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Abstract

A railway interlocking is the system ensuring a safe train traffic inside a
station by monitoring and controlling signalling components such as the
signals or the points. Modern interlockings are controlled by a generic
software that uses data, called application data, reflecting the layout of
the station under control and defining which actions the interlocking can
perform. The safety of the train traffic relies thereby on application data
correctness, errors inside them can lead to unexpected events, such as
collisions or derailments. However, the application data are nowadays
prepared by automatic tools that do not guarantee a sufficient level of
safety. Furthermore, their verification is a time consuming task and error
prone as it is mostly performed by human testers. Given the high level
of safety required by such a system, verification of application data is
a critical concern. For such reasons, automatising and improving the
verification process of application data is an active field of research. Most
of this research is based on model checking, which performs an exhaustive
verification of the system but which suffers from scalability issues because
of the state space explosion problem.

In this thesis, we investigate new verification methods aiming to
deal with this problem. More concretely, we introduce methods such as
random simulation, statistical model checking and dedicated algorithm
that were until now never applied for verifying interlocking systems. The
relevance and performance of these methods are also analysed through
different realistic stations of the Belgian railway network.

i



ii



Acknowledgements

This research is financed by the Walloon Region as part of the Logistics
in Wallonia competitiveness pole.

iii



iv



Foreword

Railway operators are faced with competition from road, air and mar-
itime transport. They need to improve in terms of the globalisation of
traffic and the interoperability between operations and infrastructure
which are more complex than in other modes. To deal with this is-
sue, Walloon Region of Belgium initiated in April 2014 INOGRAMS
project. The main goal of this project is to maintain the competiveness
of Wallonia’s railway industry in the face of other transportation means.
Given the large scope of this project, it is divided into seven work package.

I do my thesis in the context of this project. More specifically, I work
on the first work package. Its goal is to propose innovative solutions
for easing the future development of new interlocking systems. As the
development of such systems must follow the highest safety requirements,
the same rules must apply for our solutions. For this project, I collaborate
with several companies and universities such as Alstom, Cetic, UMons and
UNamur. Together we develop a tool which can be used to automatically
generate a new kind of application data and verify their correctness. By
correct we mean that it will never cause any safety of availability issue.
My main contribution is related to the verification part. I investigate
how the verification can be performed through different methods.
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Chapter 1

Introduction

1.1 Research goals

In the railway domain, an interlocking is the subsystem that is responsi-
ble for ensuring a safe and fluid train traffic by controlling active track
components of a station. Among these components, there are the signals,
defining when trains can move, and the points, that guide trains from
track to track. Modern interlockings are computerised systems composed
of a generic software taking as input data, called application data, describ-
ing the actions that the interlocking must take for each situation that can
occur in a particular station [1]. The main requirement to consider when
designing an interlocking is the safety. A correct interlocking must never
allow critical situations such as derailments or collisions. To this purpose,
an interlocking must satisfy the highest safety integrity level as stated
by Standard EN 50128 of CENELEC [2]. Although the generic software
is developed in accordance with these requirements, the reliability of an
interlocking is also dependent of the correctness of its application data
which are particular to each station. However, preparation of application
data is still nowadays done by tools that do not guarantee the required
level of safety. Beyond the safety, an interlocking must also ensure that
no train will be stopped too long in the station in order to maintain the
availability of the station. It is why availability, or fluidity, properties
must also be considered. Most of the time, the verification of the appli-
cation data, as well as its validation, is performed through testing on
a physic simulator that reproduces the environment of the interlocking.
This process is thus costly and error prone. Moreover manual testing does
not cover all the scenarios that could possibly end-up in a unsafe situation.

To overcome this lack, research has been carried out in order to
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2 CHAPTER 1. INTRODUCTION

improve the verification of the application data correctness. Most of it
is based on model checking [3]. The goal is to perform an exhaustive
verification of the system. It is done in three steps. First, the application
data and the station layout are translated into a model reflecting the
interlocking behaviour. Secondly, the requirements that the interlocking
must ensure in order to prevent any issue are formalised. Finally, the
model checker verifies that no reachable state of the model violates the
requirements. The main advantage of this method is its exhaustiveness,
if a requirement is not satisfied, the model checker will always detect it.
However, this method suffers from the state space explosion problem.
The number of reachable states exponentially grows as the size of the
model grows and the model checker algorithm might not return a result
within a reasonable time in practice.

Verification of railway interlocking system is a critical concern. More-
over, without optimisation or specific improvements, model checking
cannot be used for verifying large stations. The goal of my research is
to improve this verification. For that, I investigate several methods in
order design a new verification process which can be used for verifying
stations of any size and which can be fully automated.

1.2 Overview of the contributions

This section presents all the contributions that have been developed
through this thesis. Their complete description will follow later in
this document. The contributions can be classified into two different
groups: contributions related to data analysis and contributions related
to verification.

Contributions related to data analysis and preprocessing Dif-
ferent information such as the interlocking behaviour or the infrastructure
are required to perform the verification. However, these information come
from different data sources and have a format not directly exploitable.
It is why one of the first tasks was to extract and analyse these data
and to convert it into an adapted format. This group includes all the
contributions related to the utility tools that we developed to perform
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such tasks.

The first contribution is a tool designed to automatically parse appli-
cation data expressed on Solid State Interlocking (SSI) format [4]. The
output obtained can be used for several purposes and different kinds of
modelling. For instance, it has been used in this thesis for designing a
simulator of the interlocking behaviour. Furthermore, it has also been
used in other works by Busard et al. [5] and Limbree et al. [6] in order
to build a model which can be verified using different model checking
methods.

Following the same idea, the second contribution is a parser tool
extracting the topology of a station from a data source based on railML
[7]. The simulator, as well as [5, 6] is also built using this translator.

Contributions related to verification This group includes the new
verification methods that we introduced during this thesis. Our global
contribution is a framework and a methodology allowing an user to
automatically verify the correctness of an interlocking from its application
data and the topology of its station. Several contributions related to
different parts of the framework have been realised:

• A model instancing the behaviour of the application data and
the topology of a particular station. The model presented here
is designed in order to allow its simulation by a discrete event
simulator and its verification using Bounded Linear Temporal
Logic (BLTL).

• The formalisation of the safety properties defined by Busard et al.
[5] in BLTL. Such a logic is used in order to have the possibility to
determine when the simulator must stop its processing.

• The introduction of an availability property that an interlocking
must face in order to ensure that no train would be stuck in a
station. Such a property has also been formalised in BLTL.

• A Discrete Event Simulation (DES) engine which can be run on
the top of the previous model. This tool contains several advanced
features such as the possibility to stop a simulation at any state and
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to replay it later. A command line interface as well as a graphical
user interface have also been developed in order to facilitate its
utilisation and its visualisation.
• The utilisation of Statistical Model Checking (SMC) methods such
ad Monte Carlo estimation, Chernoff’s bound and importance
splitting algorithm, in order to verify the model running with the
simulator engine.
• A polynomial dedicated algorithm verifying that an interlocking will

never cause derailments or collisions provided that an assumption
of monotonicity hold. It can also verify that each train will reach
the correct destination.
• An executable tool instantiating the model, its simulation, the
requirements and the different verification methods.

1.3 Publications

The work and methods presented on this thesis have already been pre-
sented in several publications:

• A first version of the model and its verification with a discrete
event simulation approach have been published and presented at
29th European Simulation and Modelling Conference in October
2015 [8]. This paper describes how an interlocking can be verified
using a random discrete event simulation and what is the interest
of this approach compared to classical model checking approaches.
• [[UPDATE IF ACCEPTED]] An extended version of the model and
its verification by statistical model checking have been submitted
at Formal aspect of computing Journal. This paper deals with the
drawbacks of [8] and improves the verification thanks to statistical
model checking methods.
• [[UPDATE IF ACCEPTED]] Another extension of the model has
been performed. Concretely, we added the bidirectional locking
mechanism and the differentiation between a route command and
a route activation. Furthermore, a polynomial dedicated algorithm
verifying that the interlocking will never cause any safety issue
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provided that some assumptions hold have been introduced. This
work has been submitted at 35th International Conference on
Computer Safety, Reliability and Security in September 2016.

1.4 Outline

With the exception of the introduction, the content of this thesis is
divided into five other chapters. They are organised as follows:

• Chapter 2 gives the background related to the railway interlocking
domain on which this thesis is based. The structure of an inter-
locking, its behaviour, its input data and how signalling engineers
can use it are described inside. Three case studies exploited in this
work are also introduced.
• Chapter 3 presents how we modelled an interlocking system. The

architecture of the model, its performances, its limitations and the
hypothesis done are detailed.
• Chapter 4 deals with the verification of an interlocking system.
First, the intrinsic difficulties of an automatic verification are
stated. The state of the art methods dealing these issues, as well as
their limitations, are then described. After that, new verification
methods not yet used for interlocking are introduced and analysed.
Finally, a toolbox taking over the verification methods developed
through this thesis is presented.
• Chapter 5 presents the software implemented during this thesis.
This software encompasses the different methods, principles and
algorithms presented in this document.

Finally, the last chapter summarises the work done through this thesis
and sketches possibilities of future work.
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Chapter 2
Interlocking principles

2.1 Context

A railway interlocking is an arrangement of systems that prevents con-
flicting train movements in a station. It is more specially a signalling
subsystem that controls physical components of a station before allowing
a train through the station. To do so, the interlocking collect information
about the occupation of the track layout and about the movable elements
such as the points. It then evaluates this information and can permit or
refuse train movements by setting signals on a proceed or a stop state.

Basically, an interlocking has three main functions which can be split
into three levels [1]:

• Operational level: it includes the interface between the human
signaller performing the request and the machine.
• Interlocking level: it includes the functions required to decide if

the request performed by the signaller can be accepted or not, and
to do the proper actions consequently.
• Element control level: it mainly includes the functions required
to transmit information between the components.

Over the years, the progression of interlocking technology has not
stopped to grow up. Existing technologies can be categorized into four
groups:

• Human interlocking: all the functions (performing the request,
checking its satisfiability and moving components) are performed
by a human. It is the oldest mechanism for an interlocking.

7
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• Mechanical interlocking: the signaller controls the interlocking
through mechanical levers which are connected with each other.
Information transmission to the physical components is done by
wires.
• Electric interlocking: the signaller controls the interlocking
through electric buttons. The physical components are controlled
electrically through a relay technology.
• Computer based interlocking: it is the technology that is cur-
rently mostly used in the world. It is also called electronic inter-
locking. All the functions are performed electronically through a
computer hardware and software.

Table 2.1 recaps the four forms of interlocking technologies and how
the three functions are performed.

operational interlocking element control
human - human human

mechanical mechanical levers lever frame wires
electric electric buttons relays electric

electronic monitor/keyboard hard/software electronic

Table 2.1. Interlocking technologies and technical application of the functions in the
three levels [1].

This thesis deals with computer based interlockings. Such interlock-
ings are controlled by a generic software that uses data, called applica-
tion data, reflecting the layout of the station under control and defining
which actions the interlocking can perform. The safety, implying that
no accident will occur, is the most important aspect to consider when
designing an interlocking. For this reason, European Railway Agency
has edited strict safety norms in an effort to harmonize the signalling
principles and rules at the European level [2, 9]. Although the generic
software is developed in accordance with these requirements, the safety
of the train traffic relies also on the correctness of the application data.

Currently, the application data are prepared manually and are thus
subject to human errors. For example, some prerequisites to the clearance
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of the home signal of a route can be missing. This kind of error can
easily be discovered by a code review or a static analysis [10]. However,
errors caused by concurrent actions, like route commands, are much
harder to spot. In this case, the combination of possible concurrent
actions explodes quickly and testing manually all the combinations is
impracticable. As testing all the possible scenarios is impossible, the
manual validation of the application data relies on a relaxed verification
process performed on three steps:

1. Functional tests: they ensure that the system responds properly
to the commands issued by the controller. Those tests are performed
by the expert who wrote the application data.

2. Safety tests: they check that each command is tested and that
all the conditions that are supposed to impact the command are
tested in all their possible values. Those tests are prepared and
carried out by an independent tester.

3. Reviewing: the application data are finally reviewed by the engi-
neer in charge of the project.

During this process, all the anomalies are traced in a bug manage-
ment tool and must be fixed before the interlocking is commissioned.
This validation is mainly done manually through a physic simulator that
reproduces the behaviour of the interlocking on real infrastructures. In
addition to the high cost of this process, it is also error prone because
there is no guarantee that all the situations that could end-up in a safety
issue have been tested by the simulator.

Generally speaking, the interlocking must known which actions can
be done and under which conditions. Such information can be defined
in different ways according to the type of interlocking considered. Since
1992, Belgian railway stations have used SSI format [4] for their inter-
lockings. Such interlockings use a route based paradigm. A route
is the path that a train is supposed to follow inside a station. When a
train is entering in a station, a signalman assigns a route to the train by
performing a route request. The interlocking will process the request, de-
cide if it can be accepted and perform then some actions in order to set it.
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The rest of this section states the components used by a route based
interlocking, presents how they are formalised in SSI, explains their
behaviour and illustrates it on a case study.

