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Abstract
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1. Introduction

The paper introduces and investigates a nonlingdimzation problem with state
constraints, which is of great importance to thenemic growth theory. Identifying
sustainable growth paths is becoming a central toquresf this theory. The issue has
many challenging normative, demographic, and teldgncal aspects (Arrow et al.,
2004). On the technological side, many researchueshave been taken so far resulting
in a quite dense literature. In particulesearch and developme{R&D) programs have
been designed to meet the environmental and physieastraints required for
sustainability. These constraints include, but amg limited to extraction quotas,
pollution quotas, and technical feasibility. A aahtquestion of the latter literature turns
out to be whether such constraints can ultimatedjiver a win-win situation when
economies facing them will have strong incentiv@snnovate resulting in new R&D-
based growth regimes. This mechanism, often refeiweas thePorter hypothesishas
been studied in numerous papers, some empirigal ttie seminal paper by Newell et al.,
1999) and others more theoretically-oriented (seerdoglu et al., 2011, for one of the
most recent contribution on the induced-innovatlypothesis under environmental
constraints). This paper is in line with the latépproach. More precisely, we consider an
optimal growth model with R&D expenditures undeygical constraints. Technological
progress is, therefore, endogenous; it is alsoifsp@cas embodied in capital goods:
thanks to R&D efforts, new capital goods use less lass resource (say, energy). The
view of technological progress as an embodied, gadous, and energy-saving
phenomenon is documented and commented in a stibktierature. In particular,
Ayres (2005) declares that “technical progressssestially equivalent to increasing
efficiency of converting raw resources, such ag,éoe useful work”. More specifically,
substantial economic evidence supports the dimapact of theR&D spendingon the
industry-level capital-embodied technological changilson (2002) used industrial data
to confirm that the cross-industry variation inimsttes of embodied technological
change matches the cross-industry variation in elebloR&D and concluded that “the
technological change, or innovation, embodied innalustry’s capital is proportional to

the R&D that is done (upstream) by the economywabkae”.



2

Our paper has three salient and distinctive featlfest of all, it explicitly uses a vintage
capital framework in the tradition of Solow et @966) with capital and raw resources as
production factors. Raw materials include fossiergy and minerals. Capital and
resources are complementary (Leontief technologgd new vintages consume less
resources over time (resource-saving technicalrpesy. Second, we explicitly account
for physical constraints on the extraction and okeesources, which we formalize as
exogenous upper-bounds on resource consumption. The preseiteese constraints
together with capital-resource complementarity oetuan obsolescence mechanism,
which in turn opens the door to endogenous scrgppisin Boucekkine et al. (1997) and
Hritonenko and Yatsenko (1996), the oldest vintagiisoe removed from the workplace
and replaced by less resource consuming new visitagkird, after characterizing
possible steady states of the dynamic system, \ai study transitional dynamics. In
particular, we aim at identifying clearly the diféat routes to sustainable growth, which
is not so frequent in the endogenous growth liteeatusually restricted to a balanced

growth analysis.

The resulting optimization problem is novel andalés a nonlinear optimal control of
the age-structured population of heterogeneoustatapissets. The mathematical
complexity of the problem comes from non-traditibmeonlinear relations among
variables and the presence of state constrainterdar to achieve clear-cut analytical
results, we consider a linear utility function:igly concave utility functions render the
analytical work intractable, even for steady statalysis. With this simplification, we are
able to derive an analytical characterization &ady states and display the optimal
transition to the steady states. We provide a cetepdynamic analysis of this

optimization problem, which determined the mathecaanhovelty of the paper.

Our framework extends (Boucekkine et al., 2011} #uressed a related firm problem,
while here we will solve an optimal growth modeltire Ramsey sense. To the best of
our knowledge, and with exception of (JovanovicQ@0and (Boucekkine et al., 2011),
no other paper has considered R&D decisions anthgencapital with endogenous
scrapping at the same time. Jovanovic (2009) stedeand analyzed a general-
equilibrium model of endogenous growth with humapital, technology markets, and
more detailed mechanism of innovation accumulasiod diffusion that ours. His model

also delivers a sustainable balanced growth andnmdel complements his findings.
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Using the central planner framework and more aggeegiodeling of R&D, we are not
only able to bring out a thorough analysis of thduiced innovation hypothesis in the
steady state, but also, and more importantly, tvefethe transitional dynamics of the
endogenous growth model under scrutiny and theriyidg dynamic processes. In the
aggregate description of the R&D sector, we folkne well-known endogenous growth
models of Romer (1990) and Jones (1995) addingvihtage capital structure and
endogenous capital scrapping into them. The ma&uoraming difference between these
models and ours is that our R&D block uses a piatthie endogenous output as an input
while they use a part of a given (labor) resousserintage version of (Jones, 1995)

model was briefly analyzed in (Yatsenko et al, 1999

Feichtinger et al. (2005, 2006) have developed Hernative vintage framework
balancing the efficiency gains of running new vges with the learning costs associated,
which opens the door to optimal investment in dlitages, in contrast to our modelling
where such a possibility does not exist (no legrmiosts). Having said this, Feichtinger
et al. (2005, 2006) have not integrated R&D deaisiin their setting, nor have they
endogenized scrapping. Hart (2004) has construzteullti-sector endogenous growth
model with an explicit vintage structure. But higppr differs from ours in at least two
aspects: it is built on two types of R&D, one outpugmenting and the other, say,
environmental-friendly, while in our model only oesce-saving adoptive and/or
innovative R&D is allowed. Also, the vintage stur@ of Hart (2004) includes a fixed
number of vintages and, therefore, there is no w@yuncover a comprehensive
modernization policy optimally combining the scraggpof the dirtiest technologies and

the development of new clean technologies.

A systematic exposure into the mathematical treatra@d properties of such optimal
control problems was done in Hritonenko and Yatse(2005), where the extremum
conditions and qualitative analysis were provided $everal problems of a simpler
structure. In particular, a prototype vintage magith endogenous R&D investment was
considered, which possessed no interior steadgsstifeliov (2008) derived optimality
conditions in the form of a maximum principle foora general and abstract models of

heterogeneous distributed systems with nonlocahuiycs.
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Finally, the modeling philosophy and outcomes a$ thaper are close to some age-

structured models studied in the monograph of Bkkioe et al (2010).

This paper enhances both optimization and econaméories. It has two major
contributions. First, it significantly extends tsieady state analysis of (Boucekkine et al.,
2011). In the latter, the R&D technology is takdmalanced” in the sense that the
standard (negative) complexity componentla Segerstrom (2000) compensates the
(positive) return to R&D investment component i gparameterization considered. In
this paper, we shall explore all the cases: whennégative component dominates and
when it is dominated. We believe that this extemss worth doing because the R&D
technology is not the same across countries: sauatiges (like certain Scandinavian
countries) are historically more sensitive to thevelopment of resource-saving
technologies than others, and are likely to be naffieient at this. Others are lagging
clearly behind. We show that they should experiafitferent balanced growth paths if
any. For example, the countries with under-perfagnR&D sector would need the
physical constraints to be more and more relaxed ttme (in a very accurate sense to be

given) to ensure a sustainable growth.

