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Abstract 

We consider the optimal control of nonlinear integral equations with state constraints, which 
describes the endogenous growth of an economy subjected to exogenous physical constraints. 
The economy has three instruments to reach sustainable growth: R&D to develop new more 
efficient technologies, investment in new capital goods, and scrapping of obsolete capital. The 
R&D technology depends negatively on a complexity component and positively on the R&D 
investment at a constant elasticity. First, we characterize exponential steady state trajectories 
(balanced growth paths) for different parameterizations of the R&D technology. Second, we 
study transitional dynamics to the balanced growth. We prove that regardless of how relaxed the 
physical constraint is, the transition dynamics always leads to the balanced growth with the active 
constraint in a finite time.  
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1. Introduction  

The paper introduces and investigates a nonlinear optimization problem with state 

constraints, which is of great importance to the economic growth theory. Identifying 

sustainable growth paths is becoming a central question of this theory. The issue has 

many challenging normative, demographic, and technological aspects (Arrow et al., 

2004). On the technological side, many research avenues have been taken so far resulting 

in a quite dense literature. In particular, research and development (R&D) programs have 

been designed to meet the environmental and physical constraints required for 

sustainability. These constraints include, but are not limited to extraction quotas, 

pollution quotas, and technical feasibility. A central question of the latter literature turns 

out to be whether such constraints can ultimately deliver a win-win situation when 

economies facing them will have strong incentives to innovate resulting in new R&D-

based growth regimes. This mechanism, often referred to as the Porter hypothesis, has 

been studied in numerous papers, some empirical (like the seminal paper by Newell et al., 

1999) and others more theoretically-oriented (see Acemoglu et al., 2011, for one of the 

most recent contribution on the induced-innovation hypothesis under environmental 

constraints). This paper is in line with the latter approach. More precisely, we consider an 

optimal growth model with R&D expenditures under physical constraints. Technological 

progress is, therefore, endogenous; it is also specified as embodied in capital goods: 

thanks to R&D efforts, new capital goods use less and less resource (say, energy). The 

view of technological progress as an embodied, endogenous, and energy-saving 

phenomenon is documented and commented in a substantial literature. In particular, 

Ayres (2005) declares that “technical progress is essentially equivalent to increasing 

efficiency of converting raw resources, such as coal, into useful work”. More specifically, 

substantial economic evidence supports the direct impact of the R&D spending on the 

industry-level capital-embodied technological change. Wilson (2002) used industrial data 

to confirm that the cross-industry variation in estimates of embodied technological 

change matches the cross-industry variation in embodied R&D and concluded that “the 

technological change, or innovation, embodied in an industry’s capital is proportional to 

the R&D that is done (upstream) by the economy as a whole”.  



 2 

Our paper has three salient and distinctive features. First of all, it explicitly uses a vintage 

capital framework in the tradition of Solow et al. (1966) with capital and raw resources as 

production factors. Raw materials include fossil energy and minerals. Capital and 

resources are complementary (Leontief technology), and new vintages consume less 

resources over time (resource-saving technical progress). Second, we explicitly account 

for physical constraints on the extraction and use of resources, which we formalize as 

exogenous upper-bounds on resource consumption. The presence of these constraints 

together with capital-resource complementarity induces an obsolescence mechanism, 

which in turn opens the door to endogenous scrapping: as in Boucekkine et al. (1997) and 

Hritonenko and Yatsenko (1996), the oldest vintages will be removed from the workplace 

and replaced by less resource consuming new vintages. Third, after characterizing 

possible steady states of the dynamic system, we shall study transitional dynamics. In 

particular, we aim at identifying clearly the different routes to sustainable growth, which 

is not so frequent in the endogenous growth literature, usually restricted to a balanced 

growth analysis.  

The resulting optimization problem is novel and describes a nonlinear optimal control of 

the age-structured population of heterogeneous capital assets. The mathematical 

complexity of the problem comes from non-traditional nonlinear relations among 

variables and the presence of state constraints. In order to achieve clear-cut analytical 

results, we consider a linear utility function: strictly concave utility functions render the 

analytical work intractable, even for steady state analysis. With this simplification, we are 

able to derive an analytical characterization of steady states and display the optimal 

transition to the steady states. We provide a complete dynamic analysis of this 

optimization problem, which determined the mathematical novelty of the paper. 

Our framework extends (Boucekkine et al., 2011) that addressed a related firm problem, 

while here we will solve an optimal growth model in the Ramsey sense. To the best of 

our knowledge, and with exception of (Jovanovic, 2009) and (Boucekkine et al., 2011), 

no other paper has considered R&D decisions and vintage capital with endogenous 

scrapping at the same time. Jovanovic (2009) suggested and analyzed a general-

equilibrium model of endogenous growth with human capital, technology markets, and 

more detailed mechanism of innovation accumulation and diffusion that ours. His model 

also delivers a sustainable balanced growth and our model complements his findings. 
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Using the central planner framework and more aggregate modeling of R&D, we are not 

only able to bring out a thorough analysis of the induced innovation hypothesis in the 

steady state, but also, and more importantly, to deliver the transitional dynamics of the 

endogenous growth model under scrutiny and the underlying dynamic processes. In the 

aggregate description of the R&D sector, we follow the well-known endogenous growth 

models of Romer (1990) and Jones (1995) adding the vintage capital structure and 

endogenous capital scrapping into them. The major remaining difference between these 

models and ours is that our R&D block uses a part of the endogenous output as an input 

while they use a part of a given (labor) resource. A vintage version of (Jones, 1995) 

model was briefly analyzed in (Yatsenko et al, 1999). 

Feichtinger et al. (2005, 2006) have developed an alternative vintage framework 

balancing the efficiency gains of running new vintages with the learning costs associated, 

which opens the door to optimal investment in old vintages, in contrast to our modelling 

where such a possibility does not exist (no learning costs). Having said this, Feichtinger 

et al. (2005, 2006) have not integrated R&D decisions in their setting, nor have they 

endogenized scrapping. Hart (2004) has constructed a multi-sector endogenous growth 

model with an explicit vintage structure. But his paper differs from ours in at least two 

aspects: it is built on two types of R&D, one output-augmenting and the other, say, 

environmental-friendly, while in our model only resource-saving adoptive and/or 

innovative R&D is allowed. Also, the vintage structure of Hart (2004) includes a fixed 

number of vintages and, therefore, there is no way to uncover a comprehensive 

modernization policy optimally combining the scrapping of the dirtiest technologies and 

the development of new clean technologies.  

A systematic exposure into the mathematical treatment and properties of such optimal 

control problems was done in Hritonenko and Yatsenko (2005), where the extremum 

conditions and qualitative analysis were provided for several problems of a simpler 

structure. In particular, a prototype vintage model with endogenous R&D investment was 

considered, which possessed no interior steady states. Veliov (2008) derived optimality 

conditions in the form of a maximum principle for more general and abstract models of 

heterogeneous distributed systems with nonlocal dynamics.  
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Finally, the modeling philosophy and outcomes of this paper are close to some age-

structured models studied in the monograph of Boucekkine et al (2010).  