2.2 Components of an interlocking

Let us first present our case study: Braine l’Alleud Station. A represen-
tation of its topology with its related components is shown in Figure 2.1.
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Figure 2.1. Layout of Braine l’Alleud Station.

This figure recaps the component types that are used in our model.
On the one hand, there are the physical components of the track
layout:

• The tracks (e.g Track 101) are the railway structure where trains
can move. A track can be a platform if the trains can stop on it
in order to pick up passengers.
• The track segments (e.g T_01BC) are the portions of tracks where
the trains can be detected. They are delimited by the joints.
• The points (e.g. P_01AC) are the movable devices that allow
trains to move from one track to another. According to Belgian
convention, they can be in a normal position (left) or in a reverse
position (right). They are also called railway switches.
• The signals (e.g. S_CXC or simply CXC) are the devices used to
control the train traffic. They are set on a proceed state (green)
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if a train can safely move into the station or in a stop state (red)
otherwise.

Braine l’Alleud Station is composed of 4 tracks, 17 track segments,
12 points and 12 signals. The physical components are controlled and
monitored by a single interlocking. For instance, the system can detect
that a train is waiting on Track segment T_01AC in front of Signal CC
and then puts this signal on a proceed state if this action will not cause
any safety issue.

On the other hand, there are the logical components. As previously
said, a route is the path that a train is supposed to follow inside a station.
It is generally named according to its origin and its destination place.
Signals are often used as references for the origins whereas tracks or
platforms are used for destinations. For instance, Route R_CXC_101 starts
from Signal CXC and ends on Platform 101. When a train is approaching
to a station, a signalman performs a route request to the interlocking in
order to ask if the route can be commanded. It is a route command.
If the request is fulfilled, all the requested components are locked but the
train cannot use the route yet because the start signal is still on a stop
state. The start signal goes to a proceed state only after the activation of
the route. Route activations are periodically tried by the interlocking
after that the route has been commanded. Once the route activation
has been accepted, the train can finally use the route. The interlocking
handles such requests and accepts or rejects it according to the station
state. To manage the requests, logical components are used:

• The subroutes are the contiguous segments that the trains must
follow inside a route. When a route is commanded for a train, a
set of subroutes is locked. When not requested, subroutes are in a
free state.
• The immobilisation zones are the variables materialising the
immobilisation of a set of points. When they are locked, their at-
tached points cannot be moved. For instance, Immobilisation zone
U_IR(09C) prevents Points P_08AC and P_09C to be commanded.
• The bidirectional locking is the mechanism used to prevent
head to head collisions on platforms. Each bidirectional locking
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consists of two variables (U_BSIA and U_BSIB) which can prevent
the activation of a route coming from the left or the right of the
platform. For instance, when U_BSIA(104) is locked, no route
going to Platform 104 from the right can be activated.

There are 32 possible routes in Braine l’Alleud. To manage it, 48 sub-
routes, 10 immobilisation zones and 4 bidirectional locking mechanisms
are used.

2.3 Solid State Interlocking

Solid State Interlocking (SSI) refers together to the first computer based
interlocking systems, and to the software used to develop these systems.
Its development started in the 1970s by British Railways in collaboration
with GEC (now Alstom) and Westinghouse. It quickly becomes one of the
most widely used interlocking systems, especially in Western Europe and
countries of the British Commonwealth [1]. The software is structured
into two parts:

• The generic software which serves as an interpreter for the appli-
cation data and carries out system functions like communications.
This part does not change from one station to another and can
then be verified once and only once. The development and the
validation of that generic software follow the highest safety rules
applicable to the domain.
• The specific application data which express all interlocking func-

tions. They are written in a data language designed to be used by
signalling engineers. Unlike the generic software, the application
data are specific to a station and must then be verified for each
station considered.

The ability of the interlocking to avoid critical situations, like train
collisions, relies on the safety level achieved by the combination of the
generic software and of the application data. Application data describe
then the behaviour of an interlocking system instantiated to a specific
station. They are divided into several configuration files. Only some of
them are considered in this work:
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• All the variables and structures used in the application data are
declared in several .id files. Table 2.2 presents these variables with
their possible values.

Component SSI variable Possible values
Subroute U_id f (free) / l (locked)

Immobilisation zone U_IR(id ) f (free) / l (locked)

Bidirectional locking U_BSIA(id )
f (free) / l (locked)

U_BSIB(id )
Route R_id s (set) / xs (unset)

Point P_id
n (normal) / r (reverse) +

cf / c / cd
Track segment T_id c (clear) / o (occupied)

Signal S_id stop / proceed

Table 2.2. Variables with their possible values expressed in SSI format.

Each component has a unique identifier id and can have two values
except for the points which encompass two information: a position
(normal or reverse) and a status. The status refers to the life
cycle of the points: free to be commanded (cf), commanded (c),
and finally commanded and directed (cd). Their state is then an
aggregation of both information. For instance, P_01BC cdn means
that Point P_01BC has been commanded and directed to its normal
position. Concerning the bidirectional locking, two variables are
used for this mechanism. Les us define these components and their
values with an EBNF syntax [11]:

〈component〉 ::= Subroute | UIR | UBSIA | UBSIB |
Route | Point | Track_segment | Signal

〈value〉 ::= f | l | s | xs | c | o | cfn | cfr | cn | cr |
cdn | cdr | stop | proceed

• PRR.dat: it defines the conditions that must be satisfied in
order to accept a route request. The actions that the interlocking
must perform when the request is accepted are also defined inside.
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The instructions and expressions described in this file follows this
grammar:

〈PRR_file〉 ::= {〈route_request〉}

〈route_request〉 ::= Q*(Route) if {〈condition〉}
then {〈action〉} [〈UBSI_expression〉]

〈UBSI_expression〉 ::= if (UBSIA | UBSIB) f
then (UBSIA | UBSIB) l

〈condition〉 ::= 〈component〉 〈value〉

〈action〉 ::= 〈component〉 〈value〉

• PFM.dat: it defines the conditions that must be ensured before
moving a point.

〈PFM_file〉 ::= {〈point_request〉}

〈point_request〉 ::= *PointN 〈condition〉
*PointR 〈condition〉

• FOP.dat: it defines the necessary conditions for releasing logical
components after they have been used.

〈FOP_file〉 ::= {〈subroute_release〉 | 〈UIR_release〉 |
〈UBSIA_release〉 | 〈UBSIB_release〉 }

〈subroute_release〉 ::= Subroute f if 〈condition〉

〈UIR_release〉 ::= if UIR l then if 〈condition〉
then 〈action〉
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〈UBSIA_release〉 ::= UBSIA f if 〈condition〉

〈UBSIB_release〉 ::= UBSIB f if 〈condition〉

• OPT.dat: generally speaking, it describes the life cycle of the
routes from their command to their releasing. We use it to know
when the start signal of a route can be set at a proceed state.

〈OPT_file〉 ::= {〈route_activation〉}

〈route_activation〉 ::= if 〈condition〉 then 〈action〉
else 〈action〉

Let us mention that the grammars presented here only cover a subset
of the application data. Indeed, for the sake of simplicity, we refined it
in order to formalise only the elements used in our analysis. Detailed
explanations about the components and the expressions are provided in
the next sections. The other configuration files serve different purposes
such as the communication between several interlockings and are not
related to safety or availability.

2.4 Interlocking behaviour in SSI

With both the physical and logical components, a route based interlocking
controls the train traffic by monitoring the station, commanding routes,
activating them, locking components and releasing them. In this section,
we explain how a SSI interlocking manages these actions. All the possible
actions and their underlying conditions are described in the application
data. To illustrate the behaviour, let us consider the scenario where a
train is coming from Track 012 and has to go to Platform 103 in Braine
l’Alleud:

• Firstly, when the train is waiting at Signal KC, the interlocking
will verify whether the request for Route R_KC_103 can be granted.
Listing 2.1 presents the request according to the application data
of Braine l’Alleud.
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1 *Q_R( KC_103 )
2 if R_KC_103 xs ,
3 P_08BC cfr , P_08AC cfr , P_09C cfr ,
4 P_10C cfn ,
5 U_IR (08 BC) f, U_IR (09C) f, U_IR (10C) f
6 then R_KC_103 s,
7 P_08BC cr , P_08AC cr , P_09C cr ,
8 P_10C cn ,
9 U_IR (08 BC) l, U_IR (09C) l, U_IR (10C) l,

10 U_KC_19C l, U_19C_20C l, U_20C_CGC l

Listing 2.1. Request for commanding Route R_KC_103.

The request is accepted only if Route R_KC_103 is not already set
(line 2), if some points are free to be commanded to the reverse
(cfr) or normal (cfn) position (lines 3-4) and if some immobilisa-
tion zones are not locked (line 5). If all the conditions are satisfied,
R_KC_103 is set (line 6), the points are controlled to the requested
position (lines 7-8) and some components like the immobilisation
zones (line 9) or subroutes (line 10) are locked. At this step, Route
R_KC_103 is set, or commanded, but not yet activated. Indeed, its
start Signal KC is still on a stop state and the train can thereby
not enter in the station yet.

• Before moving a point, the interlocking must verify that this action
can safely be executed. Listing 2.2 illustrates such conditions for
Point P_08AC.

1 * P_08ACN U_IR (09C) f // N for normal position
2 * P_08ACR U_IR (09C) f // R for reverse position

Listing 2.2. Conditions allowing Point P_08AC to move.

• Directly after the acceptance of the request described in Listing
2.1, the interlocking checks if a bidirectional locking must be used
in order to prevent routes going to Platform 103 from the left to
be activated. It is shown on Listing 2.3.

1 if U_BSIA (103) f then U_BSIB (103) l

Listing 2.3. Bidirectional locking request for Platform 103.
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• Once R_KC_103 has been commanded, the interlocking checks if it
can safely activate the route and so gives the train an authority to
move.

1 * R_KC_103
2 if P_08BC cdr , P_08AC cdr , P_09C cdr ,
3 P_10C cdn ,
4 U_IR (08 BC) l, U_IR (09C) l, U_IR (10C) l,
5 T_08BC c, T_09C c, T_10C c, T_103 c,
6 U_BSIA (103) f
7 then U_BSIB (103) l,
8 S_KC proceed

Listing 2.4. Request for activating Route R_KC_103.

Listing 2.4 states that R_KC_103 can be activated only if the points
are commanded and detected in the requested position (lines 2-3),
if the immobilisation zones are thoroughly locked (line 4), if there
is no train on some track segments (line 5) and if the bidirectional
locking for trains coming from right to Platform 103 is free (line
6). The route activation results in locking the paired bidirectional
locking (line 7) and in setting Signal S_KC on a proceed state. At
this step, the train can finally move into the station.

• When they are not used, locked components can be released. It
is done according to the progress of the train on its route. After
each train movement, the interlocking checks if a releasing event
can be triggered. Listing 2.5 states the conditions for releasing
Subroute U_20C_CGC. If all the conditions are fulfilled, the requested
components are thoroughly released.

1 U_20C_CGC f if U_KXC_20C f, U_19C_20C f, T_10C c

Listing 2.5. Conditions for releasing Subroute U_20C_CGC.

This process describes the life cycle of a route and how it is managed
by the interlocking.



18 CHAPTER 2. INTERLOCKING PRINCIPLES

2.5 Station topology in railML

The application data describe the behaviour of an interlocking applied
to a specific station but contain no information about the track layout.
However, the correctness of an interlocking is also related to its consis-
tency with the track layout. It is why a reliable data source describing
the track layout, or the topology, is necessary.

The topology can be encoded in different ways. A common approach
is to represent it using a computer-aided design such as AutoCad [12].
Different information such as the track lengths or the geographic position
of components can be described inside. It is the method currently used
in Belgium. However, a graphical representation has some shortcomings.
Given that the information is presented graphically, the processing of
the schema and its integration into a verification model require manual
works and can then hardly be automated.

Another way to represent the topology is to use a structured language.
With this kind of representation, information can be automatically pro-
cessed and used for different purposes. Based on a Extensible Markup
Language (XML) structure, railML [7] is a markup language specialised
for the railway domain. It was conceived to give a universal support
for information which can be used for any applications related to the
railway field. It is used by several companies such as Alstom, Siemens,
Bombardier, Thales or Toshiba. As any markup language, railML is
structured with schemas. There are gathered into four main schemas:

• Infrastructure: it describes the railway network topology and
contains information about the physical components.

• Timetable and Rostering: it contains all the information about
the timetables and the schedules.

• Rolling stock: it takes over all the information about the vehicles
used (length, height, weight, etc.)

