
Piecewise-BézierC1 interpolationonRiemannian
manifoldswith application to2Dshapemorphing

Pierre-Yves Gousenbourger1, Chafik Samir2, Pierre-Antoine Absil1
1ICTEAM Institute (Université catholique de Louvain, Belgium), 2ISIT (Université de Clermont, France)

Context
What? A new framework to fit a smooth path
to a finite set of given data points on a Rieman-
nian manifold.
Why? Several applications in vision, such as
reconstructing object shape evolution in time.
How? With a C1-path of minimal square accel-
eration on the manifold, ensuring low space and
time complexity.

Conclusion
Formulation: An optimization problem solved
by a tridiagonal linear system based on tools
from differential geometry (fast);
Storage: Only 3n − 1 control points of the
Bézier segments (light);
Solution: C1-interpolation smooth path com-
posed of Bézier functions (new).

Mathematical formulation
On Euclidean spaces, the minimization of the mean square acceleration of the piecewise path leads to a tridiagonal linear system with unknowns αi. We
generalize it to Riemannian manifolds with differential geometry tools as the scalar product (aT b = 〈a, b〉) and the Logarithmic map (b− a = Loga(b)).[
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Methodology on the Euclidean space
Input:
• n+ 1 data points (p0, . . . , pn);

• n − 1 velocity directions at internal data
points (v1, . . . , vn−1);

• n Bézier functions driven by unknown inter-
mediate control points: functions of degree
2 for the segment joining p0 and p1, as well
as the segment joining pn−1 to pn, and func-
tions of degree 3 for the other segments.
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Free variables: The norms αi (scalar) of the velocity directions.
Constraint: The piecewise path is smooth at data points.
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βk: Bézier segment driven by pn−1, bn−1 and pn
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Output: The optimal intermediate control points yielding the piecewise Bézier path.
Reconstruction of the path: Application of the De Casteljeau algorithm generalized with
geodesics to manifolds.

Result on the Euclidean plane

Norm of the velocity of the Bézier curve

The optimization on a linear finite dimensional
manifold produces a smooth path, as expected.

Result on the unit sphere

Norm of the velocity of the Bézier curve

The generalization to a non-linear finite
dimensional manifold leads to a smooth path.

Morphing of shapes

Norm of the velocity of the Bézier curve

The generalization to a more general manifold
leads to visually satisfying results.