This paper enhances both optimization and economic theories. It has two major 

contributions. First, it significantly extends the steady state analysis of (Boucekkine et al., 

2011). In the latter, the R&D technology is taken “balanced” in the sense that the 

standard (negative) complexity component à la Segerstrom (2000) compensates the 

(positive) return to R&D investment component in the parameterization considered. In 

this paper, we shall explore all the cases: when the negative component dominates and 

when it is dominated.  We believe that this extension is worth doing because the R&D 

technology is not the same across countries: some countries (like certain Scandinavian 

countries) are historically more sensitive to the development of resource-saving 

technologies than others, and are likely to be more efficient at this. Others are lagging 

clearly behind. We show that they should experience different balanced growth paths if 

any. For example, the countries with under-performing R&D sector would need the 

physical constraints to be more and more relaxed over time (in a very accurate sense to be 

given) to ensure a sustainable growth. 

The second major contribution of this paper is the complete dynamic analysis of the 

formulated optimization problem, which demonstrates the convergence of optimal 

trajectories to the steady state. Namely, regardless how lenient physical constraint is, the 

transition dynamics in the model leads in a finite time to a balanced growth with the 

active physical constraint. The derived transition dynamics indicates several possible 

short-term regimes, among them, an intensive growth (sustained investment in new 

capital and R&D with scrapping the oldest capital goods), and an extensive growth 

(sustained investment in new capital and R&D without scrapping the oldest capital). Our 

paper is the first one to disentangle the latter regime as a short-term optimal transition 

regime. Namely, if the country is not initially rich in capital (the resource consumption is 

lower than the upper bound), then it should initially use more new capital without 

scrapping the old one, so the country experiences an extensive economic growth.  

The paper is organized as follows. Section 2 formulates the optimal control problem and 

derives the optimality conditions in the form of a maximum principle. Section 3 is 

devoted to the steady state analysis of the problem and its applied interpretation as the 
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existence and properties of a long-term economic growth. Section 4 characterizes optimal 

transitional dynamics of the problem. Section 5 concludes. 

2. The optimal growth problem 

We consider a benevolent social planner of a national economy who maximizes the 

discounted utility from the consumption over the infinite horizon. The corresponding 

optimal control problem can be formulated as  

         dtetRtityuI rt

ai,Rai,R

−
∞

−−= ∫ ))()()((maxmax
0

,,
,                                  (1) 

where u(.) is the utility function, r is the social discount rate, i(t) is the investment into 

new capital, R(t) is the investment into R&D,  

ττ dity
t

ta

)()(
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∫=                                                                          (2) 

is the production output at time t, a(t) is the capital scrapping time, subject to the 

following constraints  

    0 ≤ i(t) ≤ y(t)−R(t),      R(t) ≥ 0,     a′(t) ≥ 0,    a(t) ≤ t.                    (3) 

The total resource consumption is 

                  
)(

)(
)(

)(

τ
τβ
τ

d
i

tE
t

ta
∫=                                                                        (4)                   

To address capital modernization, the model (1)-(4) departs from the concept of 

homogeneous capital and assumes that newer capital vintages consume less energy (and, 

therefore, are environmentally friendlier). In (4), the resource consumption by one 

machine of vintage t (i.e., installed at time t) is equal to 1/β(t). The variable β(t) is 

endogenous and reflects a broadly defined resource-saving embodied technological level, 

which may be implemented in new resource–efficient machines. For clarity, our model 

does not involve any output-augmenting embodied or disembodied technological change: 

each machine (old or new) produces exactly one unit of output. Needless to say, the 

output not invested (either in R&D or in new capital) is consumed, that is: c(t) = y(t) – 

i(t) – R(t). 
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We assume that the economy is committed to various physical feasibility and/or 

regulation constraints on current resource consumption (and/or extraction), which can be 

formulated as the following constraint:  

                    E(t) ≤ Emax(t).                                                                              (5)                        

Next, we assume that the level of the technological progress β(τ) depends on the R&D 

investment R(t) as  

                            ,10       ,
)(

))((

)(

)( <<= d
Rf'
d τβ

τ
τβ
τβ

                                                   (6) 

f'(R)>0, f''(R)<0. By (6), the rate β'/β of technological progress is a concave increasing 

function f(R) in R and a decreasing function of the level β itself. This specification 

reflects a negative “fishing-out” impact of technological complexity on R&D success 

(see Jones, 1995; Segerstrom, 2000; Jovanovic, 2009). The parameter d measures the 

impact of the R&D complexity on the technological progress rate. It is consistent with the 

available evidence on the role of technological complexity in the adoption of new 

technologies. Also, we restrict ourselves to the case  

f(R)=bRn,    0<n<1,    b>0, 

which means that the elasticity n of the rate of technological progress with respect to 

R&D expenditures is constant. The R&D investment is more efficient for larger n.  

Assuming a nonlinear utility would not allow for a full analytical characterization of 

possible steady state regimes, so, we stick to the linear utility function u in (1). In parallel 

with the investment i(t) in output units, we will use  investment m(t)=i(t)/β(t) in the 

resource consumption units. In the variables (m, R, a), the optimization problem (1)-(6) 

becomes  

dtetRtmttyI rt
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                    0 ≤ β(t)m(t) ≤ y(t)−R(t),   R(t) ≥ 0,   a′(t) ≥ 0,  a(t) ≤ t,                       (11) 

with the given initial conditions on the prehistory:  

                   a(0) = a0<0,   β(a0)=β0,   m(τ) ≡ m0(τ),  R(τ)≡R0(τ),  τ∈[a0, 0].               (12) 

The optimization problem (7)-(12) includes six unknown functions m(t), R(t), a(t), y(t), 

E(t), and β(t), t∈[0,∞), connected by three equalities (8)-(10). We choose R, m, and v=a′ 

as independent controls and consider y, a, E, and β as dependent state variables. Let R, m, 

v belong to the space L∞
loc[0,∞) of measurable on [0,∞) functions bounded almost 

everywhere (a.e.) on any finite subinterval of [0,∞) (Corduneanu, 1997). We also assume 

a priori that the integral in (7) converges (it will be true in all subsequent theorems). 

Solving the differential equation (9), we obtain the explicit formula for the productivity 

β(τ)  through the previous R&D investment R on [a0,τ]: 
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The problem (7)-(12) is an optimal control problem with state constraints. To analyze its 

complete dynamics, we need optimality conditions that will include all possible 

combinations of the state constraints-inequalities E(t)≤Emax(t) and β(t)m(t)≤y(t)−R(t). 

Notice that the latter is equivalent to the non-negativity of consumption. Clearly, having a 

concave utility function satisfying Inada conditions would rule out the corner regime 

c(t)=0 associated with this condition. For mathematical consistency, we shall consider 

here all the possible cases allowed by linear utility. The optimality conditions are given 

by Theorem 1 below. As we shall see, all combinations can appear during the long-term 

dynamics (Section 3) or the transition dynamics (Section 4).  