The second major contribution of this paper is thenplete dynamic analysis of the
formulated optimization problem, which demonstratee convergence of optimal

trajectories to the steady state. Namely, regasdiesv lenient physical constraint is, the
transition dynamics in the model leads in a firtitae to a balanced growth with the

active physical constraint. The derived transitidynamics indicates several possible
short-term regimes, among them, an intensive gro{stistained investment in new
capital and R&D with scrapping the oldest capitabds), and an extensive growth
(sustained investment in new capital and R&D witheerapping the oldest capital). Our
paper is the first one to disentangle the lattginne as a short-term optimal transition
regime. Namely, if the country is not initially hdn capital (the resource consumption is
lower than the upper bound), then it should irlifialse more new capital without

scrapping the old one, so the country experiengesgensive economic growth.

The paper is organized as follows. Section 2 foatad the optimal control problem and
derives the optimality conditions in the form ofn@aximum principle. Section 3 is

devoted to the steady state analysis of the prolaedits applied interpretation as the
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existence and properties of a long-term econonowtir. Section 4 characterizes optimal

transitional dynamics of the problem. Section Satodes.
2. The optimal growth problem

We consider a benevolent social planner of a nati@onomy who maximizes the
discounted utility from the consumption over théinite horizon. The corresponding

optimal control problem can be formulated as
max| = mRaxj u(y(t) —i(t) - R(t))e™dt, (1)
R,a LR,a 0

whereu(.) is the utility functionr is the social discount ratgf) is the investment into

new capitalR(t) is the investment into R&D,

t
yt) = [ i()dr 2)
a(t)
is the production output at timg a(t) is the capital scrapping time, subject to the

following constraints
0<i() <y(®)R(), Rt)=0, a()=0, at)<t. 3)

The total resource consumption is

e = [ D @
1 B@)

To address capital modernization, the model (1)-@éparts from the concept of
homogeneous capital and assumes that newer caipitatjes consume less energy (and,
therefore, are environmentally friendlier). In (4he resource consumption by one
machine of vintage (i.e., installed at time) is equal to 1B(t). The variablef(t) is
endogenous and reflects a broadly defined res@aeierg embodied technological level,
which may be implemented in new resource—efficirmachines. For clarity, our model
does not involve any output-augmenting embodiedisembodied technological change:
each machine (old or new) produces exactly one aindutput. Needless to say, the

output not invested (either in R&D or in new capiia consumed, that i€(t) = y(t) —

i(t) - RY).
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We assume that the economy is committed to varipligsical feasibility and/or
regulation constraints on current resource consiemgand/or extraction), which can be

formulated as the following constraint:
E(t) < Emadt). (5)

Next, we assume that the level of the technologicagressf(r) depends on the R&D

investmenR(t) as

B _TRD)  gog<q
B  B(r)

(6)

f'(R)>0, f"(R)<0. By (6), the ratgz/f of technological progress is a concave increasing
function f(R) in R and a decreasing function of the leyglitself. This specification
reflects a negative “fishing-out” impact of techogical complexity on R&D success
(see Jones, 1995; Segerstrom, 2000; Jovanovic,)200@ parameted measures the
impact of the R&D complexity on the technologicabgress rate. It is consistent with the
available evidence on the role of technological plaxity in the adoption of new

technologies. Also, we restrict ourselves to theeca
f(R=bR', 0<n<1, b>0,

which means that the elasticityof the rate of technological progress with respgect

R&D expenditures is constant. The R&D investmemh@e efficient for largen.

Assuming a nonlinear utility would not allow for fall analytical characterization of
possible steady state regimes, so, we stick tértear utility functionu in (1). In parallel
with the investment(t) in output units, we will use investment(t)=i(t)/At) in the

resource consumption units. In the variablesR, a), the optimization problem (1)-(6)

becomes
max| =mng [y(t) - BO)M(t) - R(t)le™dt , r>0, (7)
yit) = [ B@)m(r)dr, 8)
a(t)
BO _yRO (g ©)

By B



E®) = [mdr<E,, 0, (10)
a(t)

0< Bym(t) <y(t)-R(t), R({t)=0, a(t)=0, at) <t, (12)
with the given initial conditions on the prehistory

a(0) =ap<0, HKao)=fH, m1)=mo(7), R(D)=Ru(7), 1l[a, O]. (12)

The optimization problem (7)-(12) includes six uatam functionsm(t), R(t), a(t), y(t),
E(t), andA(t), t0[0,0), connected by three equalities (8)-(10). We cbdsn, andv=a’
asindependentontrols and considgr a, E, and S asdependenstatevariables. LeR, m,

v belong to the spack®[0,0) of measurable on [®) functions bounded almost
everywhered.e) on any finite subinterval of [®) (Corduneanu, 1997). We also assume
a priori that the integral in (7) converges (it Mbe true in all subsequent theorems).
Solving the differential equation (9), we obtaire thxplicit formula for the productivity
A1) through the previous R&D investmdrion [ay, 7:

1/d

ﬁ(r)=[bdiR”(v)dv+ijl, B:(bd?Ro”(v)deo“j. (13)
0 ag

The problem (7)-(12) is an optimal control problenmth state constraints. To analyze its
complete dynamics, we need optimality conditionst thvill include all possible
combinations of the state constraints-inequalit5<Enadt) and St)m(t)<y(t) R(t).
Notice that the latter is equivalent to the nonaiegty of consumption. Clearly, having a
concave utility function satisfying Inada conditfomould rule out the corner regime
c(t)=0 associated with this condition. For mathemétemasistency, we shall consider
here all the possible cases allowed by lineartytilthe optimality conditions are given
by Theorem 1 belowAs we shall see, all combinations can appear duherdong-term

dynamics (Section 3) or the transition dynamicz(iga 4).

Theorem 1 (necessary condition for an extremum). Let (R*, m*, a*, 5, y*, E*) be a

solution of the optimization problem (7)-(12). Then
(A) If E*()=E max(t) and £+ ()ym*(t)<y*(t) -R*(t) at t/7A0[0,00), and Enax (1)<0, then

H(<0at R¥1)=0, K(®)=0 at R{t)>0, (14)



o (1)<0 at m*t)=0, k()=0 at mx{t)>0, tOA, (15)
where
WOE bnR“‘l(t)]o B (r)m(r){w - e‘”}dr -e™, (16)
a(t)
'@ = [e"[B®)-Baa)ldr-e A), (17)

the state variable @) is determined from (10),74t) is the inverse function of, and
A1) is given by (13).

