
DRAFT

A SCADA Testbed from the Toy Store
Draft version, July 23, 2018

Ramin Sadre

I. INTRODUCTION

In the past years, Supervisory Control and Data Acquisition
(SCADA) systems, and the industrial control systems (ICS)
they are typically part of, have been the object of intensive
research in the area of safety, reliability, and security. For
researchers and educators, working on SCADA systems is
challenging: Unlike most traditional ICT systems, modifying
a SCADA system can have immediate consequences in the
physical world. For this reason, a large number of testbeds as
well as approaches to accurately simulate and emulate SCADA
components and the physical processes controlled by them
have been presented in the literature.

In the following, we will show how the fischertechnik
construction toy [1] can be used to build a SCADA system that
controls a real physical process. Unlike most existing testbeds,
real sensors and actuators are monitored and controlled by the
system. Our approach has the interesting property that it solely
relies on free software and on easily procurable parts from the
fischertechnik toy line.

II. SYSTEM OVERVIEW

A SCADA system consists of at least three parts:
• Sensors and actuators that monitor and act on physical

processes, such as the electricity production in a power
plant or the heating in a building.

• One or more Programmable Logic Controllers (PLC).
PLCs are small devices that process sensor data and
control attached actuators. The behavior of a PLC is
defined by the control program running on it.

• Supervisory computers (or SCADA servers), which are
computers responsible for gathering process data from
the PLCs, sending control commands to them, visual-
izing the current state of the system, and archiving old
measurements. In small systems, all these tasks are often
performed by a single server, whereas larger SCADA
systems can consist of several servers in charge of specific
tasks. Supervisory computers and PLCs communicate
using dedicated light-weight SCADA protocols, such as
Modbus [2] or DNP3.

In our implementation, we will use the following software
and hardware:

• We use the ScadaBR SCADA server software [3], running
as a web application on a tomcat server.

• The fischertechnik ROBOTICS TXT Controller (short
TXT) acts as PLC.

• All sensors, indicator lights, and actuators are standard
components from the fischertechnik toy line.

Sensors
and

actuators
tomcat

SCADA server 

ScadaBR

TXT 

Modbus
server

I/O
controllerModbus TCP

PLC
program

Fig. 1. System with Modbus server and PLC program on the TXT device

Sensors
and

actuators

TXT 

FT 
server

I/O
controllerModbus 

TCP
FT 

TCP

Modbus 
server

PLC
programtomcat

SCADA server 

ScadaBR

Fig. 2. System with Modbus server and PLC program on a dedicated host

ScadaBR implements various popular SCADA protocols
such as Modbus TCP [2] and DNP3. Since the TXT is mainly
a product targeting the educational toy market, it does not
support any of those protocols by default. We have therefore
written a small Modbus server that translates Modbus requests
into appropriate I/O commands for the TXT. The Modbus
server runs in parallel to the control program executed by the
TXT. The resulting setup is depicted in Figure 1.

Alternatively, the Modbus server and the control program
can run on a different host than the TXT, as shown in
Figure 2. In that case, the server and the program control
the TXT remotely using a proprietary TCP-based protocol by
fischertechnik.

We explain the different system components in more detail
in the next section.

III. SYSTEM COMPONENTS

A. The TXT hardware

Fischertechnik is a brand of construction toy produced by
the German company fischertechnik GmbH. Since its introduc-
tion in 1965, the fischertechnik toy line has put a strong focus
on the construction of technical and educational models. In
1985, the company presented a computer interface that made
it possible to control models from BASIC programs running
on PCs and home computers.

The ROBOTICS TXT Controller, introduced in 2013, con-
stitutes the fourth generation of fischertechnik computer in-
terfaces. It contains an ARM Cortex-A8 processor, 256MB
of RAM, a color touchscreen, and communication interfaces
for WiFi, Bluetooth, and USB. It has 8 digital/analog inputs
for switches and analog sensors, 8 fast digital-only inputs
(typically used for rotary encoders), and 8 PWM outputs that
can drive 9V motors, lamps, and solenoid valves produced by
fischertechnik and other companies.



DRAFT
Fig. 3. TXT device with connected switch and lamp

Most customers program the TXT in Robo Pro, fischer-
technik’s visual programming language and integrated devel-
opment environment. Robo Pro allows running programs in
two different modes: In offline mode, the Robo Pro program
is first compiled on a Windows PC and uploaded to the TXT.
Once uploaded, the TXT can be disconnected from the PC
and autonomously control physical models. In online mode,
the device stays connected to the PC, which allows, amongst
others, to debug programs and to access the I/O ports from
the PC.

