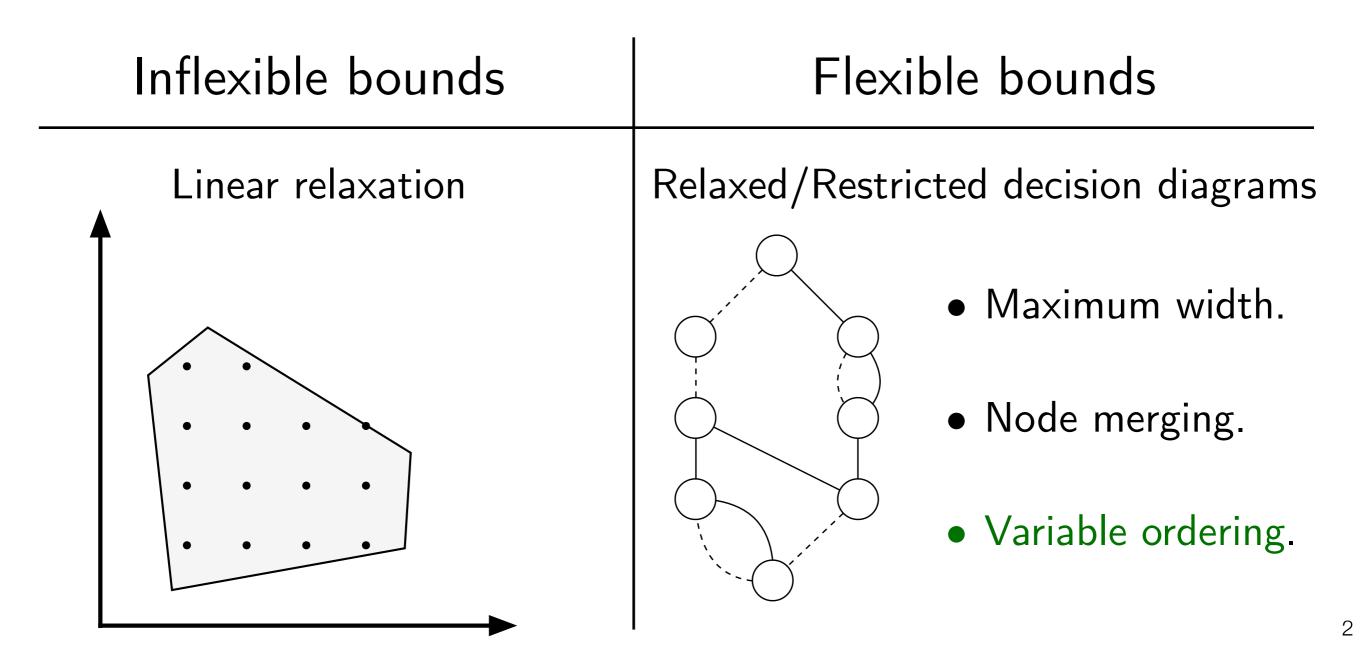
Improving Optimization Bounds using Machine Learning:

Decision Diagrams meet Deep Reinforcement Learning

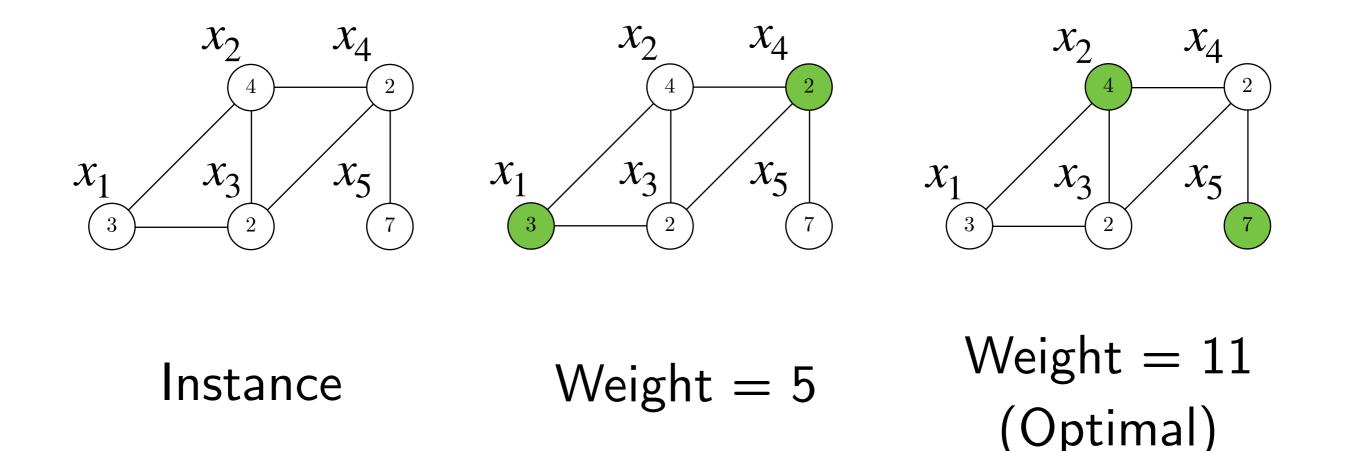
Quentin Cappart, Emmanuel Goutierre, David Bergman, Louis-Martin Rousseau

POLYTECHNIQUE Montréal

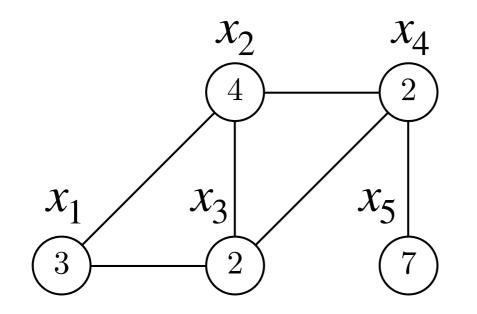
Bounding mechanisms are critical in the design of scalable optimization solvers.