• Common: it encompasses the information not included in the
other schemas.
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Only the infrastructure schema is related to the topology. However,
railML does not provide yet all the information required to represent
the whole topology. For instance, information such as the positions of
joints are missing. To overcome this lack, we enriched railML with new
elements. We call this extension railML+. Figure 2.2 summarizes the
elements that we use from the infrastructure schema as well as their
hierarchy. Explanation of the different schemas are provided thereafter.
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track
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n
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0 111

• absPos
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Figure 2.2. railML infrastructure schema enriched with new elements (in grey).

track An infrastructure has a set of tracks. Each of them is characterised
by a unique identifier (id) and a relative position between the other
tracks (trackOrder). In Braine l’Alleud, the track order varies
from 0, for Track 101, to 3 for Track 104.

trackTopology Each track has one and only one topology (1 to 1 rela-
tion). This subschema encompasses different physical components
of the tracks.

trackBegin It represents the beginning of a track. It is characterised
by an absolute position (absPos).

trackEnd It represents the end of a track. It is also characterised by
an absolute position (absPos).
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switch It represents the definition of a point. A trackTopology schema
can have several points on it (0 to n relation). Each of them
is characterised by a unique identifier, an absolute position, the
identifier of its linked component (ref), and finally its physical
disposition (orientation and course). Figure 2.3 presents the
four possible dispositions of a point.

orientation : outgoing, course : left orientation : incoming, course : right

orientation : outgoing, course : right orientation : incoming, course : left

Figure 2.3. The fourth possible physical dispositions of a point.

For instance, Point P_01BC as an incoming left disposition while
Point P_02AC has an outgoing left disposition.

bufferStop It is one of the two possible extreme elements (trackBegin
and trackEnd) for a track. It represents the border with another
infrastructure. For instance, Braine l’Alleud has four bufferStop:
two on the left of Signals CC and CXC and two on the right of KC
and KXC. It is characterised by a unique identifier.

connection It is the second possibility for a track extreme element. It
models its connection with another component, typically a point.
For instance, Track 103 is connected on the left with Point P_03C
and on the right with Point P_09C.

ocsElements This subschema encompasses several physical and logical
components.

signal It corresponds to the signals. They are characterised by a unique
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identifier, an absolute position and a direction (up or down) defining
the direction in which the signal must apply. In Figure 2.1, Signal
CC is oriented upside whereas KXC is oriented downside.

separator It corresponds to the joints. Each of them has a unique
identifier, an absolute position and also the name of the track
segment located at the left (trackLeft) of the joint and at its right
(trackRight). This subschema, as well as the following, is not
included in the basic version of railML but only in the extension
railML+.

route It correspond to a route as defined earlier. Each of them has an
identifier, an origin (origin), and a destination (destination).

switchConditions A route is also defined by the position of all the
points crossed by the route in order to reach its destination. This
subschema encompasses this information. It contains for each point,
a reference (ref) to the points as defined in the switch schema,
and their required position (position) in order to form the proper
path from the origin of the route to its destination. For instance,
Route R_CXC_102 requires Points P_01BC, P_02AC and P_02BC to
be set at the normal position and Point P_03C to be set at the
reverse position.

With these schemas, railML+ can thereby be used in order to specify
the track layout of a station with more flexibility than the graphical
approaches. It is why we propose here to use railML+ as a reference for
the topology.

2.6 Case studies

Three cases studies are analysed in this thesis: Braine l’Alleud Station,
Namêche Station, and LK7 area of Courtrai Station. The choice of these
case studies is not fortuitous. We chose stations of different size in order
to have a realistic and broad overview of the different stations in Belgium.
If the proposed methods can be applied on the three cases studies, they
can theoretically also be applied for each Belgian station.
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2.6.1 Station of Namêche

Namêche is a Belgian city located near Namur in Wallonia. It has a small
sized station composed of 4 tracks, 13 track segments, 7 points, 7 signals,
14 routes, 7 immobilisation zones and 26 subroutes. The bidirectional
locking mechanism is not used in this station. The entire station is
controlled by a single interlocking. A representation of its track layout is
shown in Figure 2.4.
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Figure 2.4. Layout of Namêche Station.

2.6.2 Station of Braine l’Alleud

Already introduced in this document, Braine l’Alleud is a Belgian city
located in the center of the country in Walloon Brabant Province. Its
station is on the direct line (Line 124) between Charleroi and Brussels.
It is a medium sized station composed of 4 tracks, 17 track segments, 12
points, 12 signals, 32 routes, 10 immobilisation zones, 48 subroutes and
4 bidirectional locking mechanisms. The entire station is also controlled
by a single interlocking. A representation of its track layout is shown in
Figure 2.1.
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2.6.3 Station of Courtrai

Courtrai, or Kortrijk, is a Belgian city located in the west of Belgium
in Flanders. It is considered as a large station. The entire station is
controlled by three interlockings that communicate together. Here, we
are only interested in a subpart (LK7 Area) of Courtrai controlled by a
single interlocking. A representation of the track layout of LK7 is shown
in Figure 2.5.
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Figure 2.5. Layout of LK7 area of Courtrai Station. [[schema to be modified]]

It is composed of 6 tracks, 19 track segments, 26 points, 24 signals, 70
routes, 9 immobilisation zones, 72 subroutes and 4 bidirectional locking
mechanisms. Concerning the signals, 14 of them are fictive. A fictive
signal is a signal that is not materialised in the track layout but that has
a representation in the application data. Unlike Namêche and Braine
l’Alleud, a route in Courtrai does not correspond to a complete itinerary
for a train. When a train is entering into the station and must go to a
particular destination, it is not done with one route but with a set of
routes that must be commanded sequentially. For instance, if a train
must go from S_ED to S_MD, two routes must be used sequentially, one
from S_ED to S_f_3D_B and a second one from S_f_3D_A to S_MD. In
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Courtrai, an itinerary is then a sequence of routes.



Chapter 3
Model of an interlocking

system

3.1 General approach

The previous chapter described the principles of an interlocking system
and how it is used to regulate the train traffic. It also introduced the
problematic of application data verification and the lacks of the current
situation in Belgium. This chapter presents how an interlocking system
can be modelled and how its behaviour can be reproduced on a computer
in order to automatically verify the application data correctness through
several verification approaches. The structure of this chapter follows a
top-down hierarchy. First, a global overview of the entire verification
process is presented. Each step composing the approach is then sepa-
rately detailed.

Our verification process is divided into several steps:

1. Generating a model of an interlocking by combining its application
data and the track layout of its station. This is performed by two
translators that parse and aggregate both data sources into a single
model.

2. Creating a model representing a real train traffic in order to analyse
how the interlocking model react to it.

3. Creating a model mimicking the actions that a human signalman
can perform when trains arrive in the station.

4. Stating and formalising all the requirements that an interlocking
system must satisfy in order to ensure a safe and fluid train traffic.

25
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5. Reproducing the interlocking behaviour under a realistic train
traffic. It is done through a simulator. A set of traces summarizing
the different actions that occurred during the simulation as well as
the states reached are then obtained.

6. Analysing the traces obtained and verifying that none of them
contains states violating the requirements.

This entire process is gathered into a single framework implemented
in Scala [13]. This language is multi-paradigm and supports the object
oriented [14] and functional paradigm [15]. It is also compatible with
Java language and its libraries [16]. The data flow diagram presented in
Figure 3.1 resumes the main steps of the approach.

Interlocking model

Application data

Topology

Set of traces

SSI Translator

railML+ 
Translator

Simulator Checker

Safety 
requirements

Availability 
requirements

Verification 
output

Train model

Signalman model

Figure 3.1. Step of the verification approach.

More details on the first steps are provided in the next sections. Steps
related to verification are detailed in the next chapter.

3.2 SSI translator

The first step is to translate the input data into an exploitable format.
This section is dedicated to the translation of SSI application data
presented on Sections 2.3 and 2.4. As illustrated on Figure 3.2, the
translation is done in two steps: the elaboration of grammars and the
parsing.

Grammar elaboration Before translating the application data, gram-
mars defining the format of the application must be specified. Such
grammars are used by the parsing tool in order to capture the structure
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Application data
in SSI Grammar FOP

Grammar PFM

Grammar OPT

Grammar PRR

Grammar .id

Parser PRR

Parser PFM

Parser FOP

Parser OPT

Parser .id

Data PRR

Data PFM

Data FOP

Data OPT

Data .id

Interlocking model

SSI translator

Figure 3.2. SSI translator architecture.

of SSI language and then to know how it can be translated. As SSI data
are described into several configuration files having each a particular,
several grammars are required. The grammars used are presented in
Section 2.3. According to Chomsky’s hierarchy [17], such grammars are
context-free [18].

Definition 3.1 (Context free grammar). A context free grammar is a
grammar where every production rule follows the pattern X → α where,
X is a non terminal symbol and α a sequence of terminal and/or non
terminal symbols.

Context free grammars are often used for specifying programming
languages because there exist efficient algorithms such as Early [19]
or CYK [20] for their parsing. Furthermore, more efficient algorithms
(Packrat [21], recursive descent [22], etc.) can be used provided that the
considered grammar satisfies some other properties.

Parsing Once the grammars are specified, the next step is to use them
for parsing the application data. Because several grammars are used, we
designed a particular parser per grammar. However, some structures, as
the the specification of a variable, have the same syntax in every file and
are then common for every grammar. We use the inheritance mechanism
[23] to take advantage of it. Figure 3.3 presents the inheritance diagram
of our parser. Each parser is implemented as a class and inherits from
Parser SSI which encompasses the common expressions of each file.
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Furthermore, the parsers are designed to skip all the data non used in
our model.

Parser SSI

Parser PRR Parser PFM Parser FOP Parser OPT Parser .id

Figure 3.3. Inheritance diagram of the parser.

The parser uses a combinatory parsing technique [24]. It has been
implemented using the combinator parser (util.parsing.combinator)
package of Scala [25].

3.3 railML+ translator

As for the application data, the data related to the topology must also
be translated in order to build the interlocking model. Its translation,
illustrated in Figure 3.4, follows the same process.

Topology in
railML+ Parser railML+ Topology File Interlocking model

railML+ translator

Grammar 
railML+

Figure 3.4. railML translator architecture.

Grammar elaboration As presented in Section 2.5, the topology is
expressed in railML+. Its grammar follows then an XML pattern. All
the considered data are detailed in Figure 2.2.

Parsing Tthere exist diverse algorithms for parsing XML data [26].
Our implementation is based on XML scala library (scala-xml) which
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follows the standard SAX parser from Java library [27]. As output, the
parser create a topology file which encompasses three information about
the station:

• Characteristics about the physical components.
• How the physical components are connected together.
• All the possible routes in the station with their path determined

by the position of the points.

3.4 Interlocking model

This section presents the structure of the interlocking model. Figure 3.5
gives an overview of it. Three components are involved: the configuration
of the interlocking, the topology of the station, and the interlocking
system itself. All of them are implemented as an object.

Interlocking 
System

Interlocking
configuration

Station 
topology

SSI
 translator

railML+
translator

Simulator

Interlocking model

Figure 3.5. Architecture of an interlocking model.

Interlocking configuration This object is built from the parsing of
the application data. It includes several attributes:

• A list for each kind of interlocking component (immobilisation
zone, bidirectional locking, track segment and subroute). Each
component is represented as an object with two attributes: a
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unique identifier and its state, as presented in Table 2.2. The
track segment objects include also a set of references of trains
that occupy the segment.
• A syntax tree for each configuration file parsed. Such trees include
all the information parsed that are required for the interlocking
model.

Station topology This object is built from the parsing of the topology
file. We model the station using graph theory [28]. Graph theory has
already been deeply studied for modelling complex networks [29]. There
are numerous examples of concrete applications as Internet [30], social
networks [31] and transportation networks [32]. It has also been applied
for railway signalling [33]. We model a station as an undirected graph.
Points, signals, buffers stops and joints are represented by nodes and their
connections by edges. Furthermore, each edge belongs to a particular
track segment. The implementation is done using Jung library [34].

Interlocking system The interlocking system is only an aggregation
of the two previous structures. It is used to reproduce the interlocking
behaviour described in Section 2.4 and to apply it on the considered
station. It is given as input for the simulator thereafter.

Assumptions done Furthermore the interlocking model is based on
several assumptions:

• Signals can only have two states: stop and proceed.
• The start signals of routes move to the proceed state immediately

after that the route has been activated.
• There is no distinction between a normal route and a shunting
route. A shunting route is a route that the train can follow only
with a low speed in order to join it with another train.
• All the physical components are perfect and there is no failure of

them.
• When a train moves through a joint, the modification of track
segment is automatically recorded.
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• Communication between several interlockings is not considered.
• The level crossing control and its interaction with the routes is not

modelled. A level crossing is an intersection between a railway line
and a road.

These assumptions are mainly done in order to keep the model as
simple as possible and then limit the state space size. Such assumptions
are also proposed in other works [5, 35, 36].

