
Decomposition-Based Analysis

of Queueing Networks

Ramin Sadre



CTIT Ph.D.-thesis Series No. 06-95
Centre for Telematics and Information Technology

University of Twente, P.O. Box 217, NL-7500 AE Enschede
ISSN 1381-3617

c© Ramin Sadre 2006

ISBN 90-365-2444-X



DECOMPOSITION-BASED ANALYSIS

OF QUEUEING NETWORKS

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday, January 10th, 2007 at 13.15

by

Ramin Sadre

born on June 13th, 1974
in Tehran (Iran)



This dissertation has been approved by
the promotor, prof. dr. ir. B.R. Haverkort.



Abstract

Model-based numerical analysis is an important branch of the model-based per-
formance evaluation. Especially state-oriented formalisms and methods based on
Markovian processes, like stochastic Petri nets and Markov chains, have been suc-
cessfully adopted because they are mathematically well understood and allow the
intuitive modeling of many processes of the real world. However, these methods are
sensitive to the well-known phenomenon called state space explosion. One way to
handle this problem is the decomposition approach.

In this thesis, we present a decomposition framework for the analysis of a fairly
general class of open and closed queueing networks. The decomposition is done at
queueing station level, i.e., the queueing stations are independently analyzed. Dur-
ing the analysis, traffic descriptors are exchanged between the stations, representing
the streams of jobs flowing between them. Networks with feedback are analyzed
using a fixed-point iteration.

Based on the decomposition framework, we have developed an efficient analysis
method called FiFiQueues. The method supports open queueing networks with
infinite and finite capacity queues. We present the method and discuss its fixed-
point behavior, as well as various extensions to the original algorithm. We also
show how the method can be applied in the efficient analysis of closed queueing
networks.

The service processes in FiFiQueues can be arbitrary phase-type renewal pro-
cesses. Over the last decade, traffic measurements have shown the presence of prop-
erties such as self-similarity and long-range dependency in network traffic. It has
been shown that this can be explained by the heavy-tailedness of many of the in-
volved distributions. We describe how hyper-exponential distributions, which are
a special case of phase-type distributions, can be fitted to heavy-tail distributed
measurement data.

FiFiQueues’ traffic descriptors are based on the first and second moment of the
inter-arrival time and, hence, cannot account for correlations in the traffic streams.
To approach this problem, we also introduce MAPs as traffic descriptors. Since a
queueing network analysis based on MAP traffic descriptors suffers under the state
space explosion problem, we present five different MAP reduction methods in order
to decrease the effect of the state space explosion.

v





Contents

1 Introduction 1

2 Analysis of General Queueing Networks 5

2.1 The decomposition approach . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Application to queueing networks . . . . . . . . . . . . . . . . . . . . 10

2.3 Analysis of decomposed networks . . . . . . . . . . . . . . . . . . . . 12

2.4 A decomposition framework for queueing networks . . . . . . . . . . . 17

2.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 18

3 MAPs, PH Renewal Processes and QBD Processes 19

3.1 Markovian Arrival Processes (MAPs) . . . . . . . . . . . . . . . . . . 19

3.2 Phase-type (PH) renewal processes . . . . . . . . . . . . . . . . . . . 22

3.3 Infinite QBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Finite QBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Performance of the solution methods . . . . . . . . . . . . . . . . . . 31

3.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Fitting of long-tailed traffic traces to HEDs 35

4.1 Heavy-tailed distributions and hyper-exponential distributions . . . . 36

4.2 Approximation of HTDs with HEDs . . . . . . . . . . . . . . . . . . . 38

4.3 EM-fitting with HEDs . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Enhancements of the EM-fitting for traffic traces . . . . . . . . . . . . 42

4.5 EM-algorithm with stratification . . . . . . . . . . . . . . . . . . . . . 44

4.6 Application and validation . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 52

5 FiFiQueues 53

5.1 Jackson queueing networks . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



viii CONTENTS

5.2 Whitt’s Queueing Network Analyzer . . . . . . . . . . . . . . . . . . 57

5.3 FiFiQueues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Existence of the fixed point . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Traffic descriptors with m moments . . . . . . . . . . . . . . . . . . . 80

5.6 PH renewal processes as traffic descriptors? . . . . . . . . . . . . . . . 86

5.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Performance of FiFiQueues 89

6.1 Evaluation of FiFiQueues . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Performance evaluation of a web server . . . . . . . . . . . . . . . . . 94

6.3 FiFiQueues with three-moment descriptors . . . . . . . . . . . . . . . 102

6.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Closed Queueing Networks 113

7.1 Existing analysis methods . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Analysis of closed QNs by decomposition . . . . . . . . . . . . . . . . 116

7.3 Implementation with FiFiQueues . . . . . . . . . . . . . . . . . . . . 117

7.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Tool Support 133

8.1 The FiFiQueues network designer . . . . . . . . . . . . . . . . . . . . 133

8.2 Integrating FiFiQueues in the Möbius framework . . . . . . . . . . . 135

8.3 Steady-state simulation of queueing networks . . . . . . . . . . . . . . 136

8.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 144

9 MAP-Based Traffic Descriptors 145

9.1 MAPs as traffic descriptors in QNs . . . . . . . . . . . . . . . . . . . 146

9.2 Reduction by removing equivalent states . . . . . . . . . . . . . . . . 150

9.3 Finite output process approximation for MAP|MAP|1 queues . . . . . 152

9.4 Approximation for MAP|MAP|1(|K) queues . . . . . . . . . . . . . . 154

9.5 Approximation of processes with positive, exponentially decreasing
autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.6 Fitting PH renewal processes to MAPs . . . . . . . . . . . . . . . . . 157

9.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 158

10 Performance of MAP-Based Traffic Descriptors 159



CONTENTS ix

10.1 Reduction by removing equivalent states . . . . . . . . . . . . . . . . 159

10.2 Approximations for MAP|MAP|1 queues . . . . . . . . . . . . . . . . 162

10.3 Approximations for MAP|MAP|1|K queues . . . . . . . . . . . . . . . 170

10.4 Approximation of processes with positive, exponentially decreasing
autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 178

11 Conclusion 181

A The Power Spectrum of a MAP 183

B The Simulator 185

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C Publications by the Author 195

Bibliography 197

Index 207



x CONTENTS



Chapter 1

Introduction

From the beginning of modern telecommunication systems, their performance eval-
uation has been of particular interest. The complexity and costs of the involved
technologies and the rapidly increasing demand made it necessary to carefully plan
communication networks from a technological and an economical point of view. As a
consequence, the question regarding the optimal amount of resources to fulfill given
or future demands arose. Basically, performance evaluation of a system should give
an answer to this question.

Of course, the evaluation has to follow the same economical considerations as
the evaluated object. Hence, the most direct approach, the measurement , is usu-
ally not an option since it requires an installed and running system. Model-based
approaches try to circumvent the problem by applying the evaluation methods to
a virtual version of the object of interest, the model. Although such models can
have any arbitrary complexity to reflect every detail of the real thing, their practical
usefulness is limited by the available methods and tools to construct and evalu-
ate them. Simulation approaches accept a wide range of model classes but often
result in long computation time if information related to rare events is needed. Ap-
propriate actions have to be taken in order to deal with such situations [7, 112].
For the model-based numerical analysis, especially methods based on Markovian
processes have been successfully adopted. Analysis methods like discrete-time, resp.
continuous-time Markov chains (DTMCs, resp. CTMCs) extend the classical deter-
ministic state machines by the concept of state probabilities. This state-oriented
approach allows the intuitive modeling of many processes of the real world, espe-
cially if the design behind those processes also is state-based (which is, for example,
the case for network protocols [89]).

However, these methods are sensitive to the well-known phenomenon called state
space explosion. For any realistic system, a direct naive representation of the system
behavior by a model leads to a state space that is far too large for any analytical
treatment. One way to handle this problem is to avoid the state-oriented approach,
for example by flow-oriented analysis [3] or simulation [53]. This will, however,

1



2 1 Introduction

not be the topic of this thesis. Instead, we will follow a decomposition approach
which aims to reduce the number of states in a model. The decomposition approach
achieves this by dividing a large model into smaller submodels which can then be
independently analyzed. A fixed-point iteration scheme is used to combine the solu-
tions of the submodels in order to compute an approximate solution for the original,
overall model. The decomposition and the iteration-based solution approach were
successfully applied to various model classes in the past. However, most attempts
bore monolithic tool implementations that could not be easily extended or combined
with other formalisms or solution methods. As a reaction, tools like SMART [22]
have been developed that offer multiple modeling formalisms and permit the easy
integration of new solution methods. The Möbius framework and tool [23, 26] can
be considered as the next step of this development; it provides an infrastructure
for formalisms and solvers with minimal assumptions about their functionality, the
supported model classes, and how submodels are combined. But the reduced com-
putational complexity is not the only motivation for the decomposition approach.
It also promotes a component-oriented way of modeling where the submodels are
the components. Similar to other engineering disciplines, one generally prefers tools
that allow to build the model of smaller, well-understood components instead of “in-
venting” a completely new model for each application case. In addition to the better
analytical tractability, this simplifies the design of the model and the interpretation
of the evaluation results.

It has turned out that many of the arguments stated above are especially applica-
ble to queueing networks. Their building blocks, the queueing stations, are able to
directly model many processes that we encounter in the real world. A decomposition
at the level of queueing stations is possible for many interesting applications. In addi-
tion, the queueing process of a single station has been intensively studied by means of
CTMCs and Quasi-Birth-and-Death processes (QBDs) [1, 9, 13, 14, 49, 68]. Hence,
the decomposition of queueing networks naturally follows [43, 44, 45, 47, 103, 108].

In this thesis, we introduce a decomposition framework for the analysis of general
queueing networks. In the context of this framework, two critical points in the
analysis of queueing networks can be identified: (i) the representation of the traffic
streams between the queueing stations, and (ii) the employed algorithms for the
analysis of the single queueing stations. We will present and discuss different choices
for these issues as well as the resulting analysis methods.

Organization of the thesis

In Chapter 2, we first give an intuitive introduction to the decomposition approach
by means of general models (which are not necessarily queueing networks). In
the same chapter, we show that the restriction to queueing networks allows for an
elegant description of the operations that have to be performed in order to analyze



3

a model. This description is then further developed to a decomposition framework
for a quite general class of queueing networks. A fundamental question is how the
various arrival and service processes and the queueing processes inside a queueing
network are mathematically represented. We rely in the following on Markovian
Arrival Processes (MAPs), phase-type renewal processes and distributions (PHs)
and Quasi-Birth-and-Death processes (QBDs). Chapter 3 introduces the involved
mathematical structures and gives an overview of the available solution methods for
QBDs.

Over the last decade, traffic measurements have shown the presence of properties
such as self-similarity and long-range dependency in network traffic. It has been
shown that this can be explained by the heavy-tailedness of many of the involved
distributions. In Chapter 4, we describe how hyper-exponential distributions, which
are a special case of phase-type distributions, can be fitted to heavy-tail distributed
measurement data.

The first applications of our decomposition framework are given in Chapter 5.
We illustrate how existing analysis methods like QNA [115, 116] can be elegantly
described in the context of the framework. Then we present FiFiQueues, our
decomposition-based analysis method for queueing networks with queueing stations
of finite and infinite capacity. In this chapter, we also discuss the fixed-point behav-
ior of FiFiQueues and various extensions to the original algorithm. The performance
of FiFiQueues is evaluated in Chapter 6. The evaluation includes various tests with
representative queueing networks and a case study of a web server.

Although most of this thesis concerns open queueing networks, some systems can
be more elegantly modeled by closed queueing networks. In Chapter 7, we present an
approach to analyze a certain class of closed queueing networks by approximations
through open queueing networks.

Combining all the previously described results, we have developed the FiFiQueues
network designer, a tool that comprises the implementation of the FiFiQueues algo-
rithms, a queueing network simulator and a graphical user interface. It is described
in Chapter 8.

The algorithms employed by FiFiQueues and related methods are based on
PH|PH|1(|K) queues. Naturally, PH renewal processes are not able to represent
correlations in the arrival and service processes. The usage of MAP|MAP|1(|K)
queues should overcome this problem. However, reduction methods are required
to avoid the potential state space explosion. They are presented in Chapter 9 and
evaluated in Chapter 10.

We finally conclude this thesis with a summary of the results and with an outlook
in Chapter 11.



4 1 Introduction



Chapter 2

Analysis of General Queueing
Networks

Queueing networks (QNs) have been used widely for the analysis of performance
problems in computer and communication systems. For many classes of queueing
networks elegant and efficient solution methods exist. In case the QNs under study
are open and contain queueing stations with infinite capacity, i.e., when the number
of customers is not a priori restricted, product-form results, such as those for Jackson
networks [54], can be used. A disadvantage of these results is that they are only
valid under a number of restrictions: the service times need to be exponentially
distributed when combined with FCFS scheduling, the stations have unbounded
buffer capacity, and all arrival processes are Poissonian. These restrictions might
not always apply in practice.

The above restrictions have led researchers to search for extensions and approxi-
mations. Queueing network models with either finite customer number or with finite
buffers (and hence with customer losses) can be analyzed via the numerical solution
of the underlying CTMC, although it might lead to CTMCs with very large state
spaces [46].

The approach described in this chapter has been motivated by the approximate
solution method of large open queueing networks with infinite-buffer stations and
FCFS scheduling, as proposed by Kühn [64] and later extended by Whitt [115, 116].
A key issue in their approach is the approximate decomposition of the overall model
in separate models for each queue.

This chapter is structured as follows: first, we will present the decomposition ap-
proach in general in Section 2.1, and specialized to the context of queueing networks
in Section 2.2. Then, we describe in Section 2.3 how such networks can be analyzed.
Finally, in Section 2.4, we will give a very general class of queueing networks that
will form the base of all following chapters in this work. A summary is given in
Section 2.5.

5



6 2 Analysis of General Queueing Networks

Client

ServerSwitch

StorageClient

Figure 2.1: Abstract system representation

Figure 2.2: Example CTMC

2.1 The decomposition approach

We explain the decomposition approach by an example in Section 2.1.1. A more
abstract description of the approach is given in Section 2.1.2. The decomposition is
possible for open and for closed models, as explained in Section 2.1.3.

2.1.1 An example system

Figure 2.1 shows a small communication network. Although this picture is clearly
not the real system, it is neither a model in the sense as used in the following
chapters. The boxes stand for parts of the real system that were too complex
to show them in full detail and the lines between them simply describe “logical”
connections between those parts. To derive a model from this network the modeler
has to choose the — for her purpose — most interesting aspects of the system. The
model may be a stochastic Petri net that is evaluated by constructing and analyzing
the underlying CTMC. This CTMC may look as the one shown in Figure 2.2. In
this figure each circle stands for a possible state of the system and the arrows are
transitions from one state to another.

Some analysis methods rely on an analysis of the full state space and hence they



2.1 The decomposition approach 7

suffer from the state space explosion phenomenon: if two (sub-)models A and B with
a resp. b possible states are composed to a new model A × B, this new model has
a · b possible states (this assumes that there are no mutually exclusive states). Let
us assume that we want to model the communication system on the TCP/IP-packet
level. Even a very rough estimation shows that each host in the network may take
at least some 100 states representing the number of packets in the receiving buffers,
the window size of the sender process, etc. With 4 hosts (2 clients, one switch, and
one server) our model would already have 1004 = 108 states. This number of states
quickly grows beyond what can be practically handled.

2.1.2 The decomposition approach

The decomposition approach is based on the following idea: If we have two submod-
els A and B with a resp. b possible states, we avoid to construct and analyze the
“product”-model A × B. Instead we do the following:

1. We assume that the system has the structure B(A) instead of A×B, i.e., that
in the resulting composition the submodel B depends on A but not vice versa.

2. We analyze model A independently of B and summarize its behavior in some
so-called descriptor dA.

3. The descriptor dA is used to parameterize model B and we analyze the new
model B(dA) with b(dA) states instead of B(A) with a · b states.

4. Now, we know the behavior of A combined with B. The global behavior of
the system can then be derived.

We do the following observations:

• The decomposition approach reduces the number of states to analyze from a ·b
to a, and, after that, b(dA).

• The assumption in step 1 is certainly not always true. However, we will see in
Section 2.3 that it can be weakened for some networks with cyclic structure.

• The analysis of A and B(dA) instead of B(A) only makes sense if B(dA) has
fewer states than B(A), or, more colloquial, “dA really is a reduction of A’s
behavior”.

In most cases we have to simplify the original model to fulfill the assumption made
in step 1 before we can start to decompose it. However, the main problem is to find a
“good” descriptor dA of A’s behavior: it has to be less complex than A but it should
carry enough information about A in order to obtain correct results from B(dA).
Clearly, the decomposition approach only provides an approximation to the original



8 2 Analysis of General Queueing Networks

Storage

Server
Switch In

Switch Out

Client

Client

Figure 2.3: Decomposition of the original system

model if dA is not equivalent to A. Since, in general, the original model already is a
simplification of the real system, the decomposition approach adds another source
of error to the results.

In more complex systems with more than two interacting submodels, a submodel
both receives one (or more) descriptors (called input or arrival descriptors) and
creates one (or more) descriptors (called output or departure descriptors). Hence,
we have to perform the three steps to analyze an arbitrary submodel S with input
descriptors in1, in2, . . . and output descriptors out1, out2, . . ., as follows:

1. construct the submodel S(in1, in2, . . .),

2. analyze S(in1, in2, . . .), and

3. compute out1, out2, . . ..

Note that we still assume that the system has the structure B(A) (see above). Hence,
in order to analyze the whole system, we start with the analysis of the submodels
that do not depend on any input descriptors (or where all input descriptors are
known because, e.g., they are part of the model specification). Then, we continue
with the submodels that only depend on the previously analyzed submodels, and so
forth until all submodels have been analyzed.

Eventually, let us assume that we have applied the decomposition approach to the
original model of our example communication system. A possible resulting model
is shown in Figure 2.3. The boxes and arrows have the following semantics: boxes
stand for the submodels and the arrows express dependencies between submodels,
i.e., each arrow implies that a descriptor is transfered from one submodel to another
in order to analyze the complete model. Note the following two facts:

1. It is not needed that all submodels are of the same type. For example the
server submodel may be a stochastic Petri net whereas the storage submodel
is described by a queueing station. The same is true for the type of the
descriptors: it may vary from arrow to arrow. However, combining different



2.1 The decomposition approach 9

TCP/IP BTCP/IP AHost A Host B

IP

TCP/
Host A

IP

TCP/
Host B1.

2.

Figure 2.4: Decomposition alternatives

Storage

Server
Switch In

Switch Out

Figure 2.5: Open network

classes of submodels often requires conversion operations on the descriptors,
or sometimes is not possible at all, since each submodel only accepts specific
types of input descriptors.

2. There is no unique decomposition of a model. In Figure 2.4 we have shown
two alternative models for the TCP/IP connection between two hosts. In
alternative 1 the submodels of both hosts also contain the TCP/IP stacks
whereas in alternative 2 a dedicated submodel is used for this.

2.1.3 Open and closed network models

So far, our examples have shown closed network models where the submodels only
are mutually dependent. In fact, this thesis mainly concerns open networks as shown
in Figure 2.5. In such models, the behavior of the submodels also depends on an
“outside” world. Of course, the decomposition method can also be applied to open
models: the influence on the model from the outside world has to be represented by
descriptors, too. Note that, unlike the other descriptors, these descriptors are part
of the model specification and do not need to be computed by the analysis method.



10 2 Analysis of General Queueing Networks

2.2 Application to queueing networks

In the following sections, we specialize the decomposition approach to queueing
networks. In Section 2.2.1, we explain the decomposition of such networks and the
analysis of the resulting submodels. We will see that the decomposition approach
imposes important restrictions to queues with finite capacity. They are discussed in
Section 2.2.2.

2.2.1 Decomposition of queueing networks

In the context of queueing networks the decomposition will be done at the level of
individual queueing stations, i.e., each submodel describes a single queueing station.
A station specification consists of two components:

1. a queue with finite or infinite capacity,

2. one or more service entities that serve the jobs (served jobs leave the queue),

and two policies:

1. a policy that handles incoming jobs if the queue is full (only for finite queues),

2. a scheduling policy that describes how the service stations fetch new jobs from
the queue.

The descriptor desci,j describes the traffic stream from queueing station i to sta-
tion j. Descriptors associated with traffic streams will be called traffic descriptors in
the following. In case of an open network, we also have traffic descriptors from the
outside world to the queueing stations, and vice versa. We will represent the outside
world by a “virtual” station ext and denote the associated descriptors descext,i resp.
desci,ext for station i. Since most analysis methods require that a queueing station
has exactly one arrival descriptor and one departure descriptor, a traffic merging (or
traffic superpositioning) and a traffic splitting step are required. The traffic merging
step merges for a station its arrival descriptors into a single overall arrival descrip-
tor whereas the traffic splitting step splits the overall departure descriptor into the
required number of departure descriptors.

In this thesis we mainly use stochastic analysis methods that analyze the queue-
ing stations in terms of arrival and departure point-processes where the inter-event
time of the processes represent the inter-arrival time, respectively, inter-departure
time of jobs. Thus, to analyze a queue we have to perform the following steps (see
Figure 2.6):

1. traffic merging;

2. construct arrival process from arrival traffic descriptor;

3. construct queueing process;



2.2 Application to queueing networks 11

6

5

43

2

1

Figure 2.6: Steps in the analysis of a queueing station

4. analyze queueing process and compute departure process;

5. convert the departure process into the departure traffic descriptor;

6. traffic splitting.

In practice, the whole procedure is very flexible. In the following we give some
examples how the different steps can be varied:

• direct merging and splitting: the merging step directly constructs the
arrival process from the arrival descriptors without the intermediate superpo-
sitioned descriptor. For example, methods like the stationary-interval method
(see Section 5.5.2) first construct intermediate arrival processes from the arrival
descriptors and then perform the traffic merging directly on the intermediate
arrival processes in order to obtain the overall arrival process representation.

Similarly, the splitting step may directly operate on the departure process.
Thus, step 1 and 2, resp. 5 and 6 are merged.

• variable departure descriptors: the conversion procedure that converts
the departure process into the departure descriptor may choose the form of
the descriptor depending on the structure of the point process. For example,
the complexity of the traffic descriptor can be adapted to the complexity of
the point process. This approach is followed by the methods presented in
Chapter 9.

• variable analysis method: depending on the properties of the arrival de-
scriptors a specific method is selected to analyze the station. For example, in
[47], traffic descriptors with squared coefficient of variation (one of the parame-
ters of the employed descriptors) smaller than 1.0 lead to an analysis method
different from the one used in the case where that coefficient is larger than 1.0.

Even the decomposition scheme can be varied: for example, one may decide to
decompose only parts of the network down to individual queueing stations whereas
other parts are analyzed as a whole without decomposition. We will not pursue this
in this thesis.



12 2 Analysis of General Queueing Networks

2.2.2 Finite queues and blocking

Although the decomposition approach is very flexible it should be noted that it
imposes an important restriction to queues with finite capacity. Let us take a look
at the following situation: a queue A has successfully served a job and now wants to
send the job to the next queue B. If the next queue is finite it may happen that it
has reached its full capacity and thus cannot accept the job. Different mechanisms
have been developed in the past to handle such a situation [86]:

1. the job is simply discarded (this is called communication blocking),

or one of the following blocking mechanisms is used:

2. the job is sent back to queue A for repetitive service (RS). After that, the job
is either resent to the same queue B (repetitive service with fixed destination,
RS-FD) or a new destination is determined (repetitive service with random
destination, RS-RD).

3. queue A stops operating until queue B has free capacity. This behavior may
lead to a deadlock in cyclic networks.

Alternatively, there are mechanisms where queue A checks the capacity of B already
while it is serving the job (so-called blocked-before-service mechanisms).

Since the decomposition approach analyzes all queueing stations separately, the
only possible strategy is to discard the job (strategy 1) because no information
about free queueing capacities can be exchanged between the queues. However,
the restriction to the first strategy can be circumvented in some cases by means
of more complex decomposition algorithms. For example, it is sometimes possible
to transform the network with blocking into an equivalent non-blocking network.
Another approach is to keep queues that exchange information about free queueing
capacities in one submodel.

2.3 Analysis of decomposed networks

In the previous section we have shown how a single queueing station that is part
of a decomposed queueing network can be analyzed. It is quite obvious how the
procedure can be iteratively applied to all stations of a simple tandem queueing
network. But in Section 2.1 we have announced that even networks with cyclic
structure can be analyzed by the decomposition approach. In the following sections
we will explain how complex networks can be analyzed. We describe the analysis
of open networks without feedback in Section 2.3.1. Possible parallelizations of the
involved computations are discussed in Section 2.3.2. An algorithm for the analysis
of open networks with feedback is presented in Section 2.3.3. Finally, closed networks
are briefly discussed in Section 2.3.4.



2.3 Analysis of decomposed networks 13

Figure 2.7: Simple queueing network and its graph

i

h

g

f

e

d

c

ba

j

Figure 2.8: Queueing network without feedback

2.3.1 Open networks without feedback

As first step, we move to a more abstract view of queueing networks. We represent
them by graphs G(V,E) where the set of vertices V contains the queueing stations
and the relation E(n,m) holds if there is a direct connection from station n to
station m. If the network is open, we introduce an external node that represents the
source of the external traffic. Figure 2.7 shows a simple open tandem network and
its corresponding graph (the external node is shaded). Note that the connections
from the nodes to the external world are not shown in the graph because they will
not influence the analysis.

Queueing networks without feedback have graphs without cycles. Such networks
can be analyzed in a single pass through all queueing stations. Figure 2.8 shows
a quite complex open network without feedback. The corresponding graph can be
seen in Figure 2.9.

Obviously, in our example queue d depends on b and c, so we first have to process
them so that all arrival descriptors of d are known. On the other hand, it is not

i

f

e g

c

b

h

j

d

a

Figure 2.9: Graph of queueing network without feedback



14 2 Analysis of General Queueing Networks

precedence nodes
0 external node
1 a, c, j
2 b
3 d
4 e, f
5 g, h
6 i

Table 2.1: Order of analysis for the network without feedback

so important whether we first process a, c or j — all three queues only depend on
traffic descriptors that they receive from external sources.

Order of analysis

It is quite easy to compute the order of processing for the queueing stations. For
this purpose we define the function order : V → N that assigns to each node its
processing precedence. The external node does not depend on other nodes, hence it
is processed first:

order(external node) = 0

A queueing station n ∈ V is assigned a higher order number than its predecessors
in the graph since it can be only analyzed if its arrival descriptors are known:

order(n) = 1 + max
m

{order(m) | E(m,n) and m ∈ V } .

Table 2.1 shows the results for the network of Figure 2.8, sorted by precedence. To
analyze the whole network we first analyze the nodes with precedence 1, then the
nodes with precedence 2, etc., until all nodes have been processed.

2.3.2 Parallelization

In a multi-processor environment a speed-up can be achieved in two different ways:

1. The analysis of the single node is parallelized. For example, if the node is
evaluated by a replication-based simulation [92], the different replications can
be performed in parallel.

2. The analysis of the network is parallelized, i.e., one tries to analyze two or more
nodes at the same time. A simple parallelization approach can be discovered
if we look at the precedences of the nodes. Obviously, nodes with the same
precedence are independent and hence can be analyzed in parallel. However, in



2.3 Analysis of decomposed networks 15

cb e fda

Figure 2.10: Graph of queueing network with feedback

general, this approach does not yield good speed-ups because the complexity
of the analysis may considerably vary in time for each node. Better speed-ups
are obtained by a dynamic scheduling: a node n that is ready for processing
(i.e., all arrival descriptors of n are known) is placed into a list L where it can
be picked up by an idle CPU.

Both approaches can be mixed. As an example, consider a network with 2 nodes x
and y waiting for processing where node x should be evaluated by a simulation with
5 replications and node y should be analyzed, e.g., by a matrix-geometric method.
For optimal speed-up we can place 6 elements into L:

L := {repl. 1 of x, repl. 2 of x, repl. 3 of x, repl. 4 of x, repl. 5 of x, analysis of y} .

2.3.3 Open networks with feedback

The graph of an open network with feedback contains cycles. Figure 2.10 shows
such a graph.

Analysis of the network

Our analysis of open queueing networks with feedback relies on the fixed-point
iteration algorithm presented in [44, 113]:

1 initialize all traffic descriptors desc
(0)
i,j :

2 set desc
(0)
ij to the null value if i 6= ext

3 set desc
(0)
ij to the specified value if i = ext

4 n := 0
5 do
6 n := n + 1

7 analyze each queueing station i and compute desc
(n)
i,j for all nodes j.

8 while dist(desc(n), desc(n−1)) > ε

In each iteration a new set of traffic descriptors desc(n) = {desc
(n)
i,j |i, j} is computed.

The algorithm stops when the distance dist(desc(n−1), desc(n)) between two succes-
sive sets of descriptors is smaller or equal than a given threshold ε. We have chosen
the Euclidean distance as distance function in the following chapters. Descriptors



16 2 Analysis of General Queueing Networks

set to the null value in line 2 are ignored in line 7. This value indicates that no in-
formation about the descriptors descij with i 6= ext is available when the algorithm
starts.

Order of analysis

From the example in Figure 2.10 we can see that it is not necessary to analyze all
queues in each round of the iteration. Obviously, the optimal way is to analyze node
a and b in a loop until stable results are obtained, then analyze node c, analyze d
and e again in a seperate loop and finally analyze node f . An implementation of
this intuitive approach is given in [47]: the algorithm presented there identifies the
loop-structures (overlapping loops are considered as one large loop) in the graph
and calls the iteration scheme for each of them. Nodes that do not belong to a loop
are only visited once.

It should be noted that it is not possible to provide the optimal order1 for ar-
bitrary node analysis algorithms and arbitrary networks (especially if they contain
overlapping loops) since the analysis of a queueing station requires a non-linear,
sometimes non-continuous, transformation of the arrival descriptor into the depar-
ture descriptor. For example, even a small change to an arrival descriptor may
cause the analysis algorithm to switch to another type of queueing station model.
In fact, in general it is not known whether the searched fixed point always exists, is
unique or can be found. However, in our experiments with the FiFiQueues network
analyzer (see Chapter 5) the computation always terminated. This indicates that
the FiFiQueues algorithm is, as far as we have experienced, not sensitive to the
problem. Some preliminary results concerning its iteration behavior will be given in
Section 5.4.

2.3.4 Closed networks

In closed queueing networks a global dependency between all nodes is added: the
(average) number of jobs in the system has to be equal to some finite number K.
Obviously, the methods for open networks cannot be directly applied here. We will
discuss in detail in Chapter 7 how the decomposition approach can be extended to
closed networks.

1the order that leads to the smallest computation time or memory usage.



2.4 A decomposition framework for queueing networks 17

2.4 A decomposition framework for queueing net-

works

From the previous sections we can derive a decomposition framework for queueing
networks that is able to cover different types of traffic descriptors and analysis
methods. Its base characteristics are:

1. The stations are supposed to be independent of each other, apart from the
interchanged traffic streams and the job number restriction for closed networks.

2. A fixed-point iteration is employed to solve the network model.

In addition to these characteristics, we limit the supported model class to networks
with constant Markovian routing, i.e., the stream of jobs leaving a station is split
according to constant probabilities which only depend on the station. Everything
else, especially the type of the employed traffic descriptors, is up to the individual
analysis methods. Hence, the specification of a queueing network model consists of
the following information:

• a routing matrix Γ = (rij) of size n × n where n is the number of queueing
stations and rij specifies the routing probability from station i to station j,

• the description for each station as required by the analysis method, e.g., the
service process, the queueing capacity (if finite), etc.,

• the descriptors of the external arrival traffic for each station (only for open
networks).

We also support two post-processing steps that are performed after the fixed-point
iteration. They allow to compute additional performance measures:

1. computation of node specific results (e.g., mean queue length),

2. computation of network wide results (e.g., total network throughput).

Hence, when we discuss a particular analysis method in the following chapters, we
usually address the following topics in order to completely describe the method:

1. the type of the employed traffic descriptors,

2. the traffic merging (superpositioning) operation (step 1 in Figure 2.6),

3. the traffic splitting operation (step 6 in Figure 2.6),

4. the service operation (steps 2–5 in Figure 2.6),



18 2 Analysis of General Queueing Networks

5. the computation of node specific results,

6. the computation of network wide results.

The complexity of the involved operations is addressed, too.

2.5 Summary and conclusions

In this chapter we have presented the decomposition approach and specialized it
to queueing networks. The decomposition is done at queueing station level, i.e.,
each submodel describes a single queueing station. During the analysis, traffic de-
scriptors are exchanged between the submodels that represent the streams of jobs
flowing between the queueing stations. Networks without feedback can be analyzed
in a single pass whereas networks with feedback require the usage of a fixed-point
iteration. We have shown that the analysis of a queueing station can be divided into
six fundamental steps that describe how the incoming traffic streams are merged,
processed by the queueing station, and then split into the outgoing traffic streams.
This abstract view has allowed us to create a general decomposition framework for
queueing networks which we will use in the following chapters.



Chapter 3

Markovian Arrival Processes,
Phase-Type Renewal Processes,
and Quasi-Birth-and-Death
Processes

In this chapter we introduce the fundamental mathematical structures and notations
that this thesis is based on. We begin with an important class of stochastic processes,
the Markovian Arrival Processes (MAP) in Section 3.1. Phase-type (PH) renewal
processes, which can be seen as special cases of MAPs, are introduced in Section 3.2.
The queueing processes that we will discuss in the next chapters have underlying
Markov chains that belong to the well-known class of continuous-time Quasi-Birth-
and-Death (QBD) processes. We give the formal definition of QBD processes as
well as methods to compute their steady-state solution. We first discuss infinite
QBDs in Section 3.3 and continue with finite QBDs in Section 3.4. In Section 3.5
we comment on the performance of the solution methods.

3.1 Markovian Arrival Processes (MAPs)

3.1.1 Definition and notation

Markovian Arrival Processes (MAPs) [74, 75, 84] belong to the general class of point
processes and can be seen as special cases of Matrix Exponential Point Processes
(which, in turn, form a subset of the class of Semi-Markov Processes [46]). MAPs
cover many interesting processes including the Markov-Modulated Poisson Processes
(MMPPs) [35] and the phase-type (PH) renewal processes (see below).

A MAP can be described by a finite irreducible continuous-time Markov chain
(CTMC) with generator matrix Q where some transitions are “marked”. Every time

19



20 3 MAPs, PH Renewal Processes and QBD Processes

when the process passes through such a marked transition an event is triggered. The
time instants of these events form the point process. We follow the notation of [76]
in the following and split the generator matrix into two matrices Q0 and Q1 as
follows:

Q0 =





−q1 q12 . . . q1m

q21 −q2 . . . q2m
...

...
. . .

...
qm1 qm2 . . . −qm




, Q1 =





a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm




,

with Q0 + Q1 = Q where qi = aii +
∑m

j=1,j 6=i(qij + aij). The elements of the matrix

Q1 give the transition rates of the marked transitions.1 In the following, we denote
a MAP by the pair (Q0,Q1) and call m the size of the MAP.

3.1.2 Characteristics

Some general results of the Markov-modulated Poisson process [35] can be easily
adapted to the MAP. In order to compute the behavior of a MAP (Q0,Q1) we first
need to choose the initial probability vector p of the MAP. In analogy to phase-type
renewal processes we start the MAP at an “arbitrary” arrival epoch by choosing

p =
1

πQ11
πQ1,

where π is the steady-state probability vector of the MAP, i.e., π(Q0 + Q1) = 0.
The thus-obtained process is said to be interval-stationary . The inter-arrival time
distribution function of the interval-stationary process is given by

F (t) = 1 − p exp(Q0t)1, (3.1)

which leads to the following expression for the kth moment of the inter-arrival time:

E[T k] = k!p(−Q0)
−(k+1)Q11. (3.2)

Hence, the first moment of the inter-arrival time is given by

E[T ] =
1

πQ11
πQ1(−Q0)

−2Q11.

This equation can be further simplified by using the equations πQ1 = −πQ0 and
Q11 = −Q01 which follow from the definition of π, respectively, from the fact that

1This definition allows the following interpretation of the matrices Q0 and Q1: passing through
a transition given as entry of Q1 triggers the generation of one event. Batch Markovian Arrival
Processes (BMAPs) generalize this viewpoint by introducing matrices Qi with i > 1 whose entries
describe transitions with batch arrivals of size i.



3.1 Markovian Arrival Processes (MAPs) 21

Q0 + Q1 is a stochastic matrix. We find that the arrival rate λ of a MAP (the
inverse of the first moment) is

λ = πQ11

which yields

E[T k] =
k!

λ
π(−Q0)

−(k−1)1.

Let Ti be the time between the ith and the (i + 1)st arrival in a MAP. Then, the
autocovariance function R(k) for T1 and Tk+1 with k ≥ 1 is given by

R(k) = E [(T1 − E[T1])(Tk+1 − E[Tk+1])]

= p(−Q0)
−2Q1

{[
(−Q0)

−1Q1

]k−1 − 1p
}

(−Q0)
−11.

The limiting index of dispersion I of a MAP is given by [47]

I = lim
t→∞

Var[N(t)]

E[N(t)]
= 1 + 2

(
λ − 1

λ
πQ1(Q0 + Q1 + 1π)−1Q11

)
,

where N(t) is the counting process of the MAP.

3.1.3 Superposition and Markovian splitting

The class of MAPs is closed under superposition and Markovian splitting. The
superposition of two MAPs (A0,A1) and (B0,B1) is a new MAP (C0,C1) with

C0 = A0 ⊕ B0, C1 = A1 ⊕ B1,

where L⊕M = L⊗I+I⊗M, and ⊗ is the Kronecker product operator (also known
as tensor or matrix direct product operator).

The Markovian splitting of a MAP (A0,A1) with probability r gives two MAPs
(B0,B1) and (C0,C1) with

(B0,B1) = (A0 + (1 − r)A1, rA1),

(C0,C1) = (A0 + rA1, (1 − r)A1).

3.1.4 Markov-Modulated Poisson Processes (MMPPs)

The MMPP is the doubly stochastic Poisson process whose arrival rate depends on
the state of an irreducible Markov process. Thus, MMPPs can be seen as MAPs
where the matrix Q1 is restricted to the form





a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . amm




.



22 3 MAPs, PH Renewal Processes and QBD Processes

3.2 Phase-type (PH) renewal processes

3.2.1 Definition and notation

A continuous phase-type renewal process can be seen as a special MAP (A,A0α)
where A0 is a n × 1 column vector with entries and α is a 1 × n row probability
vector. Consequently, it holds A0 = −A1.

We adopt the notation of [85] and denote PH renewal processes by the pair (α,A)
which can be interpreted as follows: the n × n matrix A describes the n transient
states of a CTMC with n + 1 states. The last state n + 1 is an absorbing state
and any transition (given by A0) from the transient state to the absorbing state
will trigger an arrival. After the arrival, the process will restart in the transient
state i with probability αi. Furthermore, PH inter-event time distributions form a
dense subset of all distributions with support on [0;∞), i.e., any distribution can be
approximated arbitrarily closely by a PH distribution [58].

3.2.2 Inter-event time characteristics

Obviously, the vector α of the PH renewal process (α,A) is identical to the interval-
stationary probability vector p of the corresponding MAP. Hence, expressions for
the distribution function of the inter-event time and the k-th moment directly follow
from Equations (3.1) and (3.2) and we have

F (t) = 1 − α exp(At)1,

respectively

E[T k] = k!α(−A)−k1.

Note that the matrix A is nonsingular, so that all moments are finite. From this
follows that the MAP (Q0,Q1) and the PH renewal process (p,Q0) have the same
inter-event time distribution.

3.2.3 Superposition and Markovian splitting

The superposition of two PH renewal processes (α,A) and (β,B) is a MAP (C0,C1)
with

C0 = A ⊕ B, C1 = A0α ⊕ B0β.

Note that the class of PH renewal processes is not closed under superposition.

The Markovian splitting of a PH renewal processes (α,A) with probability r
gives two PH renewal processes (α,A + (1 − r)A0α) and (α,A + rA0α).



3.3 Infinite QBDs 23

3.3 Infinite QBDs

This section is based on Chapter 4 of [88]. Note that we use a simplified notation.

3.3.1 Definition

QBD processes [85] can be described as a generalization of the queueing process of
M|M|1 queueing stations. In the underlying Markov chain of such a queue we can
identify an infinite number of states where state i describes that i jobs are in the
system. The transition from state i to i + 1 resp. from i + 1 to i is marked by the
arrival rate resp. the service rate of the queueing station.

In QBDs, these states are replaced by so-called levels : level i still stands for i
jobs in system but in QBDs each level may consist of more than one state. Usually,
a two-dimensional addressing scheme is used for the states where (i, j) addresses
state j of level i. Note that in the QBD the number of levels is unbounded whereas
the number of states per level is required to be finite. Moreover, the levels 1, 2, . . .
(the repeating levels) have to contain the same number of states N . Level 0 is called
boundary level and may contain a different number of states N0.

In QBDs, two adjacent levels i and i+1 are not connected by one single transition.
Instead, arbitrary transitions between the states of two adjacent levels and between
states of the same level are allowed. Consequently, the transition rates are specified
by matrices:

• the entry (i, j) of the N0 ×N matrix B0,1 gives the transition rate from state
(0, i) to state (1, j). The opposite direction (from level 1 to level 0) is given
similarly by the N × N0 matrix B1,0.

• the entry (i, j) of matrix A0 gives the transition rate from state (l, i) to state
(l + 1, j) where l = 1, 2, . . .. The opposite direction (from level l + 1 to l) is
given by matrix A2. Both matrices are of size N × N .

• transitions inside level 0 are specified by the N0 × N0 matrix B0,0. Entry
(i, j) gives the transition rate from state (0, i) to state (0, j). Correspondingly,
transitions inside repeating level l (with l = 1, 2, . . .) are specified by the N×N
matrix A1.

As can be seen, all repeating levels have a similar transition structure. The above
described matrices directly lead to the generator matrix of the QBD Markov chain.
If we sort the states lexicographically, i.e., in the sequence

(0, 1), . . . , (0, N0), (1, 1), . . . , (1, N), (2, 1), . . .



24 3 MAPs, PH Renewal Processes and QBD Processes

we obtain the tri-diagonal block generator matrix Q of infinite size:

Q =





B0,0 B0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .




. (3.3)

3.3.2 Steady-state solution

The infinite steady-state probability vector v of the QBD Markov chain with gen-
erator matrix Q fulfills the global balance equation

v · Q = 0, (3.4)

and the normalization condition
v · 1 = 1. (3.5)

In the following we write v0 for the vector (v1, . . . , vN0
) which contains the steady-

state probabilities for the states of level 0 and we write vi for the vector
(vN0+1+(i−1)·N , . . . , vN0+i·N) which contains the steady-state probabilities of level i =
1, 2, . . .. With this notation we can rewrite Equations (3.4) and (3.5) as

v0B0,0 + v1B1,0 = 0, (3.6)

v0B0,1 + v1B1,1 + v2A2 = 0, (3.7)

viA0 + vi+1A1 + vi+2A2 = 0, for i = 1, 2, . . . , (3.8)
∞∑

i=0

vi1 = 1. (3.9)

The regular structure of Equation (3.8) is the key to the efficient solution of the
QBD. Two different classes of solution techniques can be distinguished: matrix-
geometric solution methods and transform methods. We will describe them briefly
in the following.

3.3.3 Matrix-geometric solution methods

The main idea in this class of solution methods is that the solution vector v has a
matrix-geometric form, i.e., it exists a matrix R of size N × N with

vi = v1R
i−1, i = 1, 2, . . . (3.10)

In [85], it is shown that R is the entry-wise smallest non-negative solution of the
quadratic matrix equation

A0 + RA1 + R2A2 = 0. (3.11)



3.3 Infinite QBDs 25

The methods described in the following try to solve this equation as efficient as
possible. Once R has been determined, the complete stationary vector v can be
computed using Equations (3.6)–(3.10).

The Successive Substitution method

This method, originally suggested in [85], transforms Equation (3.11) into the as-
signment:

R̃ := −(A0 + R̃
2
A2)A1

−1.

It is shown in [85] that, starting with R̃ := 0, R̃ converges monotonically to the
desired matrix R when the assignment is successively repeated. This approach is
very easy to implement but it converges very slowly if a reasonable accuracy is
desired. An improvement of this algorithm has been suggested in [65] which slightly
reduces the required number of floating point operations per iteration.

