optimality of the Bézier fitting curve

i
i

“TikZ/13_first_bezier_tree” — 2020/7/7 — 11:55 — page 121 — #1 i
i

i
i

i
i

Dxg[k]i (t)[η]

η
[k−1]
i

+

J
g[k]i ,•(t)

(a) The case x = bi.

i
i

“TikZ/13_ith_bezier_tree” — 2020/7/7 — 11:55 — page 121 — #1 i
i

i
i

i
i

Dxg[k]i (t)[η]

η
[k−1]
i η

[k−1]
i+1

+

J
g[k]i ,•(t)

+

J
ḡ[k]i ,•(1− t)

(b) Intermediate cases, i.e., x ∈
{bi+1, . . . , bi+k−1}.

i
i

“TikZ/13_last_bezier_tree” — 2020/7/7 — 11:55 — page 121 — #1 i
i

i
i

i
i

Dxg[k]i (t)[η]

η
[k−1]
i+1

+

J
ḡ[k]i ,•(1− t)

(c) The case x = bi+k.

Fig. 5.3 Schematic representation of the cases where elements compose
the chained derivative of the ith Bézier curve of order k in the De Castel-
jau algorithm. The solid line represents a Jacobi field along g[k]i , while the
dashed one represents a reversed Jacobi field.

Example 5.5 (Quadratic Bézier curve). Consider the quadratic Bézier curve
β2 : [0, 1]→M defined as

β2(t; b0, b1, b2) = g
(
t; g(t; b0, b1), g(t; b1, b2)

)
.

Using the notations (5.9), we have

g[1]0 (t) := g(t; b0, b1), g[1]1 (t) := g(t; b1, b2),

g[2]0 (t) := g(t; g[1]0 , g[1]1).

The derivative of β2 at t with respect to b0 in the direction η ∈ TboM, is
given by

Db0 β2[η] = J
g[2]0 ,η[1]0

(t), with η
[1]
0 := J

g[1]0 ,η
(t).

The derivative of β2 at t with respect to b2 in the direction η ∈ Tb2M can be
seen as deriving by the first point after inverting the Bézier curve, i.e., look-
ing at β̄2(t) = β2(1− t). Hence we have analogously to the first term

Db2 β2[η] = J
ḡ[2]0 ,η[1]1

(1− t), with η
[1]
1 := J

ḡ[1]1 ,η
(1− t).

The case Db1 β2[η], η ∈ Tb1M, involves a chain rule where b1 appears in

both g[1]0 (as its end point) and g[1]1 (as its starting point). Using the two

136 |

Gradient of the discretized mean squared acceleration | 5.2

intermediate results (or Jacobi fields of geodesics)

η
[1]
0 := J

ḡ[1]0 ,η
(1− t) and η

[1]
1 := J

g[1]1 ,η
(t),

we obtain
Db1 β2[η] = J

g[2]0 ,η[1]0
(t) + J

ḡ[2]0 ,η[1]1
(1− t).

Example 5.6 (Cubic Bézier curve). Consider a cubic Bézier curve β3 : [0, 1]→
M defined as

β3(t; b0, b1, b2, b3) = g
(
t; β2(t; b0, b1, b2), β2(t; b1, b2, b3)

)
.

As in Example 5.5, we use the notations (5.9) and define

g[1]j (t) := g(t; bj, bj+1), j = 0, 1, 2,

g[2]j (t) := g(t; g[1]j , g[1]j+1), j = 0, 1, and

g[3]0 (t) := g(t; g[2]0 , g[2]1).

The derivation of β3 with respect to b0 or b3 follows the same structure
as in Example 5.5. The case of Db1 β3[η], however, requires two chain rules.
The needed Jacobi fields follow the tree structure shown in Figure 5.4b:
given η ∈ Tb1M, we define at the first recursion step

η
[1]
0 := J

ḡ[1]0 ,η
(1− t), η

[1]
1 := J

g[1]1 ,η
(t),

and at the second recursion step

η
[2]
0 := J

g[2]0 ,η[1]0
(t) + J

ḡ[2]0 ,η[1]1
(1− t), η

[2]
1 := J

g[2]1 ,η[1]1
(t).

Note that both η
[2]
0 and η

[2]
1 are actually the derivatives of β2(t; b0, b1, b2)

and β2(t; b1, b2, b3), respectively, with respect to b1 and in the direction η ∈
Tb1M. Finally we have

Db1 β3[η] = J
g[3]0 ,η[2]0

(t) + J
ḡ[3]0 ,η[2]1

(1− t).

The case of Db2 β3[η] is obtained symmetrically.

| 137

5 | Optimality of the Bézier fitting curve

i
i

“TikZ/13_construction_tree” — 2020/7/7 — 11:55 — page 123 — #1 i
i

i
i

i
i

g[3]0

g[2]0 g[2]1

g[1]0 g[1]1 g[1]1 g[1]2

b0 b1 b1 b2 b1 b2 b2 b3

(a) Tree-representation of the con-
struction of a cubic Bézier curve. The
thick line tracks the propagation of b1
within the tree.

i
i

“TikZ/13_derivation_tree” — 2020/7/7 — 11:55 — page 123 — #1 i
i

i
i

i
i

η
[3]
0

η
[2]
0 η

[2]
1

η
[1]
0 η

[1]
1 η

[1]
1

η η η

J
g[3]0 ,•(t) J

ḡ[3]0 ,•(1− t)

(b) Tree-representation of the recur-

sive construction of η
[3]
0 := Db1

β3[η].
The solid lines are Jacobi fields while
dashed lines are reversed Jacobi fields.

Fig. 5.4 Construction and derivation tree of a Bézier curve
β3(t; b0, b1, b2, b3). The derivative with respect to a variable bi is ob-
tained by a recursion of Jacobi fields added at each leaf of the tree.

5.2.4 Joining segments and deriving the gradient

In this subsection we express the derivative of a composite Bézier curve B(t)
and take the C1 conditions (3.19) into account. We simplify the general def-
inition and fix the degree to Ki = K for all segments, e.g., K = 3 for a cu-
bic composite Bézier curve. Then the control points are bi

j, j = 0, . . . , K,
i = 0, . . . , n − 1. We use the notations from Chapter 3 and denote by
pi = bi−1

K = bi
0, i = 1, . . . , n − 1 the common junction point of the seg-

ments and p0 and pn the start and end points, respectively; we denote by
b−i = bi−1

K−1 and b+i = bi
1, i = 1, . . . , n− 1, the two points needed for differ-

entiability condition investigation (see Figure 3.4 for an illustration of the
framework onM = R, with K = 3).

One possibility to enforce the C1 condition (3.19) is to include it into the
composite Bézier curve by replacing b+i with

b+i = g(2; b−i , pi), i = 1, . . . , n− 1. (5.11)

This way both the directional derivatives of B(t) with respect to b−i and pi
change due to a further (most inner) chain rule.

Lemma 5.7 (Derivative of a composite Bézier curve with C1 condition). Let Bcomposite
Bézier curve

be a composite Bézier curve and pi, b+i , b−i introduced as above. Replacing b+i =

138 |

Gradient of the discretized mean squared acceleration | 5.2

g(2; b−i , pi) eliminates that variable from the composite Bézier curve and keeps the
remaining derivatives unchanged, except the following which now reads

Db−i
B(t)[η]

=





Db−i
βK(t− i + 1; pi−1, b+i−1, . . . , ·, pi)[η] t ∈ (i− 1, i],

Db+i
βK(t− i; pi, b+i , . . . , ·, pi+1)

[
Db−i

g(2; ·, pi)[η]
]

t ∈ (i, i + 1],

and

Dpi B(t)[η]

=





Dpi βK(t− i + 1; pi−1, b+i−1, . . . , b−i , ·)[η] t ∈ (i− 1, i],

Dpi βK(t− i; ·, b+i , . . . , b−i+1, pi+1)[η]

+Db+i
βK(t− i; pi, ·, . . . , b−i+1, pi+1)

[
Dpi g(2; b−i , ·)[η]

]
t ∈ (i, i + 1].

In both cases, the first interval includes i− 1 = 0, when i = 1.

Proof. Both first cases are simply the derivation of a Bézier curve as before;
for both second cases, replacing b+i = g(2; b−i , pi) yields one additional
geodesic derivation.

We now derive the gradient of the objective function (5.4). We introduce
the abbreviation Bi = B(ti) ∈ M, and d2

2,i = d2
2(Bi−1, Bi, Bi+1).

Theorem 5.8. LetM be a m-dimensional manifold, x be one of the control points gradient
∇M,x A(b) of

the MSAof a composite Bézier curve B, and {ξ1, . . . , ξm} be a corresponding orthonormal
basis (ONB) of TxM. The gradient ∇M,x A(b) of the discretized mean squared
acceleration A(b) of B, w.r.t. x, discretized at N + 1 equispaced times t0, . . . , tN
is given by

∇M,x A(b) =
1

∆t3

m

∑
`=1

N−1

∑
i=1

i+1

∑
j=i−1

〈∇Md2
2,i, DxBj[ξ`]〉Bj ξ`.

Proof. As ∇M,x A(b) ∈ TxM, we seek for the coefficients a` := a`(x) such
that

∇M,x A(b) =
m

∑
`=1

a`ξ`. (5.12)

| 139

5 | Optimality of the Bézier fitting curve

Therefore, for any tangential vector η := ∑m
`=1 η`ξ` ∈ TxM, we have,

〈∇M,x A(b), η〉x =
m

∑
`=1

a`η`. (5.13)

By definition of A(b) and Definition 2.36 this yields

〈∇M,x A(b), η〉x =
1

∆t3

N−1

∑
i=1
〈∇M,xd2

2,i, η〉x =
1

∆t3

N−1

∑
i=1

Dxd2
2,i[η]. (5.14)

We compute Dxd2
2,i[η] using the chain rule (Definition 5.1) as

Dxd2
2,i[η] =

i+1

∑
j=i−1

DBj d
2
2,i
[
DxBj[η]

]
, (5.15)

which, by Definition 2.36, again becomes

DBj d
2
2,i
[
DxBj[η]

]
= 〈∇Md2

2,i, DxBj[η]〉Bj .

The term on the left of the inner product is given in [BBSW16, Sec. 3] and
the right term is given in Section 5.2.3. The former can be computed using
Jacobi fields and a logarithmic map, the latter is the iteratively coupling of
Jacobi fields. Furthermore, the differential DxBj[η] can be written as

DxBj[η] =
m

∑
`=1

η`DxBj[ξ`] ∈ TBjM.

Hence, we obtain

DBj d
2
2,i
[
DxBj[η]

]
=

m

∑
`=1

η`〈∇Md2
2,i, DxBj[ξ`]〉Bj ,

and by (5.13), (5.14) and (5.15), it follows

〈∇M,x A(b), η〉x =
1

∆t3

m

∑
`=1

η`

N−1

∑
i=1

i+1

∑
j=i−1

〈∇Md2
2,i, DxBj[ξ`]〉Bj ,

which yields the assertion (5.12).

140 |

Numerical considerations | 5.3

5.3 Numerical considerations

In order to apply the theory of Section 5.2 to the fitting problem (5.1), we
briefly mention some numerical considerations, like the practical imple-
mentation methods.

Minimizing A(b) alone leads to any geodesic or to the trivial solution,
for any set of control points b = (x, . . . , x), x ∈ M, and this is why the
fitting term from (5.1) is important. As the variables to optimize are the
control points, the fitting problem (5.1) becomes

min
b∈ΓB

Eλ(b) := min
b∈ΓB

∫ tn

t0

∥∥∥D2B(t)
dt2

∥∥∥
2

B(t)
dt +

λ

2

n

∑
i=0

d2(pi, di), (5.16)

where ΓB ∈ MM is the set of the M control points of B. Remark that,
compared to (5.1), the optimization is now on the product manifoldMM,
and not on a infinite space of curves B.

The section is divided in three parts: the product manifoldMM is de-
fined in Section 5.3.1, where the contribution of the fitting term in the gra-
dient of E is also presented. Then, we propose an efficient algorithm to
compute the gradient of the discretized MSA, based on so-called adjoint
Jacobi fields. We finally shortly mention the gradient descent algorithm as
well as the involved Armijo rule.

5.3.1 Fitting and interpolation

Let us clarify the set ΓB ∈ MM from (5.16). We will explicitly present the
vector b and state its size M. The set ΓB is the set of the M remaining free
control points to optimize, when the C1 continuity constraints are imposed.
We distinguish two cases: (i) the fitting case, and (ii) the interpolation case
(λ→ ∞) where the constraint di = pi is imposed.

For a given composite Bézier curve B : [0, n]→M consisting of a Bézier
curve of degree K on each segment, and given the C1 conditions (3.19), the
segments are determined by the points

b = (p0, b+0 , b0
2, b0

3, . . . , b0
K−2, b−1 , p1, b+1 , . . . , b−n , pn) ∈ MM. (5.17)

We investigate the length of M. First, b+i is given by pi and b−i via (3.19).
Secondly, the first segment contains the additional value of b+0 that is not

| 141

5 | Optimality of the Bézier fitting curve

fixed by C1 constraints. The first segment is thus composed of K+ 1 control
points, while the n− 1 remaining segments are determined by K− 1 points.
In total we obtain M = n(K− 1) + 2 control points to optimize.

Fitting (0 < λ < ∞). In the fitting scheme, (5.16) reads

argmin
b∈ΓB

Ã(b), Ã(b) := A(b) +
λ

2

n

∑
i=0

d2
M(di, pi), (5.18)

where λ ∈ R+ sets the priority to either the data term (large λ) or the mean
squared acceleration (small λ) within the minimization. The gradient of the
data term is given in (2.5.4); thus, the gradient of Ã is given by

∇MM ,x Ã(b) =

{
∇MM ,x A(b)− λ logpi

di if x = pi, i = 0, . . . , n,

∇MM ,x A(b) otherwise.

Interpolation (λ → ∞). For interpolation we assume that the start point
pi−1 and end point pi of the segments i = 1, . . . , n are fixed to given data
di−1 and di ∈ M, respectively. The optimization of the discrete mean
squared acceleration A(b) now reads

argmin
b∈ΓB

A(b) such that pi = di, i = 0, . . . , n. (5.19)

Since the pi are fixed by constraint, they can be omitted from the vector b.
We obtain

b = (b+0 , b0
2, . . . , b−1 , b1

2, . . . , b−n) ∈ MM′

Since there are n + 1 additional constraints, the minimization is hence per-
formed on the product manifoldMM′ , M′ = M− (n + 1) = n(K− 2) + 1.

5.3.2 Adjoint Jacobi fields

In the Euclidean space Rm, the adjoint operator T∗ of a linear bounded
operator T : Rm → Rq is the operator fulfilling

〈T(x), y〉Rq = 〈x, T∗(y)〉Rm , for all x ∈ Rm, y ∈ Rq.

The same can be defined for a linear operator S : TxM → TyM, x, y ∈
M, on a m-dimensional Riemannian manifold M. The adjoint opera-

142 |

Numerical considerations | 5.3

tor S∗ : TyM→ TxM satisfies

〈S(η), ν〉y = 〈η, S∗(ν)〉x, for all η ∈ TxM, ν ∈ TyM.

In the case where S is the differential operator Dx of a geodesic F(x) =
g(t; x, y), the differential DxF : TxM→ TF(x)M can be written as

DxF[η] = Jg,η(t) =
m

∑
`=1
〈η, ξ`〉xα`Ξ`(t),

where α` are the coefficients of the Jacobi field (5.7), and ξ`, Ξ`(t) are given
as in Lemma 5.2. We observe that for any ν ∈ TF(x)M we have

〈DxF[η], ν〉F(x) =
m

∑
`=1
〈η, ξ`〉xα`〈Ξ`(t), ν〉F(x) =

〈
η,

m

∑
`=1
〈Ξ`(t), ν〉F(x)α`ξ`

〉
x
.

Hence the adjoint differential (DxF)∗ : TF(x)M→ TxM is given by

(DxF)∗[ν] =
m

∑
`=1
〈ν, Ξ`(t)〉F(x)α`ξ`, ν ∈ TF(x)M.

We introduce the adjoint Jacobi field J∗F,ν : R→ TxM, ν ∈ TF(x)M as adjoint Jacobi
field

J∗F,ν(t) =
m

∑
`=1
〈ν, Ξ`(t)〉F(x) J∗F,Ξ`(t)

(t) =
m

∑
`=1
〈ν, Ξ`(t)〉F(x)α`ξ`.

Note that evaluating the adjoint Jacobi field J∗ involves the same trans-
ported frame {Ξ1(t), . . . Ξm(t)} and the same coefficients α` as the Jacobi
field J, which means that the evaluation of the adjoint is in no way inferior
to the Jacobi field itself.

The adjoint D∗ of the differential is useful in particular, when comput-
ing the gradient∇M(h ◦ F) of the composition of F : M→Mwith h : M→
R. Setting y := F(x) ∈ M, we obtain for any η ∈ TxM that

〈∇M,x(h ◦ F)(x), η〉x = Dx(h ◦ F)[η]

= DF(x)h
[
DxF[η]

]

= 〈∇M,yh(y), DxF[η]〉y
=
〈
(DxF)∗

[
∇M,yh(y)

]
, η
〉

x
.

| 143

5 | Optimality of the Bézier fitting curve

Especially for the evaluation of the gradient of the composite function
h ◦ F we obtain

∇M,x(h ◦ F)(x) = (DxF)∗
[
∇M,yh(y)

]
= J∗F,∇M,yh(y)(t).

The main advantage of this technique appears in the case of composite
functions, i.e., of the form h ◦ F1 ◦ F2 (the generalization to composition
with K functions is similar). The gradient ∇M,x(h ◦ F1 ◦ F2)(x) now reads,

∇M,x(h ◦ F1 ◦ F2)(x) = (DxF2)
∗[∇M,y2 h ◦ F1(y2)

]
= J∗F2,∇M,y2

h◦F1(y2))
(t).

The recursive computation of η[3] = ∇M,xh(x) is then given “from the top
of the three” and not from the bottom, i.e.,

η[1] = ∇M,y1 h(y1),

η[2] = J∗F1,η[1](t),

η[3] = J∗F2,η[2](t).

Example 5.9. For h = d2
2 : M3 → R we know ∇M3 h by Lemma 3.1

and Lemma 3.2 from [BBSW16]. Let t1, t2, t3 ∈ [0, 1] be time points, and
b ∈ MM be a given (sub)set of the control points of a (composite) Bézier
curve B. We define F : MM → M3, b 7→ F(b) = (B(t1), B(t2), B(t3)) as
the evaluations of B at the three given time points. The composition h ◦ F
hence consists of (in order of evaluation) the geodesic evaluations of the
De Casteljau algorithm, the mid point function for the first and third time
point and a distance function.

The recursive evaluation of the gradient starts with the gradient of the
distance function. Then, for the first and third arguments, a mid point Ja-
cobi field is applied. The result is plugged into the last geodesic evaluated
within the De Casteljau “tree” of geodesics. At each geodesic, a tangent
vector at a point g(tj; a, b) is the input for two adjoint Jacobi fields, one
mapping to TaM, the other to TbM. This information is available through-
out the recursion steps anyways. After traversing this tree backwards, one
obtains the required gradient of h ◦ F.

Note also that even the differentiability constraint (3.19) yields only two
further (most outer) adjoint Jacobi fields, namely J∗

g(2,b−i ,pi),∇M,b+i
B(tj)

(2)

and J∗
g̃(2,b−i ,pi),∇M,b+i

B(tj)
(2). They correspond to variation of the start point

144 |

Numerical considerations | 5.3

Algorithm 5 Gradient descent algorithm on a manifold N =MM

Input. F : N → R, its gradient∇N F, x(0) ∈ N , step sizes sk > 0, k ∈N.
Output: x̂ ∈ N
k← 0
repeat

Perform a gradient descent step x(k+1) := expx(k)
(
−sk∇N F(x(k))

)

k← k + 1
until a stopping criterion is reached
return x̂ := x(k)

b−i and the end point pi, respectively as stated in (5.7).

5.3.3 A gradient descent algorithm

To address (5.18) or (5.19), we use a gradient descent algorithm, as de-
scribed in [AMS08, Ch. 4]. For completeness, the algorithm is given in
Algorithm 5. The step sizes are given by the Armijo line search condi-
tion presented in [AMS08, Def. 4.2.2]. Let N be a Riemannian manifold,
x = x(k) ∈ N be an iterate of the gradient descent, and β, σ ∈ (0, 1), α > 0.
Let m be the smallest positive integer such that

F(x)− F
(
expx(−βmα∇N F(x))

)
≥ σβmα‖∇N F(x)‖x. (5.20)

We set the step size to sk := βmα in Algorithm 5.
As a stopping criterion we use a maximal number kmax of iterations

or a minimal change per iteration dN (xk, xk+1) < ε. In practice, this last
criterion is matched first.

The gradient descent algorithm converges to a critical point if the func-
tion F is convex [AMS08, Sec. 4.3 and 4.4]. The mid-points model (5.3)
posesses two advantages: (i) the complete discretized MSA (5.4) consists
of (chained) evaluations of geodesics and a distance function, and (ii) it
reduces to the classical second order differences on the Euclidean space.
However, this model is not convex on general manifolds. An example is
given in the arXiv preprint (version 3) of [BBSW16], Remark 4.6. Another
possibility (also reducing to classical second order differences in Euclidean
space) is the so-called Log model (see, e.g., [Bou13])

d2,Log[x, y, z] = ‖logy x + logy z‖y.

| 145

5 | Optimality of the Bézier fitting curve

The (merely technical) disadvantage of the Log model is that the compu-
tation of the gradient involves further Jacobi fields than the one presented
above, namely to compute the differentials of the logarithmic map both
with respect to its argument Dx logy x as well as its base point Dy logy x.
Still, these can be given in closed form for symmetric Riemannian mani-
folds [BFPS18, Th. 7.2][Per18, Lem.2.3]. To the best of our knowledge, the
joint convexity of the Log model in x, y and z is still an open question.

5.4 Validation of the fitting methods

In this section, we provide several examples of the gradient descent al-
gorithm applied to the fitting problem (5.16). We validate it first on the
Euclidean space and verify that it retrieves the natural cubic smoothing
spline. We then present examples on the sphere S2 and the special orthog-
onal group SO(3). We compare the results with the Bézier fitting algorithm
from Section 4.1.

We will show in this section that the gradient descent approach per-
forms as good as the fitting methods from Chapter 4 when the data lies on
the Euclidean space (Section 5.4.1). This also means that all methods work
equally well whenever the data points on the manifold are local enough.
However, we will also show by the other examples (and this is not surpris-
ing) that the “fast” fitting methods fail to approach the optimal solution
whenever the data points are spread out on the manifold. Those examples
are given in Sections 5.4.2 and 5.4.3.

All examples were implemented in MVIRT [Ber17], and the comparison
implementations from Chapter 4 use Manopt [BMAS14].

5.4.1 Validation on the Euclidean space

LetM = R3. To verify that we recover the natural smoothing spline, we
compute the comparison curve with the method from Section 4.1 (Bézier
fitting) that we call here “fast Bézier”. We use the following data points

d0 =




0
0
1


 , d1 =




0
−1
0


 , d2 =



−1
0
0


 , d3 =

1√
82




0
−1
−9


 , (5.21)

146 |

Validation of the fitting methods | 5.4

and we initialize the control points as pi = di and

b+0 = expp0

π

8
√

2




1
−1
0


 , b+1 = expp1

− π

2
√

2




1
0
1


 , b−1 = g(2; b+1 , p1),

b+2 = expp2

π

2
√

2




0
1
−1


 , b−3 = expp3

π

8



−1
0
0


 , b−2 = g(2; b+2 , p2),

(5.22)
for the gradient descent algorithm. The exponential map and the geodesic
on R3 are actually the addition and line segments, respectively. Note that,
by construction, the initial curve is continuously differentiable but (obvi-
ously) does not minimize (5.1). The parameter λ is set to 50. The MSA
of this initial curve Ã(b) is approximately 18.8828. The result is shown
in Figure 5.5a together with the first order differences along the curve in
Figure 5.5b.

The set of control points (p0, b+0 , . . . , b−3 , p3) is optimized with the gra-
dient descent. We discretize the second order difference using N = 1600
points. The resulting curve and the first order difference plots are also ob-
tained using these sampling values and a first order forward difference.
The parameters of the Armijo rule (5.20) are set to β = 1

2 , σ = 10−4,

and α = 1. The stopping criteria are ∑1600
i=1 dM(x(k)i , x(k+1)

i) < ε = 10−15

or ‖∇Mn Ã‖2 < 10−9, and the algorithm stops when one of the two is met.
For this example, the first criterion stopped the algorithm, while the norm
of the gradient was of magnitude 10−6.

Both methods improve the initial functional value of Ã(b) ≈ 18.8828
to a value of Ã(bmin) ≈ 4.981218. Both the fast Bézier approach and
the gradient descent perform equally. The difference of objective value is
2.4524× 10−11 smaller for the gradient descent, and the maximal distance
between the sampling points of the resulting curves is of size 4.3× 10−7.
Hence, in the Euclidean space, the proposed gradient descent yields the
natural cubic spline, as one would expect.

5.4.2 Examples on the sphere S2

Validation on a geodesic. As a second example with a known minimizer,
we consider the manifold M = S2, i.e., the two-dimensional unit sphere sphere S2

| 147

5 | Optimality of the Bézier fitting curve

i
i

“TikZ/13_euclidean_R3” — 2020/7/7 — 11:55 — page 132 — #1 i
i

i
i

i
i

−0.5
0
−0.5

0.5
−0.5

0.5

d0

d1

d2

d3

Initial curve
Fast Bézier

Gradient descent

(a) Bézier curves.i
i

“TikZ/13_euclidean_R3velocity” — 2020/7/7 — 11:55 — page 132 — #1 i
i

i
i

i
i

1 2 3

2

3

4

·10−3

Initial curve
Fast Bézier

Gradient descent

(b) First order differences.

Fig. 5.5 The initial interpolating Bézier curve in R3 (solid blue, a) with
an MSA of 18.8828 is optimized by the Bézier fitting curve (fast Bézier)
from Section 4.1 (dashed) and by the proposed gradient descent (solid fat
darkblue). As expected, both curve coincide, with an MSA of 4.981218.
The correspondence is further illustrated with their first order differences
in (b).

embedded in R3, where geodesics are great arcs. We use the data points

d0 =




0
0
1


 , d1 =




0
1
0


 , d2 =




0
0
−1




148 |

Validation of the fitting methods | 5.4

aligned on the geodesic connecting the north pole p0 and the south pole p2,
and running through a point p1 on the equator. We define the control
points of the cubic Bézier curve as follows:

x0 =
1√
6




1
1
2


 , b+0 = expp0

(
3 logp0

(x0)
)

, b−1 =
1√
6




1
2
1


 ,

x2 =
1√
6



−1
1
−2


 , b+1 =

1√
6



−1
2
−1


 , b−2 = expp2

(
1
3

logp0
(x2)

)
,

where x0 and x2 are temporary points and pi = di. We obtain two seg-
ments smoothly connected since logp1

b−1 = − logp1
b+1 . The original curve

is shown in Figure 5.6a, where especially the tangent vectors illustrate the
different speeds at pi.

The control points are optimized with the interpolating model, i.e., we
fix the start and end points p0, p1, p2 and minimize A(b).

The curve, as well as the second and first order differences, is sampled
with N = 201 equispaced points. The parameters of the Armijo rule are
again set to β = 1

2 , σ = 10−4, and α = 1. The stopping criteria are slightly
relaxed to 10−7 for the distance and 10−5 for the gradient, because of the
sines and cosines involved in the exponential map.

The result is shown in Figure 5.6b. Since the minimizer is the geodesic
running from p0 to p2 through p1, we measure the performance first by
looking at the resulting first order difference, which is constant, as can be
seen in Figure 5.6c. As a second validation, we observe that the maximal
distance of the resulting curve to the geodesic is of 2.2357× 10−6. These
evaluations again validate the quality of the gradient descent.

Effect of the data term. As a third example we investigate the effect of
λ in the fitting model. We consider the data points

d0 =




0
0
1


 , d1 =




0
−1
0


 , d2 =



−1
0
0


 , d3 =




0
0
−1


 ,

| 149

5 | Optimality of the Bézier fitting curve

(a) The original curve. (b) The minimized curve.i
i

“TikZ/13_sphere_velocity” — 2020/7/7 — 11:55 — page 134 — #1 i
i

i
i

i
i

0 1
2

1 3
2

2

3

6
·10−2

t

(c) Absolute first order difference.

Fig. 5.6 The initial curve (dashed, a) results in a geodesic (solid, b) when
minimizing the discrete acceleration. This can also be seen on the first or-
der differences (c).

as well as the control points pi = di, and

b+0 = expp0


 π

8
√

2




1
−1
0




 , b+1 = expp1


− π

4
√

2



−1
0
1




 ,

b+2 = expp2


 π

4
√

2




0
1
−1




 , b−3 = expp3


− π

8
√

2



−1
1
0




 .

The remaining control points b−1 and b−2 are given by the C1 conditions (3.19).
The corresponding curve B(t), t ∈ [0, 3], is shown in Figure 5.7 in dashed

150 |

Validation of the fitting methods | 5.4

black. When computing a minimal MSA curve that interpolates B(t) at the
points pi, i = 0, . . . , 3, the acceleration is not that much reduced, see the
solid blue curve in Figure 5.7a.

For fitting, we consider different values of λ and the same parameters
as for the last example. The optimized curve fits the data points closer
and closer as λ grows, and the limit λ → ∞ yields the interpolation case.
On the other hand smaller values of λ yield less fitting, but also a smaller
value of the mean squared acceleration. In the limit case, i.e., λ → 0, the
curve (more precisely the control points of the Bézier curve) just follows
the gradient flow to a geodesic.

The results are collected in Figure 5.7. In Figure 5.7a, the original curve
(dashed), is shown together with the solution of the interpolating model
(solid blue) and the gradient flow result, i.e., the solution of the fitting
model (solid black) with λ → 0. Figure 5.7b illustrates the effect of λ even
further with a continuous variation of λ from a large value of λ = 10 to
a small value of λ = 0.01. The image is generated by sampling this range
with 1000 equidistant values colored in the colormap viridis. Further-
more, the control points are also shown in the same color.