Theorem 1 (necessary condition for an extremum). Let (R*, m*, a*, β*, y*, E*) be a 

solution of the optimization problem (7)-(12). Then: 

(A) If E*(t)=Emax(t) and β* (t)m*(t)<y*(t)−R*(t) at t∈∆⊂[0,∞), and Emax′(t)≤0, then  

                         IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                  (14) 
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                         Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,    t∈∆,                     (15) 

where  
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the state variable a(t) is determined from (10), a−1(t) is the inverse function of a(t), and 

β(t) is given by (13).       

 (B) If E*(t)<Emax(t) and β* (t)m*(t)<y*(t)−R*(t) at t∈∆, then  

                          IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                          

                  Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,                                    (18) 

                          Ia’'(t)≤0  at  da*(t)/dt=0,      Ia’'(t)=0  at  da*(t)/dt>0,    t∈∆,                  

where  
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IR'(t) is as in (16), and β(t) is as in (13).   

 (C) If E*(t)<Emax(t) and β*(t)m*(t)=y*(t)−R*(t) at t∈∆⊂[0,∞), then  

                  IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                     (21)     

                         Ia’'(t)≤0  at  da*(t)/dt=0,      Ia’'(t)=0  at  da*(t)/dt>0,    t∈∆,                  

where Ia’'(t) is as in (20), m*(t) and y*(t) are determined from equation (8),  
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χ(t) is found from the integral equation  
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and χ(t)= rte−  at t∈[0,∞)−∆.  

(D) If E*(t)=Emax(t) and β* (t)m*(t)=y*(t)−R*(t) at t∈∆⊂[0,∞), then  

                         IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                  (24) 

where IR'(t) is given by (22), χ(t) is found from  

  ττχ
β
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and χ(t)= rte− at t∈[0,∞)−∆, and m*(t), a*(t), and y*(t) are determined from nonlinear 

equations (8) and (10).  

The proof is provided in Appendix. Theorem 1 is a significant extension of Theorem 1 in 

(Boucekkine et al., 2011) that explored only Cases A and B. For those two cases, some 

differences also show up. An essential difference emerges in the derivation of optimal 

scrapping when the physical constraint is inactive. It is easy to see from (20) that Ia''(t)<0. 

Hence, a*≡a0 is corner and the optimal regime is boundary in a. This might not be the 

case in the counterpart firm problem.5 This outcome is natural from the economic point 

of view: in our central planner problem, the unique reason to shorten the lifetime of 

capital goods is the active physical constraints, while exogenously increasing energy 

prices (for example, reflecting scarcity) is an additional motive to scrap in the 

corresponding firm problem. Mathematically speaking, the problem (7)-(12) with a linear 

utility does not possess exogenous resource and capital prices. So, the firm model has a 

room for a non-boundary control in the scrapping age even when the physical constraint 

is inactive. 

More differences emerge in the expression of the optimal interior investment rules 

depicted in Theorem 1. Let us briefly interpret the optimal interior investment rules in 

Case A, which will turn out to be the important one in the long-run as demonstrated in 

Section 3. As to the optimal investment rule in new capital, it can be reformulated as: 

                                                 
5 See equation (21) in (Boucekkine et al., 2011). 
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The rule is very close to the counterpart in Boucekkine et al. (1997): it equalizes the 

present value of marginal investment cost (the right-hand side) and the discounted value 

of the quasi-rents generated by one unit of capital bought at t along its lifetime (the left-

hand side). Here costs and benefits are expressed in terms of marginal utility, but since 

utility is linear, marginal utility terms do not show up. The quasi-rent at τ generated by a 

machine of vintage t is the difference between the unit of consumption forgone to buy 

one unit of new capital and the operation cost at τ, which is the product of the amount of 

energy consumed to operate any machine of vintage t, that is 
)(

1

tβ
, and the shadow 

price of energy β(a(τ)) at the date a(τ). 

The optimal investment rule in R&D in Case A may be rewritten as: 
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As for investment in capital, this rule equalizes the marginal cost of R&D (right-hand 

side) and its marginal benefit (the left-hand side). As before, the marginal utility terms do 

not show up due to the linear utility. Now note that in contrast to a unit of capital, which 

is necessarily scrapped at finite time, the benefit of R&D investment is everlasting 

through R&D cumulative technology, which explains integration from t to infinity in the 

left-hand side. Other than this, the left-hand side of the rule can be interpreted as the 

marginal increase in β(τ), τ≥t, following the marginal rise in R(t), that is 
)(

)(1

τβ d

n tbnR −

, 

increases profitability by improving the efficiency of all vintages after the date t, but 

since machines have a finite lifetime, this effect should be computed between τ and a-1(τ) 

for each vintage τ, which explains the factor 
r

ee rar )(1 ττ −−− −
= ∫

−

−
)(1 τ

τ

a
rsdse  in the integrand. 

In the next section, we analyze the long-term dynamics of the optimization problem (7)-

(12) and look for possible exponential balanced growth regimes. After such interior 
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regimes are indentified, the next step will be the analysis of the short-term transition 

dynamics of the problem provided in Section 4. 

 

3. Optimal long-term dynamics.    

In this section, we identify interior optimal trajectories over a “long–term” interval [tl,∞) 

starting with some finite instant tl ≥ 0 and examine what kinds of long–term interior 

regimes are possible in (7)-(12). The necessary extremum condition of Theorem 1 

specifies four possible Cases A-D. We can immediately rule out Cases C and D in the 

long run because then the integrand of the objective function (7) is zero over [tl,∞) and it 

is straightforward to show that these cases cannot be optimal in the sense that they are 

dominated by other solution paths.  

Next, Case B with non-binding physical constraint E<Emax appears to be also impossible. 

Indeed, then an interior solution should be found from the system  

                                IR'(t)=0,       Im'(t)=0,      Ia''(t)=0,   t∈[tl ,∞),                              

where IR'(t), Im'(t) and Ia''(t) are determined by (16), (19), and (20). As we explained 

before, this case implies an optimal regime which is boundary in a. Therefore, no long-

run interior regime with inactive physical constraint E<Emax is possible. We shall see in 

Section 4 that such a regime (extensive growth) can arise in the short-term dynamics and 

it leads to Case A with binging constraint E=Emax in a finite time.  

So, the only possible long-run solution is Case A with the binding physical constraint 

(10): E(t)=Emax(t) at t∈[tl,∞). Then the optimal long–term dynamics can involve an 

interior regime (R,m,a) determined by the system of three nonlinear equations  

                                 IR'(t)=0,         Im'(t)=0,      

                         )()( max

)(

tEdm
t

ta

=∫ ττ ,     t∈[tl , ∞),                                                     (26) 

where IR'(t) and Im'(t) are determined by (16) and (17). Let r<1 here and thereafter, 

otherwise, IR'(t)<0 and Im'(t)<0 by (16),(17). The equations IR'(t)=0 and Im'(t)=0 lead to  
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at t∈[tl, ∞).   