3.5 Train model

The previous section introduced how we modelled an interlocking system.
Let us remember that the goal of an interlocking system is to ensure a
safe and fluid train traffic. However, until now the train traffic is not yet
considered. This section describes how we model trains. As proposed in
different works [5, 35, 36], our modelling is based on several assumptions:

• Trains follows properly the signalling principles. For instance, they
do not overrun signals on a stop state.
• Speed and length of trains are abstracted.
• Trains just occupy one and only one track segment at a time.
• Trains can stop instantly.
• Trains have a perfect behaviour. They have no faulty component
and have no train failure.
• Trains only enter in the station from buffer stops.

Furthermore, the model contains three attributes:

• An identifier: each train has an unique identifier.
• A position: it defines the track segment where the train is located.
• A direction: it defines the direction of the train. It has two

possible values, up or down.

Furthermore, trains only move from track segment to track segment
until they reach the end of the station. As we will see in the next section,
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this model is used in order to build a mutable entity which can be
simulated. The interlocking model is then tested with a traffic composed
of trains modelled in this way.

3.6 Signalman model

The next step is to model the signalman. Generally speaking, the signal-
man is the human who sets the signals and the points in order to control
the train traffic. For modern route based interlockings, the signalman
has the responsibility for performing route request when trains enter into
the station.

In our case, we model the signalman as an object without attributes
but which performs route requests for trains waiting at a start signal of
a route.

3.7 Simulator

Simulation is a science used everyday and applied to a large number of
fields such as weather forecasting [37], transportation [38], logistic [39] or
healthcare facilities [40, 41]. It has also been applied to the railway field.
For instance, Sogin et al. [42] analyse through simulation the effects
of higher speed passenger trains in freight networks. Furthermore, the
company OpenTrack provides a railway simulation tool [43] to verify the
capacity of a railway network, the feasibility of the schedules, collect
statistics about running times, etc. Generally speaking, a simulation can
be defined as an imitation of a system [44]. The main force of simulation
is that it allows the study of various systems without building the system,
thus saving precious time, cost and effort. Real life includes myriads of
systems. Checkland [45] identified four classes:

• Natural systems: they are the systems created from the origins
of the universe (weather, movements of planets, etc.).
• Designed physical systems: they are the physical systems cre-

ated from the result of a human design (production facility, trans-
portation network, etc.).
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• Designed abstract systems: they are the abstract systems cre-
ated from the result of a human design (mathematics, literature,
etc.).
• Human activity systems: they are the systems modelling human

activities with their interactions (political system, communication,
etc.).

All of these systems can be modelled and then be simulated. In
our case, we are interested by interlockings, a specific designed physical
system. The previous section described how this system can be modelled.
This section presents how its simulation can be performed. Firstly, gen-
eralities about simulation are presented. The principles of our simulation
is then described. Finally, the integration of this simulation and its
application for our railway model is detailed.

3.7.1 Simulation taxonomy

A simulation can be performed in a plenty of ways. According to the
considered system, some kinds of simulation can be more adapted than
others. Sulistio et al. [46] identified several inherent characteristics of
simulation:

Presence of randomness A simulation can be either deterministic
or stochastic according to the presence of randomness or not. In
deterministic simulations, there is no randomness. It means that
for a given input, the output will always be the same. In stochastic
simulations, the output can be different for a same input.

Presence of time Time can be considered in the simulation or not.
A static simulation imitates a system at a particular point in
time while a dynamic simulation imitates the system with its
progression in time.

Time slicing When time is considered, it can be represented in two
ways. Firstly, there are the continuous simulations which con-
sider an infinity of values through a bounded time interval. Secondly,
they are the discrete simulations which discretise the time into
instants. A time interval T from 0 to 4 seconds can for instance
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be discretised into 0, 1, 2, 3, 4 seconds and then produce 5 values.
For the same interval, a continuous simulation would produce an
infinity of values.

Time interval For discrete simulations, the management of time inter-
vals can be done in different ways:

• Time driven simulation: the simulation progresses by fixed
time increments. Figure 3.6 illustrates this process.

Figure 3.6. Behaviour of a time driven simulation.

• Event driven simulation: the simulation progresses by
irregular time increments according to the execution instant
of the events. An event can be defined as a modification on
the system state. If there is no event planned for a particular
instant, it will then not be considered. Figure 3.7 illustrates
this process.

EventEvent Event Event Event

Figure 3.7. Behaviour of an event driven simulation.

• Trace driven simulation: the simulation progresses by read-
ing a set of events collected from another environment and
that has been previously executed.

Figure 3.8 illustrates such taxonomy. The grey boxes represent the
choices made for our system. As we can see, our simulation follows
a probabilistic dynamic discrete event pattern. However, the dynamic
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and probabilistic attributes are often implicit in computer simulation.
It is why this kind of simulation is often shorted as a discrete event
simulation (DES) [47].

Simulation

Presence of 
time

Static Dynamic

Time slicing

Discrete Continuous

Presence of 
randomness

Deterministic Probabilistic

Time interval

Trace driven Event drivenTime driven

Figure 3.8. Simulation taxonomy with the choices made for our system (in grey).

3.7.2 Principles of discrete event simulation

This section describes the principles of a discrete event simulation and
presents how it can be implemented. A discrete event simulation involves
five kinds of components:

Entities They are the active objects on which the simulation is ap-
plied. Each entity is characterised by a list of attributes with a
specific value. This list is called the entity state. The term active
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means that the value of attributes can change through time. For
instance, a train can be an entity characterised by a direction and a
position. Figure 3.9 illustrates how we represent Train IC732 entity.

Using a programming language supporting the object oriented
paradigm such as Java or Scala, an entity schema can be imple-
mented as a class and an entity as an object.

• Direction : down
• Position : Track T_101

Train IC732

Figure 3.9. Train IC732 entity.

Events They define the actions that can change the entity state and
which can generate other events.

Definition 3.2 (Event). In a simulation, an event is an action
changing the system state. It is characterised by two attributes:

• The action.
• The time at which the action must be executed.

For an event e, e.process is the action and e.time is its execution
time. For instance, we can consider an event which applies on a
train entity and which moves the train to its next position. Figure
3.10 illustrates this behaviour. A guard can also be present for
events. It defines conditions that must be satisfied for activating
the event. For instance, let us consider a situation where a train is
waiting in front of a signal. The event can be triggered only if the
signal is on its proceed state.

• Direction : down
• Position : Track T_101

Train IC732
• Direction : down
• Position : Track T_01BC

Train IC732
Move

Figure 3.10. move event applied to Train IC732.
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Clock It states when the events must be executed. Unlike a continuous
simulation where events can occur during a time period, the discrete
simulation requires each event to occur at a particular instant.
Furthermore, it is used to model the progression of the simulation
through time. For an event based simulation, this mechanism
is often organized as a priority queue [48], sorted by event time.
Jones [49] proposes several implementations for it. With such a
data structure, the next event to be executed is the event with the
closest event time from the actual time of the simulation.

Pseudo random number generator As previously said, this simula-
tion is probabilistic. It means that two simulations from identical
inputs can have a different progression. Such a mechanism requires
to generate randomness. However, generating pure random vari-
ables with a computer is not feasible [50]. For this reason, the use
of a Pseudo Random Number Generator (PRNG) [51] is required.

Definition 3.3 (Pseudo Random Number Generator). A PRNG
is an algorithm used for generating from an initial value called the
seed, a sequence of numbers which looks like a sequence of numbers
randomly picked up.

For a given seed, a PRNG always produces the same sequence.
The choice is the seed is then crucial. It is often determined by
unpredictable parameters having a high level of entropy such as
the exact timing of keystrokes and the movements of the computer
mouse [52]. There exists a large variety of PRNG in the literature
[53, 54, 55, 56], each having their own specificities.

Ending condition It states when the simulation must end. Typically,
we end the simulation after a given number of iterations or after
that a particular state has been reached. For instance, we can stop
the simulation after that an accident has occurred.

Each of these components must be implemented in order to have a
discrete event simulation engine.
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3.7.3 Simulator architecture

The design of our simulator is then based on the discrete event paradigm.
This section presents the architecture of the simulator and describes
its different components. Firstly, Figure 3.11 gives an overview of this
architecture. A description of each component is provided thereafter.

Train model Event list

Simulation model

Simulation 1

…

Simulation n

Trace 1

…

Trace n

Set of traces

Simulator

PRNG

Interlocking model

Signalman model

Figure 3.11. Simulator architecture.

Interlocking model The interlocking model is the model built from
the aggregation of the application data and the station topology as
presented in Section 3.4. It is used to infer a bunch of entities. Concretely
each interlocking component is represented as an entity.

Definition 3.4 (Interlocking entity). An interlocking entity is an entity
obtained from the interlocking active components.

The exhaustive list of interlocking entities with their mutable at-
tributes is as follows:

• The routes, on a free, commanded or activated state.

• The signals, on a proceed or stop state.

• The points, on a normal or reverse position.

• The subroutes, immobilisation zones and bidirectional locking, each
of them on a free or locked state.

• The track segments, characterised by the number of trains on it.



3.7. SIMULATOR 39

Train model In the same way than the interlocking model, the train
model is the model described in Section 3.5. The train entity if inferred
from it.

Definition 3.5 (Train entity). A train entity is an entity obtained from
the train model. It is characterised by two mutable attributes: a position
(the current track segment occupied by the train) and a direction (up or
down). Each train is identified by a unique identifier (id).

Signalman model It is the model of the signalman performing the
route requests.

PRNG Given that randomness is present in the simulation, a PRNG
is thereby required. To do so, a linear congruential generator [57] with a
48-bit seed is used.

Definition 3.6 (Linear congruential generator). A linear congruential
generator is an algorithm used in order to generate a sequence of pseudo
random numbers. It is based on the following recurrence relation:

Xn+1 = (aXn + b) mod m
where a, b and m are parameters. The next number in the sequence

is then determined by its previous number.

An implementation is available in java.util.Random package for
Java or Scala. This implementation can generate numbers with a uniform
probability. Given that we use randomness only to generate different
scenarios through simulations, we are not concerned by having a strict
unpredictable sequence of number or a cryptographically secure generator
[58]. The choice of the PRNG is then not a critical concern.

Event list The event list contains all the events that will be processed
through the simulation. The simulation contains two kinds of events:
events related to train movements and events related to interlocking
actions.

Definition 3.7 (Train event). A train event is an event related to the
actions that the trains perform from their arrival in the station to their
departure.
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There are three train events:

• addTrain(t,bf): this event adds a new train called t at the
bufferStop called bf (Section 2.5). The station state is updated
accordingly. Furthermore, it triggers two events: another addTrain
event and a moveTrain event. The execution time of such events
is determined by the PRNG.

• moveTrain(t): this event moves Train t to its next position on
the station and updates the station accordingly. Trains always
move upside or downside according to their direction, from one
track segment to the next one and follow the path defined by the
points. If t is in front of a signal on a stop state, the train will not
move. In any case, this event triggers one of the following event:
another moveTrain or a removeTrain if the train has reached a
bufferStop. The execution time is also determined by the PRNG.

• removeTrain(t): this event is triggered by a moveTrain event
only if Train t is in front of a bufferStop. Such an event removes
t of the station and updates it accordingly.

With such events, each train has thereby its own queue of events
going from addTrain to removeTrain with a sequence of moveTrain.

There are also the interlocking events.

Definition 3.8 (Interlocking event). An interlocking event is an event
related to the actions that the interlocking can perform.

An interlocking event can be one of the following types:

• generateRoute(r): this event is periodically issued for the trains
waiting at a start point of Route r. If the route command conditions
are fulfilled, r is commanded and all the actions described in the
request are executed as well as the related bidirectional locking
request. The station state will then change. Otherwise, the request
is discarded and no action is taken. Route command requests are
described in the application data, as presented in Listings 2.1, 2.2
and 2.3.
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• activateRoute(r): this event is periodically issued when Route
r is already commanded but not activated yet. If the conditions
are fulfilled, r is activated (Listing 2.4). Otherwise, the request
is discarded and no action is taken. Furthermore, after three
unsuccessful activation requests for the same route, a destroyRoute
event for r is triggered.
• destroyRoute(r): this event performs a hard release of Route r
and unlocks each component previously requested by the route.
• releaseComponents: this event tries to release every locked compo-

nent on the station (Listing 2.5). If the conditions are not fulfilled,
no action is taken. Such an event is periodically issued and before
each train movement.

As for the train events, the execution time of all interlocking events
is determined by the PRNG. Furthermore, their execution also triggers
another event of the same type. Figure 3.12 illustrates a possible scenario.

moveTrain(t)AddTrain
(t,CXC)

generateRoute
(R_CXC_101)

activateRoute
(R_CXC_101)

release
Components moveTrain(t)release

Components

1 6 10 14 18 22 26Time t 30

release
Components

Figure 3.12. Possible scenario with the simulator.

The event list is ordered using a priority queue, sorted by event
time. We use the default implementation proposed by the Scala API
(scala.collection.mutable) which uses a heap data structure [59]. A
priority queue contains two main instructions: add(Event e) which adds
the event e inside the queue, and pop() which removes from the queue
the event with the highest priority and returns it. Before the simulation,
the event queue is fed with initial events.