The Logarithmic Reduction (LR) method

The LR method is the most popular method for the solution of QBDs. It has been
proposed in [66] and focuses on the solution of the equation

A0 + A1G + A2G
2 = 0, (3.12)

which is “symmetric” to Equation (3.11). After G has been computed the matrix
R is given by

R = −A0(A1 + A0G)−1. (3.13)

The matrix G can be interpreted as follows: entry (i, j) gives the probability that
starting from state (2, i) the QBD will finally enter level 1 in state (1, j). The LR
method approximates G by first assuming that no level above level k = 2 is visited
by the QBD. The key point is that the algorithm is able to double this limit k in each
iteration which results in a quadratic convergence speed. The complete algorithm
in pseudo code looks like:

B0 := −A1
−1A0,B2 := −A1

−1A2

G := B2,T := B0

while ||1 − G1||∞ ≥ ε

D := I − B0B2 − B2B0

B0 := D−1B0
2,B2 := D−1B2

2

G := G + TB2,T := TB0

end

R := −A0(A1 + A0G)−1

It can be seen that one iteration of the while-loop requires much more floating
point operations than in the Successive Substitution method. However, the number



26 3 MAPs, PH Renewal Processes and QBD Processes

of iterations is drastically reduced due to the quadratic convergence speed. Note
that the required number of iterations depends on the distribution of the probability
mass over the levels: the iteration stops when the state probabilities of the remaining
levels above k (given by ||1−G1||∞) can be neglected. As a consequence, queueing
processes with a high average queue length require more iterations than those with
a low average queue length.

Improved LR method

An improvement to the LR method has been presented in [82]. It reduces the
computational effort per iteration of the original LR algorithm by avoiding some
of the expensive matrix multiplications inside the iteration loop. For this purpose,
the algorithm employs a factorization to the matrices B0 and B2. Additionally,
the product W = A0G is computed instead of G. It is shown in [88] that these
changes reduce the number of operations per iteration by about 24%. The pseudo
code is given here (the matrices M,N,L,X and Y have been introduced for the
factorization):

N := A1,L := A0,M := A2

X := −N−1L,Y := −N−1M,Z := LY

W := Z

while ||A01 − W1||∞ ≥ ε

N := N + Z + MX,L := LX,M := MY

X := −N−1L,Y := N−1M,Z := LY

W := W + Z
end

R := −A0(A1 + W)−1

3.3.4 Transform methods

Unlike the matrix-geometric solution methods the transform methods do not aim
to directly solve Equation (3.11). Instead, they first transform the problem to some
other domain in order to derive the solution of Equation (3.8). Three methods are
presented here:

The Cyclic Reduction method

The Cyclic Reduction method [11] yields an efficient solution method for a class of
processes that is more general than QBDs. For this purpose, results from the theory
of block Toeplitz matrices are employed. Interestingly, this method is identical to
the improved LR method (see above) when restricted to the class of QBD processes.



3.3 Infinite QBDs 27

The Invariant Subspace method

The idea of the Invariant Subspace method [2] is to formulate the matrix-geometric
solution matrix R in terms of a particular invariant subspace, namely the left in-
variant subspace. A detailed discussion of this approach is beyond this overview; we
will only give some remarks about its performance.

The computation of the left invariant subspace is performed by evaluating the
so-called matrix sign function. The developers of the Invariant Subspace method
originally suggested a simple iterative procedure with quadratic convergence for this
purpose. The number of operations per iteration is much higher than in the other
approaches. However, it is not sensitive to the probability mass distribution, as
opposed to the matrix-geometric solution methods.

The Spectral Expansion method

The Spectral Expansion method has been first proposed in [85] and thoroughly
discussed in [20]. A good introduction can be found in [88]. Nevertheless, we will
give a brief overview of the method because it yields a very special and handy
presentation of the solution vector v.

The Spectral Expansion approach states that the sub-vectors vi (i ≥ 1) are given
by

vi = ψλi−1, i ≥ 1, (3.14)

where ψ and λ are the eigenvector resp. eigenvalue of the quadratic eigenvalue
problem

ψ(A0 + λA1 + λ2A2) = 0. (3.15)

Note that only eigenvectors with corresponding eigenvalue |λ| < 1 yield valid so-
lutions since otherwise the normalizing condition (3.5) is not satisfied. In general,
more then one eigenvalue fulfilling |λ| < 1 exists. We denote these eigenvalues and
their corresponding eigenvectors λ1, . . . , λc, resp. ψ1, . . . ,ψc. The overall solution
is then given by the linear combination

vi =
c∑

j=1

xjψjλ
i−1
j , i ≥ 1, (3.16)

where xj are the coefficients of the linear combination. The coefficients xj as well as
the boundary solution vector v0 can be computed using Equations (3.6), (3.7) and
(3.9). The representation of the solution subvector vi as power of the eigenvalues (see
Equation (3.16)) allows to access any subvector without the expensive computation
of the matrix-power in Equation (3.10).

Note that a naive implementation of the Spectral Expansion method would result
in an algorithm that is much slower than the matrix-geometric algorithms, especially



28 3 MAPs, PH Renewal Processes and QBD Processes

because the computations have to be done in the complex number space. Fortu-
nately, it is possible to substantially optimize the computation by making use of the
fact that all the eigenvalues and eigenvectors are either real or appear in complex
conjugate pairs [88].

3.4 Finite QBDs

3.4.1 Definition

Similar to infinite QBDs, finite QBDs can be seen as the generalization of the queue-
ing process of a bounded M|M|1|K queue. Finite QBD processes result in QBD
Markov chains with a finite number K + 1 of levels, hence two boundary levels can
be identified: the lower boundary level 0 and the upper boundary level K.

In the following we will only treat a quite restricted class of finite QBDs that
is sufficient for the queueing process discussed in this thesis: The upper boundary
level has the same number of states N as the repeating levels 1 through K − 1.
Additionally, the transition rates between level K − 1 and K are the same as be-
tween the repeating levels — only one new matrix C is introduced that specifies
the transition rates inside level K. The finite generator matrix of the QBD Markov
chain then has the following form:

Q =





B0,0 B0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

A2 A1 A0

A2 C





. (3.17)

3.4.2 Steady-state solution

We search the finite steady-state probability vector v of the QBD Markov chain
with generator matrix Q that fulfills the global balance equation

v · Q = 0 (3.18)

and the normalization condition

v · 1 = 1. (3.19)

As in the infinite case, we partition the vector v into subvectors vi where v0 =
(v1, . . . , vN0

) and vi = (vN0+1+(i−1)·N , . . . , vN0+i·N), for i = 1, . . . , K. It is important
to note that the solution of Equation (3.18) is uncritical with respect to space



3.4 Finite QBDs 29

complexity. Due to the special structure of the Markov chain it is not necessary to
hold the whole matrix Q in memory but only the matrices B0,0, B1,0, B0,1, B1,1,
A0, A1, A2 and C. In terms of these matrices, Equation (3.18) becomes:

v0B0,0 + v1B1,0 = 0 (3.20)

v0B0,1 + v1B1,1 + v2A2 = 0 (3.21)

viA0 + vi+1A1 + vi+2A2 = 0, for i = 1, . . . , K − 2, (3.22)

vK−1A0 + vKC = 0 (3.23)

Since Q is of finite size, Equation (3.18) can be solved by an ordinary Gauss-Seidel-
iteration which performs very efficiently due the band-structure of Q. More sophis-
ticated algorithms have been developed on the basis of the solution methods for
infinite QBDs; most of the algorithms presented in Section 3.3 have been extended
to the treatment of finite QBDs.

In addition to these methods some authors have developed solution methods
especially adapted to QBDs arising from PH|PH|1|K queues (see Section 5.3). In
the following we will present four of them. We assume that the arrival process and
the service process are specified by (α,A) resp. (β,B). The vectors A0 and B0 are
defined by A0 = −A · 1, B0 = −B · 1.

3.4.3 Solution algorithms

The Bocharov-Naoumov method

The method proposed in [14] is a matrix-geometric solution method. It first intro-
duces the matrices W0, W, WK−1 and V with

W0 = −(A ⊗ β)B̃
−1

, (3.24)

W = ÃB̃
−1

, (3.25)

WK−1 = (A0α ⊗ I) [(A + A0α) ⊕ B]
−1

, (3.26)

V = I +

(
K−2∑

i=0

W0W
i + W0W

K−2WK−1

)
(I ⊗ 1), (3.27)

where Ã = (1α− I)⊗B−A⊗ I, B̃ = A⊗ (1β − I)− I⊗B. Let u be the solution
of the system of equations

u(A + A0α) = 0, (3.28)

u1 = 1. (3.29)

Then, the steady-state probability subvector v0 can be obtained by solving

v0V = u. (3.30)



30 3 MAPs, PH Renewal Processes and QBD Processes

The other subvectors vi (i = 1, . . . , K) are given by

vi =

{
v0W0W

i−1, i = 1, . . . , K − 1,
v0W0W

K−2WK−1, i = K.
(3.31)

Unfortunately, our experiments have shown that this approach suffers from con-
siderable numerical instabilities. After a few iterations, very small as well as very
large numbers occur in the computation of the subvectors vi and, as a consequence,
invalid results are returned.

The Chakravarthy-Neuts algorithm 1

This algorithm has been presented in [21] and follows the QBD approach. Instead of
computing the steady-state probability vector v directly, it proposes a Gauss-Seidel
iteration for the vectors x and z, where x is the steady-state probability vector of the
Markov chain embedded at points of departure, and z is the steady-state probability
vector of the Markov chain embedded at points of arrival. Once x and z are known,
v can be computed using the following equations:

k′z0 = v0A
0 = kx01, (3.32)

k′zi = vi(A
0 ⊗ I), i = 1, . . . , K, (3.33)

kxi−1 = vi(I ⊗ B0), i = 1, . . . , K, (3.34)

where k and k′ are normalizing constants and xi (i = 0, . . . , K − 1) and zi (i =
0, . . . , K) are defined as the level subvectors of x resp. z. The authors introduce
the matrices C11, C12, C21 and C22 given by

C11 = −(α ⊗ I)(A ⊕ B)−1(A0 ⊗ I), C12 = −(α ⊗ I)(A ⊕ B)−1(I ⊗ B0),
C21 = −(I ⊗ β)(A ⊕ B)−1(A0 ⊗ I), C22 = −(I ⊗ β)(A ⊕ B)−1(I ⊗ B0).

(3.35)
where ⊕ is the Kronecker sum. Equations (3.32)–(3.34) lead then to a recursive
scheme for z:

k′z0 = kx01, (3.36)

k′z1 = (k′z0α + kx1)C21, (3.37)

k′zi = k′zi−1C11 + kxiC21, i = 2, . . . , K − 1, (3.38)

k′zk = k′(zk−1 + zk)C11. (3.39)

Similar relations can be derived for x. Based on these equations the authors propose
a Gauss-Seidel iteration for x and z. We will not reprint its pseudo-code here but it
is interesting how x and z are initialized for the iteration: the authors propose that
a convenient initial solution for x can be obtained from the steady-state probability
vector of the PH|M|1|K queue with the same arrival process and same service rate



3.5 Performance of the solution methods 31

as the original PH|PH|1|K queue. Similarly, the initial solution of z is drawn from
the M|PH|1|K model with the same arrival rate and same service process as the
original queue. For both of these latter types of queues closed-form solutions are
available.

The Chakravarthy-Neuts algorithm 2

This algorithm has also been proposed in [21]. It derives the solution vector v
from the steady-state probability vector of the embedded Markov renewal process
(MRP) at epochs of departure. Although the final algorithm is quite compact,
its derivation would fill several pages, hence we will only give a statement about
its performance: the authors state that while the MRP approach requires more
overhead computations than the Chakravarthy-Neuts algorithm 1 (see above) it
involves manipulating matrices of lower dimension. The results in [21] show that
the MRP approach is up to three times faster than the QBD approach.

The Cyclic-Reduction method for PH|PH|1|K queues

The generator matrix Q of a PH|PH|1|K queueing process has an outer block struc-
ture (block tridiagonal block Toeplitz-like) and an inner structure given by the Kro-
necker sums and products. Some algorithms (like Gauss-Seidel iteration) exploit
the inner structure but not fully the outer structure, other algorithms (like cyclic
reduction) exploit the outer structure but may destroy the inner structure. The
algorithm in [10] exploits the double structure of Q and is based on cyclic reduction
where the iteration formulae are expressed in a form that allows to take advantage
of the inner structure. The algorithm consists of two parts where the first part only
depends on the arrival and service processes and not on the queueing capacity.

3.5 Performance of the solution methods

First, we notice that all solution methods are uncritical with respect to space com-
plexity because only the block matrices B0,0,B0,1, . . . and some temporary data
structures of small size have to be held in main memory. The time complexity of
the methods is briefly discussed in the following.

Infinite QBDs

For infinite QBDs, [88] gives a detailed analysis of the time complexity of the solu-
tion methods. Table 3.1 summarizes these time complexities (measured in number
of floating-point operations) for solving the boundary level of size N0 and the re-
peating levels of size N of QBD systems. The right column gives the typical number



32 3 MAPs, PH Renewal Processes and QBD Processes

method boundary repeating levels typical
Succ. Substitution 1

3
(N0 + N)3 + 4

3
N3 1

3
N3 + n · 9

3
N3 n À 100

LR 1
3
(N0 + N)3 + 4

3
N3 14

3
N3 + n · 25

3
N3 n < 40

Improved LR 1
3
(N0 + N)3 + 4

3
N3 16

3
N3 + n · 19

3
N3 n < 40

Invariant Subspace 1
3
(N0 + N)3 + 4

3
N3 28

3
N3 + n · 24

3
N3 n < 40

Spectral Expansion 1
3
(N0 + N)3 + 6

3
N3 + N2N0

7
3
N3 + 639

3
N3 –

Table 3.1: Time complexities of algorithms for infinite QBDs (from [88])

of iterations n that a solution method requires to reach a given accuracy. For the
matrix-geometric solution methods, n is sensitive to the probability mass distri-
bution. Experiments in [88] with a PH|PH|1 queueing process showed that the
computation time of the (improved) LR method tripled when the traffic intensity
was increased from 0.1 to 0.97 whereas the Spectral Expansion and the Invariant
Subspace method were nearly insensitive to changes of the traffic intensity. On a
233 MHz x86 CPU, the slowest algorithm (the Invariant Subspace approach) took
about 50 seconds for N0 = N = 161 with IEEE double precision. The other methods
took about 10 through 30 seconds, depending on the traffic density.

Regarding the solution quality of the algorithms, [88] reports that the accuracies
achieved by the Spectral Expansion algorithm for the boundary solution vector
significantly depend on the traffic intensity and the repeating level size N . It is
recommended to restrict the Spectral Expansion algorithm to QBDs with N < 40,
especially under high traffic densities.

Finite QBDs

As already stated, Equation (3.18) can be solved by an ordinary Gauss-Seidel itera-
tion. Due to the band structure of the generator matrix Q, the number of non-zero
elements in the generator matrix only depends linearly on the upper boundary level
K: level 0 contains N2

0 + 2N0N (non-zero) elements, level 1 through K − 1 contain
3N2 elements each, and level K contains N2 elements. In total, the Gauss-Seidel
method has to process

N2
0 + 2N0N + 3N2(K − 1) + N2 ≈ 3KN2

elements per iteration. We have observed in experiments with PH|PH|1|K queues

that the queueing capacity K enters with about K
3

2 into the number of iterations
when the offered load is in the range from 95% to 105%. In some sample queueing
stations with high load and K = 200 this resulted in up to 4500 iterations.

Other methods can be considerably faster: for example, the Cyclic Reduction
method for PH|PH|1|K queues has a total numerical complexity of O((l+m)3 log K+
(l + m)2K) where l and m are the number of phases of the arrival, resp. service PH
distribution (hence N = l ·m). The authors of [10] report a speed-up in comparison



3.6 Summary and conclusions 33

to Gauss-Seidel that increases as K grows, varying between 168 for K = 1600 with
N = 25 and 382 for K = 1600 with N = 10.

3.6 Summary and conclusions

In this chapter we have introduced the fundamental mathematical structures and
notations that are used in the following chapters. We have described the Markov-
ian arrival processes which cover many interesting point processes, including the
Markov-modulated Poisson processes and the phase-type renewal processes.

The queueing processes that we will discuss in the next chapters have underlying
Markov chains that belong to the well-known class of continuous-time Quasi-Birth-
and-Death processes. We have given the formal definition of infinite QBDs and
finite QBDs, as well as various solution methods to compute their steady state
solution. All solution methods have a low space complexity. On today’s hardware,
this fact allows most algorithms to run nearly entirely from the L2 cache of the
CPU for level sizes N,N0 < 100. For infinite QBDs, the improved LR algorithm
and the Spectral Expansion approach are the fastest methods we are aware of. The
Spectral Expansion method is of interest because it is insensitive to extreme traffic
rates, but should be, due to the accuracy issues, only used for QBDs with N < 40.
Additionally, the accuracy of the (improved) LR approach can be easily controlled a
priori, which is not possible for the eigenvalue computation of the Spectral Expansion
method. In case of finite QBDs, a simple Gauss-Seidel iteration is often sufficient for
QBDs of medium size (K ≤ 150 and N ≤ 30). The availability of better algorithms,
like the Cyclic Reduction, allows to analyze QBDs of considerably larger size in
nearly real-time.

The numerical results presented in the next chapters have been computed by
the LR algorithm for infinite QBDs and by a Gauss-Seidel iteration or the Cyclic
Reduction method for finite QBDs.



34 3 MAPs, PH Renewal Processes and QBD Processes



Chapter 4

Fitting of long-tailed traffic traces
to hyper-exponential distributions

Over the last decade, extensive traffic measurements have shown the presence of
properties such as self-similarity , fractality and long-range dependency in network
traffic. The seminal paper by Leland et al. [69] showed self-similarity in Ethernet
traffic; later, similar effects were shown to exist in wide area network traffic, signaling
traffic, and in multimedia and video traffic. Crovella and Bestavros [24] have shown
that network traffic that is due to WWW transfers can show characteristics that are
consistent with self-similarity and argue that this can be explained by the heavy-
tailedness of many of the involved distributions. Ignoring the above properties (that
is, self-similarity, heavy-tailedness) in the analysis of queueing systems leads, in
general, to an under-valuation of important performance measures [93].

Various efforts have been pursued to develop appropriate traffic models to eval-
uate the performance of systems under self-similar traffic. Often, the first step is to
construct heavy-tailed distributions (HTDs) to approximate the involved empirical
distributions in measurement data. However, “classical” HTDs cannot be used so
easily for analytical or numerical evaluation studies, since the latter often rely on the
use of Poisson or other “Markovian” distributions. To overcome this problem, var-
ious approaches to approximate HTDs by analytically more tractable distributions
have been proposed [16, 30, 32, 34, 37, 90, 96, 97, 110].

Of particular interest is the use of hyper-exponential distributions (HEDs) to
approximate HTDs, since these distributions are very well understood and well-
suited for analytical and numerical performance studies. Indeed, an HED is an
example of a phase-type distribution (see Section 3.2). The use of HEDs for this
purpose has been proposed by, among others, Feldmann and Whitt [34] (denoted
here as the “FW-approach”). Although the FW-approach is fast, it requires an
explicit representation of an HTD to fit to. Such an explicit HTD can for instance
be obtained by fitting a Weibull or a Pareto distribution to the measurement data.
However, as we will see below, often the measurements to be fitted do not suit

35



36 4 Fitting of long-tailed traffic traces to HEDs

a Weibull or a Pareto distribution well, so that the thus obtained HED does not
describe the measurements well.

To avoid the use of an intermediate HTD, we have proposed in [29, 31] to di-
rectly fit an HED to the measured data via the Expectation Maximization method
(EM) [27]. This approach has also been followed by others [90, 96, 97, 110].

This chapter is further organized as follows. We will give some background on
HTDs and HEDs in Section 4.1. The FW-approach is summarized in Section 4.2.
The EM-algorithm and its specialization to HEDs are discussed in Section 4.3. In
Section 4.4, we describe two EM-based fitting methods by other authors that increase
the efficiency and the accuracy of the EM-algorithm. In Section 4.5 we present an
EM-based algorithm that applies a sampling and stratification method to the data
in order to increase the efficiency of the fitting. Our approaches are validated in
Section 4.6. The chapter is concluded in Section 4.7. Note that Sections 4.1 through
4.3 and parts of Section 4.6 are based on [29, 31] and have also been presented in [28].

4.1 Heavy-tailed distributions and

hyper-exponential distributions

In this section, we give some background on heavy-tailed distributions in Sec-
tion 4.1.1 and hyper-exponential distributions in Section 4.1.2.

4.1.1 Heavy-tailed distributions

Self-similarity in network traffic has been explained by the fact that many of the
involved distributions, e.g., of file sizes, are heavy-tailed. In an HTD, the comple-
mentary cumulative distribution function F c decays more slowly than exponentially,
i.e., eθxF c(x) → ∞ as x → ∞ for all θ > 0. For a random variable X, distributed
according to some HTD, we typically have:

P [X > x] ∼ x−α, x → ∞, 0 < α < 2.

Note that “x → ∞” should be read as “for very large x” in case of measurements.

The degree of the heavy-tailedness is given by the value of the shape parameter α
which can be determined by plotting the complementary cumulative distribution
F c(x) = 1 − F (x) = P [X > x] on a log-log scale. The slope of the plot, found, for
instance, via a linear regression, then gives the value of α.

In Table 4.1, we list some characteristics of two well-known HTDs [55], the
Pareto and the Weibull distribution (in case the stated conditions are not met, the
expectation and/or variance do not exist).



4.1 Heavy-tailed distributions and hyper-exponential distributions 37

distribution density f(x) expectation variance

Pareto akax−(a+1) ak
a−1

, for a > 1 ak2

(a−2)(a−1)2
, for a > 2

Weibull b
ab x

b−1e−(x/a)b

, a
b
Γ(1/b) a2

b2
{2bΓ(2/b) − [Γ(1/b)]2}

for a > 0 and b > 0

Table 4.1: Characteristics of the Pareto and Weibull distribution

λ1

λI
cI

1

I

c1

Figure 4.1: Graphical representation of an I-phase hyper-exponential distribution

4.1.2 Hyper-exponential distributions

An HED can be interpreted as a probabilistic choice between I exponential distribu-
tions (see Figure 4.1) and is an example of a phase-type distribution. With (initial)
probability ci the i-th negative exponential distribution (with rate λi) is chosen.
Such an I-phase HED has distribution function

F (x) = 1 −
I∑

i=1

cie
−λix, (4.1)

and density

f(x) =
I∑

i=1

ciλie
−λix.

Its j-th moment is given by

E[Xj] = j! ·
I∑

i=1

ci

λj
i

.

Note that, for I → ∞, one can represent any distribution with squared coefficient
of variation at least 1 and with completely monotone probability density function
arbitrary close by hyper-exponentials [34]. However, it has been shown that with
values of I up to 20 [34], HTDs can approximate Weibull and Pareto distributions
for large ranges of x.



38 4 Fitting of long-tailed traffic traces to HEDs

4.2 Approximation of HTDs with HEDs

The approach by Feldmann and Whitt (FW) [34] comprises an efficient and elegant
method to approximate an HTD with an HED. The method is often applied due to
its simplicity and efficiency [37, 52]. In this section we first summarize the approach
before we discuss our experience with it.

The FW-approach

In the FW-approach, it is assumed that an HTD is given in an explicit form. How
this HTD is obtained from, for instance, measurement data, is not a part of it.
Provided that an explicit representation of the HTD F (x) is available, an I-phase
HED of the form given in Equation (4.1) is found.

For a given HTD F (x) and an a priori fixed number of phases I, the FW-
approach operates as follows:

1. Choose quantiles 0 < qI < qI−1 < . . . < q1 with sufficiently large ratio qi/qi+1,
e.g., qi/qi+1 ≈ 10 (for i = 1, . . . , I − 1). Furthermore, let b be such that
1 < b < qi/qi+1 for all i.

2. In I steps, the parameters for the phases in the HED are computed. We start
with setting i := 1 and F c

i (x) = F c
1 (x) = 1 − F (x).

3. In the i-th phase, we compute ci and λi by solving the equations

cie
−λiqi = F c

i (qi),

cie
−λibqi = F c

i (bqi),

yielding (explicitly)

λi =
1

(b − 1)qi

ln

(
F c

i (qi)

F c
i (bqi)

)
and ci = F c

i (qi)e
λiqi .

4. Step 3 is repeated for i = 2, . . . , I − 1 where

F c
i (qi) = F c

i−1(qi) − ci−1e
−λi−1qi ,

F c
i (bqi) = F c

i−1(bqi) − ci−1e
−λi−1bqi .

5. Finally, for the last phase I we find cI := 1 − ∑I−1
j=1 cj, and λI follows from

cIe
−λIqI = F c

I (qI).

The complexity of the algorithm is O(I) where each step consists of solving a system
of two, in fact, linear equations. However, since the algorithm cannot be applied
directly to measurement data, the costs of an algorithm, like the ML-algorithm [27],
to fit the measurements to an explicit HTD must be considered as well.



4.3 EM-fitting with HEDs 39

Application and validation

When applying the FW-approach to find object-size distributions from the log-files
used in our case studies (for a detailed description of the traces and the statistical
parameters, see Section 4.6), we found that the typically employed HTDs, like Pareto
and Weibull, do not describe the object-size distributions well. Both distributions
fit the tail of empirical distributions well, but fail to fit the head and waist properly.
For example, a Weibull distribution whose first and second moment have been fitted
to the data, results in a median that is half the median found in the data (the
median is located in the head; see Table 4.3 and Table 4.4 in Section 4.6).

Hence, even when the FW-approach does give a good fit with respect to a given
HTD, if the provided HTD does not describe the data well, then the finally fitted
HED does not describe the measurements well, either.

Feldmann and Whitt [34] point out that it might be possible to extend their
approach so it can be directly applied to measurement data. They also warned that
the algorithm, at least without extension, is not designed to directly treat data but
might well be applied after some initial smoothing of the data. We have performed a
number of experiments in this direction. In fact, these experiments have shown that
the smoothing is absolutely necessary, since otherwise the algorithm is too sensitive
to the location of the quantiles qi. Furthermore, the quality of the approximation
heavily depends on the quality of the smoothing. Simple smoothing methods based
on linear or square interpolation did not yield satisfactory results.

4.3 EM-fitting with HEDs

The Expectation Maximization method (EM) is a well-known algorithm to fit mea-
surements to distributions [6, 25, 99, 105]. The EM-algorithm operates in an it-
erative fashion and does require neither an intermediate HTD nor any heuristics.
Below, we outline the method in general in Section 4.3.1, and then specialize it in
Section 4.3.2 to the case where the distribution function to fit to is an HED [29, 31].
Its complexity and the choice of the initial values are discussed in Section 4.3.3.

4.3.1 General approach

Given measurement data x1, . . . , xN , we search the parameters c = (c1, . . . , cI) and
θ = (θ1,. . . ,θI) of the density function

p(x|(c,θ)) =
I∑

i=1

ci · p(x|θi), (4.2)

so that it “best” fits the density of the measurement data. The density in Equa-
tion (4.2) is a convex combination of basic density functions p(x|θi) parameterized by



40 4 Fitting of long-tailed traffic traces to HEDs

θi with weights ci ≥ 0 and
∑I

i=1 ci = 1. Now, let α = (c,θ) and α′ = (c′,θ′) be two
sets of parameters for the density p. The EM-algorithm defines a new probability
mass function

δ(i|xn, α) =
ci · p(xn|θi)

p(xn|α)
,

as well as the function

Q(α, α′) =
N∑

n=1

I∑

i=1

δ(i|xn, α) · log(c′i · p(xn|θ′

i
)),

which provides a quality criterion for α and α′: it says how much better the density
function p(x|α′) fits the measurement data than the density function p(x|α).

The EM algorithm proceeds iteratively: starting from an initial parameter set
α, it computes a new parameter set α′ such that Q(α, α′) is maximized. This α′ is
used as starting point for the next iteration. The algorithm stops when α ≈ α′ (see
below). To find the next value α′, that is, to optimize Q, one has to take derivatives
to subsequently solve the (possibly non-linear) equation system:

∂Q

∂α′
= 0 ⇒ ∂Q

∂θ′

1

= 0, · · · , ∂Q

∂θ′

I

= 0. (4.3)

Using Lagrange multipliers (with auxiliary condition
∑I

i=1 ci = 1), the new weights
are given by:

c′i =
1

N

N∑

n=1

δ(i|xn, α).

In general, the equation system (4.3) is difficult to solve. However, in case we take
hyper-exponentials as basic densities, this becomes easily feasible. We discuss this
in the next section.

4.3.2 Specialization to HEDs

We now take HEDs as basic densities, i.e., p(x|λi) = λie
−λix. Equation (4.3) yields

∂Q

∂λ′
i

= 0 ⇒
N∑

n=1

δ(i|xn, α) · ∂

∂λ′
i

log (c′i · p(xn|λ′
i)) = 0.

Substituting the function p(xn|λ′
i) gives us

N∑

n=1

δ(i|xn, α) · ∂

∂λ′
i

log
(
c′i · λ′

i · e−λ′

i
xn

)
= 0,

⇒
N∑

n=1

δ(i|xn, α) · ∂

∂λ′
i

(log c′i + log λ′
i − λ′

ixn) = 0,



4.3 EM-fitting with HEDs 41

1. Select an appropriate number of distributions I and initial parameters
α = (c1, . . . , cI , λ1, . . . , λI), as well as a positive required accuracy ε.

2. Compute for i := 1 to I:

(a) δ(i|xn, α) = ci·p(xn|λi)
p(xn|α)

,

(b) c′i = 1
N

∑N
n=1 δ(i|xn, α),

(c) λ′
i =

∑
N

n=1
δ(i|xn,α)

∑
N

n=1
δ(i|xn,α)·xn

.

3. Return to step 2 with ci := c′i and λi := λ′
i until the difference between ci

and c′i and/or the difference between λi and λ′
i, for all i, is smaller than

the accuracy boundary ε.

Figure 4.2: EM-algorithm for HEDs

⇒
N∑

n=1

δ(i|xn, α) · (1/λ′
i − xn) = 0,

⇒
∑N

n=1 δ(i|xn, α)

λ′
i

=
N∑

n=1

δ(i|xn, α) · xn,

⇒ λ′
i =

∑N
n=1 δ(i|xn, α)

∑N
n=1 δ(i|xn, α) · xn

.

The EM-algorithm specialized for HEDs now takes the form shown in Figure 4.2.
Note that we have preset the number of phases I for the algorithm. In a different
variant of the EM-algorithm, this number does not have to be preset, but is com-
puted on-the-fly, thus yielding a number of phases that is large enough to describe
the required HTD, yet as small as possible to keep the fitted HED small [25, 72].

4.3.3 Complexity and choice of initial values

The EM-algorithm is an iterative algorithm where the complexity of each iteration is
O(N ·I), with N the number of measurement samples and I the number of phases. A
problem with the EM-algorithm is the fact that it is difficult to predict the number
of iterations needed to reach a given precision of the result [6]. However, in our
experiments, good results generally have been obtained within 10 − 30 iterations.
Additionally, it should be noted that even for a case study with N well over 17
million (see below) and I = 5, one iteration takes less than 10 seconds on a standard
personal computer.

The number of required iterations is heavily influenced by the choice of the initial
values. Here, we can use our knowledge about the shape of the distribution function



42 4 Fitting of long-tailed traffic traces to HEDs

to choose initial values that are near to the (expected) final results of the algorithm.
We know, e.g., that data sizes in the world-wide web are described by HTDs, and
that small documents are more popular than larger ones. That means the values
for ci have to be decreasing according to the values of the data sizes, given by the
inverses of λi. This results in the following guidelines for setting initial values for ci

and λi (for i = 1, . . . , I):

ci =
9 · 10−i

1 − 10−I
and λi = 10−2−i, for i = 1, . . . , I. (4.4)

When the number of phases I is not preset but computed on-the-fly (as mentioned
at the end of Section 4.3.2), one starts with I = 1, c1 = 1 and λ1 = N/(

∑N
n=1 xn),

that is, one starts with an expression according to ML-fitting. The algorithm then
chooses a new number of phases Inew := 2 ·I, that is, the number of phases is doubled
per iteration step. We refer to [29, 31] for further details on this.

4.4 Enhancements of the EM-fitting for

traffic traces

In this section, we describe two EM-based fitting methods (developed recently by
other authors) that increase the efficiency and the accuracy of our EM-algorithm.
The Divide-and-Conquer-EM algorithm is presented in Section 4.4.1. An EM-
algorithm based on the aggregation of measurement data is presented in Section 4.4.2.

4.4.1 Divide-and-Conquer-EM

The Divide-and-Conquer-EM algorithm (D&C-EM) [96] does not directly operate
on the trace data. Instead, the data is first partitioned and the EM-algorithm is then
used to fit an HED to each partition. The thus obtained HEDs are then composed to
a final HED for the overall trace. In this way, the accuracy is increased because the
approach reduces the possibility that the EM-algorithm does not correctly capture
parts of the distribution, e.g., the heavy-tail, while searching for the global optimal
solution.

To increase the efficiency, the partitions are selected so that they exhibit a lower
variability than the variability of the entire trace. This leads to a faster convergence
of the EM-algorithm. The coefficient of variation is used to determine the partition
bounds. Starting from the most frequent value (according to the histogram of the
data trace), values are accumulated into a partition until the coefficient of variation
for that partition is larger than a given threshold cmax (between 1.2 and 1.5). When
the threshold is reached, a new partition is created. The complete algorithm is
outlined in the following:



4.4 Enhancements of the EM-fitting for traffic traces 43

1. Build the continuous data histogram of the trace data.

2. For each partition, accumulate data until the accumulated coefficient of vari-
ation for that partition is larger than a threshold cmax.

3. Apply EM (according to Section 4.3) to each partition.

4. Compose the obtained distributions to the final result.

The D&C-EM algorithm presented in [96] fits the data to an HED. Speed-ups of 10
to 1000 in comparison to the original EM-algorithm, depending on the number of
phases and the characteristics of the data set, have been reported there. In [97], the
authors extend the approach to a mixture of an Erlang and a hyper-exponential dis-
tribution which allows to approximate data sets with non-monotonically decreasing
probability density function. The Erlang distribution with two phases is used to fit
the first 0.5% distribution quantile and the hyper-exponential distribution models
the rest of the density function.

4.4.2 Phase-type fitting with aggregated traffic traces

In [110, 111], an EM-algorithm, denoted as G-FIT, has been presented for fitting
mixtures of Erlang distributions, so-called hyper-Erlang distributions, to trace data.
A hyper-Erlang distribution (HErD) [33] is a mixture of I mutually independent
Erlang distributions with order r1, . . . , rI , rates λ1, . . . , λI , and initial probabilities
c1, . . . , cI . Obviously, the hyper-exponential distribution described in Section 4.1.2
is a special case of the hyper-Erlang distribution where ri = 1, i = 1, . . . , I. It has
been shown in [111] that any probability density functions of a non-negative random
variable can be approximated sufficiently close by an HErD.

In [90], G-FIT is extended by an aggregation algorithm that aims to reduce
the size of the data set before the EM-algorithm actually is applied. Two types of
aggregation are distinguished. In so-called uniform trace aggregation, the range of
possible data values is divided into N∗ intervals [∆i−1, ∆i] of identical width. Then,
for each interval i = 1, . . . , N∗ a tuple (x̂i, wi) is determined where x̂i is the mean
of all trace values in the interval [∆i−1, ∆i] and wi is the proportion of trace values
in that interval. The result is an aggregated trace, a set of N∗ tuples, which is much
smaller than the original data set and which is used as input data for a modified
version of G-FIT.

For heavy-tailed distributions, the uniform partitioning does not perform well.
Due to the heavy-tailedness, the data set covers a large range of values. One would
be forced to use a large number of intervals in order to well approximate the dis-
tribution. For this reason, the authors also propose a logarithmic trace aggregation
where the intervals have equal width on the logarithmic scale.



44 4 Fitting of long-tailed traffic traces to HEDs

The experiments in [90] show that the reduction of a heavy-tailed distributed
data trace with more than 106 elements to an aggregate trace with some hundred
elements yields accurate results, whereas the CPU time requirements of the overall
EM-algorithm (all iterations) decrease to a few seconds.

4.5 EM-algorithm with stratification

We have seen that the complexity of the EM-algorithm directly depends on the
number of observations to process per iteration. A common method to reduce this
number is the method of sampling [70]. The idea is to apply the algorithm only on
a selected set of observations that are considered to be representative for the whole
data trace. Usually, a random process is employed to select the observations out of
the whole trace (random sampling) because a systematic sampling , for example by
selecting every n-th observation, would be too vulnerable to periodicities in the trace.
Often, a Poisson process is used as random process because it yields independent
selections (Poisson sampling).

When random sampling is applied on a heavy-tail distributed data set it quickly
shows that the obtained results exhibit a large variance. This is caused by the
nature of the heavy-tailedness: such a data set comprises many small and only
few, but very large values. Using random sampling, there is a high probability to
accidentally “overlook” some of the values located in the tail of the distribution.
Stratified sampling aims to reduce the variance of the result [70]. To achieve this,
the population is divided into strata and each stratum is sampled separately such
that even rare values have a high probability to be selected.

We use the following algorithm to build the strata. It operates on the sorted
list of observations. Starting with the smallest value, the observations are added
to the first stratum until the squared coefficient of variation of the data in the
stratum reaches a threshold c2

max. Then, a new, empty stratum is created and the
algorithm is applied to the remaining observations. As a consequence, the regions of
the distribution with low variability are assigned to large strata, whereas the regions
with high variability are divided into many small strata. By selecting a fixed number
of observations from each stratum, this approach makes that the regions with high
variability are over-represented in the sampling result.

We have applied the stratification algorithm on several heavy-tailed data traces
(they are discussed in detail in Section 4.6). Figure 4.3 shows the size (number of
elements) of the generated strata for the RWTH trace with c2

max = 0.001. It shows
that, even for such a low threshold c2

max, only a small number of strata is generated.
This is true for all three traces discussed in Section 4.6 and is caused by the fact
that, although the distribution is heavy-tailed, most of the data is located in the
head of the distribution.

Note that an important simplification of the algorithm follows from this obser-



4.6 Application and validation 45

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 10  20  30  40  50  60  70  80  90

si
ze

 o
f i

-t
h 

st
ra

tu
m

stratum number i

Figure 4.3: Size of the strata for a heavy-tailed distribution

vation. The threshold c2
max = 0.001 means that the data contained in each stratum

obeys a more or less deterministic distribution. For such strata, the random sam-
pling actually is not required to select representative observations. Instead, it is
sufficient to represent a stratum simply by the average of all values contained in
the stratum. In this way, we obtain a small sequence of average values x̂1, . . . , x̂N∗

which can be used as input data for the EM-algorithm. Since the strata have differ-
ent sizes, the EM-algorithm has to weight each average x̂i by the weight wi = si/N ,
where si is the size of stratum i and N is the total number of observations [90]. For
HEDs, the EM-algorithm takes the form shown in Figure 4.4.

This means that the EM-algorithm with stratification (denoted as sEM in the
following) becomes identical to the aggregation-based EM-algorithm [90] (see Sec-
tion 4.4.2) for low threshold c2

max. However, in the sEM-algorithm the number of
strata and their size are determined dynamically.

4.6 Application and validation

In order to evaluate our fitting approaches, we applied them to three data traces.
Using these, we made comparisons between:

1. first-order statistics of the obtained HEDs and those of the original data traces;

2. performance results for an M|G|1|K queue where the original data traces and
the fitted distributions are used as service time distribution.



46 4 Fitting of long-tailed traffic traces to HEDs

1. Build the strata with threshold c2
max.

2. Compute for each stratum i, i = 1, . . . , N∗, the average x̂i and weight wi.

3. Select an appropriate number of distributions I and initial parameters
α = (c1, . . . , cI , λ1, . . . , λI), as well as a positive required accuracy ε.

4. Compute for i := 1 to I:

(a) δ(i|x̂n, α) = ci·p(x̂n|λi)
p(x̂n|α)

,

(b) c′i =
∑N∗

n=1 wnδ(i|x̂n, α),

(c) λ′
i =

∑
N

∗

n=1
wnδ(i|x̂n,α)

∑
N∗

n=1
wnδ(i|x̂n,α)·x̂n

.

5. Return to step 4 with ci := c′i and λi := λ′
i until the difference between ci

and c′i and/or the difference between λi and λ′
i, for all i, is smaller than

the accuracy boundary ε.

Figure 4.4: EM-algorithm with stratification for low threshold c2
max

trace number of entries min max mean median SCV
RWTH 17.3 · 106 118 107 6663.69 2638 6.12
NASA 3.1 · 106 3 6.8 · 106 20744.90 4142 13.39
Weibull 106 10−4 2.9 · 107 10000 1185 10

Table 4.2: Statistics for the data traces

The data traces are described in detail in Section 4.6.1. The obtained HEDs are
discussed in Section 4.6.2. In Section 4.6.3, we present the results for the M|G|1|K
queue.

4.6.1 Statistics of the data traces

Some important statistics of the studied data traces are summarized in Table 4.2.
The squared coefficient of variation is denoted as SCV. We discuss each trace in the
following.

RWTH trace

Early 2000, we collected the access logs of the RWTH Aachen proxy server. The logs
comprise the description of about 115 million HTTP and FTP requests made over a
period of 54 days. After some preprocessing and filtering, which comprises, e.g., the
removal of incompletely processed requests, about 17.3 million requests of interest
remained. We studied the sizes of the objects requested by the clients. Figure 4.5



4.6 Application and validation 47

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000 1e+06 1e+07

1-
F

(x
)

Document size

document size distribution
negative exponential

Figure 4.5: Complementary log-log plot of document size distribution (RWTH trace)

shows the complementary distribution of the object sizes as log-log plot. Obviously,
the object-size distribution function decays much slower than a negative exponential
distribution and is clearly heavy tailed. This is confirmed by the observation that
the median of the distribution is much smaller than the mean.

NASA trace

The NASA trace was first presented and evaluated in 1996 by Arlitt and William-
son [5]. It consists of about 3.1 million requests collected at the web server of the
Kennedy Space Center. As in the RWTH trace, the size distribution of the requested
objects in the NASA trace is clearly heavy tailed, yielding a high SCV and a mean
much larger than the median. Figure 4.6 shows the complementary distribution of
the object sizes as log-log plot. Again, we observe that the object-size distribution
function decays much slower than a negative exponential distribution.

Weibull trace

The Weibull trace has been artificially generated using a Weibull distribution with
mean 10000 and SCV 10. Figure 4.7 shows the complementary distribution of the
Weibull distribution as log-log plot.



48 4 Fitting of long-tailed traffic traces to HEDs

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06  1e+07

1-
F

(x
)

Document size

document size distribution
negative exponential

Figure 4.6: Complementary log-log plot of document size distribution (NASA trace)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06  1e+07

1-
F

(x
)

x

Weibull distribution
negative exponential

Figure 4.7: Complementary log-log plot of the Weibull distribution



4.6 Application and validation 49

measure trace Weibull Pareto EM:H5 EM:H10 sEM:H5 sEM:H10

E[X] 6663.69 6663.69 6663.69 6663.69 6663.69 6663.69 6663.69
SCV 6.12 6.12 6.12 6.23 6.23 6.22 6.22

rel. error – 0% 0% 1.8% 1.8% 1.6% 1.6%
skewness 60.10 7.75 n.d. 62.20 63.33 62.17 62.09
rel. error – -87.1% n.d. 3.5% 5.4% 3.4% 3.3%

median 2638 1322 4826 2641 2641 2643 2643
iterations – – – 33 33 33 33

Table 4.3: Comparison of the statistics of the measurement data and fitted distrib-
utions (RWTH trace)

4.6.2 Matching HTDs

We have fitted different distributions to the data traces. For the empirical traces,
a Weibull and Pareto distribution has been fitted by matching the first and second
moment of the distribution. HEDs with 5 and 10 phases have been fitted using the
EM-algorithm (from Section 4.3) and the sEM-algorithm (from Section 4.5). For
the Weibull trace, HEDs with 10 and 20 phases have been fitted. The resulting
HEDs are denoted as EM:H5, EM:H10, EM:H20 for the EM-algorithm, respectively,
sEM:H5, sEM:H10, and sEM:H20 for the sEM-algorithm. The statistics of the fitted
distributions are discussed in the following.

RWTH trace

The results for the RWTH trace are shown in Table 4.3. We have also included
the statistics of the trace, the relative errors of the SCV and the skewness (always
relative to the respective value of the trace), and the number of iterations required
by EM and sEM to reach a fixed precision. We observe that the Weibull and the
Pareto distribution fail to match the skewness (where available) and the mean of
the data trace. In contrast, the HEDs match all statistics of the trace very well. No
significant difference can be observed between the HEDs with 5 phases and those
with 10 phases.

Table 4.3 furthermore shows that EM and sEM yield nearly identical results
with the same number of iterations. The fact that sEM has to process less data per
iteration (93 entries instead of more than 17 · 106 in the original trace) results in a
speed-up of approximately 186000. However, this does not include the time to sort
the data, as required by sEM.



50 4 Fitting of long-tailed traffic traces to HEDs

measure trace Weibull Pareto EM:H5 EM:H10 sEM:H5 sEM:H10

E[X] 20744.9 20744.9 20744.9 20744.9 20744.9 20744.9 20744.9
SCV 13.39 13.39 13.39 14.43 14.43 14.42 14.42

rel. error – 0% 0% 7.8% 7.8% 7.7% 7.7%
skewness 10.64 14.60 n.d. 12.73 12.73 12.73 12.73
rel. error – 37.2% n.d. 19.6% 19.6% 19.6% 19.6%

median 4142 1762 15008 3718 3718 3720 3720
iterations – – – 78 78 78 78

Table 4.4: Comparison of the statistics of the measurement data and fitted distrib-
utions (NASA trace)

NASA trace

The results for the NASA trace are shown in Table 4.4. The Weibull and the
Pareto distribution fail to match the skewness and the median. The results for
the HEDs are better, but not as good as for the RWTH trace. This illustrates
the fact that EM-based algorithms try to find an optimal global solution instead of
focusing on specific moments of the distribution. Again, no significant differences
can be observed between the fitted HEDs. The sEM-algorithm has to process 83
entries per iteration (3.1 · 106 in the original trace) which results in a speed-up of
approximately 3700.

