

A medical application

5

The wind field estimation

How to interpolate or fit points on \mathcal{M} ... in 1D and 2D?

7

Interpolation and fitting on manifolds with differentiable piecewise-Bézier functions

MVIP, Kaiserslautern

Pierre-Yves Gousenbourger pierre-yves.gousenbourger@uclouvain.be

December 2, 2016

The path...

9

The path...

1D : Interpolative Bézier curves

Each segment between two consecutive points is a **Bézier curve** of degree K.

$$\beta_K(t, \mathbf{b}) = \sum_{i=0}^K b_i B_{iK}(t)$$

[G. et al. 2014, Arnould et al. 2015]

Reconstruction : the De Casteljau algorithm

Example on the sphere

It's ugly. Make it **smooth**!

Smooth interpolation with Bézier (in \mathbb{R}^n)

Each segment is a Bézier curve smoothly connected! Unknowns : b_i^- , b_i^+ .

Differentiability

$$b_i^+ = 2\mathbf{d_i} - b_i^-$$

Optimal C^1 -piecewise Bézier interpolation (in \mathbb{R}^n)

Minimization of the mean squared acceleration of the path

$$\begin{split} & \min_{b_i^-} \int_0^1 \|\ddot{\beta}_2^0(b_1^-;t)\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i(b_i^-;t)\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n(b_{n-1}^-;t)\|^2 \mathrm{d}t \\ & \min_{b_i^-} \int_0^1 \|\ddot{\beta}_2^0(b_1^-;t)\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i(b_i^-;t)\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n(b_{n-1}^-;t)\|^2 \mathrm{d}t \end{split}$$

Second order polynomial $P(b_i^-)$

$$\min_{b_i^-} \int_0^1 \|\ddot{\beta}_2^0(b_1^-;t)\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i(b_i^-;t)\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n(b_{n-1}^-;t)\|^2 \mathrm{d}t$$

Second order polynomial $P(b_i^-)$

A result on \mathbb{R}^2

Optimal C^1 -piecewise Bézier interpolation (on \mathcal{M})

■ The control points are given by :

$$b_i^- = \sum_{j=0}^n q_{i,j} d_j$$

■ These points are invariant under translation, *i.e.*:

$$b_i^- - d^{ref} = \sum_{j=0}^n q_{i,j} (d_j - d^{ref})$$

■ On manifolds: projection to the **tangent space** of d^{ref} with the **Log**, as $a - b \Leftrightarrow \text{Log}_b(a)$

$$v_i = \operatorname{Log}_{\boldsymbol{d^{ref}}}(b_i^-) = \sum_{j=0}^n q_{i,j} \operatorname{Log}_{\boldsymbol{d^{ref}}}(d_j)$$

■ Back to the manifold with the \mathbf{Exp} : $b_i^- = \mathrm{Exp}_{\mathbf{d^{ref}}}(v_i)$.

Application to MRI – the manifold of closed shapes

Interpolation with Bézier: pros and cons

- \checkmark Optimality conditions are a closed form linear system.
 - ✓ Method only needs exp and log maps.
 - ✓ The curve is C^1 .

X No guarantee on the optimality when M is not flat.

[G. et al., 2014]

[Arnould et al., 2015]

[Pyta et al., 2016]

The path...

Smooth fitting with Bézier (in \mathbb{R}^n)

Now data points are approached but not interpolated! Unknowns : b_i^- , b_i^+ , p_i .

Differentiability

$$p_i = \frac{b_i^- + b_i^+}{2}$$

Optimal C^1 -piecewise Bézier fitting (in \mathbb{R}^n)

Minimization of the mean squared acceleration of the path

$$\min_{\substack{p_0, b_i^-, b_i^+, p_n \\ 0}} \int_0^1 \|\ddot{\beta}_2^0\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n\|^2 \mathrm{d}t + \lambda \sum_{i=0}^n \|d_i - p_i\|_2^2$$

$$= \min_{\substack{p_0, b_i^-, b_i^+, p_n \\ 0}} \int_0^1 \|\ddot{\beta}_2^0\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n\|^2 \mathrm{d}t + \lambda \sum_{i=0}^n \|d_i - p_i\|_2^2$$
Second order polynomial $P(p_0, b_i^-, b_i^+, p_n, \lambda)$

$$= \min_{\substack{p_0, b_i^-, b_i^+, p_n \\ 0}} \int_0^1 \|\ddot{\beta}_2^0\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n\|^2 \mathrm{d}t + \lambda \sum_{i=0}^n \|d_i - p_i\|_2^2$$
Second order polynomial $P(p_0, b_i^-, b_i^+, p_n, \lambda)$

$$\nabla P(n_0, h_i^-, h_i^+, n_{ij})$$

Optimal C^1 -piecewise Bézier fitting (on \mathcal{M})

■ The control points are given by :

$$x_i = \sum_{j=0}^n q_{i,j}(\lambda) d_j$$

These points are invariant under translation, i.e.:

$$x_i - d^{ref} = \sum_{j=0}^n q_{i,j}(\lambda)(d_j - d^{ref})$$

■ On manifolds: projection to the **tangent space** of d^{ref} with the **Log**, as $a - b \Leftrightarrow \text{Log}_b(a)$

$$v_i = \operatorname{Log}_{d^{ref}}(x_i) = \sum_{i=0}^n q_{i,j}(\lambda) \operatorname{Log}_{d^{ref}}(d_j)$$

■ Back to the manifold with the **Exp**: $x_i = \text{Exp}_{d^{ref}}(v_i)$, where $d^{ref} = d_i$ if x_i is b_i^- , p_i , b_i^+ .