Several corresponding functional values, see Table 5.1, further illustrate
that with smaller values of λ the discretized MSA also reduces more and
more to a geodesic. For λ = 0 there is no coupling to the data points and
hence the algorithm does not restrict the position of the geodesic. In other
words, any choice for the control points that yields a geodesic, is a solution.
Note that the gradient flow still chooses a reasonably near geodesic to the
initial data (Figure 5.7a, solid black).

λ Ã(b)

orig 10.6122
∞ 4.1339

10 1.6592
1 0.0733
0.1 0.0010
0.01 1.0814× 10−5

0.001 1.6240× 10−7

0 3.5988× 10−9

Table 5.1 MSA values of Figure 5.7 for different values of λ.

| 151

5 | Optimality of the Bézier fitting curve

(a) Initial (dashed), interpolation (solid
blue) and fitting with λ = 0 (solid
black).

i
i

“TikZ/13_sphere_art” — 2020/7/7 — 11:56 — page 135 — #1 i
i

i
i

i
i

10

8

6

4

2

0

λ

(b) Reducing the data term from λ = 10
(violet) down to λ = 0.01 (yellow) in
1000 equidistant steps.

Fig. 5.7 The composite Bézier curves are composed of three segments.
The initial curve (dashed, a) is optimized with the interpolating model
(solid blue, a) as well as with the fitting model for a continuum of val-
ues of λ, from λ = 10 (violet, b) to λ = 0.01 (yellow, b). The limit case
where λ→ 0 approaches an unconstrained geodesic (solid black, a).

Comparison with the tangential solution. In the Euclidean space, the
method introduced Section 4.1 and the gradient descent proposed here
yield the same curve, i.e., the natural cubic spline. On Riemannian mani-
folds, however, all approaches approximate the optimal solution. Indeed,
the method from Section 4.1 provides a solution by working in different
tangent spaces, while the method presented here minimizes a discretiza-
tion of the objective function.

In this example we take the same data points di as in (5.21) now inter-
preted as points on M = S2, and λ = 10. Note that the control points
constructed in (5.22) still fit to the sphere since each b±i is built with a vec-
tor in TpiM. The result is shown in Figure 5.8a. The norm of the first order
differences is given in Figure 5.8b. The initial curve (dashed) has an objec-
tive value of 10.9103. The local Bézier curve (thick light blue), computed
with dref = p0 (see page 107 for a reminder of the model), reduces this
value to 7.3293. The Bézier curve (solid darkblue, Definition 4.1 lowers the
MSA to 3.1863 and the gradient descent (solid orange) yields a value of
2.7908, regardless of whether the starting curve is the initial one, or one
of the already computed one. Note that, when p3 = [0, 0,−1]>, the lo-

152 |

Validation of the fitting methods | 5.4

i
i

“TikZ/13_sphere_compare_result” — 2020/7/7 — 11:56 — page 136 — #1 i
i

i
i

i
i

(a) Bézier curves

i
i

“TikZ/13_sphere_compare_speed” — 2020/7/7 — 11:56 — page 136 — #1 i
i

i
i

i
i

0 1 2 3

1

2

Initial curve
Local curve
Bézier curve

Gradient descent

(b) First order differences.

Fig. 5.8 The initial composite Bézier curve on S2 (dashed, a) has an
MSA of 10.9103. The curve obtained with a local curve (thick light blue,
dref = p0), has an MSA of 7.3293. The Bézier (solid dark blue) curve from
Definition 4.1 reaches an MSA of 3.1863. The gradient descent (solid or-
ange) lowers the MSA to 2.7908. The first order derivative in (b) shows
that the gradient descent algorithm leads to solutions where the velocity
varies less.

cal approach is not able to compute any result, since the construction is
performed in the tangent space of p0. Thus, logp0

p3 is not defined. We can
observe that, despite the spreading of the data points, the method from Sec-
tion 4.1 performs quite well. It is difficult to compare the quality of each
curve only based on the value of the MSA, as the gradient descent tech-
nique minimizes this approximation while the Bézier fitting curve solves
problem (1.1) on the tangent spaces. Logically, the gradient descent leads
to a better result, but takes more time; on the other hand the improvement
observed compared with the local Bézier surface shows that the methods
from Chapter 4 permit to obtain an acceptable solution in short time.

5.4.3 An example of orientations

Finally we analyze the blended splines for orientations, i.e., data SO(3)

Rxy(α) =




cos α sin α 0
− sin α cos α 0

0 0 1


,

| 153

5 | Optimality of the Bézier fitting curve

Rxz(α) =




cos α 0 sin α

0 1 0
− sin α 0 cos α


,

Ryz(α) =




1 0 0
0 cos α sin α

0 − sin α cos α




denote the rotation matrices in the x − y, x − z, and y− z planes, respec-
tively. We introduce the three data points

d0 = Rxy

(
4π

9

)
Ryz

(
−π

2

)
,

d1 = Rxz

(
−π

8

)
Rxy

(π

18

)
Ryz

(
−π

2

)
,

d2 = Rxy

(
5π

9

)
Ryz

(
−π

2

)
.

These data points are shown in the first line of Figure 5.9 in cyan.
We set λ = 10 and discretize (5.16) with N = 401 equispaced points.

This sampling is also used to generate the first order finite differences. The
parameters of the gradient descent algorithm are set to the same values as
for the examples on the sphere.

We perform the blended spline fitting with two segments and cubic
splines. The resulting control points are shown in the second row of Fig-
ure 5.9, in green. The objective value is Ã(b) = 0.6464. We improve this
solution with the minimization problem (5.18) on the product manifold
SO(3)6. We obtain the control points shown in the last line of Figure 5.9
and an objective value of Ã(b̂) = 0.2909 for the resulting minimizer b̂.

We further compare both curves by looking at their absolute first order
differences. In the third line of Figure 5.9, we display 17 orientations along
the initial curve with its first order difference as height. The line without
samples is the absolute first order differences of the minimizer b̂, scaled
to the same magnitude. The line is straightened especially for the first
Bézier segment. Nevertheless, the line is still bent a little bit and hence
not a geodesic. This can be seen in the fourth line which represents 17
samples of the minimizing curve compared to its control points in the last
line, which are drawn on a straight line.

154 |

Validation of the fitting methods | 5.4

Fi
g.

5.
9

Fr
om

to
p

ro
w

to
bo

tt
om

ro
w

:
(1

)
th

e
in

it
ia

l
da

ta
po

in
ts

(c
ya

n)
,

(2
)

th
e

co
nt

ro
l

po
in

ts
co

m
pu

te
d

by
th

e
bl

en
de

d
cu

rv
e,

(3
)1

7
po

in
ts

on
th

e
co

rr
es

po
nd

in
g

cu
rv

e,
w

he
re

th
e

he
ig

ht
re

pr
es

en
ts

th
e

ab
so

lu
te

fir
st

or
de

r
di

ff
er

-
en

ce
,a

nd
th

e
co

m
pa

ri
ng

cu
rv

e
is

th
e

fir
st

or
de

r
di

ff
er

en
ce

s
fr

om
th

e
cu

rv
e

ob
ta

in
ed

vi
a

th
e

gr
ad

ie
nt

de
sc

en
t,

(4
)

17
po

in
ts

al
on

g
th

e
re

su
lt

in
g

cu
rv

e
fr

om
gr

ad
ie

nt
de

sc
en

t,
an

d
(5

)t
he

re
su

lt
in

g
co

nt
ro

lp
oi

nt
s

of
th

e
cu

rv
e

in
(4

).

| 155

5 | Optimality of the Bézier fitting curve

This section is based on the paper[BG18], often cited verbatim. Its reference is

[BG18] Ronny Bergmann and Pierre-Yves Gousenbourger. A variational model for data
fitting on manifolds by minimizing the acceleration of a Bézier curve. Frontiers in Applied
Mathematics and Statistics, 4(59):1–16, 2018. doi:10.3389/fams.2018.00059

156 |

http://dx.doi.org/10.3389/fams.2018.00059

6
Interpolation with

Bézier surfaces

A
FTER PRESENTING TECHNIQUES for univariate interpolation and
fitting on manifolds, the present chapter aims at extending the
scope to mutlivariate interpolation, i.e., a framework where the

data point now depend on multiple parameters.
The technique to perform multivariate manifold-valued interpolation is

based on C1 piecewise-cubic Bézier functions (see Figure 1.1 for an exam-
ple). More precisely, given data points di1,...,iD on a manifoldM associated
to nodes (i1, . . . , id) ∈ ZD of a Cartesian grid in RD, one seeks a C1 function

surface

S : RD →M such that S(i1, . . . , iD) = di1,...,iD .

The technique can be viewed as a multivariate extension of the method
presented in Section 3.4. For simplicity of the exposition, the focus is lim-
ited to 2D interpolation, but the transition to higher dimensions of the do-
main seems to be less intricate than the transition from 1D to 2D. This is
the fourth contribution of this thesis.

The development of the bivariate manifold-valued technique requires
more work than one might anticipate. The first task is to propose a bivari-
ate extension of the manifold-valued Bézier curves (Definition 3.12). Three
approaches are proposed in Section 6.2, leading to different results.

| 157

6 | Interpolation with Bézier surfaces

Next comes the question of gluing these Bézier patches together in a
smooth (C1) way (Section 6.3). The problem is substantially more difficult
than in Chapter 3 because the interfaces are no longer isolated points but
instead regions of dimension 1. The C0 conditions are not the core of the
problem because they are the same as in Euclidean spaces; however, the
classical conditions on the control points for C1-continuity in Euclidean
spaces exhibit a linear dependence which is incompatible with general
manifolds. In addition, those conditions are not sufficient to ensure C1-
continuity on a manifold. This difficulty is resolved in Theorem 6.18 for
two of the three Bézier surface definitions.

After generalizing composite curves to composite surfaces, Section 6.4
provides a technique to set control points in such a way that the resulting
interpolating surface has minimal mean squared second derivative when
M is flat. Results are shown in Section 6.6, in the context of motion mod-
eling and shape exploration in shape spaces.

This chapter is a collaboration with Prof. Benedikt Wirth and Dr. Paul
Striewski (Universität Münster, Germany).

6.1 Euclidean Bézier surfaces

The idea of Bézier curves presented in Sections 3.1 and 3.2 extends also
to higher dimensions; see, e.g., [Far02, Sec. 5.5]. In this chapter, the focus
concerns Bézier surfaces, i.e., Bézier functions with a domain in R2.

Definition 6.1 (Euclidean Bézier surface). For a family of points (bij)i,j=0,...,K ⊂
Rr, the Bézier surface σK : [0, 1]2 → Rr of degree K is defined asBézier surface

σK

σK(t1, t2; (bij)i,j=0,...,K) =
K

∑
i=0

K

∑
j=0

bijBiK(t1)BjK(t2), (6.1)

where K is the order of the surface (K = 3 for cubic surfaces treated in
this chapter), and BjK(t) are the same Bernstein polynomials from Defini-Bernstein

polynomial
tion 3.1.

Similarly to curves, for fixed t1 and t2, the surface can be interpreted
as a convex combination of all control points bij (Figure 6.1a). We directly
see that the Bézier surface boundary consists of the four Bézier curves with
control points b0,j, bK,j, bj,0, bj,K, j = 0, . . . , K, respectively.

158 |

Euclidean Bézier surfaces | 6.1

We can also interpret a Bézier surface as a one-parameter family of
Bézier curves, which allows an evaluation just based on the computation
of Bézier curves (Figure 6.1b), in one direction at a time.

Definition 6.2 (Tensorized Euclidean Bézier surface). The Bézier surface can Bézier surface

be interpreted “as a Bézier curve of a family of Bézier curves”, i.e., Bézier curve

σK(t1, t2; (bij)i,j=0,...,K) =
K

∑
j=1

(
K

∑
i=1

bijBiK(t1)

)
BjK(t2)

= βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K), (6.2)

or alternatively by switching t1 and t2 and the corresponding control points.

A third alternative to compute the Bézier surface is to rely on the De
Casteljau algorithm. In suggestive matrix notation, it takes the following
form.

Definition 6.3 (De Casteljau algorithm for surfaces). The Bézier surface can De Casteljau

be computed recursively as

x[0]ij = bij, for i, j = 0, . . . , K,

x[k]ij =
[
1− t1 t1

]

x[k−1]

i,j x[k−1]
i,j+1

x[k−1]
i+1,j x[k−1]

i+1,j+1



[

1− t2
t2

]
, for k = 1, . . . , K,

and i, j = 0, . . . , K− k,
(6.3)

and yields x[K]00 = σK(t1, t2; (bij)i,j=0,...,K).

Here again, points x[k]ij are obtained as convex combinations of x[k−1]
ij ,

x[k−1]
ij+1 , x[k−1]

i+1j and x[k−1]
i+1j+1. This combination leads once more to a simple

geometric interpretation (Figure 6.1c).

Property 6.4 (Edges and corners of the Bézier surface). The Bézier surface
interpolates the control points at the corners, i.e.,

σK(0, 0; (bij)i,j=0,...,K) = b00,

σK(1, 0; (bij)i,j=0,...,K) = bK0,

σK(0, 1; (bij)i,j=0,...,K) = b0K,

σK(1, 1; (bij)i,j=0,...,K) = bKK.

| 159

6 | Interpolation with Bézier surfaces

i
i

“TikZ/21_surface_average” — 2020/7/7 — 11:56 — page 143 — #1 i
i

i
i

i
i

σ3(
1
4 , 1

4 ; b)

(a) Averaging

i
i

“TikZ/21_surface_tensor” — 2020/7/7 — 11:56 — page 143 — #1 i
i

i
i

i
i

1.

1.

1.

1.

2.

(b) Tensorization

i
i

“TikZ/21_surface_castel” — 2020/7/7 — 11:56 — page 143 — #1 i
i

i
i

i
i

x[0]3,3

x[1]2,2

x[2]1,1

x[3]0,0

(c) De Casteljau

Fig. 6.1 Computation of a cubic Bézier surface via (6.1) as a weighted
mean of the control points (a), via (6.2) through a one-parameter family of
Bézier curves (b), and via the De Casteljau algorithm (6.3) (c). Interpolation
and control points are indicated by filled and open circles, respectively; the
Bézier polygon is shown as gray dashed lines.

Furthermore, the edges of the Bézier surface are Bézier curves defined as

σK(0, t2; (bij)i,j=0,...,K) = βK(t2; b00, . . . , b0K),

σK(1, t2; (bij)i,j=0,...,K) = βK(t2; bK0, . . . , bKK),

σK(t1, 0; (bij)i,j=0,...,K) = βK(t1; b00, . . . , bK0),

σK(t1, 1; (bij)i,j=0,...,K) = βK(t1; b0K, . . . , bKK).

Proof. By construction of the tensorized version of Bézier surfaces.

Different Bézier surfaces can be glued smoothly quite easily. For this,
we introduce the notion of composite Bézier surface.

Definition 6.5 (Composite Bézier surface). Consider a set of MN Bézier
surfaces σmn

K of order K, m = 0, . . . , M− 1, n = 0, . . . , N − 1, driven by the
control points (bmn

ij)i,j=0,...,K ∈ Rr. The composite Bézier surface S is definedcomposite
Bézier surface
S(t1, t2) as

S : [0, M]× [0, N]→ Rr : (t1, t2) 7→ σmn
K (t1 −m, t2 − n; (bmn

ij)i,j=0,...,K)

for bt1c = m, bt2c = n, defined as in Definition 3.6.

160 |

Bézier surfaces on manifolds | 6.2

Property 6.6 (Ck-continuity [Far02, § 16.1]). Two Bézier surfaces of or-
der K σK(t1, t2; (bl

ij)i,j=0,...,K) and σK(t1, t2; (br
ij)i,j=0,...,K) can be joined Ck-

continuously in t1-direction via

S : [0, 2]× [0, 1]→ Rr :

(t1, t2) 7→
{

σK(t1, t2; (bl
ij)i,j=0,...,K) if t1 ∈ [0, 1],

σK(t1 − 1, t2; (br
ij)i,j=0,...,K) if t1 ∈ (1, 2],

(6.4)

if for all j = 1, . . . , K the sequence pairs (bl
j,0, . . . , bl

j,K), (b
r
j,0, . . . , br

j,K) induce

a one-dimensional Ck-continuous Bézier spline via (3.13). An analogous
condition holds if the two surfaces are to be matched smoothly in the t2-
direction.

Example 6.7 (Composite cubic surface). According to Property 6.6, the com-
posite cubic Bézier surface

S : [0, 2]× [0, 1]→ Rr :

(t1, t2) 7→
{

σ3(t1, t2; (bl
ij)i,j=0,...,3) if t1 ∈ [0, 1],

σ3(t1 − 1, t2; (br
ij)i,j=0,...,3) if t1 ∈ (1, 2],

will be C1 continuous in the t1-direction if

bl
3j = br

0j =
bl

2j + br
1j

2
, for j = 0, . . . , 3.

Remark 6.8. The C1 conditions correspond to conditions of C1 continuity
of curves. Futhermore, Ck conditions are here given for two curves of same
order, but the condition can be easily generalized to different orders using
Property 3.9.

6.2 Bézier surfaces on manifolds

Bézier surfaces can be transferred to a manifold setting in different ways,
where each approach generalizes a particular evaluation scheme for Bézier
surfaces in Euclidean space. In this section, we introduce three possible
definitions of Bézier surfaces on a Riemannian manifoldM. The three of

| 161

6 | Interpolation with Bézier surfaces

them lead in general to different results.
To extend Bézier surfaces to metric spacesM, we mainly use the weighted

average 2.53 between points y1, . . . , yn ∈ M as core concept. This tool can
replace naturally not only convex combinations, but also multilinear inter-
polations.

The definitions of Bézier surfaces on manifolds are generalizations of
(6.1)–(6.3). Note that equation (6.1) represents a convex combination and
each iteration step in equation (6.3) represents a bilinear interpolation.

Definition 6.9 (Generalized Bézier surface). Given control points bij ∈ M,Bézier surface
on manifolds

i, j = 0, . . . , K, we define a corresponding generalized Bézier surface of type I,
II and III as

σI
K(t1, t2; (bij)i,j=0,...,K) = av[(bij)i,j=0,...,K, (BiK(t1)BjK(t2))i,j=0,...,K], (6.5)

σII
K (t1, t2; (bij)i,j=0,...,K) = βK(t1; (βK(t2; (bij)j=0,...,K))i=0,...,K), (6.6)

σIII
K (t1, t2; (bij)i,j=0,...,K) = x[K]00 , (6.7)

where βK(· ; (bm)m=0,...,K) denotes a Bézier curve inM (see Definition 3.12),

and where x[K]00 is defined recursively via the generalized De Casteljau al-
gorithm.

Definition 6.10 (De Casteljau algorithm for surfaces). The De Casteljau
algorithm generalized on manifolds for Bézier surfaces is initialized asDe Casteljau

x[0]ij = bij, for i, j = 0, . . . , K, and reads

x[k]ij = av
[(

x[k−1]
ij , x[k−1]

i,j+1 , x[k−1]
i+1,j , x[k−1]

i+1,j+1

)
, (w00, w01, w10, w11)

]
,

for k = 1, . . . , K, and i, j = 0, . . . , K− k. The weights are given by

w00 = (1− t1)(1− t2),

w01 = (1− t1)t2,

w10 = t1(1− t2),

w11 = t1t2.

All these three types reduce to the classical Bézier surface if the mani-
fold is the Euclidean spaceM = Rr. However, they will generally differ
from each other on general manifolds, as illustrated in Figure 6.2.

Each approach has its advantages and disadvantages.

162 |

Bézier surfaces on manifolds | 6.2

Fig. 6.2 The Bézier surfaces of type I (solid), II (dashed) and III (dotted)
differ from each other. The differences are illustrated here on the sphere
S2 by mapping a curve (left) or a grid (right) from the parameterization
domain onto the Bézier surface. Note that the Bézier surface boundaries
coincide, though. The control and interpolation points of the Bézier sur-
face are displayed in the left picture; the gray dashed lines indicate the
control points grid. The curves deviate by more than 10−2 which lies far
above our computational precision (the weighted averaging according to
Definition 2.53 is performed by a gradient descent with accurracy 10−7).
Figure 6.3 highlights further differences between Bézier surfaces of type II.

The first approach (σI
K) entails solving a rather complex optimization

problem. However, it does not suffer from the drawbacks of the other two
approaches that will be precised momentarily.

In comparison to σI
K, the third approach (σIII

K) is based on the De Castel-
jau algorithm: if it requires multiple steps, all of them consist in compar-
atively simple computation of weighted geodesic averages with only four
points. Unfortunately, the main drawback of this approach is that there
does not seem to be a straightforward way to patch multiple Bézier sur-
faces of type III together in a C1-continuous manner (this will be discussed
in Section 6.3.2).

Finally, the evaluation of σII
K requires only weighted averages of two

points as it is based on the one-dimensional De Casteljau algorithm. When
simple analytic formulas exist for the Riemannian exponential and loga-
rithm (e.g., forM = Sm), this method is very advantageous since the av-
eraging can be based on (2.6). On the other hand, unlike the surfaces of
type I and III, the definition of σII

K is not symmetric: it does not satisfy the
relation

σII
K (t1, t2; (bij)i,j=0,...,K) = σII

K (t2, t1; (bij)
>
i,j=0,...,K) .

In the definition of σII
K , instead of computing the Bézier curve with respect

| 163

6 | Interpolation with Bézier surfaces

to t2 in the first place, one could alternatively compute the Bézier curves
βK(t1; (bij)i=0,...,K) for each j with respect to t1, to obtain new control points
for a Bézier curve which is then evaluated at t2,

βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K). (6.8)

In general, both approaches will yield different surfaces, as shown in Fig-
ure 6.3. There is however no clear reason to prefer to start with t1 or t2. The
taste here will generally depend on the application, and it is not the scope
of this thesis.

Fig. 6.3 The two possible construction methods (6.6) and (6.8) for Bézier
surfaces of type II produce in general different results (their boundaries
always coincide, however). Here the difference is shown on the sphere
with the same conventions as in Figure 6.2: the solid line corresponds to
computing the curve first in the direction t2 (as in (6.6)), while the dashed
line represents the curve computed first along t1 (as in (6.8)).

The following theorem ensures that Bézier surfaces exist under the con-
dition that the control points are sufficiently close to each other.

Theorem 6.11 (Existence of Bézier surfaces). Let control points (bij)i,j=0,...,K ∈
M be given. If co({bij}i,j=0,...,K) is proper, then σI

K, σII
K , and σIII

K in Definition 6.9
exist, are unique, and define smooth surfaces in co({bij}i,j=0,...,K) ⊂M.

Proof. If the weighted geodesic averages involved in the computation of
the Bézier surfaces exist and are unique, then the Bézier surfaces exist and
are unique; furthermore, they will lie in the convex hull of their control
points by definition. The existence of all averages follows from [AGSW16b,
Theorem 9]. Their uniqueness and smoothness is direct, by definition of
co({bij}i,j=0,...,K) (see Definition 2.55).

164 |

Composite Bézier surfaces on manifolds | 6.3

6.3 Composite Bézier surfaces on manifolds

The final goal of this chapter is to construct piecewise surfaces to inter-
polate a set of data points. This section is dedicated to properly set the
definition of composite Bézier surfaces

S : [0, M]× [0, N]→M : (t1, t2) 7→ σ
ij
K(t1 − i, t2 − j; (bij

kl)k,l=0,...,K)

for bt1c = i, bt2c = j, control points bij
kl ∈ M and σK computed by Defini-

tion 6.9. Unlike composite curves, constructing those C1 piecewise surfaces
is more complicated, as the conditions to ensure smoothness are not as easy
to generalize to manifolds. The section is thus divided in three parts: the
first one is the most easy, as it discusses how two Bézier surfaces can be
glued together at zeroth order. The second part presents the challenges
related to C1 gluing, and the last part resolves the problems.

6.3.1 C0-patching

As in Euclidean space, two generalized Bézier surfaces can be patched to-
gether via the generalization of (6.4) to a manifoldM,

SY : [0, 2]× [0, 1]→M :

(t1, t2) 7→
{

σY
K (t1, t2; (bl

ij)i,j=0,...,K) if t1 ∈ [0, 1],

σY
K (t1 − 1, t2; (br

ij)i,j=0,...,K) if t1 ∈ (1, 2],
(6.9)

for Y = I, II, or III (and analogously for patching in the t2-direction). The
Bézier spline will be C0-continuous under the same conditions as in the
Euclidean space.

Theorem 6.12 (C0-continuity). For Y = I, II, and III, the patched Bézier surface
SY inM is continuous if bl

K,j = br
0,j for j = 0, . . . , K.

Proof. The generalized Bézier surfaces (Definition 6.9) are smooth by The-
orem 6.11. Hence, it remains to consider the continuity at the interface
of the two domains, i.e., at t1 = 1. From the definition of the Bézier
surfaces σY, it follows immediately that only the control points bl

K,j and
br

0,j are involved in the corresponding weighted averages. Furthermore,

σY
K (1, t2; (bl

ij)i,j=0,...,K) and σY
K (0, t2; (br

ij)i,j=0,...,K) are the Bézier curves inM

| 165

6 | Interpolation with Bézier surfaces

defined by the control points (bl
K,j)j=0,...,K and (br

0,j)j=0,...,K, respectively.
Thus, if those control points coincide, the corresponding curves coincide
too.

Remark 6.13. In Riemannian spaces where the logarithm and the expo-Exp-Log

nential maps are accessible and easy to compute, one might be tempted to
replace the weighted geodesic averages (in the definitions of σI

K and σIII
K)

by the similar and simpler expression

av[(y1, . . . , yn), (w1, . . . , wn)] ≈ expy

(
w1 logy(y1) + . . . + wn logy(yn)

)
,

which performs a weighted average in the tangent space at some y ∈ M.
For instance, in the definition of σIII

K we might redefine

x[k]ij = exp
x[k−1]

ij


 ∑

r∈{i,i+1}
s∈{j,j+1}

log
x[k−1]

ij

(
wrsx[k−1]

rs

)

 .

Here, y = x[k−1]
ij . In this case, we can observe two things:

(i) the curve σIII
K (0, t2; (br

ij)i,j=0,...,K) is a Bézier curve with control points
(br

0,j)j=0,...,K. The involved weighted geodesic averaging reduces to
two-point averages at each step of the recursive process. By (2.6), the
two-point averages computed by the exp-log approach or the classi-
cal averaging formula are identical.

(ii) the curve σI I I
K (1, t2; (bl

ij)i,j=0,...,K), however, is not the Bézier curve
corresponding to control points (br

K,j)j=0,...,K. Here, the averaging is
based on the tangent space at a different point than the two of which
the weighted average is computed.

As a consequence of this second observation, C0-continuous patching of
Bézier surfaces is no longer possible, even in symmetric spaces such as the
sphere. This is illustrated in Figure 6.4.

6.3.2 C1-patching challenges

In contrast to C0-continuity, which is easily achieved, C1-patching repre-
sents a challenge. Indeed, the corresponding conditions in the Euclidean

166 |

Composite Bézier surfaces on manifolds | 6.3

Fig. 6.4 Two cubic Bézier surfaces computed on the sphere with the De
Casteljau algorithm modified as in Remark 6.13. At the interface where
control points coincide, the surfaces do not match up continuously due to
the simplification of weighted geodesic averaging.

space (Property 6.6) cannot be used as we will see. In the following we will
always choose the outmost control points of each Bézier surface patch such
that C0-continuity is ensured.

The Euclidean conditions for C1-continuity

bl
K,j =

bl
K−1,j + br

1,j

2

now generalize to the Riemannian setting as

bl
K,j = av[(bl

K−1,j, br
1,j), (

1
2 , 1

2)] (6.10)

for all j. There are multiple problems with this generalization.
Consider four Bézier surfaces that are patched together as a composite

surface S : [0, 2]× [0, 2]→M:

(t1, t2) 7→





σY
K (t1, t2; (bbl

ij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [0, 1],

σY
K (t1 − 1, t2; (bbr

ij)i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [0, 1],

σY
K (t1, t2 − 1; (btl

ij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [1, 2],

σY
K (t1 − 1, t2 − 1; (btr

ij)i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [1, 2],
(6.11)

The superscripts bl, br, tl, tr stand for bottom left, bottom right, top left, and
top right respectively.

| 167

6 | Interpolation with Bézier surfaces

Near the corner point bbl
K,K = bbr

0,K = btl
K,0 = btr

0,0, the six C1-continuity
conditions (6.10) are represented in Figure 6.5a and read

bbl
K,K−1 = av[(bbl

K−1,K−1, bbr
1,K−1), (

1
2 , 1

2)],
bbl

K−1,K = av[(bbl
K−1,K−1, btl

K−1,1), (
1
2 , 1

2)],
bbl

K,K = av[(bbl
K−1,K, bbr

1,K), (
1
2 , 1

2)],
bbl

K,K = av[(bbl
K,K−1, btl

K,1), (
1
2 , 1

2)],
btl

K,1 = av[(btl
K−1,1, btr

1,1), (
1
2 , 1

2)],
bbr

1,K = av[(bbr
1,K−1, btr

1,1), (
1
2 , 1

2)].

(6.12)

These are six equations in nine control points. In the Euclidean space, the
equations are linearly dependent such that only five equations are inde-
pendent. Therefore, one can choose four of the nine control points as inde-
pendent variables, and the five other follow from the conditions.i

i
“TikZ/21_patches_interface” — 2020/7/7 — 11:56 — page 151 — #1 i

i

i
i

i
i

bl

trtl

br
bbl

K−1,K−1 bbl
K,K−1

bbr
1,K−1

bbl
K−1,K bbl

K,K bbr
1,K

btl
K,1 btr

1,1

btl
K−1,1

bbl
K−1,K+1

btr
−1,1

(a) C1-conditions at the interfaces

i
i

“TikZ/21_patches_cp” — 2020/7/7 — 11:56 — page 151 — #1 i
i

i
i

i
i

bl

trtl

br
a−1,−1

a0,−1

a1,−1

a−1,0 a0,0 a1,0

a−1,1
a0,1 a1,1

(b) Renaming of the control points

Fig. 6.5 (a): C1-conditions (6.12) at the interface of four Bézier surfaces.
Along each dashed line, the middle point should be the average of the end
points. (b): Renaming scheme for the control points for Property 6.14.