(B) If E*(t)<Emax(t) and B* (tym*(t)<y*(t) -R*(t) at t/74, then
RI(H)<0 at RXt)=0, R()=0 at RYt)>0,
4 (1)<0 at m*(t)=0, h'()=0 at m¥t)>0, (18)

A(D=<0 at daxt)/d=0, L'(t)=0 at daxt)/ds0, U,

where
a(t)
|'(t) = ,B(t)[ j e'dr —e‘“] , (19)
/(1) =~ e Ba(r)m(a())dr, (20)

IR (t) is as in (16), anggt) is as in (13).
(C) If E*(t)<Emaxt) and B+ (ym*(t)=y* (t) -R*(t) at t/Z40[0,e0), then
d(H<0at R(H=0,  K(Y)=0 at R{t)>0, (21)
A(H<0 at da(t)dt=0, L'()=0 at daXt)/dt>0, /74,
where I'(t) is as in (20)m*(t) andy*(t) are determined from equation (8),

a™(r)

/(0 = bR A (Om(D)| [ x(@dE - x(1) |d7 - x(0), (22)

X(t) is found from the integral equation



al(v)

x@t) = j x(ndr at t/A4 (23)

and y(t)=e™" at tJ[0,00)-4.
(D) If E*(t)=Emax(t) and £+ )m*(©)=y*(t) -R*(t) at t740[0,), then
H)<0at RX1)=0, K()=0 at RYt)>0, (24)

where K (t) is given by (22)x(t) is found from

a™(t)
x(t) = j [1-%}(@& at 4, (25)

and x(t)=e " at tJ[0,00)-4, and mAt), a*(t), and y*(t) are determined from nonlinear
equations (8) and (10).

ty

The proof is provided in Appendix. Theorem 1 isgngicant extension of Theorem 1 in
(Boucekkine et al., 2011) that explored only Ca&emnd B. For those two cases, some
differences also show up. An essential differenoerges in the derivation of optimal
scrapping when the physical constraint is inactitvis. easy to see from (20) thiat(t)<O.
Hence,a*=gq is corner and the optimal regime is boundarg.imhis might not be the
case in the counterpart firm problérThis outcome is natural from the economic point
of view: in our central planner problem, the uniqeason to shorten the lifetime of
capital goods is the active physical constraintijlavexogenously increasing energy
prices (for example, reflecting scarcity) is an idddal motive to scrap in the
corresponding firm problem. Mathematically speakithg problem (7)-(12) with a linear
utility does not possess exogenous resource anthicppces. So, the firm model has a
room for a non-boundary control in the scrapping agen when the physical constraint

is inactive.

More differences emerge in the expression of them@b interior investment rules
depicted in Theorem 1. Let us briefly interpret thgimal interior investment rules in
Case A, which will turn out to be the important anethe long-run as demonstrated in

Section 3. As to the optimal investment rule in reapital, it can be reformulated as:

® See equation (21) in (Boucekkine et al., 2011).
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a_}(t)e‘”{l—m}dr =e"

t

The rule is very close to the counterpart in Bolask et al. (1997): it equalizes the
present value of marginal investment cost (thet+igind side) and the discounted value
of the quasi-rents generated by one unit of capialght at along its lifetime (the left-
hand side). Here costs and benefits are expreastuinms of marginal utility, but since
utility is linear, marginal utility terms do noteWw up. The quasi-rent atgenerated by a
machine of vintage is the difference between the unit of consumpftangone to buy

one unit of new capital and the operation cogt athich is the product of the amount of

energy consumed to operate any machine of vintageat isﬁ, and the shadow

price of energy3(a(7)) at the date(7).

The optimal investment rule in R&D in Case A mayreeritten as:
o e’ — e—ra’l(r)
bnR“l(t)j L (m(n) —————-e " [dr=e™.
r
t

As for investment in capital, this rule equalizee tmarginal cost of R&D (right-hand
side) and its marginal benefit (the left-hand side) before, the marginal utility terms do
not show up due to the linear utility. Now notetthracontrast to a unit of capital, which
is necessarily scrapped at finite time, the benefiR&D investment is everlasting
through R&D cumulative technology, which explaingegration front to infinity in the
left-hand side. Other than this, the left-hand sfiehe rule can be interpreted as the
bnR™(t)
B (1)

increases profitability by improving the efficienof all vintages after the date but

marginal increase i3(7), r=t, following the marginal rise irR(t), that is

since machines have a finite lifetime, this effgwbuld be computed betweemanda™(7)
—rr —ra~}(r) a™(r)

for each vintage, which explains the facto?_— = je‘rsds in the integrand.
r

T

In the next section, we analyze the long-term dyinarof the optimization problem (7)-

(12) and look for possible exponential balancedwtjnoregimes. After such interior
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regimes are indentified, the next step will be #malysis of the short-term transition

dynamics of the problem provided in Section 4.

3. Optimal long-term dynamics.

In this section, we identify interior optimal trajeries over a “long—term” intervat, o)
starting with some finite instarit > 0 and examine what kinds of long—term interior
regimes are possible in (7)-(12). The necessaryeextm condition of Theorem 1
specifies four possible Cases A-D. We can immelyiatde out Cases C and D in the
long run because then the integrand of the objedtinction (7) is zero ovet; jo) and it

is straightforward to show that these cases cabeatptimal in the sense that they are

dominated by other solution paths.

Next, Case B with non-binding physical constr&rE.x appears to be also impossible.

Indeed, then an interior solution should be foutnfthe system
IR'(t)=0, Iy (t)=0, I5'(t)=0, tO[t ),

wherelg (1), In'(t) andly'(t) are determined by (16), (19), and (20). As wela&xrpd
before, this case implies an optimal regime whilboundary ira. Therefore, no long-
run interior regime with inactive physical constriaE<E .« iS possible. We shall see in
Section 4 that such a regime (extensive growth)aces® in the short-term dynamics and

it leads to Case A with binging constralftE. in a finite time.

So, the only possible long-run solution is Case ihwhe binding physical constraint
(10): E(t)=Emaxt) at tl[t,0). Then the optimal long—term dynamics can invoare

interior regime Rm,a) determined by the system of three nonlinear égst
r(t)=0, Im (t)=0,
t
j m(r)dr =E__(t), tO[t, o), (26)
a(t)

where Ig'(t) and |,'(t) are determined by (16) and (17). Letl here and thereafter,
otherwise )R (t)<0 andl'(t)<0 by (16),(17). The equatiohs(t)=0 andl'(t)=0 lead to
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o . 1/d-1 e '’ _e—ra‘l(r) ) .
bnR’ 1(t)J‘{bdj R"(&)dé + Bd} m(7) — e ldr=e", (27)

a™(t) ar 1/d ¢ 1/d
j [1—{bd (j) R"(&)d& + Bd} /[bdj R"(&)d& + Bd} }e‘”dr =e™" (28)

t
attd[t;, ).

So, the optimal long-term growth in our model neeeiy involves the active physical

constraint (Case A of Theorem 1). We can summahizeas the following theorem.

Theorem 2. Long-term interior optimal regimes are possiblehe problem (7)-(12) only

under the binding physical constraiBtE max.

We are interested iexponentiainterior solutions to the problem (7)-(12). Thddwing

lemma is helpful in this context.

Lemma 1 (Boucekkine et al., 2011)f R(t)=R €' for someC>0, then the productivity

A(t) is almost exponential:

bd

1/d
c j e“"? at large t. (29)
n

ﬁ(t) ~ ﬂn/d(

The productivity is the exact exponential functjg)=Be®"¢ = R" d(bd/én)lldeé‘“ d

at the specially chosen rat€ = nBY(bdR").