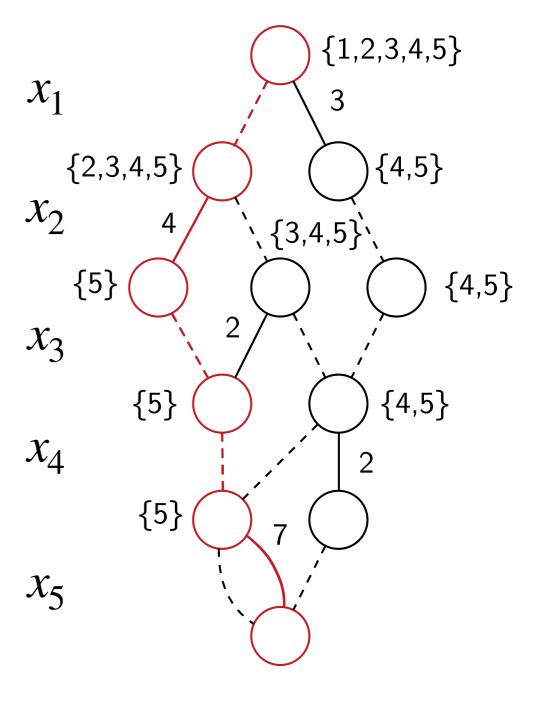
Given a graph, select the set of non adjacent vertices with the maximum weight.



Encoding MISP using decision diagrams

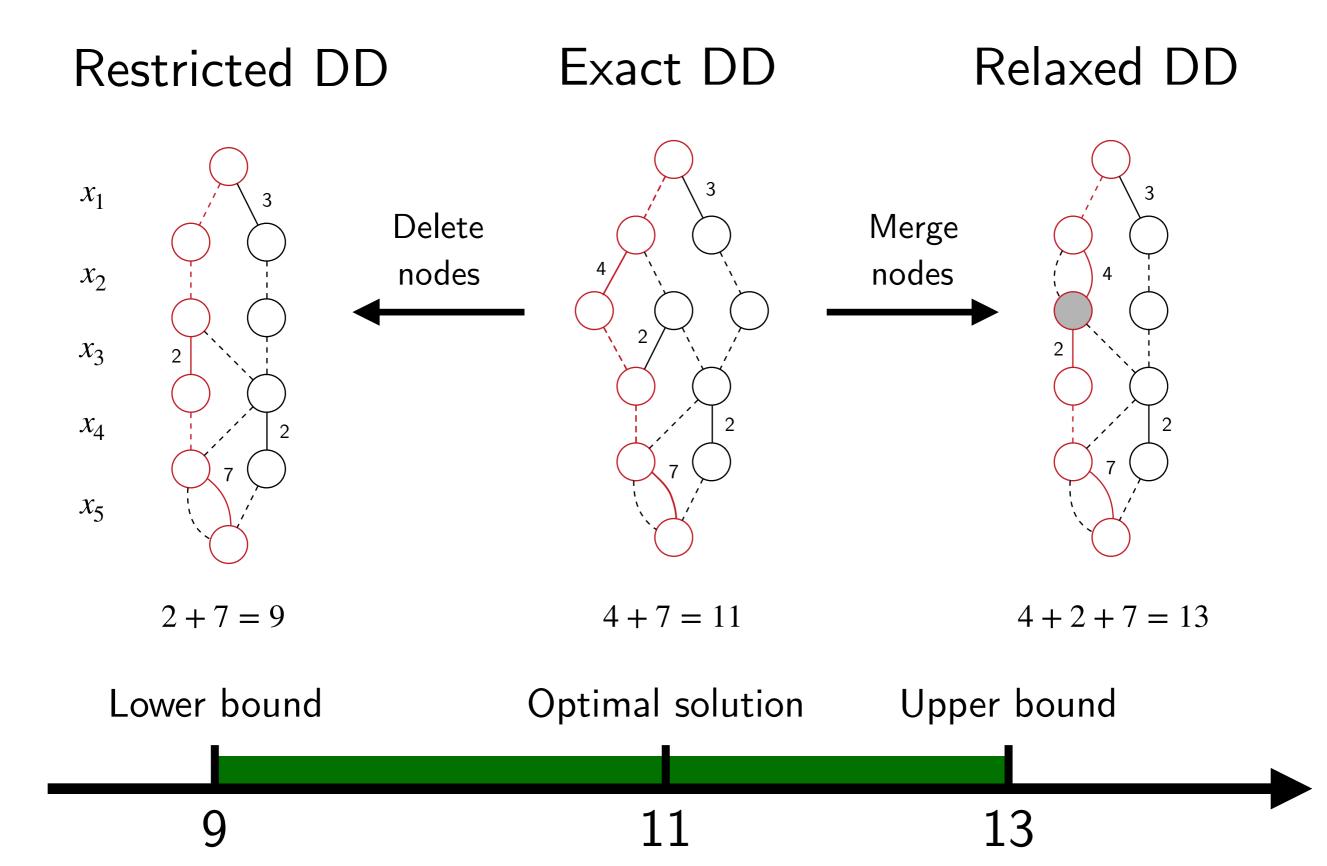


- 1. Node state: vertices that can be inserted.
- 2. Arc cost: weight of the node, if inserted.
- 3. **Solution**: longest path in the diagram.