Recall of
p. 132. M is
symmetric if
∀x ∈ M there
exists an
isometry
Ix :M→M
mapping any
geodesic
γ : [0, 1]→M
with γ(1

2) = x
onto Ix(γ) :
t 7→ γ(1− t).

In the Riemannian setting, however, the linear dependence of the six
equations turns into an incompatibility: in general it is not possible to sat-
isfy all six equations (unless several control points collapse to a single point
in M). A special situation occurs in symmetric spaces. Proposition 6.14
shows that, in those spaces, one can always find a set of control points sat-
isfying the six equations (6.12) without collapsing to the same point. How-

168 |

Composite Bézier surfaces on manifolds | 6.3

ever, one can only choose three of the nine control points freely instead
of four. For simplicity of the presentation of this Proposition, the control
points are renamed as

bbr
i,K+j = btl

K+i,j = btr
ij = bbl

K+i,K+j = aij,

for i, j ∈ {−1, 0, 1} (see Figure 6.5b). The control points with indices below
0 or beyond K simply indicate control points in the neighboring Bézier
surface; aij refers to control points in a specific area where the four patches
meet, around the corner a00.

Proposition 6.14 (C1-conditions on M). LetM be a symmetric space. Con- differentiability
conditions

sider the nine control points aij, i, j = {−1, 0, 1}.
(i) Let a0,0, ai1,j1 , ai2,j2 be given with (i1, j1) 6= −(i2, j2), |i1| = |j1|. One can

find the other six control points such that (6.12) is satisfied.

(ii) If instead four control points are given initially, those can in general not be
complemented with five other control points such that (6.12) is satisfied.

Proof. To prove (i), let us first complement the six equations (6.12) with two
additional “diagonal” equations

a0,0 = av
[
(a−1,−1, a1,1), (1

2 , 1
2)
]

,

a0,0 = av
[
(a−1,1, a1,−1), (1

2 , 1
2)
]

.

Fixing a0,0, this makes eight equations for eight control points. Each equa-
tion expresses one control point as the midpoint on the geodesic between
two other control points. Given an isometry Ia0,0 on the symmetric space,
the equations of the form a0,0 = av[(aij, a−i,−j), (1

2 , 1
2)] establish the relation

aij = Ia0,0(a−i,−j) i, j ∈ {−1, 0, 1}.

By this identity, the remaining equations

a−1,0 = av
[
(a−1,−1, a−1,1), (1

2 , 1
2)
]

and a1,0 = av
[
(a1,−1, a1,1), (1

2 , 1
2)
]

as well as

a0,−1 = av
[
(a−1,−1, a1,−1), (1

2 , 1
2)
]

and a0,1 = av
[
(a−1,1, a1,1), (1

2 , 1
2)
]

are redundant by symmetry. Thus, there are actually only two unknown

| 169

6 | Interpolation with Bézier surfaces

control points left, the others being fixed by the above identity. It is there-
fore straightforward to check that two of them may be chosen (in addition
to a0,0 to determine all the other.

To prove (ii), a simple counterexample suffices. Consider the unit sphere

M = S2. We set four control points a−1,1 = a1,1 =
[
0 0 1

]>
, a0,0 =

[√
2

2 0
√

2
2

]>
, and a−1,0 =

[
1
2 − 1

2

√
2

2

]>
(Figure 6.6). Choosing four

out of six equations in (6.12), it is straightforward to compute the following
values

a0,1 =




0
0
1


 , a0,−1 =




1
0
0


 , a−1,−1 =




√
2

2

−
√

2
2

0


 , a1,−1 =




√
2

2√
2

2
0


 .

If we now set a1,0 = av[(a1,−1, a1,1), (1
2 , 1

2)], then the constraint a0,0 =

av[(a−1,0, a1,0), (1
2 , 1

2)] := ã0,0 is violated.

i
i

“TikZ/21_patches_c1_fail” — 2020/7/7 — 11:56 — page 153 — #1 i
i

i
i

i
i

a0,0

ã0,0

a−1,1 = a0,1 = a1,1

a−1,0 a1,0

a−1,−1 a1,−1
a0,−1

Fig. 6.6 Illustration of the counterexample from Proposition 6.14.

Compatibility of the C1 equations around a0,0 was the first challenge to
achieve C1 continuity of composite Bézier surfaces of type I to III. A second
challenge comes with the fact that C1 continuity is not necessarily achieved
even if it was possible to find control points satisfying the conditions (6.12).
This observation is illustrated in the top line of Figure 6.8.

170 |

Composite Bézier surfaces on manifolds | 6.3

Proposition 6.15 (Insufficiency of C1-conditions). The conditions (6.10) are not
sufficient to ensure C1-continuity of the composite Bézier surface (6.9) of type I,
II, or III.

Proof. We first give a counterexample for types I and III. When K = 1, σI
K

and σIII
K coincide and each Bézier surface is just obtained by a weighted

geodesic averaging between four control points. Consider M = R2 and
six control points bij = (i, j), with i ∈ {0, 1, 2} and j ∈ {0, 1}. Based on
those control points, we build the following composite Bézier surface

S : [0, 2]× [0, 1]→M :

(t1, t2) 7→
{

σ1(t1, t2; b0,0, b0,1, b1,0, b1,1) if t1 ∈ [0, 1],

σ1(t1 − 1, t2; b1,0, b1,1, b2,0, b2,1) if t1 ∈ (1, 2],

as illustrated in Figure 6.7a. Furthermore, we modify smoothly the metrici
i

“TikZ/21_prop17_1” — 2020/7/7 — 11:56 — page 154 — #1 i
i

i
i

i
i

b00 b10 b20

b01 b11 b21

y

(a)

i
i

“TikZ/21_prop17_2” — 2020/7/7 — 11:56 — page 154 — #1 i
i

i
i

i
i

b00 b10 b20

b01 b11 b21

(b)

Fig. 6.7 Illustration of the two manifolds from the counterexamples in
Proposition 6.15. A gray region indicates a deviation from the Euclidean
metric.

of R2 between b0,0 and y = (1, 1
2), such that it is slightly decreased com-

pared to the Euclidean metric. Hence, the geodesic from b00 to y is still a
straight curve in R2 but has a shorter length than in the Euclidean space.
Consider the position at time (t1, t2) = (1, 1

2), at the interface of the two
surfaces. Hence, b := S(t1, t2) can be expressed either as

av [(b00, b01, b10, b11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)]

or as

av [(b10, b11, b20, b21), ((2− t1)(1− t2), (2− t1)t2, (t1 − 1)(1− t2), (t1 − 1)t2)] .

| 171

6 | Interpolation with Bézier surfaces

Obviously, b = S(1, 1
2) = (1, 1

2). The optimality conditions for both aver-
ages are [Kar77, Thm. 1.2]

F(t1, t2, b) := (1− t1)(1− t2) logb(b00) + (1− t1)t2 logb(b01)

+ t1(1− t2) logb(b10) + t1t2 logb(b11) = 0

and

(2− t1)(1− t2) logb(b10) + (2− t1)t2 logb(b11)

+ (t1 − 1)(1− t2) logb(b20) + (t1 − 1)t2 logb(b21) = 0,

where logb
(
bi,j
)
= bi,j − b except for logb(b0,0) = ζ(b0,0 − b) for some ζ ∈

(0, 1) (as the metric is reduced). The latter equation is expressed on the
Euclidean space with the canonical inner product, so it can be solved and
it yields b = S(t1, t2) = (2− t1)(1− t2)b1,0 + (2− t1)t2b1,1 + (t1 − 1)(1−
t2)b2,0 + (t1 − 1)t2b2,1. The right derivative ∂S

∂t1
at (t1, t2) = (1, 1

2) equals
(1, 0). The left derivative, however, is a little bit more intricate. By the
implicit function theorem, we haveRecall of

p. 103, implicit
function
theorem:
let y = f (x)
and
F(x, f (x)) = 0,
for f and F
smooth.
Hence, ∂ f

∂x =

−Dy F(x, y)−1 ∂F
∂x .

∂S
∂t1

= −(DbF(1, 1
2 , b))−1Dt1 F(1, 1

2 , b) = Dt1 F(1, 1
2 , b)

= − logb(b00) + logb(b01)− logb(b10)− logb(b11)

2

= ζ

[1
2
1
4

]
+

[1
2−1
4

]
6=
[

1
0

]
.

Here we have used that around b = (1, 1
2) the function F is given by

F(1, 1
2 , b) = 1

2 logb(b10) +
1
2 logb(b11) =

1
2 (b10 − b) + 1

2 (b11 − b). Thus, the
Bézier surfaces of type I and III are not glued C1-continuously, even though
all conditions (6.10) are satisfied.

Consider now Bézier surfaces of type II, and the composite surface built
in the same way as above. The only difference is that, now, the Euclidean
metric is slightly decreased somewhere between b00 and (b00 + b01)/2.
Hence, the connecting geodesic from b00 to b01 is given by t 7→ (0, f (t))
with f (t) > t in the interval (1

2 , 1) (Figure 6.7b). We have β1(t2; bi0, bi1) =

(i, t2) for i ∈ {1, 2} and β1(t2; b00, b01) = (0, f (t2)). Obviously, for t1 ≥ 1
we obtain S(t1, t2) = (t1, t2), while for t1 ∈ [0, 1] and t2 ∈ (1

2 , 1) we have
S(t1, t2) = (t1, (1− t1) f (t2) + t1t2), yielding a discontinuous first deriva-
tive at t1 = 1.

172 |

Composite Bézier surfaces on manifolds | 6.3

In the following subsection, we propose a modification of the definition
of Bézier surfaces of type I and II in order to achieve C1-continuity. Unfor-
tunately, we couldn’t find any straightforward remedy for the Bézier sur-
face of type III, i.e., we didn’t find a manner to transform the De Casteljau
algorithm in a way that is (i) consistent with Bézier surfaces in Euclidean
space and, (ii), allows to have C1-continuity.

6.3.3 C1-patching solution

We propose now a way to overcome the different problems presented in
the previous section. The goal is to glue together MN Bézier surfaces in a
C1 manner. The control points of each Bézier surface are noted as follows. control point

Let bmn
ij ∈ M be the ijth control point of the mnth Bézier surface, where

i, j ∈ {0, ..., K} and (m, n) ∈ {0, ..., M− 1} × {0, ..., N − 1}. The associated
composite Bézier surface is thus

SY : [0, M]× [0, N]→M : (t1, t2) 7→ σY
K (t1 −m, t2 − n; (bmn

ij)i,j=0,...,K)

(6.13)
for bt1c = m, bt2c = n, defined as in Definition 3.6, and for Y = I, II.

We define indices outside the usual range as

bmn
−1,j = bm−1,n

K−1,j , bmn
K+1,j = bm+1,n

1,j , bmn
j,−1 = bm,n−1

j,K−1 , and bmn
j,K+1 = bm,n+1

j,1 .

Let us additionally define fictional points beyond the domain boundary:
along t1, we define

b0,n
−1,j = expb0,n

0,j

(
− logb0,n

0,j

(
b0,n

1,j

))
,

bM,n
K+1,j = expbM,n

K,j

(
− logbM,n

K,j

(
bM,n

K−1,j

))
,

for j = 0, . . . , K and n = 0, . . . , N. Along t2, we define further

bm,0
i,−1 = expbm,0

i,0

(
− logbm,0

i,0

(
bm,0

i,1

))
,

bm,N
i,K+1 = expbm,N

i,K

(
− logbm,N

i,K

(
bm,N

i,K−1

))
,

for i = −1, . . . , K + 1 and m = 0, . . . , M.

| 173

6 | Interpolation with Bézier surfaces

In fact, in Euclidean space the conditions

bmn
K,j =

bmn
K−1,j + bmn

K+1,j

2

imply that the control points bmn
K,j can be ignored altogether; indeed, in

(6.1) one may simply replace any bmn
K,j by

bmn
K−1,j+bmn

K+1,j
2 . The analogous holds

true for the control points bmn
i,K , bmn

i,0 , and bmn
0,j . This trick will restore C1-

continuity in the Riemannian setting, as detailed below. This strategy has
also its interest in the Euclidean setting as it permits to neglect condi-
tions (6.10) and obtain a differentiable composite Bézier surface neverthe-
less. Following this idea, the generalized Bézier surfaces of type I and II
are defined as follows.

Definition 6.16 (Generalized C1-Bézier surfaces of type I). The generalized
Bézier surface of type I is expressed as a weighted average of bmn

ij , i, j ∈ I ,Bézier surface,
type I

with I = {−1, 1, 2, . . . , K− 1, K + 1}. Namely,

σI
K(t1, t2; (bmn

ij)i,j=0,...,K) = av
[
(bmn

ij)i,j∈I , (wi(t1)wj(t2))i,j∈I
]

. (6.14)

The associated weights are given byweight
function

wi(t) =





1
2 B0K(t) if i = −1,

B1K(t) + 1
2 B0K(t) if i = 1,

BiK(t) if i = 2, . . . , K− 2,

BK−1,K(t) + 1
2 BKK(t) if i = K− 1,

1
2 BKK(t) if i = K + 1,

0 if i ∈ {0, K}.

Similarly, in (6.2), the one-dimensional Bézier curves can be computed
just based on bmn

ij , i, j ∈ I . We use the same trick to modify the definition
of the generalized Bézier surface of type II.

Definition 6.17 (Generalized C1-Bézier surfaces of type II). The generalized
Bézier surface of type II is based on the control points bmn

ij , i, j ∈ I =Bézier surface,
type II {−1, 1, 2, . . . , K− 1, K + 1}, and is expressed as

σII
K (t1, t2; (bmn

ij)i,j=0,...,K) = βK(t1; (βK(t2; (bmn
ij)j=0,...,K))i=0,...,K). (6.15)

174 |

Composite Bézier surfaces on manifolds | 6.3

The one-dimensional Bézier curves are either computed as

βK(t; (bj)j=0,...,K) = av[(bj)j=I , (wj(t))j=0,...,K],

or via an alternative modification of the De Casteljau algorithm where
x[K]0 := βK(t; (bk)k=0,...,K):

x[0]0 = av[(b−1, b1), (1
2 , 1

2)],

x[0]j = bj, for j = 1, . . . , K− 1,

x[0]K = av[(bK−1, bK+1), (1
2 , 1

2)],

x[k]j = av[(x[k−1]
j , x[k−1]

j+1), (1− t, t)], for k = 1, . . . , K,

and j = 0, . . . , K− k.

Note that every Bézier surface is a smooth function into the multi-
geodesically convex hull of the control points, under the same conditions
as in Theorem 6.11.

In the Euclidean space, all definitions are equivalent to the original
Bézier surface as long as the control points satisfy the conditions of C1-
continuity. In the manifold case, where the conditions (6.12) can at most
approximately be satisfied, the definitions will lead to C1-continuity as
shown in Figure 6.8 and in Theorem 6.18.

Theorem 6.18. The composite Bézier surface (6.13) of type I (resp. type II) differentiability
conditions

defined as in Definition 6.16 (resp. Definition 6.17) is C1-continuous.

Proof. Each single patch is smooth by Theorem 6.11. Furthermore, C0-
continuity follows as before. It remains to show that the normal derivatives
at all interfaces between two adjacent Bézier surfaces coincide. To do so,
consider the interface between the surfaces (0, 0) and (1, 0) at t1 = 1 and
t2 ∈ [0, 1] (the proof for the other interfaces works analogously). Consider
also the set I = {−1, 1, 2, . . . , K− 1, K + 1}. In the case of Bézier surfaces of
type I, we have

b := SI(t1 = 1, t2) = av
[
(b0,0

ij)i,j∈I , (wi(1)wj(t2))i,j∈I
]

= av
[
(b1,0

ij)i,j∈I , (wi(0)wj(t2))i,j∈I
]

.

| 175

6 | Interpolation with Bézier surfaces

The optimality conditions for both averages are [Kar77, Thm. 1.2]:

F1(t1, t2, b) := ∑
i,j∈I

wi(t1)wj(t2) logb

(
b0,0

ij

)
= 0,

F2(t1, t2, b) := ∑
i,j∈I

wi(t1 − 1)wj(t2) logb

(
b1,0

ij

)
= 0.

By the implicit function theorem, the left and right derivatives of SI with
respect to t1 at (1, t2) are given by

∂SI

∂t1

∣∣∣∣
(1− ,t2)

= −(DbF1(1, t2, b))−1Dt1 F1(1, t2, b)

= −(DbF1(1, t2, b))−1

[
K
2 ∑

j∈I
wj(t2)

(
logb

(
b0,0

K+1,j

)
− logb

(
b0,0

K−1,j

))]
,

∂SI

∂t1

∣∣∣∣
(1+ ,t2)

= −(DbF2(1, t2, b))−1Dt1 F2(1, t2, b)

= −(DbF2(1, t2, b))−1

[
K
2 ∑

j∈I
wj(t2)

(
logb

(
b1,0

1,j

)
− logb

(
b1,0
−1,j

))]
.

As F1(1, t2, b) = F2(1, t2, b) for all b ∈ M and by the definition of the b0,0
ij

for i /∈ {0, . . . , K}, we see directly that

∂SI

∂t1

∣∣∣∣
(1− ,t2)

=
∂SI

∂t1

∣∣∣∣
(1+ ,t2)

.

In the case of surfaces of type II, we note that [PN07]

∂

∂t
βK(t = 0; (bj)j=0,...,K) = logb(b1)

for b = av[(b−1, b1), (1
2 , 1

2)] and

∂

∂t
βK(t = 1; (bj)j=0,...,K) = logb(bK+1)

for b = av[(bK−1, bK+1), (1
2 , 1

2)]. Setting

b(t2) = av
[(

βK(t2; (b0,0
K−1,j)j=0,...,K), βK(t2; (b0,0

K+1,j)j=0,...,K)
)

,
(

1
2

,
1
2

)]
,

176 |

Composite Bézier surfaces on manifolds | 6.4

we have

∂SII

∂t1

∣∣∣∣
(1− ,t2)

= logb(t2)

(
βK(t2; (b0,0

K+1,j)j=0,...,K)
)

,

∂SII

∂t1

∣∣∣∣
(1+ ,t2)

= logb(t2)

(
βK(t2; (b1,0

1,j)j=0,...,K)
)

Again, the derivatives from either side coincide.

×
(a) type I (b) type II (c) type III×

(a) type I (b) type II (c) type III

Fig. 6.8 The conditions (6.10) do not suffice to ensure differentiability
(top), while the remedy from Theorem 6.18 permits to construct C1 sur-
faces of type I and type II (bottom). Here, the composite Bézier surface is
composed of two patches. The visualization is analogous to Figure 6.2, left:
a smooth curve γ from the parameter domain is mapped to S2 via the com-
posite Bézier surface. The control points are represented with empty circles
and the corners of each patch are the filled circles. The grayed dashed lines
represent the control points grid. The derivatives of S(γ) at the interface
are represented with the dotted lines, which are tangents to S(γ) from ei-
ther side of the interface between the two Bézier patches. As no remedy
could be provided for type III, no picture is given.

The next step is now to interpolate a set of data points with composite
Bézier surfaces. The aim of the next section is to propose a way to choose
control points such that the interpolating surface minimizes its mean squared
acceleration when the manifold reduces to the Euclidean space.

| 177

6 | Interpolation with Bézier surfaces

6.4 Control points generation for surface interpolation

Given data points dmn ∈ M, (m, n) ∈ {0, . . . , M} × {0, . . . , N}, the goal is
to interpolate those by a smooth surface

S : [0, M]× [0, N]→M

with S(m, n) = dmn, consisting of C1-continuously patched cubic Bézier
surfaces on each domain [m, m + 1] × [n, n + 1] as in (6.13). To this end
we need to generate appropriate control points bmn

ij for m, n ∈ {0, . . . , M−control point

1} × {0, . . . , N − 1} and i, j = 0, . . . , 3. The control points must respect the
interpolation constraints

bmn
0,0 = dm,n, bmn

3,0 = dm+1,n, bmn
0,3 = dm,n+1, bmn

3,3 = dm+1,n+1. (6.16)

for m = 0, . . . , M − 1, n = 0, . . . , N − 1. They must also respect the C0-
patching constraints of Theorem 6.12, i.e.,

bm,n
3,j = bm+1,n

0,j and bm,n
j,3 = bm,n+1

j,0 for j = 0, . . . , 3. (6.17)

The resulting composite surface must be C1-smooth and must thus be gen-
erated by the approach of Theorem 6.18.

To make the interpolating surface as nice as possible, we would like to
optimize the position of the control points such that the mean squared ac-
celeration of the composite surface S is minimized. Just like in Chapters 3
and 4, this is a highly nonlinear optimization problem. We thus follow the
same simplified route as before: we formulate the problem in a Euclidean
space, such that its solution can be expressed as a linear system. Then, we
transfer this linear system to the manifold case.

6.4.1 Variational formulation of control point generation in Rr

In the Euclidean space Rr, we would like to minimize the objective func-
tion

F[S] =
∫

[0,M]×[0,N]

∥∥∥∥
∂2S

∂(t1, t2)

∥∥∥∥
2

F
d(t1, t2)

=
M−1

∑
m=0

N−1

∑
n=0

∫

[0,1]×[0,1]

∥∥∥∥∥
∂2σmn

3
∂(t1, t2)

∥∥∥∥∥

2

F

d(t1, t2),

(6.18)

178 |

Control points generation for surface interpolation | 6.4

where ‖ · ‖F is the Frobenius norm, ∂2·
∂(t1,t2)

is the Hessian operator for any
bivariate function, and σmn

3 is the cubic Bézier surface defined on the patch
(m, n) and driven by the control points bmn

ij . For notation simplicity, we
will just denote the surface by σ or σmn when no confusion is possible.
Note that the constraints (6.16) will automatically ensure the interpolation
of the data points.

Each single Bézier surface patch can be expressed with Bernstein poly-
nomials, according to (6.1). Then, the objective function turns into a quadratic
function in the control points bmn

ij

F[S] =
M−1

∑
m=0

N−1

∑
n=0

F̂[σmn], (6.19)

where the energy F̂ of a Bézier surface with control points bmn
ij , i, j ∈ {0, . . . , 3},

is defined as

F̂[σmn] =
3

∑
i,j,o,p=0

αijopbmn
ij · bmn

op . (6.20)

Here, the symbol · indicates the Euclidean dot product. Denoting the
Frobenius inner product on 2 × 2-matrices by A : B = ∑2

i,j=1 AijBij, the
coefficients αijop in the above energy are given by

αijop =
∫

[0,1]2

[
∂2Bi3(t1)Bj3(t2)

∂(t1, t2)

]
:

[
∂2Bo3(t1)Bp3(t2)

∂(t1, t2)

]
d(t1, t2). (6.21)

The explicit Hessian of the Bernstein polynomial products are given by

∂2Bi3(t1)Bj3(t2)

∂(t1, t2)
=




∂2Bi3(t1)
∂2t1

Bj3(t2)
∂Bi3(t1)

∂t1

∂Bj3(t2)

∂t2
∂Bi3(t1)

∂t1

∂Bj3(t2)

∂t2
Bi3(t1)

∂2Bj3(t1)

∂2t2


 . (6.22)

Note that the coefficients αijop can be readily computed analytically and
are independent of the configuration.

To later be able to transfer this formulation to the manifold setting, ev-
ery control point should be expressed as its difference with the four inter-
polation points of the patch. These differences will be later translated into
Riemannian logarithms. Since the objective function F[S] only contains
derivatives, the contributions F̂[σ] of its single Bézier patches are invariant

| 179

6 | Interpolation with Bézier surfaces

under a uniform translation of the control points. Hence

F̂[σmn] =
1
4 ∑

r,s∈{0,1}

3

∑
i,j,o,p=0

αijopvmn
ij (r, s) · vmn

op (r, s), (6.23)

where we introduced the auxiliary variables for the differences (see Fig-
ure 6.9)

vmn
ij (r, s) = bmn

ij − dm+r,n+s (6.24)

for i, j = 0, . . . , 3, r, s = 0, 1, m = 0, . . . , M− 1 and n = 0, . . . , N − 1. Note
that for symmetry reasons we shifted the control points by each corner
of the corresponding patch and then took the average of the four energy
values resulting from those four shifts.i

i
“TikZ/21_cp_vijmnrs” — 2020/7/7 — 11:56 — page 162 — #1 i

i

i
i

i
i

bmn
2,1

dmn dm+1,n

dm,n+1 dm+1,n+1

vmn
2,1 (0, 0) vmn

2,1 (1, 0)

vmn
2,1 (0, 1) vmn

2,1 (1, 1)

Fig. 6.9 Geometric interpretation of variables vmn
ij (r, s).

To summarize, the total energy can be expressed as

F[S] =
M−1

∑
m=0

N−1

∑
n=0

∑
r,s∈{0,1}

3

∑
i,j=0

(L(V))mn
ij,rs · vmn

ij (r, s) (6.25)

with V = (vmn
ij (r, s))(m,n)∈{0,...,M−1}×{0,...,N−1}

i,j∈{0,...,3}, r,s∈{0,1} and the linear operator L

(L(V))mn
ij,rs =

1
4

3

∑
o,p=0

αijopvmn
op (r, s). (6.26)

This energy has to be minimized for the control points bmn
ij or equivalently

the vmn
ij (r, s) under constraints (6.16), (6.17), and (6.12).

180 |

Control points generation for surface interpolation | 6.4

6.4.2 System reduction by constraint elimination

To minimize (6.25) as a simpler unconstrained problem, we eliminate the
interpolation constraints (6.16), the continuity constraints (6.17), and the
differentiability constraints (6.12). To this end, without loss of generality,
we observe that one just has to keep three independent control points, and
all the other follow from the constraints. More precisely, consider the set
D = {0, . . . , M} × {0, . . . , N}, and the control points

bmn
kl with (k, l) ∈ Q = {(1, 0), (0, 1), (1, 1)} and (m, n) ∈ D.

In the Euclidean space, the constraints (6.16), (6.17) and (6.12) uniquely de-
termine all the remaining control points. Note that, again, the notations
are extended to allow control points indices outside {0, . . . , 3} (see Fig-
ure 6.5a), which is convenient as the constraints are all expressed around
each data point. That is bmn

kl = bm,n−1
k,3+l = bm−1,n

3+k,l = bm−1,n−1
3+k,3+l for k, l ∈

{−1, 0, 1}. Observe that the points bmn
ij with (m, n) /∈ {0, . . . , M − 1} ×

{0, . . . , N − 1} are just fictive additional control points.

To prepare the transfer to the manifold setting, we replace equivalently
the bmn

kl by their translated version

umn
kl = bmn

kl − dmn, for (k, l) ∈ Q, and (m, n) ∈ D, (6.27)

and consider them as the optimization variables. Then, constructing the
energy variables vmn

ij (r, s) in terms of these umn
kl requires two operators.

First, it requires a linear operator S that generates the remaining vectors
umn

kl for (k, l) ∈ {−1, 0, 1}2 \ Q around each data point dmn based on the

constraints (see Figure 6.10). That is, the operator S : (umn
kl)

(m,n)∈D
(k,l)∈Q 7→

(umn
kl)

(m,n)∈D
k,l∈{−1,0,1} is defined as follows:

S(umn
kl) =





umn
−1,1 = 2umn

0,1 − umn
1,1 ,

umn
0,0 = 0,

umn
−1,0 = −umn

1,0 ,
umn
−1,−1 = −umn

1,1 ,
umn

0,−1 = −umn
0,1 ,

umn
1,−1 = 2umn

1,0 − umn
1,1 ,

umn
kl = umn

kl for (k, l) ∈ Q.

(6.28)

| 181

6 | Interpolation with Bézier surfaces

i
i

“TikZ/21_cp_S” — 2020/7/7 — 11:56 — page 164 — #1 i
i

i
i

i
i

patch m− 1, n− 1

patch m, npatch m− 1, n

patch m, n− 1

dmn

umn
1,0

umn
1,1

umn
0,1

2umn
1,0

−umn
1,1

bmn
1,−1

Fig. 6.10 Geometric interpretation of operator S. Based on the three black
vectors, the five other are expressed thanks to the constraints (6.16), (6.17)
and (6.12) (here, the example is given for umn

1,−1).

At this step, one has access to one vector umn
kl for each corresponding

control point bmn
kl . However, the energy variables vmn

kl (r, s) split up those
umn

kl among the four corners of a given patch. This is done by the operator
T̃ (see Figure 6.11). The operator T̃ maps thus the set of vectors umn

kl onto
the set of vectors vmn

ij (r, s) by exploiting the relation

vmn
ij (r, s) = um̃ñ

kl + (dm̃ñ − dm+r,n+s),

where m̃, ñ, k, and l satisfy

(m̃, ñ) = (m + ai, n + aj)

(k, l) = (i− 3ai, j− 3aj)
for ai =

{
0 if i ∈ {0, 1},
1 if i ∈ {2, 3}.

To prepare the transfer to the manifold setting, we introduce the following
intermediate notations:

wmn
ij (r, s) = um̃ñ

kl , (6.29)

zmn
ij (r, s) = dm̃ñ − dm+r,n+s. (6.30)

Those notations might seem cumbersome at first, but it is easy to recognize
a Euclidean logarithm map in zmn

ij (r, s), which will be very useful later.

182 |

Control points generation for surface interpolation | 6.4

Abbreviating all variables with

U := (umn
kl)

(m,n)∈D
k,l∈{−1,0,1} V :=

(
vmn

ij (r, s)
)(m,n)∈D

i,j=0,...,3
r,s∈{0,1}

W :=
(

wmn
ij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

Z :=
(

zmn
ij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

,

and introducing the linear operator

T : U 7→W (6.31)

we finally obtain that T̃ is also linear and is defined as

T̃ : U 7→ V = T(U) + Z. (6.32)

Note that the operator T can be interpreted to operate on each patch
(m, n) separately as follows: T translates any vector um̃ñ

kl , which belongs to
a control point of the patch, from its base point dm̃ñ to all four patch corners
dm+r,n+s, (r, s) ∈ {0, 1}2, resulting in the four new vectors wmn

ij (r, s), r, s ∈
{0, 1}. Of course, in Euclidean space this translation is trivial, however, it
will turn into a nontrivial parallel transport in the manifold setting.