For brevity, we will later omit the expression ‘latget” in the notationf(t)=g(t). Now

we can formalize the concept of a balanced growth m problem (7)-(12).

Definition 1. The Balanced Growth Path (BGP) is a solut{&y, my, a4) to the system
of three nonlinear equations (26), (27) and (28)¢ls that R(t) grows exponentially,

mu(t) is exponential or constant;d,(t) is a positive constant, and the constraints (11)
hold.

We will explore the possibility of the BGP underetibinding physical constraint
separately in the casesd, n<d, andn>d. We start with the inequality casesd and

n>d, which were not covered in the firm problem of (iBekkine et al., 2011). We
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believe that this analysis is important as explaimelntroduction: the R&D technology

is different for various countries.

3.1. Casen<d.

Let us start with the situation where the compiexparameterd is larger than the
efficiency parametern, which is the case of national economies where RED
technology is not likely to ensure a balanced ghomtthe long-run on its own. We show
that in this case the physical constraints shoaldhbre and more relaxed over time (in a

precise sense to be given) for the economy to halamced and sustainable growth.

Theorem 3. Let n<d. If Bqa(t) does not increase exponentially, then there isterior
BGP in the problem (7)-(12). However, if

Emaxt)= E €', 0<g<min{rd/n, r(d-n)/r}, (30)
then the problem (7)-(12) has an interior exporergolution

Ri)=REY, wi(t) ~ &, Bat) ~€™, myt)=M e a,(t)=t=T,  (31)

where

c=9  W=Eg/f-e), (32)

B} » d
R = pnaigrapre S (1-eT ) (33)
r-C@-n) r

and the positive constant T is found from the mear equation

-CnT/d =T

e e = o (34)
r r-Cn/d
The solution (R, my, a4) is a BGP, at least, when
_ 4CT
n>1-1-¢ (35)

If g>min{rd/n, r(d-n)/r} in (30), then the problem does not possess a fswotation

because Ea(t) increases too fast.
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Proof. Let us substitute
®=Re" and t-a(t)=T=const>0 (36)

into (26), (27) and (28) and estimate the growtteoofm(t) at larget. By (26),m(t) satisfies

m(t) =m(t-T) +E.,'(t). (37)
bd 1/d
Applying Lemma 1 and Theorems 1 and 2, we find At RO"/d [C_) e,
n
® (1-d)/d T
bnR"eCt I [@ R ”ec”f} m(7) 1.e -1lle""dr-e™ =0, (38)
- LCn rr
1/d (t+T
R"d (EJ {‘I [eCnt/d — gCn(r-T)/d ]e"”dr _ eCnt/de—rt} =0 (39)
Cn "

at larget. To keep(38), we need an exponentially growingt) with the rateC(1-n/d)>0. By
(37), it is possible only iEn.(t) increases exponentially, i.e., (30) holds. Otheswizo BGP

exists.

Let (30) hold, therm is found from (10) asm(t)= M €*, where M >0 is determined by (32).
Substituting it into (38), we haug (t)=0 only if g=C(1-n/d) and the constarRR satisfies (33).

The integral equation (39) with respectTo has appeared before in the vintage models with
exogenous technological change (Boucekkine et98i8;1Hritonenko and Yatsenko, 1996). After
evaluating the integrals, it leads to the nonlingart not integral) equation (34), which has a

unique positive solutiof if C<rd/n (Hritonenko and Yatsenko, 1996).
To prove that the path (32)-(34) is a BGP indeed, need to show that the state constant
La)my) —RA»(t) <ys(t) holds, at least, at larget. By (8 and (38),

1/d -
1_e CT

C

_ sy Pd
ya() =R M(Cj

€. Therefore,
n

YO - BAOMAY) - Ra(h) = ﬁ“/d{m (@j F‘eﬂ _ }— ﬁl‘“/d}e“.

Cn C

1/d _ 4CT ~ 1/d-1 AT
— R deCt m(mj 1-e _1|- Mbn (mj 1-e _1
Cn C (r—-C+Cn){Cn r
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_ ﬁn,demm(@j“d Cn (1+ r —Cj 1-e“T | _nj1-e7 _
Cn (r-C+Cn) Cn C d r

Next, substitutinge™" from (34) into this formula and combining simitarms, we obtain

bd)l/d I’ﬁn/d Mect
(

Ya(t) =By ()M, (t) - R, (t) = (a r—C+Cn)

CnT (40)
x{r(;r? i-ca-n)-e T )+e ¢ - }

The first term in brackets is positive at (35) @nel second term is positiveratd.
The theorem is proven. 0

Some comments are in order here. First, one habderve that the sufficient condition
(35) for the existence of BGPs involves endogenmegnitudes,C and T. It is
challenging to express this condition in termsieeg model parameters. Nevertheless, it
appears to be valid for all economically reasonahieges of the parametersC, andT,

for example, ifC<0.1 and 0.05r<1, then (35) holds af>1 year, which is definitely
reassuring. Second, it is important to notice thatbalanced growth is compatible with a
substantial interval (30) of the growth ratef Ena An arbitrarily smallg is enough to
ensure a balanced growth, which is a non-trivial @markable property. In contrast, too
large values ofg lead the economy to explosive growth, which is necoically
straightforward. Third, in this case, the growtter@ of the economy is proportional to
the growth rate oEyax clearly, the R&D sector and the associated indtinaovation
mechanism are too weak to ensure a balanced growttis case of under-performing
R&D sector. Thus, relaxing physical constraintsray@e is a necessary accompanying
condition. A final crucial remark is worth doinghd innovation rate is equal to
Cn/d=gn/(d-n) while the growth rate of production @&=gd/(d-n). Consistently, ifn=0,
then the growth rate of innovation is zero while growth rate of productio@ is g. That

is to say, the growth generated in this casesasni-endogenousthere are two
interdependent engines of growth, one exogenousngofrom the physical constraint
and the other is endogenous reflecting the Porechamism. The R&D sector is not
necessary for the existence of (exogenous) balagedh paths; however, operating it

allows reaching higher values of growth and welfare
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Last but not least, it is worthwhile to comment ttve constraint relaxation condition
obtained for the economies with inefficient R&D t®cto reach balanced growth paths
in Theorem 3. In particular, it is interesting tiveyit an economic interpretation and to
reflect on its feasability. How could an economgjax the physical constraints? If the
latter are interpreted as extraction quotas impdeedecological reasons (that's to
prevent ecological catastrophes), then relaxingitiees not make sense, and the unique
remaining route to sustainable growth is to upgrd#te R&D technology (that's to
increasen and/or decreasd) and/or to develop backstop technologies. Newaodieries

of mineral and other natural resources may hekxned) the physical constraints but it's
hard to think of this as a sustainable solutionhie sense of the condition required by
Theorem 3. If the economy were open, the constralakation condition would call for
a more straightforward interpretation and impleragah: the economies with inefficient
R&D technologies could “relax” their physical cor@hts by resorting to international
markets for raw materials. If the physical constigiare interpreted as environmental
regulation constraints like pollution quotas, thexsorting to international market of
pollution permits is a way to relax these constminn the absence of international
pollution permits, as in our model, countries widlfferent R&D technologies will

converge to different long-term states.