So, the optimal long-term growth in our model necessarily involves the active physical 

constraint (Case A of Theorem 1). We can summarize this as the following theorem.  

Theorem 2. Long-term interior optimal regimes are possible in the problem (7)-(12) only 

under the binding physical constraint E=Emax.  

We are interested in exponential interior solutions to the problem (7)-(12). The following 

lemma is helpful in this context.   

Lemma 1 (Boucekkine et al., 2011). If R(t)= R eCt for some C>0, then the productivity 

β(t) is almost exponential: 

 β(t) ≈ dCnt
d

dn e
Cn

bd
R /

/1
/









 at large t.                                      (29) 

The productivity is the exact exponential function β(t)= ( ) dntCddndntC enCbdRBe /ˆ/1//ˆ ˆ/=  

at the specially chosen rate  Ĉ = nBd/(bd nR ).             

 

For brevity, we will later omit the expression “at large t” in the notation f(t)≈g(t). Now 

we can formalize the concept of a balanced growth path in problem (7)-(12). 

Definition 1. The Balanced Growth Path (BGP) is a solution (RΛ, mΛ, aΛ) to the system 

of three nonlinear equations (26), (27) and (28), such that RΛ(t) grows exponentially, 

mΛ(t) is exponential or constant, t−aΛ(t) is a positive constant, and the constraints (11) 

hold. 

We will explore the possibility of the BGP under the binding physical constraint 

separately in the cases n=d, n<d, and n>d.  We start with the inequality cases n<d and 

n>d, which were not covered in the firm problem of (Boucekkine et al., 2011). We 
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believe that this analysis is important as explained in Introduction: the R&D technology 

is different for various countries. 

 

3.1.  Case n<d.  

Let us start with the situation where the complexity parameter d is larger than the 

efficiency parameter, n, which is the case of national economies where the R&D 

technology is not likely to ensure a balanced growth in the long-run on its own. We show 

that in this case the physical constraints should be more and more relaxed over time (in a 

precise sense to be given) for the economy to have balanced and sustainable growth.  

Theorem 3. Let n<d. If Emax(t) does not increase exponentially, then there is no interior 

BGP in the problem (7)-(12). However, if  

Emax(t)= E egt ,         0<g<min{rd/n, r(d-n)/n},                                (30) 

then the problem (7)-(12) has an interior exponential solution  

     RΛ(t)≈ R eCt,    yΛ(t) ~ eCt,   βΛ(t) ~ eCnt/d ,   mΛ(t)= M egt    aΛ(t)=t–T,        (31) 

where 

    ,
nd

gd
C

−
= M = ( )gTegE −−1/ ,                                                               (32) 

 1
1

)1(
  

1
112

drTd
dddnd

r

e

nCr

C
MdbnR 








−−

−−
=

−−
−−− ,       (33) 

and the positive constant T is found from the nonlinear equation 

             1
/

1 /

=
−

−−− −−−

dCnr

ee

r

e rTdCnTrT

.                (34) 

The solution (RΛ, mΛ, aΛ) is a BGP, at least, when 

             
C

e
n

CT−−−> 1
1 .                         (35) 

If g>min{rd/n, r(d-n)/n} in (30), then the problem does not possess a finite solution 

because Emax(t) increases too fast.  
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Proof. Let us substitute  

                           R(t) = R eCt      and      t−a(t) = T = const > 0                              (36)                       

into (26), (27) and (28) and estimate the growth order of m(t) at large t. By (26), m(t) satisfies 

                 )(')()( max tETtmtm +−= .                      (37)     

Applying Lemma 1 and Theorems 1 and 2, we find that β(t) dCnt
d

dn e
Cn

bd
R /

/1
/

0 






≈ , 

 01
1

)(
/)1(

)1(1 ≈−







−−




 −
∞

−
−−

−−
∫

rt

t

r
rTdd

CnntnCn ede
r

e

r
meR

Cn

bd
eRbn ττ ττ ,     (38) 

             [ ] 0//)(/
/1

/ ≈








−−






 −−−
+

∫
rtdCntrdTCndCnt

Tt

t

d
dn eedeee

Cn

bd
R τττ         (39) 

at large t. To keep (38), we need an exponentially growing m(t) with the rate C(1−n/d)>0. By 

(37), it is possible only if Emax(t) increases exponentially, i.e., (30) holds. Otherwise, no BGP 

exists.  

Let (30) hold, then m is found from (10) as mΛ(t)= M egt, where M >0 is determined by (32). 

Substituting it into (38), we have IR'(t)=0 only if g=C(1−n/d) and the constant R satisfies (33). 

The integral equation (39) with respect to T  has appeared before in the vintage models with 

exogenous technological change (Boucekkine et al, 1998; Hritonenko and Yatsenko, 1996). After 

evaluating the integrals, it leads to the nonlinear (but not integral) equation (34), which has a 

unique positive solution T if C<rd/n (Hritonenko and Yatsenko, 1996). 

To prove that the path (32)-(34) is a BGP indeed, we need to show that the state constant 

βΛ(t)mΛ(t) − RΛ(t) < yΛ(t) holds, at least, at large t. By (8) and (38), 

Ct
CTd

dn e
C

e

Cn

bd
MRty

−

Λ
−








≈ 1
)(

/1
/ .  Therefore,  

           yΛ(t) − βΛ(t)mΛ(t) − RΛ(t) Ctdn
CTd

dn eR
C

e

Cn

bd
MR













−







−−








≈ −
−

/1
/1

/ 1
1

. 

       




















−−










+−
−








−−








=
−−−

1
1

)(
1

1
1/1/1

/

r

e

Cn

bd

CnCr

bnM

C

e

Cn

bd
MeR

rTdCTd
Ctdn  
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

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
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



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


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


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
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1
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CnCr

Cn

Cn

bd
MeR

rTCTd
Ctdn  

Next, substituting rTe−  from (34) into this formula and combining similar terms, we obtain  

( ) .)1(1

)(
)()()()(

//1









−+−−−−×

+−







≈−−

−−−

ΛΛΛΛ

CTd

CnT
CT

Ctdnd

eeenC
Cn

Cr

CnCr

eMRn

Cn

bd
tRtmtty β

        (40) 

The first term in brackets is positive at (35) and the second term is positive at n<d.  