The map T̃ is illustrated in Figure 6.11.
The total energy (6.25) of Bézier curves in Euclidean space can finally

be rewritten as

F[S] =
1
4

M−1

∑
m=0

N−1

∑
n=0

∑
r,s∈{0,1}

3

∑
i,j=0

(LT̃SŨ)mn
ij,rs · (T̃SŨ)mn

ij,rs for Ũ = (umn
kl)

(m,n)∈D
(k,l)∈Q

and is minimized by

Ũopt = −(S∗T∗LTS)−1(S∗T∗LZ), (6.33)

where a superscript asterisk denotes the adjoint operator (note that L is
self-adjoint). See also Appendix D for a proof.

6.4.3 Transfer to the manifold setting

It remains to transfer the different operators and the final formula (6.33)
for control points generation to a Riemannian manifold setting.

| 183

6 | Interpolation with Bézier surfaces

i
i

“TikZ/21_cp_Ttilde” — 2020/7/7 — 11:57 — page 165 — #1 i
i

i
i

i
i

dmn

dm+1,n

dm,n+1 Pdm+1,n→dm,n+1 um+1,n
−1,1

um+1,n
−1,1

wmn
2,1 (0, 1)

v mn2,1 (0, 1)z mn2,1 (0, 1)

Fig. 6.11 Geometric interpretation of operator T̃. The variables vmn
ij (r, s)

(cf. Figure 6.9) are constructed as follow: (i) a vector umn
kl in dmn is trans-

ported to another interpolation point d, and (ii) to this vector one adds the
difference between d and dmn.

• The umn
kl were defined in (6.27) as the difference between two Eu-

clidean points. Their generalization to the Riemannian setting is givenlogarithmic
map

by
umn

kl = logdmn
(bmn

kl) ,

for k, l ∈ Q, (m, n) ∈ D. This means that we will actually optimize
over tangent vectors umn

kl to the manifold and only afterwards convert
them into control points bmn

kl via the exponential map.

• The operator L defined in (6.26) can now be interpreted as an oper-
ator from B into itself, where B is the Cartesian product of tangent
spaces

B = ∏
i,j=0,...,3
r,s∈{0,1}

m=0,...,M−1
n=0,...,N−1

Tdm+r,n+sM.

• The operator S in (6.28) is now considered as an operator on tangent
spaces. Its formulation remains unchanged as for a fixed pair (m, n),
all vectors umn

kl ∈ Tdm,nM.

• Formula (6.30), which defines the components of Z, is generalized to

184 |

Control points generation for surface interpolation | 6.4

the manifold setting as

zmn
ij (r, s) = logdm+r,n+s

dm̃ñ. (6.34)

• The operator T from (6.31) is redefined as the parallel transport of the parallel
transport

variables umn
kl to the corners of the corresponding patch:

T : (umn
kl)

(m,n)∈D
k,l∈{−1,0,1} 7→

(
wmn

ij (r, s)
)(m,n)∈D

i,j=0,...,3
r,s∈{0,1}

,

wmn
ij (r, s) = Pdm̃ñ→dm+r,n+s um̃ñ

kl .

The same notation as in (6.29) is used here.

• The operator T̃ from (6.32) is transferred to the manifold setting using
the manifold versions of T and Z.

• Last but not least, the adjoint operator S∗ is given by

S∗ : (umn
kl)

(m,n)∈D
k,l∈{−1,0,1} 7→ (umn

kl)
(m,n)∈D
(k,l)∈Q :

S(umn
kl) :=





umn
1,0 = umn

1,0 − umn
−1,0 + 2umn

1,−1,
umn

1,1 = umn
1,1 − umn

−1,1 − umn
−1,−1 − umn

1,−1,
umn

0,1 = umn
0,1 − umn

0,−1 + 2umn
−1,1,

and the adjoint operator T∗ is given by

T∗ :
(

wmn
ij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

7→ (umn
kl)

(m,n)∈D
k,l∈{−1,0,1} ,

um̂n̂
kl := ∑

r,s∈{0,1}
m∈m̂+Ak
n∈n̂+Al

Pdm+r,n+s→dm̂n̂ wmn
k+3(m̂−m),l+3(n̂−n)(r, s),

where A−1 = {−1}, A0 = {−1, 0}, and A1 = {0}.

The algorithm for generating the control points on a Riemannian manifold
M now proceeds as follows.

1. Compute Z = (zmn
ij (r, s))ijmnrs via (6.34).

2. Compute S∗T∗LZ and solve (6.33) for Uopt by a conjugate gradient
iteration.

| 185

6 | Interpolation with Bézier surfaces

3. Compute all umn
kl for k, l ∈ {−1, 0, 1} and (m, n) ∈ D via SUopt.

4. Compute all control points bmn
kl ∈ M for k, l ∈ {−1, 1} and (m, n) ∈

D via the exponential map at dmn (see below for details). Note that
all other control points are not used in the composite Bézier surface
evaluation (6.14) or (6.15); they are thus irrelevant.

In the last step of the algorithm, the computation of the control points
has to be performed in a way that ensures S(m, n) = dmn. This requires a
different procedure for Bézier surfaces of type I or II.

For Bézier surfaces of type I we simply use

bmn
kl = expdmn

(umn
kl) , k, l ∈ {−1, 1}, (m, n) ∈ D.

Indeed, this automatically satisfies

SI(m, n) = av
[
(bmn
−1,−1, bmn

−1,1, bmn
1,−1, bmn

1,1), (
1
4 , 1

4 , 1
4 , 1

4)
]
= dmn.

For Bézier splines of type II we set

bmn
k0 = expdmn

(umn
k0) ,

bmn
kl = expbmn

k0

(
Pdmn→bmn

k0
umn

0l

)
, k, l ∈ {−1, 1}, (m, n) ∈ D.

Interpolation is thus also achieved, as

bmn
−1,0 = av

[
(bmn
−1,−1, bmn

−1,1), (
1
2 , 1

2)
]

bmn
1,0 = av

[
(bmn

1,−1, bmn
1,1), (

1
2 , 1

2)
]

SII(m, n) = av
[
(bmn
−1,0, bmn

1,0), (
1
2 , 1

2)
]
= dmn.

An example is provided in Figure 6.12. Numerical examples can be found
in Section 6.6.

186 |

Accelerated generation of control points | 6.5

Fig. 6.12 Optimal placement of control points (circles) for given inter-
polation points (dots) obtained by the algorithm described in Section 6.4
and applied to the sphere S2. The left graphs show the configuration be-
fore optimization (F[S] = 8.185): the control points bmn

kl for (k, l) ∈ Q,
m, n ∈ {0, 1} are simply obtained by geodesic averaging between the in-
terpolation points. The right graphs show the configuration after optimiza-
tion (F[S] = 4.932).

Fig. 6.13 Instead of transporting the vectors to all four corners of a patch
(left graphs, F[S] = 15.96), vectors could also be transported to a single
corner in each patch (right graphs, where they are transported only to the
bottom-left corner of each patch, F[S] = 22.16). However, such a modifica-
tion will in general yield configurations with a higher energy; furthermore,
we can observe a lack of symmetry. As in the previous figure, two configu-
rations are represented for each test: (i) the parameterization of the surface
to a curve S(γ), for γ : (t1, t2) 7→ γ(t1, t2) ∈ R2, and (ii), a grid of the
domain.

6.5 Accelerated generation of control points

The generation of the control points from the previous section was inspired control point

from the technique already applied in Chapters 3 and 4. However, we were
forced to include parallel transportation to the algorithm, which is usually
a costly operation. Indeed, we see in practice that the control points gener-
ation of Section 6.4 is a heavy procedure that must be performed offline.

| 187

6 | Interpolation with Bézier surfaces

In this section, we consider an alternative method to accelerate the con-
trol points generation, based on the same idea as Bézier surfaces of type
II. In a word, we express conditions to compute control points for curves,
and extend this to surfaces afterwards. The acceleration comes also from
two additional constraints. We restrict ourselves to (i) rely only on the ex-
ponential map and logarithm map (just like in Chapter 4) and (ii) reduce
the number of data points taken into accounts while computing a given
control point. This will be made clear in the following.

Let us first consider a Euclidean space and come back to composite
Bézier curves for a time. Given points dm in Rr, there exists a unique
C2-interpolating composite cubic Bézier curve B whose second derivative
direction vanishes at the domain boundary [Far02, §9.3] and which mini-
mizes its mean squared acceleration

∫ M
0 ‖B′′(t)‖2dt among all interpolat-

ing curves [Far02, §9.5].

The B-spline representation of this optimal curve is B = ∑M+1
m=−1 αmBm,B-spline

with coefficients α−1, . . . , αM+1 ∈ Rr and where Bm = B(· − m) given by
(see Figure 6.14)

B(t) =





β3(t + 2; 0, 0, 0, 1
6) if t ∈ [−2,−1],

β3(t + 1; 1
6 , 1

3 , 2
3 , 2

3) if t ∈ [−1, 0],

β3(t− 0; 2
3 , 2

3 , 1
3 , 1

6) if t ∈ [0, 1],

β3(t− 1; 1
6 , 0, 0, 0) if t ∈ [1, 2],

0 else.

(6.35)

i
i

“TikZ/21_bspline-basis” — 2020/7/7 — 11:57 — page 170 — #1 i
i

i
i

i
i

−2 −1 1 2

–1/6

–1/3

2/3

Fig. 6.14 B-spline representation of the optimal curve.

The constraints B(m) = dm and B′′(0) = B′′(M) = 0 result in the linear

188 |

Accelerated generation of control points | 6.5

system

1
6




4 1

1
.
. 1

1 4




︸ ︷︷ ︸
=:AM




α1
...

αM−1


 =




d1 − d0
6

d2
...

dM−2

dM−1 − dM
6




︸ ︷︷ ︸
=:PM(d0,...,dM)

,

under the constraints α0 = d0, αM = dM, α−1 = 2α0 − α1 and αM+1 =

2αM − αM−1.

Inserting (6.35) into B = ∑M+1
m=−1 αmB(· − m), the control points bm

j are
given by

bm
0 = dm, bm

1 =
2
3

αm +
1
3

αm+1, bm
2 =

1
3

αm +
2
3

αm+1, bm
3 = dm+1 .

We can now transfer this approach to surfaces. The B-spline represen-
tation of a composite surface is

S =
M+1

∑
m=−1

N+1

∑
n=−1

αmnBmn

with Bmn(t1, t2) = Bm(t1)Bn(t2). Those basis elements are just tensorized
versions of the 1D case. A natural way to find the coefficients αmn ∈ Rr

is thus to first identify the coefficients of the N + 1 curves interpolating
d0n, . . . , dMn, n = 0, . . . , N, and then interpret those coefficients as interpo-
lation points for the curves along the other dimension (or the other way
around, of course).

The problems to solve are now, for all m and n,

α̃0n = d0n, α̃Mn = dMn, AM(α̃1n, . . . , α̃M−1,n)
> = PM(d0n, . . . , dMn),

α0n = α̃m0, αMn = α̃mN , AN(αm1, . . . , αm,N−1)
> = PN(α̃m0, . . . , α̃mN).

Equivalently, one can first compute intermediate points in one shot for all
(m, n) via

P(d, m, n) := d̃mn = PM
m

(
PN

n (d00, . . . , d0N), . . . , PN
n (dM0, . . . , dMN)

)
;

| 189

6 | Interpolation with Bézier surfaces

then, denoting by Ā = A−1, the αmn are given by

αmn = A(d̃, m, n) =
M

∑
i=1

N

∑
j=1

ĀM
mi Ā

N
njd̃ij.

We can note that the entries of ĀM and ĀN decay exponentially away from
the diagonal. Hence, one could choose a small number τ ∈ N and allow a
small error in the optimal calculation. Hence, the optimal coefficients will
thus be approximated as

αmn =
m+τ

∑
i=m−τ

n+τ

∑
j=n−τ

ĀM
mi Ā

N
njd̃ij,

where the summation is of course restricted to indices for which the en-
tries are defined. Finally, the Bézier control points bmn

ij for i, j ∈ {1, 2} arecontrol point

obtained via

bmn
ij =

3− i
3

3− j
3

αmn +
3− i

3
j
3

αm,n+1 +
i
3

3− j
3

αm+1,n +
i
3

j
3

αm+1,n+1.

The transfer to the Riemannian setting is then direct. We observe that
the equations stay valid under translations such that we can replace all
αmn and dmn by respectively α̂mn = αmn − dref and d̂mn = dmn − dref. In
summary, we compute d̄mn = P(d̂, m, n) and then obtain α̂mn = A(d̄, m, n).

On a Riemannian manifoldM, the Euclidean difference is replaced by
the logarithm map at dref, such that every point is mapped to Tdref

M. In
the computation of α̂mn = logdref

(αmn) one should choose dref = dmn as the
closest interpolation point. The choice of a small τ now has the advantage
that the computation requires only few logarithms logdref

(pm̃ñ) which are
typically expensive to obtain and form the numerical bottleneck of the ap-
proach. At the end, αmn ∈ M is retrieved as αmn = expdmn

(α̂mn) and the
control points for i, j ∈ {1, 2} are computed as a weighted average

bmn
ij = av

[
(αmn, αm,n+1, αm+1,n, αm+1,n+1) ,

(
3−i

3
3−j

3 , 3−i
3

j
3 , i

3
3−j

3 , i
3

j
3

)]
.

The next section presents numerical examples of surface interpolation
based on the control points generation from Sections 6.4 and 6.5.

190 |

Numerical examples | 6.6

6.6 Numerical examples

To finish this chapter, we finally present some examples of composite Bézier
surfaces computed on different manifolds. For reasons of computational
efficiency (especially on manifolds for which no closed formulae of Rie-
mannian operators are available), the examples all represent a Bézier sur-
face of type II.

6.6.1 On the the sphere S2

A first simple computational example on the sphere S2 has already been S2

shown in Figure 6.12.
A possible application on this manifold is image transfer from the plane

onto the sphere. Figure 6.15 shows a rectangular map of the world, which
serves as the parameterization domain of a smooth composite Bézier sur-
face on the sphere. The surface parameterization then provides a one-to-
one map between points on the rectangle and points on the sphere, which
can be used to map the world image onto the sphere.

Fig. 6.15 A rectangular map of the world is smoothly mapped onto
the sphere via a composite Bézier surface, only fixing a few interpolation
points.

The composite curve is optimized via the algorithm from Section 6.4.
Table E.1 recalls the explicit formulas of the Riemannian operators used to
perform this on Sn.

| 191

6 | Interpolation with Bézier surfaces

As a comparison, Figure 6.16 shows a result on S2 where the control
points were computed with the efficient algorithm of Section 6.5.i

i
“TikZ/21_result_sphere-esann” — 2020/7/7 — 11:57 — page 173 — #1 i

i

i
i

i
i

t1

t2

–|

–

|

–

|

S = {(t1, t2) : t1 = 1 + cos(3πt2)}

Fig. 6.16 Differentiable composite surface interpolation on S2. Interpola-
tion points (dots) are shown in red; the control points were generated with
the efficient algorithm of Section 6.5 and shown in green (circles).

6.6.2 On the special orthogonal group SO(3)

The special orthogonal group is used here to interpolate orientations. Fig-
ure 6.17 displays a composite cubic Bézier surface in SO(3) interpolatingSO(3)

a random set of truck-orientation (red). The surface was optimized based
on the Section 6.4. The optimized control points are shown in green. Note
that the surface is smooth and roughly follows the control points, but it
does not go through them, as expected.

A second example is given in Figure 6.18. Here, the first line is com-
posed of a point on SO(3) rotated of t1 × 90 degrees around the z-axis. In
the direction t2, the data points of the first line are rotated of t2× 90 degrees
around the x-axis, which gives a torus effect. The control points have also
been optimized, but the method from Section 6.4 was slightly adapted to
take the periodic boundary into account. We imposed that u0,n

k,l = uM,n
k,l and

um,0
k,l = um,N

k,l for k, l ∈ {−1, 0, 1} and (m, n) ∈ {0, . . . , M} × {0, . . . , N}.
The Riemannian operators on SO(n) are summarized in Table E.2.

192 |

Numerical examples | 6.6

i
i

“TikZ/21_result_so3-toycar” — 2020/7/7 — 11:57 — page 173 — #1 i
i

i
i

i
i

Fig. 6.17 Composite cubic Bézier surface in SO(3) visualized as rotations
of a little truck. Interpolation points are in red, optimized control points in
green, points on the surface are displayed in gray.

Figure 6.19 displays a composite cubic Bézier surface in SO(3) interpo-
lating a random set of rotations (red).

6.6.3 On the space of open polygonal curves P

We consider two shape spaces as further examples. The first is the shape
space P of all polygonal curves in the plane with a fixed number n of seg- shape space P

ments. Here, two shapes are considered equal if they differ only by a rigid
motion. A shape γ ∈ P can therefore be identified with its segment length
and angle representation (`1, . . . , `n, α1, . . . , αn−1) ∈ R2n−1, where `j de-
notes the length of the jth polygon segment and αj the angle between seg-
ment j and j + 1. The tangent space TγP = R2n−1 can be seen as the space
of all length and angle variations.

Instead of a Riemannian metric and with regard to Section 2.6, we di-
rectly specify an energy functional W acting on two shapes γ1, γ2 ∈ P ,

| 193

6 | Interpolation with Bézier surfaces

i
i

“TikZ/21_result_so3-torus” — 2020/7/7 — 11:57 — page 173 — #1 i
i

i
i

i
i

Fig. 6.18 Smooth torus in SO(3) given by a composite cubic Bézier sur-
face. The color-convention is identical as in Figure 6.17.

γi = (`i
1, . . . , `i

n, αi
1, . . . , αi

n−1), i = 1, 2, by

W[γ1, γ2] =
n

∑
j=1

(`1
j − `2

j)
2

`1
j

+ 2
n−1

∑
j=1

(α1
j − α2

j)
2

`1
j + `1

j+1
.

The Riemannian metric, for which this W is supposed to approximate the
squared Riemannian distance, can be obtained as the second derivative,

gy(v, w) =
d

dt1

d
dt2

W(y, y + t1v + t2w)
∣∣∣
t1=t2=0

.

194 |

Numerical examples | 6.6

Fig. 6.19 Differentiable composite surface interpolation on SO(3). Inter-
polation points are shown in red; the reconstructed surface is in blue. The
control points (not displayed) were generated with the efficient algorithm
of Section 6.5.

It has a physical interpretation of energy dissipation during shape defor-
mation [RW15]. Our calculations are now based on the discrete approxi-
mations from Section 2.6.

Figure 6.20 shows a Bézier spline surface in the space of polygonal
curves with optimized control points. The interplation points are segments
of silhouettes from the Kimia database [SKK04].

6.6.4 The space of discrete shells Sh

As a second example, we consider the space of shells Sh, as described in shape space Sh

[HRWW12]. We give here a quick overview of the manifold before apply-
ing the interpolation techniques to it.

In the continuous case, a shell Sh is given by an oriented C2 surface S in
R3, called the midplane of Sh, and is defined as the set

Sh = {p + λν(p) | p ∈ S, λ ∈
(
− h

2 , h
2

)
⊂ R}

where ν(p) denotes the normal at a point p ∈ S. The space of shells Sh
comprises all images φ(Sref

h) of a reference shell Sref
h under any orientation-

preserving diffeomorphism φ.

| 195

6 | Interpolation with Bézier surfaces

Fig. 6.20 Smooth interpolation on the space of open polygonal curves P .
Interpolation points are shown in red, control points in green, points on
the surface in gray (shapes are from the Kimia database [SKK04]).

The tangent space at S ∈ S consists of smooth displacement fields ψ :
S → R3, and it can be equipped with a Riemannian metric that describes
the physical energy dissipation during the deformation of Sh; for details
we refer to [HRWW12].

The discretized analog, also described in [HRWW12], is called discrete
shell Mh. By “discrete”, we mean a “triangulated surface” in R3, repre-
sented by a tuple (Nh, Th) ∈ (R3)m × ({1, . . . , m}3)n, m, n ∈ N. Here, Nh
represents the vertex positions and Th encodes the triangulation, i.e., each
component (Th)l = (i, j, k) indicates that (Nh)i, (Nh)j and (Nh)k form a
triangle. The space of discrete shells can be equipped with a discrete ana-
log of the Riemannian metric on S . Given a triangle T, we assign to each
vertex a local index ranging from 0 to 2. This allows us to define the edge
set ET of T as the set of directed edges connecting the nodes i − 1 and i
(counted modulo 3). Eh is defined to be the union of the edge sets ET over
all triangles T.

A deformation of a discrete shell Mh can now be viewed as a mapping
φ : Nh → R3. We define the discrete deformation energy W̃[φ] of φ by

W̃[φ] = h ∑
T∈Th

Wmem(Q>mem[φ])AT + h3 ∑
E∈Eh

Wbend(QE
bend[φ])AE

196 |

Numerical examples | 6.6

for some physical energy densities Wmem and Wbend (specific examples are
given in [HRWW12]). Here, AT denotes the area of the (undeformed) tri-
angle T. For a given edge E ∈ Eh, the value AE = 1

3 (AT1 + AT2) denotes an
area fraction of the two adjacent triangles T1 and T2. The operator Q>mem[φ]

describes in-plane strain while QE
bend[φ] describes in-plane bending. We

refer to [HRWW12] for details about those expressions.
The discrete geodesic calculus from Section 2.6 can now be employed

with the energy
W[S1, S2] = W̃[φ] for φ(S1) = S2,

which approximates the squared Riemannian distance in the space of dis-
crete shells [HRWW12].

Figure 1.1 already showed a differentiable composite Bézier surface in-
terpolating six given hand shapes (the mesh data was made available by
Yeh et al. [YLSL11]). Similarly, Figure 6.21 shows a composite Bézier in-
terpolation surface between 3 × 3 interpolation points (the interpolation
points in this figure are meshes made available by Bergou et al. [BMWG07]).
The control points in Figure 6.21 have been optimized using the algorithm
from Section 6.4.

This section is based on the papers [AGSW16b] and [AGSW16a], sometimes cited verbatim.
The references of these papers are

[AGSW16b] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and Benedikt Wirth.
Differentiable piecewise-Bézier surfaces on Riemannian manifolds. SIAM Journal on
Imaging Sciences, 9(4):1788–1828, 2016. doi:10.1137/16M1057978

and

[AGSW16a] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and Benedikt Wirth.
Differentiable piecewise-Bézier interpolation on Riemannian manifolds. In ESANN2016,
pages 95–100. Springer, 2016

The figures can be reproduced based on the code provided in the toolbox available at this
link address:

https://github.com/pgousenbourg/manint

| 197

http://dx.doi.org/10.1137/16M1057978
https://github.com/pgousenbourg/manint

6 | Interpolation with Bézier surfaces

Fig. 6.21 Differentiable piecewise-Bézier interpolation in the space of tri-
angulated shells. Interpolation points are shown in red, control points
in green, points on the surface in gray. Dataset courtesy to Bergou et
al. [BMWG07].

198 |

7
Fitting with blended surfaces

A
S FINAL CHAPTER, and in order to close the loop, we consider fit-
ting with composite surfaces. In essence, the goal of this chapter
is to generalize the blended curves presented in Chapter 4 to the

multivariate case. However, although only the bivariate case will be pre-
sented here (i.e., surface fitting), the generalization to multivariate is quite
straightforward. This is the last contribution of this thesis.

As in the previous chapters, given a set of data points di ∈ M associ-
ated with parameter values ti ∈ Ω ⊂ R2, one searches a surface S(t) that
strikes the balance between fitting and regularity. It is now encapsulated
within the following minimization problem on a domain Ω ⊂ R2:

min
S

∫

Ω⊂R2

∥∥∥D2S(t)
∥∥∥

2

S(t)
dt + λ

n

∑
i=0

d2(S(ti), di). (7.1)

As in Chapter 4, the algorithm to compute such a surface must meet six
properties:

(i) As λ → ∞, the data points are interpolated at the associated param-
eter values;

(ii) The surface is continuously differentiable;

(iii) IfM is a Euclidean space, the surface reduces to the thin plate spline
fitting the data points;

| 199

7 | Fitting with blended surfaces

(iv) The method only requires to use the exponential map and the loga-
rithm map;

(v) The number of tangent vectors to be stored is O(n), where n is the
number of data points;

(vi) The number of operations to reconstruct S(t) is O(1) once the tan-
gent space representations are given.

The first section of this chapter is a reminder of the theory of thin plate
splines, i.e., a generalization of the natural (1D) smoothing splines [GS93].
Then the blended surfaces are presented and analyzed in Section 7.2. This
constitutes the main contribution of this chapter, made in collaboration
with Prof. Benedikt Wirth (Universität Münster, Germany). A proper pub-
lication is currently in production but the work is still ongoing [AGW20].
Finally, some applications are shown in Sections 7.3.

7.1 Euclidean thin plate splines

Thin plate splines in Euclidean space were introduced and analyzed in the
late 1970s [Duc77, Duc78, Mei79, Pow94] as a generalization of the natu-
ral smoothing spline. They constitute now a very standard tool for multi-
variate fitting and interpolation; they appear in various textbook on data
fitting, for instance in Green and Silverman [GS93, Chap. 7] to which we
refer for a complete introduction.

Thin plate splines take their name from a specific 2D case of a larger
problem. Consider a Hilbert space and data points d0, . . . , dn ∈ R associ-A Hilbert

space is a
vector space
equipped with
an inner
product.

ated with parameter values t0, . . . , tn ∈ Ω ⊂ Rm. A smooth interpolation
S : Ω → R of the pairs (ti, di) ∈ Ω × R can be found in a variational
manner by minimizing a derivative-penalizing cost function E[S]

min
S

E[S] = min
S

∫

Ω

∥∥∥DkS(t)
∥∥∥

2

F
dt such that S(ti) = di, (7.2)

where DkS stands for the kth derivative of S.
When Ω ∈ R2 and k = 2, in particular, a unique optimizer of (7.2)

exists [Duc77]. The term thin plate spline derives from this setting. In that
case, E[S] can be interpreted as the physical bending energy within a thin
flat metal sheet with out-of-plane displacement S. Noting t = (x, y), the

200 |

Euclidean thin plate splines | 7.1

objective E becomes thus explicitly [GS93]

E[S] =
∫

Ω

[(
∂2S(t)

∂x2

)2

+ 2
(

∂2S(t)
∂x∂y

)2

+

(
∂2S(t)

∂y2

)2]
dxdy (7.3)

On a finite domain Ω, the Euler–Lagrange equations of the optimizer
read

∆2S = 0 in Ω \ {t1, . . . , tK},
u ·D2Su = 0, ∂u∆S + ∂u⊥(u

⊥ ·D2Su) = 0 on ∂Ω,

where ∆2 is the bilaplacian operator, u denotes the unit outward normal to The bilaplacian
operator is
given by

∆2 = ∑i
∂4

∂x4
i
+

2 ∑i<j
∂4

∂x2
i ∂x2

j

the boundary ∂Ω of Ω, u⊥ the tangent normal, ∂u the normal derivative,
and ∂u⊥ the tangential derivative. The boundary conditions make that the
problem (7.2) must be solved numerically. However, when Ω = R2 is
not bounded, there are no boundary conditions and the minimizer can be
computed explicitly in the form of a thin plate spline.

Definition 7.1 (Thin plate spline in R2). Consider a dataset of coordinates
t0, . . . , tn in R2. A thin plate spline is a function S of the form thin plate

spline

S : R2 → R : S(t) :=
n

∑
i=0

aiφ(‖t− ti‖) + δ

[
t
1,

]

where ai ∈ R and δ ∈ R3 are coefficients to be chosen (see Definitions 7.2
and 7.3), and where

φ : R+ → R : r 7→ φ(r) :=

{
1

16π r2 log r2 for r > 0

0 for r = 0

is a radial basis kernel. If ∑n
i=0 ai = ∑n

i=0 aiti = 0, then S is called a natural
thin plate spline.

It can be shown [GS93, Thm. 7.1] that the only thin plate splines S with
finite energy E[S] are natural thin plate splines.

Like in the case of Bézier curves (see Chapters 3 and 6), the thin plate
spline is defined based on its coefficients ai and δ. From their values will
depend interpolation.

Definition 7.2 (Interpolating thin plate splines [GS93, §7.5]). Consider the
pairs (di; ti) = (di; xi, yi) ∈ R×R2, i = 0, . . . , n, with the ti distinct and

| 201

7 | Fitting with blended surfaces

non-collinear. The unique thin plate spline S satisfying S(ti) = di hasinterpolation

coefficients given by [
G T>

T> 0

] [
a
δ

]
=

[
D
0

]
,

where a ∈ Rn+1 is the vector of coefficients ai, D ∈ Rn+1 is the vector of
data points di, G ∈ Rn+1×n+1 is a matrix filled with Gij = φ(‖ti − tj‖), and
T ∈ R3×n+1 is a matrix of values defined as

T =




1 1 · · · 1 1
x0 x1 · · · xn−1 xn
y0 y1 · · · yn−1 yn


 .

The uniqueness of this definition is proven in [GS93, Thm. 7.2], and the
optimality of this surface with respect to (7.2) is proven in [GS93, Thm.
7.3].

Consider now the fitting case. The data has no more to be interpolatedfitting

but just approached as S(ti) ≈ di. Introducing the fitting parameter λ > 0,
(7.2) becomes

min
S

E[S] + λ
n

∑
i=1
‖S(ti)− di‖2

F. (7.4)

Note that, when λ → ∞, the problem approaches its interpolation equiv-
alent. When Ω is not bounded, the minimizer is also a natural thin plate
spline. The coefficients are given as follows.

Definition 7.3 (Fitting thin plate splines [GS93, §7.6]). Consider the pairs
(di; ti) = (di; xi, yi) ∈ R×R2, i = 0, . . . , n, with the ti distinct and non-
collinear. The unique thin plate spline S minimizing (7.4) has coefficients
given by [

G + 1
λ I T>

T> 0

] [
a
δ

]
=

[
D
0

]
,

where a, D, G and T are defined as in Definition 7.2.

Remark 7.4. Thin plate splines can be seen as natural generalizations of
smoothing curves. In his work, Duchon gives a bound on the error of ap-
proximation made when a smooth surface S : Ω → R is approximated by
a thin plate spline S interpolating the pairs (S(ti); ti). We refer the reader
to [Duc78, Prop. 3]. The error bound also evaluates the difference between
solutions whose support Ω is finite or not.

Some illustrations of fitting and interpolating thin plate splines are given

202 |

Fitting with blended thin plate splines | 7.2

in Figure 7.1, for different values of λ.