3.2 Thecasen>d

This case is formally symmetrical to the previong,cso we state it briefly. The theorem

below gives the technical details for this case.

Theorem 4. Let n>d. If Enat) does not decrease exponentially, then no BGPssible
in the problem (7)-(12). If

Emadt)= E€%, 0<g<<l-d/n, <1, (41)
then a unique BGP (Rmy, a,) exists,

Ri)=REY, wi(t) ~ €, Bat) ~€™ mut)= M e®, a(t)=t-T, (42)

whereC = g_dd M =Eg /(1—e‘9T), and the positive constaniand T are found from

formulas (33) and (34).
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Proof essentially follows the proof of Theorem 3 anddiedo similar expressions with the
exception that nown(t) decreases rather than increases with the gateormulas (36)-(39)
remain valid. To keepx' (t)=0 by (38), we need an increasiR(})~e"* and a decreasing(t)~e ™
with g=C(1-d/n)>0. If m(t) decreases exponentially, then by (H)),{(t) also must decrease
exponentially with the same ratpto have a BGP. The main difference in the proothst
LAOmu(t) — Ra(t) <y,(t) at larget, because the second term in brackets in (40)gative atn<d.

So, we assume thais small,r<<1.

By (45), Cn/d<r<<1 is also smallThen, as shown in (Hritonenko and Yatsenko, 1986,
unique solutiorT of equation (34) is large and such tliat (Cn/d™°. ThereforenT/d<<1 and

CT<<1. Expressing the exponents in (40) as the Taddes, we have

_ @l/d rﬁn/dmect r-C_ _ _@
yA(t)—ﬁA(t)mA(t)—RA(t)~(an (r_c+<;n){ U dT+CT}

Finally, becausé is large, the last equality leads to

)= £5(0m, () -R, 0 = o | MCT{L—1+1-§+ o)

Cn (r=-C+Cn) Cn n
1d  Sn/d pasCt
(] a2 o
Cn (r—-C+Cn) d n
The theorem is proven. O

Therefore, countries with a highly efficient R&Dcsar should necessarily consume less

and less resource to have a long-term growth withrstant capital lifetime.

3.3. Balanced growth at n=d

Let us address the situation when the parametéiR&8D efficiency” n equals the
parameter of “R&D complexityd. Then, an interior BGP regime is possible onlthé

physical resource consumption lirfita(t) is constant.

Theorem 5. If n=d and Eqa(t) is not constant at large t, then no BGP witlsitive

growth exists.

Proof. By Theorems 1 and 2, any interior reginf® fn, a) has to satisfy the nonlinear system

(26)-(28). LetR(t)= R e andt-a(t)=T=const>0. Then, (26) leads to (37). Under the agsiom



18

that E(t) varies in time,m(t) cannot be constant by (37). On the other sidepun case

1/n
B = ﬁ(gj e and equality (27) is

o (l_n) -7
bnﬁn—leC(n—l)tJ'|:g_ReCT:| m(T){E _€ _1:|e_”dr =™ (43)
r r

t

Differentiating (43), we have

(1-n) -rT
br{g} m(t){% _ er _1:|e—rteC(l—n)t - d(e—rteC(l—n)t )/ dt

It means tham(t) must be constant to satisfy (43). Hence, no B&§t®
The theorem is proven.L

We now move to the case of constant exogenousamagnt, which is the case where

BGPs typically arise. The findings are summarizethe following theorem.
Theorem 6. If n=d and E..{t)= E =const,then an interior solution of problem (7)-(12)

Ri)=R €™, Bat) ~ €', ya(t) ~ €', mu(t)= M =const, a,()=t—E/M,  (44)

is possible, where constants C akl are determined by the nonlinear system

A TEIM
CY[r/C+d-1] = de”{le——l} , (45)
r
__EIM . ~CEIM _ —rEIM
e -f T e (46)
r r—

The solution (R my,a,) exists and represents a BGP, at least, in thHevahg cases:

(i) d>0.5 and large enouglE ; then the optimal C. 0 and ta,(t) - asE - .
(ii) E <<1, r¥d < BpY[L-+2r], (47)

then C, 0<C<r, is a solution of the nonlinear egoat

C(l_d)/d[l’ _C(l_d)] - dEblld|:l_\/%[%+\/EJ:|+o(r) (48)

and M =E+/C/2+o(r). The uniqueness of the solution is guaranteed if
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2
1/d-1/2 d Ol

<maa J2. (49)

Proof. Formulas (44)-(49) are obtained in Theorem 3 ofud@ikine et al., 2011), where the
system (45)-(46) is also shown to have a solufis@ and M >0 in the cases (i) and (ii).

To prove that the path (44) is a BGP indeed, wedn&e show that the state constant
V() =BA)m(t) — R4(t)>0 holds along (44), at least, at large By (8), (29), and (32),

1/d ~CE/M
y,(t) = ﬁﬁ(%) ]'_eTeCt. Therefore,
W(t) = BAOMAD) — Rat) = RE“4M (EJW ﬂ -1|-1}.
C C

Expressing the exponent above as the Taylor seveeshtain

N O

Yo () = B, (M, (1) - R, (t) = ﬁ{m(gj {E/M— (E/M) +o(r) —1}—1}&‘.

On the other side, expressing the exponent ing83he Taylor series, we have
cHd[r-Cc@a-d)]= dﬂb”{ﬁ/l\f—%(ﬁ/l\f)z +0(r) —1} :

Combining the last two formulas, we obtain

Ya(®) = B (hM, (1) = Ry (1) = R{ A r-c

Cd

The theorem is proven O

The conditions (i) and (ii) are sufficient for te&istence of the BGP. The BGP can also
exist when these conditions do not hold. The umess condition (49) is also sufficient.
The only possible case of non-uniqueness when ved endition (49) is when the

optimalC is close ta.
It is clear that the BGP in cased is also induced by the R&D sector of the economy
and illustrates a Porter-like mechanism. Indeedstatement (i) of Theorem 6 indicates,

the growth rate tends to zero when the constraiellE goes to zero. The long term

growth is endogenous and is determined by the mpdeameters and d and the
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constraint levelE . It can readily shown that a further decreaseEofleads to the
decrease of both optimal growth ra&teand optimal investment in efficiency unitd .

In other words, while an induced-innovation mechanis at work, tightening physical
constraints negatively affects the rate of innavatind growth of the economy. Thus, we
uncover a kind ofmild Porter-like mechanismn the balanced case=d: physical
constraints are necessary for R&D to get launchedtbo strict constraints kill the
growth. By (44), the growth rat€ of £ (theinnovation ratg is equal to the growth rate
of productiony and investmentsandR along the BGP.

4. Trangtion Dynamics

We can show that the short-term dynamics will remgualitatively the same for any
bounded constraint leveE a(t), provided that a long-term interior regime exists
However, as shown in Section 3, essential diffiealarise in finding such regimes. For
this reason and for clarity sake, we restrict duesein this section with the caserotd
and a constant functidBna(t)= E . The long-term interior regime in this case is BH@P

(R4, My, a4) determined by Theorem 6.