Simulation model The simulation model is obtained from the aggre-
gation of the interlocking model, the train model, the signalman model,
the PRNG and the event list. It is the model which can be simulated.
Concretely, it gathers the information of the inputs into a simulation
state. The simulation state si is a description of the considered station
at the ith simulation step. It can change after each event which has
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occurred during the simulation. For a simulation of n steps, a simulation
state si with i ∈ [1, n] is defined as

si :
〈
nb, σp, σr, σs, σuir, σubsi, σtrack, σtrain

〉
(3.1)

where

• si is the state at the ith step of the simulation.

• nb is the number of trains that have moved in the station so far.
This variable is used to under approximate how many real days
the simulation has covered. Indeed, by taking the extreme case of
a busy station where there is an incoming train every minute all
the day long, we can safely assume that the simulation has covered
at least one real day when 1440 trains have moved through the
station.

• σp : point → {normal, reverse, default} is a function defining
the position of a point. The default state represents a point that
is not positioned yet.

• σr : route → {unset, commanded, activated} is a function defin-
ing the state of a route.

• σs : subroute→ {free, locked} is a function defining if a subroute
is free or locked.

• σuir : uir→ {free, locked} is a function defining if an immobili-
sation zone is free or locked.

• σubsi : ubsi → {free, locked} is a function defining if a bidirec-
tional locking is free or locked.

• σtrack : track → N is a function defining the number of trains
being on a track segment.

• σtrain : train → (track, {up, down}) is a function defining the
current position of a train and its direction.

• point, route, subroute,uir, ubsi, track are the set of the inter-
locking components defined in the application data and train the
set of trains in the station.
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Furthermore, the simulation model also contains an event queue E
and an ending condition halt expressed by means of variables of s. For
instance, the ending condition can be nb < 100 if we want to stop the
simulation after the departure of 100 trains from the station. More
details about how we defined the ending condition is provided in the
next chapter.

Simulation Once the simulation model is built, the next step is to
simulate it. Algorithm 3.1 presents how the simulation is performed
through a pseudo code. The algorithm takes as input a simulation
model and returns the simulation trace of this model. While the ending
condition is not satisfied (lines 4 to 8), an event is popped from the
priority queue (line 5) and is then processed (line 7). The simulation
state, as well as its time (line 6), is updated accordingly. Furthermore
the new state is appended to the trace (line 8).

Algorithm 3.1: Discrete event simulation algorithm.
1 Input: a simulation model sm
2 Output: the trace t (represented as a list of states) of the simulation of sm
3 t← sm.s0
4 while sm.halt = False do
5 e← sm.E.pop()
6 i← e.time
7 e.process // update the simulation state
8 t← t+ sm.si

9 return t

The simulator has been implemented using the discrete event sim-
ulation package of OscaR [60], a Scala toolkit for solving operations
research problems. This toolkit has similar functionalities as SimPy [61].
Furthermore, advanced features have been added to the simulator engine:

• The possibility to save a simulation state and use it as an initial
state for new simulations.
• the visualisation of the simulation through a Graphical User Inter-
face (GUI).
• The possibility for the user to interact with the simulation on the

fly. Concretely, the user can trigger by himself the transitions, save
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a state, load it, stop the simulation, and restart it.
• The possibility for the user to parametrise the simulation before its

execution (PRNG seed, activation of the GUI, changing the ending
conditions).

More details about these features are provided in Chapter 5 which
presents the software implemented.

Resulting traces The trace is the output of the simulation. It recaps
the simulation state for each step. For instance, a simulation of the
scenario presented in Figure 3.12 produces the simplified trace described
on Table 3.1. The checkmark Xmeans that the event associated to
the state transition has been accepted while 7 means that it has been
refused or that no action is taken. For instance, releaseComponents
of s14 released no component. Each simulation provide a similar trace
which encompasses all the simulation states as described in Formula (3.1).

Several simulations can be performed. In this case, each of them
provides a different trace. The traces can be gathered into a set of traces
for posteriori analysis.

R_CXC_101 P_01BC P_02AC UIR_(01BC) IC 442

s0 unset default default free -
s1 X unset default default free (up, T_092)
s6 X commanded normal reverse locked (up, T_092)
s10 X activated normal reverse locked (up, T_092)
s14 7 activated normal reverse locked (up, T_092)
s18 X activated normal reverse locked (up, T_01BC)
s22 7 activated normal reverse locked (up, T_01BC)
s26 X activated normal reverse locked (up, T_101)
s30 X activated normal reverse free (up, T_101)

Table 3.1. Simplified trace of the scenario presented in Figure 3.12. Xmeans that the
event associated to the transition of state has been accepted, 7 otherwise.



Chapter 4
Automatic verification

4.1 Motivation

As previously said, verification of railway interlocking system is a crit-
ical concern. Even is the interlocking generic software is developed in
accordance with the highest safety requirements, it is not the case of
the application data. However, the reliability of an interlocking is also
dependant of the correctness of its application data.

Preparation of application data is still nowadays done by tools that
do not guarantee the required level of safety. Most of the time, the
verification of the application data, as well as its validation, is performed
through testing on a physic simulator that reproduces the environment
of the interlocking. This process is thus costly and error prone. Moreover
manual testing does not cover all the scenarios that could possibly end-up
in a unsafe situation.

Improving the verification process of the application data is an active
field of research. There exist many methods an many ways of modelling.
However, the state of the art methods have some shortcomings:

• Some of them are not fully automated. A human interaction is
required at some steps of the process, often at the model elaboration
which remains specific for each station.
• The verification does not scale for large stations and is then limited
to small or medium sized stations. Indeed, the execution time or
the memory consumption quickly become too important as the size
of the station.

Our motivation is to design innovative methods dealing with both

45
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issues. The previous chapter introduced how a model can be automat-
ically inferred from an aggregation of two data sources. This chapter
focuses on how a scalable verification can be performed. It is structured
as follows:

• Firstly, the requirements that an interlocking must satisfy are
formalised.

• Secondly, different common approaches, as model checking, are
described.

• The new approaches that we designed are then described and
studied through several experimentations.

• Finally, related works about interlocking verification are sketched.

Concerning the experimentations, all of them have been realised on a
MacBook Pro 2.6 GHz Intel Core i5 processor and with a RAM of 16
Go 1600 MHz DDR3 using a 64-Bit HotSpot(TM) JVM 1.8 on Yosemite
10.10.5.

4.2 Definition of requirements

Before verifying that an interlocking is correct, we need to define what
is exactly a correct interlocking. As previously stated, the goal of an
interlocking is to ensure a safe and fluid train traffic in a station. It
includes two notions:

• Safety: it ensures that the interlocking will cause no accident in
the station in any situation.

• Availability: it ensures that every trains progress in the station
and that the interlocking will not block them for too long.

As illustrated in Figure 3.1, the checker takes as input safety and
availability requirements. However, they must first be expressed in a
language supported by the checker. This section presents how such
requirements can be formalised.
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4.2.1 Safety properties

The general safety requirements for interlocking systems are described
in detail by Tombs et al. [36]. They indicate that no collision and no
derailment can occur in the station. Busard et al. [5] identified three
safety properties related to these requirements:

1. A track cannot have two trains on it at the same time in order to
avoid collisions (no collision property).

2. A point cannot move if there is a train on it. Otherwise it will
derail (no derailment1 property).

3. A point must always be set on a position allowing trains to continue
their path. Otherwise, the trains will derail (no derailment2
property).

Such properties can be expressed by means of Linear Temporal Logic
(LTL) operators [62]. LTL is a logic used to encode formulae describing
sequence of states. In addition to the logical operators, it includes
temporal operators:

• X, for neXt. Xφ means that Formula φ has to hold in the next
state.
• G, for Globally. Gφ means that φ has to hold in all the next
states.
• F, for Finally. Fφ means that φ has to hold in at least in one of
the next states.
• U, for Until. φUψ means that φ has to hold until a state satisfying
ψ has been reached.
• R, for Release. φRψ means that φ has to hold until and including
a state satisfying ψ has been reached.

This logic is more expressive than invariants where the formulae must
only be true in every state without considering sequences of states.

Furthermore, bounds can be introduced by enriching the LTL formu-
lae with a Bounded Linear Temporal Logic (BLTL) formalisation [63].
BLTL is a logic typically used for defining the number of steps on which
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a property must hold. In our case, BLTL is used for defining simulation
bounds. Let us now formalise these properties.

no collision property Each track cannot have more than one train
on it. It is formalised in Equation (4.1) for Track T_01BC. Each
track has a similar condition. The variable n means that the
property has to hold for n consecutive states.

Gn

(
T_01BC ≤ 1

)
(4.1)

no derailment1 property If there is a train on a track segment having
a point, the point cannot move. It is formalised in Equation (4.2)
for Point P_02AC.

Gn

(
T_01BC = 1 =⇒ P_02AC = next(P_02AC)

)
(4.2)

It can be translated as: for n iterations, if there is a train on Track
segment T_01BC, Point P_02AC must keep its position in the next
state.

no derailment2 property If a train is coming from one of the two
branches of a point, the point must be set in a position allowing
the passage of the train. It is formalised in Equation (4.3) for Point
P_01BC.

Gn

(
(T_092 = 1 ∧ next(T_092) = 0 ∧ next(T_01BC) = 1)

=⇒ (P_01BC = normal ∧ next(P_01BC) = normal)
) (4.3)

It can be translated as: for n iterations, if there is a train on Track
segment T_092 and if the train has left Track segment T_092 and
is now on Track segment T_01BC, then Point P_01BC must be set
at its normal position. Each point and each branch has a similar
condition.

Together, these three properties constitute the safety requirements.
They must always be satisfied in order to prevent the interlocking to
cause accidents.
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4.2.2 Availability properties

Beyond the safety, an interlocking must also ensure that no train will be
stopped too long in the station in order to maintain its availability and
the fluidity of the traffic. It is why availability requirements must also
be considered. A train is blocked in the station if its assigned route is
never activated. It directly yields to the following property:

1. A route could always be finally activated (route availability
property).

Finally refers to the temporal operator: after any states of the system,
there exists at least another state where the property is satisfied. It is
formalised in Equation (4.4) for Route R_CC_101.

(GF)n
(
R_CC_101 = activated

)
(4.4)

This property is sufficient to ensure the interlocking to respect the
availability of the traffic.

4.3 Application data errors

This chapter deals with application data verification. It directly implies
that such data can be erroneous. This section introduces several kinds
of errors that can exist in the application data. A non exhaustive list is
as follows:

(a) An incorrect or a missing condition for moving a point in a route
command (Listing 2.1). It can lead the interlocking to command a
route even in not safe situations.

(b) A point moved to a wrong position when commanding a route
(Listing 2.1). It can cause a derailment in the station.

(c) A subroute, or another logical component (immobilisation zone or
bidirectional locking), not properly locked when commanding a
route (Listing 2.1). It can lead the interlocking to command other
routes even if it is not safe.
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(d) A missing condition for releasing a logical component (Listing 2.5).
With such an error, the component could be released too early and
lead to the command of unsafe routes.

(e) Irrelevant additional conditions for releasing a logical component
(Listing 2.5). It can cause a perpetual locking of the component
which will never be released. It will cause an availability issue.

(f) A non consistency between a route command and its activation
(Listings 2.1 and 2.4). A route commanded risks then to never be
activated.

(g) A missing condition verifying the vacancy of a track segment on a
route activation (Listing 2.4). It can directly lead to a collision.

(h) A bidirectional locking not properly locked (Listings 2.3 and 2.4).
It can lead to a head to head collision.

Such errors often lead to a safety or an availability issue. However,
the application data are, by their design, robust. It means that an
error inside them will not always lead to an issue because some internal
controls are done. For instance, in Listing 2.1, the free condition for
an immobilisation zone (U_IR(08BC) f) is checked twice: in this same
listing, and also in Listing 2.2. Furthermore, the activation request for a
commanded route also checks that the components have been thoroughly
locked. It is why an error in the application data do not irremediably
lead to a safety or an availability issue. The next sections present how the
detection of issues can be performed. The reliability of the introduced
methods is then tested with some experiments. For instance, some
errors are introduced in the application data in order to see if they are
thoroughly detected.

4.4 Model checking

A common approach for system verification is model checking [64]. The
goal of a model checker is to verify if a system meets a set of properties by
considering all the reachable states of the model representing the system.
It is done in three steps. First, a model representing the system must
be designed. Secondly, the requirements that the model must ensure are
formalised. Finally, a model checker verifies that no reachable state of
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the model violates the requirements. The main advantage of this method
is exhaustiveness. It means that if a requirement is not satisfied, the
model checker will always detect it.