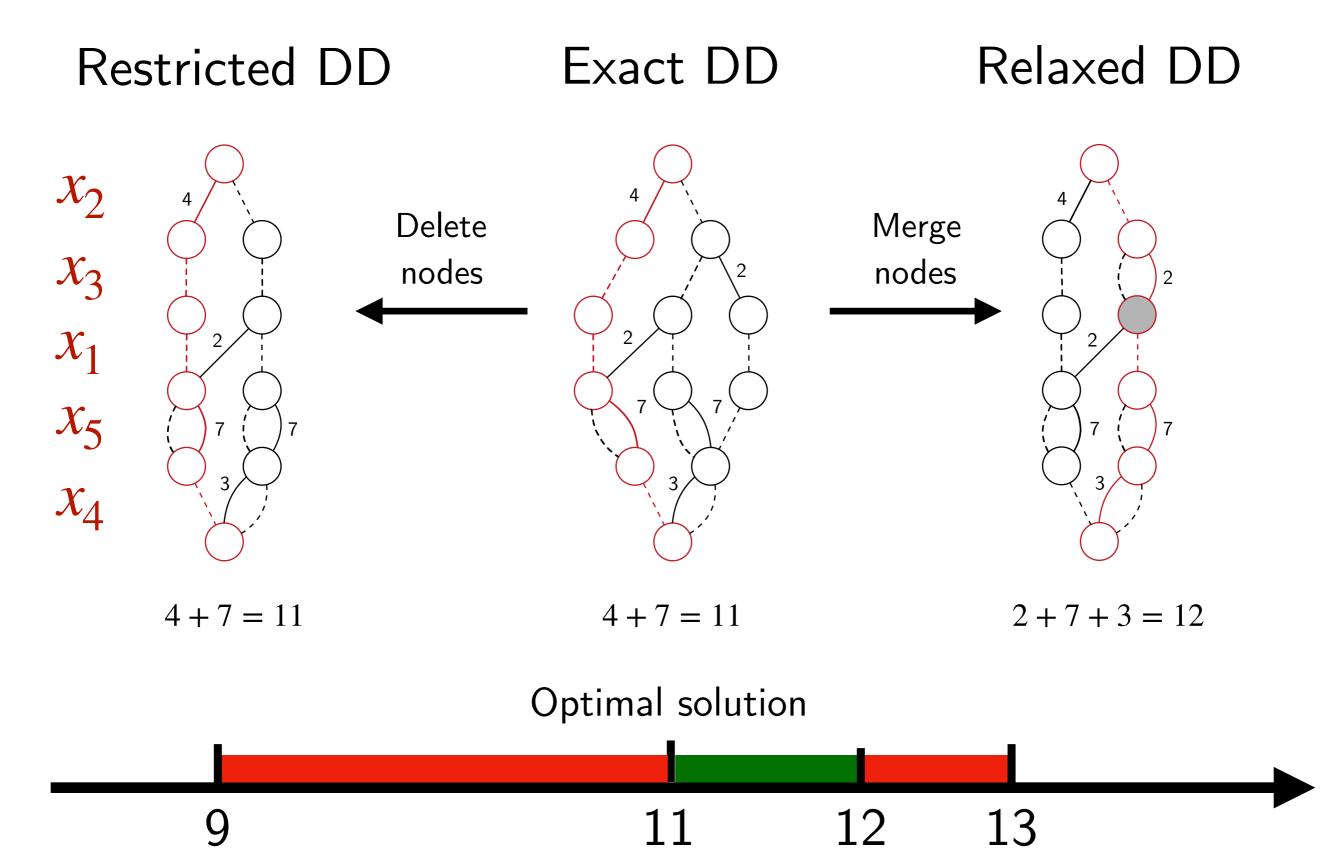


Solution = 4 + 7 = 11

Flexible bounds using decision diagrams (1/2)



Flexible bounds using decision diagrams (2/2)



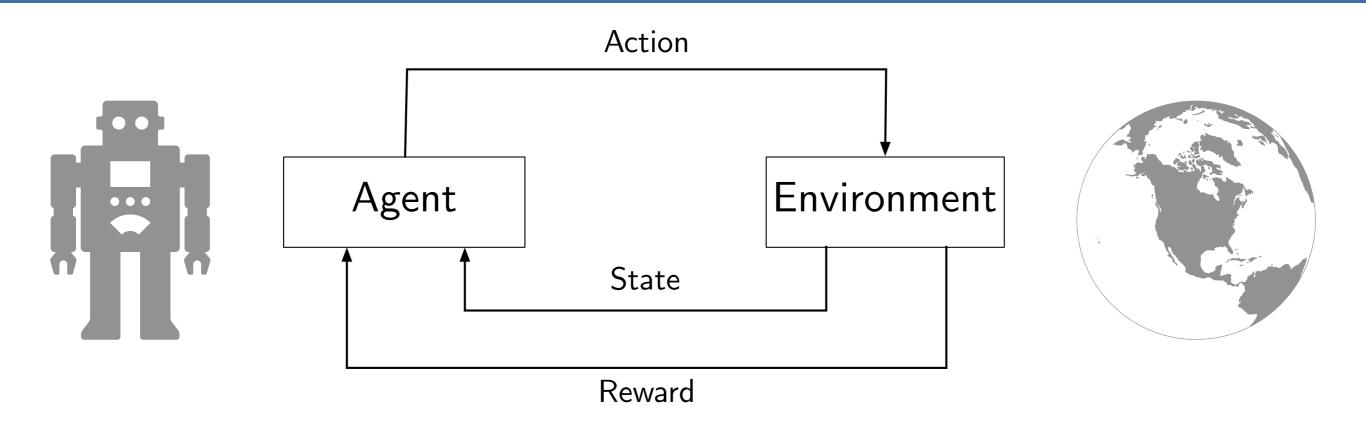
Improving a variable ordering is NP-hard

Variable ordering can have a huge impact on the bounds obtained.

But improving the variable ordering is NP-hard...

We propose a generic method based on Deep Reinforcement Learning.