As proven in Theorem 2, the long-term dynamics se&ely involves the active physical
constraint (10). In this section, we will show that

(1) All Cases A-D from Theorem 1 are possible ors-term dynamics. The optimal
trajectories during the transition period appeabeoqualitatively different depending on
whether the physical constraint (10) is initiallgtise, E(0)=Eax (Cases B and C), or
inactive,E(0)<Emax (Cases A and D).

(2) The short-term transition dynamics always le@d$e long-term interior regime with

the active physical constraint.

The solutionR*(t), m*(t), anda*(t), t{J[0,»), of the optimization problem (7)-(12) must
satisfy the initial conditions (12). The initial mgition a(0)=ay is essential because of the

continuity of the unknowra. If agza,(0), then the dynamics oR{, m*, a*) involves a

® We don’t detail here the computation of the BGPgdes without saying that given that growth is
endogenous, we also face a problem of indetermiimatgvels. This technical point is made precisealy
(Boucekkine et al., 2011).
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transition from the initial stata(0)=ay to the long-term interior trajectorg,(t) from

Theorem 6. Also, the given model functions shaisgathe inequality

0

R, (0)+Bmy(0) < | {ﬁo + Ro(v)dv}rn)(r)dr. (50)
~&

-3

Otherwise, the constraint (11) is violated= and the economic system is not possible.

4.1. Optimal intensive growth at active physical constraint.

Let E(t)=Emax Starting from the initial timé=0. Then the optimal dynamics are subjected
to Case A or D of Theorem 1 (with the active resiwn E(t)=Emax on [00)). This regime
is a growth with intensive capital renovation induced by technical progress. In order to
make a new capital investmem(t) at t>ty, some obsolete capitahould be removed,

following the equality (10) under the givE&i(t)=Emax Or

t
j M(7)d7 =Emax
a(t)

In the long-term dynamics considered in Sectioth8,optimal R&D innovatiorR*(t) is
the interior trajectoryR(t) determined fromg'(t)=0, wherelg'(t) is given by (16). The
optimal R*(t) reaches the trajectof,(t) immediately at=0. The long-term dynamics

has the interior turnpike trajectoay; for the capital lifetime, determined froig (t)=0 or

a(v)

[e[BM) - Ba@))dr =™ B().

If ag=ax(0), then the optimal capital lifetimee*=a,, that is, no transition dynamics at all.
If agzax(0), then we can show that the optima(t) will reacha,(t) at some timé>0. If
ap>a,(0), then the optimal investmemnt*(t)=0 is minimal at 0tt, (Case A). Ifag<a,(0),
then the optimal investment*(t)=(y*(t) —R*(t))/£*(t) is maximal at Ot (Case D).

After the transition, at>t;, the optimal long-term trajectom*(t) possesses a repetitive
pattern in a general case (Hritonenko and YatsetR86; Boucekkine et al., 1997)

determined by the dynamics w(t) on the intervaldy, t]. These replacement echoes are

absent at the “perfect” initial conditiam=a,(0), mo(7)=M , 10[a0,0]. To illustrate them,
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we provide a numeric example shown in Figure 1 wiktoe also used and developed in

the next section.

Example 1. Let
r=0.05, d=n=0.5, b=0.005, Ena(t)= E =22,
8=-22, =1 R(1)=0, my(n)=1, 70[-22,0].
Then,B=£(0)=1 by (13) and the BGP exists:
Rt)=R,e™, C=0.00225, m,(t)=My=0.55, a,(t)=t—40, t0[0,c).

The BGP is indicated by the dotted lines in Figlirdn this caseE(0)=mya;=22 is equal to
Ena(0)=E , hence, the physical constraint (10) is activetisgt=0. Sincea,(0)=—40 < a;=—22,
then the optimala*(t)=-22 and m*(t)=0 at 0<<t=18 (Case A). Aften;,, the optimala*(t)

coincides witha,(t) andm*(t)=m*(t—40) exhibitsreplacement echog¢shown with dotted lines).

4.2. Optimal extensive growth

Let the resource consumptidft) be lower than the limiEn.x at timet=0. We assume
that E(t)<Enax over a finite interval €t<t,, where the momerti is to be determined.
Then, we have Case B or C of Theorem 1, at ledsheabeginning of the planning
horizon. Sincd,'(t)<0 by (20), the boundary regina(t)=ay is always optimal while
E()<Emax

First, letm(t)<(y(t) —R(t))/t) (Case B), then,'(t)<0, otherwise the optimal investment
m* is maximal possible and we immediately switclCase C. By (19), Case B is highly
unlikely in economic practice. It means an extrgmehderfunded initial capital
(determined by the lengty, of the prehistory) combined with a high impatierjaehigh
discount rate). Indeed, simple calculations show that for treedunt rates 10%<50%,
Case B occurs if the initial prehistory lengihis less than 1.05 - 1.4 years. For such
values ofay, the constraint (50) imposes extremely severericéens on the initial
functionsmy and Ry and valueg. In Case B, the optimal investmamt is zero and no
capital scrapping occurs, which corresponds tottivial solution R°=0, m’=0 of the
problem (7)-(12). In this case, the non-trivial ¢derun solution with investing into new

capital and R&D is not possible.
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For economically reasonable values of the discoat0%/year and the initial capital
lifetime ap more than one yealy (t)>0 by (19). Hence, the optimal investmentt is
maximal possible and we have Case C. Then, thetgocan use more new capital and
there is no need to remove the old one, which eacldssified aan extensive economic
growth. The upper bound fan(t) is given by the constraint (11) and the optimm(t)
jumps to this bound immediately after0. In this case, the inequality-constram(t) <
(y(t) —R(t))/4(t) limits both optimal controlsR* and m*. Therefore, the transition

dynamics on some initial period [] is determined by the restriction

*® + S (Ome(D) = y*(1) 510

t
until E(tx)=Emax. Resource consumptidz(t) =Im* (r)dr is increased fast and the limit
ay

Emax Will be reached shortly, which will mean the endtlve extensive growth phase.
Following Case C of Theorem 1, the optinfi(t), m*(t) and y*(t) over [0t are
determined from the system of three nonlinear egusi(10), (51), antk'(t)=0.

The endty of the “extensive-growth” transition period [@] is determined from the
condition E(ty)=Emax After the transition period [Qy], the optimal dynamics will switch
to the scenario of Section 4.1 with the active tramst (10).

If a*(t)#an(tk), then the “extensive-growth” transition on {g,is followed by one of the
intensive growth transition scenarios oftf, t>tx, described in Section 4.1. If
a*(ty)>ax(tk), then the optimal investmemh*(t)=0 is minimal on f.t] (Case A). If
a*(ty)<ax(tv), then the optimal investment*(t)=(y*(t) —R*(t))/* (t) is maximal on t,t]
(Case D).

Example 2. Let all given parameters be as in Example 1 exfmepig(7) =0.5, r1[-22,0]. Then
the BGP is the same as in Example 1 but the transitynamics is different and is shown in

Figure 2.

