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Trackable graphs 

 

Here: number of possibilities asymptotically zero ( ) 0N t 
 
 Trackable  

Let        be te worst possible number of trajectories compatible with an  
observation of length t 
A network is trackable if       grows subexponentially 

[Crespi et al. 05] 



  

 

 

 

 

 

 

 Worst case : RRRRRR…    

 
Polynomial number of possibilities 

( )N t t
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 Trackable  

Trackable graphs 



  

 

 

 

 

 

 

 Worst case : RGRGRG…  

 

Exponential number of possibilities 

/ 2( ) 2tN t 

 
 Not trackable  

Trackable graphs 



Trackability : the formal problem 

We are given 

  

– A graph G(V,E) :  

 

– A set of possible observations :  

   defining a partition of the nodes 

 

 

For each possible color, we define the corresponding matrix  by erasing the 
incompatible columns from    : 
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To a given observation, associate the corresponding product: 
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The number of possible trajectories is given by the sum of the entries of the  

matrix 

Trackability : the formal problem 

xt+1=             
A0 xt 

A1 xt 
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Switching systems 

xt+1=             
A0 xt 

A1 xt 

Point-to-point Given x0 and x*, is there a product (say, A0 A0 A1 A0 … A1) for 
which x*=A0 A0 A1 A0 … A1 x0?  

Boundedness Is the set of all products {A0, A1, A0A0, A0A1,…} bounded?   

Mortality Is there a product that gives the zero matrix? 

Global convergence to the origin Do all products of the type  
A0 A0 A1 A0 … A1 converge to zero? 



Switching systems 

xt+1=             
A0 xt 

A1 xt 

Global convergence to the origin Do all products of the type  
A0 A0 A1 A0 … A1 converge to zero? 

The joint spectral radius of a set of matrices     is given by  

All products of matrices in    converge to zero iff 

The spectral radius of a matrix A controls the growth or decay of powers of A 

The powers of A converge to zero iff  

[Rota, Strang, 1960] 



The joint spectral characteristics 

 

 

 

1 

2 

3 

4 

3 

1 

5 

6 

2 

1 

5 

2 

The joint 
spectral radius 

… 

… 

… 

2 

4 



The joint spectral characteristics 

 

 

 

1 

2 

3 

4 

3 

1 

5 

6 

2 

1 

5 

2 

The joint spectral 
subradius 

… 

… 

… 

2 

4 

[Gurvits 95] 



The joint spectral characteristics 
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[Protasov 97] 

(m is the number of 
matrices in   ) 



The joint spectral characteristics 
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[Furstenberg Kesten, 1960] 
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The 
feedback 
stabilization 
radius 

The joint spectral characteristics 

[J. Mason 15] 

[Fiacchini Girard Jungers 15] 

[Geromel Colaneri 06] 

[Blanchini Savorgnan 08] Alternative definition: suppose you can observe x(t) at 
every step, and apply the switching you want, as a function 
of the x(t) 



The 
feedback 
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The 
feedback 
stabilization 
radius 

The joint spectral characteristics 



The joint spectral radius addresses the 

stability problem 

The joint spectral subradius addresses the 

stabilizability problem 

The Lyapunov exponent addresses 

the 
 stability with probability one 
(Cfr. Oseledets Theorem) 

The p-radius addresses the… p-weak 
stability 

[J. Protasov 10] 

The feedback stabilization  
radius addresses the 
 feedback stabilizability 

[J. Mason 16] 

[Fiacchini Girard Jungers 15] 

The joint spectral characteristics 



The joint spectral characteristics: 
Mission Impossible? 

 

 

 
Theorem Computing or approximating  is NP-hard 

 
 
Theorem The problem >1 is algorithmically undecidable 

 

Conjecture The problem <1 is algorithmically undecidable 
 

Theorem Even the question «                           ?» is algorithmically undecidable 
 for all (nontrivial) a and b 

 

Theorem The same is true for the Lyapunov exponent 
 
 
Theorem The p-radius is NP-hard to approximate 

See  [Blondel Tsitsiklis 97, 
 Blondel Tsitsiklis 00, 
 J. Protasov 09 
 J. Mason 15] 
 

 
Theorem The feedback stabilization radius is turing-uncomputable 



Algorithmic complexity 
Arbitrary 
approximation 

Arbitrary 
approximation in 
polynomial time 

Arbitrary 
approximation for 
positive matrices 

Decidability 
 

Joint 
Spectral 
Radius 

Joint 
Spectral 
Subradius 

Lyapunov 
Exponent 

p-radius 
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v x 
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Depends 
on p 

v Depends 
on p 

Feedback 
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• The CQLF method 

 

    

 

 

 

 

 

 

    

 

LMI methods 



SDP methods 

• John’s ellipsoid Theorem: Let K be a compact convex set with 
nonempty interior symmetric about the origin.  Then there is an 
ellipsoid E such that       