Weibull trace

The results for the Weibull trace are shown in Table 4.5. Note that EM and sEM
were not able to reach the desired precision with HEDs with 5 phases. The fitted
HEDs match very well the statistics of the trace. Only for the skewness, we observe
better results for the HEDs fitted by the sEM-algorithm. The sEM-algorithm has
to process 1259 elements per iteration. This, in comparison with the other two
traces, large number is caused by the artificial nature of the trace. Unlike a true
measurement trace, it contains many unique values.

4.6.3 Embedding HTDs in queueing models

We have used the fitted distributions as service-time distribution in an M|G|1|100
queue. We have studied the mean length E[N ] of the queue for two different offered
loads (0.7 and 0.9). For the measurement data and for the Weibull distribution, the
results were computed using a trace-driven and a stochastic discrete-event simula-
tion. For the fitted HEDs, the results were obtained by numerical analysis of the
M|HED|1|100 queue using the FiFiQueues tool (see Chapter 5 and 8). The Pareto
distribution has not been evaluated here due to the obvious mismatch to the data
traces, as discussed in the previous section.



4.6 Application and validation 51

measure trace EM:H10 EM:H20 sEM:H10 sEM:H20

E[X] 10000 10000 10000 10000 10000
SCV 10 9.99 9.99 10 10

rel. error – -0.1% -0.1% 0% 0%
skewness 11.36 10.19 10.19 11.08 11.08
rel. error – -10.3% -10.3% -2.5% -2.5%

median 1185 1164 1164 1141 1141
iterations – 107 107 109 109

Table 4.5: Comparison of the statistics of the measurement data and fitted distrib-
utions (Weibull trace)

measure trace Weibull EM:H5 EM:H10 sEM:H5 sEM:H10

load=0.7 E[N ] 5.60 6.56 5.69 5.69 5.68 5.68
rel. error – 17.1% 1.6% 1.6% 1.4% 1.4%

load=0.9 E[N ] 21.00 24.65 21.08 21.08 21.07 21.07
rel. error – 17.4% 0.4% 0.4% 0.3% 0.3%

Table 4.6: Mean queue length for different offered loads (RWTH trace)

RWTH trace

The results for the RWTH trace are shown in Table 4.6. All HEDs provide accurate
(and nearly identical) results. The Weibull distribution yields quite large errors
which is caused by its considerably different skewness.

NASA trace

Table 4.7 shows the results for the NASA trace. All distributions provide good
results. Since the HEDs do not match the SCV of the NASA trace very well, larger
(but still small) errors can be observed for them in comparison to the RWTH trace.

measure trace Weibull EM:H5 EM:H10 sEM:H5 sEM:H10

load=0.7 E[N ] 12.02 11.44 12.48 12.48 12.48 12.48
rel. error – -4.8% 3.8% 3.8% 3.8% 3.8%

load=0.9 E[N ] 32.57 31.16 32.23 32.23 32.23 32.23
rel. error – -4.3% -1.0% -1.0% -1.0% -1.0%

Table 4.7: Mean queue length for different offered loads (NASA trace)



52 4 Fitting of long-tailed traffic traces to HEDs

measure trace EM:H10 EM:H20 sEM:H10 sEM:H20

load=0.7 E[N ] 9.40 9.52 9.52 9.49 9.49
rel. error – 1.3% 1.3% 1.0% 1.0%

load=0.9 E[N ] 29.27 29.64 29.64 29.34 29.34
rel. error – 1.3% 1.3% 0.2% 0.2%

Table 4.8: Mean queue length for different offered loads (Weibull trace)

Weibull trace

The results for the Weibull trace are shown in Table 4.8. All HEDs provide accurate
(and nearly identical) results.

4.7 Summary and conclusions

In this chapter we have presented a direct way of fitting HEDs to heavy-tail dis-
tributed measurement data. The approach is based on the EM-algorithm and does
not require any intermediate distribution function (form), and hence, delivers good
approximations to the measurement data in cases where no closed-form HTD func-
tion is available. The thus-obtained HEDs match the first and second moment as
well as higher moments and shape characteristics like the median of the original
distribution very well. We have shown that this improves the quality of queueing
analysis results.

In order to increase the efficiency of the method, we have also presented an
extension of the EM-algorithm that applies sampling and stratification techniques
to the data. We have observed that the new method yields identical results in
the experiments, while exhibiting a speed-up of several magnitudes. We have shown
that the extension is, in fact, a generalization of the aggregation-based EM-algorithm
presented in [90] when applied to heavy-tail distributed measurement data; but it
has the advantage to dynamically adapt some of its parameters that were assumed
fixed in [90].



Chapter 5

FiFiQueues

In this chapters we discuss decomposition-based analysis methods that are based on
so-called first-order traffic descriptors. Such traffic descriptors only contain informa-
tion (first-order statistics) about the inter-arrival time distribution of the underlying
traffic stream. First-order traffic descriptors are of special interest for two reasons.
First, they are very intuitive: first-order statistics like mean arrival rate can be eas-
ily interpreted and visualized. Secondly, they are mathematically well understood
and various algorithms are available for the computation of important performance
measures like station load, mean queue length, etc., given such descriptors.

The focus of this chapter is on our network analyzer FiFiQueues, but we begin
with two well-known methods that can be regarded as “ancestors” of FiFiQueues.
In Section 5.1, we briefly describe Jackson queueing networks, followed by Whitt’s
Queueing Network Analyzer in Section 5.2. Like FiFiQueues, these two methods
are based on first-order traffic descriptors. We show that they can be elegantly
described in the context of our framework. In Section 5.3, we explain the algorithms
employed in FiFiQueues. We present results concerning the existence of a fixed point
for the fixed-point iteration of FiFiQueues in Section 5.4. The traffic descriptors of
FiFiQueues rely on the first and second moment of the inter-arrival time of the
traffic streams. Possible extensions to higher moments are discussed in Sections 5.5
and 5.6. Finally, this chapter concludes with a summary in Section 5.7.

5.1 Jackson queueing networks

The simplest open queueing networks allowing feedback are the so-called Jackson
queueing networks (JQNs). Their analytical performance evaluation was developed
by J.R. Jackson [54] in the 1950s.

53



54 5 FiFiQueues

5.1.1 The model class

In JQNs, all nodes are assumed to be infinite-buffer M|M|1 queues with the First-
Come-First-Served (FCFS) service discipline. In many modeling applications, the
restriction to Poisson arrival and service processes cannot be justified. However,
the JQN model class already shows all features described in the framework (see
Section 2.4), i.e., open queueing networks fed by external arrival processes, separate
analysis of independent queueing stations, and routing with Markovian splitting.
In fact, JQNs can be seen as the simplest (with regard to its analysis) but still
reasonable class of open queueing networks.

5.1.2 The traffic descriptor

In JQNs, all traffic processes (including the external arrival processes) are assumed
to be Poisson, hence a sufficient traffic descriptor only contains the arrival rate λ of
the traffic stream, denoted as 〈λ〉.

5.1.3 Superposition of traffic streams

Merging two (possibly dependent) traffic streams does not necessarily yield a new
Poisson stream. However, it can be shown that the nodes of a JQN still can be
described by M|M|1 queues even when traffic merging occurs. Thus, to merge n
traffic streams specified by 〈λ1〉, . . . , 〈λn〉 into one traffic stream 〈λ〉, one simply
adds the rates:

λ =
n∑

i=1

λi.

5.1.4 Splitting traffic streams

The Markovian splitting of a Poisson stream 〈λ〉 again results into n Poisson streams.
Let p1, . . . , pn be the splitting probabilities, then the resulting streams 〈λ1〉, . . . , 〈λn〉
are given by

λi = pi · λ, i = 1, . . . , n.

5.1.5 The service operation

Let 〈λA〉 be the arrival traffic descriptor of the node, and µ its service rate. We
require that λA < µ, otherwise the station is not stable. Burke [18] proved that the
departure process for a stable single server M|M|1 queue is a Poisson process with
rate λA, and the departure process therefore can be described as 〈λD〉 with λD = λA.



5.1 Jackson queueing networks 55

5.1.6 Node performance

In this and the next section, we only give some examples of performance measures
that can be computed for JQNs.

Let 〈λA〉 be the arrival traffic descriptor, and µ the service rate of the node.
Then ρ = λA/µ is the utilization of the node. Since the node is an M|M|1 queue,
the steady-state probability pj to find j customers in the queue can be easily derived
from the underlying birth-death Markov chain [46]:

pj = (1 − ρ)ρj, j = 0, 1, . . .

Having computed the steady-state probabilities, quantities like the expected number
of jobs in the queueing station E[N ] can be calculated as

E[N ] =
∞∑

j=0

j · pj =
ρ

1 − ρ
.

Then, Little’s law can be applied to compute the expected waiting time E[W ].

Similarly, higher moments of measures can be computed too, e.g., the variance
of the number of customers in the node:

Var[N ] =
∞∑

j=0

(j − E[N ])2 · pj =
ρ

(1 − ρ)2
.

5.1.7 Network performance

Since no losses occur and all nodes are required to be stable, the total throughput
λthr of the network, i.e., the average number of customers passing through the
network per time unit, is simply the sum of arrival rates λext,i of the external arrival
processes:

λthr =
n∑

i=1

λext,i

where 〈λext,i〉 is the external traffic arriving at node i and n is the number of nodes.
Other performance measures may be derived from the node performance measures.
If λA,i is the total amount of traffic arriving at node i, the expected number of visits
E[Vi] of a customer at node i is given by [115, Eq. (77)]:

E[Vi] = λA,i/λthr.

The expected total sojourn time E[Ttotal], i.e., the time a customer spends in the
network, defined as the sum of the expected sojourn times E[Ti] at each node i, thus
equals

E[Ttotal] =
n∑

i=1

E[Ti] =
n∑

i=1

E[Vi]

(
1

µi

+ E[Wi]

)
.



56 5 FiFiQueues

Since the total number of customers Ntotal in the network is the sum of customers
present in each queueing station, we have

E[Ntotal] =
n∑

i=1

E[Ni],

where E[Ni] is the expected number of jobs in node i.

5.1.8 Complexity

Traffic computation

One can easily see that no fixed-point iteration scheme is needed to compute the
traffic streams in a JQN. If Γ = (rij) is the routing matrix, the traffic 〈λA,i〉 arriving
at node i is given by the so-called first-order traffic equation:

λA,i = λext,i +
n∑

j=1

λD,j · rji.

Since λD,i = λA,i, the traffic equations form a system of linear equations which can be
expressed in vector/matrix notation as λA = λext +λA ·Γ, or, after transformation,
as

λA = λext(I − Γ)−1.

Thus, to find λA we solve the linear system

λA(I − Γ) = λext.

This system of equations can be solved by direct methods like Gaussian elimination,
resulting in a time complexity of O(n3), or by iterative methods like Gauss-Seidel.
For very large networks, we can make use of the fact that the routing matrix typically
is a sparse matrix. In this way, the time complexity of an iterative solver such as
Gauss-Seidel can be reduced to about O(c · n) where c is the average number of
outgoing connections per station.

Node performance and network performance computation

The expressions given in Section 5.1.6 for the node performance measures can be
computed in constant time for each node. For the network performance, most results
require summation over the number of nodes in the network which yields a time
complexity of O(n).



5.2 Whitt’s Queueing Network Analyzer 57

5.2 Whitt’s Queueing Network Analyzer

In the early 1980s, Whitt presented the Queueing Network Analyzer (QNA) [115,
116], a software package developed at Bell Laboratories for the approximate analysis
of open queueing networks. Unlike prior approaches which were based on Markovian
models, QNA allows for the analysis of open queueing networks where the external
arrival processes need not be Poissonian and the service times need not be negative
exponentially distributed. Additionally, QNA is able to perform the analysis fast:
due to the involved approximations and assumptions, the network traffic analysis is,
in essence, reduced to the solution of a set of linear equations, comparable to those
in JQNs.

In the following, we will give an overview of the functionality of QNA. The
structure of our presentation will slightly differ from Whitt’s original paper [115]
since we embed the QNA approach in the framework described in Section 2.4.

5.2.1 The model class

Since our framework originally has been based on QNA’s design, its model class
naturally fits the framework, i.e.,

• open queueing networks fed by external arrival processes,

• separate analysis of independent queueing stations, and

• a routing matrix with Markovian splitting.

The nodes are GI|G|m multiserver queues without capacity constraints and with
the FCFS service discipline. The external arrival processes as well as the service
processes of the nodes are described by the first and the second moment of the
inter-arrival, resp. service time distributions.

In addition to the framework, QNA’s model class includes three features which
we will not describe in the following. First, QNA is able to analyze networks with
multiple classes of customers, and secondly, networks with immediate feedback are
allowed, i.e., with routing probabilities rii 6= 0. Both features are “implemented”
by adding a pre-processing and post-processing phase to the core QNA algorithms.
The third feature, the customer multiplication factor of a node, only requires small
modifications in the service operation equations.

5.2.2 The traffic descriptor

As already explained, the external arrival processes are specified by the first and
second moment of the inter-arrival times. In fact, this representation is also applied
to the traffic streams between the nodes. More specifically, QNA uses the traffic



58 5 FiFiQueues

descriptor 〈λ, c2〉 to describe a traffic stream where λ is the arrival rate and c2 is the
squared coefficient of variation of the inter-arrival time.

Clearly, this allows the representation of non-Poissonian processes. However, nei-
ther higher moments nor correlations of the arrival stream are considered, which may
influence the quality of the analysis. QNA employs fine-tuned heuristics deduced
from simulation studies to reduce the errors introduced by this simplification.

5.2.3 Superposition of traffic streams

To merge n traffic streams specified by 〈λ1, c
2
1〉, . . . , 〈λn, c

2
n〉 into one traffic stream

〈λ, c2〉, QNA first computes the total arrival rate which is simply given by

λ =
n∑

i=1

λi.

As already mentioned, QNA’s efficiency is based on the fact that it computes the
traffic descriptors by linear equations. The above expression for λ is clearly linear
in λi. For c2 a linear equation can be found, too, by the asymptotic approximation
method (AS):

c2
AS =

n∑

i=1

λi

λ
c2
i .

However, the asymptotic method does not work well for a wide range of cases. It
therefore is combined with the stationary-interval method (SI) resulting into the
hybrid approximation

c2 = w · c2
AS + (1 − w) · c2

SI .

The stationary-interval method does not provide a linear expression for c2
SI , but

experiments have shown that setting c2
SI to 1 increases the average error only by

1 percent, hence we obtain

c2 = w · c2
AS + (1 − w).

Simulations have shown that the above approximations do impact the quality of
the analysis of a node which takes the merged traffic stream as input. To improve
the results, QNA respects the utilization ρ of the node in the computation of the
factor w. With ρ = λ/µ (where µ is the service rate of the queueing station), QNA
sets

w =
[
1 + 4(1 − ρ)2(v − 1)

]−1

with v =

(
n∑

i=1

(
λi

λ

)2
)−1

.



5.2 Whitt’s Queueing Network Analyzer 59

5.2.4 Splitting traffic streams

When splitting, QNA assumes that the involved processes are renewal processes.
Under this assumption, an exact solution is available. For n splitting probabilities
p1, . . . , pn and the traffic stream 〈λ, c2〉, we obtain the splitted streams

〈
λ1, c

2
1

〉
, . . . ,

〈
λn, c

2
n

〉
,

with
λi = pi · λ, and c2

i = pi · c2 + (1 − pi), i = 1, . . . , n.

5.2.5 The service operation

As explained in Section 5.2.1, network nodes are analyzed as GI|G|m queues. Let
〈λA, c2

A〉 be the arrival traffic descriptor of the node and m the number of service
entities. The service process is specified by the service rate µ and by the squared
coefficient of variation c2

S of the service time distribution. We require the stability
of all stations, i.e., λA < µ. How does QNA compute the departure descriptor
〈λD, c2

D〉?
Since the queues are stable and have infinite capacity, no losses occur and we

clearly have λD = λA. To compute c2
D, Whitt combines Marshall’s formula [79] with

other approximations to obtain

c2
D = 1 + (1 − ρ2)(c2

A − 1) +
ρ2

√
m

(c2
S − 1). (5.1)

The involved approximations may lead to large errors when c2
S is small, thus QNA

uses the following extension of the above formula:

c2
D = 1 + (1 − ρ2)(c2

A − 1) +
ρ2

√
m

(max{c2
S, 0.2} − 1). (5.2)

Note again the linearity of the expressions for λD and c2
D in the arrival traffic 〈λA, c2

A〉.

5.2.6 Node performance

QNA is able to compute results for the first and second moment of the waiting time
W and the queue length N . Due to the complexity of the involved approximations,
we limit our presentation only to the simplest one, i.e., the computation of E[W ]
in the case of single-server GI|G|1 queues. The required computation steps for the
other quantities can be found in [115, Eq. (46)–(71)]. For given arrival traffic
〈λA, c2

A〉, service descriptor 〈µ, c2
S〉 and utilization ρ, E[W ] is approximated as

E[W ] =
ρ

2(1 − ρ)µ
(c2

A + c2
S)g(ρ, c2

A, c2
S), (5.3)



60 5 FiFiQueues

where the function ρ is defined as

g(ρ, c2
A, c2

S) =

{
exp

(
2(1−ρ)(1−c2

A
)2

3ρ(c2
A

+c2
S
)

)
, c2

A < 1,

1, c2
A ≥ 1.

Note that Equation (5.3) is exact for c2
A = 1, i.e., in the case of a M|G|1 queue.

When c2
A < 1, it is equivalent to the Krämer and Langenbach-Belz approximation

[63].

5.2.7 Network performance

The results presented for network performance measures in Jackson queueing net-
works (see Section 5.1.7) can also be applied to QNA, providing expressions for
E[Vi], E[Ti], E[Ttotal] and E[Ntotal]. Additionally, Whitt developed approximations
for the variances of the above stated measures [115, Eq. (80)–(84)].

5.2.8 Complexity

In the above sections, we have repeatedly pointed out the linearity of the employed
equations for the three traffic operations merging, splitting, and service. In fact,
QNA uses this linearity to efficiently evaluate the queueing network.

First, for the arrival rates of the traffic streams the system of equations derived
for JQNs (Section 5.1.8) is also valid for QNA. Let

〈
λA,i, c

2
A,i

〉
be the traffic arriving

at node i,
〈
λD,i, c

2
D,i

〉
the traffic leaving this node and

〈
λext,i, c

2
ext,i

〉
the external

traffic. If Γ = (rij) is the routing matrix, the following traffic equation holds for
each node i = 1, . . . , n of the network:

λA,i = λext,i +
n∑

j=1

λD,j · rji (5.4)

Again, QNA’s model class implies λD,i = λA,i and the traffic equations form a system
of linear equations which can be expressed in vector/matrix notation (as for JQNs):

λA = λext(I − Γ)−1.

For the squared coefficients of variation of the traffic streams a system of equations
can be set up, too. The synthesis of the superposition and the splitting operations
yields

c2
A,i = (1 − wi) + wi

(
pext,jc

2
ext,i +

n∑

j=1

pj,i(rjic
2
D,j + 1 − rji)

)

where pj,i = λD,jrj,i/λA,i is the fraction of traffic arriving from node j to node i and
pext,j = λext,i/λA,i is the fraction of external traffic arriving to node i. Finally, if we



5.3 FiFiQueues 61

include the result of the service operation we obtain the following system of linear
equations

c2
A,i = (1 − wi) + wi{ pext,jc

2
ext,i

+
n∑

j=1

pj,i(rji(1 + (1 − ρ2
i )(c

2
A,j − 1)

+
ρ2

i√
mi

(max(c2
S,i, 0.2) − 1)) + 1 − rji)}. (5.5)

Using the two systems of linear equations formed by Equation (5.4) and Equa-
tion (5.5), the traffic descriptors can easily be computed. Thus, obviously QNA has
the same time complexity as the Jackson network method (Section 5.1.8), modulo
some constant factors, but provides much more accurate results.

5.3 FiFiQueues

In the mid-1990’s Haverkort and Weerstra [43, 44, 45, 113] extended Whitt’s QNA
approach by means of replacing the core of the analysis: the service operation. Un-
like QNA, their new approach, called QNAUT, does not use the descriptor of the
arrival traffic directly to compute the departure traffic descriptor, but assumes that
the arrival traffic descriptor can be used to construct a phase-type (PH) renewal
process (see Section 3.2) which approximates the “real” underlying arrival process.
This allows for the inclusion of finite-buffer queueing stations as well as for the analy-
sis of the queueing stations by matrix-geometric and general Markovian techniques,
instead of the approximations used originally in QNA.

At the end of the 1990s, we developed an extended version of the original
approach in that we removed a few approximate steps and enhanced the model
class [100, 101, 103]. In particular, this enhanced class provides:

• exact results for the the departure process based on the results of Bocharov [13]
for PH|PH|1|K queues;

• efficient per-queue analysis;

• for each finite queueing station, a traffic stream is computed which consists of
the customers rejected at a completely filled queue. This loss traffic stream can
be used as arrival stream for other queueing stations like any other “regular”
departure traffic stream.

This approach, as well as the analysis tool developed from it, is named FiFiQueues
(Fixpoint-based analysis of networks with Finite Queues).



62 5 FiFiQueues

5.3.1 The model class

Clearly, the model class fulfills the specifications of the framework. The external
arrival processes are described, as in QNA, by the first and the second moment of
the inter-arrival time. The main differences to QNA’s model class are:

• the service processes are specified by PH renewal processes;

• the queueing stations can have infinite or finite queueing capacities. The nodes
are analyzed as PH|PH|1(|K) queues with the FCFS service discipline. The
customer multiplication factor known from QNA is also supported, but not
described in the following;

• finite queues have two output streams: the “regular” departure traffic stream
and the loss traffic stream which consists of the customers rejected by a full
queue.

Seen from a single queue, customers arriving at a completely filled queue are simply
lost. This form of blocking is common in communication networks (communication
blocking) and has an important advantage: unlike other types of blocking (like
back-blocking), it still allows the independent analysis of the queueing stations (see
Section 2.2.2).

Just like the regular departure traffic of a queueing station with finite capacity,
the loss traffic is not known a priori and is computed by the analysis of the station.
The “reuse” of loss traffic streams as arrival streams to other nodes requires an
auxiliary routing matrix. Its handling will not be discussed further in the following
sections, since, once the traffic descriptors of the loss streams are known, they can
easily be processed like the regular departure traffic. However, note that loss traffic
streams should only be used very carefully in feedback networks: if a loss traffic
stream is fed back directly or indirectly to the node which produced the stream,
it can prevent the iteration algorithm (see Section 2.3) to terminate because the
arrival rate to the node increases in each iteration step.

5.3.2 The traffic descriptor

As in QNA (see Section 5.2.2) the external arrival processes as well as the inter-node
traffic streams are described by the first and second moment of the inter-arrival
times. The traffic descriptor 〈λ, c2〉 contains the arrival rate λ and the squared
coefficient of variation c2 of the inter-arrival time.



5.3 FiFiQueues 63

5.3.3 Superposition of traffic streams

To merge n traffic streams specified by 〈λ1, c
2
1〉, . . . , 〈λn, c

2
n〉 into one traffic stream

〈λ, c2〉, we adopt the hybrid approximation of QNA, i.e.,

λ =
n∑

i=1

λi, (5.6)

c2 = w ·
n∑

i=1

λi

λ
c2
i + (1 − w), (5.7)

with

w =
[
1 + 4(1 − ρ)2(v − 1)

]−1
, and v =

(
n∑

i=1

(
λi

λ

)2
)−1

,

where ρ is the utilization of the node receiving the resulting traffic stream. It should
be emphasized that these formulae where originally designed in the context of QNA’s
model class, i.e., not for finite queues. Thus, their usage in FiFiQueues introduces
auxiliary errors to the computation, in addition to the errors inherent to the hybrid
approximation method. In principle, it is possible to exactly compute the resulting
arrival process in case all the streams to be merged are departure streams from
finite queues: since finite queues are analyzed as PH|PH|1|K queues, an exact rep-
resentation as MAP of each departure process is available (see Section 9.1), and
consequently, also the resulting MAP exactly describing the superposition. In prac-
tice, the resulting MAP could be far too large (in number of states) for any further
analysis. Therefore, FiFiQueues uses QNA’s approximation equations instead.

One may wonder if we could obtain better results by not following QNA’s linear
approximation (c2

SI = 1) but in actually computing the correct value for c2
SI . Our

experiments have shown that nearly the same results are obtained by doing so. This
is consistent with Whitt’s observation that fixing c2

SI to 1 increases the average error
only by 1 percent.

5.3.4 Splitting traffic streams

When splitting, we assume that the involved processes are renewal processes. Under
this assumption, an exact solution is available. For n splitting probabilities p1, . . . , pn

and the traffic stream 〈λ, c2〉, we obtain the splitted streams 〈λ1, c
2
1〉, . . . , 〈λn, c

2
n〉 by

λi = pi · λ, and c2
i = pi · c2 + (1 − pi), i = 1, . . . , n. (5.8)

5.3.5 The service operation

We already stated that the nodes are analyzed as PH|PH|1(|K) queues. Thus,
before a queueing station can be analyzed we need to find a PH distribution that



64 5 FiFiQueues

fits the two moments given in the arrival traffic descriptor. In the following we will
explain the fitting step and the actual queueing analysis procedure, thereby treating
PH|PH|1 and PH|PH|1|K queues separately. We require that the PH|PH|1 queues
are stable, i.e., the total arrival rate at a PH|PH|1 station should be smaller than
its service rate.

Phase-type representation of the arrival processes

Let 〈λ, c2〉 be the arrival traffic descriptor. We write E[X] = 1/λ for the corre-
sponding mean inter-arrival time. Clearly, having only two moments allows us some
freedom to select an appropriate PH distribution. We require that the chosen PH
distribution, represented by (α,A)

1. matches the two moments exactly (at least for a certain range; see below), and

2. is as compact as possible, i.e., has the smallest number of transient states m.

Additionally, we want that the employed fitting procedure does not consume to much
time since it has to be executed every time when a node is analyzed. In FiFiQueues,
we use the following approach, first presented in [44]. Two cases are distinguished:

• In case c2 ≤ 1, we use a hypo-exponential distribution with m =
⌈

1
c2

⌉
phases

and initial probability vector α = (1, 0, · · · , 0). The matrix A is then given as

A =





−λ0 λ0

−λ1 λ1

. . . . . .

−λm−2 λm−2

−λm−1




, (5.9)

where λi = m/E[X], for 0 ≤ i < m − 2 and where

λm−1 =
2m

(
1 +

√
1
2
m(mc2 − 1)

)

E[X](m + 2 − m2c2)
and λm−2 =

mλm−1

2λm−1E[X] − m
.

For small c2, PH distributions with a large number of states will be obtained.
To limit the computational requirements in the analysis process we do not
allow c2 to be smaller than 1

10
. This approximation corresponds to an Erlang-

10 distribution and produces generally good results, also as approximation for
deterministic distributions.

• In case c2 > 1, we take a hyper-exponential distribution with m = 2 phases.
Such a distribution has three free parameters: the choice probability p between
the two possible phases and the rates µ1 and µ2 of the two phases. Fitting



5.3 FiFiQueues 65

the first two moments thus leaves one degree of freedom. We resolve this
by assuming so-called “balanced means”, meaning that the ratios p/µ1 and
(1 − p)/µ2 should be equal. This then yields α = (p, 1 − p) and

A =

(
− 2p

E[X]
0

0 −2(1−p)

E[X]

)
with p =

1

2
+

1

2

√
c2 − 1

c2 + 1
.

Analysis of PH|PH|1|K queues

The underlying CTMC. Let (α,A) be the arrival PH renewal process with l
states as obtained by the fitting step and (β,B) the service PH renewal process with
m states. Then we can describe the behavior of a node with queueing capacity K
by a QBD process [85] (see Section 3.4) with K + 1 levels, where level 0 consists of
l states and where levels 1 through K consist of l · m states each.

The i-th level represents the state of the system when it contains i customers. A
step from level i to level i + 1 (i < K) stands for an arrival and a step from level i
to level i− 1 (i > 0) stands for a departure. The l ·m states of a level i > 0 describe
the current state of the arrival and of the service processes (level 0 contains only
l states because the queue is empty and the service process has not yet started; it
only records the state of the arrival process). This leads to the following generator
matrix of the Markov chain:

Q =





A A0α ⊗ β

I ⊗ B0 A ⊕ B A0α ⊗ I 0
0 I ⊗ B0β A ⊕ B A0α ⊗ I

. . . . . . . . .

I ⊗ B0β (A + A0α) ⊕ B




,

where A0 = −A · 1, B0 = −B · 1, L⊕M = L⊗ I + I⊗M, and ⊗ is the Kronecker
product operator (also known as tensor or matrix direct product operator).

The steady-state solution v of the Markov chain with generator Q can be ob-
tained by solving the global balance equation (see Section 3.4):

v · Q = 0 and v · 1 = 1.

The vector v is of size l + K · l · m. In the following we write v0 for the vector
(v1, . . . , vl) which contains the steady-state probabilities of level 0 and we write vi

for the vector (vl+1+(i−1)·l·m, . . . , vl+i·l·m) which contains the steady-state probabilities
of level i = 1, . . . , K.

The departure traffic. The steady-state solution vector v now allows us to
compute the departure traffic descriptor 〈λD, c2

D〉. For this, we use the results of
Bocharov presented in [13] which we will briefly describe in the following.



66 5 FiFiQueues

We begin with the computation of the blocking probability π, i.e., the probability
that an arriving customer encounters a full queue and, hence, is lost. The vector
vA,K gives for this situation the state probabilities and it holds

vA,K =
1

λA

vK(A0 ⊗ I),

where λA stands for the arrival rate to the node and K stands for the queueing
capacity of the node. This leads to the blocking probability π:

π = vA,K · 1.

With π, we easily find the departure rate of served customers as

λD = λA(1 − π). (5.10)

Higher moments of the inter-departure time can be computed using the following
consideration. If the queue is not empty after a departure took place, the distribution
of the time up to the next departure is equal to the distribution of the service time.
Otherwise, it is equal to the distribution of the sum of the time until the next
customer arrival and its service time (which are independent). The probability to
leave an empty queue at departure instant t + ε is

vD,0 =
1

λD

v1(I ⊗ B0).

This leads Bocharov to the expression for the i-th moment di of the inter-departure
time distribution:

di = bi + vD,0

i∑

j=1

(−1)j i!

(i − j)!
A−j1bi−j, (5.11)

where bi is the i-th moment of the service time distribution. Thus, one can easily
verify that the variance σ2

D of the departure process is

σ2
D = σ2

S + σ2
0, (5.12)

where σ2
S is the variance of the service time distribution and σ2

0 equals

σ2
0 = 2vD,0A

−21 − (vD,0A
−11)2.

The squared coefficient of variation is then given by c2
D = λ2

Dσ2
D.



5.3 FiFiQueues 67

The loss traffic. The rate of loss λL is given by λL = λA · π, where π is the loss
probability. In oder to obtain higher moments of the inter-loss time we describe the
loss process by the MAP (L0,L1) with

L0 =





A A0α ⊗ β

I ⊗ B0 A ⊕ B A0α ⊗ I
0 I ⊗ B0β A ⊕ B A0α ⊗ I

. . . . . . . . .

I ⊗ B0β A ⊕ B




,L1 =




0

. . .

A0α ⊗ I



 .

The underlying CTMC of this MAP is the CTMC of the QBD where arrivals in the
last level K have been marked. Naturally, it has the same steady-state probability
vector v. The i-th moment of the inter-loss time is given by

E[Li] =
i!

λD

v(−L0)
−(i−1)1, (5.13)

hence, its second moment equals

E[L2] =
2

λL

v(−L0)
−11.

Analysis of PH|PH|1 queues

The underlying CTMC. Let (α,A) be the arrival PH renewal process with l
states and (β,B) the service PH renewal process with m states. Again, the behavior
of the queue can be described by a QBD process with a generator matrix similar
to the one of the PH|PH|1|K; the only difference is the fact that it has repeating
columns ad infinitum:

Q =





A A0α ⊗ β

I ⊗ B0 A ⊕ B A0α ⊗ I
0 I ⊗ B0β A ⊕ B A0α ⊗ I

. . . . . . . . .




,

with the infinite steady-state probability vector v fulfilling

v · Q = 0 and v · 1 = 1.

We refer to Section 3.3 for an overview of solution techniques.

The departure traffic. Since infinite queues produce no loss, we have

λD = λA, (5.14)

where λA is the arrival rate to the node. The variance of the output stream is
calculated using the same approach as in the case of finite-buffer queues, hence

σ2
D = σ2

S + σ2
0, (5.15)

with vD,0 = 1
λD

v1(I ⊗ B0) and σ2
0 = 2vD,0A

−21 − (vD,0A
−11)2.



68 5 FiFiQueues

5.3.6 Node performance

FiFiQueues computes the first and second moment of the waiting time W and the
queue length N . Again, queues with finite and infinite buffer capacity are treated
separately.

Node performance of PH|PH|1|K queues

The j-moment E [N j] of the queue length distribution (including the job in service)
is given by

E
[
N j

]
=

K∑

i=1

ijvi1. (5.16)

Hence, mean and variance of the queue length N are:

E [N ] =
K∑

i=1

i · vi1 and Var [N ] =
K∑

i=1

i2 · vi1 − E [N ]2 .

Equation (4.4) in [13] gives the Laplace-Stieltjes transform of the waiting time prob-
ability density function. From this equation, any desired moment of the waiting time
can be derived. For the mean and the variance we obtain [13, Eq. (4.5)–(4.7)]:

E [W ] =
1

λD

(E [N ] − 1 + v01),

Var [W ] =
2

λD

(µ · q21 − (q1 (1 ⊗ B−11))) − E [W ]2 ,

where µ is the service rate. The components of the vector q1 resp. q2 give the first,
resp. second binomial moment of the number of jobs in the queue as a function
of the system state. For j > 0, the j-th binomial moment qj is defined as [13,
Eq. (3.1)]:

qj =
K∑

i=j+1

(
i − 1

j

)
vi.

Node performance of PH|PH|1 queues

In the case of infinite buffer capacity, the expressions presented for the PH|PH|1|K
queue in the previous section can still be applied, provided that the steady-state
probability vectors vi are available in a form that allows to calculate the, now
infinite, sums. For example, if we assume that a matrix-geometric solution method
(see Section 3.3) is employed to compute the steady-state probabilities, the vectors
vi have the so-called matrix geometric form

vi = v1R
i−1, R ∈ IRlm×lm, i = 1, 2, . . . ,



5.3 FiFiQueues 69

where R is the entry-wise smallest non-negative solution of the matrix-quadratic
equation

A0α ⊗ β + R(A ⊕ B) + R2(I ⊗ B0β) = 0.

The j-th moment of the queue length distribution is then given by

E[N j] =
∞∑

i=1

ijvi1 =
∞∑

i=1

ijv1R
i−11, (5.17)

which yields in case j = 1:

E[N ] = v1(I − R)−21.

Similarly, the other node performance measures can be obtained.

5.3.7 Network performance

Many results for the network performance measures developed by Whitt for QNA
(see Section 5.2.7) can also be applied to FiFiQueues when respecting the fact that,
due to losses at finite queues, the departure rate of a node may differ from the total
arrival rate to that node. Additionally, one has to decide how loss traffic streams
should be treated in the computation of network wide performance results. For
example, the following question has to be answered: should the expected number of
visits E[Vi] also include rejections due to full buffers? As this is only a problem of
“interpretation” of the results, we will not discuss it further here.

5.3.8 Complexity

Traffic computation

In FiFiQueues the traffic descriptor of the outgoing traffic depends in a complex,
non-linear way on the incoming traffic. Thus, unlike the QNA method, FiFiQueues
clearly requires an iterative computation scheme to compute the descriptors of the
internal traffic streams. A deeper discussion of FiFiQueues’ iteration behavior is
given in Section 5.4. Here, we will analyze the complexity of the operations that
have to be performed for each node during each iteration.

First, we can safely neglect the traffic merging and splitting steps in our discus-
sion. They only consist of a small number of additions and multiplications. The
most time and space consuming operation is the service operation. It can be divided
into three phases:

1. fitting of the PH distribution to the arrival traffic,

2. computation of the steady-state probability vector of the underlying CTMC,
and



70 5 FiFiQueues

3. computation of the departure traffic descriptor (and, if needed, of the loss
traffic descriptor).

Again, we can neglect the first phase since its time complexity is O(1). For the
second phase, we differ between finite and infinite queueing stations.

If the queueing capacity is finite, so is the CTMC. Let l be the size of the arrival
PH process, i.e., the number of states of its CTMC representation, m the size of
the service PH process and K the queueing capacity. Then, the generator matrix
is of size (l + lmK) × (l + lmK). This corresponds to a finite QBD with N0 = l
and N = lm (see Section 3.4). The current implementation of FiFiQueues uses
the Gauss-Seidel method for finite capacities1. If the descriptor of the loss traffic
is required, operations of similar complexity have to be performed to compute the
product v(−L0)

−1. For unbounded queueing capacity, the LR algorithm is used (see
Section 3.3).

Once the steady-state solution is known, the departure traffic descriptor can be
computed. Both for finite and infinite queueing stations, this only requires a small
number of matrix vector multiplications. Note that the moments bi of the service
process needed by Equation (5.11) are constant for a given network and hence can
be precomputed once.

Node performance and network performance computation

Since the network performance computation is comparable to that of the QNA
method, we only discuss the complexity of the node performance computation here.

Concerning finite queueing stations, the computation of the mean and variance
of the queue length requires the summation over the lm(K−1) entries of the steady-
state probability vector. For the moments of the waiting time, we have to invert
matrix B of size m × m which can be seen as a constant time operation even for
very complex PH representations of the service process (say, m = 50).

In case of infinite queueing capacity, the complexity depends on the employed
solution method. Assuming a matrix-geometric solution method, the expression
E[N ] = v1(I − R)−21 we gave for the mean queue length in Section 5.3.6, requires
the vector X = v1(I − R)−2 which can be obtained by solving the linear system
X(I − R)2 = v1 of order lm.

Conclusion

Summarizing, we can state that the complexity of FiFiQueues is nearly completely
dominated by the computation of the steady-state solution for each node. However,
for a given network model, the time for the analysis cannot be easily predicted. First,

1for merely historical reasons; a new implementation using the Cyclic Reduction method (see
Section 3.4.3) is tested in Section 6.2.4.



5.4 Existence of the fixed point 71

at the level of the surrounding iteration scheme, the number of required iterations
cannot be determined a priori (besides for scenarios with trivial network topologies).
Additionally, the complexity of the node analysis is at least quadratic in the number
l of phases of the arrival PH representation. This number l directly depends on the
variance of the arrival stream and may change from node to node and from iteration
to iteration.

5.4 Existence of the fixed point

We have stated in Section 2.3.3 that detailed knowledge about the fixed-point itera-
tion behavior of queueing analyzers is in general not available due to the complexity
of the involved algorithms. It is often not known whether the searched fixed point
exists, is unique or will be reached. However, some intermediate results are available
for FiFiQueues which we will present here. In the following we give a proof that the
fixed point exists for a modified version of the original FiFiQueues algorithm.

5.4.1 Notation and Brouwer’s theorem

Given a queueing network with n stations, we define D ⊂ R
2n where the tuple

(〈
λa,1, c

2
a,1

〉
, . . . ,

〈
λa,n, c

2
a,n

〉)
∈ D

gives for each node i ∈ {1, . . . , n} the traffic descriptor
〈
λa,i, c

2
a,i

〉
of its arrival traffic.

Then the operations performed by FiFiQueues during step k + 1 of the fixed-point
iteration can be expressed as a function H : D → D [109] which computes from the
traffic descriptor dk obtained from step k the new traffic descriptor dk+1, that is,

dk+1 = H(dk),

where d0 is the initial traffic descriptor used in the iteration. We use the Brouwer
fixed-point theorem [104] to prove the existence of the fixed point for the function
H. It states:

Let D ⊂ R
m be a non-empty, closed, convex, and bounded set, and H :

D → D continuous. Then H has a fixed point.

A first proof of the existence of the fixed point has been discussed in [109] for
special service processes. The proof presented in the following applies to arbitrary
PH renewal service processes. We first show in Section 5.4.2 that the requirements
to the set D are met. The continuity of H is shown in Sections 5.4.3–5.4.5.



72 5 FiFiQueues

5.4.2 Properties of D

Lower and upper bounds for the arrival rate λa,i of a node i exist. It holds

0 ≤ λa,i ≤ λmax,i.

where the upper bound λmax,i is the maximum arrival rate that will only be reached
if all queueing stations operate with a load of 100%. It is given by

λmax = λext(I − Γ)−1,

where Γ is the routing matrix and λext,i is the rate of the external traffic arriving to
node i. As previously explained, FiFiQueues limits the squared coefficient of varia-
tion to 1

10
to prevent the generation of PH distributions with more than 10 states.

Originally, no upper bound is provided for the coefficients but we can safely define

c2
a,i := min(c2

max, c
2
a,i), i = 1, . . . , n,

with c2
max = 1000 without affecting the analysis. We thus obtain that D is the

non-empty, closed and convex interval

[(〈
0, 1

10

〉
, . . . ,

〈
0, 1

10

〉)
,
(〈

λmax,1, c
2
max

〉
, . . . ,

〈
λmax,1, c

2
max

〉)]
⊂ R

2n,

as required.

5.4.3 Continuity of H

The function H performs for each node the following operations to compute the
traffic descriptors for the next iteration in the algorithm:

1. the service operation;

2. the traffic splitting;

3. the traffic merging.

The traffic merging step is a function of the traffic descriptors generated during
the splitting operation. The traffic splitting, in turn, is a function of the departure-
traffic descriptor as computed by the service operation. An inspection of the involved
terms for the traffic merging (Equation (5.6) and (5.7)), the traffic splitting (Equa-
tion (5.8)), and the service operation (Equations (5.10), (5.12), (5.14), and (5.15))
shows that the proof of continuity reduces to the question whether, for a given node,
the loss probability π (in case of a finite queue) and the variance σ2

0 are continuous
functions of the arrival traffic 〈λa, c

2
a〉. Since π and σ2

0 depend on the stationary
distribution v of the underlying CTMC we can make use of the following theorem
[78] to prove this continuity:



5.4 Existence of the fixed point 73

The stationary distribution of a CTMC as function of the transition
rates λ1, . . . , λn of the generator matrix is continuous for all λi > 0, i =
1, . . . , n if the CTMC has exactly one irreducible set of states.

The underlying CTMC of a queueing station has exactly one irreducible set of states
since it is a QBD. Then, the question is, how do the transition rates of the generator
matrix depend on 〈λa, c

2
a〉? FiFiQueues uses the traffic descriptor to determine a PH

renewal process that represents the arrival traffic. This arrival PH process is then
combined with the service PH process of the node to construct the generator matrix.
For fixed c2

a the transition rates of the generator matrix are a continuous function
of the arrival rate λa. The theorem then yields the continuity of v as function of
λa. However, varying c2

a may cause FiFiQueues to change the size and structure of
the PH representation. Such a change also influences the size and structure of the
QBD. As consequence, the theorem can only be applied for values of c2

a that do not
cause such a change. We obtain:

1. v is continuous for c2
a > 1, since then the PH distribution always takes the

same, hyper-exponential, form.

2. v is continuous for c2
a ∈

(
1

m+1
, 1

m

)
, for all m ∈ {1, . . . , 9}.

The other cases, i.e., c2
a = 1

m
,m ∈ {1, . . . , 10}, have to be separately discussed. In

the following we only show the continuity of π. The proof for σ2
0 is done in a similar

way.

5.4.4 Continuity for c2
a = 1

We show that

lim
c2a↗1

π(c2
a) = π(c2

a = 1) = lim
c2a↘1

π(c2
a)

which yields the continuity of π around c2
a = 1.

Case c2
a = 1

If c2
a = 1, the arrival PH distribution is a negative-exponential distribution with

rate λa. Following the notation used in Section 5.3.5, we obtain the steady-state
probability distribution v= by solving the global balance equations

v=
0

(−λa) + v=
1
B0 = 0

v=
0

λaβ + v=
1

(−λaI + B) + v=
2
B0β = 0

v=
1

λaI + v=
2

(−λaI + B) + v=
3
B0β = 0

. . .
v=

K−1
λaI + v=

K
B = 0






(5.18)



74 5 FiFiQueues

and

v= · 1 = 1,

where (β,B) is the service PH process and K is the queueing capacity. The loss
probability π= is then given as

π= = π(c2
a = 1) =

1

λa

v=
K

(λa ⊗ I) · 1.