Currently, model checking is one of the main approaches used for
verifying interlocking systems. It has been deeply studied in the lit-
erature. For instance, Winter et al. proposes models, methods and
improvements for the verification of control tables [65, 66, 35, 67]. The
control tables provide the functional specifications for railway signalling
interlockings and contain the key safety requirements. Mirabadi et al.
[68] implemented a control table generator and a verifier of its correctness.
Eisner uses symbolic model checking for verification of interlockings in the
Netherlands. Symbolic model checking [69] consists in representing the
states by sets and transition relations in order to explore more efficiently
the state space.

Among these works, only few of them deal with the specific case of
interlocking expressed in SSI format [5, 70]. However the time and the
memory required to compute all the states of an interlocking in SSI are
far more important than for boolean interlockings expressed with control
tables.

Model checking suffers from the so called state space explosion prob-
lem [71]. The number of reachable states exponentially grows as the size
of the model grows and the model checker algorithm might not return
a result within a reasonable time in practice. The verification is then
restricted to small or medium sized stations [72]. Several techniques to
limit this problem have been proposed. Winter et al. [35] suggest to keep
the model as simple as possible by abstracting some parameters, such as
the trains speed or length. Winter [67] also proposes several strategies
to optimise the variable ordering. Several works advocate the utilisation
of symbolic model checking [73, 74].

For the specific case of interlockings expressed in SSI, Busard et al.
[5] proposed a NuSMV [75] model with customized model-checking algo-
rithms based on operation on the Binary Decision Diagram (BDD) using
PyNuSMV [76]. Huber et al. implemented a symbolic model checker
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based on NuSMV with different optimisations like a dynamic variable
re-ordering. However, even with such improvements, the verification still
remains infeasible for large stations.

Figure 4.1 illustrates the state space and the model checking process.
On this figure, the non conflictual states are represented by circles while
the conflictual states are represented by stars. They are grey if the state
has been visited through the search and red otherwise.

Figure 4.1. Verification by model checking. Circles represent the non conflictual
states and stars the conflictual ones.

As we can see, all the states are explored and then all the possible
conflictual states will then theoretically be detected. However, let us
consider an interlocking managing 70 different routes as LK7 area of
Courtrai (Figure 2.5). It yields at least 270 different states. Currently,
the state of the art model checking algorithms are not able to process
such state space in a feasible execution time in practice.

Furthermore, even if safety requirements have been deeply considered,
it is not the case of availability requirements which are expressed in LTL
and then harden the verification.
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4.5 Random simulation

In this section, we present a novel approach based on a random discrete
event simulation which does not suffer from the drawbacks of model
checking. Instead of considering the entire state space, the idea is to
simulate the train movements and the behaviour of an interlocking as
described in its application data and to observe if some issues have
occurred. If no issue has occurred and provided that the simulation time
was long enough, we can have a high expectation that the system is safe.
Compared to model checking where all the states are considered even
the ones that never occur in practice, the random simulation will only
consider the cases which can potentially happen with a real interlocking.

Concretely, the main idea is to analyse the trace obtained from a
simulation as explained in Section 3.7. Once the simulation is launched,
we can observe the expected behaviour of the interlocking system as
described by its application data and how it allows the trains to move
through the station. The analysis of its behaviour is finally used to verify
the correctness of the application data. The principle of this approach
is illustrated in Figure 4.2. A simulation is initiated and is processed
until a conflictual state has been reached. At this step, we know that
the interlocking is incorrect.

However, this approach requires to define a stop condition. In
other words, it means that we must define when the simulation must
be stopped. If a conflictual state has been reached, we know that the
interlocking is incorrect and we can then stop the simulation. However,
if no conflictual state is reached, after how many steps can we stop the
simulation ? For instance, if the simulation is stopped too early, we
can have the situation of Figure 4.3 where the simulation has reached
no conflictual state. In this situation, the interlocking is considered as
correct even if it not the case.

Intuitively, if we extend the simulation time, we will have a higher
expectation that the errors will be successfully discovered because more
states are explored. The question is to determine after how much time
the simulation can be stopped in order to have enough confidence that
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Figure 4.2. Successful verification by random simulation. States are grey if they have
been visited through the search and red otherwise.

the system is correct. To do so, we proceed into several steps. Firstly,
we need to define the correspondence between the simulation time and
the real time. In other words, we must find how many real hours are
covered by a simulation of a given execution time. Section 3.7 stated
that a simulation has covered one real day when 1440 trains have moved
through the station. With this information, the real time can be directly
deduced. Table 4.1 shows the results for a simulation of 1 hour for
Namêche, Braine l’Alleud and Courtrai.

Namêche Braine l’Alleud Courtrai
# trains real time # trains real time # trains real time
134291 93 days 16674 11 days - -

Table 4.1. Number of trains that have moved through Namêche, Braine l’Alleud and
Courtrai after a simulation of 1 hour with its correspondence in real days.

Secondly, we can use the deduced real time to bound the simulation
according to an arbitrary threshold. For instance, if no accident occurred
after a simulation covering one thousand day, we can have a high ex-
pectation that the model is correct. According to the results of Table
4.1, a simulation of 11 hours is required in order to cover 1000 real days
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Figure 4.3. Unsuccessful Verification by random simulation. States are grey if they
have been visited through the search and red otherwise.

in Namêche while 91 hours are required for Braine l’Alleud. Such an
extrapolation can be done because the relation between the simulation
time and the covered time increases proportionally. Concretely, doubling
the simulation time will double the covered time.

The main drawback of this approach is that it does not provide
enough guarantees that all the conflictual scenarios will be detected. A
situation as the one presented in Figure 4.3 can then happen. Given the
high safety level required for an interlocking, this method cannot be used
without obtaining more confidence on the reliability of the simulation.
For instance, the simulation time is currently chosen arbitrary. A better
solution would be to determine the simulation time in order to obtain a
sufficient safety level.

4.6 Statistical model checking

The previous sections introduced two approaches for system verification:
model checking and random simulation. However, both approaches have
drawbacks. Model checking suffers from the state space explosion prob-
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lem while random simulation does not provide enough guarantees about
the correctness of the system. This section proposes an intermediate
approach, offering both the advantages of model checking and simulation.

The limitation of random simulation is that only one simulation of an
arbitrary period is performed. Our key idea is to perform instead several
simulations and to observe through hypothesis testing and other statisti-
cal tests whether the results obtained provide a statistical evidence that
the system is correct. Even if exhaustiveness is not obtained, we can still
have a parametrizable confidence on the reliability and the availability of
the entire system. A statistical model checker [77] can be used for that.
The aim of Statistical Model Checking (SMC) is to approximate,
in a controlled manner, the probability of satisfaction or violation of a
property. Figure 4.4 illustrates the main idea of this concept. In this
figure, different confidence thresholds can be obtained according to the
reliability desired. Unlike classical model checking approaches where
an exhaustive exploration of the state space is conducted, SMC only
requires a sample of simulations.

SMC has already been used for verification of several applications,
often stochastic [78], as biological [79], biochemical [80], electronic [81]
or aircraft [82] systems. However, to the best of our knowledge, it has
never been used yet for the verification of railway interlocking systems.

Improvements on the verification can be provided in many ways. This
section describes how SMC can be used in order to gain more confidence
on the verification performed by a random simulation. Several principles
and algorithms are explained.

4.6.1 Monte Carlo estimation

Verification by random simulation is performed by a single simulation
of an arbitrary period. However, this approach can be risky. Given its
randomness, it is possible that the simulation becomes too specific and
that it does not reflect the behaviour of the entire system with enough
accuracy. A better idea would be to execute several simulations and
to observe if the verdict is the same. With this improvement, if one or
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(a) 90% confidence. (b) 95% confidence.

(c) 99% confidence. (d) 99.9% confidence.

Figure 4.4. Verification by statistical model checking for different confidence intervals.
States are grey if they have been visited through the search and red otherwise.

several simulations do not provide the same result than others, it will
be detected. For the verification, if only one simulation has detected an
issue, we have a certitude that the system is incorrect.

This improvement can be provided by Monte Carlo method [83, 84].
The algorithm aims to estimate a probability γ of satisfying a property
ϕ. The principle is to generate N random simulations ρ1, . . . , ρN and to
compute an estimation of γ. Equation (4.5) illustrates this estimation.

γ̃ = 1
N

N∑
i=1

1(ρi |= ϕ) (4.5)

The term 1 is an indicator function that returns 1 if ϕ is satisfied in ρ
and 0 otherwise. For instance, if one hundred simulations are performed
and if no collision occurs, then the estimation γ̃ will be of 100%, which
means that the no collision property is satisfied in the totally of the
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simulations.

A confidence interval can also be obtained with Equation (4.6).

[(
γ̃ − zα ×

√
γ̃(1− γ̃)

N

)
,

(
γ̃ + zα ×

√
γ̃(1− γ̃)

N

)]
(4.6)

The value zα is the (1− α/2) quantile of the standard normal distri-
bution [85]. Intuitively, the more simulations are carried out, the stricter
is the confidence interval.

4.6.2 Bound choice

A simulation requires to fix the number of iterations that must be exe-
cuted. It is the simulation bound. This subsection analyses which values
can be chosen for this bound. Intuitively, the bigger is the bound, the
longer will be the simulation time, and the better will be the verification,
but the execution time is also increased.

The bound can then theoretically be as high as possible. With Monte
Carlo method, the choice of the bound can be turned in choosing the
number of simulations. Indeed, under some assumptions, a simulation of
m steps can be split into N simulations of 1/m steps. In other words,
a simulation covering 30 days is identical to two simulations of 15 days
and to three simulations of 10 days. We can then split a long simulation
into several shortest simulations. However, this division can only be
performed if at least one complete scenario occurs in each simulation.

Definition 4.1 (Complete scenario). A complete scenario is a scenario
going from a train arrival to its departure in a station. The scenario is
not complete if the simulation is stopped when the train is still waiting
or moving into the station.

The key idea through this assumption is to force the simulations to
be able to generate any situation that can occur in the station. It can
be done by fixing a lowest simulation bound. Indeed, if the bound is too
low, the simulation time will be too short and some scenarios will not



4.6. STATISTICAL MODEL CHECKING 59

be covered. It is why we require that the bound must be sufficient to
determine a simulation time long enough to cover at least one complete
scenario. For instance, a simulation covering one hour will not be suf-
ficient because trains arriving in a station could still be in the station
after one hour and causes an accident.

A lowest bound must then be fixed. In our case, we assigned a
simulation time of one complete day. This value is chosen under the
reasonable assumption that a train would not stay into the same station
longer than one day. As explained in Section 3.7, the simulation has
covered at least a complete day after the passage of 1440 trains.

4.6.3 Number of simulations

The next step is to determine how many simulations are necessary in
order to have a strong enough confidence about the correctness of the
system. Such information can be expressed in term of confidence intervals.

To do so, Chernoff’s bound [86] is the method commonly used.
From a confidence δ and a precision ε taken as parameters, this bound
determines the required number of simulations (N) to perform in order
to have a confidence interval on the estimation obtained by a Monte
Carlo estimation. Chernoff’s bound follows the relation described in
Equation (4.7).

Pr(|γ − γ̃| < ε) ≥ 1− δ if N ≥
ln(2

δ )
2ε2 (4.7)

Performing N simulations guarantees that the probability that a
property is satisfied is included in the (1 − δ)-[γ̃ − ε, γ̃ + ε] confidence
interval. (1− δ) indicates the percentage of chance that the estimation
obtained lies in the interval. In our case, we consider that the system is
correct is it lies in a (1− δ)-[1− ε, 1] interval.

Parameters δ and γ can then be chosen according to the reliability
threshold desired. For instance, a 0.99-[γ̃ − 0.01, γ̃ + 0.01] confidence
interval on γ̃ with ε = 0.01 and δ = 0.01 can be obtained with 26 492
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simulations of one day each. Furthermore, refining δ by a factor 10 will
increase the number of required simulations by 11513 while refining ε by
the same factor will multiply this number by 100. Knowing the execution
time required to perform a 1-day simulation for each station from Table
4.1, we can deduce the expected execution time required to obtain such
confidence intervals. A recap of the values obtained is presented on Table
4.2.

Namêche Braine l’Alleud Courtrai
Number of simulations 26 492

Real time covered 72 years
1-day simulation exec. time 38.71 sec 327.27 sec -

Total exec. time 12 days 100 days -
Added exec. time for δ

10 +5 days +44 days -
Added exec. time for ε

10 ×100

Table 4.2. Characteristics of the verification for a 0.99-[0.99, 1] confidence interval
using Chernoff’s Bound.

The results of this table show that even poor confidence intervals
(0.99-[0.99, 1]) for a small station require a consequent execution time.

4.6.4 Parallelisation

The theoretical results obtained from Chernoff’s bound analysis show
that considering a too strict confidence interval has the same drawbacks
than model checking. Too many states must be explored and the execu-
tion time became quickly too important. However, a crucial advantage of
simulation compared to model checking is that it can be easily parallelised
without any overhead. Indeed, by Gustafson’s law [87], the execution of
N simulations on m processors will be m times faster than the execution
of N simulations on a single processor. Even if model checking can also
be parallelised [88, 89], it is a harder task and the parallelisation gain
decreases with the number of processes.