The theorem is proven.                                                              

Some comments are in order here. First, one has to observe that the sufficient condition 

(35) for the existence of BGPs involves endogenous magnitudes, C and T. It is 

challenging to express this condition in terms of given model parameters. Nevertheless, it 

appears to be valid for all economically reasonable ranges of the parameters n, C, and T, 

for example, if C<0.1 and 0.05<n<1, then (35) holds at T>1 year, which is definitely 

reassuring. Second, it is important to notice that the balanced growth is compatible with a 

substantial interval (30) of the growth rate g of Emax. An arbitrarily small g is enough to 

ensure a balanced growth, which is a non-trivial and remarkable property. In contrast, too 

large values of g lead the economy to explosive growth, which is economically 

straightforward. Third, in this case, the growth rate C of the economy is proportional to 

the growth rate of Emax: clearly, the R&D sector and the associated induced-innovation 

mechanism are too weak to ensure a balanced growth in this case of under-performing 

R&D sector. Thus, relaxing physical constraints over time is a necessary accompanying 

condition. A final crucial remark is worth doing: the innovation rate is equal to 

Cn/d=gn/(d-n), while the growth rate of production is C=gd/(d-n). Consistently, if n=0, 

then the growth rate of innovation is zero while the growth rate of production C is g. That 

is to say, the growth generated in this case is semi-endogenous: there are two 

interdependent engines of growth, one exogenous coming from the physical constraint 

and the other is endogenous reflecting the Porter mechanism. The R&D sector is not 

necessary for the existence of (exogenous) balanced growth paths; however, operating it 

allows reaching higher values of growth and welfare. 
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Last but not least, it is worthwhile to comment on the constraint relaxation condition 

obtained for the economies with inefficient R&D sector to reach balanced growth paths 

in Theorem 3. In particular, it is interesting to give it an economic interpretation and to 

reflect on its feasability.  How could an economy relax the physical constraints? If the 

latter are interpreted as extraction quotas imposed for ecological reasons (that’s to 

prevent ecological catastrophes), then relaxing them does not make sense, and the unique 

remaining route to sustainable growth is to upgrade the R&D technology (that’s to 

increase n and/or decrease d) and/or to develop backstop technologies.  New discoveries 

of mineral and other natural resources may help relaxing the physical constraints but it’s 

hard to think of this as a sustainable solution in the sense of the condition required by 

Theorem 3. If the economy were open, the constraint relaxation condition would call for 

a more straightforward interpretation and implementation: the economies with inefficient 

R&D technologies could “relax” their physical constraints by resorting to international 

markets for raw materials. If the physical constraints are interpreted as environmental 

regulation constraints like pollution quotas, then resorting to international market of 

pollution permits is a way to relax these constraints. In the absence of international 

pollution permits, as in our model, countries with different R&D technologies will 

converge to different long-term states. 

 

3.2  The case n>d 

This case is formally symmetrical to the previous one, so we state it briefly. The theorem 

below gives the technical details for this case. 

Theorem 4. Let n>d. If Emax(t) does not decrease exponentially, then no BGP is possible 

in the problem (7)-(12). If  

Emax(t)= E e-gt ,     0<g<<1−d/n,   r<<1,                     (41) 

then a unique BGP (RΛ, mΛ, aΛ) exists,  

     RΛ(t)≈ R eCt,    yΛ(t) ~ eCt,   βΛ(t) ~ eCnt/d ,   mΛ(t)= M e-gt ,   aΛ(t)=t–T,        (42) 

where ,
dn

gd
C

−
= M = ( )gTegE −−1/ , and the positive constants R and T are found from 

formulas  (33) and (34).  
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Proof essentially follows the proof of Theorem 3 and leads to similar expressions with the 

exception that now m(t) decreases rather than increases with the rate g. Formulas (36)-(39) 

remain valid. To keep IR'(t)=0 by (38), we need an increasing R(t)~eCt and a decreasing m(t)~e−gt 

with g=C(1−d/n)>0. If m(t) decreases exponentially, then by (10) Emax(t) also must decrease 

exponentially with the same rate g to have a BGP. The main difference in the proof is that 

βΛ(t)mΛ(t) − RΛ(t) < yΛ(t) at large t, because the second term in brackets in (40) is negative at n<d. 

So, we assume that r is small, r<<1.  

By (45), Cn/d<r<<1 is also small. Then, as shown in (Hritonenko and Yatsenko, 1996), the 

unique solution T of equation (34) is large and such that T ~ (Cn/d)−0.5.  Therefore, nT/d<<1 and 

CT<<1. Expressing the exponents in (40) as the Taylor series, we have  

  ( )






 +−+−−
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
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Finally, because T is large, the last equality leads to   
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r
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CnCr

eMRn

Cn

bd
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Ctdnd
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The theorem is proven.                                                              

Therefore, countries with a highly efficient R&D sector should necessarily consume less 

and less resource to have a long-term growth with a constant capital lifetime. 

 

3.3. Balanced growth at n=d  

Let us address the situation when the parameter of “R&D efficiency”  n equals the 

parameter of “R&D complexity” d. Then, an interior BGP regime is possible only if the 

physical resource consumption limit Emax(t)  is constant. 

  Theorem 5. If n=d and Emax(t) is not constant at large t, then no BGP with positive 

growth exists.  

Proof. By Theorems 1 and 2, any interior regime (R, m, a) has to satisfy the nonlinear system 

(26)-(28). Let R(t)= R eCt and t-a(t)=T=const>0. Then, (26) leads to (37). Under the assumption 
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that Emax(t) varies in time, m(t) cannot be constant by (37). On the other side, in our case 

β(t) Ct
n

e
C

b
R

/1








≈  and equality (27) is  

rt

t

r
rTn

CtnCn ede
r

e

r
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−− ≈
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Differentiating (43), we have  

( ) dteedee
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It means that m(t) must be constant to satisfy (43). Hence, no BGP exists.  

The theorem is proven.     

We now move to the case of constant exogenous environment, which is the case where 

BGPs typically arise. The findings are summarized in the following theorem.  

Theorem 6.  If n=d and Emax(t)= E =const, then an interior solution of problem (7)-(12)  

     RΛ(t)≈ R eCt,  βΛ(t) ~ eCt,   yΛ(t) ~ eCt,   mΛ(t)= M =const,   aΛ(t)=t– ME / ,        (44) 

is possible, where constants C and M   are determined by the nonlinear system 

          1
1

]1/[
/

/1/1






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−−=−+

−

r

e
bMddCrC

MEr
dd ,              (45) 

             1
1 ///
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−
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Cr

ee
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e MErMECMEr

.                 (46) 

The solution (RΛ,mΛ,aΛ) exists and represents a BGP, at least, in the following cases: 

 (i)   d>0.5 and large enough E ; then the optimal C→0 and t−aΛ(t)→∞  as E →∞. 

  (ii)                           rE <<1,        ]21[/1/1 rbEr dd −< ,                                            (47) 

then C, 0<C<r, is a solution of the nonlinear equation  

        )( 
2

1
1)]1([ /1/)1( roC

C

r
bEddCrC ddd +








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





 +−=−−−        (48) 

and )(2/ roCEM += . The uniqueness of the solution is guaranteed if  
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                                          2
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Proof. Formulas (44)-(49) are obtained in Theorem 3 of (Boucekkine et al., 2011), where the 

system (45)-(46) is also shown to have a solution C>0 and M >0  in the cases (i) and (ii).  

