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Research question
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Bounding mechanisms are critical in the design of scalable 
optimization solvers. 

Inflexible bounds

Linear relaxation

Flexible bounds

Relaxed/Restricted decision diagrams

• Maximum width. 

• Node merging. 

• Variable ordering.



Running Example: Maximum Independent Set Problem
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Given a graph, select the set of non adjacent vertices with the 
maximum weight. 
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Encoding MISP using decision diagrams
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1. Node state: vertices that can be inserted. 

2. Arc cost: weight of the node, if inserted. 

3. Solution: longest path in the diagram.
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Flexible bounds using decision diagrams (1/2)
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Optimal solution

3

4

2

7

2

Exact DD

11

x1

x2

x3

x4

x5

4 + 7 = 11

Upper bound

3

4

2

2

7

Relaxed DD

13

Merge 
nodes

4 + 2 + 7 = 13

Lower bound

3

2

2

7

Restricted DD

9

Delete 
nodes

2 + 7 = 9



Flexible bounds using decision diagrams (2/2)
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Improving a variable ordering is NP-hard
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Variable ordering can have a huge impact on the bounds 
obtained. 

We propose a generic method based on                     
Deep Reinforcement Learning. 

But improving the variable ordering is NP-hard... 



Reinforcement learning in a nutshell (1/2)
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The goal is to maximize the sum of received 
rewards until a terminal state is reached. 

1. The agent observes the environment. 

2. He chooses an action. 

3. He gets a reward from it. 

4. He moves to another state.

Agent Environment

Action

State

Reward



Reinforcement learning in a nutshell (2/2)
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Maximize the total reward. 

1. Compute an estimation of the quality of actions: Q-values. 

2. Take the action having the best Q-value: greedy policy. 

3. The policy is optimal if the Q-values are optimal. 

How do we select the actions to do ? 
In theory...

In practice...
1. Search space to large to compute the optimal Q-values. 

2. Some states are never visited through the simulations.
Q-learning: iteratively update the Q-values through simulations.

Deep Q-learning: approximate similar states using a deep network.

State  0

State  1 State  2

Action Action 

Reward Reward

Terminal states

… … …

……

…

State  1

…

… …
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Reinforcement learning vs decision diagrams
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Reinforcement Learning Decision Diagrams

State Space State Space

Action Variable Selection

Reward function Cost function

Transition function Transition function

Merging operation

There is a natural similarity !              
(Both are based on dynamic programming) 



RL environment for decision diagrams
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State 1. An ordered list of variables. 
2. The DD currently built.

Action Add a new variable in the DD.

Transition Built the next layer of the DD 
using the selected variable.

Reward
Improvement in the new   
lower/upper bound        
(difference in the longest path).

For any COP that can be recursively encoded                
by a decision diagram.



Construction of the DD using RL
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Environment Current relaxed DDReward
[]
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• State 1:                                                       0 

• Action: Inserting                                         + -4

LP = 4

Q(x3) = 9
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• State 3:                                                    = -4 

• Action: Inserting                                         + 0

LP = 4[x2, x3, x1]

77x5
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Q(x4) = 24 2
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• State 4:                                               = -4 

• Action: Inserting                                         + -7

LP = 11[x2, x3, x1, x5]
3

x4
x4

Q(x4) = 84 2

2 73

• State 5:                                                   = -11 

• Action: Inserting                                         + -1

LP = 12[x2, x3, x1, x5, x4]• State 6:                     (Terminal state)       = -12

Sequence of states



Computing the Q-values
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Q(State, Action) ≈ Q̂(State, Action, Weight)

Q̂( ,Weight) = ……

...

 Training phase: parametrizing the weight

 Evaluation: compute the estimated Q-value

Q̂( ,Weight) = 8



Training the model
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1. Experiments on the unweighted Maximum Independent Set Problem. 

2. Barabasi-Albert model: real-world and scale-free graphs. 

3. Density known by fixing the attachment parameter. 

4. Graphs between 90 and 100 nodes. 

5. Maximal width for training is 2. 

6. 5000 randomly generated BA graphs and periodically refreshed. 

7. Independent models for relaxed and restricted DDs.

m = 1

m = 2

Main assumption:                                                    
the nature of the graphs we want to access is known.



Experimental setup
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1. Comparison with common heuristics (random, MPD, min-in-state and vertex-degree). 

2. Comparison with linear relaxation (only with relaxed DDs). 

3. Width of 100 for relaxed DDs and width of 2 for restricted DDs. 

4. Graphs between 90 and 100 nodes. 

5. Different configurations for the attachment parameter (2, 4, 8 and 16). 

6. Tested on 100 new random graphs. 

7. Compared with the optimality gap using performance profiles.

Other configurations are then tested.



 Experiments for relaxed DDs (width = 100)
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RL is the best ordering and is better than LP for denser graphs.

m = 2 m = 4

m = 8 m = 16



 Experiments for restricted DDs (width = 2)
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RL gives the best ordering in almost all situations.

m = 2 m = 4

m = 8 m = 16



Increasing the width for relaxed DDs
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The model is robust when the width increases and the execution 
time remains acceptable.                     

Training still done with a width of 2.



Conclusion and perspectives
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Combinatorial 
Optimization

Machine 
Learning

1. A generic approach based on DDs for learning flexible bounds.  

2. Better performances than classical approaches on the MISP. 

3. Robust approach for larger graphs and width.

Contributions and results:

1. Data augmentation for real-life instances.  

2. Application to other problems. 

3. Improvement using other algorithms or approximators. 

4. Application to other fields (constraint programming, planning, etc.)

Perspectives and future work:

Decision Diagrams
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Increasing the graph size (width = 100)
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Training still done with graphs of 90 to 100 nodes.

Relaxed DDs Restricted DDs

Fairly robust.                 Strongly robust.



Modifying the distribution (width = 100)
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Training done with an attachment parameter of 4.

Relaxed DDs Restricted DDs

Important to know the distribution of the graphs we want to access.



Impact of the width used during training
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Ordering independent of the width chosen during the training.

Testing width = 2

Testing width = 50

Testing width = 10

Testing width = 100



Application to Maxcut problem (work in progress)
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Promising results but more difficult than the MISP.

Restricted DDs (width = 2)Relaxed DDs (width = 100)

Given a graph, select a set of nodes such that the weighted cut with 
the set of non selected nodes is maximized. 