Table 4.3 summarizes the number of processors required to perform
in one hour the verification of our case studies in order to obtain a
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(0.99-[0.99, 1]) confidence interval. These results show that it is possible
to reach strong Chernoff’s bounds in practice thanks to parallelisation.
For comparison, the EC2 cloud computing services proposed by Amazon
contains more than 30 000 cores [90].

Namêche Braine l’Alleud Courtrai
1 hour 285 2408 -
12 hours 24 201 -
24 hours 12 101 -
10 days 2 10 -

Table 4.3. Number of processors required for performing the verification with a
0.99-[0.99, 1] confidence interval for different time periods.

4.6.5 Covering tests

[[Results on this section must be updated for the new model]]

A next drawback of simulation is that we have no guarantee that a
particular scenario has been tested. Therefore, it is theoretically possible,
even if statistically unlikely, that there exist conflictual scenarios not
covered by the simulations. This subsection and the next one presents
two methods to deal with this issue. This subsection introduces covering
tests. The main idea is to have a more accurate view on which scenarios
are tested.

For instance, a request for Route R_CC_102 can be made when none
or several routes are already set in the station. Furthermore, a same
route can have different states depending on which of its elements are
released. Similarly to software testing where code coverage [91] is used
to gain confidence into the quality of test suites, measures and report
statistics related to the scenarios coverage for simulations can also be
performed. More exactly, we record for each request the number of times
it is generated and granted for different situations in the station.

The idea behind this test coverage is twofold. First, it aims to verify
that the requests can be done in many different situations and secondly,
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it can be used to detect conflictual routes. Table 4.4 summarizes this
test coverage for the scenarios where an activation request is done when
Route R_CXC_104 is already activated. After 1 hour of simulation, 361
496 requests were done under this assumption. Furthermore, each sce-
nario occurred with a uniformly probability with a mean of 11661 and a
standard deviation of 180.

Route Ratio (%) Route Ratio Route Ratio
R_DXC_092 0 R_EC_091 0 R_CXC_102 0
R_KXC_103 22.65 R_CC_102 0 R_JC_012 14.75
R_CC_103 0 R_CGC_012 13.70 R_JXC_012 16.33
R_KC_101 24.37 R_CC_104 0 R_DXC_091 0
R_CC_101 24.85 R_KXC_101 24.13 R_CGC_011 13.69
R_KC_102 24.36 R_IC_011 14.51 R_CXC_103 0
R_EC_092 0 R_FC_091 0 R_KXC_102 24.15
R_KXC_104 21.89 R_KC_104 23.11 R_DC_092 12.57
R_DC_091 12.62 R_KC_103 22.78 R_IC_012 14.05
R_JXC_011 16.16 R_CXC_101 12.71 R_FC_092 0
R_JC_011 15.38 - - - -

Table 4.4. Test coverage (#Granted
#Done %) when route R_CXC_104 is activated for Braine

l’Alleud.

This table summarises the proportion of times that a route activation
request is granted after being issued. We can observe that some requests,
like for R_DXC_092, are always refused when R_CXC_104 is activated. In
Figure 2.1 we can indeed notice that R_DXC_092 is highly interleaved
with R_CXC_104 such that there exists no state of R_CXC_104 where
R_DXC_092 can be also activated.

For the other requests, they are all of them much less often granted
than they are done. It is because other routes can also be set in the
station, which will prevent the acceptance of the request. However, we
can notice that some routes have a lower probability to be set than
other. The requests having the lowest probability to be granted are for
R_CXC_101, R_DC_091 and R_DC_092 which are all three interleaved with
R_CXC_104. Generally speaking, the more a route is constrained, the
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lower will be its probability to be activated.

Similar results are observed for scenarios involving other routes, or
for other stations, which shows that most of the scenarios are covered by
the simulation.

4.6.6 Importance splitting

Following the same idea, importance splitting [92, 85] is a technique
initially used for guiding the simulation to a particular state. Such
particular states are called rare events. For instance, an accident can
be considered as a rare event. In order to spot them, we can guide the
simulation in order to bring it closer to an accident and finally try to
produce it. If the accident can happen, it means that the interlocking is
incorrect.

Importance splitting can then be used to increase the probability
of generating rare events but also to speed up the errors detection by
decreasing the number of simulations required to estimate the probability.

It starts by splitting the rare event in a sequence of temporal proper-
ties ϕk, with the logical characteristic:

ϕ = ϕM ⇒ ϕM−1 ⇒ · · · ⇒ ϕ1.

This defines a set of levels, each associated to the conditional proba-
bility

Pr(ρ |= ϕk+1|ρ |= ϕk)

of reaching level k+1 from level k. Instead of trying to verify directly
the rare property, the importance splitting algorithm considers a set
of sub-properties easier to verify and which lead progressively to the
final property. The goal of simulations turns thereby to reach iteratively
sub-properties until the rare event property is reached. An illustration
of this process is presented on Figure 4.5 for three levels and with five
simulations per level.
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'1'1 '2'2

'3'3

'rare event'rare event

Figure 4.5. Illustration of importance splitting Algorithm for a budget of 5 simulations
for 3 levels.

This process is presented in Algorithm 4.1. At Level k, the algorithm
selects the prefix of the Traces ρ̃kj that have reached Level k − 1, and
it continues these traces until they satisfy Property ϕk, or reach a stop
condition (line 4). The algorithm computes the conditional probability
of the level as the ratio of successful traces (line 5-6). Finally, successful
traces are kept for the next level (line 7), and the unsuccessful ones are
replaced by selecting randomly a successful trace (line 8). If the levels
are adequately defined, the conditional probabilities can be estimated
with a small simulation budget, and the importance splitting algorithm
computes the probability of the rare property as the product of these
conditional probabilities (line 9). The algorithm estimates iteratively
these conditional probabilities with a fixed number of simulations (N)
for each level. Importance splitting can then also be used in order to
obtain more confidence on the error detection of the simulations.

Algorithm 4.1: Importance splitting
1 Let stop be a termination condition
2 ∀j ∈ {1, . . . , N}, set prefix ρ̃1

j = ε (empty path)
3 for 1 ≤ k ≤M do
4 ∀j ∈ {1, . . . , N}, using prefix ρ̃kj , generate path ρkj until (ρkj |= ϕk) ∨ stop
5 Ik = {j|j ∈ {1, . . . , N} ∧ ρkj |= ϕk}
6 γ̃k = |Ik|

N

7 ∀j ∈ Ik, ρ̃k+1
j = ρkj

8 ∀j /∈ Ik, let ρ̃k+1
j be a copy of ρki with i ∈ Ik chosen uniformly randomly

9 γ̃ =
∏M

k=1 γ̃k
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Furthermore, Equation (4.8) shows how a (1− α) confidence interval
can be obtained [85]:

[
γ̃

( 1
1 + zασ√

N

)
, γ̃

( 1
1− zασ√

N

)]
(4.8)

where zα is the (1−α/2) quantile of the standard normal distribution
and σ the standard deviation estimated by

∑
k=1M

1−γ̃k
γ̃k

.

4.6.7 Experiments

[[Results must be updated for the new model]]

The aim of this subsection is to analyse the validity of this approach
through experimental results. Indeed, now that we have a model and a
verification process, we need to ensure that it will efficiently detect the
errors leading to safety or availability issues. As stated previously, these
experiments have been carried out with a MacBook Pro 2.6 GHz Intel
Core i5 processor and with a RAM of 16 Go 1600 MHz DDR3 using a
64-Bit HotSpot(TM) JVM 1.8 on Yosemite 10.10.5.

Concerning the statistical model checking algorithms, we use the
implementation and the framework proposed by PLASMA lab platform
[93, 94]. PLASMA Lab is a compact, efficient and flexible platform for
statistical model checking of stochastic models. It includes several statis-
tical model checking algorithms and a library to include new simulators
and to define properties. Simulators of systems or models can be reused
with few implementation work thanks to the existing libraries.

It already includes simulators for Reactive Module Language (Markov
chains models as in the PRISM model-checker [95]), Simulink [96] and
SystemC [97] models. In our case, we have developed a new plug-in
that implements PLASMA Lab library and creates an interface between
PLASMA Lab and the simulator presented in Section 3.7.

The rest of this section presents the experiments that have been
carried out in order to analyse the reliability of our method.
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Error detection The first experiment consists in introducing several
errors in the application data in order to test if they are detected through
simulations. The errors introduced are described in Section 4.3. Using
Monte Carlo estimations, we performed one hundred simulations of one
day. Table 4.5 recaps the execution time and the probability to detect
issues violating the requirements formalised on Section 4.2 with a single
1-day simulation when errors are introduced in the application data
of Braine l’Alleud (Figure 2.1). Simulating the trace and verifying all
the requirements for a single simulation take approximately [[XX]] seconds.

Safety requirements Availability requirements Time
(1) (2) (3) (4)

a. 0 100 0 0 1424
b. 0 0 100 100 1086
c. 91 69 29 63 1348
d. 93 100 0 33 1845
e. 72 97 0 79 1199
f. 0 0 0 100 1652

Table 4.5. Execution time (in seconds) and probability (in percent) of detecting an
issue violating requirements of Section 4.2 with a single 1-day simulation when errors
are inserted on Braine l’Alleud application data.

A non zero probability means that a safety or an availability issue
has occurred on at least one simulation. In this case, we have then the
certainty that the interlocking is incorrect. As we can see on this table,
each error introduced in the application data causes the violation of at
least one requirement which means that all the errors have been detected
through 100 simulations of one day. Using these results, it is possible to
analyse which issues are caused by specific errors. For instance, injecting
an error of type f. only causes availability issues.

Importance splitting for collision detection The last experiment
deals with no collision Requirement. As explained in the previous
subsection, importance splitting can be used to speed up the errors
detection. Furthermore, no collision Requirement can easily be split
in different levels. It seems then suitable to verify this requirement using
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Statistics Importance splitting Monte Carlo
# experiments 10 1

# simulations per experiment 100 1000
Average execution time (sec) 257 1320
Average arithmetic mean (%) 93.9 93.94

Standard deviation (%) 1.21 0.75
99.9%-confidence interval (%) [92.71, 95.12] [91.43, 96.45]

Table 4.6. Comparison between Monte Carlo and importance splitting algorithms for
collision detection when an error of type f. is introduced on Braine l’Alleud application
data

importance splitting.

The first step is to define the different levels. The first level is reached
when two conflictual routes are set together in the station. Two routes
are conflictual if they share at least one common track segment. For
instance, R_CXC_102 and R_DXC_091 on Figure 2.1 are conflictual. The
next level is reached when there is only one track segment between two
trains following conflictual routes if and only if no train is beyond the
track segment where the collision can occur. According to the previous
example, if the train following Route R_CXC_102 is on Track segment
T_01BC and the train following Route R_DXC_091 is on Track 102, there
is only a difference of one track segment. The third level is the event
that we want to detect: the collision. According to importance splitting
algorithm, simulations reaching a level are recorded and then used as a
new start point for next simulations.

Once the levels are determined, importance splitting can be used.
Table 4.6 presents statistics for simulations of one day with an error
of type d. on the application data. The number of experiments and
the number of simulations per experiment are chosen in order to have
the same total number of simulations for Monte Carlo estimation and
importance splitting (1000 in that case). As we can see, even for a
medium size station such as Braine l’Alleud where errors are rapidly
detected with Monte Carlo, importance splitting can give similar results
much faster for a same number of simulations.
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4.7 Dedicated algorithm

4.7.1 Motivation

Section 4.6 presented an innovative approach for the verification of rail-
way interlocking systems. By taking the advantages of model checking
and random simulation, a parametrizable confidence on the reliability
and the availability of the entire system can be obtained.

This solution can be categorised as tests performed on a probabilis-
tic model. However, although the last version of CENELEC EN50128
Standard [2] describes probabilistic tests, they are not considered as
approved verification tests for the safety. Even, if this approach can also
be referenced as black box tests [98] which are accepted by the standard,
its industrialisation is compromised. It is why it is preferable to consider
exhaustive methods for the safety requirements. Concerning availability
requirements, exhaustiveness is not mandatory and statistical model
checking remains then suitable for them.

As presented in Section 4.4, model checking is the commonest ap-
proach for performing an exhaustive verification, but is also limited to
the state space explosion problem. Several improvements have been
provided in order to restrict it but all of them are generic and although
they can be applied for any model checking applications, they do not
take advantage of the intrinsic specificities of the considered system.
Even if model checking uses knowledge of the system for its modelling, it
does not take advantage of this knowledge for designing the verification
algorithm. Our idea is to use our knowledge of the railway field in order
to design the verification algorithm. The rest of this section describes
the algorithm designed and analyses its performances through theoretical
and experimental results.