To prove that the path (44) is a BGP indeed, we need to show that the state constant 

 yΛ(t) −βΛ(t)mΛ(t) − RΛ(t)>0 holds along (44), at least, at large t. By (8), (29), and (32), 
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Expressing the exponent above as the Taylor series, we obtain  
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On the other side, expressing the exponent in (33) as the Taylor series, we have  
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Combining the last two formulas, we obtain  
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The theorem is proven.                                                              

 The conditions (i) and (ii) are sufficient for the existence of the BGP. The BGP can also 

exist when these conditions do not hold. The uniqueness condition (49) is also sufficient. 

The only possible case of non-uniqueness when we need condition (49) is when the 

optimal C is close to r.  

It is clear that the BGP in case n=d is also induced by the R&D sector of the economy 

and illustrates a Porter-like mechanism. Indeed, as statement (i) of Theorem 6 indicates, 

the growth rate tends to zero when the constraint level E  goes to zero. The long term 

growth is endogenous and is determined by the model parameters r and d and the 
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constraint level E . It can readily shown that a further decrease of E  leads to the 

decrease of both optimal growth rate C and optimal investment in efficiency units M . 

In other words, while an induced-innovation mechanism is at work, tightening physical 

constraints negatively affects the rate of innovation and growth of the economy. Thus, we 

uncover a kind of mild Porter-like mechanism in the balanced case n=d: physical 

constraints are necessary for R&D to get launched but too strict constraints kill the 

growth. By (44), the growth rate C of β (the innovation rate) is equal to the growth rate 

of production y and investments i and R along the BGP.6   

 

4. Transition Dynamics  

We can show that the short-term dynamics will remain qualitatively the same for any 

bounded constraint level Emax(t), provided that a long-term interior regime exists. 

However, as shown in Section 3, essential difficulties arise in finding such regimes. For 

this reason and for clarity sake, we restrict ourselves in this section with the case of n=d 

and a constant function Emax(t)= E . The long-term interior regime in this case is the BGP 

(RΛ, mΛ, aΛ) determined by Theorem 6.  

As proven in Theorem 2, the long-term dynamics necessarily involves the active physical 

constraint (10). In this section, we will show that:  

 (1) All Cases A-D from Theorem 1 are possible in short–term dynamics. The optimal 

trajectories during the transition period appear to be qualitatively different depending on 

whether the physical constraint (10) is initially active, E(0)=Emax (Cases B and C), or 

inactive, E(0)<Emax (Cases A and D). 

(2) The short-term transition dynamics always leads to the long-term interior regime with 

the active physical constraint.  

The solution R*(t), m*(t), and a*(t), t∈[0,∞), of the optimization problem (7)-(12) must 

satisfy the initial conditions (12). The initial condition a(0)=a0 is essential because of the 

continuity of the unknown a. If a0≠aΛ(0), then the dynamics of (R*, m*, a*) involves a 

                                                 
6 We don’t detail here the computation of the BGP. It goes without saying that given that growth is 
endogenous, we also face a problem of indeterminacy in levels. This technical point is made precisely in 
(Boucekkine et al., 2011). 
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transition from the initial state a(0)=a0 to the long-term interior trajectory aΛ(t) from 

Theorem 6. Also, the given model functions shall satisfy the inequality 

       ττβ
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Otherwise, the constraint (11) is violated at t=0 and the economic system is not possible.     

 

4.1. Optimal intensive growth at active physical constraint.  

Let E(t)=Emax starting from the initial time t=0. Then the optimal dynamics are subjected 

to Case A or D of Theorem 1 (with the active restriction E(t)=Emax on [0,∞)). This regime 

is a growth with intensive capital renovation induced by technical progress. In order to 

make a new capital investment m(t) at t≥tk, some obsolete capital should be removed, 

following the equality (10) under the given E(t)=Emax or 

                 ττ dm
t

ta
∫

)(

)( =Emax.  

In the long-term dynamics considered in Section 3, the optimal R&D innovation R*(t) is 

the interior trajectory RΛ(t) determined from IR'(t)=0, where IR'(t) is given by (16). The 

optimal R*(t) reaches the trajectory RΛ(t) immediately at t=0. The long-term dynamics 

has the interior turnpike trajectory aΛ for the capital lifetime, determined from Im'(t)=0 or 

             [ ] )())(()(
)(1

tedate rt
ta

t

r βττββτ −− =−∫
−

.                                            

If a0=aΛ(0), then the optimal capital lifetime a*≡aΛ, that is, no transition dynamics at all. 

If a0≠aΛ(0), then we can show that the optimal a*(t) will reach aΛ(t) at some time tl>0. If 

a0>aΛ(0), then the optimal investment m*(t)=0 is minimal at 0<t≤tl (Case A). If a0<aΛ(0), 

then the optimal investment m*(t)=(y*(t) −R*(t))/β*(t) is maximal at 0<t≤tl (Case D). 

After the transition, at t>tl, the optimal long-term trajectory m*(t) possesses a repetitive 

pattern in a general case (Hritonenko and Yatsenko, 1996; Boucekkine et al., 1997) 

determined by the dynamics of m(t) on the interval [a0, tl]. These replacement echoes are 

absent at the “perfect” initial condition a0=aΛ(0), m0(τ)= M , τ∈[a0,0]. To illustrate them, 
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we provide a numeric example shown in Figure 1 that will be also used and developed in 

the next section. 

Example 1. Let  

             r=0.05,   d=n=0.5,   b=0.005,   Emax(t)= E =22,  

              a0 = −22,   β0=1,   R0(τ)=0,   m0(τ)=1,    τ∈[−22,0].                                                  

Then, B=β(0)=1 by (13) and the BGP exists: 

                    RΛ(t)=R0e
Ct,  C=0.00225,   mΛ(t)=M0 =0.55,     aΛ(t)=t–40,  t∈[0,∞).                            

The BGP is indicated by the dotted lines in Figure 1. In this case, E(0)=m0a0=22 is equal to 

Emax(0)=E , hence, the physical constraint (10) is active starting t=0. Since aΛ(0)=−40 < a0=−22, 

then the optimal a*(t)= −22 and m*(t)=0 at 0<t≤tl=18 (Case A). After tl, the optimal a*(t) 

coincides with aΛ(t) and m*(t)=m*(t−40) exhibits replacement echoes (shown with dotted lines). 

 

4.2. Optimal extensive growth  

Let the resource consumption E(t) be lower than the limit Emax at time t=0. We assume 

that E(t)<Emax over a finite interval 0≤t<tk, where the moment tk is to be determined. 

Then, we have Case B or C of Theorem 1, at least, at the beginning of the planning 

horizon. Since Ia''(t)<0 by (20), the boundary regime a*( t)≡a0 is always optimal while 

E(t)<Emax.  