Application: Wind field estimation

Application: Wind field estimation on $S_+(r, p)$. No noise on data.

Application: Wind field estimation on $S_+(r, n)$. With artificial noise (8dB) on data.

Fitting with Bézier: pros and cons

- ✓ Optimality conditions are a closed form linear system.
 - \checkmark Method only needs exp and log maps.
 - ✓ The curve is C^1 .
 - \nearrow No guarantee on the optimality when \mathcal{M} is not flat.
 - ✓ We can do denoising.

Paper submitted at the ESANN conference, 2017. Joint work with MIT.

The path...

2D : Interpolative Bézier surface

Each patch between four neighbour points is a **Bézier surface** of degree K.

$$\beta_K(t_1, t_2, \mathbf{b}) = \sum_{i=0}^K \sum_{j=0}^K b_{ij} B_{iK}(t_1) B_{jK}(t_2)$$

Bézier surface on one patch

Bézier surface on one patch

Continuity

$$b_{i,0}^{m,n} = b_{i,3}^{m,n-1}$$
 •

$$b_{0,j}^{m,n} = b_{3,j}^{m-1,n} \quad \bullet$$

Differentiability

$$b_{0,j}^{m,n} = \frac{b_{-1,j}^{m,n} + b_{1,j}^{m,n}}{2} \bullet$$

$$b_{i,0}^{m,n} = \frac{b_{i,-1}^{m,n} + b_{i,1}^{m,n}}{2}$$

Differentiability

A new definition of Bézier surfaces in \mathcal{M}

Optimal C^1 -piecewise Bézier surface (in \mathbb{R}^n)

Minimization of the mean squared acceleration of the surface

In the Euclidean space...

$$\min_{b_{ij}^{mn}} \sum_{m=0}^{M} \sum_{n=0}^{N} \hat{F}(\beta_3^{mn})$$
 where
$$\hat{F}(\beta_3^{mn}) = \int_{[0,1]\times[0,1]} \left\| \frac{\partial^2 \beta_3^{mn}}{\partial (t_1,t_2)} \right\|_F^2 \mathrm{d}t_1 \mathrm{d}t_2 = \sum_{i,j,o,p=0}^{3} \alpha_{ijop}(b_{ij}^{mn} \cdot b_{op}^{mn})$$

Quadratic function, easy on the Euclidean space... but not in \mathcal{M} .

Optimal surface on \mathcal{M} : project on tangent spaces

Optimal surface on manifolds

Compute $v_{i,j}^{m,n}$ on the tangent space...

Optimal surface on manifolds

... and project back to the manifold.

... well it's a bit more complicated;-).

A result on SO(3)

A result on the space of triangulated shells (just because the result is cool)

The medical application

Interpolation with Bézier in 2D: pros and cons

- ✓ Optimality conditions are a closed form linear system.
- \checkmark Method only needs exp and log maps and parallel transport.
 - ✓ The surface is C^1 .
 - ✗ The control points generation might be very heavy. Another method to generate the control points [Absil et al., 2016]
 - \nearrow No guarantee on the optimality when $\mathcal M$ is not flat.

The path...

Conclusions

General C^1 -interpolative/fitting methods on manifolds... with applications in medical imaging, wind estimation, model reduction,...

light ullet closed form ullet uses few elements in ${\mathcal M}$

Summary on interpolation:

"Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds" [Absil, Gousenbourger, Striewski, Wirth, SIAM Journal on Imaging Sciences, to appear].

Any questions?

Interpolation and fitting on manifolds with differentiable piecewise-Bézier functions

MVIP, Kaiserslautern

Pierre-Yves Gousenbourger pierre-yves.gousenbourger@uclouvain.be

December 2, 2016

Optimal surface: prepare the manifold setting

$$\hat{F}(\beta_3^{mn}) = \sum_{i,j,o,p=0}^{3} \frac{1}{4} \alpha_{ijop} \sum_{r,s \in \{0,1\}} (v_{ij}^{mn}(r,s) \cdot v_{op}^{mn}(r,s))$$

Optimal surface : system reduction

Optimal surface : constraints

Optimal surface : solution

The objective function

$$L(X)_{ij} = \frac{1}{4} \sum_{o,p} \alpha_{ijop} x_{op}$$

$$\min_{u_{ij}^{mn}(r',s')} \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{i,j=0}^{3} \sum_{r,s \in \{0,1\}} (L\tilde{T}SU)_{i,j,r,s}^{m,n} \cdot (\tilde{T}SU)_{i,j,r,s}^{m,n}$$

is solved through a linear system

$$U_{\text{opt}} = -(S^*T^*LTS)^{-1}(S^*T^*LZ).$$

$$\tilde{\mathbf{T}} = \mathbf{T} + \mathbf{Z}$$
 $\stackrel{\text{manifolds}}{\longleftarrow} \mathbf{S}$ $\stackrel{\text{constraints}}{\longleftarrow} \mathbf{U}$