(a) λ = 10 (b) λ = 100 (c) Interpolation

Fig. 7.1 Thin plate splines in R3. The red points are data points.

7.2 Fitting with blended thin plate splines

In Chapter 4, the problem (4.1) was never solved directly on manifolds, but
instead replaced by different approximations on local tangent spaces. The
same arises here with problem (7.1): solving the thin plate spline problem
is typically easy and computationally efficient on a Euclidean space, but
much harder and computationally expensive for data in a manifoldM.

Therefore, the natural idea from Chapter 4 is extended to the bivariate
case. The manifold M is approximated by several tangent spaces TpiM
around linearization points pi ∈ M, i = 0, . . . , N. On those tangent spaces,
a thin plate spline is constructed with Definitons 7.2 or 7.3. Then, the dif-
ferent solutions have to be merged properly such that the resulting surface
S satisfies the six aforementioned properties.

In Section 7.2.1, we present the blending technique of surfaces com-
puted on multiple tangent spaces. The blending is done by Riemannian
averaging. In Section 7.2.2, the regularity properties of such blended sur-
faces are examined. Section 7.2.3 is a discussion about the choice of the
blending weights. Finally, Section 7.2.4 summarizes the ideas presented; a
proof that the six properties (mentioned in the beginning of the chapter)
are validated is also given.

| 203

7 | Fitting with blended surfaces

7.2.1 Blended surfaces

Forget for a moment the data points and consider simply a Riemannian
manifoldM and a rectangular domain Ω ⊂ R2. The abstract problem is
to construct a parameterized surface S : Ω → M based only on surfaces
computed in tangent spaces toM. To do so, let Ω be discretized by a grid
of M× N rectangular patchesΩij = [xi, xi+1]× [yj, yj+1] with i = 0, . . . , M
and j = 0, . . . , N and let each node tij = (xi, yj) be associated with a lin-
earization point pij ∈ M (see Figure 7.2). For convenience, one could setlinearization

point pij tij = (i, j), as in the previous Chapters, but let us work in full generality
this time.

Locally around tij = (xi, yj), M will be well approximated by TpijM;
thus, the surface S will be represented using the tangent space TpijM. Note
that, for this reason and in case S(x, y) is used to approximate a surface
f (x, y), it will be in general a good idea to pick pij = f (xi, yj). The repre-
sentation of S in its local tangent space is called a tangent surface.

Definition 7.5 (Tangent surface and local surface). LetM be a smooth man-
ifold and pij ∈ M a linearization point. A tangent surface associated to pijtangent

surface S̃ij is a continuous surface
S̃ij : Ω→ TpijM.

When the tangent surface is mapped back to the manifold M, the corre-
sponding (manifold-valued) surface is called the local surface and is definedlocal surface

Sij as
Sij : Ω→M : t 7→ Sij(t) = exppij

(
S̃ij(t)

)
. (7.5)

Each local surface Sij : Ω → M, associated to the linearization point
pij, is a good approximation of the final surface S only in a neighborhood
of (xi, yj) if pij ≈ Sij(xi, yj). Therefore, we can see them as local patches
that now need to be connected with each other in order to form the global
surface S. However, whenever one switches from one local representation
Sij to another, one would at least expect the resulting surface S to be con-
tinuous (and ultimately smooth, up to a given degree). This is done by
a computationally cheap blending mechanism, that will mix several local
surfaces in a similar way as in Chapter 4.

In the present setting, we will consider that the “neighborhood of va-
lidity of Sij” is the domain [xi−1, xi+1]× [yj−1 × yj+1] (see the gray area in
Figure 7.2). Therefore, on the subdomain Ωij = [xi, xi+1]× [yj, yj+1], only
four local surfaces are local representations of S, namely Si,j, Si+1,j, Si,j+1,
and Si+1,j+1.

204 |

Fitting with blended thin plate splines | 7.2

i
i

“TikZ/22_approxSurface” — 2020/7/7 — 11:57 — page 182 — #1 i
i

i
i

i
i

M

pij

x

y

–yj

–yj−1

–yj+1

|
xi

|
xi−1

|
xi+1

Ω

Ωi-1,j Ωi,j

Ωi-1,j-1 Ωi,j-1

0

S̃ij(x, y) TpijMS ij
=

ex
p p ij

(S̃ ij
)

S̃ij

Fig. 7.2 The local surface Sij is obtained by linearization ofM around pij

by its tangent space TpijM, where a tangent surface S̃ij is defined. Then S̃ij
is mapped back toM to yield Sij, which is interpreted as a local represen-
tation of the global surface S on [xi−1, xi+1]× [yj−1, yj+1] (grayed area).

| 205

7 | Fitting with blended surfaces

Those four local surfaces will be blended with each other by weighted
averaging (see Figure 7.3). The blending weights wkl are chosen such that,
the closer to (xk, yk), the more reliable each surface Skl gets, in compari-
son with the others (for a discussion on the choice of the weights, see Sec-
tion 7.2.3).

Definition 7.6 (Blended surface). Let Ωij = [xi, xi+1] × [yj, yj+1] denote
the subdomains of Ω. Each corner (xk, yl) is associated with a lineariza-
tion points pkl and with a local surface Skl : Ω → M : t 7→ Skl(t) =

exppkl

(
S̃kl(t)

)
, for k ∈ {i, i + 1}, l ∈ {j, j + 1}. The blended surface S : Ω →blended

surface S M is defined on each Ωij as

S(x, y) = av
[
Sij(x, y), Si+1,j(x, y), Si,j+1(x, y), Si+1,j+1(x, y);

wij(x, y), wi+1,j(x, y), wi,j+1(x, y), wi+1,j+1(x, y)
]
,

where av is the averaging operator from Definition 2.53 and where wkl :
Ω → [0, 1] are weight functions with support in [xk−1, xk+1]× [yl−1, yl+1].
Furthermore, ∑M

i=0 ∑N
j=0 wij = 1. The blended surface is illustrated in Fig-

ure 7.3.

Note that, as final goal, the surface S will be meant to fit a set of data
points. Then, naturally, S̃ij will be the thin plate spline evaluated on TpijM
and the local descriptor Sij of S around (xi, yj), will be the tangent thin
plate spline S̃ij mapped back toM.

Remark 7.7. The averaging operator from Definition 7.6 can be expressedaverage

in multiple ways, each of them leading to slightly different solutions (see
Section 6.2 for an application to Bézier surfaces, and Figure 6.2 for an illus-
tration). On one hand, the averaging can be the minimizer of the weighted
sum of squared distance

avmin
[
x1, . . . , x4; w1, . . . , w4

]
= argmin

x∈M

4

∑
i=1

wid2
M(xi, x).

This form has typically no closed-form solution and requires to solve a
numerically expensive optimization. On the other hand, this averaging
can be approached with an iterative dyadic versiondyadic average

avdyad
[
x1, . . . , x4; w1, . . . , w4

]
= av

[
y1, y3; w1 + w2, w3 + w4

]

for yi = av
[
xi, xi+1; wi, wi+1

]

206 |

Fitting with blended thin plate splines | 7.2

i
i

“TikZ/22_blendedSurface” — 2020/7/7 — 11:57 — page 183 — #1 i
i

i
i

i
i

pij

Sij(x, y)

–yj+1

–yj

|
xi+1

|
xi

Ωi,j

M

Tpi+1,j+1M

S̃i+1,j+1(x, y)

Tpi,j+1
M

S̃i,j+1(x, y)

T
p
ij M

S̃
i,j (x, y)

Tpi+1,jM

S̃i+1,j(x, y)

Fig. 7.3 The blended surface S is a weighted average of four local sur-
faces constructed at linearization points pij, pi+1,j, pi,j+1 and pi+1,j+1.

This approach has the advantage to require only the evaluation of few Rie-
mannian logarithms and exponentials, as the weighted averaging between
two points reduces to a weighted geodesic (see Defintion 2.53 and Equa-
tion (2.6)). The drawback of this is that a choice has to be made in the order
of the variables along which the average is performed (see Figure 6.3 for
an illustration of the impact of this choice on Bézier surfaces). In practice,
the differences in the result are quite mild while the computational gain is
important, so we will choose preferably this last solution. Note that, on
symmetric spaces and for averages of four points, both lead to the same
result.

Remark 7.8. In Definition 7.6, at most four surfaces Skl are blended to-
gether at each point (x, y) ∈ Ω. Consequently, the blending weights wkl
are only used on a support restricted to [xk−1, xk+1]× [yl−1, yl+1]. This re-
striction could be relaxed such that, in each subdomain Ωij, one could per-

| 207

7 | Fitting with blended surfaces

form a weighted average of more surfaces. For instance, one could blend
all local surfaces Skl associated with the corners (xk, yl) of the subdomains
next to Ωij. In that case, the support of each weight function wkl would
become [xk−2, xk+2] × [yl−2, yl+2]. Ultimately, all local surfaces could be
blended together. However, this does not seem to have any advantage
(except for one feature discussed in [AGW20]). On the contrary, this strat-
egy comes along with two drawbacks. First, a weighted average involving
more points will be computationally more expensive, and second, as the
tangent spaces TpklM associated to the points (xk, yl) /∈ Ωij are worst rep-
resentations ofM, surfaces Skl are also worst representations of S in Ωij.
Therefore, they should not be considered in the blending mechanism.

Remark 7.9. In this chapter, we restrict ourselves to rectangular meshes
of Ω. In fact, the blending method is not strictly limited to this frame-
work. Indeed, any polygonal decomposition of Ω is acceptable; in that
case, the linearization points are then associated with each vertex of the
decomposition. However, such a generalization will come along with an
important drawback: the use of dyadic averaging (avdyad) and the choice
of the blending weights become more complicated (for instance, such that
the blended surface is differentiable). For this reason, we will continue to
stick to rectangular grids.

We close the section with a summary of the computational complexity
for surface evaluation.

Proposition 7.10 (Complexity of blended surface evaluation). Evaluating aExp-Log
complexity

blended surface S : Ω → M at a point x ∈ Ω requires at most 7 Riemannian
exponentials and 3 Riemannian logarithms.

Proof. At each point (x, y) ∈ Ω at most four local surfaces Skl(x, y) =

exppkl

(
S̃kl(x, y)

)
have to be averaged. The evaluation of each surface in-

volves one Riemannian exponential; the averaging avdyad involves three
dyadic averages, where each one requires one Riemannian logarithm and
one Riemannian exponential.

Remark 7.11. Actually, Proposition 7.10 can be easily generalized to mul-
tivariate functions S. Consider a d-dimensional domain Ω ⊂ Rd. Then,
for each point x ∈ Ω, at most 2d local surfaces must be averaged. This
implies first that 2d Riemannian exponentials are required to evaluate each
local surface Skl . The dyadic averaging is now performed along each di-
mension at a time, such that one needs ∑d−1

i=0 2i = 2d − 1 geodesic averages

208 |

Fitting with blended thin plate splines | 7.2

(each of them requiring one exp and one log). As a summary, evaluating
a d-dimensional blended function S requires 2d+1 − 1 Riemannian expo-
nentials and 2d − 1 Riemannian logarithms. Note that this holds also for
blended curves presented in Chapter 4.

7.2.2 Continuity and smoothness of blended surfaces

The continuity and the smoothness of the blended surface is analyzed in
this section. The analysis is limited to C1-continuity, as in the previous
chapters. However, the demonstration can easily be generalized to higher
regularity conditions, which is one of the best advantages of this approach.

Theorem 7.12 (C1-continuity of blended surfaces). LetM be a smooth mani- differentiability
conditions

fold and consider the blended surface from Definition 7.6. Further, let us abbreviate

Dij = max
k,k̃∈{i,i+1}
l,l̃∈{j,j+1}

d(pkl , pk̃l̃), and Rij = max
k∈{i,i+1}
l∈{j,j+1}

‖S̃kl‖C0(Ωij)
.

The blended surface S exists, is unique, and is C1 if

(i) the tangent surfaces S̃ij are C1 on [xi−1, xi+1]× [yj−1, yj+1] ∩Ω,

(ii) the weight functions wij are C1 on Ω and have a support on [xi−1, xi+1]×
[yj−1, yj+1] ∩Ω,

(iii) Dkl + 2Rkl < rkl
2 for all k = 0, . . . , M, l = 0, . . . , N, where rkl is the

injectivity radius ofM restricted to the ball BDkl+3Rkl (pkl) ⊂M.

Proof. Let us first prove that S exists and is unique (i.e., is “well-defined”).
Let (x, y) ∈ Ωij. By the triangle inequality, the maximum distance between
the four points Skl(x, y) inside the average is no larger than Dij + 2Rij,
which, by condition (iii), is smaller than the injectivity radius rij. There-
fore, the inner dyadic averages of avdyad, given by

y1 = expSij(x,y)

(
wi+1,j(x, y)

wi,j(x, y) + wi+1,j(x, y)
logSij(x,y)

(
Si+1,j(x, y)

)
)

,

and

y2 = expSi,j+1(x,y)

(
wi+1,j+1(x, y)

wi,j+1(x, y) + wi+1,j+1(x, y)
logSi,j+1(x,y)

(
Si+1,j+1(x, y)

)
)

,

| 209

7 | Fitting with blended surfaces

are well-defined. By the triangle inequality, again, they also satisfyWithout loss
of generality,
let y1 and y2
be closer to
Si,j and Si,j+1
respectively.i
i

“TikZ/22_triangle” — 2020/7/7 — 11:57 — page 186 — #1 i
i

i
i

i
i

Sij Si+1,j

Si,j+1 Si+1,j+1

y1

y2

d(y1, y2) ≤ min
k,k̃∈{i,i+1}

(
d(y1, Skj(x, y)) + d(Skj(x, y), Sk̃,j+1(x, y))

+d(Sk̃,j+1(x, y), y2)
)

≤ 2(Dij + 2Rij),

as mink d(y1, Skj(x, y)) and mink d(Sk,j+1(x, y), y2) are bounded by 1
2 (Dij +

2Rij). By condition (iii), y1, y2 ∈ BDij+3Rij(pij). This means that d(y1, y2) ≤
2(Dij + 2Rij) < rij. Therefore the outer dyadic average of avdyad is well-
defined, and thus S(x, y) is also well-defined.

C1 continuity in Ωij is direct: since the Riemannian logarithm and the
exponential are smooth where they are well-defined, then the averaging
operator avdyad is also smooth where it is well-defined. By conditions (i)
and (ii), the tangent surfaces and the weights used by the averaging opera-
tor avdyad are smooth. We have already proven that avdyad is well-defined,
so avdyad is smooth, and so is S.

Finally, it remains to prove C1-continuity at the edges of all patches Ωij.
i

i
“TikZ/22_domains” — 2020/7/7 — 11:57 — page 186 — #1 i

i

i
i

i
i

Ωi,j−1

Ωi,j

yj−1

yj

yj+1

xi xi+1

Without loss of generality let us consider some point (x, yj) ∈ Ωi,j−1 ∩Ωij
(the proof for points (xi, y) ∈ Ωi−1,j ∩Ωij is analog). Denote by S− and S+

the (differentiable) restriction of S to Ωi,j−1 and Ωij, respectively. The x-
derivatives coincide. Indeed, as wi,j−1 = wi+1,j−1 = wi,j+1 = wi+1,j+1 = 0,
S− and S+ coincide on [xi, xi+1]×{yj}. We show that the y-derivatives co-
incide as follows. By condition (ii) and because the weights sum up to one
(Definition 7.6), the y-derivative of all weights wkl involved in the compu-
tation of S− and S+ is zero in (x, yj), that is,

∂wkl(x, y)
∂y

∣∣∣∣
y=yj

= 0 for k ∈ {i, i + 1}, l ∈ {j− 1, j + 1}.

Hence, while computing the y-derivative of S− (resp. S+) in (x, yj),

all terms involving ∂wkl(x,y)
∂y vanish. Shortening the notations as wkl :=

wkl(x, yj) and Skl := Skl(x, y), one obtains, at (x, yj):

S−(x, y) = av
[
y1, y2; wi,j−1 + wi+1,j−1, wi,j + wi+1,j

]

S+(x, y) = av
[
y3, y4; wi,j + wi+1,j, wi,j+1 + wi+1,j+1

]

210 |

Fitting with blended thin plate splines | 7.2

where

y1 = av
[
Si,j−1, Si+1,j−1; wi,j−1, wi+1,j−1

]

y2 = av
[
Si,j, Si+1,j; wi,j, wi+1,j

]

y3 = av
[
Si,j, Si+1,j; wi,j, wi+1,j

]

y4 = av
[
Si,j+1, Si+1,j+1; wi,j+1, wi+1,j+1

]
.

As wi,j−1 = wi+1,j−1 = wi,j+1 = wi+1,j+1 = 0, we observe directly that
S−(x, y) = y2 = y3 = S+(x, y). Since S− and S+ coincide, they have the
same y-derivative in (x, yj).

So S is C1 and well-defined on Ω.

Remark 7.13. At (xi, yj) all weight functions are equal to zero, except for
wij(xi, yj) = 1. Furthermore, the C1 conditions on the weights impose that
all weight functions wij have zero derivative in (xk, yl), for all k, l. This
means that, in a neighborhood of (xi, yj), the surface S corresponds to Sij
at first order. It is easy to extend this property to kth order regularity and
correspondence. For this, one needs to impose that the weight functions
and the tangent surfaces are Ck.

Remark 7.14. An analogous version of Theorem 7.12 also holds if avdyad
is replaced by a different smooth averaging operator such as avmin. The average

proof stays the same, but we must adapt condition (iii) as well as argu-
ments to ensure that S exists and is unique. Indeed, by [AGSW16b, proof
of Prop. 12] the weighted average avmin is well-defined if the distance be-
tween the averaged points is smaller than ρkl = min{rkl , π

4∆kl
}/3, where

rkl is the local injectivity radius and ∆kl ≥ 0 is an upper bound on the sec-
tional curvatures ofM on BDkl+3Rkl (pkl). Thus, in condition (iii) and in the
proof, rkl must be replaced by ρkl .

Remark 7.15. If the surface S cannot be properly represented by local sur-
faces Skl because condition (iii) is not met, then this problem can be re-
solved by appropriately shifting the linearization points and/or by suffi-
ciently refining the grid (xk, yl)kl on the domain Ω. Indeed, this will reduce
the size of the Ωkl as well as the distance between the linearization points;
therefore, the quantities Dkl and Rkl both decrease (and can be driven arbi-
trarily close to zero). Correspondingly, the local injectivity radii rkl increase
so that condition (iii) will be satisfied at some point. This goes beyond the
scope of this thesis but some techniques are presented in [AGW20].

| 211

7 | Fitting with blended surfaces

Note, though, that condition (iii) is a worst case estimate in which all
tangent space surfaces S̃ij are assumed to be fully independent. In data
fitting applications, however, all S̃ij would fit the same data shifted to the
corresponding tangent space. Hence, one can expect the local surfaces Skl ,
associated with a given patch Ωij, to be quite similar. The quantity Dkl +

2Rkl from condition (iii) should then be replaced by the (much smaller)
distance between the Skl associated with Ωij.

7.2.3 Choice of the weight functions

Finally, we discuss the choice of weight functions wij used in Definition 7.6
and in Theorem 7.12. For now, only the support and the regularity of the
weight functions are imposed, such that there remains a lot freedom for
choosing them properly.

As in Chapter 4, one might try to employ weights that make the blended
surface as smooth as possible. Ultimately, the fitting blended surface will
be composed of tangent thin plate splines mapped back to M. Hence, a
natural choice of weights would be such that the resulting blended sur-
face S(x, y) minimizes the thin plate spline energy (7.3) among all possible
blended surfaces, when M is a Euclidean space. However, this would
make the weight functions strongly depend on the local surfaces Sij and
the manifold M. As a result, computing them would require expensive
optimization problems that we actually want to avoid.

Therefore, like in the case of curves, a compromise could be to compute
weights that are optimal at least for the zeroth order approximation of the
local surface Sij, i.e., when Sij are constant. However, while those optimal
weights exist for curve fitting (see Remark 4.13), they do not exist in the
multidimensional case.

Theorem 7.16 (Surface weights [AGW20]). Let M = Rr. Consider MN
patches Ωij ⊂ Ω, M, N > 1, and assume the local surfaces Sij to be constant.
Consider weights wij : Ω → R with support in [xi−1, xi+1]× [yj−1, yj+1] and
summing to one. There is no such weights wij which, independently of the Sij,weight

function
minimize the thin plate spline energy of the resulting blended surface S(x, y) =

∑M
i=0 ∑N

j=0 wij(x, y)Sij.

Proof. A detailed proof can be found in [AGW20]. We just sketch it here. In
substance, the problem is restricted (without loss of generality) to the case
M = R, and the proof is made by contradiction: one assumes that there
exists such wij and builds the following counter-example. Let Sij = 1 for

212 |

Fitting with blended thin plate splines | 7.2

all j > j0 and Sij = 0 otherwise. The corresponding blended surface Sy

necessarily satisfies

{
Sy(x, y) = 0 for y < yj0

Sy(x, y) = 1 for y > yj0+1.
(7.6)

By hypothesis on the weights, Sy minimizes the thin plate spline energy
among all surfaces S satisfying (7.6). That minimizer is explicitly known
(it is constant in x-direction and is equal to the natural cubic spline in the
y-direction):

Sy(x, y) =





0 if y < yj0 ,

1 if y > yj0+1,

g1(y) = g
(yj0+1−y

yj0+1−yj0

)
otherwise,

with g(t) = 2t3 − 3t2 + 1. Likewise, for Sij = 1 if i > i0 and Sij = 0
otherwise, the corresponding blended surface is expressed as

Sx(x, y) =





0 if x < xi0 ,

1 if x > xi0+1,

g2(x) = g
(xi0+1−x

xi0+1−xi0

)
otherwise.

Finally, one considers the case where Sij = 2 if i > i0 and j > j0, Sij = 0 if
i ≤ i0 and j ≤ j0, and Sij = 1 else. In that case the blended surface is given
by S = Sy + Sx.

By hypothesis in the beginning of the proof, there shouldn’t exists any
surface S? with smaller thin plate spline energy than S. Therefore, for any
smooth test function φ : Ω → R with compact support in the interior of
Ωi0−1,j0 ∪Ωi0 j0 one has

E[S + αφ] ≥ E[S]

as long as α ∈ R has small enough modulus. However, it can be shown
that d

dα E[S + αφ]α=0 6= 0, which contradicts E[S + αφ] ≥ E[S] so that the
weights cannot have been optimal (see [AGW20] for a detailed develop-
ment).

Since there is no optimal weights independent from the local surfaces, weight
function

the weight functions will be chosen as tensorization of the weights used

| 213

7 | Fitting with blended surfaces

for curve fitting:

wij(x, y) =





g
(

x−xi
xi+1−xi

)
g
(y−yj

yj+1−yj

)
if x ∈ [xi, xi+1]× [yj, yj+1],

g
(

x−xi
xi+1−xi

)
g
(y−yj

yj−1−yj

)
if x ∈ [xi, xi+1]× [yj−1, yj],

g
(

x−xi
xi−1−xi

)
g
(y−yj

yj+1−yj

)
if x ∈ [xi−1, xi]× [yj, yj+1],

g
(

x−xi
xi−1−xi

)
g
(y−yj

yj−1−yj

)
if x ∈ [xi−1, xi]× [yj−1, yj]

(7.7)

with g(t) = 2t3 − 3t2 + 1.

Remark 7.17. This choice of weights will at least lead to optimal blend-
ing along the coordinate directions; also the tensorized weights match our
use of the tensorized average avdyad in Definition 7.6. In fact, in data fit-
ting applications the differences between the different local surfaces Sij will
be rather small (at least for neighboring indices) so that the choice of the
blending weights is not expected to have too much influence anyway. This
expectation is illustrated and confirmed in Section 7.3 (Figure 7.7).

Remark 7.18. Note that equation (7.7) gives a weight associated to each
corner of the patch Ωij. Renaming locally pij =: p̂00, pi+1,j =: p̂10, pi,j+1 =:
p̂01 and pi+1,j+1 =: p̂11, and their respective associated coordinates by
x̂mn, ŷmn, m, n ∈ {0, 1}, then the weight associated to each of them is now

ŵmn(x, y) = g
(|x− x̂mn|

x̂1n − x̂0n

)
g
(|y− ŷmn|

ŷm1 − ŷm0

)
, for m, n ∈ {0, 1}. (7.8)

7.2.4 Fitting with blended surfaces

Consider now the data points d0, . . . , dn ∈ M corresponding to parameter
values tk = (xk, yk), k = 0, . . . , n, and the regularization parameter λ > 0.
The domain Ω ⊂ R2 is divided in patches Ωij defined by a regular grid of
nodes (xi, yj) ∈ Ω, to which linearization points pij ∈ M are associated,
i = 0, . . . , M, j = 0, . . . , M. This section gives a proper (algorithmic) defini-
tion to the fitting blended surface; then the six properties mentioned in the
beginning of the chapter are proved.

Definition 7.19 (Fitting blended surface on manifolds). LetM be a smooth
manifold. The blended surface S : Ω →M fitting the data points dk ∈ Mfitting with a

blended
surface at tk ∈ Ω is defined as a three steps procedure:

214 |

Fitting with blended thin plate splines | 7.2

1. Map all the data points dk to the tangent spaces TpijM of the lin-
earization points pij via the Riemannian logarithm;

2. Compute the tangent thin plate spline S̃ij(x, y) ∈ TpijM and the as-
sociated local surface Sij(x, y) ∈ M;

3. Blend the surfaces as a S(x, y) via Definition 7.6, with weights given
by (7.8).

Theorem 7.20. LetM be a smooth manifold. Let dk be data points onM and differentiability
conditions

pij be linearization points onM satisfying the conditions of Theorem 7.12. The
fitting blended surface S(t) : Ω → M of Definition 7.19 satisfies the following
properties:

(i) S(xk, yk)→ dk when λ→ ∞, for k = 0, . . . , n;

(ii) S(x, y) is well defined and C1;

(iii) when M is a Euclidean space, S(x, y) is the thin plate spline that mini- thin plate
spline

mizes (7.1).

Proof. Property (iii) is a direct generalization of Lemma 4.17 for thin plate
splines. Indeed, as all tangent spaces are Euclidean, then all local surfaces
Sij are the same thin plate spline, and so is S.

Property (ii) is ensured by the hypothesis of Theorem 7.12, as the weight
functions used in Definition 7.19 are smooth, well-defined, and satisfy con-
dition (ii).

Finally, we show property (i) as follows. Consider a tangent surface
S̃ij(x, y) ∈ TpijM fitting the lifted data points d̃k ∈ TpijM. By Defini-
tion 7.3, S̃ij(xk, yk) → d̃k while λ → ∞. Hence, by property (iii) of Theo-
rem 7.12, Sij(xk, yk)→ dk, for k such that (xk, yk) ∈ [xi−1, xi+1]× [yj−1, yj+1],
and thus S(xk, yk)→ dk.

The Figure 7.4 illustrates numerically the properties (i) and (ii) of Theo-
rem 7.20. In that example, data points (red dots) are spread over a domain
Ω = [0, 1]2 and the blended surface is composed of four patches. The root
points are data points as well. They are represented as green circles.

Property (iv) of the introduction is of course validated, as Definition 7.19
makes only use of the Riemannian exponential and logarithm. The two fol-
lowing proposition show that properties (v) and (vi) are met as well.

Proposition 7.21 (Minimal representation of the surface). The blended surface minimal
representation

of Definition 7.19 is uniquely represented by O(MNn) tangent vectors.

| 215

7 | Fitting with blended surfaces

i
i

“TikZ/22_TPSsphereDiff” — 2020/7/7 — 11:57 — page 192 — #1 i
i

i
i

i
i

0 1
0

1

x

y
S

0

0.5

1

5 10 15

∥∥∥ d
dt S(x(t), y(t))

∥∥∥
2

S2

Fig. 7.4 The different patches are glued together C1 continuously. Data
points are represented as red dots and spread over a domain Ω = [0, 1]×
[0, 1]. The four patches are chosen as a regular grid on Ω with xi, yj ∈
{0, 0.5, 1}. The linearization points of each patch are the data points whose
coordinate is the closest to (xi, yj). To illustrate the result, we drew a pa-
rameterized curve γ(t) = (x(t), y(t)) on Ω and then displayed the result-
ing curve S(γ(t)) = S(x(t), y(t)). The normed velocity of the curve is then
displayed as a visual example of the differentiability of the method.

Proof. Each tangent surface is represented by the n + 3 tangent coefficients
a and δ from Definition 7.3. One has to store MN tangent surfaces (at each
linearization points).

Proposition 7.22 (Exponential and logarithm maps required). The number ofExp-Log
complexity

exponentials and logarithms required by the blended surface of Definition 7.19 is

• MNn logarithms for the construction of the minimal representation of the
curve of Proposition 7.21

• 7 exponential maps and 3 logarithm map to reconstruct the surface S(x, y),
for a given parameter value (x, y), given that minimal representation.

Proof. To compute each tangent surface, one needs first to lift the n data
point dk to the MN tangent spaces TpijM. This proves (i). The proof of (ii)
is direct from Proposition 7.10.

216 |

Illustrative examples | 7.3

7.3 Illustrative examples

This last section is dedicated to illustrative examples computed to validate
numerically the theory. The examples are done on the sphere S2 because S2

they are easy to represent.
As first example, Figure 7.5 shows a parameterized path S(x(t), y(t))

followed on a blended surface S reconstructed based on four local surfaces
Sij, i, j ∈ {0, 1}. The path (x(t), y(t)) ∈ Ω is given by

(x(t), y(t)) = (t, 0.5 + 0.5 cos(5πt + π)).

The surface interpolates (λ→ ∞) 20 data pairs (dk, tk) ∈ M× [0, 1]2, where
the points dk are represented as red dots. The linearization points are part
of the data set and are chosen as (pij, tij), with tij = (xi, yj) = (i, j). Each
local surface Sij is represented as well as the resulting blended surface. Vi-
sually, one can observe that the surface looks smooth as expected. One can
also observe that the local surface Sij is closer and closed to S as soon as
(x, y) gets closer to (xi, yj). This is visible on the displayed sphere, but also
on the different error curves (i.e., the distance between the local surface S̃ij
and the blended surface S) represented next to each linearization point:
this is particularly visible for the local surface corresponding to the top-
right linearization point S01(x, y). We also observe that, here, the choice
of linearization points could be refined: indeed the local surfaces are quite
different from each other; the error curves show absolute distance of ap-
proximately 1e-2. This suggests that the patch Ω is too large to represent
well S based on the four tangent spaces at each corner.