Case c2
a ↘ 1

If c2
a > 1, FiFiQueues selects the PH renewal process (α,A) as representation of the

arrival traffic with

A =

(
−λ0 0
0 −λ1

)
and α = (p, 1 − p),

where p = 1
2

+ 1
2

√
c2a−1
c2a+1

, λ0 = 2pλa and λ1 = 2(1 − p)λa.

Let v> be the steady-state probability distribution of the resulting QBD. To
ease the following calculations we split the components v>

i , i= 0, . . . , K, of the
probability distribution vector into two parts v>

i = (v>

i1,v
>

i2) where v>

i1 and v>

i2 are
associated with the first resp. the second state of the arrival PH process. The vector
v> is then determined by the following equations:

v>
01

(−λ0) + v>
11

B0 = 0, (5.19)

v>
02

(−λ1) + v>
12

B0 = 0, (5.20)

v>
01

pλ0β + v>
02

pλ1β + v>
11

(−λ0I + B) + v>
21

B0β = 0, (5.21)

v>
01

(1 − p)λ0β + v>
02

(1 − p)λ1β + v>
12

(−λ1I + B) + v>
22

B0β = 0, (5.22)

v>
11

pλ0I + v>
12

pλ1I + v>
21

(−λ0I + B) + v>
31

B0β = 0, (5.23)

v>
11

(1 − p)λ0I + v>
12

(1 − p)λ1I + v>
22

(−λ1I + B) + v>
32

B0β = 0, (5.24)

. . .

v>

K−1,1pλ0I + v>

K−1,2pλ1I + v>

K1((p − 1)λ0I + B) + v>

K2pλ1I = 0, (5.25)

v>

K−1,1(1 − p)λ0I + v>

K−1,2(1 − p)λ1I+

v>

K1(1 − p)λ0I + v>

K2(−pλ1I + B) = 0, (5.26)

and

v> · 1 = 1.

The loss probability π> of the station is then given as

π> =
1

λa

v>

K(A0 ⊗ I) · 1 =
1

λa

(v>

K1λ0 + v>

K2λ1)I · 1. (5.27)



5.4 Existence of the fixed point 75

Summing Equations (5.19) and (5.20), (5.21) and (5.22), . . ., gives:

s0 + t1B
0 = 0

−s0β + s1I + t1B + t2B
0β = 0

−s1I + s2I + t2B + t3B
0β = 0
. . .

−sK−1I + tKB = 0






(5.28)

where si = v>

i1(−λ0) + v>

i2(−λ1) and ti = v>

i1 + v>

i2. For c2
a ↘ 1 we have p → 1

2
.

From this, it follows
lim
c2a↘1

λ0 = lim
c2a↘1

λ1 = λa,

and
lim
c2a↘1

si = −λa lim
c2a↘1

ti, i = 0, . . . , k.

By applying these limits to Equation (5.28) we observe their correspondence with
Equation (5.18). Hence we, obtain for c2

a ↘ 1:

lim
c2a↘1

ti = lim
c2a↘1

(v>

i1 + v>

i2) = v=
i

,

which provides, with Equation (5.27), the desired relationship

lim
c2a↘1

π> = π=.

Case c2
a ↗ 1

If 0.5 < c2
a < 1, the arrival PH distribution is a modified hypo-exponential distribu-

tion (α,A) as defined in Section 5.3.5 where

A =

(
−λ0 λ0

0 −λ1

)
and α = (1, 0).

Let v< be the steady-state probability distribution of the resulting QBD. Again,
we split the components v<

i , i= 0, . . . , K, of the probability distribution vector into
two parts v<

i = (v<

i1,v
<

i2), where v<

i1 and v<

i2 are associated with the first resp. the
second state of the arrival PH distribution. The vector v< is then determined by
the following equations:

v<
01

(−λ0) + v<
11

B0 = 0, (5.29)

v<
01

λ0 + v<
02

(−λ1) + v<
12

B0 = 0, (5.30)

v<
02

λ1β + v<
11

(−λ0I + B) + v<
21

B0β = 0, (5.31)

v<
11

λ0I + v<
12

(−λ1I + B) + v<
22

B0β = 0, (5.32)

v<
12

λ1I + v<
21

(−λ0I + B) + v<
31

B0β = 0, (5.33)



76 5 FiFiQueues

v<
21

λ0I + v<
22

(−λ1I + B) + v<
32

B0β = 0, (5.34)

. . .

v<

K−1,2λ1I + v<

K1(−λ0I + B) + v<

K2λ1I = 0, (5.35)

v<

K1λ0I + v<

K2(−λ1I + B) = 0, (5.36)

and

v< · 1 = 1.

The loss probability π< of the station is then given as

π< =
1

λa

v<

K(A0 ⊗ I) · 1 =
1

λa

v<

K2λ1I · 1. (5.37)

From Equation (5.36) we obtain

v<

K2λ1I = v<

K1λ0I + v<

K2B,

which yields with Equation (5.37):

π< =
1

λa

(v<

K1λ0I + v<

K2B) · 1. (5.38)

Using simple substitutions we derive from Equations (5.29)–(5.36):

v<
01

(−λ0) + v<
11

B0 = 0
(v<

01
λ0 + v<

12
B0)β + v<

11
(−λ0I + B) + v<

21
B0β = 0

(v<
11

λ0I + v<
12

B + v<
22

B0β) + v<
21

(−λ0I + B) + v<
31

B0β = 0
. . .

(v<

K−1,1λ0I + v<

K−1,2B + v<

K2B
0β) + v<

K1B + v<

K2B = 0






(5.39)

For c2
a ↗ 1 we have λ0 → λa and λ1 → ∞. Solving Equations (5.30), (5.32), . . . ,

(5.36) for v<

i2 then gives

v<

i2 → 0, i = 0, . . . , K.

By applying these limits to Equation (5.39) we observe their correspondence with
Equation (5.18). Hence we obtain for c2

a ↗ 1:

v<

i1 → v=
i

and v<

i2 → 0, i = 0, . . . , K,

which gives, applied to Equation (5.38):

lim
c2a↗1

π< = π=,

as required.



5.4 Existence of the fixed point 77

5.4.5 Continuity for c2
a = 1

m
, m ∈ {2, . . . , 10}

The transition rates of the hypo-exponential PH distributions for c2
a < 1 are defined

as functions of the number of phases m =
⌈

1
c2a

⌉
. The inherent discontinuity suggests

that the steady-state distribution of the resulting QBD is discontinuous, too. To
improve the behavior of the arrival distribution with regard to the continuity, [109]
proposes to modify FiFiQueues’ PH fitting procedure for c2

a < 1 as follows. Given
the mean inter-arrival time E[X] = 1/λa and the squared coefficient of variation
c2
a, we fit the PH distribution (α,A) with m =

⌈
1
c2

⌉
phases and initial probability

vector α = (1, 0, . . . , 0). The matrix A is given as

A =





−λ0 λ0

−λ1 λ1

. . . . . .

−λm−2 λm−2

−λm−1




, (5.40)

where

λi = 1/(c2
aE[X]), for 0 ≤ i < m − 2,

λm−1 =
1 − (m − 2)c2

a +
√

(c2
a)

2(2m − m2) + 2c2
a(m − 1) − 1

E[X]((m − 1)(m − 2)(c2
a)

2 + c2
a(3 − 2m) + 1)

,

λm−2 =
λm−1

E[X]λm−1(1 − (m − 2)c2
a) − 1

As can be seen, the transition rates λi for i < m− 2 are now continuous as function
of c2

a. This causes that important statistics of this new PH renewal process, e.g.,
the third moment of the inter-arrival time, are now continuous at values of c2

a where
a size change happens. Note that this not true for the original PH distribution.
Figure 5.1 illustrates this by comparing the third moment of both PH distributions
for values of c2

a around 0.5 (i.e., when the size m changes from 3 to 2).

For c2
a ↗ 1

m
, m ∈ {1, . . . , 10}, the new PH distribution yields

λi −→ mλa, for 0 ≤ i < m − 1, (5.41)

λm−1 −→ ∞. (5.42)

Hence, the proof of lim
c2a↗1

π(c2
a) = π(c2

a = 1) for m = 1, as given in the previous

section, is still valid and we only have to prove that

lim
c2a↗

1

m

π(c2
a) = π(c2

a =
1

m
)

for m ∈ {2, . . . , 10}. For c2
a = 1

m
the arrival PH distribution (α=,A=) is an Erlang-

m distribution. Again, let v= be the steady-state probability vector of the resulting



78 5 FiFiQueues

 2.97

 2.98

 2.99

 3

 3.01

 3.02

 3.03

 3.04

 3.05

 3.06

 0.496  0.498  0.5  0.502  0.504

3r
d 

m
om

en
t

squared c.o.v.

original PH distribution
new PH distribution

Figure 5.1: Third moment of the original (Equation (5.9)) and the modified (Equa-
tion (5.40)) PH distribution as function of c2

a

QBD with c2
a = 1

m
, m ∈ {2, . . . , 10}. We split the components v=

i
, i= 0, . . . , K,

of the probability distribution vector into m parts v=
i

= (v=
i1

, . . . ,v=
im

) where v=
ij

is associated with the j-th state of the arrival PH distribution. The probabilities
are determined by v= · 1 = 1 and by the global balance equations of the QBD. For
level 0 of the QBD, when no customers are in the queueing station, we obtain

v=
01

(−λ=) + v=
11

B0 = 0,

v=
01

λ= + v=
02

(−λ=) + v=
12

B0 = 0,

. . .

v=
0,m−1

λ= + v=
0m

(−λ=) + v=
1m

B0 = 0,

where λ= = mλa. For level 1 ≤ i < K, we have

v=
i−1,m

λ=β + v=
i1

(−λ=I + B) + v=
i+1,1

B0β = 0,

v=
i1

λ=I + v=
i2

(−λ=I + B) + v=
i+1,2

B0β = 0,

. . .

v=
i,m−1

λ=I + v=
im

(−λ=I + B) + v=
i+1,m

B0β = 0,

and, finally, for level K:

v=
K−1,m

λ=I + v=
K1

(−λ=I + B) + v=
Km

λm−1I = 0,



5.4 Existence of the fixed point 79

v=
K1

λ=I + v=
K2

(−λ=I + B) = 0,

. . .

v=
K,m−1

λ=I + v=
Km

(−λ=I + B) = 0.

The loss probability π= of the station is given by

π= =
1

λa

v=
K

(A0
=
⊗ I) · 1 =

1

λa

v=
Km

λ=I · 1.

For 1
m+1

≤ c2
a < 1

m
the resulting arrival PH process (α<,A<) has m + 1 states

and the steady-state probability vector v< of the QBD has additional components
v<

i,m+1, i = 0, . . . , K. Let λ0,. . . ,λm+1 be the transition rates of the PH process. The
global balance equations for level 0 are

v<
01

(−λ0) + v<
11

B0 = 0,

v<
01

λ0 + v<
02

(−λ1) + v<
12

B0 = 0,

. . .

v<
0m

λm−1 + v<
0,m+1(−λm) + v<

1,m+1B
0 = 0.

For level 1 ≤ i < K, we have

v<

i−1,m+1λmβ + v<

i1(−λ0I + B) + v<

i+1,1B
0β = 0,

v<

i1λ0I + v<

i2(−λ1I + B) + v<

i+1,2B
0β = 0,

. . .

v<

imλm−1I + v<

i,m+1(−λmI + B) + v<

i+1,m+1B
0β = 0,

and for level K:

v<

K−1,m+1λmI + v<

K1(−λ0I + B) + v<

K,m+1λmI = 0 (5.43)

v<

K1λ0I + v<

K2(−λ1I + B) = 0 (5.44)

. . .

v<

Kmλm−1I + v<

K,m+1(−λmI + B) = 0. (5.45)

The loss probability π< is given by

π< =
1

λa

v<

K(A0
<
⊗ I) · 1 =

1

λa

v<

K,m+1λmI · 1. (5.46)

From Equation (5.45) we obtain

v<

K,m+1λmI = v<

Kmλm−1I + v<

K,m+1B,

which yields with Equation (5.46):

π< =
1

λa

(v<

Kmλm−1I + v<

K,m+1B) · 1. (5.47)



80 5 FiFiQueues

Solving the global balance equations for v<

i,m+1 and applying the limits from (5.41)
and (5.42) gives

v<

i,m+1 → 0, i = 0, . . . , K.

Similar to the case c2
a ↗ 1 of the original PH distribution (see Equation (5.39)),

transforming the global balance equations finally yields

v<

ij → v=
ij

,

v<

i,m+1 → 0, i = 0, . . . , K and j = 1, . . . ,m,

which gives, applied to Equation (5.47):

lim
c2a↗

1

m

π< = π=,

as required.

We now have shown that the loss probability π is a continuous function of c2
a.

Together with the continuity of the variance σ2
0 (not shown here), this yields the

continuity of the the function H, and, as consequence, the existence of the fixed
point.

5.5 Traffic descriptors with m moments

In the previous sections, we have seen that QNA and FiFiQueues only use the first
and the second moment of the inter-arrival time distribution as traffic descriptor.
So, it is natural to ask whether the quality of the analysis can be improved if more
information about the arrival time distribution is included in the traffic descriptor.
This can be in done in several ways and we will discuss the most obvious approach in
this section: we try to extend FiFiQueues by traffic descriptors containing three or
more moments, encouraged by Equation (5.11) which allows to efficiently compute
any desired moment of the inter-departure time distribution of a node. However,
note that the number of moments a “good” traffic descriptor should contain is very
difficult to determine and may vary from model to model. The intensive research in
the context of approximations of GI|M|· queues over the last twenty years showed
that in some cases, two-moment approximations are adequate, in other cases three-
moment approximations are adequate, and in still other cases, good results can only
be obtained if other properties like autocorrelation are taken into account [57].

In order to avoid repetition, we deviate from the structure of the previous de-
scriptions, and rather discuss the extensions and changes to FiFiQueues. The model
class as well as the network performance computation are not repeated here. Instead,
we directly start with the description of the new traffic descriptor and continue with



5.5 Traffic descriptors with m moments 81

the superposition and merging of traffic streams. Concerning the service operation,
the PH-fitting step now becomes so complex that we have devoted a separate section
to it.

5.5.1 The traffic descriptor

The traffic descriptor consists of the first m moments of the inter-arrival time dis-
tribution:

〈a1, . . . , am〉,
where ai is the i-th non-central moment. The same description is also chosen for the
external arrival processes. Thus, FiFiQueues can be seen as the special case with
m = 2.

5.5.2 Superposition of traffic streams

Given two incoming streams described by 〈x1, . . . , xm〉 and 〈y1, . . . , ym〉, we want to
compute the traffic descriptor 〈r1, . . . , rm〉 of the resulting stream. Let λX = 1/x1,
λY = 1/y1 and λR = 1/r1.

If the two incoming streams are generated by renewal processes, the resulting
traffic descriptor can be exactly computed by fitting the two incoming streams to
PH renewal processes (see Section 5.5.5). If (α,A) and (β,B) are the corresponding
phase-type representations, their superposition can be expressed by the MAP

(A ⊕ B,A0α ⊕ B0β),

which yields the searched moments. This approach corresponds to what is termed
the stationary-interval method in QNA.

Inside a queueing network the renewal assumption is wrong in most cases. In or-
der to respect correlations in the traffic streams, Whitt complemented the stationary-
interval method with the asymptotic method and obtained the hybrid formula for
the second moment (see Section 5.2.3). It is, however, an open research question
how the hybrid approach could be extended to higher moments, especially to the
third moment or the skewness . Similar to the squared coefficient of variation, the
skewness γ of a traffic stream with inter-arrival time X is defined as

γ =
E[(X − E[X])3]

Var[X]3/2
=

E[X3] − 3E[X]E[X2] + 2E[X]3

(E[X2] − E[X]2)3/2
.

We continue to use Whitt’s hybrid approximation of the squared coefficient of vari-
ation and choose for the skewness γR of the superposition:

γR = γSI ,

where γSI is the skewness as computed by the stationary-interval method.



82 5 FiFiQueues

5.5.3 Splitting traffic streams

Given a stream 〈x1, . . . , xm〉 and the splitting probability p, we search the traffic
descriptor 〈s1, . . . , sm〉 of the splitted stream.

Let X1, X2, . . . be a sequence of successive inter-arrival times of the original traffic
stream. Again, we assume that the original stream is a renewal process, hence the Xi

are independent and identically distributed. The inter-arrival time S of the splitted
stream is the random sum S =

∑N
i=1 Xi where N is a discrete random variable with

geometric distribution P (N = n) = p(1− p)n−1. Random sums of this form are well
known and we obtain as generating function of S [91]:

GS(z) =
pGX(z)

1 − (1 − p)GX(z)
,

where GX(z) is the generating function of the original inter-arrival time X. For the

i-th derivative G
(i)
Y of the generating function GY of a random variable Y it holds

G
(i)
Y (1) = E

[
Y !

(Y − i)!

]
.

From this follows

GY (1) = 1,

G
′

Y (1) = E[Y ],

G
′′

Y (1) = E[Y 2] − E[Y ],

G
′′′

Y (1) = E[Y 3] − 3E[Y 2] + 2E[Y ],

. . .

We can derive for GS(z):

s1 =
1

p
x1,

s2 =
1

p2

(
2(1 − p)x2

1 + px2

)
,

s3 =
1

p3

(
6(1 − p)2x3

1 + 6p(1 − p)x1x2 + p2x3

)
,

. . .

One can easily verify that the expressions for s1 and s2 conform with the splitting
formulae of QNA (see Section 5.2.4).

5.5.4 The service operation and the node performance

Before we discuss the PH-fitting step of the service operation, we state that the core
of the node analysis of FiFiQueues, namely the analysis of the underlying QBD, is



5.5 Traffic descriptors with m moments 83

not much affected by the new traffic descriptor — provided that the PH represen-
tation of the arrival process is available — and we can still use Equation (5.11) to
compute any moment of the departure process. For example, the third moment is

d3 = b3 + vD,0(−3A−11b2 + 6A−21b1 − 6A−31).

The moments of the other performance measures can be deduced from the corre-
sponding equations; see Equations (5.13), (5.17), resp. (5.16) for the inter-loss time,
the queue length for PH|PH|1|K queues, resp. the queue length for PH|PH|1 queues.
Moments of the waiting time distribution can be derived from [13, Eq. (4.4)].

We now move to the critical part of the service operation: the fitting of a PH
distribution to the incoming traffic described by 〈a1, . . . , am〉.

5.5.5 PH fitting for m moments

In the context of moment fitting procedures, it is appropriate to introduce the second
standardized moment c (the coefficient of variation) defined by

c = ā
1/2
2 /a1,

and the i-th standardized moment si defined for i > 2 by

si = āi/ā
i/2
2 ,

where āi is the i-th centralized moment. The third standardized moment is the
skewness γ already introduced in Section 5.5.2. Standardized moments are indepen-
dent of the mean, so fitting procedures for m moments only need to fit moments
a2 through am. The correct mean is then obtained by adjusting the scale of the
selected distribution.

The original fitting procedure of FiFiQueues only fits against the first and second
moment and cannot easily be extended to higher moments. In the following, we
briefly describe four fitting procedures for more than two moments.

Moment matching for m = 3 with an Erlang-mixture

Johnson and Taaffe presented in [58] a matching procedure for three moments.
Unlike older procedures, like the one proposed in [114] which requires c2 > 1, no
restrictions on the moments were made (beside c > 0 and γ ≥ c − 1/c which follow
from the fact that PH distributions can only represent distribution functions with
finite moments).

In [58], the aimed-at PH distribution is a mixture of two Erlang distributions of
common order. So, four parameters have to be determined: the common order n,



84 5 FiFiQueues

the transition rates λ1 and λ2 of the first resp. second Erlang distribution, and the
mixing ratio p. For the common order, any n ≥ n? can be selected where n? is the
smallest integer that satisfies

n? > 1/c2, and

n? >
−γ + 1/c3 + 1/c + 2c

γ − (c − 1/c)
.

The rates and the ratio are given by

λ1 =
2A

−B +
√

B2 − 4AC
,

λ2 =
2A

−B −
√

B2 − 4AC
,

p = λ1
λ2a1/n − 1

λ2 − λ1

,

where

A = n(n + 2)a1y,

B = −(nx +
n(n + 2)

n + 1
y2 + (n + 2)a2

1y),

C = a1x,

x = a1a3 −
n + 2

n + 1
a2

2 and y = a2 −
n + 1

n
a2

1.

There are some important remarks to be made regarding this method:

• Choosing the smallest possible order n? may result in extreme values for higher
moments or in density functions with sharp spikes. Small increments to n (even
by 1) can significantly improve the properties of the result.

• Since the resulting PH distribution (τ,T) is a mixture of two Erlang-distribu-
tions, τ and T obey a special structure that can be exploited to optimize the
computations in the node analysis.

• The size of the resulting PH distribution is not always minimal.

• The value of n can become very large and has to be limited. In some cases, it
may be necessary to ignore the third moment and to return to a two-moment
fitting procedure.

Moment matching for m = 3 with an Erlang-Coxian (EC) distribution

Another moment-matching algorithm for m = 3 is presented in [87]. Here, the
aimed-at distribution is an N -phase Erlang distribution followed by a two-phase



5.5 Traffic descriptors with m moments 85

λ

Yλ λ X2λ Y Yλ p Xλ X1

X1

p
. . .

1−p

1 2 N+1 N+2

(1−p  )X

Figure 5.2: The underlying Markov chain of the Erlang-Coxian distribution

YYλλ Y Xλλ
21

1−p

. . .

p
N

Figure 5.3: The underlying Markov chain of the Erlang-Exp distribution

Coxian distribution. The underlying Markov chain is shown in Figure 5.2. The
authors provide three closed-form solutions for the parameters N , p, λY , λX1, λX2

,
and pX of the distribution:

1. A simple solution that covers nearly all valid values of a1, . . . , a3. It requires
at most two phases more than the optimal solution.

2. An improved solution which is defined for all valid values of a1, . . . , a3, and
uses at most one phase more than the optimal solution. This solution is lacking
numerical stability.

3. A numerically stable solution, again defined for all valid values. This solution
is stable and uses at most two phases more than the optimal solution.

Moment matching for m = 3 with Minimal Acyclic PH (MinAPH) distri-
butions

In [12], Bobbio et al. extend the results presented in [87]. They provide exact
moment bounds for the first three moments of the Acyclic PH distribution of or-
der N without probability mass at 0 (denoted APH) and with probability mass at
0 (APHM). In addition, they provide an explicit method to construct such distri-
butions with given first three moments using minimal number of phases. In the
following, we focus on the class of minimal APH distributions (MinAPH). Note
that APHM renewal processes would destroy the skip-free property of the queueing
process when used as arrival or service process.

Depending on the second and third normalized moment, the aimed-at distribu-
tion is either an Erlang-Exp distribution or an Exp-Erlang distribution with para-
meters N , p, λX and λY . They are shown in Figure 5.3 and Figure 5.4, respectively.



86 5 FiFiQueues

λ λ Y
. . . N

Xλ Y

1−p

Yλ
21

p

Figure 5.4: The underlying Markov chain of the Exp-Erlang distribution

Moment matching for m > 3

Based on the three-moment matching, Johnson et al. developed a more general
fitting procedure based on Nonlinear-Programming (NLP) [57, 59]. In this approach,
the fitting is specified as an NLP problem and the task is to find the optimal Erlang-
mixture that minimizes the distance of the resulting PH distribution and the input
values. The limitation to mixtures of two common-order Erlang distributions has
been removed: now, any number of Erlang distributions of different order is allowed.
The procedure has the following properties:

• The fitting is not limited to three moments. The software package presented
in [57] is able to fit to six moments and to other properties, e.g., specific values
of the distribution function.

• The PH distribution returned by the NLP search may be smaller than the one
found by the three moment matching method.

• The NLP search consumes much more computational resources than simple
two- or three-moment matching methods. Additionally, it may require user
interaction for optimal results. Heuristics are used to speed up the search and
to minimize the size of the result.

The last property implies that it is a sensible decision to limit traffic descriptors to
three moments, at least in the context of our queueing network analysis where the
fitting has to be done at each node in every iteration.

5.6 PH renewal processes as traffic descriptors?

In the previous section we fitted PH renewal processes to the m-moment traffic
descriptors. In this section, we want to examine if it is possible — and useful — to
avoid the PH-fitting step by using the PH processes themselves as traffic descriptor.

What are the potential benefits? As already stated, the fitting step is very
critical for moments higher than the third. Using PH renewal processes as traffic
descriptors themselves would allow us to represent the distribution function of the
inter-arrival time with an accuracy that cannot be reached even by three-moment
traffic descriptors. Unfortunately, PH-based traffic descriptors suffer from a problem
that neutralizes their expected benefits: similarly to the MAP-based approach (see



5.7 Summary and conclusions 87

2 31PH

Figure 5.5: Usage of PH-based traffic descriptors

Chapter 9), the state-space explosion occurs during the superposition and service
operation steps. The traffic descriptors would quickly become far too large since
the superposition is repeated in each turn of the fixed-point iteration. To prevent
the state space explosion we would be forced to fall back to approximations like the
m-moment method.

Nevertheless, in some situations PH descriptors are still useful. Consider the
network shown in Figure 5.5. We can specify the external arrival traffic to the first
queue as a PH renewal process since no superposition occurs at this place and still
analyze the other queueing stations by a moment-based method like FiFiQueues.
Such an approach can be considered as a hybrid network analyzer that relies on two
different kinds of traffic descriptors.

5.7 Summary and conclusions

In this chapter, we have discussed analysis methods that are based on so-called
first-order traffic descriptors. We have started with a discussion of two well-known
analysis method, namely the method of Jackson for networks of M|M|1 stations and
Whitt’s QNA. We have shown that the involved steps can be elegantly described
in our decomposition framework. Both methods are restricted to queueing stations
with infinite queueing capacity. This limitation has been removed by our analysis
method called FiFiQueues. In addition, FiFiQueues replaces some of the approxima-
tions of QNA by exact solutions and allows arbitrary phase-type renewal processes
as service processes.

However, unlike QNA, FiFiQueues requires a fixed-point iteration in order to
compute the traffic flows of a queueing network. We have found that a complete
analysis of the iteration behavior is difficult because the hypo-exponential PH dis-
tribution used by FiFiQueues has transition rates that are discontinuous as function
of the squared coefficient of variation. We have presented a small modification to
the original PH distribution that has allowed us to prove the existence of the fixed
point. Further studies are required to decide whether the fixed point is unique and
always reached. Concerning the original FiFiQueues algorithm, it is an interesting
question how the discontinuity of the original PH distribution affects the existence
of the fixed point. Although no proof is currently available, the properties of the
original PH distribution (as illustrated in Figure 5.1) suggest that the distribution
of the resulting QBD is discontinuous, too. Nevertheless, the original FiFiQueues
always terminated in our experiments, so it seems that either the discontinuity is too



88 5 FiFiQueues

JQN QNA FiFiQueues m moments PH-desc.
fixed-point iteration no no yes yes yes

traffic descriptor 〈λ〉 〈λ, c2
A〉 〈λ, c2

A〉 〈a1, . . . , am〉 PH1)

finite q. capacity no no yes yes yes
service process µ (µ, c2

S) PH PH PH
traffic merging exact approx. approx. approx. exact
node analysis2) exact approx. exact exact exact

traffic splitting3) exact renewal renewal renewal renewal

1) only for external traffic descriptors
2) includes the analysis of the service operation and the node performance
3) “renewal” = exact if the traffic is generated by a renewal process

Table 5.1: Characteristics of the analysis methods with first-order traffic descriptors

small to affect the fixed point behavior of the algorithm in practice or the continuity
is simply not required for the existence of a fixed point. This question will be a
topic for further research.

Like QNA, FiFiQueues’ traffic descriptors are based on the first and second
moment of the inter-arrival time. We have also discussed the possibility to extend
the traffic descriptors to higher moments. Especially for three moments, attractive
PH-fitting algorithms are available. Finally, we have briefly shown how arbitrary
PH renewal processes can be used as descriptors of external incoming traffic. We
summarize the key features of the discussed analysis methods in Table 5.1. The
performance of FiFiQueues will be discussed in the next chapter.



Chapter 6

Performance of FiFiQueues

In this chapter we evaluate the performance of the FiFiQueues algorithm with regard
to the quality of the numerical results. This evaluation consists of

• tests with the original FiFiQueues algorithm (based on two-moment descrip-
tors) on some representative queueing networks (Section 6.1),

• a case study of a web server (Section 6.2), and

• tests with three-moment traffic descriptors (Section 6.3).

We conclude this chapter with Section 6.4. Note that the third part, Section 6.3, also
contains many performance results for the original FiFiQueues algorithm. However,
the results are very detailed and some of the test models have been designed for the
comparison with the three-moment traffic descriptors.

The results of the numerical analysis are compared to results determined using
the discrete-event simulator described in Chapter 8.3. The relative half-width of
the 95%-confidence intervals is smaller than 1% for all the simulation results. If not
stated otherwise, arrival time and service time distributions specified by their rate
and the squared coefficient of variation (SCV) are always mapped to the PH distri-
butions using the original FiFiQueues algorithm. Relative errors between numerical
analysis and simulation are always computed relative to the latter.

6.1 Evaluation of FiFiQueues

In this section we evaluate FiFQueues’ performance with some typical networks. We
begin with a single queue in Section 6.1.1, then continue with some complex networks
in Section 6.1.2, and finally, in Section 6.1.3, we study the impact of the modified
hypo-exponential distribution as introduced in Section 5.4.5. The presented tests
cover a wide range of input parameters, including (nearly) deterministic processes,
and complex networks with finite queueing capacities.

89



90 6 Performance of FiFiQueues

load analysis simulation rel. error
0.1 0.10 0.10 0.0%
0.2 0.20 0.20 0.0%
0.4 0.47 0.47 4.4%
0.6 0.95 0.89 6.7%
0.8 2.34 2.18 7.3%
0.95 10.60 9.26 14.4%

Table 6.1: Mean queue length for a queueing station with deterministic arrival traffic

2 31

Figure 6.1: 3-node queueing network with feedback

6.1.1 Single queues

In the case of queueing networks that consist of only one queueing station FiFi-
Queues always produces exact results, provided that the selected arrival and service
PH renewal processes match the actual arrival and service processes of the real
system. Hence, results of single-queue systems are not very interesting. At this
place, we will only discuss the special case of deterministic distributions.

As explained, FiFiQueues limits the number of phases in hypo-exponential PH
distributions to 10, which corresponds to a minimum SCV of 0.1. As a consequence,
deterministic distributions can only be approximated. To evaluate the effect of this
restriction we have analyzed a queueing station with negative exponential services
and deterministic arrival process at different loads. Table 6.1 compares the so ob-
tained mean queue lengths with results found by simulation. It shows that the
relative error between analysis and simulation increases with the load. Errors of
comparable magnitude can also be observed for other performance measures and for
hypo-exponential and hyper-exponential service distributions. Note that, in gen-
eral, FiFiQueues’ pessimistic estimations are not particularly disturbing since we
are often interested in the worst-case performance of a queueing network.

6.1.2 Queueing networks with feedback

3-node queueing network

We first address three queueing nodes in series, with a feedback from the last to the
first queue, as shown in Figure 6.1. The external Poisson source has rate 1.3 and
the service times are Erlang-5 distributed with rate 1.5; the node capacity is 10 (not
including the service station) at all queues. The feedback probability is 25%.

The results are shown in Table 6.2. The first two rows show the characteristics



6.1 Evaluation of FiFiQueues 91

analysis simulation rel. error
Output traffic λnetd,3 1.08 1.08 0.0%

c2
netd,3 0.41 0.41 0.0%

Arrival traffic λa,1 1.65 1.66 -0.6%
c2
a,1 0.96 0.96 0.0%

λa,2 1.47 1.47 0.0%
c2
a,2 0.23 0.23 0.0%

λa,3 1.45 1.45 0.0%
c2
a,3 0.21 0.22 -4.5%

Queue length E[N1] 6.47 6.47 0.0%
E[N2] 4.43 4.45 -0.4%
E[N3] 3.96 3.90 1.5%

Table 6.2: Results for the 3-node network with Poisson source

analysis simulation rel. error
Output traffic λnetd,3 0.99 0.99 0.0%

c2
netd,3 0.45 0.69 -34.8%

Arrival traffic λa,1 1.63 1.63 0.0%
c2
a,1 3.33 2.35 41.7%

λa,2 1.33 1.33 0.0%
c2
a,2 0.79 0.79 0.0%

λa,3 1.32 1.33 -0.8%
c2
a,3 0.35 0.65 -46.2%

Queue length E[N1] 5.57 5.59 -0.4%
E[N2] 3.30 3.16 4.4%
E[N3] 2.38 2.76 -13.8%

Table 6.3: Results for the 3-node network with hyper-exponential source

of the traffic leaving the queueing network from node 3. The middle six rows show
the rate and SCV of the arrival traffic at each node, and the last three rows show
the expected queue length at each node.

The good results of the analysis can be explained by the fact that the resulting
arrival traffic to node 1 (i.e., where the traffic superposition operation happens)
is near to Poisson as indicated by c2

a,1=0.96. If we replace the external source
distribution by a hyper-exponential distribution with c2 = 4.0 we obtain the results
shown in Table 6.3. As expected, larger errors can be observed this time for the
SCV of the arrival traffic. Interestingly, node 2 does not seem to be affected. This is
because node 2 is fed by node 1 which is overloaded and hence reduces short-range
correlations in the traffic stream.

Figure 6.2 shows the incoming traffic to node 1 as a function of the number of
iterations in the fixed-point procedure for both kind of external sources. As can be



92 6 Performance of FiFiQueues

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0  1  2  3  4  5

ar
riv

al
 r

at
e 

(n
od

e 
1)

iteration

Poisson source
hyper-exponential source

Figure 6.2: Incoming traffic to node 1 as a function of the number of iterations in
the fixed-point procedure for the 3-node network

observed, the fixed-point is reached after a very small number of iterations. This
behavior has been typical for all queueing networks we have analyzed so far.

Kühn’s nine-node network

As a larger queueing network we evaluated a modified version of Kühn’s nine-node
network [64], as shown in Figure 6.3 (the numbers at the edges specify the routing
probabilities). A similar network has been examined in [45, 113]. The external
arrival rate to nodes 1–3 equals 0.8 and c2

ext = 4.0. The service rate at each node is 1.0
(except for node 5 where µ5 = 0.5), and the SCV of all service processes is c2

s = 0.5.
All nodes have a finite queueing capacity of 25. Hence, without decomposition the
underlying CTMC would comprise 23 · (1 + 25 · 2)9 ≈ 1.86 × 1016 states.

Table 6.4 shows the results obtained by FiFiQueues and by simulation for the
mean queue length and the offered load at each station. Note that the results for
the (identical) nodes 1–3 are only stated once.

6.1.3 The modified hypo-exponential PH distribution

So far, we have done all tests with the original FiFiQueues version as described in
Section 5.3. Now, we want to study the effect if we replace the hypo-exponential PH
distribution of the original FiFiQueues by the new hypo-exponential PH distribution
that we have introduced in Section 5.4.5. We reuse the nine-node network of the



6.1 Evaluation of FiFiQueues 93

2 4

5

1

6

7

3

9

8

0.3

0.6

0.1

0.2

0.1

0.7

0.7

0.3

0.2

0.8
0.3

0.7

Figure 6.3: Kühn’s nine-node network

node analysis simulation rel. error
1–3 E[Ni] 6.39 6.39 0.0%

offered load 0.8 0.8 0.0%
4 E[N4] 16.84 16.74 0.6%

offered load 1.09 1.09 0.0%
5 E[N5] 1.14 1.13 0.9%

offered load 0.59 0.59 0.0%
6 E[N6] 2.31 2.28 1.3%

offered load 0.77 0.76 1.3%
7 E[N7] 14.67 14.86 -1.3%

offered load 1.04 1.04 0.0%
8 E[N8] 6.36 6.63 -4.0%

offered load 0.87 0.87 0.0%
9 E[N9] 22.41 21.88 2.4%

offered load 1.28 1.27 0.8%

Table 6.4: Results for the departure rates in Kühn’s nine-node network



94 6 Performance of FiFiQueues

previous section but we modify the SCV of the service processes to make the test
more significant: the first node gets a c2 of 0.1, the second node 0.2, the third node
0.3, and so on.

The analysis shows that the original FiFiQueues and the modified version com-
pute exactly the same values for the departure rates (relative difference less than
10−7). The largest relative difference of the SCV of the departure traffic is less than
10−4, so we can conclude that the new hypo-exponential distribution does not af-
fect the quality of FiFiQueues. We therefore do not show separate numbers in this
thesis.

6.2 Performance evaluation of a web server

In this section we will use FiFiQueues for the performance evaluation of a web server.
The employed parameters in the models have been derived from measurements made
at a test system. This section is structured as follows. First, we describe the test
system in Section 6.2.1. Then we present a QN model for a web server without
disk access (cache only) in Section 6.2.2, followed of the model of a web server with
disk access in Section 6.2.3. These two models are then combined to a model of a
server group in Section 6.2.4. We compare the results obtained by analysis with the
results obtained by simulation, and, where available, with the data collected at the
test system.

6.2.1 Description of the test system

The test system consists of a computer running the Apache web server [4]. The
server load is generated by two client systems that send HTTP/1.0 GET requests
to the server in a 100 MBit Ethernet LAN (see Figure 6.4). The request times as
well as the sizes of the requested files have been extracted from traces (access logs)
collected at the UC Berkeley Home IP Service [41] in 1996. For our tests we have
used a part of the original trace file: it consists of 35541 requests for static files (i.e.,
pictures, html-pages, etc.) sent over 4 hours by different users. This corresponds to
a request rate of 2.468 requests per second. The SCV of the inter-request time is
1.2. The requested files have a mean size of 8510 bytes where the smallest file has a
size of 2 bytes and the largest file a size of about 4.5 MBytes. The size distribution
has a SCV as large as 26.8.

The web server of the test system has been configured to use not more than
150 server threads. This implies that the number of requests that can be processed
concurrently is limited to 150. Since connection requests are not queued the clients
will experience a connection rejection if they try to exceed this number. In addition,
the request time out has been set to 8 seconds. More details concerning the test
system can be found in [61]; please note that the QN models presented in the



6.2 Performance evaluation of a web server 95

client 2client 1

switch

server

Figure 6.4: Topology of the test system

NICCPU

Figure 6.5: QN model for the web server without disk access

following differ from the models discussed there.

6.2.2 Web server without disk access

For the first model, we assume that the server holds all requested files in the file
cache and, as consequence, no disk access is performed. This is a typical situation
in intranets where the number of often requested files is limited. In this scenario the
performance of the web server is only limited by the CPU, the main memory, and
the network interface controller (NIC).

We model the web server by two queueing stations in series as shown in Fig-
ure 6.5. Both stations have a finite queueing capacity. The first station is fed by an
external source that represents the clients sending the HTTP requests. The SCV of
1.2 for the source is equal to the corresponding value of the trace file.

The first station models the CPU. Measurements at the test system have shown
that the CPU of the test server is able to process up to around 1200 requests per
second. We adopt this value for the service rate of the first queueing station. Con-
cerning the SCV of the CPU’s service time distribution, we observe that the CPU
service time is dominated by the time to handle the HTTP protocol and by the
management of the cache data structures. Since the NIC accesses the main memory
via DMA (Direct Memory Access), the CPU service time exhibits nearly no depen-
dency on the size of the requested file. Hence, we choose a (nearly) deterministic
service time distribution with a SCV of 0.1. The second queue represents the NIC.
Measurements have shown a network load between 90% and 95% for a response rate
of 1100 responses per second. This leads to a NIC service rate of approximately



96 6 Performance of FiFiQueues

 400

 500

 600

 700

 800

 900

 1000

 1100

 500  750  1000  1250  1500

re
sp

on
se

 r
at

e 
[1

/s
]

request rate [1/s]

test system
FiFiQueues

Figure 6.6: Response rate as function of the request rate for the web server without
disk access

1200. For the SCV of the NIC’s service time distribution, we assume a direct de-
pendency of the service time on the file size and we set the SCV to 26.8, i.e., to the
SCV of the file size distribution.

The most problematic aspect of the test system is the limitation to 150 simulta-
neously connected clients. This cannot be easily modeled by the FCFS-scheduling
used by FiFiQueues. To approximate the limit, we have first analyzed the network
at a request rate of 1500 requests per second. By a Newton-iteration, we have de-
termined the queueing capacity at which the total number of jobs in the network is
150. The thus found capacity of 106 has then been used for all other request rates
(we have chosen the same capacity for both queues; the jobs are distributed evenly
over both stations at high request rates).

Figure 6.6 shows the number of responses per second as function of the number
of requests sent per second as measured at the test system and as computed by
FiFiQueues. Simulation results are not shown since they are nearly identical to the
analytical results (relative error < 1%). It shows that the QN model is able to
predict the response rate quite well. The total mean response times are shown in
Figure 6.7. The results are acceptable, but we can see that the model is not able to
reproduce the sharp jump of the response time at 1000 requests/s. A model with
more complex behavior, for example non-FCFS scheduling, would be required in
order to obtain better results.



6.2 Performance evaluation of a web server 97

 0

 20

 40

 60

 80

 100

 120

 140

 500  750  1000  1250  1500

m
ea

n 
re

sp
on

se
 ti

m
e 

[m
s]

request rate [1/s]

test system
FiFiQueues

Figure 6.7: Mean response time as function of the request rate for the web server
without disk access

6.2.3 Web server with disk access

The second model assumes that all requested files have to be loaded from the disk
of the server system. Measurements have shown that the test system only achieves
a maximum response rate of 63.5 files/s at a CPU load of 9%. Clearly, the disk
transfer is the bottleneck.

We model the influence of the disk access through an additional queueing station.
Figure 6.8 shows the resulting model. The first station represents the CPU. For the
SCV of the CPU service time, we have kept the value of 0.1 of the previous model.
However, the service rate has now been set to a value of 706 (= 63.5

0.09
) to reflect the

higher CPU demand of the single disk-based request. The service rate of the disk
station has been set 63.5. For the SCV, we have assumed a direct dependency of the
service time on the size of the requested file measured in blocks of 4 KBytes since
this corresponds to the organization of the data on the disk. This leads to a SCV
of 16.5 instead of 26.8. The NIC in this model has the same service rate and SCV
as in the previous model.

Again, the problem of the bounded number of simultaneously connected clients
remains. Since the disk station clearly is the bottleneck, we have limited its queueing
capacity to 150 while the CPU and the NIC station now have infinite queueing
capacity. Note that, in spite of the large differences between the service rates, the
CPU and the NIC should not be removed from the model since they have a small



98 6 Performance of FiFiQueues

NICCPU DISK

Figure 6.8: QN model for the web server with disk access

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 20  30  40  50  60  70  80  90  100

re
sp

on
se

 r
at

e 
[1

/s
]

request rate [1/s]

test system
FiFiQueues

Figure 6.9: Response rate as function of the request rate for the web server with
disk access

but measurable influence on the SCV of the traffic stream.

Figure 6.9 shows the number of responses per second as function of the number
of requests sent per second as measured at the test system and as computed by
FiFiQueues. Again, simulation results are not shown since their are nearly identical
to the analytical results (relative error < 1%). Again, it shows that the QN model
is able to predict the response rate quite well. The total mean response times are
shown in Figure 6.10. We observe that the QN model underestimates the response
time, especially at request rates near to the maximum response rate of the disk. Our
experiments with more complex QN models have shown that an improvement of the
results cannot be easily achieved by using the type of queueing stations offered by
FiFiQueues. For example, a more appropriate model would have to consider that
the seek time of the disk becomes a significant part of the disk’s response time
at high file reqest rates since the disk has to reposition its read/write heads more
often. Detailed models like the one presented in [98] simulate axial and rotational
head positions, seek, rotation and transfer times, and provide separate submodels
for the disk mechanism, the cache and the DMA engine.



6.2 Performance evaluation of a web server 99

 0

 500

 1000

 1500

 2000

 2500

 20  30  40  50  60  70  80  90  100

m
ea

n 
re

sp
on

se
 ti

m
e 

[m
s]

request rate [1/s]

test system
FiFiQueues

Figure 6.10: Mean response time as function of the request rate for the web server
with disk access

6.2.4 Group of servers

In this section we evaluate a group of servers as shown in Figure 6.11. In our
model, the client requests HTML pages from the main server of a web site. An
HTML file refers to, in average, three other objects (company logo, images,. . . )
that are also located on the main server. In addition, the HTML file refers to an
object located on one of the five data servers. We assume that the HTML file
and the three referred files located on the main server are frequently requested
and, hence, the main server mainly operates on the cache. Concerning the data
servers, we assume that they store large amounts of infrequently requested files, for
example files specific to the requesting user, media files, et cetera. The client uses
the HTTP/1.0 protocol [83], i.e., the five files that constitute the requested HTML
page are sequentually requested.

The QN model is shown in Figure 6.12. The QN of the server without disk access
(representing the main server) is combined with five copies of the QN of the server
with disc access (representing the data servers). Jobs leaving the main server are
fed back to it with a probability of 0.75, thus resulting in four visits to the main
server in average. The jobs finally leaving the main server are distributed evenly
on the data servers. The service processes and the capacities of the stations remain
unchanged.