In this caseE(0)=mya,=0.5*22=11 is less tha(0)=22, hence, thphysical constraintl0) is
inactive on an initial interval [@,] at the beginning of the planning horizon. The ayics of the
optimal m*(t) and R*(t) on [0, t] follows the restrictionR*(t)+ S*(t)m*(t)=y*(t) (Case C of
Theorem 1). The optim&t*(t) over [0,t] is found from (27) as
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R(t) = 2b,r1(t)T £(1) m(r)[(e‘” —gm™ )/ r— e‘”}i r

te a™(t)
where x(t) = J')((r)dr+ J'e'”dr over [0,t] is found from (23nd x(t)=e™ on [t,»).
t

ty
Finding an approximate solution of the arising eipumes, we obtain thaR*(1)=0.2 at &t<t,.
Then, the optimain*(t)=10.8 att=0 andm*(t)=21.8 att=t,. The corresponding*(t) increases
fast and reaches the limit vallg,,=22 att,=0.75. The correspondingf(t) also increases fast

from y*(0)=11 toy*(t,)=22.

The further optimal dynamics ofx,po) is similar to Example 1 and follows Case A. Isfoown in

Figure 2 with black curves.

As opposed to the “intensive-growth” scenario oafple 2, the optimal trajectorng*(t)

alwayspossesses the replacement echoes after the ibangiideed, no “perfect” initial

condition is possible in this case.ntbh(7)=M on [a,0], thenag>as(0) by E(0)<Emax

0 0
Alternatively, if ap=a,(0), then J' m, (7)dr < J' Mdr. The optimal short-term trajectory
ag ag

m*(t) is different fromM on the “extensive-growth” transition period @], and the
optimal trajectorym*(t) will repeat the dynamics ofi(t) on [ay, ty].

We can summarize the above reasoning in the fatigwtatement.

Theorem 7. In the case n=d and a constant & the transition dynamics of the problem
(7)-(12) leads to the BGP with active physical ¢oaiat (described by Theorem 6) in a
finite time £>0, regardless how large the valugkis. The transition dynamics is absent
(t=0) only if

08a(0) and HO)=Enjax (52)

If (52) holds and = M , then the optimal m M , otherwise, the optimal trajectory m*

possesses everlasting replacement echoes thattréedynamics of m* on the interval
[0, t].
This theorem describes the complete dynamics otéhnéral planner problem (7)-(12) in

cased=n. The dynamics will be qualitatively similar forywnalues ofn andd and any

bounded functiommax.
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5. Concluding remarks

In this paper, we have studied the optimal investra@d capital replacement policies in
an economy with R&D sector under physical constgaiifhe corresponding optimal
control problem includes nonlinear integral equagiavith endogenous integration limits
and the state constraints active along the optitrgectories, which justifies the

mathematical novelty. We have provided a systenopiaditative analysis of this problem
and extended significantly previous results by abtarizing all possible balanced growth
paths for any parameterizations of the R&D techggloIn particular, we demonstrate
that the presence of the physical constraint isrdid for getting a meaningful optimal

dynamics in the central planner problem (7)-(12hvinear utility. It complements and

clarifies the result of (Yatsenko et al., 2009)ttii@ model (8)-(12) without physical

constraints has onlglow-up solutionghat strive to the infinity in a finite time fomg

R&D parameterization and the corresponding objedtimctional (7) is always infinite.

Next, we have studied transitional dynamics to add growth, a task not undertaken so
far. The optimal dynamics obtained in this papequ#e new in the related economic
literature (see for example, Boucekkine et al.,709%e have uncovered two optimal
transition regimes: an intensive growth (sustaimeestment in new capital and R&D
with scrapping the oldest capital goods), and aerestve growth (sustained investment
in new capital and R&D without scrapping the oldeapital). In the short run, the
modernization policy can consist of increasing stugent in new capital and R&D
without scrapping the older and more resource aoisy capital. The long-run
modernization policy encompasses scrapping thesbldapital goods following the
intensive growth scenario described above. Theorebshind this is quite elementary: a
country with a low enough initial capital stock ¢aso, with low enough initial resource
consumption) has no incentive to scrap its old tea@ssets as long as its resource
constraint is not binding. In contrary, at a birgliconstraint, investing in new assets is
not possible without scrapping some obsolete o#&dsets because of market clearing
conditions or binding regulation or technologicahstraints. In other words, our model
predicts that historically poor countries may firidoptimal to massively invest and,

therefore, over-exploit their resources during #ely stage of their development
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process. Such transition growth regime comes toetite when the physical constraint
upper-bound is reached and is followed by an imenisalanced growth with scrapping

of old capital under active constraints. After tin@nsition dynamics ends, the optimal
capital investment possesses everlasting repladeentioes that repeat the investment
dynamics during the prehistory and transition pgioln general, the modernization

policy is similar to simpler vintage models with ogenous technological change
(Boucekkine et al., 1997, 1998; Hritonenko and ¥ak®, 2005, 2008).

In contrast, the optimal R&D policy is more robustponential, and not sensitive to the
initial structure of capital distribution. This @gime is in a good agreement with the
celebrated non-vintage model of endogenous growtheru restricted non-renewable
resource (Romer, 1990), which produces a sustanaigponential balanced growth for
any R&D efficiency. In our model, the rate of the egdoous growth is determined only

by the R&D parameterization, the physical constraind the discount rate.

Appendix

Proof of Theorem 1. The proof is based on perturbation techniquethefoptimization theory. It
extends the approach earlier applied by Hritonesrkd Yatsenko (2005, 2008) to vintage models
with exogenous technological change and state rontst.

Case B. Let the restrictions (10),(11) be inactive on ext@in subsetd of the interval [Op):
E*()<Emadt) and R()+At)m(t)<y(t) at t0A0[0,0). We chooseR, m, and v=a' to be the
independenunknown variables of the OP (7)-(12). Then, théedéntial restrictiora'(t)=0 in (11)
takes the standard form{t)=0. The dependent variablgd), E(t) and(t) can be found from (8),
(10), and (13). We assume tiftm, v[IL",[0,0).

We refer to measurable functiodR®, dm, anddv asadmissible variationsif R, m, v, R+JdR, m+dm,
andv+dv, satisfy (8)-(11). Let us give small admissibleiations dR(t), dn(t), and dv(t), t0(0,),
to R, a m, and find the corresponding variati@h = | (R+ dR,m+ dm,v+ &) - | (R,m,v) of the
objective functional. Using (7)-(10) and (13), we obtain that
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a=le"l | [dbf(R@+ @) e+ 8 | (i) + dntrr

a(t)+aa(t)

: 2 (A1)
= (R(t) + R(t)) - (db{) (R(&) + R(&))"dé + B j (m(t) + am(t))]dt

0 a(t)

—Te'”[ j (db} R"(&)d¢ + B¢ j" m(r)dr - m(t)(db} R"(£)d& + B¢ j“ +R(t)]dt

t
where da(t) = [ v(£)dE . To prove the theorem, we shall transform (Al form
0

a= j (1 x (@®) LBR(t) + 1, (t) LAM(L) + 1, (t) COv(t))dt + o(| IR, || o], [ov]) , (A2)

where the norm is|f|=essup|e™ f (t)|. This transformation involves several steps. First
[0:)

applying the Taylor expansion, we have

(dbi(R(g) +R(E)"dE + ij‘l’

= (dbl(R” (£) + NRH(ER(E) + o(AR(£)))d¢ + B jd (A3)

= B(r) +bns"" (T)i R™(O)R(E)dS + i o(R(¢))d<.