By refining the domain in x and y direction, one obtains error curves
displayed in Figure 7.6. In this example, the domain Ω = [0, 1]2 is divided
in four sub-domains Ωij = [xi, yj] × [xi+1, yj+1], i, j ∈ {0, 1}, for xi, yj ∈
{0, 0.5, 1}. The blended surface S(x, y) is thus composed of nine blended
surfaces and is represented in Figure 7.4 (see Section 7.2.4). As in Fig-
ure 7.5, this example only displays a parameterized curve S(x(t), y(t)) ∈
S2 on S. Each plot (denote them by Pij) displayed in Figure 7.6 represent
the distance from the local surface Sij(x(t), y(t)) to the blended surface
S(x(t), y(t)). The spacial disposition of each plot Pij corresponds to the
spacial localization of its associated linearization points pij displayed on
the sphere of Figure 7.4. In each plot Pij, the shaded areas represent the
values of t for which (x(t), y(t)) is in the patch where the Sij is used in the

| 217

7 | Fitting with blended surfaces

i
i

“TikZ/22_TPSspherePatches” — 2020/7/7 — 11:57 — page 193 — #1 i
i

i
i

i
i

Top left
Bottom left
Top right
Bottom right
Blended

0 1
0

1

x

y

S

0 0.5 1
0

1

2
·10−2

t

0 0.5 1
0

1

2
·10−2

t

0 0.5 1
0

1

2
·10−2

t

0 0.5 1
0

1

2
·10−2

t

Fig. 7.5 The different local surfaces differ from each other; the blended
surface gives more importance to a given local surface as soon as it goes
closer to its linearization point.

blending technique. For instance, the local surface S11(x, y), associated to
the linearization point pij at (xi, yi) = (0.5, 0.5) is used in the four patches.
However, the surface S00(x, y) is only blended on Ω00 (top left patch). We
can observe that the distance to S is drastically reduced compared to Fig-
ure 7.5.

Actually, as mentioned in Remark 7.15, refining the grid is often a so-
lution to meet all the properties of Theorem 7.12, for instance, when the
local injectivity radius is small. Solutions for refinement are discussed
in [AGW20], and go beyond the scope of this thesis.

Finally, Figure 7.7 illustrates the Remark 7.17. Here, only two patches
are represented: Ω00 = [0, 0.5] × [0, 1] and Ω10 = [0.5, 1] × [0, 1]. The
blended surface S is represented as in the previous examples, i.e., by repre-

218 |

Illustrative examples | 7.3

i
i

“TikZ/22_TPSsphereDiffAnalysis” — 2020/7/7 — 11:58 — page 194 — #1 i
i

i
i

i
i

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

0 0.5 1
0

5

·10−3

Fig. 7.6 The blended surface follows the local curves in the dedicated
patches. The differences between S(x(t), y(t)) and Sij(x(t), y(t)) is indeed
low on (x(t), y(t)) ∈ [xi−1, xi+1]× [yj−1, yj+1], represented by the shaded
areas.

senting just a the parameterized curve S(x(t), y(t)). In this example, four
weight functions are considered: (i) the cubic weights proposed in (7.8) weight

function
(g(t) = 2t3 − 3t2 + 1), (ii) a linear weight function (g(t) = 1 − t), (iii) a
piecewise constant weight function (g(t) = 1 for t < 0.5 and g(t) = 0 for
t ≥ 0.5) and (iv) a cosine weight function (g(t) = cos(πt)+1

2).
This example confirms Remark 7.17: indeed, the distance between the

resulting blended surfaces Sk, for k corresponding to one of the four pos-
sible cases cited above, is small (of the order of maximum 1e-6, except for
the piecewise constant weights, where distances of 1e-3 are measured). It
also illustrates that discontinuous weights lead to lack of differentiability
(for the piecewise constant weights).

| 219

7 | Fitting with blended surfaces

i
i

“TikZ/22_TPSsphereWeights” — 2020/7/7 — 11:58 — page 195 — #1 i
i

i
i

i
i

Constant Cubic Linear Cosine

0 0.5 1

6

8

10

0 0.5 1

4

6

8

10

0 0.5 1

8

10

12

Difference with S [dB]

0 0.5 1

5

10

15

0 0.5 1

5

10

15

0 0.5 1

5

10

15

0 0.5 1

5

10

15

Velocity along the curve

0 0.5 1

0

0.5

1
g(t) = 2t3 − 3t2 + 1

0 0.5 1

0

0.5

1
g(t) = 1− t

0 0.5 1

0

0.5

1
g(t) = round(1− t)

0 0.5 1

0

0.5

1

Weighting function g

g(t) = cos(πt)+1
2

Fig. 7.7 The weight function has very little influence on the quality of
the fitting. Even non-differentiable weights do not lead to visually bad
solutions (except for the constant solution).

220 |

Illustrative examples | 7.3

This section is partially based on the project paper [AGW20], sometimes cited verbatim. This
paper is a work in progress, so its current reference is:

[AGW20] P.-A. Absil, Pierre-Yves Gousenbourger, and Benedikt Wirth. Smooth surface
fitting in Riemannian manifolds using patch-wise linearization. In progress, 2020

The figures can be reproduced based on the code provided in the toolbox available at this
link address:

https://github.com/pgousenbourg/manint

| 221

https://github.com/pgousenbourg/manint

8
Summary and perspectives

Y
OU MADE IT up to here and you read it all? Congratulations! If
not, this is what conclusions are made for. The context and the
objectives of the thesis will be summarized, as well as the solu-

tions and contributions proposed throughout this document. Most impor-
tantly, a global comparison of the different fitting methods is presented in
Tables 8.1 and 8.2. And as research has no limit, this final chapter ends
with some new research perspectives.

8.1 What was it about?

Data structure has always been the curse of optimization as it comes with
equality constraints. Applications in many fields must deal with that, like
in computer vision [Fle13], in imaging [BLPS19], or to represent fixed rank
matrices as submanifold of all matrices [Van13, Mas19].

Among data structured problems, the fitting problem arises also in many
different applications: medical imaging [BRP12], computer graphics [Par10],
model reduction [PA16], natural behavior understanding [SKKS14], etc.
Those applications involve very various manifolds. Different approaches
have been proposed to solve the fitting problem but to our knowledge,
most of them were either manifold-oriented or implied time-consuming
operations [SASK12, Dyn09, MM17, KDL18].

| 223

8 | Summary and perspectives

Fitting data points di ∈ M associated with parameters ti ∈ Rd, i =

0, . . . , n, is usually a sub-step of big applications, such that it is preferable to
reduce as much as possible the computation time allocated to this task. A
simple approach is to get rid of the structure and just fit the data with basic
algorithms. This is a good strategy when the manifold is locally flat. When
the space has higher curvature, more dedicated (yet fast and manifold-
ready) algorithms might be welcome.

This thesis proposes methods that are fast and reliable, easily applicable
to any Riemannian manifold for which at least the exponential map and the
logarithm map (or good approximations) are available. The strategy is to
approach the solution of the optimization problem (1.1) by simultaneously
satisfying the following six properties:

(i) As λ→ ∞, the data points are interpolated at the given times;

(ii) The curve is of class C1;

(iii) If the manifoldM reduces to a Euclidean space, then the produced
curve minimizes (1.1), i.e., it is the natural smoothing spline (d = 1)
or the fitting thin plate spline (d = 2);

(iv) The only knowledge that the methods require from the manifold is
the Riemannian exponential and the Riemannian logarithm;

(v) The produced curve is represented by O(n) tangent vectors to the
manifold (or simply points on the manifold), where n is the number
of data points;

(vi) Computing γ(t) for any given t requiresO(1) exp and log operations
once the representation by O(n) tangent vectors is available.

The outcome consists in (i) different algorithms for fitting and interpo-
lation of structured data di ∈ M corresponding to positions on of mul-
tidimensional domains Ω ∈ Rd (more specifically d = 1 and d = 2), (ii)
an analysis of the pertinence of those algorithms, and (iii) a toolbox with
ready-to-run functions based on Manopt [BMAS14]. In addition to that, a
recursive expression of the gradient of the objective function (1.1) in the
search space of Bézier curves was provided in Chapter 5.

The toolbox is available at this link address:

https://github.com/pgousenbourg/manint

224 |

https://github.com/pgousenbourg/manint

How well were the objectives achieved? | 8.2

8.2 How well were the objectives achieved?

Different methods were presented in this thesis. Four of them are most
important, because they permit to tackle one of the four cases presented in
the introduction: curve interpolation (Chapter 3, with Bézier curves), curve
fitting (Chapter 4, with blended curves), surface interpolation (Chapter 6,
with Bézier surfaces), and surface fitting (Chapter 7, with blended sur-
faces). Each method was described and analyzed in the dedicated chapter
in order to highlight its strengths and weaknesses; they were sometimes
compared with the (more naive) methods used nowadays in applications
like the wind field problem, PMOR or TVUS. In Chapter 5, a first numeri-
cal validation was performed on Bézier curves for interpolation and fitting.
This permitted to validate that the Bézier approach provided acceptable re-
sults for data points not too spread out on the manifold.

Most of the presented methods satisfy the six target properties. A sum-
mary is given in Table 8.1. This table also recalls what were the limitations
that motivated some other methods. For instance, the geodesic approach
(for d = 1 or d = 2) is always non-differentiable, which motivates all
the methods proposed in this thesis; the composite Bézier curves cannot
always ensure interpolation when the approach is generalized to fitting,
which motivated the conception of the blending technique; the generation
of Bézier surfaces was quite complicated and had many chances to face
the same interpolatory limitations than its 1D-analog, so blended surfaces
were produced.

The following methods are compared:

• Cubic Bézier curves for interpolation, in Definition 3.20;

• Cubic Bézier curves generalized for fitting, in Definition 4.1;

• Blended curves, in Definition 4.12;

• The two Bézier-like approaches, from Section 4.3.2;

• Cubic Bézier surfaces of type I, II and III for interpolation, in Defi-
nition 6.16 (type I), Definition 6.17 (type II), and Definition 6.9 (type
III);

• Blended surfaces, in Definition 7.19.

| 225

8 | Summary and perspectives

As point of comparison, we also list the most current methods usually used
in the literature (when the data structure is taken into account, though!):

• A local curve (i.e., a cubic spline computed on one tangent space,
and then mapped back to the manifold, see the curves named LC in
Section 4.6.3);

• A piecewise-geodesic curve;

• A local surface Sij (see Definition 7.5);

• A piecewise geodesic surface.

There are two main advantages to the main four methods of this the-
sis compared to the classical approaches done in the literature. The first
one is that the methods are differentiable. This is not the case of piecewise
linear or piecewise geodesic approaches. The second one is that the meth-
ods are always local, such that each piece of the resulting curve or surface
comes from a tangent space that approximates well the manifold in a cer-
tain neighborhood. This is not the case for the local curves (LC), or local
surfaces (Sij).

All methods are based on simple computation. They all meet the prop-
erties (iv–vi), i.e., to only require the exponential and logarithm maps of
the manifold (iv), to only need O(n) tangent vectors to represent the fit-
ting curve (v), and to only need O(1) operations to reconstruct it (vi).

The complexity of the methods is nearly equivalent with an obvious ad-
vantage to the local versions (LC and Sij) and piecewise geodesic (see Ta-
ble 8.2, columns “offline” and “online”). All proportions kept, the blended
curves and surfaces should be promoted, since the online phase (i.e., the
reconstruction of the curves and surfaces) is faster than in the Bézier case.
Furthermore, the blending technique is more general since it includes both
fitting and interpolation. A (limited) drawback is maybe the higher stor-
age space needed (see Table 8.2, column “storage”). Anyways, the choice
of the method depends, at the end of the day, on the application.

226 |

How well were the objectives achieved? | 8.2

Bézier curve (interpolation)

Bézier curve (fitting)

Blended curve

Bézier-like curve

Piecewise geodesic curve

Local curve (LC)

Bézier surface I

Bézier surface II

Bézier surface III

Blended surface

Piecewise geodesic surface

Local surface (Sij)

3 3 3 3 3 3

7/3 3/7 3 3 3 3

3 3 3 3 3 3

73 3 3 3 3

7 73 3 3 3

3 3 3 3 3 3

73 3 3 3 3

3 3 3 3 3 3

7 3/73 3 3 3

3 3 3 3 3 3

3 3 37 7 3/7

3 3 3 3 3 3

(i) (ii) (iii) (iv) (v) (vi)

Interp. for
λ→

∞
D

ifferentiability

N
atural spline/TPS

on
R

m

O
nly

exps and
logs

Storage: O
(n) vectors

Reconstr.: O
(1) operations

Table 8.1 Blending and local techniques are the only methods that gather
all properties. However, the local techniques strongly depend on the cho-
sen reference point. For interpolation, the Bézier surface of type II is also a
good choice but Table 8.2 exhibits its limitations at the reconstruction step.
Note that, sometimes, it is not possible to give a binary answer: the fit-
ting Bézier curve fills property (ii) and not property (i) when the remedy
of Definition 4.7 is applied (and reversely when it is naively generalized).
Similarily, Bézier surfaces of type III and geodesic surfaces need only Exps
and Logs if the dyadic average is used; if not, then one has to solve the
weighted Karcher mean, as in Bézier surfaces of type I.

| 227

8 | Summary and perspectives

#
Lo

gs
#

Ex
ps

#
Lo

gs
#

Ex
ps

R
ep

re
se

nt
at

io
n

(o
ffl

in
e)

R
ec

on
st

ru
ct

io
n

(o
nl

in
e)

Ta
ng

en
tv

ec
to

rs
re

qu
ir

ed
(s

to
ra

ge
)

R
em

ar
ks

Bé
zi

er
cu

rv
e

B
le

nd
ed

cu
rv

e

Bé
zi

er
-l

ik
e

cu
rv

e
I

Bé
zi

er
-l

ik
e

cu
rv

e
II

Pi
ec

ew
is

e
ge

od
es

ic
cu

rv
e

Lo
ca

lc
ur

ve
(L

C
)

Bé
zi

er
su

rf
ac

e
I

Bé
zi

er
su

rf
ac

e
II

Bé
zi

er
su

rf
ac

e
II

I

B
le

nd
ed

su
rf

ac
e

Pi
ec

ew
is

e
ge

od
es

ic
su

rf
ac

e

Lo
ca

ls
ur

fa
ce

(S
ij

)

0 0 0 0 0 0 0 0 0 0 0 0

n2
−

n

n2
−

n

n2
−

n

n2
−

n

0

n2
−

n

n2
−

n

n2
−

n

n2
−

n

n2
−

n

0

n2
−

n

10 3 8 5 1 1 no
nl

in
ea

r
op

ti.

46 58 7 3 1

6 1 4 3 1 0 30 42 3 3 0

2n

6n
−

4

2n 2n 0 2n 3n 3n 3n

N
(n

+
3)

0 n

W
it

h
Bé

zi
er

sp
lin

es

W
it

h
Bé

zi
er

sp
lin

es

W
it

h
ge

ne
ra

ti
on

of
Se

ct
.6

.5
.

F
th

e
ge

ne
ra

ti
on

of
Se

ct
.6

.4
ne

ed
s

3n
pa

ra
lle

lt
ra

ns
po

rt
s.

W
it

h
N

th
in

pl
at

e
sp

lin
es

W
it

h
on

e
th

in
pl

at
e

sp
lin

e

Ta
bl
e
8.
2

Th
e

nu
m

be
r

of
ex

po
ne

nt
ia

ls
an

d
lo

ga
ri

th
m

s
re

qu
ir

ed
by

ea
ch

m
et

ho
d,

fo
r

n
da

ta
po

in
ts

,i
s

a
go

od
in

-
di

ca
to

r
of

it
s

co
m

pl
ex

it
y.

Th
e

bl
en

di
ng

al
go

ri
th

m
s

sh
ow

qu
it

e
go

od
re

co
ns

tr
uc

ti
on

pe
rf

or
m

an
ce

s
co

m
pa

re
d

to
th

ei
r

co
m

pe
ti

to
rs

;i
n

ad
di

ti
on

th
ey

ar
e

be
tt

er
su

it
ed

fo
r

da
ta

po
in

ts
sp

re
ad

ov
er

th
e

do
m

ai
n.

Th
e

ot
he

r
si

de
of

th
e

co
in

is
th

at
m

or
e

po
in

ts
m

us
t

be
st

or
ed

in
m

em
or

y
an

d
m

or
e

ti
m

e
is

ne
ed

ed
to

ge
ne

ra
te

th
e

fit
ti

ng
fu

nc
ti

on
.

H
ow

ev
er

,a
s

th
is

ta
sk

ca
n

be
do

ne
of

fli
ne

,t
hi

s
dr

aw
ba

ck
is

m
ild

.
N

ot
e

th
at

th
e

re
co

ns
tr

uc
ti

on
of

Bé
zi

er
su

rf
ac

es
of

ty
pe

I
ca

nn
ot

be
m

ea
su

re
d

on
th

e
sa

m
e

m
et

ri
c,

as
it

re
qu

ir
es

to
ev

al
ua

te
th

e
w

ei
gh

te
d

K
ar

ch
er

m
ea

n
of

si
xt

ee
n

po
in

ts
.

228 |

What to do next? | 8.3

8.3 What to do next?

Different categories of further work may be considered. I would like to
present here three of them: some extensions of the desirable properties
that guided the whole thesis, some analytic perspectives, and finally some
algorithmic considerations.

Among the extensions available for this work, one of them concerns
property (iii). A consequence of this property is that, if the manifoldM re-
duces to a Euclidean space and λ→ 0, then the (Euclidean) solution curve
γ converges to the least-squares linear regression solution. One could then
expect that, on a general manifold M, the solution curve obtained when
λ→ 0 would converge to the least-squares geodesic regression of the data
points. However, up to now, none of the curve fitting methods presented
in this work satisfy this stronger version of the property. To be convinced
of this, let us just consider a local curve computed on a given tangent space
TxM, x ∈ M. The regression curve γ computed on this tangent space will
not be mapped to a geodesic on M unless γ passes through x. As the
reference points are always chosen arbitrarily, this case will nearly never
happen. How to design an algorithm that satisfies this stronger property
along with properties (i)–(vi) remains thus an open problem.

Another extension concerns the smoothness of the curves and surfaces.
For now, Property (ii) only requires differentiability. However, one could
imagine techniques and applications where k-smoothness could be required.
With the blending technique, it does not seem impossible to achieve since
the smoothness of the methods only depends on the smoothness of the lo-
cal curves (resp. surfaces) and on the weight functions. This might be a
small supplementary step to do, at low cost.

Then come considerations about the analysis of the fitting curves, and
more specifically about the quality of the returned curve. In Chapter 5, the
Bézier fitting curve of Definition 4.1 was compared to the solution obtained
by optimizing an approximation of (1.1). As a result, one could confirm
that the method was better when the points were not too far away from
each other. However, this is not an actual bound on how far the solution
departs from the optimum of (1.1). This is left to differential geometers.
Note that those considerations are already taken into account in a paper in
progress [AGW20].

Along with this analysis comes a related question: can we quantify the

| 229

8 | Summary and perspectives

influence of the chosen reference point? We observed in Figure 4.10b that
the blending method could sometimes behave in an unexpected way due
to the choice of the reference points dref,1 and dref,2 (for surfaces, the lin-
earization points pij). How to optimally and efficiently choose these two
points remains for now an open question which will be treated in [AGW20].

A third direction for further work concerns algorithmic perspectives
and improvements to accelerate the different methods. First, in Chap-
ter 5, the gradient descent algorithm requires the computation of the Ja-
cobi fields. To accelerate the optimization, an interesting future research is
to find out whether an approximate evaluation of the Jacobi fields (for in-
stance, by approximately solving an ODE) suffices for convergence of the
presented approach.

In all the other algorithms, we see that the reconstruction of the curve
is generally fast. On the other hand, this comes with the drawback that
the curve must be stored, and that the generation time may become high;
furthermore, if a data point is added to the dataset afterwards, the whole
curve must be reevaluated. In that last case, the cost of the generation
is way too high compared to the added information. Hence, two open
questions arise:

• How to accelerate the generation of the curves and surfaces?

• How to efficiently modify the existing representation of the curve by
adding one data point to the data set, without re-generating the entire
curve?

For instance, the generation of the local curves and surfaces could be made
only on most local points. One could imagine that only the closest points
will strongly alter the curve locally. The open question is to know how to
choose the best “local” data set to generate the curve in an efficient and ac-
curate way. This approach could help to answer to the two aforementioned
questions.

Another bottleneck of the methods is the very first operation performed:
the lifting of the data points to the tangent spaces with the logarithm map.
We see in Table 8.2 that this step is the only cost of the generation. Lifting
efficiently the data points would also help to reduce the generation time.
But the lifting of the points is also important in the following case. Let
us consider the case where the manifold is a circle of radius one, embed-
ded in R2, in the curve fitting case. On that circle, the reference point is
d = θ, represented here only with the angle to the center. Consider a set

230 |

What to do next? | 8.3

of data points where d0 = d, d1 = θ + π and d2 = d. The associated times
are ti = i, i = 0, 1, 2. The lifting of the data points in the tangent space
of d will give logd(d0) = 0 = logd(d2) and logd(d1) = π. However, for
the curve fitting problem, and given the time-dependence of the points,
one could expect logd(d2) to be equal to 2π, as a natural way to reach that
point from d0, through d1 would be to continue the route around the circle,
and not turn back after reaching d1. Different methods are under investi-
gation in [AGW20]. However, if all of them intend in solving this problem
and should lead to more accurate solutions, none of them reduces very ef-
ficiently the complexity of the generation algorithm. Doing both (reducing
the complexity and increasing the accuracy) is still an open problem.

Finally, it should be noted that there is no clear indicator that would
globally promote one specific method compared to another. The choice
of the method, indeed, depends on the application. In those presented
in this thesis, the interest of the Riemannian approach remains question-
able, because the quality improvement is relatively small compared to the
increased computational cost. For instance, in the PMOR problem (Sec-
tion 4.6), we could see that the blended solution was the best choice in
terms of any reasonable global measure of quality (Figure 4.17a), but that
the time needed to obtain one solution doubled compared to any other ap-
proach. Therefore, our methods should be stressed on various applications
in order to reach a verdict of their exclusive interest and performance. We
may find applications where one of the proposed methods would boost the
fitting quality with a slight additional computational cost, e.g., negligible
compared to the acquisition time of the data points.

Those propositions are left for further research. I do not claim that they
will all have a positive outcome, just that there remains an important part
of unknown at the end of this work. That is the beauty of research: there is
always something new to discover.

| 231

Appendices

A Coefficients for interpolation with a composite cubic curve

The problem (3.29) on M = Rm is a quadratic function to be optimized
with respect to the n + 1 optimization variables X = (b+0 , b−1 , b−2 , . . . , b−n).
The solution of that problem reduces to m independent linear systems A ·
Xk = C · Dk, where Xk is the vector of the kth component of the points of
X, and Dk is the vector of the kth component of the data points (di)

n
i=0. We

obtain

∫ i+1

i
‖β̈3(t− i; di, b+i , b−i+1, di+1)‖2

2dt =

12(−3dib+i + 3b+i b+i − 3b+i b−i+1 + 3b−i+1b−i+1 − 3b−i+1di+1 + K),

with i = btc. K gathers the terms that are independent from the opti-
mization variables. Introducing the differentiability constraints (3.18) b+i =

2pi − b−i , and βi
3, the ith segment of the composite cubic Bézier curve, one

has

∂β0
3

∂b+0
= 6b+0 − 3b−1 − 3d0 (A.1)

∂β0
3

∂b−1
= −3b+0 + 6b−1 − 3d1 (A.2)

| 233

? | Appendices

and for i = 1, . . . , n− 1, n ≥ 2

∂βi
3

∂b−i
= 6b−i + 3b−i+1 − 9di (A.3)

∂βi
3

∂b−i+1
= 3b−i + 6b−i+1 − 6di − 3di+1. (A.4)

By definition 3.15, (3.29) is minimized when these quantities vanish, which
yields the linear system A ·X = C ·D, for n ≥ 2 where (in matlab indexing)

A(1, 1 : 2) =
[
6 −3

]

A(2, 1 : 3) =
[
−3 12 3

]

A(k, k− 1 : k + 1) =
[
3 12 3

]
k = 3, . . . , n

A(n + 1, n : n + 1) =
[
3 6

]
.

and

C(1, 1) = 3

C(2, 2) = 12

C(k, k− 1 : k) =
[
6 12

]
k = 3, . . . , n

C(n + 1, n : n + 1) =
[
6 3

]
.

The third lines in the definition of A and C only hold for n > 2. All the
other entries are equal to zero.

234 |

Coefficients for interpolation with a hybrid composite curve | B

B Coefficients for interpolation with a hybrid composite curve

The hybrid composite Bézier curve (3.21) onM = Rm requires to solve m
independent linear systems in the variables X = (b−1 , b−2 , . . . , b+n−1). The
systems read A · Xk = C · Dk, where Xk is the vector of the kth component
of the points of X, and Dk is the vector of the kth component of the data
points (di)

n
i=0. The values of the entries of the A and C matrices are, in

Matlab indexing

A(1, 1 : 2) =
[
64 24

]

A(2, 1 : 3) =
[
24 144 36

]

A(k, k− 1 : k + 1) =
[
36 144 36

]
k = 3, . . . , n− 2

A(n− 1, n− 2 : n− 1) =
[
36 144

]
.

and

C(1, 1 : 2) =
[
16 72

]

C(2, 2 : 3) =
[
60 144

]

C(k, k : k + 1) =
[
72 144

]
k = 3, . . . , n− 2

C(n− 1, n− 1 : n + 1) =
[
72 132 −24

]
.

The third lines in the definition of A and C only hold for n > 2. All the
other entries are equal to zero.

| 235

? | Appendices

C Coefficients for fitting with a composite cubic curve

The problem (4.3) onM = Rm is a quadratic function to be optimized with
respect to the 2n+ 2 optimization variables X = (p0, b+0 , b−1 , b+1 , . . . , b−n , pn).
As in appendix A, the solution of that problem reduces to m independent
linear systems (A0 + λA1) · Xk = λC · Dk. This system depends on the
regularization parameter λ > 0, on X, and on the points (di)

n
i=0 in D.

For n ≥ 4, the matrices of coefficients A0, A1 ∈ R(2n+2)×(2n+2) and
C ∈ R(2n+2)×(n+1) are given by the following sparse matrices.

A0 is given, for i = 2, . . . , n− 2, by

A0(1, 1 : 4) =
[
24 −36 6 6

]

A0(2, 1 : 4) =
[
−36 72 −36 0

]

A0(3, 1 : 6) =
[
6 −36 48 −24 3 3

]

A0(4, 1 : 6) =
[
6 0 −24 48 −33 3

]

A0(2i + 1, 2i− 1 : 2i + 6) =
[
3 −33 48 −24 3 3

]

A0(2i + 2, 2i− 1 : 2i + 6) =
[
3 3 −24 48 −33 3

]

A0(2n− 1, 2n− 3 : 2n + 2) =
[
3 −33 48 −24 0 6

]

A0(2n, 2n− 3 : 2n + 2) =
[
3 3 −24 48 −36 6

]

A0(2n + 1, 2n− 1 : 2n + 2) =
[
0 −36 72 −36

]

A0(2n + 2, 2n− 1 : 2n + 2) =
[
6 6 −36 24

]
.

The coefficients of A1, are

A1(1, 1) = λ

A1(2, 2) = 0
A1(2i− 1, 2i− 1 : 2i) = 1

2
[
λ, λ

]

A1(2n + 1, 2n + 1) = 0
A1(2n + 2, 2n + 2) = λ,

for i = 2, . . . , n. Finally, the coefficients of C are given, for i = 2, . . . , n, by

C(1, 1) = 2λ

C(2i− 1, i) = λ

C(2i, i) = λ

C(2n + 2, n + 1) = 2λ.

The other entries are equal to zero.

236 |

Proof of equation (6.33) | D

D Proof of equation (6.33)

The proof is extracted from [AGSW16b]. The total energy (6.25) of Bézier
curves in Euclidean space is written

F[B] =
1
4

M−1

∑
m=0

N−1

∑
n=0

∑
r,s∈{0,1}

3

∑
i,j=0

(LT̃SŨ)mn
ij,rs · (T̃SŨ)mn

ij,rs for Ũ = (umn
kl)

(m,n)∈D
(k,l)∈Q

and is minimized by

Ũopt = −(S∗T∗LTS)−1(S∗T∗LZ),

where a superscript asterisk denotes the adjoint operator
Indeed, let (·; ·) denote the natural inner product on Cartesian products

of vector spaces (such that, for instance F[B] = (LT̃SŨ; T̃SŨ) = (L(TSŨ +

Z); TSŨ + Z)). Then, the minimizer comes from the first-order optimality
condition

0 = (LTSΦ; TSŨopt + Z) + (LTSŨopt + LZ; TSΦ)

= 2(LTSŨopt + LZ; TSΦ) = 2(S∗T∗LTSŨopt + S∗T∗LZ; Φ)

for all variations Φ of Ũopt.

| 237

? | Appendices

E Examples of geometric elements on manifolds

Finally, we present here some examples of explicit formulaes of the geo-
metric elements on the sphere (table E.1) and the special orthogonal group
(table E.2). They are implemented in the software Manopt [BMAS14] as a
proper factory.

Sphere Sm−1 : the set of normed vectors of size m.

Sm−1 = {x ∈ Rm : x>x = 1}
TxSm−1 = {v ∈ Rm : x>v = 0}

Inner product 〈v1, v2〉x = v>1 v2
Distance d(x, y) = arccos(x>y)
Exponential expx(v) = x cos(‖v‖) + v

‖v‖ sin(‖v‖)
Logarithm logx(y) =

(Im−xx>)y√
1−(x>y)2

arccos(x>y)

Transport Px→y(v) = −x sin(‖ξ‖) + ξ
‖ξ‖ cos(‖ξ‖)ξ>v +

(
Im − ξξ>

‖ξ‖2

)
v,

ξ = logx(y)

Table E.1 Riemannian operators for Sm−1 extracted from [Ren11].