We have evaluated the QN model by FiFiQueues and by simulation. The results



100 6 Performance of FiFiQueues

data server 5

data server 4

data server 3

data server 2

data server 1

. . .

client

client

main server

Figure 6.11: Group of Web servers

main server

data server

. . .

NICCPU

NICCPU

0.75
DISK

0.05

Figure 6.12: QN model for the server group

for the response rate (for one data server) and the mean response time are shown
in Figure 6.13 and, respectively, Figure 6.14. The vertical bars in the latter show
the 95%-confidence intervals of the simulation results. FiFiQueues provides good
results for request rates smaller than 250. At larger request rates, FiFiQueues
overestimates the losses in the main server because it ignores the correlations caused
by the feedback. As consequence, the load of the data servers is underestimated
which leads to a smaller mean response time in comparison with the results obtained
by simulation.

Table 6.5 shows the runtimes (in seconds) of the FiFiQueues algorithm and of the
discrete-event simulation for the evaluation of the server group model with various
request rates. For FiFiQueues, we have recorded the runtimes for two different
implementations of the finite queue analysis. The original implementation uses a
Gauss-Seidel iteration, whereas a new version uses the Cyclic Reduction method

FiFiQueues
request rate Gauss-Seidel Cyclic Red. simulation

100 7 2 11
200 15 3 11
300 19 3 11

Table 6.5: Runtimes (in seconds) for the evaluation of the server group model



6.2 Performance evaluation of a web server 101

 20

 25

 30

 35

 40

 45

 50

 55

 100  150  200  250  300

re
sp

on
se

 r
at

e 
[1

/s
]

request rate [1/s]

FiFiQueues
QN simulation

Figure 6.13: Response rate as function of the request rate for the server group

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100  150  200  250  300

m
ea

n 
re

sp
on

se
 ti

m
e 

[m
s]

request rate [1/s]

FiFiQueues
QN simulation

Figure 6.14: Mean response time as function of the request rate for the server group



102 6 Performance of FiFiQueues

(see Section 3.4.3). As mentioned in Section 3.5, the runtime of the Gauss-Seidel
iteration increases with the load of the stations. The Cyclic Reduction method is
clearly faster than the Gauss-Seidel iteration and the simulation.

6.3 FiFiQueues with three-moment descriptors

In this section we analyze the effect of the third moment as part of the traffic
descriptor. Basically, two types of models can be identified:

1. Models that only specify the first and second moment of the external arrival
processes, as supported by FiFiQueues.

2. Models also containing information about the third moment. These models
cannot be analyzed by the original FiFiQueues algorithm.

In the following, our focus is on models of the first type because we are interested in
the question whether three-moment descriptors yield better results than the original
FiFiQueues algorithm for the same model. The benefit of three moments in the
model specification, as addressed by the models of the second type, has been already
intensively discussed in former publications (see [58] for an overview).

When fitting a PH distribution to three moments, the three methods presented
in Section 5.5.5 are available. In the following we denote the fitted PH distribu-
tions by PHEm (Erlang-mixture), PHEC (Erlang-Coxian), resp. PHMin (Minimal
Acyclic PH, MinAPH). We start with a comparison of these PH distributions in
Section 6.3.1. In Section 6.3.2 we discuss some simple tandem queueing networks.
The traffic splitting operation is studied in Section 6.3.3. Finally, we evaluate the
traffic merging operation in queueing networks with feedback in Section 6.3.4. Some
auxiliary test results can also be found in Section 10.3.

6.3.1 Comparison of the distributions

For the comparison, we have used the three methods to fit PH distributions to
different SCVs in the range [0.1, 4] and to skewnesses in the range [−3, 6]. The
SCV and the skewness are denoted as c2, respectively γ, in the following. The
Erlang-mixture method allows to choose the common order n of the mixed Erlang
distributions. We have chosen n = n∗, as defined in Section 5.5.5, for the first test.

In Figure 6.15, we show the ratio size(PHEm)
size(PHMin)

where size(·) gives the number of
phases of a PH distribution. The part of the plot where this ratio equals 0 represents
the area γ ≤ c − 1/c that cannot be realized by a PH distribution. It shows that
the PHEm distributions are about twice as large as the PHMin distributions for
moderate γ and especially for hypo-exponential distributions. With regard to the
absolute values of the sizes, Figure 6.16 shows the size of PHEm, PHMin clearly is



6.3 FiFiQueues with three-moment descriptors 103

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

SCV

-3
-2

-1
 0

 1
 2

 3
 4

 5
 6

skewness

 0

 0.5

 1

 1.5

 2

size ratio

Figure 6.15: Ratio between the number of phases of the Erlang-mixture and of the
Minimal APH distribution

the better choice. The size of the PHEC distribution is not shown here since it is
either equal to or by one larger than the size of the PHMin distribution.

Another important aspect is the shape of the probability distribution function
of the generated PH distributions. In general, distribution functions with extreme
shapes or high sensitivity to the input parameters are not desired. To evaluate this
we have computed the kurtosis (more correctly, the kurtosis excess) κ defined as the
fourth standardized moment diminished by 3:

κ = s4 − 3 = ā4/ā
4
2 − 3.

The normal distribution has a kurtosis of 0. A high kurtosis indicates that the
variance of the distribution is caused by infrequent, but extreme deviations. Fig-
ure 6.17, 6.18, and 6.19 show the kurtosis for the PHEm, PHEC , resp. PHMin

distribution. A value of –100 indicates the parameter range where γ ≤ c − 1/c. We
can observe that the kurtosis of PHEm and PHMin has more and sharper peaks
whereas the kurtosis of PHEC looks smoother. For PHEm, this problem has been
recognized in [58] and is caused by our decision to choose the smallest possible com-
mon order n = n∗ for PHEm. If we choose n = n∗ + 1 as common order, a kurtosis
function with smaller peaks is obtained, as shown in Figure 6.20 and observed in [58].
In our experiments, larger values for n, e.g., n = n∗ + 2, did not have a significant
effect on the results. Hence, we will use n = n∗ + 1 in the following.

But the most important observation is that the kurtosis of PHEC is considerably
higher than of PHEm and PHMin. This has also been observed in [12]. We will study
in the following sections how this difference affects the obtained results.



104 6 Performance of FiFiQueues

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

SCV

-3
-2

-1
 0

 1
 2

 3
 4

 5
 6

skewness

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

size

Figure 6.16: Number of phases of the Erlang-mixture distribution

 0  0.5  1  1.5  2  2.5  3  3.5  4SCV

-2
 0

 2
 4

 6

skewness

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

kurtosis

Figure 6.17: Kurtosis of the Erlang-mixture distribution with common order n∗



6.3 FiFiQueues with three-moment descriptors 105

 0  0.5  1  1.5  2  2.5  3  3.5  4SCV

-2
 0

 2
 4

 6

skewness
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

kurtosis

Figure 6.18: Kurtosis of the Erlang-Coxian distribution

 0  0.5  1  1.5  2  2.5  3  3.5  4SCV

-2
 0

 2
 4

 6

skewness

-100

 0

 100

 200

 300

 400

 500

kurtosis

Figure 6.19: Kurtosis of the Minimal APH distribution



106 6 Performance of FiFiQueues

 0  0.5  1  1.5  2  2.5  3  3.5  4SCV

-2
 0

 2
 4

 6

skewness

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

kurtosis

Figure 6.20: Kurtosis of the Erlang-mixture distribution with common order n∗ + 1

6.3.2 Tandem queueing networks

The first model consists of three queues in series. All stations have a finite capacity
of 10. The service rates are 1.5, 1.3, resp. 1.3, and the SCV of the service time
distributions are 0.2, 0.2, resp. 2.0, for the first, second, resp. third station. The
external arrival traffic to the first queue is specified by its rate λext and its SCV c2

ext.
Table 6.6 shows the error (relative to simulation) of the mean queue lengths of the
second and third queue as obtained by numerical analysis for various values of λext

and c2
ext (with common order n∗ + 1 for this and all following experiments). Note

that the analysis of the first queue is always exact by design and hence its results are
not shown in the table. The last four rows give the absolute values of the relative
errors averaged over all values of λext and both stations.

All methods yield acceptable, and similar, results for c2
ext ≤ 1.0 or for λext = 2.0.

In the other cases, PHMin and PHEm generally give the best results, followed by
FiFiQueues. The PHEC distribution generates the largest errors which is caused by
the extreme kurtosis of its distribution function, as discussed in Section 6.3.1.

6.3.3 Traffic splitting

We study the traffic splitting operation by the model shown in Figure 6.21. The
external arrival traffic to the first queue is specified by its rate λext and its SCV c2

ext.
The SCV of the service time distribution of the first queue is denoted by c2

s,1 and p



6.3 FiFiQueues with three-moment descriptors 107

FiFiQueues Em EC MinAPH
λext c2

ext re(N2) re(N3) re(N2) re(N3) re(N2) re(N3) re(N2) re(N3)

0.5 0.5 0.7% -0.3% -0.6% 0.0% 4.5% 0.0% 2.5% -0.5%
1.0 4.8% 0.5% -3.7% -1.0% 6.7% -0.5% 0.7% -0.9%
2.0 14.0% 5.9% -3.4% -1.6% 51.3% 9.5% 11.1% 2.6%
4.0 18.9% 8.8% -7.5% -3.0% 104.0% 21.2% 14.4% 3.3%

1.0 0.5 -1.3% -1.4% -3.3% -1.4% 0.7% -1.9% -2.7% -1.4%
1.0 -3.0% -2.4% -9.1% -2.0% -1.6% -2.6% -6.8% -2.3%
2.0 5.5% -4.0% -8.1% -2.5% 4.6% -4.1% 0.4% -4.4%
4.0 6.7% -3.7% -7.5% -0.9% 6.0% -11.5% -2.1% -2.1%

2.0 0.5 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1%
1.0 -0.1% 0.3% -0.1% 0.3% -0.0% 0.3% -0.1% 0.3%
2.0 -0.3% 0.4% 0.1% 0.2% 0.2% 0.3% 0.1% 0.3%
4.0 -7.6% 0.5% -1.1% 0.8% -7.2% 0.9% -5.0% 0.9%

average 0.5 0.6% 0.9% 1.2% 1.2%
relative 1.0 1.9% 2.7% 2.0% 1.9%
errors 2.0 5.0% 2.7% 11.7% 3.2%

4.0 7.7% 3.5% 25.1% 4.6%

Table 6.6: Mean queue lengths of three queues in series for different analysis methods

2

p

3

µ=1.0
c²=0.2

1−p

c²=2.0

1

µ=1.0

µ=1.5

Figure 6.21: Queueing network to study the traffic splitting operation

gives the splitting probability for the departure traffic. All queueing stations have
a capacity of 10. The other parameters are as shown in the figure (where µ and
c2 stand for the service rate, resp. service SCV). PH distributions are fitted to the
rate and the SCV of the external source and the service time distributions by using
FiFiQueues.

Table 6.7 and 6.8 show the errors relative to simulation of the mean queue lengths
as computed by the different methods for c2

s,1 = 0.5, resp. c2
s,1 = 2.0, and for various

values of p, λext, and c2
ext. The last three rows give the absolute values of the

relative errors averaged over all values of p, λext, and both stations. The results of
FiFiQueues are satisfying. Only the PHMin distribution gives a slight improvement.
The larger errors obtained by the other methods can be explained by observing the
standardized moments of the arrival time distribution at the queues. As an example,
consider the situation where p = 0.75, λext = 0.5, c2

ext = 4.0, c2
s,1 = 0.5 from Table 6.7.



108 6 Performance of FiFiQueues

We find:

c2 skewness kurtosis re(N2)
simulation 3.10 5.08 36.8 –

FiFiQueues 3.08 5.08 37.7 5.2%
Em 3.08 5.10 34.1 -13.0%
EC 3.08 5.10 126.1 73.6%

MinAPH 3.08 5.10 38.1 5.0%

Although small differences in the SCV and the skewness can be observed, the results
indicate that the error is rather caused by the differences in the kurtosis of the
employed PH distributions.

6.3.4 Traffic merging in queueing networks with feedback

We return to the queueing network with feedback from Section 6.1.2 in order to
test the traffic merging operation. Again, we evaluate the network for a Poisson
source and a hyper-exponentially distributed source. Table 6.9 shows the errors of
the mean queue length relative to the simulation if we compute the first and the
second moment of the merged traffic descriptor by Whitt’s hybrid method and the
skewness by the stationary-interval method. The results of FiFiQueues are given for
comparison. The errors obtained by the three-moment descriptors are acceptable
but we observe that they are generally larger than with FiFiQueues.

As a second example, we evaluate the server group model presented in Sec-
tion 6.2.4 with three-moment descriptors. We use the MinAPH fitting method
because it was the most promising in the previous experiments. Figure 6.22 shows
the mean response time as function of the request rate as obtained by simulation,
FiFiQueues, and three-moment descriptors. No improvement by the three-moment
descriptors over FiFiQueues’ two-moment descriptors can be observed.

In the two examples, three-moment descriptors have not shown a clear advantage
in the analysis of queueing networks with feedback. The errors are mainly caused by
the correlations in the traffic streams and, hence, can not be reduced by using three-
moment descriptors. Additionally, it should be noted that the three-moment fitting
does significantly increase the runtime of the analysis due to the larger PH distribu-
tions. For example, the hyper-exponential PH distribution used by FiFiQueues has
two phases. In contrast, the arrival distributions generated by the MinAPH method
for the first queueing station in the server group model have seven or eight phases,
thus increasing the runtime of the analysis by a factor of 10 (Gauss-Seidel), respec-
tively 6 (Cyclic Reduction) in comparison to the times measured for FiFiQueues
(see Table 6.5).



6.3 FiFiQueues with three-moment descriptors 109

FiFiQueues Em EC MinAPH
p λext c2

ext re(N2) re(N3) re(N2) re(N3) re(N2) re(N3) re(N2) re(N3)

0.25 0.5 0.5 0.4% 0.1% -2.4% -0.4% 6.4% 4.8% 0.8% 0.6%
1.0 3.7% -0.5% -2.1% -3.2% 12.3% 0.7% 3.0% -1.4%
4.0 -0.9% 1.3% -6.3% -6.1% 42.1% 32.3% 1.2% 1.2%

1.0 0.5 -1.8% 0.9% -6.9% 0.9% 2.2% 1.4% -1.6% 1.0%
1.0 0.3% -0.6% -6.5% -0.9% 5.2% -0.7% -0.4% -0.8%
4.0 2.9% 0.4% -5.0% -1.2% 27.6% 0.7% 3.8% -0.8%

2.0 0.5 -0.8% 0.1% -5.9% 0.1% 1.6% -0.1% -0.8% 0.1%
1.0 0.7% 0.2% -4.5% 0.2% 3.1% 0.1% 0.7% 0.2%
4.0 3.8% -1.1% -6.0% 0.2% 6.7% -0.7% -0.9% -0.1%

0.50 0.5 0.5 -1.8% -1.1% -4.8% -2.6% -1.0% -0.6% -1.0% -0.7%
1.0 1.9% 0.1% -6.0% -3.8% 7.0% 2.8% 0.6% -0.6%
4.0 2.5% -0.4% -8.9% -6.2% 68.4% 39.0% 4.5% 1.8%

1.0 0.5 0.5% -0.1% -2.2% -0.7% 1.1% 0.1% 0.9% 0.0%
1.0 0.7% -1.4% -4.3% -2.7% 1.7% -0.9% -0.6% -1.8%
4.0 8.6% 1.7% -7.7% -3.5% 35.6% 11.3% 5.4% 0.2%

2.0 0.5 -0.9% 0.1% -1.4% 0.0% 2.6% 0.7% -0.9% 0.1%
1.0 1.2% -0.2% 0.7% -0.3% 1.2% -0.2% 1.2% -0.2%
4.0 5.5% 1.2% -4.5% -0.4% 2.9% 0.8% -2.1% -0.1%

0.75 0.5 0.5 -0.0% -2.8% -1.8% -5.7% 10.6% 1.0% 1.2% -2.6%
1.0 1.6% 0.6% -6.1% -4.4% 4.4% 6.0% -0.3% 0.2%
4.0 5.2% -0.9% -13.0% -4.5% 73.6% 31.7% 5.0% 2.1%

1.0 0.5 0.9% -0.3% 0.9% -2.9% 3.9% 1.8% 1.4% -0.2%
1.0 -2.4% -1.3% -4.2% -4.6% -3.2% 1.2% -3.6% -1.6%
4.0 4.5% -0.9% -5.2% -4.7% 7.4% 13.7% -1.0% 0.0%

2.0 0.5 0.2% 0.6% 0.1% -1.1% 0.5% 1.7% 0.2% 0.6%
1.0 -0.1% -0.2% -0.2% -1.9% 0.1% 0.9% -0.1% -0.2%
4.0 -3.4% 1.3% 0.4% -2.8% -1.9% 2.4% 0.0% -0.9%

average 0.5 0.7% 2.3% 2.3% 0.8%
relative 1.0 1.0% 3.1% 2.9% 0.9%
errors 4.0 2.6% 4.8% 22.2% 1.7%

Table 6.7: Relative errors of the mean queue lengths for the traffic-splitting network
with c2

s,1 = 0.5



110 6 Performance of FiFiQueues

FiFiQueues Em EC MinAPH
p λext c2

ext re(N2) re(N3) re(N2) re(N3) re(N2) re(N3) re(N2) re(N3)

0.25 0.5 0.5 1.5% -0.5% -2.3% -0.7% 9.1% 1.1% 2.5% 1.0%
1.0 -3.0% -1.7% -9.0% -3.1% -1.6% 0.3% -2.8% -0.6%
4.0 -1.1% -3.2% -6.3% -8.6% 42.5% 26.8% 1.4% -1.8%

1.0 0.5 -0.9% 0.1% -5.6% -0.0% 6.7% 0.4% -0.2% 0.1%
1.0 -1.5% -0.5% -5.5% -0.4% 1.4% 0.1% 0.7% -0.2%
4.0 -3.9% 0.1% -9.1% -0.1% 24.7% 0.9% -0.2% 0.2%

2.0 0.5 -3.0% -0.4% -5.1% -0.5% 9.0% -1.8% 0.6% -0.7%
1.0 -3.0% -0.7% -5.1% -0.8% 0.6% -2.0% 0.6% -1.0%
4.0 -3.6% 0.1% -5.9% 0.0% 0.7% -1.7% 0.7% -0.3%

0.50 0.5 0.5 -2.8% -1.2% -6.8% -3.0% 0.9% 0.9% -0.7% -0.0%
1.0 -2.8% -3.2% -10.6% -6.4% -0.1% -1.5% -2.0% -2.5%
4.0 -6.5% -5.0% -16.1% -9.3% 54.9% 33.4% -3.5% -1.7%

1.0 0.5 -0.7% 1.6% -3.5% 0.9% 4.1% 3.6% 0.0% 1.9%
1.0 -3.6% -3.3% -3.7% -3.0% 4.5% -0.0% -0.2% -1.9%
4.0 -6.2% -2.1% -12.0% -3.1% 23.6% 10.3% -2.2% -0.2%

2.0 0.5 -1.1% -0.7% 0.6% -0.5% 2.2% 0.0% 0.9% -0.4%
1.0 -0.7% -0.0% 1.0% 0.1% 3.0% 0.8% 1.4% 0.3%
4.0 -1.6% -0.6% 0.7% -0.2% 6.0% 1.4% 2.0% 0.2%

0.75 0.5 0.5 -4.2% -1.5% -5.9% -5.1% -0.9% 3.3% -0.9% -0.9%
1.0 -4.4% 1.4% -9.8% -3.8% -0.7% 2.5% -2.7% 1.7%
4.0 -7.4% -7.0% -21.5% -9.8% 53.9% 24.3% -5.3% -3.5%

1.0 0.5 3.7% 0.4% 3.1% -1.6% 4.7% 4.8% 3.8% 1.0%
1.0 -0.7% -2.8% 1.1% -4.1% 2.1% -0.8% 1.3% -1.2%
4.0 -0.8% -4.6% -1.6% -5.6% 3.5% 13.4% -0.4% -1.0%

2.0 0.5 -0.8% -2.4% -1.2% -2.3% -2.9% 3.7% -1.3% -0.2%
1.0 -1.1% -0.5% -1.6% -0.4% -3.4% 1.8% -1.7% 1.7%
4.0 0.5% -2.6% 0.1% -2.4% -3.5% 0.2% -0.3% 0.2%

average 0.5 1.5% 2.7% 3.3% 1.0%
relative 1.0 1.9% 3.9% 1.5% 1.4%
errors 4.0 3.2% 6.2% 18.1% 1.4%

Table 6.8: Relative errors of the mean queue lengths for the traffic-splitting network
with c2

s,1 = 2.0



6.3 FiFiQueues with three-moment descriptors 111

c2
ext method re(N1) re(N2) re(N3)
1.0 FiFiQueues 0.0% -0.4% 1.5%

Em -2.3% 0.4% 3.1%
EC -2.2% 0.2% 2.8%

MinAPH -2.3% 0.4% 3.0%
4.0 FiFiQueues -0.4% 4.4% -13.8%

Em -3.2% -8.9% -12.7%
EC -9.5% -3.8% -15.6%

MinAPH -3.8% -6.0% -12.2%

Table 6.9: Results for the queueing network with feedback and three-moment de-
scriptors

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100  150  200  250  300

m
ea

n 
re

sp
on

se
 ti

m
e 

[m
s]

request rate [1/s]

FiFiQueues
QN simulation

MinAPH

Figure 6.22: Mean response time as function of the request rate for the server group



112 6 Performance of FiFiQueues

6.4 Summary and conclusions

In this chapter, we have evaluated the performance of the FiFiQueues algorithm and
its extension to three-moment traffic descriptors. Our experiments have shown that
FiFiQueues provides very good results for important performance measures, like
mean queue length, if the involved arrival times in the queueing network are hypo-
exponentially or nearly (negative-)exponentially distributed. In such situations, we
can generally expect relative errors less than 5%, even if the network has a complex
structure. In case of hyper-exponential arrival processes, especially in queueing
networks with feedback, relative errors up to 10%, rarely up to 20%, have been
observed.

We have also studied the analysis of queueing networks with three-moment de-
scriptors. The results show that the quality of the analysis strongly depend on the
PH-fitting algorithm. The best results are obtained by the fitting algorithm using
Minimal Acyclic PH distributions. However, in our experiments, the three-moment
descriptors have not significantly improved the results for queueing networks with
feedback in comparison to the two-moment descriptors used by FiFiQueues. Since
three-moment descriptors considerably increase the runtime of the analysis, we cur-
rently refrain from using them in FiFiQueues.



Chapter 7

Closed Queueing Networks

Although most of this thesis concerns open queueing networks, many interesting
systems can be elegantly modeled by closed networks. However, the progress in
the analysis of closed networks has been much slower than for open networks. One
reason for this is the fact that the bounded number of customers in a closed system
prevents an intuitive decomposition.

Two popular examples illustrate the importance of closed network models. In
the classical example shown in Figure 7.1 (adapted from [86]), a given number u
of users share the CPU and some peripherals of a computer system. The users are
modeled as jobs in the network and they continuously switch between “thinking”
(at the u terminals) and “waiting” for the CPU and the peripherals. Closed network
can also be used to model systems where the number of jobs is constant in the sense
that a source creates a new job as soon as an old job has left the system. A popular
example for such a scenario is the window-based flow control as implemented in
TCP/IP. With this kind of flow control the number of jobs in the network with
outstanding acknowledgment from the receiver is limited by the window size w. In
the long run the average number of jobs in the system is equal to w. Such systems
can be modeled by a closed network with a fixed number of jobs w.

In this chapter we present an approach that allows the analysis of closed queueing
networks by decomposition. We achieve this by approximating such a closed queue-
ing network by an open queueing network. The chapter is structured as follows.
Section 7.1 gives a short overview of existing solution methods. We present our
decomposition approach for closed networks in Section 7.2. In Sections 7.3 and 7.4
we describe an implementation of the approach and give some performance results.
The chapter is summarized in Section 7.5.

113



114 7 Closed Queueing Networks

terminals

Peripherals

CPU

u

Figure 7.1: A time-sharing system as closed queueing network

7.1 Existing analysis methods

Gordon-Newell queueing networks

Gordon-Newell queueing networks (GNQN) [38] consist of n infinite M|M|1-FCFS
queues with Markovian routing and no external arrivals nor departures. The con-
stant number of jobs in the network is given by q. Since q is finite, it is possible to
construct and to solve the underlying (finite) CTMC of the network. Such a direct
solution is only feasible for small networks since the number of states in the CTMC
suffers from the state space explosion phenomenon. In contrast, the convolution al-
gorithm [19] significantly decreases the complexity of the CTMC solution to O(n ·q)
in time and to O(q) in space by providing a recursive computation scheme.

The Mean Value analysis (MVA) [95] also avoids the direct solution of the
CTMC. It is able to directly provide the measures of interest like mean queue length,
etc., by using the so-called arrival-theorem [67, 107]. Again, the result is a recursive
procedure with a complexity similar to the convolution algorithm: O(n · q) in time
and O(n) in space. Both methods provide exact results for GNQN. Various approx-
imation methods have been developed for large values of q and n [81, 106, 117].

BCMP networks

The class of BCMP networks is the best-known class of mixed open and closed
queueing networks with a product-form solution [8]. It allows routing based on job
classes where each job class may either follow a closed or an open routing chain. All
queueing stations can have load-dependent service rates and belong to one of the fol-
lowing types: M|M|m-FCFS, M|Cox|1 with processor sharing scheduling, M|Cox|∞,
or M|Cox|1-LCFS with preemption.

BCMP networks can be solved by extended versions of the convolution algorithm
and the MVA method [60]. However, they are much more complex than in the case
of GNQNs. For example, the time complexity of the convolution method becomes
O(n · r · ∏r

i=1(qi + 1)) where r is the number of classes with closed routes and qi is
the population size of class i.



7.1 Existing analysis methods 115

The “functional approach”

This approximate approach [15] assumes that there exists a non-decreasing function
fi for each station i of a closed queueing network with

E[Ni] = fi(Xi), (7.1)

where Xi is the throughput (or the utilization) of station i. Note that in a closed
network with infinite queues, Xi can be expressed in terms of the throughput X of
one reference station:

Xi = ViX, (7.2)

where Vi is the so-called visit-ratio of station i. Since the population size q is constant
we have

∑n
i=1 E[Ni] = q which can be rewritten as

n∑

i=1

fi(Xi) =
n∑

i=1

fi(ViX) = q (7.3)

using Equations (7.1) and (7.2). As can be seen, this equation is of the form F (X) =
q and can be solved by numerical methods (for example using a Newton-iteration).
Once X is known, the other measures of interest can be computed.

Clearly, the key point is to know the expressions fi(Xi) for the queueing stations
that occur in the network. Approximations of such functions can be found for the
four types of queues of the BCMP approach and also for queues of type M|G|m-
FCFS.

MEM for queueing networks

The authors of [62] have proposed a method for the analysis of arbitrary queueing
networks with multiple servers and repetitive-service blocking (see Section 2.2.2)
using the Maximum Entropy Method (MEM). The idea of MEM is to find the
solution of the model that maximizes the entropy of the system under the condition
that only the information given by the model specification is used.

The analyzed network may be open or closed and consists of n finite multiple-
server queues of type GE|GE|m|K ′; K where jobs can only leave the queue if the
number of jobs in the queueing station is larger than K ′. The complexity of the
method is quite high. The solution algorithm consists of two stages that use iterative
procedures. Stage 1 has a time order of about O(c1n

6) in case all queues may block
(i.e., their queueing capacity is smaller than the population size q). The complexity
of stage 2 is O(c2n

2q2), where c1 and c2 are the number of iterations in the successive
stages.

Many other methods have been developed for the analysis of some special closed
networks containing finite queues. They only support very restricted network topolo-
gies, like two-queue tandem networks, etc. We refer to [86] for an overview.



116 7 Closed Queueing Networks

dep

Closed network

arr
Open network

Figure 7.2: Closed network example and its corresponding open network obtained
by cutting

7.2 Analysis of closed queueing networks by de-

composition

We have presented in the previous chapters some very efficient methods for open
queueing networks that follow the decomposition approach described in Chapter 2.
Now, one may ask whether it is possible to also bring the efficiency and the flexibility
of the decomposition approach to the class of closed networks. In this section we will
describe a general procedure that is able to achieve this for certain network classes.

The idea is to transform a closed network into an open one by cutting one of
its connections. This is shown for an example network in Figure 7.2. For the thus-
obtained open network we have to find an external arrival descriptor arr in which

1. the external arrival descriptor arr is equal to the (resulting) descriptor dep of
the traffic that leaves the network, and

2. the number of jobs in the network is equal to the specified population size q
of the closed network.

We aim to find arr by applying the iteration procedure shown in Figure 7.3 to the
closed network. The functions err and err′ are appropriate error functions and ε
resp. δ the corresponding error bounds.

To implement this procedure we have to address two problems. First, at which
connection should we place the cut in order to transform the closed network into an
open one. Does its location influence the results? Secondly, how should we choose a
new arrival descriptor arr inside the iteration? A possible solution of these problems
is given in the next section where we describe an implementation of our approach



7.3 Implementation with FiFiQueues 117

1 cut closed network and obtain open network
2 initialize arr
3 loop
4 analyze open QN and obtain external departure descriptor dep
5 if err(arr, dep) > ε or err′(

∑n
i=1 E[Ni], q) > δ then

6 choose new arr based on the results of the network analysis
7 else
8 stop iteration
9 end

10 end

Figure 7.3: Analysis procedure for closed networks

that is based on the FiFiQueues method for open queueing networks. But we can
already make the following observations:

• In Section 2.2.2 we have explained that the decomposition approach only sup-
ports communication blocking because no information about free queueing
capacities can be exchanged between the queues. Since we are interested in
closed queueing networks with fixed population size, we have to forbid job dis-
carding. Hence, we will assume in the following that all queues have infinite
capacity.

• Although the sketched procedure looks very simple its implementation is criti-
cal for complex network classes and traffic descriptors. It is unknown whether
the iteration given above always terminates and whether more than one cor-
rect solution exist for a given closed network. Thus, the approach suffers from
the same problem as other solution methods like MEM [62]. However, in our
experiments (see below) it always terminated.

• The stopping condition err′(
∑n

i=1 E[Ni], q) > δ is only an approximation to
the original condition that the number of jobs in the closed network is equal
to q. Except for the deterministic case, variations in the arrival and service
processes may cause that the number of jobs in the open network vary around
q, something that is not the case in a true closed queueing network.

7.3 Implementation with FiFiQueues

In this section we describe our implementation of the iteration scheme for closed
queueing networks. We have chosen FiFiQueues (see Section 5.3) with its two-
moment traffic descriptors as analysis method for the generated open networks.
We have called the resulting analysis method FiFiQueues Non-Blocking Closed



118 7 Closed Queueing Networks

(FiFiQueues-NBC). A first implementation of FiFiQueues-NBC has been presented
in [94]. In the following sections we discuss an, especially for small q, improved
implementation and give a deeper insight into its performance.

The model class of FiFiQueues-NBC is the model class of the original FiFiQueues
adapted to closed networks without external arrivals and departures. Of course, one
would wish to implement the method with more sophisticated descriptors but we
have found that the two-moment traffic descriptors have special properties that allow
a stable implementation of the iteration. We will describe them in the following.
It is up to further research to investigate how more complex descriptors could be
integrated.

First adaption

At the moment we ignore the question of the cut location and assume that the
closed network is cut at an arbitrary connection. A first adaption of the iteration
procedure to the two-moment descriptors looks as follows:

1 λarr,low := 0 ; λarr,high := h
2 c2

dep := 1
3 do
4 λarr := 1

2
· (λarr,high + λarr,low) ; c2

arr := c2
dep

5 call FiFiQueues and obtain external departure descriptor (λdep, c
2
dep)

6 if
∑n

i=1 E[Ni] > q or network is unstable then
7 λarr,high := λarr

8 else
9 λarr,low := λarr

10 end
11 while err(λarr,low, λarr,high) > ε or err′(

∑n
i=1 E[Ni], q) > δ

The algorithm is based on two assumptions. First, we assume that the number of
jobs in the network q can be reached by an interval splitting iteration with the arrival
rate λarr. The argument is similar to the one used in the functional approach (see
Section 7.1). The initial value h in line 1 has to be set to an appropriate large value
(a too large initial value only slows down the convergence — overloaded networks
are avoided by the test in line 6). Note that we do not need to test λarr and λdep

for equality since this is always fulfilled in networks without losses.

The second assumption concerns the squared coefficient of variation c2. We
have observed in the past that large queueing networks tend to “emboss” a network
specific value for c2 to the traffic stream. This means that the c2 value of a traffic
stream seems to depend only on the service processes and not on the c2 value of the
external arrival streams if the traffic stream has passed a sufficiently large number of
queueing stations (provided that the utilization of the queueing stations is reasonably



7.3 Implementation with FiFiQueues 119

4

53

2

1

µ=1.5

µ=0.1

µ=0.5

µ=1.25

µ=1.0

0.25

0.7

0.05

Figure 7.4: Example Gordon-Newell network

high). This is the reason why we have chosen an arbitrary initial value for c2
dep in

line 2 and simply assign c2
dep to c2

arr in line 4.

We test the algorithm at the example network shown in Figure 7.4. The fig-
ure shows the routing probabilities and the service rates of each node. All service
processes are assumed to have c2

service = 1, hence the network is a GNQN. The
numerical results for q = 50 are shown in Table 7.1. The column labeled “decom-
position” contains the results obtained by the decomposition approach by cutting
the connection from node 5 to node 1. The column “MVA” shows the results of
the MVA method (the c2

N values have been calculated by simulation with relative
95%-confidence intervals smaller than 3%). Finally, the last column displays the
error between the decomposition approach and the MVA/simulation relative to the
latter.

The results are acceptable but they are a little bit disappointing. Remember that
the corresponding open queueing network of the GNQN is a Jackson network which
is exactly solvable by FiFiQueues. That means that all the relative errors are caused
by our closed-network algorithm itself. The reason for the errors can be found when
looking at the results of node 5 which is clearly the bottleneck of the network. Nearly
all jobs in the network are waiting in the queue of this node while they quickly travel
through the other queueing stations. As a consequence, the simulation result for c2

N

of node 5 (in the column titled “MVA”) is near to 0 — we have a quite deterministic
queue length distribution. In contrast, the decomposition approach provides a quite
different value of 1.02 for c2

N . This indicates that substantially more, or less than
the required 50 jobs can be present in the corresponding open network.

Improved algorithm

We can better approach the behavior of the closed network at the bottleneck by the
following modification of our algorithm [94]. We place the cut directly in front of
the bottleneck, for example at the connection between node 2 and 5, and transform



120 7 Closed Queueing Networks

node decomposition MVA rel. error
ρ 0.65 0.67 -3.0%

1 E[N ] 1.88 2 -6.0%
c2
N 1.53 1.51 1.3%
ρ 0.55 0.56 -1.8%

2 E[N ] 1.21 1.27 -4.7%
c2
N 1.83 1.8 1.6%
ρ 0.49 0.5 -2.0%

3 E[N ] 0.96 1 -4.0%
c2
N 2.04 2.03 0.5%
ρ 0.49 0.5 -2.0%

4 E[N ] 0.96 1 -4.0%
c2
N 2.04 1.96 4.1%
ρ 0.98 1.0 -2.0%

5 E[N ] 45.1 44.7 0.9%
c2
N 1.02 0.01 10100%

Table 7.1: Numerical results for the example GNQN

node 5 into a queueing station with finite capacity q. When the bottleneck node
experiences a high load and, hence, most of the jobs are waiting in the queue of
the bottleneck node, this finite capacity limits the maximum number of jobs in
the network and leads to a more deterministic queue length distribution at the
bottleneck.

The complete modified algorithm for arbitrary network topologies is shown in
Figure 7.5. Our experiments have shown that we can select an arbitrary connection
to the bottleneck in line 2 if more than one connection exists. Similarly, if more
than one bottleneck exists, an arbitrary one is chosen in line 1. The bottleneck of a
closed queueing network with n queueing stations can be determined by solving the
traffic equations [46]:

Xj =
n∑

i=1

Xirij,

where Xj denotes the throughput through node j and rij is the routing probability
from node i to node j. The values of Xj can only be calculated relative to some
other Xi (i 6= j) since this system of equations is of rank n − 1. If we select node 1
as reference node we can restate the traffic equations as follows:

Vj =
n∑

i=1

Virij = V1r1j +
n∑

i=2

Virij = r1j +
n∑

i=2

Virij,

where the so-called visit ratio Vj = Xj/X1 expresses the throughput of node j
relative to node 1. This system of equations has a unique solution. In analogy



7.3 Implementation with FiFiQueues 121

1 Determine bottleneck node b of closed network
2 Cut connection to b and obtain open network
3 Limit capacity of b to q
4 λarr,low := 0 ; λarr,high := h
5 c2

dep := 1
6 do
7 λarr := 1

2
· (λarr,high + λarr,low) ; c2

arr := c2
dep

8 call FiFiQueues to obtain external departure descriptor (λdep, c
2
dep)

9 if
∑n

i=1 E[Ni] > q or network is unstable then
10 λarr,high := λarr

11 else
12 λarr,low := λarr

13 end
14 while err(λarr,low, λarr,high) > ε or err′(

∑n
i=1 E[Ni], q) > δ

Figure 7.5: Analysis procedure for closed networks based on FiFiQueues

to the utilization ρi in open queueing networks, we can now calculate the ratio
Di = Vi/µi for each node i. Then the bottleneck is the node i with the highest value
of Di.

Note that the initial value h of λarr,high (line 4) must be sufficiently high in
order to obtain a load of 1 at the bottleneck station. If the bottleneck has only one
incoming edge, h must be at least twice the service rate of the bottleneck due to the
factor of 1

2
in line 7. Our experiments suggest to use a slightly larger value of 2.5 in

order to compensate the losses at the station.

Table 7.2 states the results of the improved algorithm for the example GNQN.
This time the relative errors are much smaller. Note that the large relative error of
node 5’s c2

N is caused by the involved small absolute numbers. The other relative
errors are within the 95%-confidence intervals of the simulation.

Complexity

The improved algorithm consists of two iterations of which the step count is usually
not known in advance. The inner iteration is part of the FiFiQueues algorithm and
some of its properties have been discussed in Chapter 6. In each inner iteration
all queueing stations are analyzed with the complexities described in Section 5.3.8.
Note that only the bottleneck station is modeled as a finite queueing station (of
size q) and, hence, the time complexity of its analysis depends on the population q.
Concerning the outer iteration, we have observed that there is no direct dependency
on the population q (see Section 7.4.3 for a detailed example). Our experiments
have shown that even for large networks and populations the required number of
outer iterations usually stays below 30.



122 7 Closed Queueing Networks

node decomposition MVA rel. error
ρ 0.67 0.67 0.0%

1 E[N ] 2 2 0.0%
c2
N 1.5 1.51 -0.7%
ρ 0.56 0.56 0.0%

2 E[N ] 1.27 1.27 0.0%
c2
N 1.79 1.8 0.6%
ρ 0.5 0.5 0.0%

3 E[N ] 1 1 0.0%
c2
N 2 2.03 -1.5%
ρ 0.5 0.5 0.0%

4 E[N ] 1 1 0.0%
c2
N 2 1.96 2.0%
ρ 1 1 0.0%

5 E[N ] 44.7 44.7 0.0%
c2
N 0.02 0.01 100%

Table 7.2: Numerical results of the improved algorithm for the example GNQN

In addition to the iterations, the improved algorithm has to identify the bot-
tleneck of the network. The solution of the system of traffic equations has a time
complexity of O(n3) if a direct solution method like Gaussian elimination is em-
ployed, but reduces to O(c · n) in practice when a sparse storage and an iterative
solver such as Gauss-Seidel are used (where c is the average number of outgoing
connections per station).

7.4 Validation

In this section we examine the performance of our decomposition-based method for
closed queueing networks, using four typical examples.

7.4.1 Queues in series

We start with a simple closed network that consists of three queues in series as
shown in Figure 7.6 [94]. All service times are hyper-exponentially distributed with
c2
service = 2. This network does not require any traffic merging or splitting, so that

the corresponding open network can be analyzed by FiFiQueues without too much
error.

Table 7.3 gives the results of the decomposition method in comparison to sim-
ulation for different service rates. The population size was set to 20. Again, the
last column gives the relative errors. All relative 95%-confidence intervals of the



7.4 Validation 123

2 31

µ µµ 2 31

Figure 7.6: Three queues in series

simulation were below 1%.

The table shows that the algorithm does best when a distinct bottleneck is
present in the network, i.e., in case µ1 = µ3 = 1, µ2 = 0.5. Then our “trick” with
the finite queue provides very good results. Even when two stations have similar
service rates (µ1 = 1, µ2 = 2, µ3 = 1.1), good results are obtained. The errors are,
however, larger in cases where more than one bottleneck exist. Since the algorithm
can select only one node as bottleneck it is not able to distribute the jobs evenly
over all nodes in case all service rates are equal (µ1 = µ2 = µ3 = 1). The worst (but
still okay) results are obtained when the network consists of two bottlenecks and one
fast service station (µ1 = µ3 = 1, µ2 = 2); again, the algorithm can select only one
node as bottleneck which results in different average queue lengths for node 1 and
node 3 whereas the simulation indicates that both queue lengths should be equal.

The next experiment uses the same queueing network with µ1 = µ3 = 1, µ2 = 0.5,
but this time the population is varied between 5 and 60. The results are shown in
Table 7.4. As can be seen, the relative errors are larger for small population sizes.
Similar results have been obtained for other networks. The explanation for this
behavior is that the small number of jobs in the network do form traffic processes
that are clearly not renewal processes. This fact contradicts with FiFiQueues’ as-
sumptions about the traffic processes and consequently, bad results are returned.

7.4.2 Queues with merging and splitting

With our next two networks we test how well the algorithm can handle more complex
topologies with traffic merging and splitting. The networks are shown in Figure 7.7,
respectively Figure 7.8. The obtained results for q = 20 can be seen in Table 7.5,
respectively Table 7.6.

These examples illustrate that the algorithm for closed networks can only be as
good as the underlying method for the open networks. Although q is not very small
here, the errors are larger than in the case of three queues in series (see previous
section) because FiFiQueues employs approximations to perform the traffic merging
and splitting.



124 7 Closed Queueing Networks

One distinct bottleneck: µ1 = µ3 = 1, µ2 = 0.5

node decomposition simulation rel. error
1 ρ 0.5 0.5 0.0%

E[N ] 1.5 1.55 -3.2%
2 ρ 1.0 1.0 0.0%

E[N ] 17.0 17.0 0.0%
3 ρ 0.5 0.5 0.0%

E[N ] 1.5 1.49 0.7%

One bottleneck: µ1 = 1, µ2 = 2, µ3 = 1.1

node decomposition simulation rel. error
1 ρ 0.95 0.95 0.0%

E[N ] 11.90 11.17 6.5%
2 ρ 0.48 0.47 2.1%

E[N ] 1.34 1.32 1.5%
3 ρ 0.84 0.86 -2.3%

E[N ] 7.76 7.51 3.3%

Three bottlenecks: µ1 = µ2 = µ3 = 1

node decomposition simulation rel. error
1 ρ 0.81 0.85 -4.7%

E[N ] 5.98 6.64 -9.9%
2 ρ 0.86 0.85 1.2%

E[N ] 7.45 6.66 11.9%
3 ρ 0.83 0.85 -2.4%

E[N ] 6.57 6.69 -1.8%

Two bottlenecks: µ1 = µ3 = 1, µ2 = 2

node decomposition simulation rel. error
1 ρ 0.88 0.91 -3.3%

E[N ] 8.25 9.36 -11.9%
2 ρ 0.44 0.45 -2.2%

E[N ] 1.12 1.22 -8.2%
3 ρ 0.93 0.91 -1.1%

E[N ] 10.63 9.42 12.8%

Table 7.3: Numerical results for three queues in series for different service rates



7.4 Validation 125

q = 5

node decomposition simulation rel. error
1 ρ 0.41 0.44 -6.8%

E[N ] 0.84 0.93 -9.7%
2 ρ 0.89 0.89 0.0%

E[N ] 3.27 3.14 4.1%
3 ρ 0.43 0.44 -2.3%

E[N ] 0.89 0.92 -3.3%

q = 10

node decomposition simulation rel. error
1 ρ 0.48 0.49 -2.0%

E[N ] 1.28 1.35 -5.2%
2 ρ 0.97 0.97 0.0%

E[N ] 7.42 7.34 1.1%
3 ρ 0.48 0.49 -2.0%

E[N ] 1.30 1.31 -0.8%

q = 30

node decomposition simulation rel. error
1 ρ 0.5 0.5 0.0%

E[N ] 1.50 1.57 -4.5%
2 ρ 1.0 1.0 0.0%

E[N ] 27.0 26.9 0.4%
3 ρ 0.5 0.5 0.0%

E[N ] 1.50 1.50 0.0%

q = 60

node decomposition simulation rel. error
1 ρ 0.5 0.5 0.0%

E[N ] 1.50 1.57 -4.5%
2 ρ 1.0 1.0 0.0%

E[N ] 57.0 56.9 0.2%
3 ρ 0.5 0.5 0.0%

E[N ] 1.51 1.50 0.7%

Table 7.4: Numerical results for three queues in series for various population sizes



126 7 Closed Queueing Networks

0.5

0.5

c²=0.5

c²=2.0

c²=2.0

c²=0.5

µ=0.8

µ=0.75

µ=0.3

µ=1.0

4

3

2

1

Figure 7.7: Network 1 with merging and splitting

node decomposition simulation rel. error
1 E[N ] 1.20 1.17 2.6%
2 E[N ] 15.30 14.73 3.9%
3 E[N ] 0.76 0.76 0.0%
4 E[N ] 2.78 3.34 -16.8%

Table 7.5: Numerical results for network 1 with merging and splitting

7.4.3 Complex network example

Finally, we consider the more complex test network that is shown in Figure 7.9.
The results for populations between 5 and 60 can be found in Table 7.7 and 7.8. As
observed before in Section 7.4.1, the relative errors are largest for small population
sizes.