Next, using (A3) and properties of integrals, (A& be rewritten as

00 t r
a= j e [bn j m(7) B~ ()] R (&) AR(&)d&d it
0 max{a(t),0} 0
t
e j B(r)am(r)d it
max{a(t),0}
. a(t)+da(t)

et | Awmpdmt- [e" (RO + AOanvdt

a(t)

-]
0 (A4)

g

-Te"” m(t) B+ ()| bnR™ (&) dR(E)d&dt + Te‘“ o(AR(t), an(t))dt,

where max@(t),0} appears because the variati@fgt), dn(t) are zero on the intervadd0].
Interchanging limits of integration in the secoatht of (A4)
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o at (t)

Te‘“[j B(r)om(r)ddt = j j e " d7 [B(t)dm(t)dt,

0 a(t)
and the first term

[e'l [ mng iR @R

max{a(t),0}

© a‘l(r)

=bn_[ j j e d& n(r) B(r) " dr (R™(t) OR(t)dlt,

and applying the Taylor expansioA4) can be rewritten as:
o aX(r)

a :T [-e™ +an ( j ed& —e ™) mn(r) B4 (7)d7 CR™Y(t)] COR(t)dlt

o al(t)
+[ [ [ e"rdr-em1mBt)am(tdt

00

+ —J. e " B(a(t))m(a(t)) (Da(t)dt + Te’" O(AR(t), dm(t), da(t))dt.

0

t
Finally, recalling thata(t) = [ ov(£)d<, we convert the last expression to
0

™ o aX1)
a :j [ +bn_[ j e d& —e ) On(r) B4 (r)dr CR™(t)] COR(t)dlt
a™(t)
+[ [ j e d7r —e ™| [B(t)om(t)dt (A5)

t

Ot—8 O——38
+ C—y 3

e B(a(r))m(a(r))dr [Bv(t)dt +Te‘” o(JR(t), aM(t), du(t))dt

The combination of (A5), (17), (19), and (20) leani¢A2). The domain (11) of admissible controls
R, m, v has the simple standard foRe0, m=0, v=0. So, the optimality condition (18) follows from
the obvious necessary condition that the variafibof the functional/ cannot be positive for any

admissible variationgR(t), om(t), ov(t), t{[0,).

Case A. If the constrainR(t)+ At)m(t)<y(t) is inactive and the restriction (10) is actifat)=Ea(t)
at t040[0,), then we choos® andm to beindependent unknowrsf the OP. The dependent

(statg variablea is uniquely determined from the initial problem

m(@a(t))a’ (t) = m(t) — Enax (1),  a(0)= 2o,
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obtained after differentiating (10). As shown initbinenko and Yatsenko (2008),Ef.. (t)<0, then
for any measurablext)=0, a unique a.e. continuous functiaft)<t exists and a.e. has(t)=0".
Therefore, the state restriction&t)=0 anda(t)<t in (11) are satisfied automatically, so we can

exclude the dependent variabl&om the optimality condition.

Similarly to the previous case, let us give smdthassible variationgR(t) anddm(t), t0[0,), toR
andm and find the corresponding variatiah = | (R+JR,m+dm) — 1 (R,m) of the functional.

In this case, the variatioda is determined bym. To find their connection, let us present (10) as

Enax(D) = j'm(r)dr: j'(m(r)+5m(r))dr

a(t) a(t)+a(t)
then
a(t)+da(t)
f an(r)dr = [m(r)dr +o(|om ) (A6)
max{a(t),0} a(t)

Next, we use (A4) for the variatiofi and eliminateda using (A6). To do that, we rewrite the third

a(t)+a(t)
term of (A4) by addlngf e B(a(t)) I m(7)drdt and applying (A6) as

a(t)

0 a(t)+aa(t)
- je‘” j B(r)m(r)drdt
0 a(t)
a(t)+da(t) o a(t)+aa(t)
=- j e pam) | mr)dmt+ j e [ (Baw)-Br)m(r)dmit
a(t) a(t)

(A7)
=- j e B(a(t)) j om(r)dmdt + j e o(da(t), am(t))dt

max{a(t),0}

wa}(r)

=- j j e B(a(r))dr Om(t)dt + j e o(da(t), am(t))dt

atda

The integral I (B(a) - B(r))m(r)dr in (A7) has the ordes(da) becausgd(7) is continuous.

Substituting (A7) into (A4) and collecting the cfigients of dm anddR, we obtain the expression

A ={ (1L ERE) +1,,t) @) dt+of R, o) (A8)

in the notations (16) and (17). The rest of theopre similar to Case A.

’ For brevity, the theorem omits the possible dagg (t)>0 treated in Hritonenko and Yatsenko (2005,
2008).
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Case C. Now the active constraim(t) + St)m(t) = y(t) on 4 involves four unknown variables
So, we cannot handle this constraint as easy asdhgtraintE(t)=Ena(t) in Case B. We shall

apply the method of Lagrange multipliers and tak® iaccount the equality-constrairft) +
Aom(t) =y(), tOA

Let us introduce the Lagrange multipli&t), t[0,), for the equalityR(t) + Zt)m(t) = y(t) on4

and make the usual assumption th@=0 att(][0,.0)-4 because of the complementary slackness

condition. Now we minimize the Lagrangian
L=1 +I (y(t) = R(t) - Bt)m(t))A(t)dt (A9)

instead of the functional (7). As in previous cases, we give small admissildriations tdR, m,
and a and find the corresponding variatiod. = L(R+R,m+dn,v+dv)-L(R,mVv) of

(A9). Providing all necessary transformations asvabwe arrive to the following expression
a =f (I (8) TAR(t) + 1, (1) Lom(t) + 1, (t) Cov(t))dlt,
0

where

a™(r)

' (1) =bnR"'1(t)T B (Mm(r)| [ [1-A(&)]dE ~e T [L- A(D)K(7) |d7 — e [L- A(1)]

R a™(t)
I (1) = B(1) f e [1-A(n)]d7 —e™ [1- A1) A1)
andl,'(t) is given by the same formula (20).

As usually in the method of Lagrange multiplierg ghoosel(t) from the conditionl’ m(t)=0 at

t0A which after introducing the new variabi€t)=[1-A(t)]e" leads to (23). The expression for
I" (1) in the variablex is (22).

Case D is the combination of Cases C and A. It is prousncombining reasoning and

transformations of Cases A and C. The theoremaggor. [
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Figure 1.Transition and long-term dynamics under active remvnent regulation from Example

1. The dashed line shows the inverse functian The dotted lines indicate the BGP regime.
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a*(t)

Figure 2. Transition and long-term dynamics under initisddtive environment regulation from
Example 3. The optimal dynamics at active regufetiom Example 2 is shown in grey color.