The special orthogonal group SO(m).

SO(m) = {X ∈ Rm×m : X>X = I, det(X) = 1}
TXSO(m) = {H ∈ Rm×m : X>H + H>X = 0}

Inner product 〈H1, H2〉 = trace
(

H>1 H2
)

Distance d(X, Y) = ‖ log
(
X>Y

)
‖F

Exponential expX(H) = X exp
(
X>H

)

Logarithm logX(Y) = X log
(
X>Y

)

Transport PX→Y(H) = YX>H

Table E.2 Riemannian operators for SO(m) extracted from [BA11]. Note
the difference between expX(H), the Riemannian exponential, and exp(X),
the matrix exponential.

238 |

List of publications

? Publications in progress

[AGW20] P.-A. Absil, Pierre-Yves Gousenbourger, and Benedikt Wirth. Smooth
surface fitting in Riemannian manifolds using patch-wise linearization. In
progress, 2020

? Publications in a journal

[BG18] Ronny Bergmann and Pierre-Yves Gousenbourger. A variational
model for data fitting on manifolds by minimizing the acceleration of a
Bézier curve. Frontiers in Applied Mathematics and Statistics, 4(59):1–16, 2018.
doi:10.3389/fams.2018.00059

[GMA18c] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil.
Data fitting on manifolds with composite Bézier-like curves and blended
cubic splines. Journal of Mathematical Imaging and Vision, 61(5):645–671,
2018. doi:10.1007/s10851-018-0865-2

[AGSW16b] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier surfaces on Riemannian
manifolds. SIAM Journal on Imaging Sciences, 9(4):1788–1828, 2016. doi:
10.1137/16M1057978

| 239

http://dx.doi.org/10.3389/fams.2018.00059
http://dx.doi.org/10.1007/s10851-018-0865-2
http://dx.doi.org/10.1137/16M1057978
http://dx.doi.org/10.1137/16M1057978

? | Publications

? Book chapter

[SGMS20] Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Mas-
sart, and Tatjana Stykel. Balanced truncation for parametric linear systems
using interpolation of Gramians: a comparison of algebraic and geometric
approaches, 2020. arXiv:arXiv:2003.04577

? Publications at a conference

[SGMA19] Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Mas-
sart, and P.-A. Absil. Online balanced truncation for linear time-varying
systems using continuously differentiable interpolation on Grassmann man-
ifold. In 6th International Conference on Control, Decision and Information Tech-
nologies (CoDIT), pages 165–170. IEEE, 2019

[MGS+19] Estelle Massart, Pierre-Yves Gousenbourger, Nguyen Thanh Son,
Tatjana Stykel, and P.-A. Absil. Interpolation on the manifold of fixed-rank
positive-semidefinite matrices for parametric model order reduction: pre-
liminary results. In ESANN2019, pages 281–286. Springer, 2019

[GJA17] Pierre-Yves Gousenbourger, Laurent Jacques, and P.-A. Absil. Fast
method to fit a C1 piecewise-Bézier function to manifold-valued data points:
how suboptimal is the curve obtained on the sphere S2? In Frank Nielsen
and Frédéric Barbaresco, editors, Geometric Science of Information, volume
10589 of Lecture Notes in Computer Sciences, pages 595–603, Berlin, Heidel-
berg, 2017. Springer. doi:10.1007/978-3-319-68445-1_69

[GMM+17] Pierre-Yves Gousenbourger, Estelle Massart, Antoni Musolas,
P.-A. Absil, Laurent Jacques, Julien M Hendrickx, and Youssef Marzouk.
Piecewise-Bézier C1 smoothing on manifolds with application to wind field
estimation. In ESANN2017, pages 305–310. Springer, 2017

[AGSW16a] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier interpolation on Rieman-
nian manifolds. In ESANN2016, pages 95–100. Springer, 2016

[SGJ15] Chafik Samir, Pierre-Yves Gousenbourger, and Shantanu H. Joshi.
Cylindrical surface reconstruction by fitting paths on shape space. In H.
Drira, S. Kurtek, and P. Turaga, editor, Proceedings of the 1st International

240 |

http://arxiv.org/abs/arXiv:2003.04577
http://dx.doi.org/10.1007/978-3-319-68445-1_69

Publications | ?

Workshop on DIFFerential Geometry in Computer Vision for Analysis of Shapes,
Images and Trajectories (DIFF-CV 2015), pages 11.1–11.10. BMVA Press, 2015.
doi:10.5244/C.29.DIFFCV.11

[AGS+15] Antoine Arnould, Pierre-Yves Gousenbourger, Chafik Samir, P.-
A. Absil, and Michel Canis. Fitting smooth paths on Riemannian mani-
folds: Endometrial surface reconstruction and preoperative MRI-based nav-
igation. In Frank Nielsen and Frédéric Barbaresco, editors, Geometric Sci-
ence of Information, volume 9389 of Lecture Notes in Computer Sciences, pages
491–498, Berlin, Heidelberg, 2015. Springer. doi:10.1007/978-3-319-25040-3_
53

[GSA14] Pierre-Yves Gousenbourger, Chafik Samir, and P.-A. Absil. Piecewise-
Bézier C1 interpolation on Riemannian manifolds with application to 2D
shape morphing. In International Conference on Pattern Recognition (ICPR),
pages 4086–4091, 2014. doi:10.1109/ICPR.2014.700

? Abstracts

[GB19] Pierre-Yves Gousenbourger and Ronny Bergmann. Data fitting on
manifolds by minimizing the mean square acceleration of a Bézier curve.
In Benelux Meeting, Lommel, Belgium, March 2019

[GMA18b] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil.
Data fitting on manifolds with blended cubic splines. In Proceedings of the
35th International Conference on Machine Learning (ICML), workshop Geometry
in Machine Learning(GiMLi), Stockholm, Sweden, 2018

[GMA18a] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil.
Blended smoothing splines on Riemannian manifolds. In international Trav-
eling Workshop on Interactions between low-complexity data models and Sensing
Techniques (iTWIST), Marseille, France, 2018

[GM17] Pierre-Yves Gousenbourger and Estelle Massart. Wind field esti-
mation via C1 Bézier smoothing on manifolds. In Benelux Meeting, Spa,
Belgium, March 2017

[GAWJ16] Pierre-Yves Gousenbourger, P.-A. Absil, Benedikt Wirth, and Lau-
rent Jacques. Interpolation on manifolds using Bézier functions. In inter-
national Traveling Workshop on Interactions between low-complexity data models
and Sensing Techniques (iTWIST), Aalborg, Denmark, 2016

| 241

http://dx.doi.org/10.5244/C.29.DIFFCV.11
http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.1109/ICPR.2014.700

? | Publications

[GASW16] Pierre-Yves Gousenbourger, P.-A. Absil, Paul Striewski, and Benedikt
Wirth. Interpolation on manifolds with differentiable surfaces of Bézier. In
Benelux Meeting, Soestenberg, The Netherlands, March 2016

242 |

Bibliography

[Abb84] Edwin A. Abbott. Flatland. Seeley & Co., Essex Street, 46 –
London, 1884.

[AGS+15] Antoine Arnould, Pierre-Yves Gousenbourger, Chafik Samir,
P.-A. Absil, and Michel Canis. Fitting smooth paths on
Riemannian manifolds: Endometrial surface reconstruction
and preoperative MRI-based navigation. In Frank Nielsen
and Frédéric Barbaresco, editors, Geometric Science of Informa-
tion, volume 9389 of Lecture Notes in Computer Sciences, pages
491–498, Berlin, Heidelberg, 2015. Springer. doi:10.1007/
978-3-319-25040-3_53.

[AGSW16a] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier interpolation
on Riemannian manifolds. In ESANN2016, pages 95–100.
Springer, 2016.

[AGSW16b] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and
Benedikt Wirth. Differentiable piecewise-Bézier surfaces on
Riemannian manifolds. SIAM Journal on Imaging Sciences,
9(4):1788–1828, 2016. doi:10.1137/16M1057978.

[AGW20] P.-A. Absil, Pierre-Yves Gousenbourger, and Benedikt Wirth.
Smooth surface fitting in Riemannian manifolds using patch-
wise linearization. In progress, 2020.

[AMS08] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepul-
chre. Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton, NJ, 2008.

| 243

http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.1007/978-3-319-25040-3_53
http://dx.doi.org/10.1137/16M1057978

? | Bibliography

[Ant05] Athanasios C. Antoulas. Approximation of Large-Scale Dynam-
ical Systems. SIAM, Philadelphia, PA, 2005. doi:10.1137/1.
9780898718713.

[BA11] Nicolas Boumal and P.-A. Absil. A discrete regression method
on manifolds and its application to data on SO(n). In IFAC
Proceedings Volumes (IFAC-PapersOnline), volume 18, pages
2284–2289, 2011. doi:10.3182/20110828-6-IT-1002.00542.

[BBSW16] Miroslav Bačák, Ronny Bergmann, Gabriele Steidl, and An-
dreas Weinmann. A second order nonsmooth variational
model for restoring manifold-valued images. SIAM Journal on
Computing, 38(1):567–597, 2016. doi:10.1137/15M101988X.

[BC70] Frederick Brickell and Roland S Clark. Differentiable manifolds:
an introduction. Van Nostrand Reinhold, 1970.

[Ber17] Ronny Bergmann. MVIRT, a toolbox for manifold-valued
image registration. In International Conference on Image Pro-
cessing (ICIP), Beijing, China, September 17–20. IEEE, 2017.
URL: https://ronnybergmann.net/mvirt/, doi:10.1109/
ICIP.2017.8296271.

[BF01] Samuel R. Buss and Jay P. Fillmore. Spherical averages and
applications to spherical splines and interpolation. ACM
Transactions on Graphics, 20(2):95–126, 2001. doi:10.1145/
502122.502124.

[BFPS18] Ronny Bergmann, Jan Henrik Fitschen, Johannes Persch, and
Gabriele Steidl. Priors with coupled first and second order
differences for manifold-valued image processing. Journal of
Mathematical Imaging and Vision, 60(9):1459–1481, 2018. doi:
10.1007/s10851-018-0840-y.

[BG18] Ronny Bergmann and Pierre-Yves Gousenbourger. A varia-
tional model for data fitting on manifolds by minimizing the
acceleration of a Bézier curve. Frontiers in Applied Mathemat-
ics and Statistics, 4(59):1–16, 2018. doi:10.3389/fams.2018.
00059.

[BGW15] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey
of projection-based model reduction methods for parametric

244 |

http://dx.doi.org/10.1137/1.9780898718713
http://dx.doi.org/10.1137/1.9780898718713
http://dx.doi.org/10.3182/20110828-6-IT-1002.00542
http://dx.doi.org/10.1137/15M101988X
https://ronnybergmann.net/mvirt/
http://dx.doi.org/10.1109/ICIP.2017.8296271
http://dx.doi.org/10.1109/ICIP.2017.8296271
http://dx.doi.org/10.1145/502122.502124
http://dx.doi.org/10.1145/502122.502124
http://dx.doi.org/10.1007/s10851-018-0840-y
http://dx.doi.org/10.1007/s10851-018-0840-y
http://dx.doi.org/10.3389/fams.2018.00059
http://dx.doi.org/10.3389/fams.2018.00059

Bibliography | ?

dynamical systems. SIAM Review, 57(4):483–531, 2015. doi:
10.1137/130932715.

[BHSW18] Kristian Bredies, Martin Holler, Martin Storath, and Andreas
Weinmann. Total Generalized Variation for manifold-valued
data. SIAM Journal on Imaging Sciences, 11(3):1785–1848, 2018.
doi:10.1137/17M1147597.

[BLPS19] Ronny Bergmann, Friederike Laus, Johannes Persch, and
Gabriele Steidl. Recent advances in denoising of manifold-
valued images. In Handbook of Numerical Analysis, volume 20,
pages 553–578. Elsevier, 2019.

[BLSW14] Ronny Bergmann, Friederike Laus, Gabriele Steidl, and An-
dreas Weinmann. Second order differences of cyclic data and
applications in variational denoising. SIAM Journal on Imag-
ing Sciences, 7(4):2916–2953, 2014. doi:10.1137/140969993.

[BMAS14] Nicolas Boumal, Bamdev Mishra, P.-A. Absil, and Rodolphe
Sepulchre. Manopt, a Matlab toolbox for optimization on
manifolds. Journal of Machine Learning Research, 15:1455–1459,
2014. URL: http://www.manopt.org.

[BMS10] Silvère Bonnabel, Gilles Meyer, and Rodolphe Sepulchre.
Adaptive filtering for estimation of a low-rank positive
semidefinite matrix. In Proceedings of the 19th International
Symposium on Mathematical Theory of Networks and Systems,
2010.

[BMV18] Geir Bogfjellmo, Klas Modin, and Olivier Verdier. A numer-
ical algorithm for C2-splines on symmetric spaces. SIAM
Journal on Numerical Analysis, 56(4):2623–2647, 2018. doi:
10.1137/17M1123353.

[BMWG07] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan
Grinspun. TRACKS: Toward directable thin shells. ACM
Transactions on Graphics (SIGGRAPH), 26(3):1–10, 2007. doi:
10.1145/1276377.1276439.

[Boo86] William M Boothby. An introduction to differentiable manifolds
and Riemannian geometry. Academic press, 1986.

| 245

http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.1137/17M1147597
http://dx.doi.org/10.1137/140969993
http://www.manopt.org
http://dx.doi.org/10.1137/17M1123353
http://dx.doi.org/10.1137/17M1123353
http://dx.doi.org/10.1145/1276377.1276439
http://dx.doi.org/10.1145/1276377.1276439

? | Bibliography

[Bou13] Nicolas Boumal. Interpolation and regression of rotation ma-
trices. In Frank Nielsen and Frédéric Barbaresco, editors, Ge-
ometric Science of Information, pages 345–352, Berlin, Heidel-
berg, 2013. Springer. doi:10.1007/978-3-642-40020-9_37.

[Bou14] Nicolas Boumal. Optimization and estimation on manifolds. PhD
thesis, Université catholique de Louvain, 2014.

[Bou20] Nicolas Boumal. An introduction to optimization on smooth
manifolds. Available online, May 2020. URL: http://www.
nicolasboumal.net/book.

[BRP12] Shalini Jain Bagaria, Darshana D. Rasalkar, and Bhawan K.
Paunipagar. Imaging tools for endometriosis: Role of ultra-
sound, MRI and other imaging modalities in diagnosis and
planning intervention. Endometriosis, Basic Concepts and Cur-
rent Research Trends, 24:437–447, 2012.

[BS09] Silvère Bonnabel and Rodolphe Sepulchre. Riemannian met-
ric and geometric mean for positive semidefinite matrices of
fixed rank. SIAM Journal on Matrix Analysis and Applications,
31(3):1055–1070, 2009.

[BXZ08] Chandrajit L. Bajaj, Guo-Liang Xu, and Qin Zhang. Bio-
molecule surfaces construction via a higher-order level-set
method. Journal of computer science and technology, 23(6):1026–
1036, 2008. doi:10.1007/s11390-008-9184-1.

[Car46] Élie Cartan. Leçons sur la géométrie des espaces de Riemann.
Gauthier-Villars, Paris, 1946. Deuxième édition, revue et aug-
mentée.

[CG15] John P Cunningham and Zoubin Ghahramani. Linear dimen-
sionality reduction: Survey, insights, and generalizations. The
Journal of Machine Learning Research, 16(1):2859–2900, 2015.

[CKS99] Peter Crouch, G. Kun, and Fatima Silva Leite. De Castel-
jau algorithm on Lie groups and spheres. Journal of Dynam-
ical and Control Systems, 5(3):397–429, 1999. doi:10.1023/A:
1021770717822.

246 |

http://dx.doi.org/10.1007/978-3-642-40020-9_37
http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book
http://dx.doi.org/10.1007/s11390-008-9184-1
http://dx.doi.org/10.1023/A:1021770717822
http://dx.doi.org/10.1023/A:1021770717822

Bibliography | ?

[dC92] Manfredo Perdigão do Carmo. Riemannian Geometry. Math-
ematics (Birkhäuser) theory. Birkhäuser Boston, 1992. doi:
10.1007/978-0-387-29403-2.

[Des06] Dominique Desjeux. De la Seconde Guerre mondiale à au-
jourd’hui : les nouveaux questionnements de la consomma-
tion. Que sais-je?, 1(3754):24–46, 2006.

[DFH05] Nira Dyn, M.S. Floater, and Kai Hormann. A C2 four-point
subdivision scheme with fourth order accuracy and its exten-
sions. Mathematical Methods for Curves and Surfaces, 1(1):145–
156, 2005.

[DLG87] Nira Dyn, David Levin, and John A. Gregory. A 4-point in-
terpolatory subdivision scheme for curve design. Computer
Aided Geometric Design, 4(1):257–268, 1987. doi:10.1016/
0167-8396(87)90001-X.

[DM16] Chongyang Deng and Weiyin Ma. Efficient evaluation of
subdivision schemes with polynomial reproduction property.
Journal of Computational and Applied Mathematics, 294:403–412,
2016. doi:10.1016/j.cam.2015.09.008.

[Duc77] Jean Duchon. Splines minimizing rotation-invariant semi-
norms in Sobolev spaces. In Walter Schempp and Karl Zeller,
editors, Constructive theory of functions of several variables,
volume 571 of Lecture Notes in Mathematics, pages 85–100.
Springer Berlin Heidelberg, 1977. doi:10.1007/BFb0086566.

[Duc78] Jean Duchon. Sur l’erreur d’interpolation des fonctions
de plusieurs variables par les Dm-splines. RAIRO Anal-
yse Numérique, 12(4):325–334, vi, 1978. doi:10.1051/m2an/
1978120403251.

[Dyn09] Nira Dyn. Linear and nonlinear subdivision schemes in
geometric modeling. In Felipe Cucker, Allan Pinkus, and
Michael J Todd, editors, Foundation of Computational Mathe-
matics, volume 363, pages 68–92. Cambridge University Press,
2009. doi:10.1017/CBO9781139107068.004.

[EKPR19] Alexander Effland, Erich Kobler, Thomas Pock, and Martin
Rumpf. Time discrete geodesics in deep feature spaces for

| 247

http://dx.doi.org/10.1007/978-0-387-29403-2
http://dx.doi.org/10.1007/978-0-387-29403-2
http://dx.doi.org/10.1016/0167-8396(87)90001-X
http://dx.doi.org/10.1016/0167-8396(87)90001-X
http://dx.doi.org/10.1016/j.cam.2015.09.008
http://dx.doi.org/10.1007/BFb0086566
http://dx.doi.org/10.1051/m2an/1978120403251
http://dx.doi.org/10.1051/m2an/1978120403251
http://dx.doi.org/10.1017/CBO9781139107068.004

? | Bibliography

image morphing. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 171–182.
Springer, 2019.

[ERS+15] Alexander Effland, Martin Rumpf, Stefan Simon, Kirsten
Stahn, and Benedikt Wirth. Bézier curves in the space of im-
ages. In Jean-François Aujol, Mila Nikolova, and Nicolas Pa-
padakis, editors, Scale Space and Variational Methods in Com-
puter Vision, volume 9087, pages 372–384. Springer Interna-
tional Publishing, 2015. doi:10.1007/978-3-319-18461-6_
30.

[Far02] Gerald E. Farin. Curves and Surfaces for CAGD. Academic
Press, fifth edition, 2002.

[Fle13] P. Thomas Fletcher. Geodesic regression and the theory of
least squares on Riemannian manifolds. International Jour-
nal of Computer Vision, 105(2):171–185, 2013. doi:10.1007/
s11263-012-0591-y.

[Fré48] René Maurice Fréchet. Les éléments aléatoires de nature quel-
conque dans un espace distancié. Annales de l’Institut H.
Poincaré, 10:215–310, 1948.

[GASW16] Pierre-Yves Gousenbourger, P.-A. Absil, Paul Striewski, and
Benedikt Wirth. Interpolation on manifolds with differen-
tiable surfaces of Bézier. In Benelux Meeting, Soestenberg, The
Netherlands, March 2016.

[GAWJ16] Pierre-Yves Gousenbourger, P.-A. Absil, Benedikt Wirth, and
Laurent Jacques. Interpolation on manifolds using Bézier
functions. In international Traveling Workshop on Interac-
tions between low-complexity data models and Sensing Techniques
(iTWIST), Aalborg, Denmark, 2016.

[GB19] Pierre-Yves Gousenbourger and Ronny Bergmann. Data fit-
ting on manifolds by minimizing the mean square accelera-
tion of a Bézier curve. In Benelux Meeting, Lommel, Belgium,
March 2019.

[GJA17] Pierre-Yves Gousenbourger, Laurent Jacques, and P.-A. Absil.
Fast method to fit a C1 piecewise-Bézier function to manifold-
valued data points: how suboptimal is the curve obtained on

248 |

http://dx.doi.org/10.1007/978-3-319-18461-6_30
http://dx.doi.org/10.1007/978-3-319-18461-6_30
http://dx.doi.org/10.1007/s11263-012-0591-y
http://dx.doi.org/10.1007/s11263-012-0591-y

Bibliography | ?

the sphere S2? In Frank Nielsen and Frédéric Barbaresco, ed-
itors, Geometric Science of Information, volume 10589 of Lecture
Notes in Computer Sciences, pages 595–603, Berlin, Heidelberg,
2017. Springer. doi:10.1007/978-3-319-68445-1_69.

[GM17] Pierre-Yves Gousenbourger and Estelle Massart. Wind field
estimation via C1 Bézier smoothing on manifolds. In Benelux
Meeting, Spa, Belgium, March 2017.

[GMA18a] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Ab-
sil. Blended smoothing splines on Riemannian manifolds.
In international Traveling Workshop on Interactions between low-
complexity data models and Sensing Techniques (iTWIST), Mar-
seille, France, 2018.

[GMA18b] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil.
Data fitting on manifolds with blended cubic splines. In Pro-
ceedings of the 35th International Conference on Machine Learning
(ICML), workshop Geometry in Machine Learning(GiMLi), Stock-
holm, Sweden, 2018.

[GMA18c] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Ab-
sil. Data fitting on manifolds with composite Bézier-like
curves and blended cubic splines. Journal of Mathemati-
cal Imaging and Vision, 61(5):645–671, 2018. doi:10.1007/
s10851-018-0865-2.

[GMM+17] Pierre-Yves Gousenbourger, Estelle Massart, Antoni Musolas,
P.-A. Absil, Laurent Jacques, Julien M Hendrickx, and Youssef
Marzouk. Piecewise-Bézier C1 smoothing on manifolds with
application to wind field estimation. In ESANN2017, pages
305–310. Springer, 2017.

[Gro08] Philipp Grohs. Smoothness analysis of subdivision schemes
on regular grids by proximity. SIAM Journal on Numerical
Analysis, 46(4):2169–2182, 2008. doi:10.1137/060669759.

[GS93] Peter J. Green and Bernard W. Silverman. Nonparametric Re-
gression and Generalized Linear Models: A roughness penalty ap-
proach. CRC Press, 1993.

| 249

http://dx.doi.org/10.1007/978-3-319-68445-1_69
http://dx.doi.org/10.1007/s10851-018-0865-2
http://dx.doi.org/10.1007/s10851-018-0865-2
http://dx.doi.org/10.1137/060669759

? | Bibliography

[GSA14] Pierre-Yves Gousenbourger, Chafik Samir, and P.-A. Absil.
Piecewise-Bézier C1 interpolation on Riemannian manifolds
with application to 2D shape morphing. In International Con-
ference on Pattern Recognition (ICPR), pages 4086–4091, 2014.
doi:10.1109/ICPR.2014.700.

[HFJ14] Jacob Hinkle, P. Thomas Fletcher, and Sarang Joshi. Intrinsic
polynomials for regression on Riemannian manifolds. Journal
of Mathematical Imaging and Vision, 50(1):32–52, 2014. doi:10.
1007/s10851-013-0489-5.

[HHS+15] Mehrtash Harandi, Richard Hartley, Chunhua Shen, Brian
Lovell, and Conrad Sanderson. Extrinsic methods for cod-
ing and dictionary learning on Grassmann manifolds. In-
ternational Journal of Computer Vision, 114(2):113–136, 2015.
doi:10.1007/s11263-015-0833-x.

[HRWW12] Behrend Heeren, Martin Rumpf, Max Wardetzky, and
Benedikt Wirth. Time-discrete geodesics in the space of
shells. Computer Graphics Forum, 31(5):1755–1764, 2012. doi:
10.1111/j.1467-8659.2012.03180.x.

[HS07] Knut Hüper and Fatima Silva Leite. On the geometry of
rolling and interpolation curves on Sn, SOn, and Grassmann
manifolds. Journal of Dynamical and Control Systems, 13(4):467–
502, Oct 2007. doi:10.1007/s10883-007-9027-3.

[HW19] Wen Huang and Ke Wei. Riemannian proximal gradient
methods, 2019. arXiv:1909.06065.

[HW20] Martin Holler and Andreas Weinmann. Non-smooth varia-
tional regularization for processing manifold-valued data. In
Handbook of Variational Methods for Nonlinear Geometric Data,
pages 51–93. Springer, 2020.

[IT98] Jin-ichi Itoh and Minoru Tanaka. The dimension of a cut lo-
cus on a smooth Riemannian manifold. Tohoku Mathematical
Journal, Second Series, 50(4):571–575, 1998.

[JBAS10] Michel Journée, Francis Bach, P-A Absil, and Rodolphe
Sepulchre. Low-rank optimization on the cone of posi-
tive semidefinite matrices. SIAM Journal on Optimization,
20(5):2327–2351, 2010.

250 |

http://dx.doi.org/10.1109/ICPR.2014.700
http://dx.doi.org/10.1007/s10851-013-0489-5
http://dx.doi.org/10.1007/s10851-013-0489-5
http://dx.doi.org/10.1007/s11263-015-0833-x
http://dx.doi.org/10.1111/j.1467-8659.2012.03180.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03180.x
http://dx.doi.org/10.1007/s10883-007-9027-3
http://arxiv.org/abs/1909.06065

Bibliography | ?

[JK87] Peter E. Jupp and John T. Kent. Fitting smooth paths to
spherical data. Journal of Applied Statistics, 36(1):34–46, 1987.
doi:12/61765.

[JKSJ07] Shantanu H. Joshi, Eric Klassen, Anuj Srivastava, and Ian
Jermyn. A novel representation for Riemannian analysis of
elastic curves in Rn. In Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2007. doi:10.1109/CVPR.
2007.383185.

[JSTL07] Anand A. Joshi, David W. Shattuck, Paul M. Thompson, and
Richard M. Leahy. Surface-constrained volumetric brain reg-
istration using harmonic mappings. IEEE Transactions on Med-
ical Imaging, 26(12):1657–1669, 2007. doi:10.1109/TMI.2007.
901432.

[Kar77] Herman Karcher. Riemannian center of mass and mollifier
smoothing. Communications on pure and applied mathematics,
30(5):509–541, 1977. doi:10.1002/cpa.3160300502.

[KDB+20] Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, Ste-
fano Berretti, and Juan Carlos Alvarez-Paiva. A novel ge-
ometric framework on Gram matrix trajectories for human
behavior understanding. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (T-PAMI), 42(1):1–14, 2020. doi:
10.1109/TPAMI.2018.2872564.

[KDL18] Kwang-Rae Kim, Ian L. Dryden, and Huiling Le. Smooth-
ing splines on Riemannian manifolds, with applications to 3D
shape space, 2018. arXiv:1801.04978.

[LB19] Changshuo Liu and Nicolas Boumal. Simple algorithms for
optimization on Riemannian manifolds with constraints. Ap-
plied Mathematics & Optimization, pages 1–33, 2019. doi:
10.1007/s00245-019-09564-3.

[Lee97] John M. Lee. Riemannian Manifolds: An Introduction to Curva-
ture, volume 176 of Graduate Texts in Mathematics. Springer
Verlag, New-York, 1997. doi:10.1007/b98852.

[Lee13] John M Lee. Introduction to Smooth Manifolds, volume 128 of
Graduate Texts in Mathematics. Springer, New York, second
edition, 2013.

| 251

http://dx.doi.org/12/61765
http://dx.doi.org/10.1109/CVPR.2007.383185
http://dx.doi.org/10.1109/CVPR.2007.383185
http://dx.doi.org/10.1109/TMI.2007.901432
http://dx.doi.org/10.1109/TMI.2007.901432
http://dx.doi.org/10.1002/cpa.3160300502
http://dx.doi.org/10.1109/TPAMI.2018.2872564
http://dx.doi.org/10.1109/TPAMI.2018.2872564
http://arxiv.org/abs/1801.04978
http://dx.doi.org/10.1007/s00245-019-09564-3
http://dx.doi.org/10.1007/s00245-019-09564-3
http://dx.doi.org/10.1007/b98852

? | Bibliography

[LSKC13] Jan Lellmann, Evgeny Strekalovskiy, Sabrina Koetter, and
Daniel Cremers. Total Variation regularization for functions
with values in a manifold. In International Conference on
Computer Vision (ICCV), pages 2944–2951. IEEE, 2013. doi:
10.1109/ICCV.2013.366.

[LSZD17] Lizhen Lin, Brian St. Thomas, Hongtu Zhu, and David B.
Dunson. Extrinsic local regression on manifold-valued data.
Journal of the American Statistical Association, 112(519):1261–
1273, 2017. doi:10.1080/01621459.2016.1208615.

[LW01] Achan Lin and Marshall Walker. CAGD techniques for dif-
ferentiable manifolds. In Proceedings of the 2001 International
Symposium Algorithms for Approximation IV, pages 36–43, 2001.

[LW02] Jing-Rebecca Li and Jacob White. Low rank solution
of Lyapunov equations. SIAM Journal on Matrix Anal-
ysis and Applications, 24(1):260–280, 2002. doi:10.1137/
S0895479801384937.

[MA18] Estelle Massart and P.-A. Absil. Quotient geometry of the
manifold of fixed-rank positive-semidefinite matrices. Tech-
nical Report UCL-INMA-2018.06, UCLouvain, November
2018. URL: http://sites.uclouvain.be/absil/2018.06.

[Mas19] Estelle Massart. Data fitting on positive-semidefinite matrix man-
ifolds. PhD thesis, UCLouvain, ICTEAM institute, 2019.