4.7.2 Verification

The goal of the dedicated algorithm is to use specificities of the in-
terlocking system in order to identify what are the scenarios that can
lead to safety issues and to distinguish them from others that are either
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redundant or that never happen in practice. The state space is then
pruned and the verification is more efficient. Roughly speaking, this
approach is related to model checking. Indeed, an automatic and exhaus-
tive verification of a model is still performed, but now this verification is
limited to a limited state space that increases slower than a complete
model checking approach. The rest of this subsection describes the entire
process of the algorithm and states the assumption under which it can
be used.

Algorithm The first step is to initialise the variables. The inputs
and the outputs of the algorithm are shown in Algorithm 4.2. For
all routes r, we define r.origin as the origin of r, r.destination as its
destination, r.isCommanded and r.isActivated as boolean values defining
if r is commanded and activated. We also define t.position as the current
position of a train t, p.state as the state (normal or reverse) of a point
p and c.isLocked as a boolean value defining whether a component c is
locked.

Algorithm 4.2: Initialisation
1 Input: a railway station S
2 Output: True if S satisfies the requirements, False otherwise
3 Let ROUTES be the set of all routes in S
4 Let TRACK_SEGMENTS be the set of all track segments in S
5 Let POINTS be the set of all points in S
6 Let COMPONENTS be the set of all physical components in S

The idea behind this algorithm is to verify that no issue occurs in
any situations, and for that, only pairs of routes are considered. The
correctness of this algorithm is then based on the assumption that testing
only pairs of routes is sufficient for detecting all the issues. It is also
related to the monotonicity of the application data.

Proposition 4.2. The application data are monotonic. If a route cannot
be commanded given a particular station state, it will not be able to be
commanded for a more constrained station state. The same rule must
also apply for the components releasing.

Proof. In other words, if a route r1 cannot be commanded when a route
r2 is commanded, it cannot be commanded if r2 and a third route r3 are
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commanded together. Such a scenario can only occur if conditions for
route commands (Listing 2.1) require components to be locked instead
of being free. It is because the station becomes more constrained each
time a component is locked for a route. In some cases, the application
data are not monotonic. However, this property can be easily checked
through a static analysis. To do so, one can simply read sequentially the
application data and check separately each condition.

Proposition 4.3. Considering only pairs of routes is sufficient to verify
the safety of an interlocking based on the application data format described
previously provided that they are monotonic.

Proof. We have to prove that all the requirements can be verified by
using at most two routes. An issue can occur if the first route is not
properly set, such a case only requires routes taken separately and is
so trivially proved, or if the command or activation of another route
interacts with components already locked for the first route. We need
to prove that considering two routes is sufficient to detect all of these
issues.

Let us consider C, the set of all the components, either physical or
logical, of the station and Cn ⊆ C, the set of components used or locked
by Route rn. Let us take two arbitrary routes, r1 and r2. There are two
possible situations:

• C1 ∩ C2 = ∅: the two routes have no component in common and
are then completely disjoint. No issue can happen between them.
• C1 ∩ C2 6= ∅: the routes have at least a component in common. If

the interlocking allows both routes to be set at the same time, an
issue can happen.

Any issues can be represented as intersections between such sets.
An intersection is formed by at least two routes. Two routes are then
sufficient to detect any safety issues provided that commanding a third
route will not relax C1 or C2 by releasing some components thereafter.
According to Proposition 4.2, the application data must be monotonic
to avoid that. In this case, testing only all the pairs of routes is thus
sufficient to cover all the conflictual scenarios.
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This kind of assumption is also considered in [99] where the verifica-
tion is limited to two trains. Algorithm 4.3 presents how we performed
the verification by considering all the pairs of routes. The command and
activate instructions (lines 5 and 7) correspond to the requests defined
in the application data, like Listings 2.1 and 2.4. The bidirectional lock-
ing request (Listing 2.3) is also done through command instruction. They
return True if the request is fulfilled and False otherwise. Furthermore,
if they are accepted, all the attached actions modifying the station state
are executed. move instruction (lines 20 and 23) moves a train to the
next track segment as defined by the points state. If a point is misplaced,
the train will either derail or pursue its movements until it leaves the
station.

First, each pair of routes are considered (lines 1-2). The goal is
to move a Train t1 from the origin of a route to its destination (lines
10-28) and for each position of t1 we will try to command and to activate
another route (lines 12 and 17). We also try to command r2 directly
after that r1 has been commanded (line 6). Such a case can happen in
real situations. If r2 is successfully commanded and activated (line 18),
we move a Train t2 until it reaches the destination of the route (lines
19-22). When a particular position of t1 has been tested, t1 goes to its
next position (line 23) and the interlocking will try to release all the
locked components (lines 27-28). Releasing conditions are described in
the application data such as in Listing 2.5. Through the iterations on
the positions of t1, we memorize the fact that the other route, r2, has
been commanded or activated (lines 12 and 17). Indeed, because of the
succession of release actions, the command and the activation can occur
at different moments during the route life cycle. When a pair of routes
has been entirely tested, the station is reinitialised (line 29) in order to
have an empty station before testing the next pair. It is done through
reinitialise instruction which releases all the locked components and
removes all the trains of the station.

Detection of issues Requirement no collision is tested after each
movement of t2 by testing that its position can never be the same as t1
(lines 21-22). Requirement no derailment1 is tested each time r2 has
been commanded. If the current position of t1 is a point, the point cannot
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Algorithm 4.3: No conflictual pair of routes
1 for r1 ∈ ROUTES do
2 for r2 ∈ ROUTES such that r2 6= r1 do
3 place a train t1 at r1.origin
4 place a train t2 at r2.origin
5 r1.isCommanded ← command r1
6 r2.isCommanded ← command r2
7 r1.isActivated ← activate r1
8 if not r1.isActivated then
9 return False

10 while t1.position 6= r1.destination do
11 if not r2.isCommanded then
12 r2.isCommanded ← command r2

13 if r2.isCommanded and not r2.isActivated then
14 for p ∈ POINTS such that t1.position = p do
15 if p.state 6= previous(p.state) then
16 return False

17 r2.isActivated ← activate r2

18 if r2.isCommanded and r2.isActivated then
19 while t2.position 6= r2.destination do
20 move t2
21 if t1.position = t2.position then
22 return False

23 move t1
24 if t1.position /∈ TRACK_SEGMENTS then
25 return False
26 remove t2 from S
27 for c ∈ COMPONENTS such that c.isLocked do
28 release c

29 reinitialise S

30 return True

move after the command of r2 (lines 14-16). It is done by comparing its
state with its previous one through the operator previous. Requirements
no derailment2 is tested on lines 24 and 25 as a sub requirement stating
that trains must reach their destination. If r1 cannot be activated (lines
8-9), we can consider that we have an availability issue because no other
route is already activated.
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Time complexity Each pair of routes must be tested, as well as all
the possible configurations of positions between two trains. We have
thereby the theoretical bound O(r2t2) with r the number of routes and
t the number of track segments. The verification of Braine l’Alleud
Station took 148 seconds, still on a MacBook Pro 2.6 GHz Intel Core
i5 processor and with a RAM of 16 Go 1600 MHz DDR3 using a 64-Bit
HotSpot(TM) JVM 1.8 on Yosemite 10.10.5.

4.7.3 Experiments

Several kinds of errors related to safety (all of the errors presented in
Section 4.3, except (e) which is related to availability) have been intro-
duced in the application data of Braine l’Alleud (Figure 2.1) in order
to test the adequacy of the dedicated algorithm. All of them have been
successfully detected.

Furthermore, we perform three experimentations in order to analyse
the scalability of the algorithm. Firstly, we compare the execution time
required to verify different numbers of routes in the station. Secondly, in
addition to Braine l’Alleud (17 tracks segments and 32 routes) we test
our algorithm on a smaller instance, Nameche (13 tracks segments and
14 routes) and a larger one, a subpart of Courtrai (19 track segments
and 70 routes). Finally, we compare our method with the approach of
Busard et al. [5] that have performed a verification of Nameche with
model checking. Figure 4.6 recaps the execution time of the different
experimentations.

Notice that the scale is logarithmic. As we can see, our algorithm runs
faster (≈ 4 orders of magnitude for 14 routes) than the model checking
approach, even for larger instances and more routes. Furthermore, the
algorithm scales well for larger instances. Indeed, the verification is
performed in less than 3 minutes for Braine l’Alleud and in less than 16
minutes for Courtrai.

These experimental results can then give more confidence about the
reliability and the scalability of this dedicated algorithm.
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Figure 4.6. Execution time (in seconds) in function of the number of routes in
Nameche (•), Braine l’Alleud (�) and Courtrai (N) by using our algorithm and the
model checking approach of Busard et al. [5] for Nameche (�).

4.8 Related work

Many other works related to interlocking verification exist in the lit-
erature, each with their own specificities. This section recaps some of
them:

• Hartonas-Garmhausen et al. [74] propose a verification based
on real time constraints. They use Verus Language [100] for the
modelling and express the properties as invariants in Computational
Tree Logic (CTL).
• Haxthausen et al. [101] use bounded model checking for the verifi-

cation in order to deal with the state space explosion problem.
• Haxthausen et al. [102] detail how they modelled an European Train
Control System (ETCS) level 2 compatible Danish interlocking.
The state space, the transition relations and the safety properties
are efficiently evaluated by solvers based on Satisfiability modulo
theory (SMT) [103] that support bit vector and integer arithmetic.
They also model the sequential release feature.
• Many works [104, 105, 106] use Petri net for the modelling.
• Moler et al. propose in several works [99, 107, 108] to use CSP‖B
Language for the verification [109]. The overall specification com-
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bines two communicating models, one made of CSP process de-
scriptions and one made of a collection of B machines.
• Abo et al. [110] explains how OVADO Tool can be used in order
to perform the verification with B Language [111].
• More generally, Fantechi et al. [112] give an overview of the com-
monest methods for interlocking verification.

However, best of our knowledge, there exists no work dealing with
our specific case: the automatic and generic verification of route based
interlockings expressed in SSI and scalable for any station. Furthermore,
the methods introduced in our work have never been used yet for the
verification of any interlocking systems.
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Chapter 5
Verification toolbox

In this section, we will detail the software implemented, its characteristics,
its functionalities and an user manual.
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Chapter 6
Conclusion

The research goal of this thesis is to design and develop innovative meth-
ods in order to perform an automatic verification of railway interlocking
systems. Chapter 2 introduced the principles of interlocking systems.
Chapter 3 explained how such a system could be modelled while Chapter
4 proposed different methods in order to carry out the verification of the
model. Finally Chapter 5 presented the software implemented during
this thesis. This chapter recaps first the contributions provided in this
thesis and then sketches the future perspectives.

6.1 Contribution of this thesis

This section recaps our current contributions:

• A tool designed to automatically parse application data on SSI
format. The output obtained can be used for several purposes and
different kinds of modelling. It has been presented in Section 3.2.

• A parser tool extracting the topology of a station from a data
source based on railML. It has been presented in Section 3.3.

• A model instantiating the behaviour of a route based interlocking
system from its application data and the topology of its station. The
model presented here is designed in order to allow its simulation
by a discrete event simulator and its verification with different
approaches. The model has been presented in Chapter 3.

• The formalisation of the safety properties of [5] in BLTL. Such
logic is used in order to have the possibility to determine when
the simulator must stop its processing. The formalisation has been
presented in Section 4.2.
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• The introduction of an availability property that an interlocking
must face in order to ensure that no train would be stuck in a
station. Such a property has also been formalised in BLTL. It has
also been formalised in Section 4.2.
• A DES engine which can be run on the top of the previous model.
This tool contains several advanced features such as the possibility
to stop a simulation at any state and to replay it later. It has been
presented in Section 3.7.
• A new verification method based on a random simulation which is
executed on the top of the DES engine. It is presented in section
4.5.
• The utilisation of SMC methods and principles, such as Monte

Carlo estimation, Chernoff’s bound, covering tests and importance
splitting algorithm, for improving the verification by random simu-
lation and obtaining then more confidence on the reliability of the
system. It has been presented in Section 4.6.
• A polynomial dedicated algorithm verifying that an interlocking will

never cause derailments or collisions provided that an assumption
of monotonicity hold. it can also verify that each train will reach
the correct destination. It has been presented in Section 4.7.
• An executable tool instantiating the model, its simulation, the

properties and the different verification methods. A command line
interface as well as a graphical user interface have also be developed
in order to facilitate its utilisation and its ergonomics.

6.2 Perspectives

The work presented here is currently in progress. Our next steps will
probably be the following:

• For now, the experimental results were obtained from the analysis
of Namêche and Braine l’Alleud. The station of Courtrai is still
on the modelling process. Once modelled, we will perform experi-
mentations on it. The analysis of Courtrai will probably close the
verification chapter.
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• Optimising and refining the implemented software for its future
utilisation.
• Beyond the verification, we will see how optimisation of interlocking
system can be performed.

1. Discuss with experts on what are the interesting cases and
how optimisation can help.

2. Review the state of the art optimisation methods related to
this field.

3. See where are the lacks and fill them with methods never used
yet for interlocking optimisation.
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