Reinforcement learning in a nutshell (1/2)



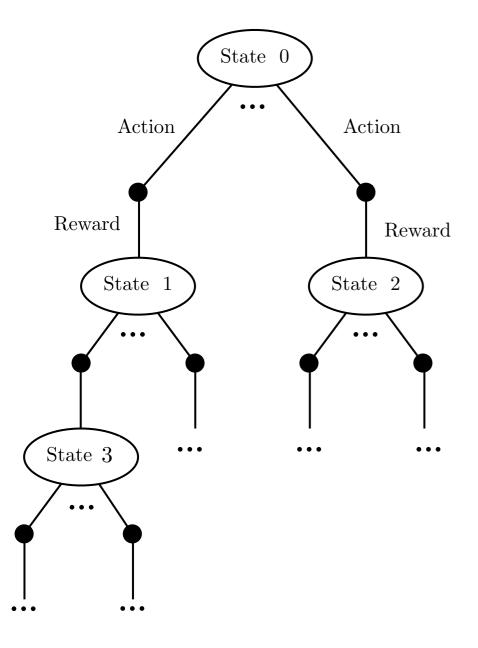
- 1. The **agent** observes the **environment**.
- 2. He chooses an **action**.

The goal is to maximize the sum of received rewards until a terminal state is reached.

- 3. He gets a **reward** from it.
- 4. He moves to another **state**.

Reinforcement learning in a nutshell (2/2)

Maximize the total reward.



How do we select the actions to do ? In theory...

1. Compute an estimation of the quality of actions: **Q-values**.

2. Take the action having the best Q-value: greedy policy.

3. The **policy is optimal** if the Q-values are optimal.

In practice...

1. Search space to large to compute the optimal Q-values. **Q-learning**: iteratively update the Q-values through simulations.

Some states are never visited through the simulations.
 Deep Q-learning: approximate similar states using a deep network.

Reinforcement learning vs decision diagrams

Reinforcement Learning	Decision Diagrams
State Space	State Space
Action	Variable Selection
Reward function	Cost function
Transition function	Transition function
	Merging operation

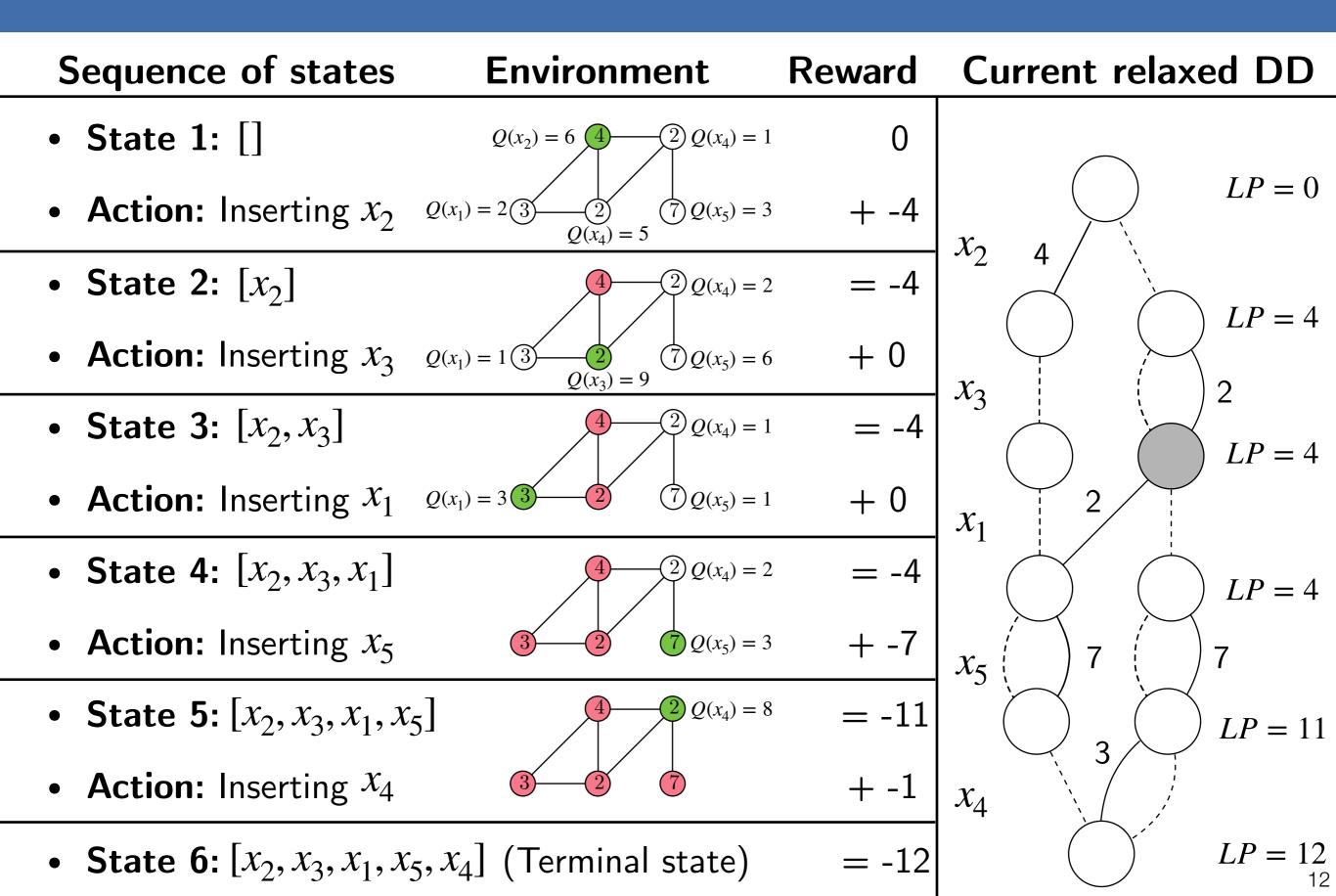
There is a natural similarity ! (Both are based on dynamic programming)

RL environment for decision diagrams

State	 An ordered list of variables. The DD currently built.
Action	Add a new variable in the DD.
Transition	Built the next layer of the DD using the selected variable.
Reward	Improvement in the new lower/upper bound (difference in the longest path).