It is worth to emphasize the fact the algorithm provides the best results for large
populations, i.e., when the direct solution of the CTMC underlying the network
is not easy due to the size of the CTMC. The number of states s of the CTMC

0.5

c²=1.0
0.5

c²=4.0

µ=1.0

c²=0.25

3

2

µ=1.0

µ=1.8

1

Figure 7.8: Network 2 with merging and splitting



7.4 Validation 127

node decomposition simulation rel. error
1 E[N ] 6.40 6.76 -5.3%
2 E[N ] 3.64 3.66 -0.6%
3 E[N ] 9.96 9.58 4.0%

Table 7.6: Numerical results for network 2 with merging and splitting

1 2

µ=1.3

4

5

3

µ=1.0 µ=1.0

6

µ=0.5
c²=1.0

µ=1.0

µ=1.5

c²=0.5

c²=2.0

c²=2.0 c²=0.5c²=2.0

0.4

0.7

0.6

0.3

Figure 7.9: Complex closed network

underlying a Gordon-Newell network is given by

s =

(
n + q − 1

n − 1

)
,

where n is the number of queueing stations and q is the population size [46]. For
networks with phase-type service time distributions, the number of states for large q
is approximately given by

s ≈
(

n + q − 1
n − 1

)
·

n∏

i=1

pi,

where pi is the number of phases of the service time distribution of station i. Hence,
the underlying CTMC of the complex network example with n = 6 and q = 30
would comprise approximately 2 ·108 states, whereas the largest CTMC constructed
by FiFiQueues during the analysis of the same network has around 240 states.

Table 7.9 shows the runtimes (in seconds) of the FiFiQueues algorithm and of
the discrete-event simulation for the evaluation of the network with different popu-
lations. For FiFiQueues, we have recorded the runtimes for two different implemen-
tations of the finite queue analysis. As expected, the runtime of the implementation
based on the Gauss-Seidel iteration quickly increases with the population because
the bottleneck station is modeled as a finite capacity station. The runtime of the
implementation based on the Cyclic Reduction method (see Section 3.4.3) is mostly



128 7 Closed Queueing Networks

q = 5

node decomposition simulation rel. error
1 ρ 0.65 0.69 -5.8%

E[N ] 1.28 1.27 0.8%
2 ρ 0.34 0.36 -5.6%

E[N ] 0.54 0.57 -5.3%
3 ρ 0.33 0.36 -8.3%

E[N ] 0.56 0.59 -5.1%
4 ρ 0.71 0.74 -4.1%

E[N ] 1.65 1.57 5.1%
5 ρ 0.34 0.36 -5.6%

E[N ] 0.54 0.56 -3.6%
6 ρ 0.30 0.33 -9.1%

E[N ] 0.43 0.45 -4.4%

q = 10

node decomposition simulation rel. error
1 ρ 0.82 0.85 -3.5%

E[N ] 2.69 2.71 -0.7%
2 ρ 0.42 0.44 -4.5%

E[N ] 0.84 0.87 -3.4%
3 ρ 0.42 0.44 -4.5%

E[N ] 0.90 0.94 -4.2%
4 ρ 0.88 0.91 -3.2%

E[N ] 4.14 3.98 4.0%
5 ρ 0.43 0.44 -2.3%

E[N ] 0.82 0.85 -3.5%
6 ρ 0.38 0.40 -5.0%

E[N ] 0.62 0.65 -4.6%

Table 7.7: Numerical results for the complex network (q = 5 and q = 10)



7.4 Validation 129

q = 30

node decomposition simulation rel. error
1 ρ 0.93 0.93 0.0%

E[N ] 6.87 7.11 -3.4%
2 ρ 0.48 0.49 -2.0%

E[N ] 1.07 1.10 -2.7%
3 ρ 0.48 0.49 -2.0%

E[N ] 1.18 1.21 -2.5%
4 ρ 0.99 1.00 -1.0%

E[N ] 19.10 18.76 -1.8%
5 ρ 0.48 0.47 -2.1%

E[N ] 1.04 1.05 -1.0%
6 ρ 0.43 0.44 -2.3%

E[N ] 0.77 0.77 0.0%

q = 60

node decomposition simulation rel. error
1 ρ 0.94 0.94 0.0%

E[N ] 8.47 8.32 1.8%
2 ρ 0.49 0.49 0.0%

E[N ] 1.10 1.10 0.0%
3 ρ 0.49 0.49 0.0%

E[N ] 1.22 1.23 -0.8%
4 ρ 1.00 1.00 0.0%

E[N ] 47.36 47.48 -0.3%
5 ρ 0.49 0.49 0.0%

E[N ] 1.07 1.07 0.0%
6 ρ 0.44 0.44 0.0%

E[N ] 0.79 0.79 0.0%

Table 7.8: Numerical results for the complex network (q = 30 and q = 60)



130 7 Closed Queueing Networks

FiFiQueues
q Gauss-Seidel Cyclic Red. simulation

10 1 1 16
30 3 3 16
60 10 7 16
90 20 8 16

120 33 8 16
150 50 8 16

Table 7.9: Runtimes (in seconds) for the evaluation of the complex network

dominated by the administration overhead of the outer and inner iteration and hence
only shows a weak dependency on the population. This method is much faster than
the Gauss-Seidel iteration and the simulation. The latter exhibits nearly constant
runtimes.

We finally comment on the convergence behavior of our new algorithm. For that
purpose, Figure 7.10 shows for q = 30 how the algorithm modifies the arrival rate for
the open network in each (outer) iteration in order to reach the desired number of
jobs. The interval splitting algorithm first lowers the arrival rate to a fourth of the
initial value, then the arrival rate is slowly increased (until iteration 6). The clear
“dip” in the curves, hence, is an artifact of the interval splitting method; a more
advanced method could probably avoid it. In this example the stop condition has
been fulfilled after 14 iterations but we can see that a good approximation is already
reached after about 10. Figure 7.11 again shows the number of jobs as function of
the iteration number, this time for different population sizes. No direct dependency
between the population and the number of required iterations can be observed.

7.5 Summary and conclusions

In this chapter we have proposed a simple decomposition-based method for the
analysis of closed queueing networks. It is especially attractive because it is founded
on existing analysis methods for open networks. Our implementation with Fi-
FiQueues suggests that the method is able to provide useful results for a broad
class of closed networks. Additionally, the method is very fast even for large net-
works and populations. But the experiments have also shown that

(a) it works best when the network contains exactly one bottleneck, and that

(b) it can only be as good as the method employed for the analysis of the generated
open networks.

Concerning (b), it would be desirable to use more sophisticated traffic descriptors
than the two-moment descriptors of FiFiQueues. More research has to be done in



7.5 Summary and conclusions 131

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2  4  6  8  10  12  14
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
arrival rate

number of jobs

Figure 7.10: Arrival rate and number of jobs as function of the iteration number
(q = 30)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2  4  6  8  10  12  14  16

q=5
q=10
q=30
q=60

Figure 7.11: Number of jobs as function of the iteration number and the population



132 7 Closed Queueing Networks

this area but it is to be expected that this requires a procedure for the estimation
of the correct arrival descriptor that is much more complex than the one presented
in Figure 7.5.



Chapter 8

Tool Support

The FiFiQueues approach and its extension to closed networks have proven to be
stable and reliable enough for end users. In this chapter we present an integrated
tool environment that allows an easy access to the underlying algorithms. The tool
also contains a simulator for the steady-state simulation of queueing networks.

We give a short description of this environment, which we regard as the refer-
ence implementation of the FiFiQueues approach, in Section 8.1. Additionally, we
briefly discuss a port of FiFiQueues into the Möbius Framework in Section 8.2. Two
optimizations for the simulation of queueing networks are discussed in Section 8.3.
Finally, we give a summary of the chapter in Section 8.4.

8.1 The FiFiQueues network designer

The FiFiQueues network designer consists of a graphical user interface written in
Java, the numerical analysis module, and the simulation module. The latter two
have been written in C++.

The graphical user interface

The graphical user interface allows to construct, edit and study open and closed
queueing networks of arbitrary topology. The networks can be evaluated by numer-
ical analysis or by simulation. Figure 8.1 shows a screenshot of the main window.
The lower part of the window shows the edited network and the properties of the
currently selected node. The upper part displays the results of the numerical analy-
sis (left section) and the results of the simulation (middle section, including the 95%
confidence intervals) as well as a comparison of both methods (right section).

Every object in the network has properties that can be edited via the user inter-
face. Figure 8.2(a) shows the properties of a finite queueing station while the user
is selecting a service distribution. The global-properties panel (see Figure 8.2(b))

133



134 8 Tool Support

Figure 8.1: Main window of the graphical user interface

allows to control the length of the simulation and the parameters specific to closed
networks.

The user interface communicates with the numerical analyzer and the simulator
via text files. As an example, the network shown in the screenshot is translated into
the following textual description in order to evaluate it.

# Queue mapping

# 0 CPU

# 1 NIC

# 2 Disk

network_props

1 3 1 0 100000 20 50000 0 0 0.0

source_props

90.0 1.2 0 6

queue_props

1200.0 26.8 1 150 6 1 1 1

1401.0 26.8 1 150 6 1 1 1

64.0 26.8 1 150 6 1 1 1

counter_dest

-1

r

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0



8.2 Integrating FiFiQueues in the Möbius framework 135

(a) Properties of a network node (b) Global properties of the network

Figure 8.2: Property editor

0.5 0.5 0.0 0.0

b

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

The numerical analysis module

The numerical analysis module is the core of the implementation. It incorporates
the FiFiQueues algorithm (see Chapter 5) and the extension for closed queueing
networks as described in Chapter 7.

The simulation module

The simulation module offers the discrete-event simulation of open and closed queue-
ing networks. It is described in Section 8.3 and in Appendix B.

8.2 Integrating FiFiQueues in the Möbius

Framework

In [56] it is examined how the FiFiQueues algorithm can be integrated into the
Möbius framework. Möbius [23, 26] is a modeling software developed by the PER-
FORM research group which supports different modeling formalisms and solvers



136 8 Tool Support

Figure 8.3: Möbius’ connection editor (from [56])

while offering a common interface allowing tool modules to exchange information.
Using this interface it is possible to build and solve models out of components that
are based on different formalisms. Möbius allows to analyze composed models in two
different ways: (i) by generating and analyzing the complete flat state space of the
whole model, or (ii) by a fixed-point iteration, similarly to the iteration scheme of Fi-
FiQueues. Models that are intended for the latter analysis approach are constructed
with the connection editor (see Figure 8.3).

The integration of FiFiQueues required to extend the Möbius tool since it origi-
nally supports only finite state spaces. Möbius performs the network analysis using
variables and actions that are associated to the states of the (finite) state spaces of
the model components (the so-called atomic models). With infinite state spaces, a
much tighter connection between the variables and the atomic models is required
since the single states of the infinite state spaces cannot be explicitly constructed in
finite time. This is achieved by special reward functions that “tunnel” information
directly from the atomic model to the higher levels. Figure 8.4 sketches the resulting
communication between the tool levels.

8.3 Steady-state simulation of queueing networks

The simulator of the FiFiQueues network designer offers the discrete-event, steady-
state simulation of queueing networks. It is based on the method of independent
replications [92] since our experiments have shown that the most efficient method
to speed up simulation, without changing the simulator’s core as required in more



8.3 Steady-state simulation of queueing networks 137

using
calculates

Numerical Solver
Model

Reward Model

Solver ModelAtomic Model

indicates

FILE

writes reads

Special Reward
Library

asks for info

sends info

Figure 8.4: Special rewards in Möbius (from [56])

complex methods like rare event simulation [39, 112], is to simulate the replications
in parallel.

In this section, we will discuss two optimizations that are specific to the simula-
tion of queueing networks. First, we discuss the management of the future-event set
in Section 8.3.1. An approach to shorten the initial transient phase of the simulation
is presented in Section 8.3.2.

8.3.1 Managing the future-event set

The future-event set (FES) is one of the central components of discrete-event simula-
tions. When a component of the simulated model creates an event with a scheduled
time located in the future, this event has to be inserted into the FES. As soon as the
virtual clock of the simulation reaches the activation time associated with the event,
it is removed from the FES and scheduled for execution. Since the events stored in
the FES have to be sorted by activation time, every access to the FES may lead to
considerable CPU overhead.

Thus, it is not surprising that the implementation of the FES was an important
research topic in the area of discrete-event simulations. The simplest implementa-
tions are based on single and multiple doubly linked linear lists or on doubly linked
binary trees. Alternatives, like Henriksen’s approach, combine linear lists and bi-
nary trees to obtain better performance [36]. Today, sophisticated data structures
like Calendar Queues [17] provide nearly optimal results, i.e., O(1), at least for
non-distributed simulations.

In this thesis, we are only interested in simulation of queueing networks. Natu-
rally, this choice affects the characteristics of the FES. We discuss these character-
istics as well as a simple optimization to the FES management in the following. We
assume that our model to evaluate is an open queueing network with n queueing
stations. The usual notation is employed, e.g., E[Wi] stands for the mean waiting
time at queueing station i.



138 8 Tool Support

Characteristics of the FES for queueing networks

An open queuing network model contains only two sources of events for the FES:

1. Every external arrival process continuously holds an event in the FES. Usually,
this event represents the arrival of a job into the network. As soon as the event
has been processed (i.e., its activation time has been reached), a new event is
put into the FES for the next arrival.

2. Similarly, every busy service station continuously generates one event which
represents the end of service time.

Hence, the minimum FES size min(f) and the maximum FES size max(f) simply
are

min(f) = next, (8.1)

max(f) = next + n, (8.2)

where next is the number of external arrival processes. The mean number f̄t of events
in the FES over virtual simulation time is given by

f̄t = next +
n∑

i=1

ρi,

where ρi is the utilization of node i, i.e., the probability that node i is busy. For
FES implementation purposes we are interested in the FES size f̄ at insertion and
deletion times. It cannot be computed exactly but Equation (8.2) implies that even
queueing network models that are regarded as large today, i.e., n = 50, result in
very small max(f) compared to other simulation scenarios. From this fact we can
deduce that a FES implementation suitable for queueing networks should rely on
data structures with very small overhead if the goal is to outperform a simple linear
list implementation.

In an open queueing network, a job, after being generated by an external arrival
process, passes once or more through some of the network nodes and finally disap-
pears when it leaves the network. The birth of the job, as well as each time the job
is served by a node, will cause the simulation system to insert an event into the FES.
When the simulation stops the FES still contains some unprocessed events. In the
following, we will ignore those remaining events since their number can usually be
neglected when compared to the huge number of processed events. So, we assume
that the number of events inserted into the FES is (nearly) equal to the number of
processed events.

The mean number of events generated in a given time interval ∆t can be com-
puted as follows:



8.3 Steady-state simulation of queueing networks 139

1. Each external arrival process with arrival rate λext generates ∆t · λext jobs in
time interval ∆t, where each job leads to an event inserted into the FES.

2. Each node i in the network serves ∆t · µiρi jobs in time interval ∆t. If no
losses occur, this expression reduces to ∆t · λA,i. Again, each service causes a
new event in the FES.

Then the total number of FES insertion operations in ∆t is

∆t ·
(

next∑

i=1

λext,i +
n∑

i=1

µiρi

)
.

When losses are possible, the ρi are rarely known in advance, so this equation will
only give an approximation in this situation.

FES management

We stated that, due to the small size, any FES implementation that relies on too
complex data structures would be outperformed by a simple linear list implementa-
tion with linear search. A simple way to improve a straight linear search through
the list would be available if we would knew at least the average insertion position
in advance: we could decide at which end of the list the search should be started.
This would improve the performance even for small f̄ . Note that for this purpose
we are interested in the average normalized insertion position, i.e., the average of
the insertion position divided by the size of the FES at time of insertion. If it is
smaller than 0.5 we start at the head, otherwise the search is started at the tail of
the list.

If we assume that the nodes of the queueing network are independent, an esti-
mation of the insertion positions can be obtained by comparing the service rates of
the queueing stations. A station with large service rate generally has a higher prob-
ability to place new events more toward the tail (which represents the “present”) of
the FES. However, the correlations between the nodes are generally too strong to
provide useful results in practice. Hence, our implementation simply measures the
average insertion position for each node once after the warm-up phase and keeps it
till the end of the simulation. This assumes that there are no long-term changes
in the behavior of the model after the warm-up phase that influence the insertion
position.

Unfortunately, our experiments have shown that this approach does not provide
a noticeable speed-up when applied to general queueing networks. For example, all
the stations of the 9-nodes network introduced in Section 6.1.2 have very similar
normalized insertion positions near to 0.5. Interestingly, the optimization yields
the maximum possible speed-up for a model that is quite common: the multiplexer
(Figure 8.5). In this case the model consists of an external arrival process with high



140 8 Tool Support

master

slaves

Figure 8.5: Best case scenario for the FES optimization

component normalized
insertion position

external source 0.11
master station 0.18
slave station 1 0.61

. . .
slave station 7 0.61

Table 8.1: Average normalized insertion positions for the best case scenario

arrival rate (and, hence, low event generation interval) and several queueing stations
with service rates that are small compared to the external arrival rate.

We test this scenario with an external source with rate 6.3 and SCV 2.0. The
multiplexing master queueing station has a service rate of 9.0 and a service time SCV
of 0.5. This station evenly distributes the served jobs to seven slave queueing stations
with service rate 1 and SCV 0.5. Hence, the slave stations experience a load of 90%.
We can observe that one third of the events in the FES is generated by the external
source, one third is generated by the service process of the master station, and the
last third is caused by the slave queues. Because of the difference between the service
rates of the master station and the slave stations, quite distinct average normalized
insertion positions arise (see Table 8.1). Nevertheless, the measured speed-up of
the new FES management algorithm is low; the number of processed events per
second only increases by 2%-3% compared to the simple linear search, depending
on the amount of non-FES-related tasks during the simulation, e.g., statistical data
collection. The speed-up slightly increases with the number of slave stations.

8.3.2 The initial transient phase

As any dynamic system, a queueing process with random arrival and service processes
is in a transient phase after initialization. During this initial transient phase its
characteristics vary with time. After a period of time the system approaches its
steady-state, or statistical equilibrium, and measures like mean queue length take
on their steady-state values. For queueing stations with infinite buffer this steady-
state only exists if the arrival rate is smaller that the service rate. For queueing
networks this condition has to be fulfilled for every station with infinite buffer.



8.3 Steady-state simulation of queueing networks 141

 0

 4

 8

 12

 16

 0  5000  10000  15000  20000  25000  30000

av
er

ag
e 

nu
m

be
r 

of
 jo

bs
 in

 s
ys

te
m

number of observations

replication 1
replication 2
replication 3

Figure 8.6: Progress of the running average number of jobs in system for three
different replications

In general, the system asymptotically approaches its steady-state. An important
question in this context is how to treat the initial transient phase with regard to the
collection of statistical data since all observations made during this phase provide
data that is not characteristic for the steady-state behavior of the system. These
observations may slow down the convergence of the estimators toward the steady-
state value. Hence, it seems to be natural to delete all observations made during the
initial transient phase. The efficiency of the deletion has been intensively discussed in
the literature because, in general, it increases the variance of the estimator. However,
in case of the method of independent replications the deletion is useful and clearly
improves the results because for this method the initial transient phase has to be
traversed in each replication.

Figure 8.6 visualizes how the average number of jobs in a M|M|1 queue with
ρ = 0.9 is affected by the initial transient phase. The figure shows the progress
of the average number of jobs with increasing number of observations as obtained
by three replications. All replications start with an empty queue. The steady-state
number of jobs is 9. As can be observed the transient phase seems to end at different
times for each replication. For example, in replication 2 the average number begins
to approach the steady-state value nearly directly after the begin of the simulation
whereas the other two replications, especially replication 3, are more affected by the
initial transient period.

Many methods have been developed to recognize or to predict the end of the



142 8 Tool Support

transient phase (see [92] for an overview). The popular approach based on the
observation of the collected data does not perform well with long-range dependent
processes. In the last fifteen years the interest in long-range dependent processes
has considerably increased [42]. Currently, no general method is known that is able
to distinguish between fluctuations in the estimator caused by the initial transient
period and fluctuations stemming from long-range changes in the arrival or service
process as observed in systems with self-similar characteristics [93].

Hence, we use a fixed number of deletions in our simulator (usually, n/10, where
n is the number of observations in one replication). Alternatively, we do not perform
any deletions but try to shorten the length of the initial transient phase as described
in the following section.

Shortening the initial transient phase

Much research has been undertaken to determine the optimal initial conditions for
the simulation of queueing stations, in the sense that they would minimize the in-
fluence of the initial transient phase on the steady-state results. In the literature
ambiguous conclusions have been drawn from experiments with different initial con-
ditions. [77] shows that the mean square error of the mean queue length can reach
its minimum value if the queue is initialized empty and idle. A different conclusion
has been reached later by a deeper analysis of the transient behavior of queueing
processes. In the case of the estimation of the mean queue length in M|M|1 queues,
the authors of [1] indicated that the optimal initial state is when the queue length
is initialized with about 1.5 times the steady-state mean. For example, in a M|M|1
queue with ρ = 0.9 and mean number of jobs in system of 9 the optimal initial value
is 15.

No theoretical results for the optimal initial queue length are known for more
complex queueing processes or entire queueing networks. Hence, it has to be es-
timated. Note that it is ill-advised to choose an arbitrary value that looks “large
enough” as initial queue length since it was shown that starting from a state much
larger than the steady-state mean can result in a very long transient period [92].
Hence, [92] summarized the research in this area:

“Thus, because in real situations the steady-state mean is unknown, it is
much safer to initialise systems as empty and idle, [...]”.

In the following we illustrate how numerical analysis can be used to shorten the
initial transient phase. We will use the results provided by FiFiQueues to choose an
initial queue length for the simulation of the queueing network shown in Figure 8.7.
That example models a component of a communication network. A traffic stream
arrives to a queueing station with finite buffer (node 1). Both the inter-arrival times
and the service times at the queue have a low variance. However, losses are possible
with a small probability due to the finite buffer. Each blocked job at queue 1 will



8.3 Steady-state simulation of queueing networks 143

c²=0.2

c²=0.2

c²=4.0

1

2

λ=1.0

µ=1.0

µ=1.0

100

Figure 8.7: Queueing network with loss

generate a job for queue 2 (which models some recovery procedure initiated in case
of a loss).

Although FiFiQueues is able to exactly analyze queue 1 and the inter-arrival
time distribution for queue 2, important performance measures of queue 2 like its
mean queue length are not well predicted. This is because the inter-arrival times
of queue 2 are strongly correlated and do not form a renewal process. On the
other hand, the simulation of this queueing network (with same arrival and services
processes as for FiFiQueues) suffers from a long initial transient phase. Figure 8.8
shows a typical run of the simulator. The average number of jobs in queueing
station 1 and the number of samples collected at queue 2 are plotted against the
progress of the simulator (expressed in number of samples collected at queue 1). We
can clearly recognize that the initial transient phase covers at least the first 30000
samples at queue 1. During this phase the second queue receives nearly no jobs.
After that, the estimator of the average number of jobs starts to approach its mean
value and the number of samples for queue 2 quickly raises.

What happens if we use the exact results of FiFiQueues for queue 1 to specify
an initial queue length? FiFiQueues computes a mean queue length of approxi-
mately 50. Following [1], we choose 50 × 1.5 = 75 as initial queue length. We have
first started 100 replications of the simulation without any deletion and with an
initial queue length of 0. The stopping criterion was to collect 1000 samples for
queue 2. Then we have started again 100 replications without deletion and with the
same stopping criterion, but this time we have initialized queue 1 with 75 jobs.

As expected, the replications of the first run needed longer to collect the required
1000 samples for queue 2. On average, they simulated approximately 5.4 · 105 jobs
before stopping whereas the replications of the second run stopped after 5 ·105 jobs.
It is noteworthy that the difference of 40000 jobs covers a large part of the initial
transient phase as shown in Figure 8.8. Finally, we want to emphasize that both
runs have computed the correct mean queue length for queue 2 (with respect to the
required confidence).



144 8 Tool Support

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000
 0

 50

 100

 150

 200

 250

 300

 350

 400
av

er
ag

e 
nu

m
be

r 
of

 jo
bs

 in
 s

ys
te

m

#s
am

pl
es

 a
t q

ue
ue

 2

#samples at queue 1

average number of jobs in station 1
#samples at queue 2

Figure 8.8: Transient behavior for sample network with loss

8.4 Summary and conclusions

In this chapter, we have presented the FiFiQueues network designer. It is an inte-
grated tool environment and comprises a GUI written in Java, the implementation
of the FiFiQueues algorithm for open queueing networks, its extension to closed
networks, and a discrete-event simulator for the steady-simulation of queueing net-
works. Additionally, we have briefly discussed a port of FiFiQueues into the Möbius
Framework.

Concerning the simulation, we have presented two optimization techniques for
the simulation of queueing networks. The first technique aims to reduce the overhead
of the FES management. It is easy to implement, but only provides a minor speed-
up. The other technique substantially shortens the length of the initial transient
phase in a rare-event scenario. Currently, it is not used in the tool due to its
experimental status, but first experiments have shown that it can reduce the effects
of the transient phase by a reasonable initialization of the simulation.



Chapter 9

MAP-Based Traffic Descriptors

In the previous chapters we have examined the analysis of queueing networks using
first-order traffic descriptors. Those traffic descriptors can be constructed in such
a way that they approximate the inter-arrival distribution of the underlying traffic
stream to any required precision (see Section 5.5). However, they fail whenever
higher-order characteristics, e.g., autocorrelation, of the arrival process dominate
or influence the performance of the queueing stations. To respect such scenarios
more complex traffic descriptors are required. In this chapter we will examine the
use of Markovian Arrival Processes (MAPs, see Section 3.1) as traffic descriptors in
queueing network. The motivation for this choice is the fact that complex arrival
patterns, for instance those appearing in communication networks, can be described
well using MAPs.

The class of MAPs has the interesting property that it is closed under the three
network operations superposition, splitting, and service. Thus, in theory there is no
need of auxiliary steps that convert traffic descriptors into internal representations
for the analysis operations and vice versa. Unfortunately, an analysis solely based on
MAPs suffers under the well-known state space explosion phenomenon: the superpo-
sition step in queueing networks as well as the service operation at MAP|MAP|1|K
queues produce MAPs with very large numbers of states. Additionally, the depar-
ture process of a MAP|MAP|1 queue is not a finite MAP. This problem is not new
and has been recognized by other authors as well. In the past years various methods
have been proposed that aim to reduce large MAPs to smaller ones. Most of them
are approximations that try to preserve the most important aspects of the origi-
nal traffic process at the cost of aspects that are considered to be less important
for the performance evaluation of the queueing network. Generally, two kinds of
techniques can be identified: first, methods that can be applied to any MAP and
secondly, methods that have been especially designed for the departure process of
the MAP|MAP|1(|K) queue. Although all proposed techniques work very well for
a restricted set of queueing networks, no approach is known that is able to provide
good results for arbitrary networks. We believe that currently the best way is to

145



146 9 MAP-Based Traffic Descriptors

rely on hybrid analysis techniques: whenever a queueing station has to be analyzed,
we first examine the involved processes and then select the technique that is known
to provide the best results for the particular case. In this spirit, we contribute with
new approximation and reduction methods in this chapter.

This chapter is organized as follows. In Section 9.1, we introduce MAPs as traffic
descriptors in queueing networks and briefly discuss the state space explosion prob-
lem. In Section 9.2, we discuss how the size of a MAP can be reduced by removing
equivalent states. In Section 9.3, we present a method that approximates the de-
parture process of a MAP|MAP|1 queue by a finite MAP. In Section 9.4, we show
how departure processes of MAP|MAP|1(|K) can be approximated by condensing
levels of the underlying QBD. The method developed in Section 9.5 fits a MAP to
given moments of the inter-arrival time and to a positive, exponentially decreasing
autocovariance function. Section 9.6 describes how a MAP can be approximated by
a renewal process. Finally, Section 9.7 gives a summary.

9.1 MAPs as traffic descriptors in QNs

In this section we introduce MAPs as traffic descriptors in queueing networks. The
superposition of two MAPs is explained in Section 9.1.1. In Section 9.1.2 we describe
the splitting of a MAP. The analysis of MAP|MAP|1 and MAP|MAP|1|K queues
is discussed in Section 9.1.3 and Section 9.1.4, respectively. Finally, the state space
explosion problem is briefly discussed in Section 9.1.5.

9.1.1 Superposition of traffic streams

The superposition of two MAPs (A0,A1) and (B0,B1) is a new MAP (C0,C1) with

C0 = A0 ⊕ B0, C1 = A1 ⊕ B1,

where L⊕M = L⊗I+I⊗M, and ⊗ is the Kronecker product operator. If πA resp.
πB is the steady-state probability vector of the MAP (A0,A1) resp. (B0,B1), then
the steady-state probability vector of the resulting MAP is given by πA ⊗ πB.

9.1.2 Splitting traffic streams

The Markovian splitting of a MAP (A0,A1) with probability r gives two MAPs
(B0,B1) and (C0,C1) with

(B0,B1) = (A0 + (1 − r)A1, rA1),

(C0,C1) = (A0 + rA1, (1 − r)A1).

The two resulting MAPs have the same steady-state probabilities as the original
MAP.



9.1 MAPs as traffic descriptors in QNs 147

9.1.3 Analysis of MAP|MAP|1 queues

The underlying CTMC

In a MAP|MAP|1 queue both the arrival process and the service process are MAPs.
The underlying infinite Markov chain of such a queue is a QBD, where each level of
the QBD state space corresponds to a specific number of customers in the queueing
system.

Let (Λ0,Λ1) be the arrival MAP with l states, and (S0,S1) the service MAP
with m states. Then the underlying QBD has the following generator matrix

Q =





B0 A0 0
B1 A1 A0

0 A2 A1

. . . . . . . . .




, (9.1)

with

B0 = Λ0 ⊗ I,

B1 = I ⊗ S1,

A0 = Λ1 ⊗ I,

A1 = Λ0 ⊕ S0,

A2 = I ⊗ S1.

Its steady-state probability vector π has the following structure

π = ( v0 v1 . . . ),

where each vi is a vector of size l ·m and contains the steady-state probabilities for
the states of level i in the QBD. In the following, we assume that matrix-geometric
solution methods, like the LR-approach (see Section 3.3), are used to compute π.
Matrix-geometric solution methods are based on the fact that the vectors vi have
the so-called matrix-geometric form

vi = v0R
i, R ∈ R

lm×lm, i = 0, 1, . . . ,

where R is the entry-wise smallest non-negative solution of the matrix-quadratic
equation

A0 + RA1 + R2A2 = 0.

The departure process

In the case of MAP|MAP|1 queues, the output process is an infinite MAP (D0,D1)
which can easily be obtained by modifying the underlying Markov chain of the queue.



148 9 MAP-Based Traffic Descriptors

Since each service completion corresponds to an “arrival” in the departure process
we obtain D0 and D1 directly from the generator (9.1) by marking the transitions
of the sub-matrices B1 and A2 as “arrival” transitions, as follows:

D0 =





B0 A0 0
0 A1 A0

0 A1

. . . . . .




, D1 =





0
B1 0
0 A2 0

. . . . . .




.

Node performance

Having obtained the probability vector π, many performance measures of the queue
can be computed easily, e.g., the moments of the queue length distribution:

E[Nk] =
∞∑

i=0

ikvi1 =
∞∑

i=0

ikv0R
i1,

which yields, in case k = 1:

E[N ] = v0R(I − R)−21.

9.1.4 Analysis of MAP|MAP|1|K queues

The underlying CTMC

Naturally, the underlying CTMC of a MAP|MAP|1|K queue corresponds to a finite
QBD. Let (Λ0,Λ1) be the arrival MAP with l states and (S0,S1) the service MAP
with m states. Then the underlying QBD has the following generator matrix

Q =





B0 A0 0
B1 A1 A0

0 A2 A1

. . . . . . . . .

A2 A1 A0

A2 C





, (9.2)

with

B0 = Λ0 ⊗ I,

B1 = I ⊗ S1,

A0 = Λ1 ⊗ I,

A1 = Λ0 ⊕ S0,

A2 = I ⊗ S1,

C = (Λ0 + Λ1) ⊕ S0.



9.1 MAPs as traffic descriptors in QNs 149

Consequently, its steady-state probability vector π is finite, too, and has a structure
similar to the infinite case:

π = ( v0 v1 . . . vK ),

where each vi is a vector of size l ·m and contains the steady-state probabilities for
the states of level i in the QBD.

The departure process

In analogy to the case of MAP|MAP|1 queues we give the output process of the
MAP|MAP|1|K as a finite MAP (D0,D1) with

D0 =





B0 A0 0
0 A1 A0

0 A1

. . . . . . . . .

0 A1 A0

0 C





, D1 =





0
B1 0
0 A2 0

. . . . . . . . .

A2 0 0
A2 0





.

Node performance

Since the probability vector π is finite, performance measures like the mean queue
length can easily be calculated.

9.1.5 State space size

A network analysis relying solely on MAPs as traffic descriptors suffers under the
state space explosion problem. Given two MAPs of size m resp. n, the superposition
of them is a MAP of size m · n. Splitting a MAP of size m will result in two MAPs
of the same size. The service operation at a queue with finite capacity K will
generate a departure MAP whose size is the product of the capacity K, the size of
the arrival MAP and the size of the service MAP. Correspondingly, the departure
MAP of queues with infinite size is an infinite MAP. Obviously, when we apply our
decomposition based analysis method (see Section 2.3) to a realistic network (i.e.,
non-exponential service processes and queueing capacities larger than 1) we quickly
obtain MAPs that are far too large for the numerical treatment in a reasonable time.
Hence, reduction methods are required that should be applied during the analysis
of the network whenever a MAP’s size exceeds a given threshold. Such methods are
discussed in the following sections.



150 9 MAP-Based Traffic Descriptors

9.2 Reduction by removing equivalent states

The idea of this technique is to remove states of the MAP that are equivalent (see
below for a formal definition of state equivalence). If two states a and b of a MAP
are equivalent we can remove one of them, e.g., a, without changing the behavior of
the MAP.

We first introduce the notion of equivalence relations on states for CTMCs in
Section 9.2.1 and describe an algorithm to compute the equivalence relation. Then
we explain the required modifications in order to extend the algorithm to MAPs in
Section 9.2.2.

9.2.1 Equivalence for CTMCs

Let Q be the generator matrix of a CTMC with state space S. Let γQ be the
function that calculates the cumulative rate to reach a set of states C ⊂ S from a
single state r:

γQ(r, C) =
∑

c∈C

Qrc

Two states i, j ∈ S are called equivalent iff

• i = j, or

• i 6= j and γQ(i, C) = γQ(j, C) for all equivalence classes C.

This notion of equivalence is the strong Markovian bisimulation equivalence [50, 51]
and coincides with the notion of lumpability. The equivalence classes of states for
a CTMC with generator matrix Q and state space S can be computed with the
algorithm presented in [51]. It is shown in Figure 9.1. The algorithm divides the
state space of the CTMC into partitions that are successively refined until each
partition only contains equivalent states. During refinement, the partitions are split
into smaller partitions with respect to so-called splitters. We begin with one large
partition containing all states (line 2) which also acts as splitter class (line 3). As
long as splitters are available (line 4; each splitter is only used once), one splitter
is chosen (line 5) for the refinement of all partitions (line 7). The new partitions
generated by the refinement are added to the set of splitters and the used splitter
is removed (line 8 and 9). The function refineQ refines a partition P by means of
a splitter Spl. It forms new partitions containing the states that have the same
cumulative rate to the splitter:

refineQ(P, Spl) =
⋃

v∈R+

{{s ∈ P |γQ(s, Spl) = v}} .

[51] also describes an efficient implementation of the algorithm where the states are
hold in a tree, sorted by their cumulative rates to the splitters. The algorithm has



9.2 Reduction by removing equivalent states 151

1 procedure computeEqClasses(S,Q)
2 Partitions := {S}
3 Splitters := {S}
4 while Splitters 6= ∅ do
5 choose Spl ∈ Splitters
6 OldParts := Partitions
7 Partitions :=

⋃
P∈Partitions refineQ(P, Spl) − {∅}

8 NewParts := Partitions − OldParts
9 Splitters := (Splitters − {Spl}) ∪ NewParts

10 end
11 return Partitions
12 end

Figure 9.1: Algorithm for computing equivalence classes of states

a time complexity of O(m log n) and a space complexity of O(m + n), where n is
the number of states and m is the number of transitions. Note that the algorithm is
much less computation intensive than reduction algorithms that explore the CTMC
via its steady-state probabilities.

9.2.2 Approximate equivalence for MAPs

If we want to apply the algorithm to a MAP (D0,D1) we have to separately handle
the transitions specified in D0 and D1. Instead of γQ(r, C) we now have

γ0(r, C) =
∑

c∈C

(D0)rc and γ1(r, C) =
∑

c∈C

(D1)rc.

However, when using MAPs as traffic descriptors, the condition

γ0(i, C) = γ0(j, C) ∧ γ1(i, C) = γ1(j, C)

is rarely fulfilled for two states i, j. Even if the MAP actually has equivalent states,
computational inaccuracies may prevent to identify them. Hence, we introduce the
notion of “approximate” bisimulation where two states i 6= j are equivalent iff

|γ0(i, C) − γ0(j, C)| < ε0 ∧ |γ1(i, C) − γ1(j, C)| < ε1

for all equivalence classes C. By choosing ε0 and ε1 we can control the quality of
the approximation.

Knowing the approximate equivalence classes, we have to be more cautious in
the construction of the reduced MAP than in the case of the exact equivalence. Let
C and D be two equivalence classes. In the case of exact equivalence, the rate of



152 9 MAP-Based Traffic Descriptors

the transition from C to D is γQ(c,D), where c is an arbitrary (representative) state
of C. If we use approximate equivalence, the states in C have different cumulative
rates to D. In order to reduce errors in the approximation, we define

1

|C|
∑

c∈C

γQ(c,D)

as the (average) transition rate to be used.

9.3 Finite output process approximation for

MAP|MAP|1 queues

In [9], Bean et al. presented an approach to approximate the departure process
of MAP|PH|1 queues by finite MAPs. This approach can be easily extended1 to
MAP|MAP|1 queues [102]. The thus obtained MAP will have two important char-
acteristics:

1. It exactly describes the inter-departure time distribution of the original depar-
ture process [9, 49].

2. It is able to describe the correlation structure of the original departure process
at arbitrary precision albeit at the cost of, possibly, a large state space.

The second characteristic implies that, depending on the required quality of the ap-
proximation, the obtained MAP may become so large that other reduction methods
must be applied afterwards.

The approximation is based on the structural equality of the infinite departure
MAP and the underlying CTMC of the QBD describing the MAP|MAP|1 queue:
each level in the QBD has its corresponding entries in the matrices of the departure
MAP (see Section 9.1.3). However, it often is not required to represent all levels
of the QBD in the departure process. Let π = ( v0 v1 . . . ) be the steady-state
probability vector of the CTMC underlying the QBD. Since the probability vie to
be in level i decreases with increasing i, there is a level s where vse becomes so
small that one may decide not to represent the levels s and higher in full detail in
the departure process.

In the following we assume s > 1, i.e., level s is not adjacent to the border level 0.
We transform the infinite (exact) departure process into a finite (approximated)
departure process by condensing the levels s and higher to only one level, the so-
called called clipping level ŝ. The states of the level ŝ in the approximate MAP will

1Actually, we developed our approach while not being aware of [9].



9.3 Finite output process approximation for MAP|MAP|1 queues 153

have the steady-state probability vŝ with

vŝ =
∑

i≥s

vi =
∞∑

i=s

v0R
i = v0R

s(I − R)−1. (9.3)

The transition rates of the approximate MAP are computed as follows:

• The levels {0, . . . , ŝ − 1} in the approximate MAP have the same transition
rates to their neighbor levels and to the same level as the corresponding levels
{0, . . . , s − 1} of the original MAP.

• In the original MAP, a transition from the level t ≥ s to the same level t is
described by the block matrix A1 and a transition from t to the higher level
t + 1 is described by the matrix A0. In the approximate MAP, these levels
are all condensed to the level ŝ. Hence A0 + A1 describes the (not marked)
transitions from level ŝ to itself.

• In the original MAP, events are generated by a transition from a level t to the
lower level t − 1, described by the matrix A2 for t > 1, respectively, B1 for
t = 1. If t > s, both levels t and t − 1 will be collapsed into the level ŝ in the
approximate MAP and the transition between them will become a transition
from ŝ to ŝ. This transition is described by the matrix A2,stay with

(A2,stay)ij =
1

vŝ,i

(vŝ,i − vs,i)A2,ij.

If t = s in the original MAP, only level t will be collapsed into ŝ in the
approximate MAP and the transition between t and t−1 becomes a transition
from ŝ to ŝ − 1, described by the matrix A2,down with

(A2,down)ij =
1

vŝ,i

vs,iA2,ij.

In total, the finite approximate MAP (D̂0, D̂1) is defined by

D̂0 =





B0 A0

0 A1 A0

0 A1

. . . . . . . . .

A0

A0 + A1





, and

D̂1 =





0
B1 0

A2 0
. . . . . .

0
A2,down A2,stay





,



154 9 MAP-Based Traffic Descriptors

with

(A2,stay)ij =
1

vŝ,i

(vŝ,i − vs,i)A2,ij,

(A2,down)ij =
1

vŝ,i

vs,iA2,ij.

Green proved for MAP|PH|1 queues in [40] that this s-level approximation captures
the first s − 1 correlation coefficients of the departure process exactly. His proof is
general enough to be applicable to MAP|MAP|1 queues, as well.

Note that an efficient approach [49] exists to perform the approximation which
avoids the computation of vŝ (Equation (9.3)), provided that the queue length dis-
tribution is not desired.

9.4 Approximation for MAP|MAP|1(|K) queues

Similar to the previous method, this approach tries to condense a set of levels into
one level ŝ. This time, we aim to merge a finite set of levels {s, s + 1, . . . , t} with
1 < s < t (and t < K in case of a MAP|MAP|1|K queue). If π = ( v0 v1 . . . ) is
the steady-state probability vector of the original departure process, the approximate
MAP will have the steady-state probability vector π̂ with

π̂ = ( v0 v1 . . . vs−1 vŝ vt+1 . . . ),

where

vŝ =
t∑

i=s

vi.

As in the previous method, the levels not condensed in the approximate MAP have
the same transition rates to their neighbor levels and to the same level as the cor-
responding levels of the original MAP. And again, the event-generating transitions
from the level ŝ to the same level and to level ŝ − 1 are described by

(A2,stay)ij =
1

vŝ,i

(vŝ,i − vs,i)A2,ij,

(A2,down)ij =
1

vŝ,i

vs,iA2,ij.

This time we additionally have to consider transitions from ŝ to the higher level
ŝ+1. These non-marked transitions are specified in analogy to A2,stay and A2,down

by the matrices A0,stay and A0,up with

(A0,stay)ij =
1

vŝ,i

(vŝ,i − vt,i)A0,ij,

(A0,up)ij =
1

vŝ,i

vt,iA0,ij.



9.5 Approximation of processes with positive, exponentially decreasing
autocovariance 155

The finite approximate MAP (D̂0, D̂1) thus is defined by

D̂0 =





B0 A0

0 A1 A0

0
. . .

A0

A1 + A0,stay A0,up

0 A1

0
. . .





,

D̂1 =





0
B1 0

A2
. . .

0
A2,down A2,stay

A2
. . .





,

with

(A0,stay)ij =
1

vŝ,i

(vŝ,i − vt,i)A0,ij,

(A0,up)ij =
1

vŝ,i

vt,iA0,ij,

(A2,stay)ij =
1

vŝ,i

(vŝ,i − vs,i)A2,ij,

(A2,down)ij =
1

vŝ,i

vs,iA2,ij.

One can easily verify that the stationary inter-departure time distribution of the
original departure MAP is preserved.

9.5 Approximation of processes with positive, ex-

ponentially decreasing autocovariance

In the following we describe how a MAP can be constructed that fits a given first,
second, and third moment and a given positive, exponentially decreasing autoco-
variance function.