[MBS11] Gilles Meyer, Silvère Bonnabel, and Rodolphe Sepulchre. Re-
gression on fixed-rank positive semidefinite matrices: a Rie-
mannian approach. Journal of Machine Learning Research,
12(Feb):593–625, 2011.

[Mei79] Jean Meiguet. Multivariate interpolation at arbitrary points
made simple. Journal of Applied Mathematics and Physics
(ZAMP), 30(1):292–304, 1979. doi:10.1007/BF01601941.

[MGS+19] Estelle Massart, Pierre-Yves Gousenbourger, Nguyen Thanh
Son, Tatjana Stykel, and P.-A. Absil. Interpolation on the man-
ifold of fixed-rank positive-semidefinite matrices for para-
metric model order reduction: preliminary results. In
ESANN2019, pages 281–286. Springer, 2019.

252 |

http://dx.doi.org/10.1109/ICCV.2013.366
http://dx.doi.org/10.1109/ICCV.2013.366
http://dx.doi.org/10.1080/01621459.2016.1208615
http://dx.doi.org/10.1137/S0895479801384937
http://dx.doi.org/10.1137/S0895479801384937
http://sites.uclouvain.be/absil/2018.06
http://dx.doi.org/10.1007/BF01601941

Bibliography | ?

[MHA19] Estelle Massart, Julien M. Hendrickx, and P.-A. Absil. Curva-
ture of the manifold of fixed-rank positive-semidefinite ma-
trices endowed with the Bures–Wasserstein metric. In Frank
Nielsen and Frédéric Barbaresco, editors, Geometric Science of
Information, volume 11712 of Lecture Notes in Computer Sci-
ences, pages 739–748, Berlin, Heidelberg, 2019. Springer. doi:
10.1007/978-3-030-26980-7_77.

[MHHF19] Rolando Mosquera, Abdallah El Hamidi, Aziz Hamdouni,
and Antoine Falaize. Generalization of the Neville-Aitken in-
terpolation algorithm on Grassmann manifolds: Applications
to Reduced Order Model, 2019. arXiv:1907.02831.

[MKJS19] Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul
Saroop. A Riemannian gossip approach to subspace learn-
ing on Grassmann manifold. Machine Learning, 108(10):1783–
1803, 2019.

[MM17] Luís Machado and M. Teresa T. Monteiro. A numerical op-
timization approach to generate smoothing spherical splines.
Journal of Geometry and Physics, 111:71–81, 2017. doi:10.1016/
j.geomphys.2016.10.007.

[MMRB72] Donella H Meadows, Dennis L Meadows, Jorgen Randers,
and William W Behrens. The limits to growth. New York,
102:27, 1972.

[MMS11] Bamdev Mishra, Gilles Meyer, and Rodolphe Sepulchre.
Low-rank optimization for distance matrix completion. In
50th Conference on Decision and Control and European Control
Conference (CDC-ECC), pages 4455–4460. IEEE, 2011. doi:
10.1109/CDC.2011.6160810.

[MS06] Luís Machado and Fatima Silva Leite. Fitting smooth paths
on Riemannian manifolds. International Journal of Applied
Mathematics & Statistics, 4(J06):25–53, 2006.

[MSLK10] Luís Machado, Fatima Silva Leite Leite, and Krzysztof
Krakowski. Higher-order smoothing splines versus least
squares problems on Riemannian manifolds. Journal of Dy-
namical Control and Systems, 16(1):121–148, 2010. doi:10.
1007/s10883-010-9080-1.

| 253

http://dx.doi.org/10.1007/978-3-030-26980-7_77
http://dx.doi.org/10.1007/978-3-030-26980-7_77
http://arxiv.org/abs/1907.02831
http://dx.doi.org/10.1016/j.geomphys.2016.10.007
http://dx.doi.org/10.1016/j.geomphys.2016.10.007
http://dx.doi.org/10.1109/CDC.2011.6160810
http://dx.doi.org/10.1109/CDC.2011.6160810
http://dx.doi.org/10.1007/s10883-010-9080-1
http://dx.doi.org/10.1007/s10883-010-9080-1

? | Bibliography

[MSM18] Luís Machado, Fatima Silva Leite, and M. Teresa T. Mon-
teiro. Path planning trajectories in fluid environments. In 13th
APCA International Conference on Control and Soft Computing
(CONTROLO), pages 219–223, 2018. doi:10.1109/CONTROLO.
2018.8514278.

[Muc12] Domenico Mucci. Maps into projective spaces: liquid crystal
and conformal energies. Discrete and Continuous Dynamical
Systems, 17(2):597–635, 2012.

[NYP13] Esfandiar Nava-Yazdani and Konrad Polthier. De Casteljau’s
algorithm on manifolds. Computer Aided Geometric Design,
30(7):722–732, 2013. doi:10.1016/j.cagd.2013.06.002.

[NYY11] Esfandiar Nava-Yazdani and Thomas P. Y. Yu. On Donoho’s
Log-Exp subdivision scheme: Choice of retraction and time-
symmetry. Multiscale Modeling & Simulation, 9(4):1801–1828,
2011. doi:10.1137/100804838.

[O’N66] Barrett O’Neill. Elementary differential geometry. Academic
Press INC, London, 1966.

[O’N83] Barrett O’Neill. Semi-Riemannian geometry with applications to
relativity. Academic press, 1983.

[PA16] Lorenz Pyta and Dirk Abel. Interpolatory Galerkin mod-
els for the Navier-Stokes-equations. IFAC-PapersOnLine,
49(8):204–209, 2016. doi:10.1016/j.ifacol.2016.07.442.

[Par10] Jonghoon Park. Interpolation and tracking of rigid body ori-
entations. In ICCAS, pages 668–673, 2010.

[Per18] Johannes Persch. Optimization Methods in Manifold-Valued Im-
age Processing. PhD thesis, Technische Universität Kaiser-
slautern, 2018.

[PFA06] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Rie-
mannian framework for tensor computing. International Jour-
nal of Computer Vision, 66(1):41–66, 2006. doi:10.1007/
s11263-005-3222-z.

[PN07] Tomasz Popiel and Lyle Noakes. Bézier curves and C2 inter-
polation in Riemannian manifolds. Journal of Approximation

254 |

http://dx.doi.org/10.1109/CONTROLO.2018.8514278
http://dx.doi.org/10.1109/CONTROLO.2018.8514278
http://dx.doi.org/10.1016/j.cagd.2013.06.002
http://dx.doi.org/10.1137/100804838
http://dx.doi.org/10.1016/j.ifacol.2016.07.442
http://dx.doi.org/10.1007/s11263-005-3222-z
http://dx.doi.org/10.1007/s11263-005-3222-z

Bibliography | ?

Theory, 148(2):111–127, 2007. doi:10.1016/j.jat.2007.03.
002.

[Pow94] Michael J. D. Powell. The uniform convergence of thin plate
spline interpolation in two dimensions. Numerische Mathe-
matik, 68(1):107–128, 1994. doi:10.1007/s002110050051.

[PR08] Jörg Peters and Ulrich Reif. Subdivision surfaces, volume 3 of
Geometry and Computing. Springer-Verlag, Berlin, 2008. doi:
10.1007/978-3-540-76406-9.

[Ren11] Quentin Rentmeesters. A gradient method for geodesic data
fitting on some symmetric Riemannian manifolds. In 50th
Conference on Decision and Control and European Control Confer-
ence (CDC-ECC), pages 7141–7146. IEEE, 2011. doi:10.1109/
CDC.2011.6161280.

[Ren13] Quentin Rentmeesters. Algorithms for data fitting on some com-
mon homogeneous spaces. PhD thesis, Université catholique de
Louvain, 2013.

[Rie54] Bernhard Riemann. Über die Hypothesen, welche der Ge-
ometrie zu Grunde liegen. Physikalische Blätter, 10(7):296–306,
1854. doi:10.1002/phbl.19540100702.

[RW15] Martin Rumpf and Benedikt Wirth. Variational time dis-
cretization of geodesic calculus. IMA Journal of Numeri-
cal Analysis, 35(3):1011–1046, 2015. doi:10.1093/imanum/
dru027.

[San10] Oliver Sander. Geodesic finite elements for Cosserat rods.
International Journal for Numerical Methods in Engineering,
82(13):1645–1670, 2010. doi:10.1002/nme.2814.

[San16] Oliver Sander. Geodesic finite elements of higher order. IMA
Journal of Numerical Analysis, 36(1):238–266, 2016. doi:10.
1093/imanum/drv016.

[SASK12] Chafik Samir, P.-A. Absil, Anuj Srivastava, and Eric Klassen.
A gradient-descent method for curve fitting on Rieman-
nian manifolds. Foundations of Computational Mathematics,
12(1):49–73, 2012. doi:10.1007/s10208-011-9091-7.

| 255

http://dx.doi.org/10.1016/j.jat.2007.03.002
http://dx.doi.org/10.1016/j.jat.2007.03.002
http://dx.doi.org/10.1007/s002110050051
http://dx.doi.org/10.1007/978-3-540-76406-9
http://dx.doi.org/10.1007/978-3-540-76406-9
http://dx.doi.org/10.1109/CDC.2011.6161280
http://dx.doi.org/10.1109/CDC.2011.6161280
http://dx.doi.org/10.1002/phbl.19540100702
http://dx.doi.org/10.1093/imanum/dru027
http://dx.doi.org/10.1093/imanum/dru027
http://dx.doi.org/10.1002/nme.2814
http://dx.doi.org/10.1093/imanum/drv016
http://dx.doi.org/10.1093/imanum/drv016
http://dx.doi.org/10.1007/s10208-011-9091-7

? | Bibliography

[SAV+19] David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre
Gramfort, and Denis A Engemann. Manifold-regression to
predict from MEG/EEG brain signals without source mod-
eling. In Advances in Neural Information Processing Systems,
pages 7321–7332, 2019.

[SC11] Evgeny Strekalovskiy and Daniel Cremers. Total Variation for
cyclic structures: Convex relaxation and efficient minimiza-
tion. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1905–1911. IEEE, 2011. doi:10.1109/CVPR.
2011.5995573.

[SC13] Evgeny Strekalovskiy and Daniel Cremers. Total Cyclic
Variation and generalizations. Journal of Mathematical
Imaging and Vision, 47(3):258–277, 2013. doi:10.1007/
s10851-012-0396-1.

[SDK+12] Jingyong Su, Ian L. Dryden, Eric Klassen, H. Le, and Anuj
Srivastava. Fitting smoothing splines to time-indexed, noisy
points on nonlinear manifolds. Image and Vision Computing,
30(6–7):428–442, 2012. doi:10.1016/j.imavis.2011.09.006.

[SGJ15] Chafik Samir, Pierre-Yves Gousenbourger, and Shantanu H.
Joshi. Cylindrical surface reconstruction by fitting paths on
shape space. In H. Drira, S. Kurtek, and P. Turaga, editor,
Proceedings of the 1st International Workshop on DIFFerential Ge-
ometry in Computer Vision for Analysis of Shapes, Images and Tra-
jectories (DIFF-CV 2015), pages 11.1–11.10. BMVA Press, 2015.
doi:10.5244/C.29.DIFFCV.11.

[SGMA19] Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Mas-
sart, and P.-A. Absil. Online balanced truncation for linear
time-varying systems using continuously differentiable inter-
polation on Grassmann manifold. In 6th International Confer-
ence on Control, Decision and Information Technologies (CoDIT),
pages 165–170. IEEE, 2019.

[SGMS20] Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Mas-
sart, and Tatjana Stykel. Balanced truncation for parametric
linear systems using interpolation of Gramians: a comparison
of algebraic and geometric approaches, 2020. arXiv:arXiv:
2003.04577.

256 |

http://dx.doi.org/10.1109/CVPR.2011.5995573
http://dx.doi.org/10.1109/CVPR.2011.5995573
http://dx.doi.org/10.1007/s10851-012-0396-1
http://dx.doi.org/10.1007/s10851-012-0396-1
http://dx.doi.org/10.1016/j.imavis.2011.09.006
http://dx.doi.org/10.5244/C.29.DIFFCV.11
http://arxiv.org/abs/arXiv:2003.04577
http://arxiv.org/abs/arXiv:2003.04577

Bibliography | ?

[Shi08] Tatiana Shingel. Interpolation in special orthogonal groups.
IMA journal of numerical analysis, 29(3):731–745, 2008.

[SHPS08] Florian Steinke, Matthias Hein, Jan Peters, and Bernhard
Schölkopf. Manifold-valued thin-plate splines with ap-
plications in computer graphics. Computer Graphics Fo-
rum, 27(2):437–448, 2008. doi:10.1111/j.1467-8659.2008.
01141.x.

[SHS10] Florian Steinke, Matthias Hein, and Bernhard Schölkopf.
Nonparametric regression between general Riemannian man-
ifolds. SIAM Journal on Imaging Sciences, 3(3):527–563, 2010.
doi:10.1137/080744189.

[SK16] Anuj Srivastava and Eric P. Klassen. Functional and shape data
analysis, volume 475. Springer, 2016.

[SKJJ11] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape
analysis of elastic curves in Euclidean spaces. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33:1415–1428,
2011.

[SKK04] Thomas B. Sebastian, Philip N. Klein, and Benjamin B.
Kimia. Recognition of shapes by editing their shock graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5):550–571, 2004. doi:10.1109/TPAMI.2004.1273924.

[SKKS14] Jingyong Su, Sebastian Kurtek, Eric Klassen, and Anuj Srivas-
tava. Statistical analysis of trajectories on Riemannian mani-
folds: Bird migration, hurricane tracking and video surveil-
lance. The Annals of Applied Statistics, 8(1):530–552, 2014.
doi:10.1214/13-AOAS701.

[SM03] Endre Süli and David Mayers. An Introduction to Numerical
Analysis. Cambridge University Press, 2003.

[SNB16] Oliver Sander, Patrizio Neff, and Mircea Bîrsan. Numerical
treatment of a geometrically nonlinear planar Cosserat shell
model. Computational Mechanics, 57(5):817–841, 2016. doi:
10.1007/s00466-016-1263-5.

| 257

http://dx.doi.org/10.1111/j.1467-8659.2008.01141.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01141.x
http://dx.doi.org/10.1137/080744189
http://dx.doi.org/10.1109/TPAMI.2004.1273924
http://dx.doi.org/10.1214/13-AOAS701
http://dx.doi.org/10.1007/s00466-016-1263-5
http://dx.doi.org/10.1007/s00466-016-1263-5

? | Bibliography

[SQW17] Ju Sun, Qing Qu, and John Wright. A geometric analysis of
phase retrieval. Foundations of Computational Mathematics, 8
2017. doi:10.1007/s10208-017-9365-9.

[TKW16] James Townsend, Niklas Koep, and Sebastian Weichwald. Py-
manopt: A python toolbox for optimization on manifolds us-
ing automatic differentiation. The Journal of Machine Learning
Research, 17(1):4755–4759, 2016.

[Van13] Bart Vandereycken. Low-rank matrix completion by Rieman-
nian optimization. SIAM Journal on Optimization, 23(2):1214–
1236, 2013. doi:10.1137/110845768.

[VAV09] Bart Vandereycken, P.-A. Absil, and Stefan Vandewalle. Em-
bedded geometry of the set of symmetric positive semidef-
inite matrices of fixed rank. In 15th Workshop on Statistical
Signal Processing (SSP), pages 389–392. IEEE, 2009.

[WD05] Johannes Wallner and Nira Dyn. Convergence and analysis
of subdivision schemes on manifolds by proximity. Computer
Aided Geometric Design, 22(7):593–622, 2005. doi:10.1016/j.
cagd.2005.06.003.

[WDS14] Andreas Weinmann, Laurent Demaret, and Martin Storath.
Total Variation regularization for manifold-valued data.
SIAM Journal on Imaging Sciences, 7(4):2226–2257, 2014. doi:
10.1137/130951075.

[Wei10] Andreas Weinmann. Nonlinear subdivision schemes on ir-
regular meshes. Constructive Approximation, 31(3):395–415,
2010. doi:10.1007/s00365-009-9063-1.

[Wei12] Andreas Weinmann. Subdivision schemes with general dila-
tion in the geometric and nonlinear setting. Journal of Approx-
imation Theory, 164(1):105–137, 2012. doi:10.1016/j.jat.
2011.09.005.

[Wik] MOR Wiki — Model Order Reduction Wiki. http://
morwiki.mpi-magdeburg.mpg.de/morwiki/.

[WLS+20] Michael Watterson, Sikang Liu, Ke Sun, Trey Smith, and Vijay
Kumar. Trajectory optimization on manifolds with applica-

258 |

http://dx.doi.org/10.1007/s10208-017-9365-9
http://dx.doi.org/10.1137/110845768
http://dx.doi.org/10.1016/j.cagd.2005.06.003
http://dx.doi.org/10.1016/j.cagd.2005.06.003
http://dx.doi.org/10.1137/130951075
http://dx.doi.org/10.1137/130951075
http://dx.doi.org/10.1007/s00365-009-9063-1
http://dx.doi.org/10.1016/j.jat.2011.09.005
http://dx.doi.org/10.1016/j.jat.2011.09.005
http://morwiki.mpi-magdeburg.mpg.de/morwiki/
http://morwiki.mpi-magdeburg.mpg.de/morwiki/

Bibliography | ?

tions to quadrotor systems. The International Journal of Robotics
Research, page 0278364919891775, 2020.

[WNYG07] Johannes Wallner, Esfandiar Nava-Yazdani, and Philip Grohs.
Smoothness properties of Lie group subdivision schemes.
Multiscale Modeling & Simulation, 6(2):493–505, 2007. doi:
10.1137/060668353.

[WP06] Johannes Wallner and Helmut Pottmann. Intrinsic subdivi-
sion with smooth limits for graphics and animation. ACM
Transactions on Graphics, 25(2):356–374, 2006. doi:10.1145/
1138450.1138459.

[YLSL11] I-Cheng Yeh, Chao-Hung Lin, Olga Sorkine, and Tong-Yee
Lee. Template-based 3D model fitting using dual-domain
relaxation. IEEE Transactions on Visualization and Computer
Graphics, 17(8):1178–1190, 2011. doi:10.1109/TVCG.2010.
124.

[YSZL16] Xianghao Yu, Juei-Chin Shen, Jun Zhang, and Khaled Ben
Letaief. Alternating minimization algorithms for hybrid pre-
coding in millimeter wave MIMO systems. IEEE Journal of
Selected Topics in Signal Processing, 10(3):485–500, 2016. doi:
10.1109/JSTSP.2016.2523903.

[Zim19] Ralf Zimmermann. Hermite interpolation and data process-
ing errors on Riemannian matrix manifolds, 2019. arXiv:
1908.05875.

[ZN19] Erchuan Zhang and Lyle Noakes. Optimal interpolants
on Grassmann manifolds. Mathematics of Control, Sig-
nals, and Systems, 31(3):363–383, Sep 2019. doi:10.1007/
s00498-019-0241-9.

[ZOF01] Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast sur-
face reconstruction using the level set method. In Workshop on
Variational and Level Set Methods in Computer Vision (VLSM),
pages 194–201. IEEE, 2001. doi:10.1109/VLSM.2001.938900.

[ZYZY15] Xiaowei Zhou, Can Yang, Hongyu Zhao, and Weichuan Yu.
Low-rank modeling and its applications in image analysis.
ACM Computing Surveys (CSUR), 47(2):36, 2015.

| 259

http://dx.doi.org/10.1137/060668353
http://dx.doi.org/10.1137/060668353
http://dx.doi.org/10.1145/1138450.1138459
http://dx.doi.org/10.1145/1138450.1138459
http://dx.doi.org/10.1109/TVCG.2010.124
http://dx.doi.org/10.1109/TVCG.2010.124
http://dx.doi.org/10.1109/JSTSP.2016.2523903
http://dx.doi.org/10.1109/JSTSP.2016.2523903
http://arxiv.org/abs/1908.05875
http://arxiv.org/abs/1908.05875
http://dx.doi.org/10.1007/s00498-019-0241-9
http://dx.doi.org/10.1007/s00498-019-0241-9
http://dx.doi.org/10.1109/VLSM.2001.938900

List of symbols

Fitting curves and surfaces

Ck k-continuous differentiability (p. 23)

ΓB set of optimization variables (p. 62)

λ regularization parameter (p. 77)

Ωij rectangular domain for composite surfaces (p. 204)

ψi blossom function (p. 100)

A(b) disctretized MSA (p. 129)

βK(t; b0, . . . , bK) Bézier curve of degree K (p. 48)

B(t) composite curve (Bézier, blended or Bézier-like) (p. 50)

β̃K(t; b̃0, . . . , b̃K) tangent Bézier curve of degree K in TxM (p. 91)

b̃i, b̂i control vector in TxM (p. 91)

bi, bij control point (p. 48)

BjK(t) jth Bernstein polynomial of degree K (p. 48)

dref reference point (p. 63)

di, dij data point (p. 2)

fi(·, x, y) endpoint function (blossoms) (p. 99)

g[k]i (t) ith Bézier curve of degree k (De Casteljau) (p. 134)

| 261

? | List of symbols

pij linearization point (p. 204)

σK(t1, t2; (bij)i,j=0,...,K) Bézier surface of degree K (p. 158)

σI
K Bézier surface of type I (averaging) (p. 162)

σII
K Bézier surface of type II (tensorization) (p. 162)

σIII
K Bézier surface of type III (De Casteljau) (p. 162)

S(t) composite surface (Bézier, blended or thin plate spline) (p. 157)

Sij local surface associated to pij (p. 204)

S̃ij tangent surface at TpijM (p. 204)

ti, tij parameter associated with a data point (p. 2)

w(t) weight function (p. 91)

x[k]i ith point of the kth step of the De Casteljau algorithm (p. 50)

Elements of differential geometry

∼ equivalence (p. 24)

(M, g) Riemannian manifold (p. 31)

(U , ϕ), (V , ψ) chart (p. 20)

(M,A+), (N,B+) manifold (general definition) (p. 22)

[·, ·] Lie bracket (p. 33)

A, B atlas (p. 22)

av[(x1, . . . , xn), (w1, . . . , wn)] weighted geodesic average (p. 39)

co(U) multigeodesically convex hull (p. 40)

d2[x, y, z] second order absolute finite differences [BBSW16] (p. 129)

dM(·, ·) Riemannian distance (p. 31)

EXPn
x(v) discrete logarithm (p. 44)

expx(ξ) Riemannian exponential map (p. 37)

262 |

List of symbols | ?

D2

dt2 Levi-Civita second covariant derivative (p. 36)

γ curve (p. 27)

Γk
i,j Christoffel symbols (p. 35)

Γg,ξ geodesic variation of g(·; x, y) w.r.t ξ ∈ TxM (p. 131)

〈·, ·〉x inner product on TxM (p. 31)
1
n LOG discrete logarithm (p. 43)

logx(y) Riemannian logarithmic map (p. 37)

η
[k]
i derivative of g[k]i w.r.t x in direction η ∈ TxM (p. 134)

∇ affine connection (p. 33)

∇ηξ covariant derivative of ξ w.r.t η (p. 34)

∇M f (x) Riemannian gradient (p. 32)

Px→y(ξx) parallel transport of ξx along g(t; x, y) (p. 41)

F (M) set of smooth functions (p. 27)

X (M) set of all vector fields (p. 30)

ξx tangent vector at x ∈ M (p. 27)

Dx f [ξ] directional derivative of f w.r.t x in direction ξ (p. 130)

g(ξ, η) Riemannian metric, ξ, η ∈ TxM (p. 31)

g(t; x, y) geodesic (p. 36)

J∗F,ν adjoint Jacobi field (p. 143)

Jg,ξ Jacobi field along g(·; x, y) (p. 132)

Rx retraction (p. 30)

rx injectivity radius (p. 38)

TM tangent bundle (p. 29)

TxM tangent space (p. 27)

| 263

? | List of symbols

Spaces and manifolds

Gr(n, p) Grassmann manifold (p. 25)

L2 set of square integrable functions (p. 69)

M, N (Riemannian) manifold (p. 31)

R
n×p
∗ set of full rank n× p matrices (p. 115)

P shape space of open polygonal curves (p. 193)

Sh shape space of 3D-shells (p. 195)

N natural numbers (p. 2)

On orthogonal group (p. 25)

S+(n, p) set of positive semidefinite matrices of size n, rank p (p. 115)

R real numbers (p. 2)

Rm Euclidean space (p. 22)

S shape space of closed curves (p. 70)

SO(n) special orthogonal group (p. 25)

Sn−1 sphere (p. 29)

St(n, p) Stiefel manifold (p. 23)

Acronyms

BL-I Bézier-Like curve (type I) (p. 107)

BL-II Bézier-Like curve (type II) (p. 107)

CFD Computational Fluid Dynamics (p. 114)

LC Local Curve (p. 107)

MOR Model Order Reduction (p. 120)

MSA Mean squared acceleration (p. 128)

PMOR Parametric Model Order Reduction (p. 120)

264 |

Index

Gr(n, p), 25
Od, 25
λ, 77
S+(n, p), 25, 84, 107, 112, 115, 121
SO(n), 25, 29, 110, 153, 192

acceleration, 36, 74
affine connection, 33

Levi-Civita, 34
Riemannian connection, 34

atlas, 22
equivalence, 22
maximal atlas, 22

B-spline, 188
Bernstein polynomial, 48, 158
blossom, 100

CFD, 114
chain rule, 130
chart, 20

compatible, 21
transition map, 21

Christoffel symbols, 35
control point, 48, 58, 63, 80, 173, 178,

187, 190
control vector, 91
convex hull, 40
covariant derivative, 34, 128

curve, 27
Bézier curve, 48, 54, 134, 159
Bézier-like curve, 101, 104
blended curve, 91, 93
composite Bézier curve, 50, 64,

81, 88, 138
hybrid Bézier curve, 56, 71
local curve, 91
tangent curve, 91

cut locus, 38, 87

data point, 2
De Casteljau, 50, 54, 100, 134, 159,

162
differentiability conditions, 52, 55, 60,

66, 81, 96, 103, 106, 169,
175, 209, 215

directional derivative, 130, 134
distance, 31, 39

discrete distance, 42

endpoint function, 99
equivalence, 24
Euclidean space, 22, 48, 58, 62, 79,

146
Exp-Log complexity, 66, 89, 98, 104,

106, 208, 216
exponential map, 18, 37, 70, 116

discrete exponential, 44

| 265

? | Index

fiber, 24
finite differences, 42, 129
fitting, 2, 81, 88, 93, 202, 214

geodesic, 17, 36, 70, 115, 134
average, 39, 206, 211
average (dyadic), 206
coupled, 133
discrete n-geodesic, 43
discrete average, 43
Exp-Log, 18, 38, 39, 54, 166

geodesic variation, 131
gradient, 32, 130, 139
Grassmann manifold, 25

infinite loop, 266,
injectivity radius, 38, 85
inner product, 31
interpolation, 60, 64, 66, 81, 85, 87,

89, 96, 191, 192, 202

Jacobi field, 132, 134
adjoint, 143

Karcher mean, 39

Levi-Civita, 34, 36, 128
Lie bracket, 33
linearization point, 204
logarithmic map, 18, 37, 71, 116, 184

discrete logarithm, 43

manifold, 16, 22
embedded submanifold, 23
product manifold, 24
quotient manifold, 24
Riemannian manifold, 17, 31

metric, 17, 31, 70, 115
minimal representation, 66, 89, 98, 103,

106, 215

MOR, 120
MSA, 129, 139

natural cubic spline, 64, 81, 96, 109
norm, 31

orthogonal group, 25

parallel transport, 19, 40, 41, 185
Schild’s ladder, 44

PMOR, 120
proper set, 40

rank, 84
reference point, 63, 80, 91, 204
regularizer, 77
retraction, 18, 30, 37

shape space, 70, 193, 195
smooth map, 23
special orthogonal group, 25
sphere, 23, 29, 56, 85, 107, 110, 147,

191, 217
Stiefel manifold, 23, 25
surface, 157

Bézier surface, 158, 159, 162, 174
blended surface, 206, 214
composite Bézier surface, 160
local surface, 204
tangent surface, 204
thin plate spline, 201

symmetric space, 132, 168

tangent bundle, 29
tangent space, 17, 27

root, 27
tangent vector, 27
thin plate spline, 201, 215
transvaginal ultrasound, 67

vector field, 30

266 |

Index | ?

vector transportation, 40
velocity, 74

weight function, 91, 174, 212, 213,
219

wind field, 84, 107, 112

| 267

	Introduction
	What is the current research about manifolds?
	What are the motivations of data fitting?
	How to tackle the data fitting problem?
	Why is this work different?
	How to read (and what to find in) this thesis?

	Concerning manifolds
	A (not too) short introduction for the impatient
	From a chart to a manifold
	A Euclidean space on manifolds: the tangent space
	Riemannian structure of a manifold
	Remarkable mappings on Riemannian manifolds
	Additional numerical tools

	Interpolation with Bézier curves
	Euclidean Bézier curves
	Bézier curves on manifolds
	Interpolation with velocity-imposed curves
	Interpolation with composite Bézier curves
	An application to transvaginal ultrasound

	Fitting with Bézier, blended, and Bézier-like curves
	Fitting with composite Bézier curves
	Fitting with blended Bézier curves
	Fitting with composite Bézier-like curves
	Numerical examples
	An application to wind fields estimation
	Another application to parametric model order reduction

	Optimality of the Bézier fitting curve
	Some additional mathematical elements
	Gradient of the discretized mean squared acceleration
	Numerical considerations
	Validation of the fitting methods

	Interpolation with Bézier surfaces
	Euclidean Bézier surfaces
	Bézier surfaces on manifolds
	Composite Bézier surfaces on manifolds
	Control points generation for surface interpolation
	Accelerated generation of control points
	Numerical examples

	Fitting with blended surfaces
	Euclidean thin plate splines
	Fitting with blended thin plate splines
	Illustrative examples

	Summary and perspectives
	What was it about?
	How well were the objectives achieved?
	What to do next?

	Appendices
	Coefficients for interpolation with a composite cubic curve
	Coefficients for interpolation with a hybrid composite curve
	Coefficients for fitting with a composite cubic curve
	Proof of equation (6.33)
	Examples of geometric elements on manifolds

	List of publications
	Bibliography
	List of symbols
	Index