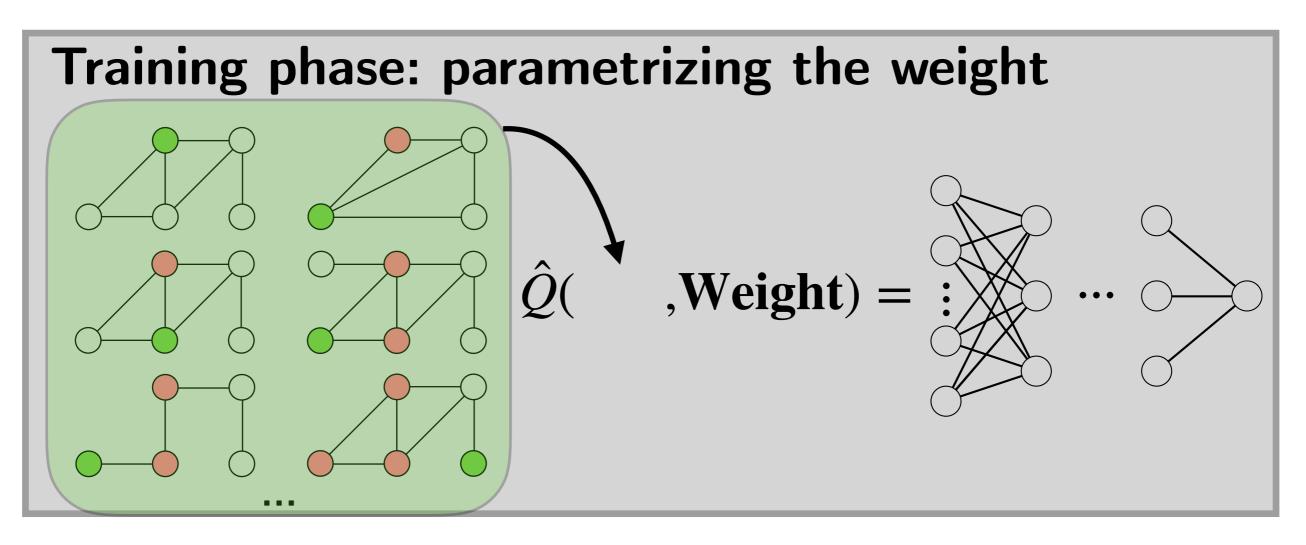
For any COP that can be recursively encoded by a decision diagram.

Construction of the DD using RL



Computing the Q-values

$Q(State, Action) \approx \hat{Q}(State, Action, Weight)$



Evaluation: compute the estimated Q-value

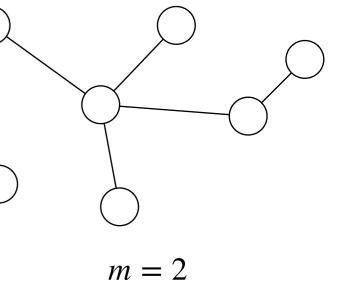
$$\hat{Q}($$
,Weight) = 8

Training the model

- 1. Experiments on the unweighted Maximum Independent Set Problem.
- 2. Barabasi-Albert model: real-world and scale-free graphs.
- 3. **Density known** by fixing the attachment parameter.
- 4. Graphs between 90 and 100 nodes.
- 5. Maximal width for training is 2.
- 6. 5000 randomly generated BA graphs and periodically refreshed.
- 7. Independent models for relaxed and restricted DDs.

Main assumption:

the nature of the graphs we want to access is known.