The TXT runs the GNU/Linux operating system, so it
is not surprising that versed members of the fischertechnik
community quickly started to look for ways to directly pro-
gram the TXT instead of using the Robo Pro environment.
Their activities resulted in the development of the Linux-
based community firmware (CFW) [4] which gives users the
capability to install their own software on the device and to
download apps from CFW’s app store. Most conveniently,
CFW can be booted from an SD card and no modification
of the shipped firmware is required.

B. The physical world

We use standard components from the fischertechnik toy
line for our experiments. A simple test setup is shown in
Figure 3, exhibiting a switch (next to the left hand of the toy
figure) and a lamp (the transparent box above the switch).
The switch and the lamp are connected to an input port,
respectively output port, of the TXT.

C. The PLC software

The PLC software consists of two components: (a) The
Modbus server that enables the TXT to communicate with
the SCADA server, and (b) the real-time PLC program that
defines how the TXT should react to input signals and what
actions it should perform on the output ports. As explained
in Section II, both components can either run on the TXT
device itself (Figure 1) or on a dedicated host (Figure 2)
that controls the TXT remotely using a proprietary TCP-based
protocol by fischertechnik. Obviously, the former configuration
corresponds more to the traditional design of commercial

PLCs found in industry. However, running the PLC software
on a dedicated host, such as a workstation, can be more
convenient for educational experiments since it allows to
quickly modify the PLC program without the need to upload
it to the TXT after each modification.

We have written the Modbus server and the PLC programs
in Python, mainly for the reason of convenience and short
turnaround time during experiments. We heavily rely on the
module ftrobopy [5], which provides an easy to use and
rather complete Python API for the TXT hardware. We have
implemented the server such that PLC programs can access
the contents of the Modbus holding registers. A small example
using this feature is given in Section III-D.

D. The SCADA server

ScadaBR [3] is a free open-source SCADA server. Deployed
as a web application in tomcat, it is responsible for the
communication with the PLCs as well as for preparing the
HTML-based human machine interface (HMI). Events and
measurements can be logged into a SQL database.

ScadaBR includes a web-based tool for the design of
graphical HMIs. Figure 4 shows a simple HMI that we have
created for the test setup presented in Figure 3. The PLC is
executing a small program that turns the light on resp. off
when the switch is pressed. The program stores the number
of times the switch has been pressed in a Modbus holding
register where it can be retrieved by the server. The yellow
rectangle in the upper right corner of the image visualizes the
state of the lamp (or more correctly: the state of the output
port the lamp is attached to). The number in the center of the
image shows the value of the previously mentioned holding
register.

Fig. 4. HMI for a test setup with a switch and a lamp

IV. CONCLUSION AND FUTURE WORK

We have shown how the fischertechnik construction toy [1]
can be used to build a SCADA system. It solely relies on free
software and on parts from the current fischertechnik toy line.
In particular, it uses fischertechnik’s TXT controller as PLC.



DRAFT

The software running on the PLC is written in Python. As
an alternative, we envisage to port OpenPLC [6] to the TXT.
OpenPLC is written in C and has the advantage that it is
compatible to code generated from Ladder Diagrams (LD) and
Structured Text (ST) by the MATIEC compiler [7]. In that way,
people familiar with those languages would not need to learn
Python to program the PLC.

REFERENCES

[1] fischertechnik. [Online]. Available: https://www.fischertechnik.de/en
[2] (2012) Modbus application protocol spec-

ification v1.1b3. [Online]. Available:
http://www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf

[3] ScadaBR. [Online]. Available: http://www.scadabr.com.br/
[4] fischertechnik TXT community firmware. [Online]. Available:

http://cfw.ftcommunity.de/ftcommunity-TXT/de/
[5] ftrobopy. [Online]. Available: https://github.com/ftrobopy/ftrobopy
[6] T. Alves. OpenPLC runtime version 3. [Online]. Available:

https://github.com/thiagoralves/OpenPLC v3
[7] M. de Sousa. MATIEC - IEC 61131-3 compiler. [Online]. Available:

https://bitbucket.org/mjsousa/matiec


