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Context

We propose a new framework to

e fit n+ 1 data points (p;)o<i<n on a manifold M;

e given n—1 velocity directions at internal data points (v;)1<i<n—1
on the tangent space in p; (noted T, M);

e with n Bézier functions (55)g<i<n_1:[0,1] — M

— degree k = 2: segments from py to p; and from p,,_1 to p,

— degree k = 3: other segments.

The Bézier path is driven by its intermediate control points (b, , b ).
We ensure low space and time complexity.

Method on the Euclidean space
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Optimize the norms «; > 0 of the velocity directions, which are independent of the manifold M.

Constraint: the path is smooth at data points = bii = p; £ o;v;.
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B Bézier segment driven by p,,_1, b:;_l and p,
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Solution on the Euclidean space

On R", VP(«;) = 0 = tridiagonal linear system with unknowns «;.
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Results
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Norm of the velocity of the Bézier curve
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The optimization on a linear finite

dimensional manifold produces a
smooth path, as expected.

Quadratic polynomial P(c;)

Generalization to manifold

The tridiagonal system is generalized to mani-

folds using tools of differential geometry.
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Norm of the velocity of the Bézier curve
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The generalization to a non-linear
finite dimensional manifold leads to a
smooth path.
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Manifolds
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Norm of the velocity of the Bézier curve
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The generalization to a more general

manifold leads to visually satistying
results.
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Summary

Search the optimal
intermediate control
points (b;,b; ) € M
driving an optimal

C! path.
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Constraint
b = pi+
b, = Di— oy

On the Euclidean
space, minimize the
mean square
acceleration P(q;) of
the path.
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Solve a tridiagonal
system In «;
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Manifold
adaptation

the entries become:

alb — {(a,b)
b—a — Loga(b)
a+ vt — Exp,(vt)
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Compute back the
intermediate control

points
+
bi :_Lpri(::OéiUZ')
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Reconstruct the
path with the De
Casteljau  algorithm

generalized to M
with geodesics.