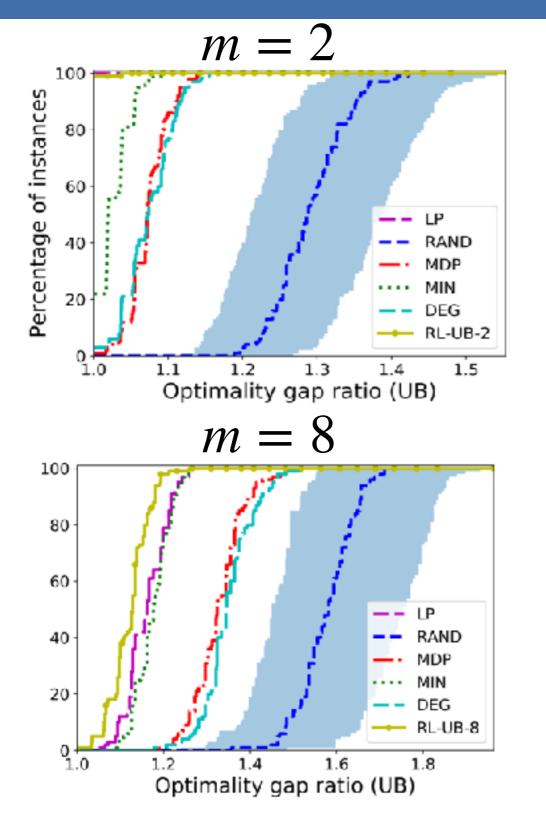
m = 1

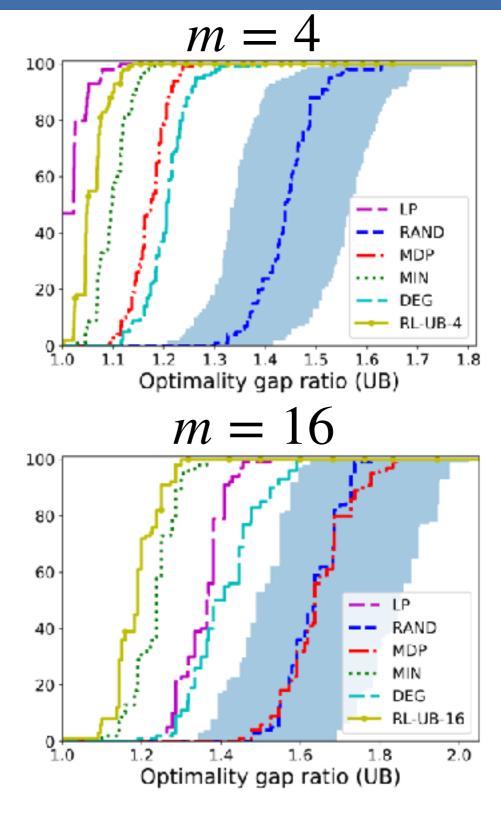
Experimental setup

- 1. Comparison with common heuristics (random, MPD, min-in-state and vertex-degree).
- 2. Comparison with linear relaxation (only with relaxed DDs).
- 3. Width of 100 for relaxed DDs and width of 2 for restricted DDs.
- 4. Graphs between 90 and 100 nodes.
- 5. Different configurations for the attachment parameter (2, 4, 8 and 16).
- 6. Tested on 100 new random graphs.
- 7. Compared with the **optimality gap** using **performance profiles**.

Other configurations are then tested.

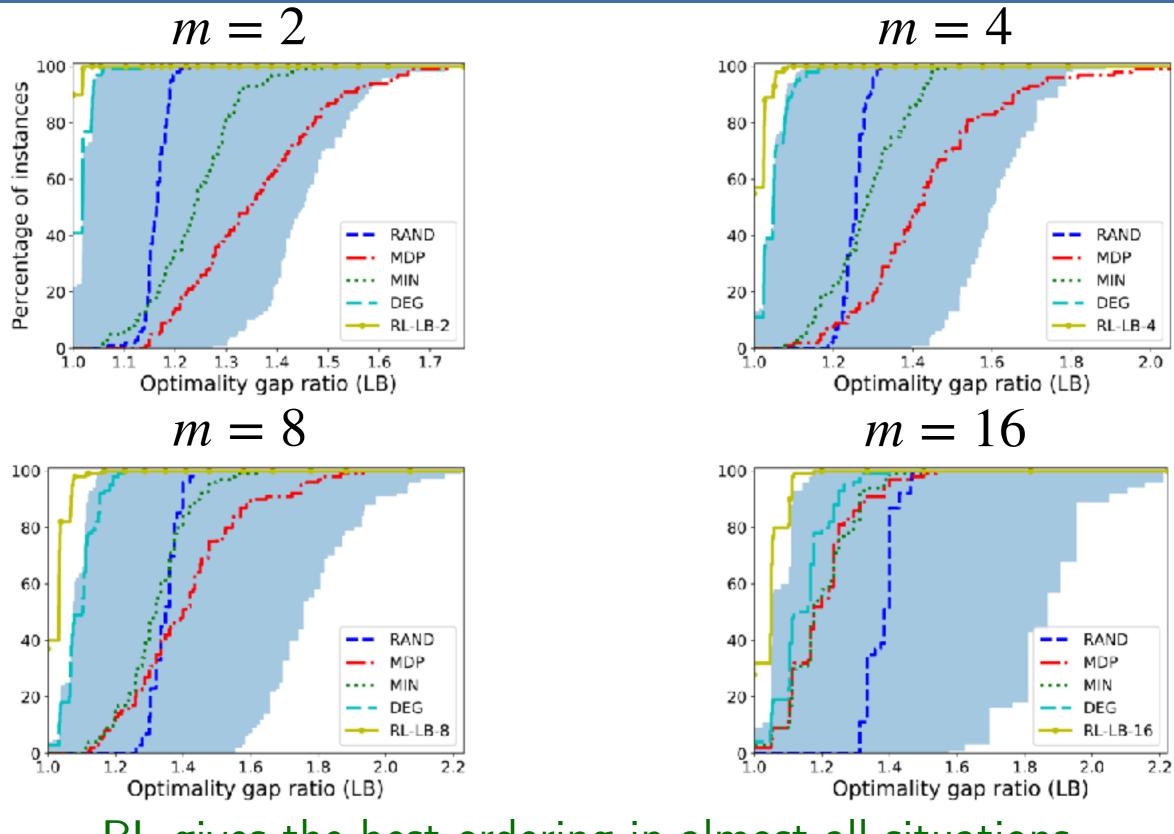
Experiments for relaxed DDs (width = 100)





RL is the best ordering and is better than LP for denser graphs.