The aimed-at MAP

Consider the PH distributions (α,A) and (β,B) with inter-event time XA resp.
XB. Given two probabilities p and q, the two distributions can be combined to form



156 9 MAP-Based Traffic Descriptors

a MAP (D0,D1) in the following way:

D0 =

(
A 0
0 B

)
, D1 =

(
pA0α (1 − p)A0β

(1 − q)B0α qB0β

)
,

i.e., the MAP switches with probability 1− p to (β,B) after an event generated by
(α,A) and vice versa with probability 1 − q. The first and second moment of the
inter-event time XD of the MAP are given by

E[XD] = xE[XA] + yE[XB],

E[X2
D] = xE[X2

A] + yE[X2
B],

E[X3
D] = xE[X3

A] + yE[X3
B]

with x = 1−q
2−p−q

and y = 1−p
2−p−q

. The autocovariance R(1) for time lag 1 is given by

R(1) = E[XD,1XD,2] − E[XD]2

= xE[XA] (pE[XA] + (1 − p)E[XB])

+yE[XB] (qE[XB] + (1 − q)E[XA]) − E[XD]2.

If we choose p = q the expression simplifies to

R(1) =
1

4
(2p − 1)(E[XA] − E[XB])2,

or, more generally, for a time lag k > 0:

R(k) =
1

4
(2p − 1)k(n − 1)2E[XA]2 (9.4)

where n = E[XB]/E[XA]. Additionally, the moments become

E[XD] =
n + 1

2
E[XA], (9.5)

E[X2
D] =

1

2
E[X2

A] +
1

2
E[X2

B], (9.6)

E[X3
D] =

1

2
E[X3

A] +
1

2
E[X3

B]. (9.7)

The fitting procedure

In a fitting problem, the three moment E[XD], E[X2
D], E[X3

D] and the autocovariance
function R are given and we want to find (α,A), (β,B), p and q in order to construct
the MAP (D0,D1). We can compute them using the following procedure:

1. We choose p = q. First, we determine the base 2p−1 (and hence, p and q) of the

exponential fall-off of R(k). Following Equation (9.4), we have 2p−1 = R(k+1)
R(k)

for any k > 0. Of course, this is only true if R really is an exponentially
decreasing function. In practice, this is usually not the case and we have to
approximate the shape of R, for example by choosing p := (R(2)

R(1)
+ 1)/2.



9.6 Fitting PH renewal processes to MAPs 157

2. Equation (9.5) yields E[XA] = 2E[XD]/(n + 1). By substituting E[XA] in
Equation (9.4) and solving to n, we obtain

n := (E[XD] ±√
r)2/(E[XD]2 − r),

where r = R(k)
(2p−1)k for any k > 0, provided that R(k) is an exponentially

decreasing function. Otherwise, only an approximation to R(k) is obtained.

For example, if we choose r := R(t)
(2p−1)t for a fixed t > 0, the resulting MAP will

have the autocovariance function Rfit with Rfit(t) = R(t).

3. Following Equations (9.6) and (9.7), we have some freedom for the second
and third moments of the involved PH distributions. We choose E[X2

A] :=
E[X2

B] := E[X2
D] and E[X3

A] := E[X3
B] := E[X3

D].

4. Finally, we have to find the PH distributions (α,A) and (β,B) fitting E[XA],
E[X2

A], E[X3
A], respectively E[XB], E[X2

B], E[X3
B]. We fit Minimal Acyclic PH

distributions, as described in Section 5.5.5.

This method can be considered as a representant of a class of very similar fitting
techniques where PH distributions are combined in various ways to create MAPs
with specific distributions and autocovariance functions. For example, modifications
in the arrangement or number of the involved PH distributions result in autocovari-
ance functions with negative values, et cetera.

9.6 Fitting PH renewal processes to MAPs

The most obvious method to reduce the size of a MAP is to ignore its higher-
order statistics. Although higher-order statistics of arrival processes (e.g., auto-
correlation) heavily influence the performance of queueing stations it is clear that,
in general, the most important aspect of an arrival process is its inter-arrival time
distribution.

The inter-event time distribution of a MAP can be naturally extracted by reduc-
ing the MAP to a PH renewal process: Given a MAP (Q0,Q1) with steady-state
probability vector π and initial probability vector p = 1

πQ11
πQ1, we can derive

the PH renewal process (p,Q0) with identical inter-event time distribution (see Sec-
tion 3.2). Note that for an arbitrary MAP (Q0,Q1) it does not really make sense to
take (p,Q0) instead of (Q0,Q1) since both representations have the same number of
states. To achieve a state space reduction one would have to apply a moment-fitting
algorithm afterwards as described in Section 5.5.5.

However, if the MAP is the infinite output process of a MAP|MAP|1 queue one
can make use of its regular structure to find a compact PH representation [88]. Using
the notation introduced in Section 9.1.3 the vector p becomes

p = ( p0 p1 . . . ),



158 9 MAP-Based Traffic Descriptors

where

p0 = cv0RB1,

pi = cv0R
i+1A2,

with c =
1

v0R(I − R)−1A21
.

By following the approach described in Section 9.3 we merge all levels > 0 to one
single level and obtain a PH renewal process (p′,Q′) with identical inter-event time
distribution where

p′ = ( p0 p′

1
),

Q′ =

(
B0 A0

0 A0 + A1

)
,

with

p′

1
=

∞∑

i=1

pi

= cv0R
2(I − R)−1A2.

9.7 Summary and conclusions

In this chapter, we have introduced MAPs as traffic descriptors in the analysis of
queueing networks. However, the approach suffers under the state space explosion
problem since the service operation and the traffic splitting operation increase the
size of the descriptors in each iteration. Hence, we have presented five different MAP
reduction methods in order to remove or attenuate the effect of the state space ex-
plosion. The first method tries to reduce the size of a MAP by identifying states
that are approximately equivalent. Unlike other methods, this does not require the
computation of the steady-state probabilities of the MAP. The next two methods ap-
proximate the departure process of MAP|MAP|1(|K) queues. The resulting MAPs
have the same inter-departure time distribution as the original departure process
and approximate correlations of the inter-departure time. The fourth method fits
a MAP with a positive, decreasing autocovariance function to a point process. It
preserves the first, second and third moment of the inter-event time and approx-
imates the autocovariance function by an exponential function. This method is
the most computational intensive because it does not only require the moments of
the process but also single values of the autocovariance function in order to deter-
mine its parameters. The fifth method approximates the infinite departure MAP
of a MAP|MAP|1 queue by a finite PH renewal process with the same inter-event
time distribution. Naturally, correlations in the inter-event time are ignored. The
performance of all these methods is discussed in the next chapter.



Chapter 10

Performance of MAP-Based
Traffic Descriptors

In this chapter, we study the performance of the MAP-based traffic descriptors
in combination with the approximation and reduction techniques presented in the
previous chapter.

We begin with the reduction method based on removing equivalent states in Sec-
tion 10.1. In Section 10.2, we approximate the departure process of MAP|MAP|1
queues by using the methods from Section 9.3 and 9.4. The approximation method
from Section 9.4 is also used for the analysis of MAP|MAP|1|K queues in Sec-
tion 10.3. The approximation of processes with positive, exponentially decreasing
autocovariance is tested in Section 10.4. The approach to fit PH renewal processes to
MAPs (see Section 9.6) is not separately tested but applications of the method can
be found in Sections 10.2, 10.3 and 10.4. We conclude this chapter with Section 10.5.

The results of the numerical analysis are compared to results determined us-
ing discrete-event simulation, or, where available, to exact analytical solutions. If
not stated otherwise, arrival time and service time distributions specified by their
rate and the squared coefficient of variation (SCV) are always mapped to the PH
distributions of the original FiFiQueues algorithm. Relative errors between numeri-
cal analysis and simulation/exact solution are always computed relative to the latter.

10.1 Reduction by removing equivalent states

Although attractive in theory, our experiments have shown that the MAPs generated
during the queueing network analysis generally do not have equivalent states that can
removed by the algorithm described in Section 9.2, even if large error bounds ε1 and
ε2 are chosen. This is because the involved operations like splitting, superposition,
and queueing service generate very regularly structured MAPs where each state has
its unique meaning.

159



160 10 Performance of MAP-Based Traffic Descriptors

2
s,2

s,3

s,3
2c

µ

µ
c 2

s,1

s,1
λ1

c 2
1

2c
λ

µ s,2
2

2

c

Figure 10.1: Queueing network with the superposition of two similar traffic descrip-
tors

Nevertheless, the algorithm can detect equivalences in a MAP that has been
created by the superposition of two nearly identical MAPs. To test this, we evaluate
the queueing network shown in Figure 10.1. We feed two hyper-exponential PH
renewal processes with λ1 = 2, c2

1 = 4, resp. λ2 = 2.1, c2
2 = 4 into two identical

queueing stations with infinite queueing capacity and hyper-exponential service time
distribution (µs,1 = µs,2 = 3 and c2

s,1 = c2
s,2 = 2). We apply the clipping algorithm

of Section 9.3 to the departure processes of the two queues in order to obtain two
MAPs with 16 states. Note that the two MAPs do not only differ in the departure
rate but also in the steady-state probabilities of their states since the two stations
experience different loads. We superposition both MAPs and use the resulting MAP
as arrival process for a subsequent queueing station with hypo-exponential service
time distribution (µs,3 = 5, c2

s,3 = 0.5). The experiment is also done for λ2 = 2.2
and λ2 = 2.4.

Then we repeat the experiments but this time we remove equivalent states from
the superpositioned MAP. We have to increase the error bounds in order to find
equivalent states for increasing λ2. For λ2 = 2.1 a relative error bound of ε = 5%
(for the cumulative rate functions γ0 and γ1) is sufficient to remove nearly 50% of
the states. For λ2 = 2.2, the error bound must be at least 10%, and for λ2 = 2.4 we
have to set it to 33%. In Table 10.1, we compare the characteristics of the original
superpositioned MAP and the reduced MAP, as well as the the mean queue length
E[N ] of the last queueing station. The rows labeled λ, c2, γ and I show the arrival
rate, the SCV, and the skewness of the inter-arrival time, resp. the limiting index
of dispersion for the counting process. The last column gives the errors caused by
the reduction, relative to the results of the original MAP. As expected, the errors
increase with λ2 (with dramatic consequences for the mean queue length in case
of λ2 = 2.4 because of the high load). Similar results are obtained if we vary the
service rates or the SCVs instead of the arrival rates. Table 10.2 shows the results
for different values of c2

s,2 (with λ1 = λ2 = 2).

The results show that the method can be successfully applied in case of small



10.1 Reduction by removing equivalent states 161

λ2 measure original reduced rel. error
2.1 #states 256 136

(ε = 5%) λ 4.10 4.10 0.0%
c2 2.02 2.01 -0.5%
γ 4.93 4.91 -0.4%
I 3.39 3.37 -0.6%
E[N ] 7.19 7.22 0.4%

2.2 #states 256 136
(ε = 10%) λ 4.20 4.21 0.2%

c2 1.99 1.98 -0.5%
γ 4.87 4.83 -0.8%
I 3.33 3.30 -0.9%
E[N ] 8.35 8.45 1.8%

2.4 #states 256 141
(ε = 33%) λ 4.40 4.68 6.4%

c2 1.92 1.71 -10.9%
γ 4.71 4.12 -12.5%
I 3.19 2.68 -16.0%
E[N ] 11.78 21.53 82.8%

Table 10.1: Comparison of the results for the original superpositioned MAP and the
reduced MAP for different λ2

c2
s,2 measure original reduced rel. error

2.1 #states 256 136
(ε = 5%) E[N ] 6.29 6.33 0.6%

2.2 #states 256 136
(ε = 15%) E[N ] 6.33 6.41 1.3%

2.4 #states 256 136
(ε = 15%) E[N ] 6.42 6.56 2.2%

2.6 #states 256 148
(ε = 32%) E[N ] 6.50 7.00 7.7%

2.8 #states 256 188
(ε = 34%) E[N ] 6.58 12.60 91.5%

Table 10.2: Comparison of the results for the original superpositioned MAP and the
reduced MAP for different c2

s,2



162 10 Performance of MAP-Based Traffic Descriptors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

1-
F

(n
)

Queue length n

Figure 10.2: Complementary distribution function of the queue length

differences between the superpositioned traffic descriptors. The low time complexity
of the algorithm (in comparison to the queueing station analysis) suggests to apply
it in a QN analysis after each superposition. In order to ensure the quality of the
approximation, the error bounds must be chosen (for example, using a Newton-
iteration) such that important characteristics of the reduced MAP, such as rate and
SCV, are conserved.

10.2 Approximations for MAP|MAP|1 queues

In this section we evaluate the approximation methods described in Section 9.3 and
9.4 for MAP|MAP|1 queues. We begin with a study of a single queueing station
in Section 10.2.1. Then we evaluate a tandem queueing network with various input
processes in Section 10.2.2. In Section 10.2.3, we test MAPs in a queueing network
with traffic splitting. A summary of the results is given in Section 10.2.4.

10.2.1 Study of a single queueing station

We start our evaluation with the analysis of a simple PH|PH|1 queue using an
Erlang-2 service process with service rate 1. The queue is fed by a hyper-exponential
renewal process with arrival rate 0.95 and SCV 8. When analyzing this queue we
can see that the high load and the high variance of the input process lead to a high
mean queue length of nearly 77 with a corresponding slowly decaying queue length
distribution function (Figure 10.2).

First, we investigate the departure process approximated by the simple approxi-
mation method presented in Section 9.3. How does the quality of the approximation
depend on the choice of the clipping level? In view of the slowly decaying queue



10.2 Approximations for MAP|MAP|1 queues 163

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 20 40 60 80 100 120 140 160 180 200

R
(k

)

k

17
33
49
65

Figure 10.3: Autocovariance function R(k) of the approximate departure MAP for
clipping levels 17, 33, 49 and 65

length distribution it is clear that a high clipping level is required to preserve the
characteristics of the original departure process. To illustrate this, we have com-
puted the approximated departure process for four different clipping levels, namely
17, 33, 49 and 65. For these cases, the autocovariance functions R(k) are shown in
Figure 10.3. Choosing 33 as clipping level seems to result in a good approximation
to the autocovariance function of the exact departure process (which has not been
shown here because it nearly is equal to the 65-approximation).

These results show that even MAPs with low clipping level can give a good
approximation of the correlation structure at small time lags k. In fact, Green
proved for MAP|PH|1 queues in [40] that the k-level approximation captures the first
k− 1 correlation coefficients of the departure process exactly, which is confirmed by
Figure 10.3. For the approximation of correlation at large time lags, MAPs must be
chosen which respect the structure of the higher levels of the queue QBD. However,
the figure also shows that clipping levels which are considerably smaller than the
mean queue length yield good approximations to the exact departure process. This
may be surprising since clipping levels like 65 only catch 55% of the queue length
distribution probability (Figure 10.2). But we should note that many important
characteristics of queueing processes, like the busy period, are mainly represented
by the lower levels.

As next step, we use the fact that high clipping levels lead to increased corre-
lation for large time lags by introducing the approximation method presented in
Section 9.4. To evaluate its impact, we choose the 33-level MAP as reference. It is
of moderate size (134 states; which can be easily handled computationally) and is a
good approximation to the exact solution. We now compare the 33-level MAP with
a MAP of the same size but constructed as follows: (i) levels 0 and 1 are modeled
without approximation, (ii) levels 2 through 63 are merged two by two, and (iii) the



164 10 Performance of MAP-Based Traffic Descriptors

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 20 40 60 80 100 120 140 160 180 200

R
(k

)

k

33
65

2-64

Figure 10.4: Autocovariance function R(k) of the 2-64-level MAP

levels beyond 63 are merged into one level. This MAP (called 2-64-level MAP) is
compared with the 33-level and the 65-level MAP in Figure 10.4. For k ≥ 110 this
MAP better approximates the exact solution than the 33-level MAP. However, for
k ≤ 110 its autocovariance is apparently lower than the 33-level solution: since the
2-64-level MAP approximates the levels from 2 through 63 two by two it gives a
worse description of correlation between subsequent queue departures.

Even slightly better approximations can be obtained by using more complex level
schemes, e.g., a 4-40-84-level MAP with the following structure: (i) levels 0 through
3 are modeled exactly, (ii) levels 4 through 39 are merged two by two and (iii) levels
40 through 83 are merged four by four (clipping level is 84). Figure 10.5 shows this
MAP in comparison with the other approximations. Since the levels 0 through 3
are modeled exactly, this MAP better approximates the autocovariance for small k
than the 2-64-level MAP. The autocovariance for large k is nearly identical for both
MAPs.

10.2.2 Analysis results of MAP|MAP|1 tandem queues

In the previous section we have presented and compared different approximations
to the output process of a PH|PH|1 queue. These approximations have the same
inter-arrival time distribution but differ in higher order statistics, such as the auto-
covariance. It is well known that the presence of autocorrelation in arrival processes
heavily impacts the performance measures of queueing systems [73]. Hence, in this
section, we will examine how the different approximations affect the performance of
a subsequent second queue which takes the (approximated) departure process of the
first queue as arrival process.



10.2 Approximations for MAP|MAP|1 queues 165

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 20 40 60 80 100 120 140 160 180 200

R
(k

)

k

33
2-64

4-40-84

Figure 10.5: Autocovariance function R(k) of the 4-40-84-level MAP

µ
c 2

s,1 s,2
2c

µ
c 2

s,2s,1

λ
ext

Figure 10.6: Queueing network for the approximation of the MAP|MAP|1 departure
process

Hyper-exponential renewal input process

We keep the queueing station from the previous section and add a second queue
with the same service process, i.e., λ = 0.95, c2

ext = 8.0, µs,1 = µs,2 = 1.0, and
c2
s,1 = c2

s,2 = 0.5 (see Figure 10.6). Table 10.3 shows the mean value of the second
queue length as a function of the chosen approximated departure process, as well
as the results of the simulation and of FiFiQueues. Additionally, we have given
the results obtained using a PH renewal process with the same inter-departure time
distribution as the departure process. The errors relative to the simulation are given
in the middle column. The right column gives the number of states of the employed
MAP, respectively, the (fitted) PH process.

The results show that the large SCV of the arrival time distribution, combined
with the hypo-exponential service time distribution of the first station, yields a
strongly correlated traffic stream arriving at the second station. As reported in
other publications, the mean queue length of the second queue is significantly un-
derestimated if the correlations are ignored, as it is the case for FiFiQueues and
the PH process. A better approximation of the autocovariance function results in
a higher mean queue length. This can be explained in a quite intuitive manner by
looking at the power spectrum P (w) (see also Appendix A) of the discrete func-
tion f(k) = Tk where Tk is the k-th inter-arrival time of the first queue’s departure



166 10 Performance of MAP-Based Traffic Descriptors

0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

-1 -0.5 0 0.5 1

P
(w

)

w

2
6

11

Figure 10.7: The power spectrum of the departure MAP for three different clipping
levels

MAP. In Figure 10.7, we show the power spectrum for clipping levels 2, 6 and 11;
we see that low-frequency energy, i.e., around w = 0, increases with the clipping
level. This is an important fact, since San-qi Li has shown in [71] that input power
in the low-frequency band has a dominant impact on queueing performance. Low
frequencies produce long periods of increased workload entering the queue [73].

This example also shows that better approximations do not necessarily require
more states, as becomes clear from the last row: a 2-40-120-level MAP with 168
states yields a better estimation of the mean queue length than a 51-level MAP with
208 states. This is a significant improvement since the complexity of MAP|MAP|1
queue analysis cubically depends on the number of states in the MAP describing
the arrival process. It seems that the good modeling of correlation for large time
lags, as provided by the 2-40-120-level MAP, is more important than for small time
lags. This observation confirms the results of studies made in the area of self-similar
traffic which report that correlation over many time scales may noticeably affect the
performance of queueing systems [42].

However, a better approximation of the large time lags only improves the results
when the first queue is run with a high load. Table 10.4 shows the results for a
reduced external arrival rate of 0.8, i.e., when the load has been lowered from 0.95
to 0.8. For Table 10.5, we have additionally lowered the service rate of the second
queue from 1.0 to 0.9. We observe in both cases that the best results are obtained
by the approximations that focus on the small time lags.

We have also repeated the experiments with a hyper-exponential service time
distribution at the second queue. Table 10.6, 10.7, and 10.8 show the results for
the mean queue length when c2

s,2 has been set to 2.0. Again, we observe that the
complex approximations considerably improve the results for high loads (for the
same number of states in the generated MAPs).



10.2 Approximations for MAP|MAP|1 queues 167

E[N ] rel. error #states
Simulation 23.9

FiFiQueues 16.8 -29.7% 2
PH 14.4 -39.7% 8
31 20.5 -14.2% 128
41 21.5 -10.0% 168
51 22.4 -6.3% 208
61 22.9 -4.2% 248

2-60 21.5 -10.0% 128
2-80 22.3 -6.7% 168

2-40-80 21.7 -9.2% 128
2-40-120 22.5 -5.9% 168

Table 10.3: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.95,
µ2 = 1.0, c2

s,2 = 0.5)

E[N ] rel. error
Simulation 5.70

FiFiQueues 6.92 21.4%
21 5.59 -1.9%
31 5.69 -0.2%

10-30 5.57 -2.3%
2-60 5.49 -3.7%

Table 10.4: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.8, µ2 =
1.0, c2

s,2 = 0.5)

E[N ] rel. error
Simulation 20.7

FiFiQueues 14.8 -28.5%
31 19.0 -8.2%
41 19.6 -5.3%

20-42 19.1 -7.7%
2-60 17.9 -13.5%

Table 10.5: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.8, µ2 =
0.9, c2

s,2 = 0.5)



168 10 Performance of MAP-Based Traffic Descriptors

E[N ] rel. error
Simulation 45.7

FiFiQueues 30.4 -33.5%
31 37.9 -17.1%
41 39.5 -13.6%
51 40.8 -10.7%
61 41.8 -8.5%

2-60 39.6 -13.3%
2-80 41.0 -10.3%

2-40-80 40.0 -12.5%
2-40-120 41.2 -9.8%

Table 10.6: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.95,
µ2 = 1.0, c2

s,2 = 2.0)

E[N ] rel. error
Simulation 9.93

FiFiQueues 9.55 -3.8%
21 9.44 -4.9%
31 9.64 -2.9%
41 9.73 -2.0%

20-42 9.64 -2.9%
2-60 9.32 -6.1%

Table 10.7: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.8, µ2 =
1.0, c2

s,2 = 2.0)

E[N ] rel. error
Simulation 28.3

FiFiQueues 20.4 -27.9%
31 26.2 -7.4%
41 26.9 -4.9%
51 27.2 -3.9%

2-60 24.9 -12.0%
2-80 25.1 -11.3%

2-40-80 24.9 -12.0%

Table 10.8: Mean queue length at the second queue for different approximations
(tandem queues with hyper-exponential renewal input process, arrival rate 0.8, µ2 =
0.9, c2

s,2 = 2.0)



10.2 Approximations for MAP|MAP|1 queues 169

E[N ] rel. error
Simulation 27.7

FiFiQueues 24.1 -13.0%
33 26.4 -4.7%

4-40-84 27.4 -1.1%

Table 10.9: Mean queue length at the second queue for different approximations
(tandem queues with Poisson arrivals)

E[N ] rel. error
Simulation 20.2

33 18.9 -6.4%
2-64 19.2 -4.9%

4-40-84 19.4 -4.0%

Table 10.10: Mean queue length at the second queue for different approximations
(tandem queues with non-renewal input process)

Experiments with other input processes

Comparably good results (as before) are also obtained with true Markovian arrival
processes. Again, we assume two queues with Erlang-2 service and service rate 1.
Table 10.9 shows the mean queue length at the second queue, obtained by feeding a
Poisson process with arrival rate 0.98 into the first queue. The mean queue length
of the first queue is 35.1. Again, our results are rather good.

The next arrival process is the superposition of a hyper-exponential renewal
process with arrival rate 0.74 and SCV 8.0, with an Erlang-2 process with arrival
rate 0.21. The thus-obtained process has an arrival rate of 0.95 and a SCV of 2.2.
Since this process is not a renewal process, its limiting index of dispersion for counts
considerably differs from its squared coefficient of variation: I = 6.3. The mean
queue length of the first queue is 58.2. The results for the mean queue length of the
second queue are shown in Table 10.10. Although slightly worse than before, the
results are still acceptable. As in the previous experiments, the better results for
the more complex approximations indicate that it is important to correctly model
the correlations for large time lags.

10.2.3 Queueing networks with traffic splitting

Using MAPs for the traffic splitting operation in a queueing network is especially
attractive, since, unlike the traffic merging operation, the resulting MAPs have the
same number of states as the input MAP (see Section 3.1.3). FiFiQueues’ splitting
operation assumes that the involved processes are renewal processes (Section 5.3.4),
hence we can expect an improvement. To test the traffic splitting we take again a



170 10 Performance of MAP-Based Traffic Descriptors

s,2

c 2
s,1

s,2
2c

µ
c 2
λ

ext

0.75

s,1

µ

Figure 10.8: Queueing network with traffic splitting

tandem network with two queues, but this time only 75% of the departure traffic of
the first queue is fed to the second queue, i.e., the splitting probability is 0.75 (see
Figure 10.8). The external arrival traffic to the first queue has a rate of λ = 1.2.
The SCV of the arrival time distribution is given by c2

ext. The service rate of the first
queue and the second queue is 1.5, resp. 1. The SCV of the service time distribution
is c2

s,1 for the first queue, respectively c2
s,2 for the second queue. Table 10.11 and 10.12

show the results for the mean queue length for various values of c2
ext, c2

s,1, and c2
s,2.

The results are similar to those for the network without splitting. Note that we
have chosen a not so extreme load for the first queue (ρ1 = 0.8) to test the splitting
operation under more realistic conditions. As consequence, we have omitted the
results for the complex approximation schemes since they do not provide any further
improvement.

10.2.4 Summary

In this section we have investigated the departure process of a MAP|MAP|1 and its
approximation by a finite MAP. We have shown that the simple method presented
in Section 9.3 provides a good approximation to the autocovariance function of the
departure process. The more complex method presented in Section 9.4 is able to
better approximate the autocovariance function for large time lags by MAPs with the
same number of the states. The experiments have shown that the approximations
allow us to accurately evaluate the performance of a subsequent queueing station. It
depends on the sensitivity of the station to correlations with large time lags whether
the complex approximations provide better results than the simple approximations.

10.3 Approximations for MAP|MAP|1|K queues

In this section, we evaluate the level condensing method introduced in Section 9.4 for
queues with finite capacity. As test model, we reuse the tandem queueing network
with hyper-exponential arrival process (SCV 8) from Section 10.2.2 but limit the
capacity of the first queue to 10 (see Figure 10.9). This modification affects the
autocovariance of the departure process of the first queue as shown in Figure 10.10
for an external arrival rate λ of 0.9 and an Erlang-2 service process; the figure



10.3 Approximations for MAP|MAP|1|K queues 171

c2
s,1 c2

ext method E[N ] rel. error

0.5 0.5 Simulation 11.3
FiFiQueues 11.5 1.8%
10 11.4 0.9%
20 11.4 0.9%

4.0 Simulation 19.8
FiFiQueues 15.7 -20.7%
10 18.4 -7.1%
20 19.4 -2.0%
30 19.7 -0.5%

2.0 0.5 Simulation 12.8
FiFiQueues 14.6 14.1%
10 12.9 0.8%
20 12.7 -0.8%

4.0 Simulation 21.1
FiFiQueues 18.3 -13.3%
10 20.2 -4.3%
20 20.6 -2.4%
30 20.8 -1.4%
50 20.9 -0.9%

Table 10.11: Mean queue lengths at the second queue with traffic splitting and
c2
s,2 = 2

s,2
2c

µ
c 2

s,1

λ
c 2

s,2s,1

ext
µK=10

Figure 10.9: Queueing network for the approximation of the MAP|MAP|1|K depar-
ture process



172 10 Performance of MAP-Based Traffic Descriptors

c2
s,1 c2

ext method E[N ] rel. error

0.5 0.5 Simulation 4.14
FiFiQueues 4.26 2.9%
10 4.15 0.2%
20 4.15 0.2%

4.0 Simulation 11.4
FiFiQueues 8.3 -27.2%
10 10.1 -11.4%
15 10.6 -7.0%
20 10.9 -4.4%

2.0 0.5 Simulation 6.0
FiFiQueues 7.3 21.7%
10 6.1 1.7%
20 6.1 1.7%

4.0 Simulation 13.0
FiFiQueues 10.8 -16.9%
10 12.4 -4.6%
20 12.7 -2.3%

Table 10.12: Mean queue lengths at the second queue with traffic splitting and
c2
s,2 = 0.2

displays the autocovariance function of the exact departure process and of various
approximations where “2–9” denotes the MAP obtained by condensing levels 2–9
of the original departure process, “3–8” stands for the MAP with condensed levels
3–8, et cetera. Note the peak in the autocovariance where the time lag k equals the
queueing capacity K = 10. As can be seen, the shape of the autocovariance function
is more distorted when we increase the number of condensed levels. The different
MAPs have the following number of states:

MAP states
exact 44
2-9 16
3-8 24
4-7 32
5-6 40

To test the quality of the approximation we compute the mean queue length E[N ]
of the second queue for different external arrival rates λ and different SCVs c2

s,1 and
c2
s,2 of the two service processes. The results are shown in Table 10.13 and 10.14.

The tables also contain the results obtained by FiFiQueues with two-moment de-
scriptors, by three-moment descriptors (with Minimal Acyclic PH distributions; see
Section 5.5.5), and by a PH renewal process that has the same inter-departure time



10.4 Approximation of processes with positive, exponentially decreasing
autocovariance 173

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 2  4  6  8  10  12  14  16  18  20

R
(k

)

k

exact
2-9
3-8
4-7
5-6

Figure 10.10: Autocovariance function R(k) for approximations of the finite capacity
queue (λ = 0.9, c2

s,1 = 0.5)

distribution as the departure MAP.

In contrast to the experiments in Section 10.2, we observe this time that the PH
renewal process provides good results with relative errors less than 7%. Hence, the
errors obtained using two-moment and three-moment descriptors are clearly caused
by the employed PH-fitting methods. The gain of the level condensing method
depends on how important the autocovariance is for the performance of the second
queue. The 3–8 MAP seems to be a good trade-off between quality of the results
and size (number of states) in this case.

10.4 Approximation of processes with positive,

exponentially decreasing autocovariance

We reconsider the tandem queueing network with hyper-exponential renewal input
introduced in Section 10.2.2 and fit a MAP to the departure process of the first
queueing station by using the method from Section 9.5. The fitted MAP is then fed
as arrival process to the second queue.

We begin with the case with arrival rate= 0.95, µ2 = 1.0, c2
s,2 = 0.5. It shows

that the quality of the approximations depends on the value of p in the fitting
procedure since the autocovariance function R(k) of the departure process decays



174 10 Performance of MAP-Based Traffic Descriptors

λ method E[N ] rel. error
0.5 Exact 1.24

FiFiQueues 1.69 36.3%
3 moments 1.44 16.1%
PH 1.16 -6.5%
2-9 1.18 -4.8%
3-8 1.21 -2.4%
4-7 1.23 -0.8%
5-6 1.23 -0.8%
(ρ2 = 0.50)

0.7 Exact 2.26
FiFiQueues 3.46 53.1%
3 moments 2.60 15.0%
PH 2.13 -5.8%
2-9 2.14 -5.3%
3-8 2.19 -3.1%
4-7 2.22 -1.8%
5-6 2.25 -0.4%
(ρ2 = 0.64)

0.9 Exact 2.97
FiFiQueues 4.58 54.2%
3 moments 3.44 15.8%
PH 2.88 -3.0%
2-9 2.86 -3.7%
3-8 2.90 -2.4%
4-7 2.93 -1.3%
5-6 2.96 -0.3%
(ρ2 = 0.73)

λ method E[N ] rel. error
0.5 Exact 1.31

FiFiQueues 1.66 26.7%
3 moments 1.43 9.2%
PH 1.26 -3.8%
2-9 1.28 -2.3%
3-8 1.29 -1.5%
4-7 1.30 -0.8%
5-6 1.31 0%
(ρ2 = 0.49)

0.7 Exact 2.41
FiFiQueues 3.38 40.2%
3 moments 2.60 7.9%
PH 2.32 -3.7%
2-9 2.33 -3.3%
3-8 2.36 -2.1%
4-7 2.39 -0.8%
5-6 2.40 -0.4%
(ρ2 = 0.64)

0.9 Exact 3.24
FiFiQueues 4.56 40.7%
3 moments 3.50 8.0%
PH 3.18 -1.9%
2-9 3.17 -2.2%
3-8 3.19 -1.5%
4-7 3.21 -0.9%
5-6 3.23 -0.3%
(ρ2 = 0.73)

Table 10.13: Mean queue lengths for different approximations (tandem queues, first
queue with finite capacity). Left table: c2

s,1 = 0.25, c2
s,2 = 0.5. Right table: c2

s,1 =
0.5, c2

s,2 = 0.5. ρ2 gives the utilization of the second station.



10.4 Approximation of processes with positive, exponentially decreasing
autocovariance 175

λ method E[N ] rel. error
0.5 Exact 1.53

FiFiQueues 1.53 0%
3 moments 1.41 -7.8%
PH 1.54 0.7%
2-9 1.55 1.3%
3-8 1.55 1.3%
4-7 1.55 1.3%
5-6 1.54 0.7%
(ρ2 = 0.48)

0.7 Exact 2.86
FiFiQueues 3.08 7.7%
3 moments 2.71 -5.2%
PH 2.90 1.4%
2-9 2.92 2.1%
3-8 2.92 2.1%
4-7 2.90 1.4%
5-6 2.87 0.3%
(ρ2 = 0.61)

0.9 Exact 4.15
FiFiQueues 4.54 9.4%
3 moments 4.05 -2.4%
PH 4.24 2.2%
2-9 4.24 2.2%
3-8 4.22 1.7%
4-7 4.19 1.0%
5-6 4.16 0.2%
(ρ2 = 0.71)

λ method E[N ] rel. error
0.5 Exact 2.10

FiFiQueues 2.13 1.4%
3 moments 2.01 -4.3%
PH 2.10 0%
2-9 2.12 1.0%
3-8 2.13 1.4%
4-7 2.12 1.0%
5-6 2.11 0.5%
(ρ2 = 0.48)

0.7 Exact 3.92
FiFiQueues 4.12 5.1%
3 moments 3.81 -2.8%
PH 3.93 0.3%
2-9 3.96 1.0%
3-8 3.96 1.0%
4-7 3.95 0.5%
5-6 3.93 0.3%
(ρ2 = 0.61)

0.9 Exact 5.74
FiFiQueues 6.07 5.7%
3 moments 5.69 -0.9%
PH 5.81 1.2%
2-9 5.78 0.7%
3-8 5.79 0.9%
4-7 5.76 0.3%
5-6 5.74 0%
(ρ2 = 0.71)

Table 10.14: Mean queue lengths for different approximations (tandem queues, first
queue with finite capacity). Left table: c2

s,1 = 2, c2
s,2 = 0.5. Right table: c2

s,1 =
2, c2

s,2 = 2. ρ2 gives the utilization of the second station.



176 10 Performance of MAP-Based Traffic Descriptors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30

R
(k

)

k

original departure process
fitted MAP with 2p-1=R(2)/R(1)
fitted MAP with 2p-1=R(3)/R(2)
fitted MAP with 2p-1=R(4)/R(3)
fitted MAP with 2p-1=R(5)/R(4)

Figure 10.11: Normalized autocovariance function R(k) as function of the time lag
k for different approximations

slower than exponentially. Figure 10.11 shows the (normalized) R(k) in comparison
to the autocovariance function of the fitted MAP for various values of 2p − 1 with
r = R(1)

2p−1
. The resulting mean queue lengths of the second station are given in

Table 10.15. We have also added results from other approximation methods. The
row “PH” depicts the results obtained by a PH renewal process that has the same
inter-departure time distribution as the departure MAP (see Section 9.6). Again,
the right column shows the sizes of the involved MAPs, respectively PH process.
The results for c2

s,2 = 2 can be found in Table 10.16.

As can be seen, the fitting approach is not so good as the methods based on level
clipping if the value of 2p− 1 is derived from the autocovariance at small time lags.
However, the fitting approach provides much better results than FiFiQueues and the
PH renewal process although the fitted MAP only consists of 5 states. Especially
the comparison to the PH process shows that the approximation of the autoco-
variance function is more important than an exact reproduction of the distribution
function (at least for this network configuration; the experiments in Chapter 6 and
Section 10.3 illustrate that the autocovariance does not always play a dominant role
in the performance of a queueing station). We observe that, within the fitted MAPs,
the best results are obtained with 2p − 1 = R(6)/R(5) because the resulting MAP
better approximates the autocovariance for large time lags.

Of course, the method fails if it is applied to point processes with an autoco-
variance function of different, non-exponential shape. Beside of the obvious case



10.4 Approximation of processes with positive, exponentially decreasing
autocovariance 177

E[N ] rel. error #states
Simulation 23.9

FiFiQueues 16.8 -29.7% 2
PH 14.4 -39.7% 8
31 20.5 -14.2% 128
41 21.5 -10.0% 168
51 22.4 -6.3% 208

2-80 22.3 -6.7% 168
2-40-120 22.5 -5.9% 168

Fitted MAP with:
2p − 1 = R(2)/R(1) 18.1 -24.3% 5
2p − 1 = R(3)/R(2) 19.7 -17.6% 5
2p − 1 = R(4)/R(3) 21.1 -11.7% 5
2p − 1 = R(5)/R(4) 22.3 -6.7% 5
2p − 1 = R(6)/R(5) 23.3 -2.5% 5

Table 10.15: Mean queue length of the second queue for different approximations
(hyper-exponential input process, arrival rate 0.95, µ2 = 1, c2

s,2 = 0.5)

E[N ] rel. error #states
Simulation 45.7

FiFiQueues 30.4 -33.5% 2
PH 28.9 -36.8% 8
41 39.5 -13.6% 168
51 40.8 -10.7% 208
61 41.8 -8.5% 248

2-80 41.0 -10.3% 168
2-40-120 41.2 -9.8% 168

Fitted MAP with:
2p − 1 = R(2)/R(1) 32.1 -29.8% 5
2p − 1 = R(3)/R(2) 33.7 -26.3% 5
2p − 1 = R(4)/R(3) 35.0 -23.4% 5
2p − 1 = R(5)/R(4) 36.2 -20.8% 5
2p − 1 = R(6)/R(5) 37.2 -18.6% 5

Table 10.16: Mean queue length of the second queue for different approximations
(hyper-exponential input process, arrival rate 0.95, µ2 = 1, c2

s,2 = 2)



178 10 Performance of MAP-Based Traffic Descriptors

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30

R
(k

)

k

original departure process
fitted MAP

Figure 10.12: Normalized autocovariance function R(k) of the departure process of
the finite queueing station

where R(k) < 0 for all k > 0, more complex shapes can arise. Figure 10.12 shows
R(k) of the departure process if we specify a finite capacity of 10 for the first queue
of our tandem queueing network with arrival rate= 0.95. Here, our method (with
2p − 1 = R(2)/R(1)) is only able to fit the positive decreasing part of the au-
tocovariance function and not its peak where the time lag k equals the queueing
capacity of the first station. Table 10.17 shows the resulting mean queue lengths for
µ2 = 1.0, c2

s,2 = 0.5. The row labeled “Exact” in the table has been computed by
directly using the departure MAP of the first queue as arrival MAP of the second
queue without any approximation. The rows “2–9”, “3–8”, “4–7” and “5–6” give
the results obtained by the level condensing method, as discussed in Section 10.3.
As expected, the fitted MAP performs better than FiFiQueues but worse than the
other approximations.

10.5 Summary and conclusions

In this chapter, we have evaluated the performance of our approximation and re-
duction techniques for MAP-based traffic descriptors. The experiments have shown
that the methods provide very good results when the considered MAPs more or less
fulfill certain, method-specific, conditions. The reduction by removing equivalent



10.5 Summary and conclusions 179

E[N ] rel. error
Exact 3.42

FiFiQueues 4.78 39.8%
PH 3.37 -1.5%
2-9 3.35 -2.0%
3-8 3.37 -1.5%
4-7 3.38 -1.2%
5-6 3.41 -0.3%

Fitted MAP 4.49 31.3%

Table 10.17: Mean queue length for the finite capacity model (hyper-exponential
input process, arrival rate 0.95, µ2 = 1.0, c2

s,2 = 0.5)

states can only be applied to the very restricted class of MAPs generated by the
superposition of two nearly identical departure processes. This is caused by the
regular structure of the departure MAPs where each state has its unique meaning.
The finite output process approximation for MAP|MAP|1 queues and the level con-
densing method for the output of MAP|MAP|1(|K) are of special interest because
they preserve the first-order characteristics (inter-departure time distribution) of
the departure process. They can provide a compact approximation of the original
process with a good reproduction of the autocovariance. The last method, the fitting
to a MAP with exponentially decreasing autocovariance, is not restricted to queue
departure processes and yields very small MAPs with a good (three-moment based)
approximation to the inter-event time distribution. Naturally, the results are only
satisfying if the requirements to the shape of the autocovariance function are met.

Although the presented reduction methods provide very good results, it should
be noted that their application is currently limited to small, cycle-free networks since
the achieved reduction only decreases the effects of the state space explosion for a
few station analysis steps, but does not totally avoid them. For an iteration-based
decomposition analysis of a large network the reduction methods must be combined
with other methods such as [48].



180 10 Performance of MAP-Based Traffic Descriptors



Chapter 11

Conclusion

In this thesis, we have presented a decomposition framework for the analysis of
a fairly general class of open and closed queueing networks. The decomposition is
done at queueing station level, i.e., the queueing stations are independently analyzed.
During the analysis, traffic descriptors are exchanged between the stations, repre-
senting the streams of jobs flowing between them. The analysis of a queueing station
is divided into fundamental steps that describe how the incoming traffic streams are
merged, processed at the queueing station, and then split into the outgoing traffic
streams. Networks with feedback are analyzed using a fixed-point iteration.

Based on the decomposition framework, we have developed an analysis method
called FiFiQueues. The method supports open queueing networks with infinite and
finite capacity queues. We have been able to prove the existence of the fixed point for
the employed fixed-point iteration. Our experiments have shown that FiFiQueues is
easy usable, efficient and provides good results for important performance measures,
like mean queue length, even if the network has a complex structure. However, the
experiments have also shown that larger errors have to be expected if the traffic
streams inside the analyzed network exhibit strong correlations.

FiFiQueues allows arbitrary phase-type renewal processes as service processes.
We have describe how hyper-exponential distributions, which are a special case of
phase-type distributions, can be fitted to heavy-tail distributed measurement data
using the EM-algorithm. Additionally, we have presented an extension that applies
a stratification approach to the data in order to increase the efficiency of the method.

Like in QNA [115], the traffic descriptors used in FiFiQueues are based on the
first and second moment. We have discussed the possibility to extend the traffic de-
scriptors of FiFiQueues to three moments. Since FiFiQueues transforms the traffic
descriptors to phase-type renewal processes during the analysis, a fitting method for
three moments to phase-type distributions is required. We have conducted experi-
ments with three existing fitting procedures, however, it appears that three-moment
descriptors do not significantly improve the results in queueing networks with feed-
back. Since they considerably increase the runtime of the analysis, we currently

181



182 11 Conclusion

refrain from using three-moment descriptors in FiFiQueues until further examina-
tions.

We have also proposed a decomposition-based method for the analysis of closed
queueing networks. It is especially attractive because it is founded on existing
analysis methods for open networks. Our implementation with FiFiQueues suggests
that the method is able to provide useful results for a broad class of closed networks.
Additionally, the method is very fast even for large networks and populations, but
we have also shown that it only works well if the analyzed network contains exactly
one bottleneck.

The FiFiQueues algorithm for open and closed queueing networks as well as
a fast discrete-event simulator have been implemented in an integrated tool with a
graphical user interface that allows to construct, edit and evaluate queueing networks
of arbitrary topology.

FiFiQueues’ traffic descriptors cannot account for correlations in the traffic
streams. To approach this problem, we have introduced MAPs as traffic descrip-
tors. However, a queueing network analysis based on MAP traffic descriptors and
MAP|MAP|1(|K) queues suffers under the state space explosion problem, since the
involved operations increase the size of the descriptors in each iteration. Hence, we
have presented five different MAP reduction methods in order to remove or decrease
the effect of the state space explosion. The experiments have shown that the meth-
ods provide very good results when the considered MAPs more or less fulfill certain,
method-specific, conditions. However, we have also observed that the achieved re-
duction only decreases the effects of the state space explosion, but does not totally
avoid them. Hence, the application of our reduction methods is currently limited to
small, cycle-free networks.

As for future work, we envisage to embed the presented reduction algorithms
into a complete analysis algorithm for general queueing networks. If combined with
methods such as [48], our algorithms could be used to accurately analyze those parts
of the queueing network model that are known to be very sensitive to correlations in
the traffic stream. Concerning FiFiQueues, we still believe that the extension of the
FiFiQueues algorithm to three-moment descriptors is worthwhile. Future research
has to show in which situations three-moment descriptors show a clear advantage
over the two-moment descriptors used by FiFiQueues.