First, let m(t)<(y(t) −R(t))/β(t) (Case B), then Im'(t)≤0, otherwise the optimal investment 

m* is maximal possible and we immediately switch to Case C. By (19), Case B is highly 

unlikely in economic practice. It means an extremely underfunded initial capital 

(determined by the length a0 of the prehistory) combined with a high impatience (a high 

discount rate r). Indeed, simple calculations show that for the discount rates 10%<r<50%, 

Case B occurs if the initial prehistory length a0 is less than 1.05 - 1.4 years. For such 

values of a0, the constraint (50) imposes extremely severe restrictions on the initial 

functions m0 and R0 and value β. In Case B, the optimal investment m* is zero and no 

capital scrapping occurs, which corresponds to the trivial solution R0≡0, m0≡0 of the 

problem (7)-(12). In this case, the non-trivial long-run solution with investing into new 

capital and R&D is not possible. 
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For economically reasonable values of the discount r<10%/year and the initial capital 

lifetime a0 more than one year, Im'(t)>0 by (19). Hence, the optimal investment m* is 

maximal possible and we have Case C. Then, the country can use more new capital and 

there is no need to remove the old one, which can be classified as an extensive economic 

growth. The upper bound for m(t) is given by the constraint (11) and the optimal m*( t) 

jumps to this bound immediately after t=0. In this case, the inequality-constraint m(t) ≤ 

(y(t) −R(t))/β(t) limits both optimal controls R* and m*. Therefore, the transition 

dynamics on some initial period [0, tk] is determined by the restriction  

                                           R*( t) + β*( t)m*( t) = y*( t)                                                 (51) 

until E(tk)=Emax. Resource consumption E(t) = ττ dm
t

a
∫
0

)(*  is increased fast and  the limit 

Emax will be reached shortly, which will mean the end of the extensive growth phase. 

Following Case C of Theorem 1, the optimal R*( t), m*(t) and y*(t) over [0,tk] are 

determined from the system of three nonlinear equations (10), (51), and IR'(t)=0. 

The end tk of the “extensive-growth” transition period [0, tk] is determined from the 

condition E(tk)=Emax. After the transition period [0, tk], the optimal dynamics will switch 

to the scenario of Section 4.1 with the active constraint (10).  

If a*( tk)≠aΛ(tk), then the “extensive-growth” transition on [0, tk] is followed by one of the 

intensive growth transition scenarios on [tk,tl], tl>tk, described in Section 4.1. If 

a*( tk)>aΛ(tk), then the optimal investment m*(t)=0 is minimal on [tk,tl] (Case A). If 

a*( tk)<aΛ(tk), then the optimal investment m*(t)=(y*(t) −R*(t))/β* (t) is maximal on [tk,tl] 

(Case D). 

 

Example 2. Let all given parameters be as in Example 1 except for m0(τ) =0.5, τ∈[−22,0]. Then 

the BGP is the same as in Example 1 but the transition dynamics is different and is shown in 

Figure 2.  

In this case, E(0)=m0a0=0.5*22=11 is less than Emax(0)=22, hence, the physical constraint (10) is 

inactive on an initial interval [0, tk] at the beginning of the planning horizon. The dynamics of the 

optimal m*( t) and R*( t) on [0, tk] follows the restriction R*( t)+β*( t)m*( t)=y*( t) (Case C of 

Theorem 1). The optimal R*( t) over [0, tk] is found from (27) as 
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dedt  over [0, tk] is found from (23) and  χ(t)= rte−  on [tk,∞).  

Finding an approximate solution of the arising equations, we obtain that R*( t)≈0.2 at 0≤t≤tk.  

Then, the optimal m*( t)≈10.8 at t≈0 and m*( t)≈21.8 at t≈tk.  The corresponding E*( t) increases 

fast and reaches the limit value Emax=22 at tk≈0.75. The corresponding y*( t) also increases fast 

from y*(0)≈11 to y*( tk)≈22.  

The further optimal dynamics on [tk,∞) is similar to Example 1 and follows Case A. It is shown in 

Figure 2 with black curves.  

As opposed to the “intensive-growth” scenario of Example 2, the optimal trajectory m*(t) 

always possesses the replacement echoes after the transition. Indeed, no “perfect” initial 

condition is possible in this case. If m0(τ)= M  on [a0,0], then a0>aΛ(0) by E(0)<Emax. 

Alternatively, if a0=aΛ(0), then τττ dMdm
aa
∫∫ <
00

0

00

)( . The optimal short-term trajectory 

m*(t) is different from M  on the “extensive-growth” transition period [0, tk], and the 

optimal trajectory m*(t) will repeat the dynamics of m(t) on [a0, tk].  

We can summarize the above reasoning in the following statement. 

 Theorem 7. In the case n=d and a constant Emax, the transition dynamics of the problem 

(7)-(12) leads to the BGP with active physical constraint (described by Theorem 6) in a 

finite time tk≥0, regardless how large the value Emax is. The transition dynamics is absent 

(tk=0) only if  

                                   a0=aΛ(0)   and   E(0)=Emax.                                                      (52)   

If (52) holds and m0≡M , then the optimal m*≡M , otherwise, the optimal trajectory m* 

possesses everlasting replacement echoes that repeat the dynamics of m* on the interval 

[a0, tk]. 

This theorem describes the complete dynamics of the central planner problem (7)-(12) in 

case d=n. The dynamics will be qualitatively similar for any values of n and d and any 

bounded function Emax.  
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5. Concluding remarks  

In this paper, we have studied the optimal investment and capital replacement policies in 

an economy with R&D sector under physical constraints. The corresponding optimal 

control problem includes nonlinear integral equations with endogenous integration limits 

and the state constraints active along the optimal trajectories, which justifies the 

mathematical novelty. We have provided a systematic qualitative analysis of this problem 

and extended significantly previous results by characterizing all possible balanced growth 

paths for any parameterizations of the R&D technology.  In particular, we demonstrate 

that the presence of the physical constraint is essential for getting a meaningful optimal 

dynamics in the central planner problem (7)-(12) with linear utility. It complements and 

clarifies the result of (Yatsenko et al., 2009) that the model (8)-(12) without physical 

constraints has only blow-up solutions that strive to the infinity in a finite time for any 

R&D parameterization and the corresponding objective functional (7) is always infinite.  