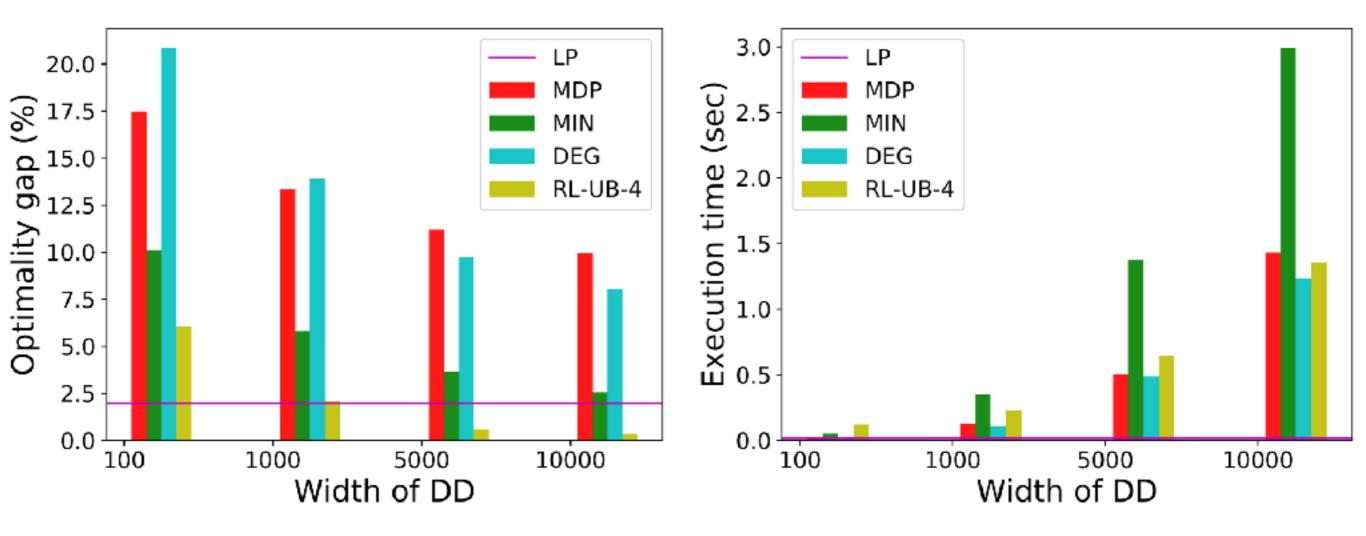
Experiments for restricted DDs (width = 2)



RL gives the best ordering in almost all situations.

Increasing the width for relaxed DDs

Training still done with a width of 2.



The model is robust when the width increases and the execution time remains acceptable.

Conclusion and perspectives

Decision Diagrams

Contributions and results:

- 1. A generic approach based on DDs for learning flexible bounds.
- 2. Better performances than classical approaches on the MISP.
- 3. Robust approach for larger graphs and width.

Perspectives and future work:

- 1. Data augmentation for real-life instances.
- 2. Application to other problems.
- 3. Improvement using other algorithms or approximators.
- 4. Application to other fields (constraint programming, planning, etc.)

Improving Optimization Bounds using Machine Learning

quentin.cappart@polymtl.ca

arxiv.org/abs/1809.03359 <To replace with the AAAI link>

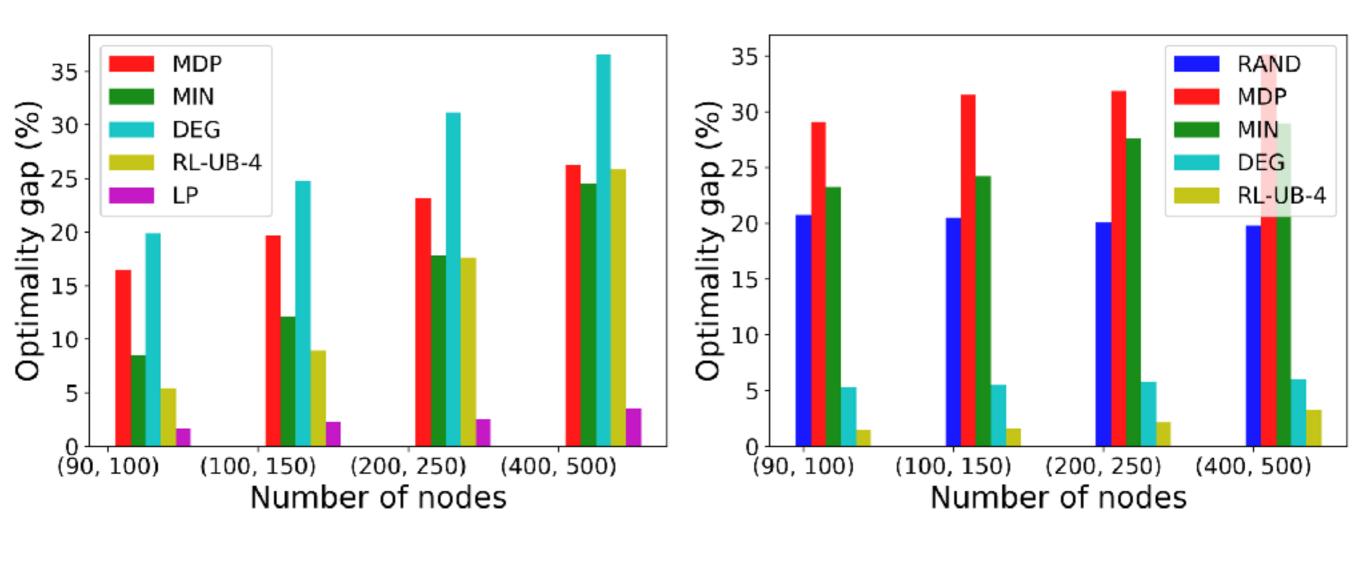
POLYTECHNIQUE Montréal

Increasing the graph size (width = 100)

Training still done with graphs of 90 to 100 nodes.

Relaxed DDs

Restricted DDs



Fairly robust.

Strongly robust.

