Differentiable piecewise-Bézier interpolation on Riemannian manifolds UCL

P.-A. Absil¹, Pierre-Yves Gousenbourger¹, Paul Striewski², Benedikt Wirth²

¹ICTEAM Institute (Université catholique de Louvain, Belgium),

²Institute for Computational and Applied Mathematics (Universität Münster, Germany)

Goal of the game

$$\mathfrak{B}: [0, M] \times [0, N] \to \mathcal{M}: (t_1, t_2) \mapsto \beta(t_1 - m, t_2 - n, \mathbf{b}^{mn})$$

with $m = |t_1|$ and $n = |t_2|$

Unknowns: 12 control points
$$\mathbf{b}^{mn} = \{b_{ij}^{mn}\} \subset \mathcal{M}$$
 per patch.

$$\boldsymbol{\beta}(t_1, t_2, \mathbf{b}) = \operatorname{av}[\mathbf{b}, (w_{ij}(t_1, t_2))]$$

Goal Find the control points $\{b_{ij}^{mn}\} \subset \mathcal{M}$ of the Bézier surface \mathfrak{B} such that \mathfrak{B} is the natural interpolating cubic B-spline when $\mathcal{M} = \mathbb{R}^r$. This ensures \mathfrak{B} to minimize its mean square acceleration.

Summary

Université catholique de Louvain

> Project on tangent space

With data points compute $\hat{\alpha}_{mn}$ (p_{mn}) for curves in direction $t_1 \forall n$.