Next, we have studied transitional dynamics to balanced growth, a task not undertaken so 

far. The optimal dynamics obtained in this paper is quite new in the related economic 

literature (see for example, Boucekkine et al., 1997). We have uncovered two optimal 

transition regimes: an intensive growth (sustained investment in new capital and R&D 

with scrapping the oldest capital goods), and an extensive growth (sustained investment 

in new capital and R&D without scrapping the oldest capital). In the short run, the 

modernization policy can consist of increasing investment in new capital and R&D 

without scrapping the older and more resource consuming capital. The long-run 

modernization policy encompasses scrapping the oldest capital goods following the 

intensive growth scenario described above. The reason behind this is quite elementary: a 

country with a low enough initial capital stock (and so, with low enough initial resource 

consumption) has no incentive to scrap its old capital assets as long as its resource 

constraint is not binding. In contrary, at a binding constraint, investing in new assets is 

not possible without scrapping some obsolete older assets because of market clearing 

conditions or binding regulation or technological constraints. In other words, our model 

predicts that historically poor countries may find it optimal to massively invest and, 

therefore, over-exploit their resources during the early stage of their development 



 26 

process. Such transition growth regime comes to the end when the physical constraint 

upper-bound is reached and is followed by an intensive balanced growth with scrapping 

of old capital under active constraints. After the transition dynamics ends, the optimal 

capital investment possesses everlasting replacement echoes that repeat the investment 

dynamics during the prehistory and transition periods. In general, the modernization 

policy is similar to simpler vintage models with exogenous technological change 

(Boucekkine et al., 1997, 1998; Hritonenko and Yatsenko, 2005, 2008).  

In contrast, the optimal R&D policy is more robust, exponential, and not sensitive to the 

initial structure of capital distribution. This outcome is in a good agreement with the 

celebrated non-vintage model of endogenous growth under restricted non-renewable 

resource (Romer, 1990), which produces a sustainable exponential balanced growth for 

any R&D efficiency. In our model, the rate of the endogenous growth is determined only 

by the R&D parameterization, the physical constraint, and the discount rate. 

 

Appendix 

Proof of Theorem 1: The proof is based on perturbation techniques of the optimization theory. It 

extends the approach earlier applied by Hritonenko and Yatsenko (2005, 2008) to vintage models 

with exogenous technological change and state constraints.  

Case B. Let the restrictions (10),(11) be inactive on a certain subset ∆ of the interval [0,∞): 

E*(t)<Emax(t) and R(t)+β(t)m(t)<y(t) at t∈∆⊂[0,∞). We choose R, m, and v=a' to be the 

independent unknown variables of the OP (7)-(12). Then, the differential restriction a'(t)≥0 in (11) 

takes the standard form v(t)≥0. The dependent variables y(t), E(t) and β(t) can be found from (8), 

(10), and (13). We assume that R, m, v∈L∞
loc[0,∞).  

We refer to measurable functions δR, δm, and δv as admissible variations, if R, m, v, R+δR, m+δm, 

and v+δv, satisfy (8)-(11). Let us give small admissible variations δR(t), δm(t), and δv(t), t∈(0,∞), 

to R, a, m, and find the corresponding variation ),,(),,( vmRIvvmmRRII −+++= δδδδ  of the 

objective functional I. Using (7)-(10) and (13), we obtain that  
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where ∫=
t

dvta
0

)()( ξξδδ . To prove the theorem, we shall transform (A1) to the form  

   ),,())()()()()()((
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Next, using (A3) and properties of integrals, (A1) can be rewritten as 
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where max{a(t),0} appears because the variations δR(t), δm(t) are zero on the interval [a0,0]. 

Interchanging limits of integration in the second term of (A4)  
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and applying the Taylor expansion, (A4) can be rewritten as: 
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Finally, recalling that ∫=
t

dvta
0

)()( ξξδδ , we convert the last expression to 
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The combination of (A5), (17), (19), and (20) leads to (A2). The domain (11) of admissible controls 

R, m, v has the simple standard form R≥0, m≥0, v≥0.  So, the optimality condition (18) follows from 

the obvious necessary condition that the variation δΙ of the functional Ι  cannot be positive for any 

admissible variations δR(t), δm(t), δv(t), t∈[0,∞).   

Case A. If the constraint R(t)+β(t)m(t)<y(t) is inactive and the restriction (10) is active: E(t)=Emax(t) 

at t∈∆⊂[0,∞), then we choose R and m to be independent unknowns of the OP. The dependent 

(state) variable a is uniquely determined from the initial problem  

                        m(a(t))a′(t) = m(t) − Emax′(t),     a(0)= a0, 
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obtained after differentiating (10). As shown in Hritonenko and Yatsenko (2008), if Emax′(t)≤0, then 

for any measurable m(t)≥0, a unique a.e. continuous function a(t)<t exists and a.e. has a'(t)≥07. 

Therefore, the state restrictions a'(t)≥0 and a(t)<t in (11) are satisfied automatically, so we can 

exclude the dependent variable a from the optimality condition.  

Similarly to the previous case, let us give small admissible variations δR(t) and δm(t), t∈[0,∞), to R 

and m and find the corresponding variation ),(),( mRImmRRII −++= δδδ  of the functional I. 

In this case, the variation δa is determined by δm. To find their connection, let us present (10) as    
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The integral τττββ
δ

dma
aa

a

)())()(( −∫
+

in (A7) has the order o(δa) because β(τ) is continuous.  

Substituting (A7) into (A4) and collecting the coefficients of δm and δR, we obtain the expression  

          ),())()()()((
0

mRodttmtItRtII mR δδδδδ +⋅′+⋅′= ∫
∞

                               (A8) 

in the notations (16) and (17). The rest of the proof is similar to Case A. 

                                                 
7 For brevity, the theorem omits the possible case Emax′(t)>0 treated in Hritonenko and Yatsenko (2005, 
2008).   
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Case C. Now the active constraint R(t) + β(t)m(t) = y(t) on ∆ involves four unknown variables 

So, we cannot handle this constraint as easy as the constraint E(t)=Emax(t) in Case B. We shall 

apply the method of Lagrange multipliers and take into account the equality-constraint R(t) + 

β(t)m(t) = y(t),   t∈∆.  

Let us introduce the Lagrange multiplier λ(t), t∈[0,∞), for the equality R(t) + β(t)m(t) = y(t) on ∆ 

and make the usual assumption that λ(t)=0 at t∈[0,∞)−∆  because of the complementary slackness 

condition. Now we minimize the Lagrangian  

dtttmttRtyIL )())()()()((
0

λβ−−+= ∫
∞

                                       (A9) 

instead of the functional I (7). As in previous cases, we give small admissible variations to R, m, 

and a and find the corresponding variation ),,(),,( vmRLvvmmRRLL −+++= δδδδ  of 

(A9). Providing all necessary transformations as above, we arrive to the following expression   
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and Iv'(t) is given by the same formula (20).   

As usually in the method of Lagrange multipliers, we choose λ(t) from the condition Î ′ m(t)=0 at 

t∈∆ which after introducing the new variable χ(t)=[1-λ(t)]e-rt leads to (23). The expression for 

Î ′ R(t) in the variable χ is (22).  

Case D is the combination of Cases C and A. It is proven by combining reasoning and 

transformations of Cases A and C. The theorem is proven.      
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Figure 1. Transition and long-term dynamics under active environment regulation from Example 

1. The dashed line shows the inverse function a-1.  The dotted lines indicate the BGP regime. 
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Figure 2. Transition and long-term dynamics under initial inactive environment regulation from 

Example 3. The optimal dynamics at active regulation from Example 2 is shown in grey color. 
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