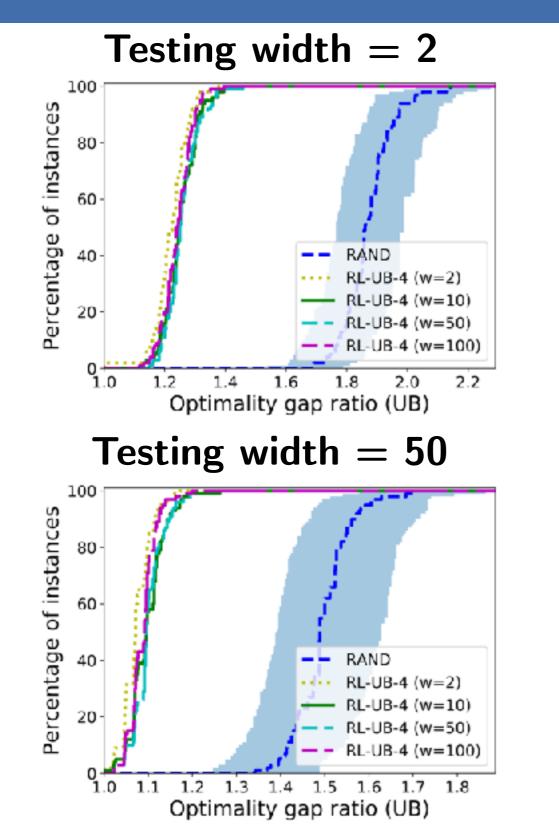
Modifying the distribution (width = 100)

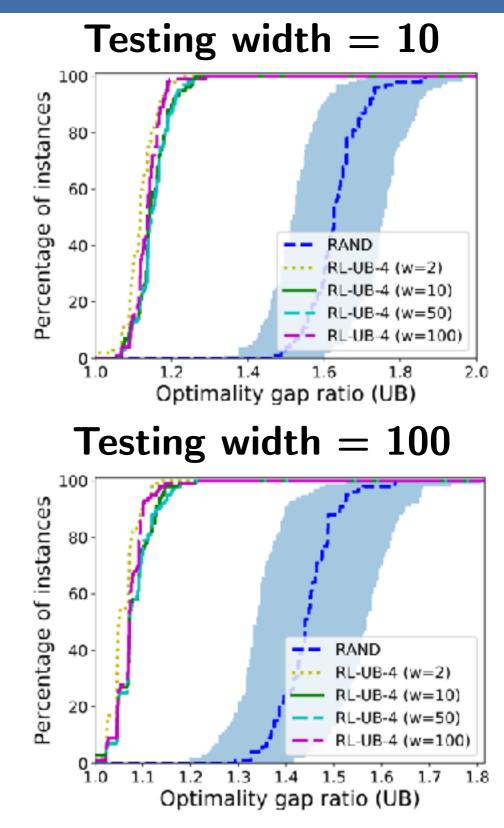
Training done with an attachment parameter of 4.

Relaxed DDs Restricted DDs 40 30 MDP RAND Specific model gap (%) ²² ²² ²² ²² MDP MIN MIN DEG DEG RL-UB-4 RL-UB-4 0 0 16 8 16 2 8 2 Attachment parameter value Attachment parameter value

Important to know the distribution of the graphs we want to access.

Impact of the width used during training

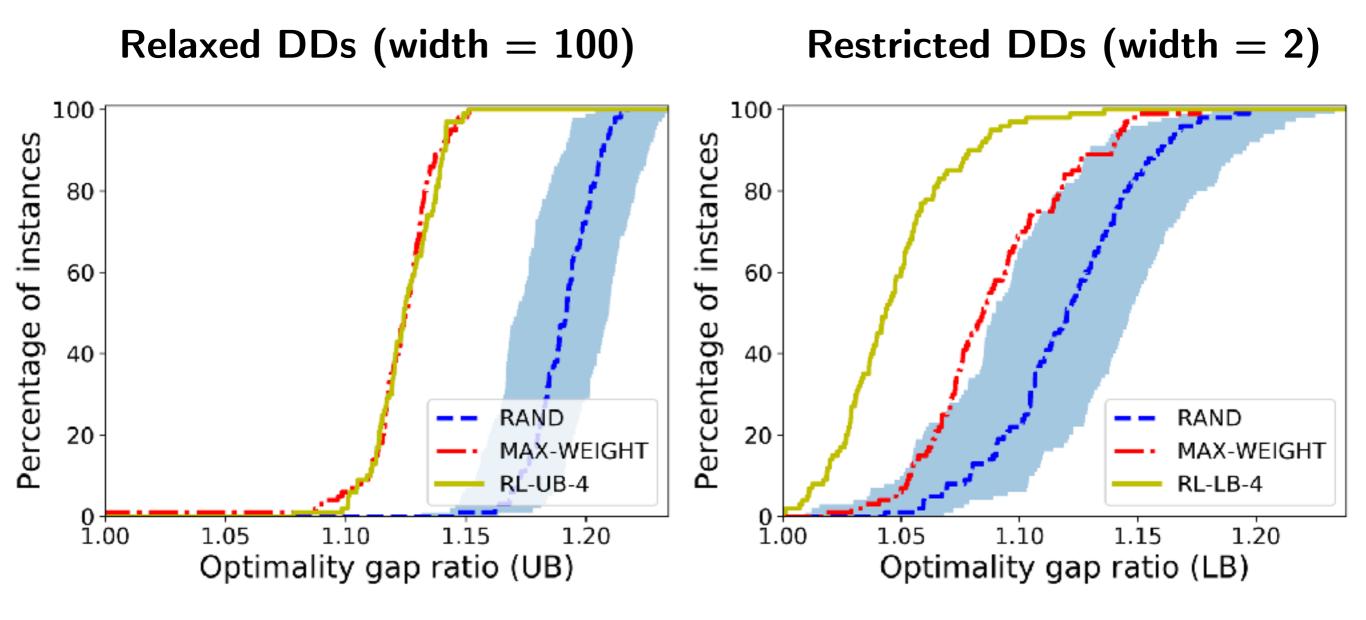




Ordering independent of the width chosen during the training.

Application to Maxcut problem (work in progress)

Given a graph, select a set of nodes such that the weighted cut with the set of non selected nodes is maximized.



Promising results but more difficult than the MISP.