Finally, we want to mention that the FiFiQueues tool has been successfully used
at a German system vendor of logistics software in the modeling and planning of
the production lines of an order picking warehouse. Due to the confidential nature
of that design, we cannot provide any further details on this in this thesis.



Appendix A

The Power Spectrum of a MAP

The power spectrum of the discrete process T1, T2, . . . is the Fourier transform of
the autocovariance function R(k) = E [(T1 − E[T1])(Tk+1 − E[Tk+1])]. In the special
case of a MAP (Q0,Q1), we have (see Section 3.1.2):

R(k) = E [(T1 − E[T1])(Tk+1 − E[Tk+1])]

= p(−Q0)
−2Q1

{[
(−Q0)

−1Q1

]k−1 − 1p
}

(−Q0)
−11.

The Fourier transform Φ(ω) is given by [102]:

Φ(ω) =
∞∑

k=−∞

R(k)e−iωk.

Since the process is weakly stationary, we have R(−k) = R(k), which leads to

Φ(ω) = R(0) +
∞∑

k=1

R(k)(eiωk + e−iωk)

= R(0) + 2C1 ·
∞∑

k=1

{[
(−Q0)

−1Q1

]k−1 − 1p
}

cos(ωk) · C2, (A.1)

where C1 = p(−Q0)
−2Q1 and C2 = (−Q0)

−11. The infinite sum in Equation (A.1)
can be approximated by a finite sum with, e.g., k = 1, . . . , 100. For optimal per-
formance, it can be useful to switch to an eigenvalue based representation of the
matrix (−Q0)

−1Q1.

183



184 A The Power Spectrum of a MAP



Appendix B

The Simulator

B.1 Introduction

In this appendix we describe the queueing network simulator that has been used to
produce the simulation results presented in this thesis. Our goal is to provide an
overview about the functionality of the simulator.

The simulator is a collection of C++-classes. From the beginning the simu-
lator has been designed as platform for the efficient and rapid implementation of
new experimental components like new probability distributions or new schedul-
ing mechanisms. Hence, the C++-interface of the simulator has been optimized
from the viewpoint of component developers and not for end users. We have tried
to base the implementation as much as possible on a clear object-oriented design
that supports code reusability. This rule has only been violated at some internal
performance-critical code sections. The developed class library can be used in two
ways:

1. To write simulation programs as ordinary C++-programs. That means that
the data structures that represent the model are created by writing down by
hand C++-source code based on the class library. The source code has to be
compiled and linked to obtain an executable file which simulates the model
and prints the results when executed. This approach has been followed for the
example given in Section B.3.

2. To write an universal, user-friendly simulation program that accepts model
specifications in form of, e.g., XML files or graphical input. This approach
requires a front-end that reads the model specification and transforms it into
data structures using the C++-classes of the simulator environment. Then
the simulation is started and the obtained results are transformed back into
a human-readable format. An example for this approach is the simulator
included in the FiFiQueues network analyzer (see Chapter 8).

185



186 B The Simulator

World

Pseudo RNG

Distribution

Statistical Data

Collector

Event List

(FES)

Virtual Clock

Event Memory

Manager

Observer

*
1

*1
*1

Event Processor

Figure B.1: Overview of the logical structure of the simulator

This appendix is further structured as follows: we first give an overview of the struc-
ture of the simulator in Section B.2 and briefly discuss the offered C++-classes. An
example presented in Section B.3 shows how these classes are employed to simulate
a small queueing network.

B.2 Overview

B.2.1 Logical structure

Figure B.1 shows an overview of the logical structure of the simulator. Lines with
arrowheads represent event exchanges between components of the simulator whereas
simple lines without arrowheads stand for general data exchange, e.g., state infor-
mation.

The central component of the simulator is the World object. As any discrete-
event simulator the simulation world has got a virtual clock showing the virtual
time in the simulated scenario. The event list (or future event set (FES)) is a
sorted list of the events that should be processed in the future. The event processors
are the “workers” of the simulation world. Any event placed into the FES has a
time stamp giving its execution time and a data field that specifies the destination
event processor of the event. When a simulation runs, the world fetches the next
event from the FES, as scheduled according to its time stamp, and sends it to its
destination for execution. For optimal performance, event memory allocation and
deallocation is managed by the event memory manager.

An event processor is the implementation of a model component, for example,
a queueing station. Event processors are able to process (or execute) events and to
send new events to other event processors (using the FES). The state of an event
processor can be observed by one or more observers. An observer may be passive,
i.e., only gathering data or it may be active. Active observers may influence the
simulation run. Typical examples for passive observers are the InterTimeObserver



B.2 Overview 187

EventProcessorList

Time

RNG

Event

World

EventProcessor

EventList

Object

Distribution

Stats

Figure B.2: Simulator core classes

(not shown in the figure) which compute statistics of inter-event times (for example
inter-arrival times) using a statistical data collector. Active observers control the
flow of simulation and react on changes in the state of the associated event proces-
sor. Usually a simulation model contains at least one such active observer that stops
the simulation as soon as some user specified conditions are fulfilled. Event proces-
sors are supported by other objects (like pseudo random number generators (pseudo
RNGs) or distributions) to generate new events according to user specifications.

B.2.2 Class organization of the implementation

Figures B.2 to B.7 show the organization of the classes of the C++-implementation.
The trees with their roots and leaves stand for the inheritance relations between the
classes — a leaf class inherits from the upper class in the tree.

The class structure deviates in some points from the logical structure described in
the previous section. This is mainly for performance reasons: classes that are often
instantiated are kept simple and without parent class to reduce overhead during
instantiation.

Core classes

The core classes of the simulator are shown in Figure B.2.

Generally speaking, the job of the Distribution class (and its subclasses) is to
feed the simulator components with sequences of numbers for the implementation of
random point processes. Most of the subclasses of the Distribution class (shown in



188 B The Simulator

Distribution

Determ

Erlang

Gauss

Hyper

HyperN

MaxEnt

Pareto

PSSP

Trace

Weibull

RNG

ACG

MT

ConcurrentRNG

Figure B.3: Overview of distribution function and pseudo RNG classes

the left tree in Figure B.3) provide random numbers that are distributed according
to specific distributions (hence the name of the super class) and some common
distributions like deterministic, Erlang, Normal, etc., are included.

Most subclasses of the Distribution class need a pseudo random number gener-
ator (RNGs). The superclass of all RNG generators is the RNG class. The right tree
in Figure B.3 shows three RNG implementations: the well known Acyclic Congru-
ent Generator (ACG), the Mersenne Twister generator (MT), and an implementation
of a thread-based concurrent RNG (ConcurrentRNG). The Mersenne Twister [80]
is an excellent new random number generator which is much faster than the ACG
and provides the astronomical period of 219937 − 1. We strongly encourage its usage
since today’s computer power is able to exhaust the period of 232 or less of ordinary
generators.

The Event class implements a generic event in the simulation world. Ob-
jects from this class contain a pointer to their destination (an instance of the
EventProcessor class) and the delivery time (of type Time). Additionally, the
Event class manages the memory allocation and deallocation of event objects.

“Live” objects in the simulation world are instances of subclasses of the Object

class. This class defines an output method that is used by the simulator to generate
a report when simulation ends. The only objects that are able to receive and process
events are instances of the EventProcessor class and its subclasses.

The simulation world itself, class World is a subclass of Object, too. The
world maintains the future event set (implemented as an EventList), the cur-



B.2 Overview 189

rent virtual time, and a list of all EventProcessor objects in the world (class
EventProcessorList). This list is used to broadcast important information about
the state of the simulation, for example, when the warm-up phase ends.

The last core class, the Stats class is usually not used directly but by means of
the observer objects described below.

Observers and statistics

Many event processors can experience changes in their internal state that the user
may want to record statistically. For this purpose event processors maintain observer
lists for every kind of state change and the user can add observers to these lists. If
a state change occurs all observers in the associated list are notified. For example, a
queueing station offers observer lists for job arrival times and queue length changes.
The simulator currently provides two general classes of observers (see left tree in
Figure B.4).

When a certain state change occurs, observers of the class EventObserver simply
receive the event that triggered the state change as notification information. The
simplest example is the StopSim class: it counts the received events and stops the
simulation when a certain threshold has been reached. The StatStarter class is
used to end the warm-up phase: it notifies all event processors about the end of
the warm-up phase as soon as a certain number of events have been received. The
thus-notified event processors may then decide to start the collection of statistical
data, hence the name of the observer. The InterTimeObserver class can be used
when one is interested in the time intervals between two received events.

The other class of observers, defined in DataEventObserver, receives a data
item (e.g., the queue length) in addition to the trigger event. Instances of the
DataObserver class are only interested in this data item, DataInterTimeObserver
objects also respect the time intervals between the received data items.

Note that the observers do not compute any statistical information on their own.
This is done by the Stats objects (shown in the right tree in Figure B.4). A user
that adds an observer to a specific observer list only notifies the system that it is
interested in the occurrence of the state change associated to the list. When the
observer receives the trigger event (and the data item if it is a DataEventObserver)
it has to pass the information to a Stats object. This object is chosen by the user
depending on the amount of statistical information that should be computed. Stats
objects of type Moments compute the first and second moment of the received data
whereas Moments3 also computes the third moments. The ConcurrentMoments class
is a thread-based concurrent implementation of the Moments class.



190 B The Simulator

EventObserverList

EventObserver

InterTimeObserver

StatStarter

StopSim

DataEventObserverList

ObjectObject

StatsEventProcessor

DataEventObserver

DataObserver

DataInterTimeObserver

ConcurrentMoments

Moments3

Moments

Figure B.4: Overview of observer and statistics classes

Queueing network components

The classes described above implement general concepts for the simulation of various
scenarios. The following classes are more specific and have been developed for the
simulation of communication networks, especially queueing networks. In our simu-
lator a network consists of event generators and input processors (see Figure B.5). A
generator (class Generator) continuously sends events to its destination, an input
processor, where the length of the time interval between two events is controlled
by a Distribution object. These events, we call them network events, represent
the jobs traveling through the network. InputProcessor objects are special event
processors that are able to receive these network events. Often, an input processor
forwards the received network event to its destination after some processing delay.

The most basic input processor is the Sink object. It simply discards received
events. The ProbSplitter resp. TripleProbSplitter forwards received events to
one out of two resp. three different destinations which is probabilistically selected
by an uniform distribution.

A more complex input processor is the QueueingStation class which is shown
together with its helper classes in Figure B.6. This class implements a queueing
station with a finite or infinite buffer and one or more service stations. Incoming
network events are queued into the waiting buffer (class Queue) and then are sched-
uled for service in the service stations. The scheduling, i.e., the strategy to get the
next event for service from queue, is controlled by a Scheduling object where the
most popular is the FCFS scheduling. The service stations generate internal events



B.3 Example 191

Object

EventProcessor

Generator

InputProcessor

ProbSplitter

TripleProbSplitter

Sink

QueueingStation

Figure B.5: Overview of network component classes

of type ServiceEvent to indicate the end of service time. The length of the service
time for an network event is not simply given by a Distribution object. Instead,
the network event is passed to a ServiceTime object which computes the service
time for this event. We will see below why this intermediate step is done.

Events with class number

Until this point we have everything to simulate queueing networks. However, for
complex network models it is often useful to have components that are able to
process “classed” network events (prefix Job in the class hierarchy). When an event
is generated a job class number is assigned to it. Then the input processors should
give different services to the events according to this number.

Figure B.7 shows the classes required for the support of classed network events.
Obviously, we need a new kind of event that extends the generic event by a job
class number field. This is done by JobEvent. A new splitter is introduced in
JobClassSplitter which does not randomly choose the destination but by the job
class number of the received event. Instances of class JobClassChanger are used to
change the job class number of an event. The service time in the queueing station is
controlled by JobServiceTime. It allows the specification of different service time
distributions (i.e, Distribution objects) for each job class.

B.3 Example

In this section we explain the simulator source code (see Figure B.8) for a small
network consisting of two event generators that feed a queue with events of two
different job classes.



192 B The Simulator

FCFSScheduling

Scheduling

ServiceEvent

Event

ServiceTime

Queue

EventProcessor

Object

QueueingStation

InputProcessor

Figure B.6: Overview of queueing station classes

JobServiceTime

ServiceTime

JobEvent

Event

JobClassSplitter

JobClassChanger

EventProcessor

Object

InputProcessor

Figure B.7: Classes for support of events with class number



B.3 Example 193

Before we can specify the network model, we have to declare and initialize two
common data structures: the memory manager for the event class (line 9) and the
world object (line 10). Additionally, all distributions used in the model should
share one RNG (line 11). By default the RNG initializes itself (“seeding”) using the
current time.

The first event generator (lines 13–14) sends network events to the queue with job
class number 0. The time between event generation should be hyper-exponentially
distributed with mean 2.0 and variance 10.0. Since generators are very generic and
do not know about special event subclasses we have to give to the generator an
example of the events that we want to be generated.
The argument InputProcessor eventInput specifies that the event should be send
to the destination of the generator, the queue, as a network event, i.e., the queue
should process the event by its input processor receipt-method, not by its general
event processor receipt-method. In this way, the queue can differ between incoming
network events and other events like system events. The second generator is defined
in the same way, this time with job class number 1 (lines 15–16).

We continue with the queueing station. Its service station should process events
of job class 0 with an Erlang-distributed service time with mean 1.0 and variance
0.5. Events of job class 1 should get Erlang-distributed service with mean 1.0 and
variance 0.25. We define these two distributions in an array (line 17) which we
will later pass to the JobServiceTime object of the queue. The queueing station
(lines 18–19) should have one service process and an infinite queueing buffer (indi-
cated by -1). Since the served jobs should leave the network we need a sink object
(line 20).

Finally, we establish the connections between the network components (lines 22–
23) and we are ready to start the simulation (line 34) and output the results (lines
36–39). However, note that the network components do not collect any statistical
information by default, and the simulation will not terminate because no stop con-
dition has been specified. Hence, we add some observers to the queueing station and
the sink. We construct observers that collect information using Moments statistical
objects (lines 25–30). Additionally, we assign an observer to the sink that stops
the simulation as soon as 106 jobs have reached the sink (line 31). To allow the
simulator to warm up, the statistical observers should not start their work before
the sink has received 10, 000 network events. This is achieved by a StatStarter

observer (line 32).



194 B The Simulator

1 #include <iostream.h>

2 #include "World.h"

3 #include "rngs/MT.h"

4 #include "distributions/hyper.h"

5 #include "distributions/erlang.h"

6 ...

7

8 int main(int argc, char *argv[]) {

9 Event::init_mempool() ;

10 World world("My World") ;

11 MT rng ;

12

13 Generator gen1("Generator 1",&world,new Hyper(2.0,10.0,&rng),

14 new JobEvent(0,NULL,NULL,InputProcessor_eventInput,0)) ;

15 Generator gen2("Generator 2",&world,new Hyper(2.0,10.0,&rng),

16 new JobEvent(0,NULL,NULL,InputProcessor_eventInput,1)) ;

17 Distribution *sd[]={new Erlang(1.0,0.5,&rng),new Erlang(1.0,0.25,&rng)} ;

18 QueueingStation queue("My queueing station",&world,

19 new FCFSScheduling(),new JobServiceTime(sd),1,-1) ;

20 Sink sink("My sink",&world) ;

21

22 gen.setDestination(&queue) ;

23 queue.setDestination(&sink) ;

24

25 queue.responseTimeObservers.push_back(

26 new DataObserver(NULL,&world,new Moments())) ;

27 queue.queueLengthObservers.push_back(

28 new DataInterTimeObserver(NULL,&world,new Moments())) ;

29 sink.inputEventObservers.push_back(

30 new InterTimeObserver(NULL,&world,new Moments())) ;

31 sink.inputEventObservers.push_back(new StopSim(NULL,&world,1000000)) ;

32 sink.inputEventObservers.push_back(new StatStarter(NULL,&world,10000)) ;

33

34 world.start() ;

35

36 std::cout << endl ;

37 std::cout << world ;

38 std::cout << queue ;

39 std::cout << sink ;

40

41 return EXIT_SUCCESS ;

42 }

Figure B.8: Source code of the simulation example



Appendix C

Publications by the Author

C. Görg, R. Popp, M. Schmitt, D. Trossen, B.R. Haverkort, and R. Sadre. Data
transmission in ATM networks: Applications, interfaces, protocols, and perfor-
mance. In 6th IFIP Workshop on Performance Modelling and Evaluation of ATM
Networks, Participants Proceedings, 1998.

M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent imple-
mentation in Java. Journal of Functional and Logic Programming, 1999(6), 1999.

1R. Sadre, B.R. Haverkort, and A. Ost. An efficient and accurate decomposition
method for open finite- and infinite-buffer queueing networks. In W. Stewart and
B. Plateau, editors, Proceedings 3rd Int. Workshop on Numerical Solution of Markov
Chains, pages 1–20. Zaragosa University Press, 1999.

1R. Sadre and B.R. Haverkort. FiFiQueues: Fixed-point analysis of queueing net-
works with finite-buffer stations. In MMB (Kurzvorträge), volume 99-16, pages
77–80. Universität Trier, 1999.

1R. Sadre and B.R. Haverkort. FiFiQueues: fixed-point analysis of queueing net-
works with finite-buffer stations. In Computer Performance Evaluation. Modelling
Techniques and Tools: 11th International Conference, TOOLS 2000, volume 1786
of Lecture Notes in Computer Science, pages 324–327. Springer, 2000.

2R. Sadre and B.R. Haverkort. Characterizing traffic streams in networks of
MAP/MAP/1 queues. In Proceedings 11th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication Systems (MMB 2001),

1These papers describe the original FiFiQueues algorithm (without extensions or proof of exis-
tence of the fixed point). Section 5.3 is based on these.

2This paper describes the finite output process approximation for MAP|MAP|1 queues as dis-
cussed in Section 9.3.

195



196 C Publications by the Author

pages 195–208. VDE Verlag, 2001.

3R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. Fitting World-Wide Web
request traces with the EM-algorithm. In Proceedings of SPIE 4523 (Internet
Performance and Control of Network Systems), pages 211–220, 2001.

R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. A validation of the pseudo
self-similar traffic model. In 2002 International Conference on Dependable Systems
and Networks (DSN 2002), pages 727–734. IEEE Computer Society, 2002.

R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. A class-based least-recently
used caching algorithm for WWW proxies. In Proceedings of the 2th Polish-German
Teletraffic Symposium, Gdansk, Poland, September 2002.

R. El Abdouni Khayari, R. Sadre, B.R. Haverkort, and N. Zoschke. Weighted fair
queueing scheduling for World Wide Web proxy servers. In Proceedings of SPIE
4865 (Internet Performance and Control of Network Systems III), pages 120–131,
2002.

3R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. Fitting World-Wide Web
request traces with the EM-algorithm. Performance Evaluation, 52(2-3):175–191,
2003.

B.R. Haverkort, R. El Abdouni Khayari, and R. Sadre. A class-based least-
recently used caching algorithm for World-Wide Web proxies. In Computer Perfor-
mance Evaluations, Modelling Techniques and Tools. 13th International Conference,
TOOLS 2003, volume 2794 of Lecture Notes in Computer Science, pages 273–290.
Springer, 2003.

R. El Abdouni Khayari, R. Sadre, B.R. Haverkort, and A. Ost. The pseudo-self-
similar traffic model: application and validation. Performance Evaluation, 56(1-
4):3–22, 2004.

3In these papers the EM-fitting algorithm (without stratification) for hyper-exponential distri-
butions is described. Sections 4.1 through 4.3 and parts of Section 4.6 are based on these.



Bibliography

[1] J. Abate and W. Whitt. Transient behavior of the M/M/1 queue: starting at
the origin. Queueing systems, 2:41–65, 1987.

[2] N. Akar and K. Sohraby. An invariant subspace approach in M|G|1 and
G|M|1 type Markov chains. Communications in Statistics: Stochastic Models,
13(3):251–257, 1997.

[3] D. Anick, D. Mitra, and M.M. Sondhi. Stochastic theory of a data-handling
system with multiple sources. Bell System Technical Journal, 61(8):1871–1894,
1982.

[4] Apache Software Foundation. Apache HTTP Server Project.
http://httpd.apache.org/.

[5] M.F. Arlitt and C.L. Williamson. Internet Web Servers: Workload Charac-
terization and Performance Implications. IEEE/ACM Transactions on Net-
working, 5(5):631–645, 1997.

[6] S. Asmussen and O. Nerman. Fitting Phase-Type Distributions via the EM
Algorithm. In Symposium i Anvendt Statistik, pages 335–346, 1991.

[7] S. Asmussen and R.Y. Rubinstein. Steady State Rare Event Simulation in
Queueing Model and its Complexity Properties. Advances in Queueing: The-
ory, Methods and Open Problems, I:429–462, 1995.

[8] F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios. Open, closed, and
mixed networks of queues with different classes of customers. Journal of the
ACM, 22(2):248–260, 1975.

[9] N.G. Bean, D.A. Green, and P.G. Taylor. Approximations to the output
process of MAP|PH|1 queues. In Advances in Matrix Analytic Methods for
Stochastic Models — Proceedings of the 2nd International Conference on Ma-
trix Analytic Methods, pages 151–159. Notable Publications, Inc., 1998.

197



198 BIBLIOGRAPHY

[10] D. Bini, S. Chakravarthy, and B. Meini. A new algorithm for the design of finite
capacity service units. In Numerical Solution of Markov Chains (NSMC’99),
pages 247–260. Prensas Universitarias de Zaragoza, 1999.

[11] D. Bini and B. Meini. On cyclic reduction applied to a class of Toeplitz-like
matrices arising in queueing problems. In Proceedings of the Second Inter-
national Workshop on Numerical Solution of Markov Chains, pages 21–38.
Raleigh, North Carolina, 1995.

[12] A. Bobbio, A. Horváth, and M. Telek. Matching three moments with minimal
acyclic phase type distributions. Stochastic Models, 21:303–326, 2005.

[13] P.P. Bocharov. Analysis of the queue length and the output flow in single
server with finite waiting room and phase type distributions. Problems of
Control and Information Theory, 16(3):211–222, 1987.

[14] P.P. Bocharov and V.A. Naoumov. Matrix-geometric stationary distribution
for the PH/PH/1/r queue. Elektronische Informationsverarbeitung und Ky-
bernetik, 22(4):179–186, 1986.

[15] G. Bolch, G. Fleischmann, and R. Schreppel. Ein funktionales Konzept zur
Analyse von Warteschlangennetzen und Optimierung von Leistungsgrößen. In
Messung, Modellierung und Bewertung von Rechensystemen (MMB), Proceed-
ings, volume 154, pages 327–342. Springer, 1987.

[16] D. Brocker. Messung und Modellierung komplexer Verkehrsstrukturen in
Hochgeschwindigkeitsnetzen. Diploma thesis, RWTH-Aachen, Germany, 1998.

[17] R. Brown. Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Communications of the ACM, 31(10):1220–1227,
october 1988.

[18] P.J. Burke. The output of a queueing system. Operations Research, 4:699–704,
1956.

[19] J.P. Buzen. Computational algorithms for closed queueing networks with ex-
ponential servers. Communications of the ACM, 16(9):527–531, 1973.

[20] R. Chakka. Performance and Reliability Modelling of Computing Systems
Using Spectral Expansion. PhD thesis, University of Newcastle upon Tyne,
1995.

[21] S. Chakravarthy and M.F. Neuts. Algorithms for the design of finite-capacity
service units. Naval Research Logistics, 36:147–165, 1989.



BIBLIOGRAPHY 199

[22] G. Ciardo and A. Miner. SMART: Simulation and Markovian Analyzer for
Reliability and Timing. In Proceedings of the IEEE International Computer
Performance and Dependability Symposium, page 60. IEEE CS Press, Septem-
ber 1996.

[23] G. Clark, T. Courtney, D. Daly, D.D. Deavours, S. Derisavi, J.M. Doyle, W.H.
Sanders, and P.G. Webster. The Möbius Modeling Tool. In Proceedings of
Petri Nets and Performance Models (PNPM 2001), pages 241–250. IEEE CS
Press, Aachen, Germany, September 2001.

[24] M.E. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traf-
fic: Evidence and Possible Causes. IEEE/ACM Transactions on Networking,
5(6):835–846, 1997.

[25] J. Dahmen, K. Beulen, and H. Ney. A Mixture Density Based Approach for
Object Recognition for Image Retrieval. 6th International RIAO Conference
on Content-Based Multimedia Information Access, pages 1632–1647, 2000.

[26] D.D. Deavours and W.H. Sanders. Möbius: Framework and atomic models.
In Proceedings of Petri Nets and Performance Models (PNPM 2001), pages
251–260. IEEE CS Press, Aachen, Germany, September 2001.

[27] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(B):1–
38, 1977.

[28] R. El Abdouni Khayari. Workload-Driven Design and Evaluation of Web-
Based Systems. PhD thesis, RWTH Aachen, Germany, 2003.

[29] R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. Fitting World-Wide
Web request traces with the EM-algorithm. In Proc. of SPIE 4523 (Internet
Performance and Control of Network Systems), pages 211–220, 2001.

[30] R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. A validation of the
pseudo self-similar traffic model. In 2002 International Conference on De-
pendable Systems and Networks (DSN 2002), pages 727–734. IEEE Computer
Society, 2002.

[31] R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort. Fitting World-Wide
Web request traces with the EM-algorithm. Performance Evaluation, 52(2-
3):175–191, 2003.

[32] R. El Abdouni Khayari, R. Sadre, B.R. Haverkort, and A. Ost. The pseudo-
self-similar traffic model: application and validation. Performance Evaluation,
56(1-4):3–22, 2004.



200 BIBLIOGRAPHY

[33] Y. Fang. Hyper-Erlang Distribution Model and its Application in Wireless
Mobile Networks. Wireless Networks, 7:211–219, 2001.

[34] A. Feldmann and W. Whitt. Fitting Mixtures of Exponentials to Long-Tail
Distributions to Analyze Network Performance Models. Performance Evalua-
tion, 31:245–258, 1998.

[35] W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process
(MMPP) cookbook. Performance Evaluation, 18:149–171, 1992.

[36] G.S. Fishman. Discrete-event simulation: modeling, programming and analy-
sis. Springer-Verlag New York Inc., 2001.

[37] B. Friis. Modelling Long-Range Dependent and Heavy-Tailed Phenomena by
Matrix Analytic Methods. In G. Latouche and P. Taylor, editors, Advances
in Algorithmic Methods for Stochastic Models, pages 265–278. Notable Publi-
cations, Inc., 2000.

[38] W.J. Gordon and G.J. Newell. Closed queueing systems with exponential
servers. Operations Research, 15:254–265, 1967.

[39] C. Görg. Rare Event Simulation. Simulation seltener Ereignisse und deren
Anwendungen auf Kommunikationsnetze. Tutorial. Lehrstuhl für Kommu-
nikationsnetze, RWTH Aachen, September 1999.

[40] D. Green. Lag correlations of approximating departure processes for
MAP|PH|1 queues. In G. Latouche and P. Taylor, editors, Advances in Algo-
rithmic Methods for Stochastic Models — Proceedings of the 3rd International
Conference on Matrix Analytic Methods, pages 135–151. Notable Publications,
Inc., 2000.

[41] S.D. Gribble. UC Berkeley Home IP HTTP Traces.
http://www.acm.org/sigcomm/ITA/.

[42] M. Grossglauser and J.-C. Bolot. On the relevance of long-range dependence
in network traffic. IEEE/ACM Transactions on Networking, 7(5):629–640,
October 1999.

[43] B.R. Haverkort. Approximate analysis of networks of PH|PH|1|K queues:
Theory & tool support. In H. Beilner and F. Bause, editors, MMB, volume
977 of Lecture Notes in Computer Science, pages 239–253. Springer, 1995.

[44] B.R. Haverkort. QNAUT: Approximately analyzing networks of PH|PH|1|K
queues. Proceedings of the 1996 International Computer Performance and
Dependability Symposium, page 57, 1996.



BIBLIOGRAPHY 201

[45] B.R. Haverkort. Approximate analysis of networks of PH|PH|1|K queues with
customer losses: Test results. Annals of Operations Research, 79:271–291,
1998.

[46] B.R. Haverkort. Performance of Computer Communication Systems — A
Model-Based Approach. John Wiley & Sons, 1998.

[47] A. Heindl. Traffic-based decomposition of general queueing networks with cor-
related input processes. PhD thesis, Institut für Technische Informatik, Tech-
nische Universität Berlin, March 2001.

[48] A. Heindl. Decomposition of general queueing networks with MMPP inputs
and customer losses. Performance Evaluation, 51(2-4):117–136, 2003.

[49] A. Heindl, Q. Zhang, and E. Smirni. ETAQA Truncation Models for the
MAP/MAP/1 Departure Process. In First International Conference on The
Quantitative Evaluation of Systems (QEST’04), pages 100–109. IEEE Com-
puter Society, 2004.

[50] H. Hermanns and J.-P. Katoen. Automated compositional Markov chain gen-
eration for a plain-old telephone system. Science of Computer Programming,
36(1):97–127, 2000.

[51] H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process
Algebras and Their BDD-Based Implementation. In J.-P. Katoen, editor,
Formal Methods for Real-Time and Probabilistic Systems, 5th International
AMAST Workshop, ARTS’99, Bamberg, Germany, volume 1601 of Lecture
Notes in Computer Science, pages 244–264. Springer, 1999.

[52] A. Horvath and M. Telek. Approximating Heavy-Tailed Behaviour with Phase-
Type Distributions. In G. Latouche and P. Taylor, editors, Advances in Algo-
rithmic Methods for Stochastic Models, pages 191–213. Notable Publications,
Inc., 2000.

[53] J.A. Incera Diéguez. Contributions à la modélisation et à la simulation
accélérée de réseaux de communication. PhD thesis, Institut de Formation
en Informatique et Communication, Université de Rennes, March 2001.

[54] J.R. Jackson. Networks of waiting lines. Operations Research, 5:518–521, 1957.

[55] R. Jain. The Art of Computer System Performance Evaluation. John Wiley
& Sons, 1991.

[56] D. Janecek. Integrating FiFiQueues into the Möbius Framework. Diploma
thesis, Lehr- und Forschungsgebiet Informatik 4, RWTH Aachen, 2004.



202 BIBLIOGRAPHY

[57] M.A. Johnson. Selecting parameters of phase distributions: Combining non-
linear programming, heuristics, and Erlang distributions. ORSA Journal on
Computing, 5(1):69–83, 1993.

[58] M.A. Johnson and M.R. Taaffe. Matching moments to phase distributions:
Mixtures of Erlang distributions of common order. Communications in Sta-
tistics: Stochastic Models, 5(4):711–743, 1989.

[59] M.A. Johnson and M.R. Taaffe. Matching moments to phase distributions:
Nonlinear programming approaches. Communications in Statistics: Stochastic
Models, 6(2):259–281, 1990.

[60] P.J.B. King. Computer and Communication Systems Performance Modelling.
Prentice-Hall, 1990.

[61] T. Koschel. Modellierung und Bewertung von Verteilten Web-Servern.
Diploma thesis, Lehr- und Forschungsgebiet Informatik 4, RWTH Aachen,
August 2002.

[62] D.D. Kouvatsos and N.P. Xenios. MEM for arbitrary queueing networks with
multiple general servers and repetitive-service blocking. Performance Evalua-
tion, 10:169–195, 1989.

[63] W. Krämer and M. Langenbach-Belz. Approximate Formulae for the Delay in
the Queueing System GI/G/1. In Proceedings of the 8th International Tele-
traffic Congress, pages 235–1/8, 1976.

[64] P.J. Kühn. Approximate analysis of general queueing networks by decompo-
sition. IEEE Transactions on Communications, 27(1):113–126, 1979.

[65] G. Latouche. Algorithms for infinite Markov chains with repeating columns.
In C.D. Meyer, editor, Linear algebra, Markov chains, and queueing models,
pages 231–265. Springer-Verlag, 1993.

[66] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi
birth and death processes. Journal of Applied Probability, 30:650–674, 1993.

[67] S.S. Lavenberg and M. Reiser. Stationary state probabilities at arrival instants
for closed queueing networks with multiple types of customers. Journal of
Applied Probability, 17(4):1048–1061, 1980.

[68] L.N. Le Ny and B. Sericola. Transient analysis of the BMAP/PH/1 queue.
International Journal of Simulation: Systems, Science & Technology. Special
Issue on Analytical & Stochastic Modelling Techniques, 3(3–4):4–14, December
2002.



BIBLIOGRAPHY 203

[69] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-similar
nature of Ethernet traffic. In Proc. ACM SIGCOMM ’93, volume 23 of Com-
puter Communications Review, pages 183–193, October 1993.

[70] P.S. Levy and S. Lemeshow. Sampling of Populations: Methods and Applica-
tions. Wiley, 1999.

[71] S.Q. Li. Queue response to input correlation functions: Continuous spectral
analysis. IEEE/ACM Transactions on Networking, 1(6):678–692, December
1993.

[72] Y. Linde, A. Buzo, and R. Gray. An Algorithm for Vector Quantizer Design.
IEEE Transactions on Communications, 28(1):84–95, 1980.

[73] M. Livny, B. Melamed, and A.K. Tsiolis. The impact of autocorrelation on
queueing systems. Management Science, 39(3):322–339, March 1993.

[74] D.M. Lucantoni. New results on the single server queue with a batch Markov-
ian arrival process. Commun. Statist.- Stochastic Models, 7(1):1–46, 1991.

[75] D.M. Lucantoni, G.L. Choudhury, and W. Whitt. Computing transient dis-
tributions in general single-server queues. In Global Telecommunications Con-
ference (GLOBECOM ’93), pages 1045–1050. IEEE, 1993.

[76] D.M. Lucantoni, K.S. Meier-Hellstern, and M.F. Neuts. A single server queue
with server vacations and a class of non-renewal arrival processes. Advances
in Applied Probability, 22:676–705, 1990.

[77] A. Madansky. Optimal initial conditions for a simulation problem. Operations
Research, 24:172–577, 1976.

[78] V. Mainkar and K.S. Trivedi. Sufficient conditions for existence of a fixed
point in stochastic reward net-based iterative models. IEEE Transactions of
Software Engineering, 22(9):640–653, September 1996.

[79] K.T. Marshall. Some inequalities in queueing. Operations Research, 16:651–
665, 1968.

[80] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8:3–30, 1998.

[81] J. McKenna and D. Mitra. Asymptotic Expansions and Integral Representa-
tions of Moments of Queue Lengths in Closed Markovian Networks. Journal
of the ACM, 31(2):346–360, 1984.



204 BIBLIOGRAPHY

[82] V. Naoumov, U.R. Krieger, and D. Wagner. Analysis of a multi-server delay-
loss system with a general Markovian arrival process. Matrix-Analytical Meth-
ods in Stochastic Models, 183:43–66, September 1996.

[83] Network Working Group. RFC 1945. Hypertext Transfer Protocol –
HTTP/1.0. http://www.w3.org/Protocols/rfc1945/rfc1945, 1996.

[84] M.F. Neuts. A versatile Markovian point process. Journal of Applied Proba-
bility, 16(2):764–779, December 1979.

[85] M.F. Neuts. Matrix-Geometric Solutions in Stochastic Models — An Algorith-
mic Approach. Dover Publications, Inc., 1981.

[86] R.O. Onvural. Survey of closed queueing networks with blocking. ACM Com-
puting Surveys, 22(2):83–121, june 1990.

[87] T. Osogami and M. Harchol-Balter. A Closed-Form Solution for Mapping
General Distributions to Minimal PH Distributions. In Peter Kemper and
William H. Sanders, editors, Computer Performance Evaluation, Modelling
Techniques and Tools. 13th International Conference, TOOLS 2003, volume
2794 of Lecture Notes in Computer Science, pages 200–217. Springer, 2003.

[88] A. Ost. Performance of Communication Systems – A Model-Based Approach
with Matrix-Geometric Methods. PhD thesis, Lehr- und Forschungsgebiet In-
formatik 4, RWTH Aachen, 2001.

[89] A. Ost and B.R. Haverkort. Analysis of windowing mechanisms with infinite-
state stochastic Petri nets. ACM Performance Evaluation Review, 26(2):39–46,
August 1998.

[90] A. Panchenko and A. Thümmler. Efficient phase-type fitting with aggregated
traffic traces. Performance Evaluation, 2007. (to appear).

[91] A. Papoulis and S.U. Pillai. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, 2001.

[92] K. Pawlikowski. Steady-state simulation of queueing processes: A survey of
problems and solutions. ACM Computing Surveys, 22(2):123–170, 1990.

[93] V. Paxson and S. Floid. Wide area traffic: The failure of Poisson modelling.
IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[94] P. Reinelt. Erweiterung des fixpunktbasierten Analyseverfahrens von Fi-
FiQueues auf geschlossene Warteschlangennetze. Diploma thesis, Lehr- und
Forschungsgebiet Informatik 4, RWTH Aachen, 2001.



BIBLIOGRAPHY 205

[95] M. Reiser and S.S. Lavenberg. Mean-Value Analysis of Closed Multichain
Queuing Networks. Journal of the ACM, 27(2):313–322, 1980.

[96] A. Riska, V. Diev, and E. Smirni. Efficient fitting of long-tailed data sets
into hyperexponential distributions. Internet Performance Symposium, IEEE
GlobeCom 2002, 3:2513–2517, 2002.

[97] A. Riska, V. Diev, and E. Smirni. An EM-based technique for approximating
long-tailed data sets with PH distributions. Performance Evaluation, 55(1–
2):147–164, 2004.

[98] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17–29, March 1994.

[99] T. Ryden. Statistical Estimation for Markov-modulated Poisson Processes
and Markovian Arrival Processes. In G. Latouche and P. Taylor, editors, Ad-
vances in Algorithmic Methods for Stochastic Models, pages 329–350. Notable
Publications, Inc., 2000.

[100] R. Sadre and B.R. Haverkort. FiFiQueues: fixed-point analysis of queueing
networks with finite-buffer stations. In MMB (Kurzvorträge), volume 99-16,
pages 77–80. Universität Trier, 1999.

[101] R. Sadre and B.R. Haverkort. FiFiQueues: fixed-point analysis of queue-
ing networks with finite-buffer stations. In Computer Performance Evalua-
tion. Modelling Techniques and Tools: 11th International Conference, TOOLS
2000, volume 1786 of Lecture Notes in Computer Science, pages 324–327.
Springer, 2000.

[102] R. Sadre and B.R. Haverkort. Characterizing traffic streams in networks of
MAP/MAP/1 queues. In Proceedings 11th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication Systems (MMB
2001), pages 195–208. VDE Verlag, 2001.

[103] R. Sadre, B.R. Haverkort, and A. Ost. An efficient and accurate decomposition
method for open finite- and infinite-buffer queueing networks. In W. Stewart
and B. Plateau, editors, Proc. 3rd Int. Workshop on Numerical Solution of
Markov Chains, pages 1–20. Zaragosa University Press, 1999.

[104] H. Samelson. On the Brouwer Fixed Point Theorem. Portugaliae mathematica,
22(4):189–191, 1963.

[105] E.G. Schukat-Talamazzini. Automatische Spracherkennung — Grundlagen,
Statistische Modelle und Effiziente Algorithmen. Friedrich Vieweg & Sons,
1995.



206 BIBLIOGRAPHY

[106] P. Schweitzer. Approximate analysis of multichain closed queueing networks.
In Proceedings of the International Conference on Stochastic Control and Op-
timization, 1979.

[107] K.C. Sevcik and I. Mitrani. The distribution of queueing network states at
input and output instants. Journal of the ACM, 28(2):358–371, 1981.

[108] S. Söhnlein and A. Heindl. Analytic computation of end-to-end delays in
queueing networks with batch Markovian arrival processes and phase-type
service times. In Proceedings of the 13th International Conference on Analyt-
ical and Stochastic Modelling Techniques and Applications (ASMTA), Bonn,
Germany, pages 1–7, May 2006.

[109] D. Tartemann. Untersuchung der Existenz eines Fixpunktes in einem it-
erativen Verfahren zur Warteschlangenanalyse. Diploma thesis, Lehr- und
Forschungsgebiet Informatik 4, RWTH Aachen, 2002.

[110] A. Thümmler, P. Buchholz, and M. Telek. A Novel Approach for Phase-Type
Fitting with the EM Algorithm. IEEE Transactions on Dependable and Secure
Computing, 3:245–258, 2005.

[111] A. Thümmler, P. Buchholz, and M. Telek. A novel approach for fitting proba-
bility distributions to real trace data with the EM algorithm. In International
Conference on Dependable Systems and Networks, 2005. DSN 2005. Proceed-
ings, pages 712–721. IEEE CS Press 2005, 2005.

[112] M. Villén-Altamirano and J. Villén-Altamirano. RESTART: a straightforward
method for fast simulation of rare events. In Proceedings of the 1994 Winter
Simulation Conference, pages 282–289, 1994.

[113] A.J. Weerstra. Using matrix-geometric methods to enhance the QNA method
for solving large queueing networks. Diploma thesis, Department of Computer
Science, University of Twente, 1994.

[114] W. Whitt. Approximating a point process by a renewal process, I: Two basic
methods. Operations Research, 30(1):115–138, 1982.

[115] W. Whitt. The Queueing Network Analyzer. The Bell System Technical
Journal, 62(9):2779–2815, 1983.

[116] W. Whitt. Performance of The Queueing Network Analyzer. The Bell System
Technical Journal, 62(9):2817–2843, 1983.

[117] J.L. Zahorjan, K.C. Sevcik, D.L. Eager, and B.I. Galler. Balanced job bound
analysis of queueing networks. Communications of the ACM, 25(2):134–141,
1982.



Index

asymptotic approximation, 58
autocovariance, 183

fitting, 155
MAP, 21

blocking, 12, 117
before service, 12
communication, 12, 62
probability, 66
repetitive service, 12

bottleneck, 119

clipping level, 152

D&C-EM, see Expectation Maximization,
Divide-and-Conquer

decomposition, 2, 7
of queueing networks, 10

decomposition framework, 17
degree of heavy-tailedness, 36
descriptor, 7

arrival, 8
departure, 8
external, 9
external traffic, 13
first-order, 53
input, 8
MAP-based, 146
output, 8
traffic, 10
with m moments, 80

deterministic distribution, 64, 90

EM, see Expectation Maximization
Expectation Maximization, 39

complexity, 41
Divide-and-Conquer, 42

G-FIT, 43
specialization to HEDs, 40
with stratification, 44

Feldmann-Whitt, 38
FES, see future-event set
FiFiQueues, 61

complexity, 69
fixed point, 71
implementation, 133
tool support, 133

FiFiQueues-NBC, 118
complexity, 121
iteration behavior, 130

fixed point, 16
existence, 71
iteration, 15
theorem of Brouwer, 71

fractality, 35
future-event set, 137

characteristics, 138
insertion, 139
insertion position, 139

FW, see Feldmann-Whitt

G-FIT, 43
Gordon-Newell queueing network, 114

heavy-tailed distribution, 36
HED, see hyper-exponential distribution
HErD, see hyper-Erlang distribution
HTD, see heavy-tailed distribution
hybrid analysis, 87
hyper-Erlang distribution, 43
hyper-exponential distribution, 37

Jackson queueing network, 53

207



208 INDEX

complexity, 56

kurtosis, 103

log-log scale, 36
long-range dependency, 35, 142
loss traffic, 67

stability, 62
lumpability, 150

Möbius Framework, 2, 135
MAP, 19, 145

approximation, 154
autocovariance function, 21
finite approximation, 152
fitting, 155
interval-stationary process, 20
limiting index of dispersion, 21
moments, 20
reduction, 150
splitting, 21
superposition, 21
traffic descriptors, 146

Markovian bisimulation, 150
approximate, 151

measurement, 1
MMPP, 21
model-based evaluation, 1
MVA, 114

observation deletion, 141

Pareto distribution, 36
PH distribution, 22

balanced means, 65
Erlang-Coxian, 85
Erlang-mixture, 83
fitting, 64, 83, 157
MinAPH, 85
modified Erlang, 64
moments, 22

PH renewal process, 22
splitting, 22
superposition, 22

power spectrum, 165, 183
product-model, 7

QBD
finite, 28
infinite, 23
solution, 28
steady-state solution, 24

QNA, 57
complexity, 60
hybrid approximation, 58

queue
finite capacity, 12
MAP/MAP/1, 147
MAP/MAP/1/K, 148
PH/PH/1, 67, 68
PH/PH/1/K, 65, 68

queueing network
closed, 16, 113
open, 13
optimal order of analysis, 16
order of analysis, 14, 16
parallelization, 14
tandem, 12
with feedback, 15
without feedback, 13

random sum, 82
routing

Markovian, 17
matrix, 17
sparse matrix, 56

sampling, 44
Poisson, 44
random, 44
stratified, 44
systematic, 44

self-similarity, 35, 36, 142, 166
sEM, see Expectation Maximization with

stratification
simulation, 1, 135

implementation, 185
initial transient phase, 140



INDEX 209

rare event, 1, 137
skewness, 81
standardized moment, 83
state space explosion, 1, 7, 145
stationary-interval method, 11, 58, 81
stratum, 44
submodel, 7

traffic
descriptor, see descriptor 10
merging, 10
splitting, 10
superposition, 10

Weibull distribution, 36