        [John 1948] 

 

• Theorem  For all             there exists a norm such that 

[Rota Strang, 60] 

•So we can 
approximate the unit 
ball of an extremal 
norm with an ellipsoid 



• Theorem The best ellipsoidal norm          approximates the joint 
spectral radius up to a factor  

 

K 

[Ando Shih 98] 

SDP methods 

 

Algorithm that approximates the joint spectral radius of  

arbitrary sets of m (nXn)-matrices up to an arbitrary accuracy     in                          
 operations 
 
 

There exists a Lyap. 
function of degree d 

One can improve this method by lifting techniques [Nesterov Blondel 05] 

[Parrilo Jadbabaie 08] 

PTAS  



Yet another LMI method  

• A strange semidefinite program 

 

 

 

 

 

 

 

 

 

 

 

 

• But also… 

 

 

 

 

 

 

 

 

 

 

[Goebel, Hu, Teel 06] 

[Daafouz Bernussou 01] 

[Lee and Dullerud 06] … 

[Bliman Ferrari-Trecate 03] 



Yet another LMI method 
 

• An even stranger program: 

 

 

 

 

 

 

 

 

 

 

 

 

[Ahmadi, J., Parrilo,  
Roozbehani10] 



Yet another LMI method 
 

• Questions: 

 

– Can we characterize all the LMIs that work, in a unified 
framework? 

 

– Which LMIs are better than others? 

 

– How to prove that an LMI works? 

 

– Can we provide converse Lyapunov theorems for more 
methods? 

 

There exists a Lyap. 
function of degree d 



From an LMI to an automaton  

• Automata representation Given a set of LMIs, construct an automaton like 
this: 

 

 

 

 

 

 

 

 

 

 

• Definition  A labeled graph (with label set A) is path-complete if for any 
word on the alphabet A, there exists a path in the graph that generates 
the corresponding word. 

• Theorem If G is path-complete, the corresponding semidefinite program is 
a sufficient condition for stability. [Ahmadi J. Parrilo Roozbehani 14] 



 

• Examples:  

– CQLF 

 

 

 

 

– Example 1 

 

 

 

This type of graph gives a max-of-quadratics  

Lyapunov function (i.e. intersection of ellipsoids) 

 

– Example 2 

This type of graph gives a common  

Lyapunov function for a generating  

set of words 

Some examples 



An obvious question: are there other 
valid criteria? 

 

• Theorem 

 

 

 

 

  

 

 

 

 

 

 If G is path-complete, the corresponding semidefinite program is a 
sufficient condition for stability. 

 

• Are all valid sets of equations coming from path-complete graphs? 

 

• …or are there even more valid LMI criteria? 

Path complete Sufficient condition 
for stability 

??? 



Are there other valid criteria? 

[J. Ahmadi Parrilo Roozbehani 15]  

Path complete Sufficient condition 
for stability 

!!! ??? 

• Theorem Non path-complete sets of LMIs are not sufficient for stability. 

 

 

 

 

 

 

 

 

 

 

• Corollary   

 It is PSPACE complete to recognize sets of equations that are a sufficient 
condition for stability 

 

• These results are not limited to LMIs, but apply to other families of conic 
inequalities 



So what now? 

After all, what are all these results useful for? 

 

 

 

 

 

 

 

 

 Optimize on optimization problems! 

 This framework is generalizable to harder problems 

• Constrained switching systems 

• Controller design for switching systems 

• Automatically optimized abstractions of cyber-physical systems 

• … 



So what now? 

After all, what are all these results useful for? 

 

 

 

 

 

 

 

 

 Optimize on optimization problems! 

 This framework is generalizable to harder problems 

• Constrained switching systems 

• Controller design for switching systems 

• Automatically optimized abstractions of cyber-physical systems 

• … 



• Take an inverted pendulum… 

 

 

 
 

 

• “Close the eye” of the controller… 

We begin with an example  

? 

? 

? 
? 

Linearized around  “up” :  

Linearized around  “up” :  



Some plots: 

If everything goes well 

When there is at most 2 consecutive failures… 
Already pretty bad. But is this stable? 

Red dot means failure,  
next input is = to current 



Switching systems 

State update 

Modes of the system 

Switching signal 



Switching systems: Dropouts 

? 

? 

? 
? 



Switching systems: Dropouts 

Switching system with 2 modes. 

This is not possible! 

This is possible! 

Constrained switching sequences. 



Switching rules through graphs 



Paths and switching sequences 

Paths map to trajectories. 

Paths of the graphs. 

Defines rules on the switching sequences of the system! 



A graph for maximum dwell time 

Arbitrary switching on 4 modes. 
Any sequence is OK, take the loops you need 

Periodic system on 2 modes. 

Maximum dwell time on mode 2. 
Cannot have …1,2,2,2… 



Stability and boundedness 
Given a constrained switching system 



Failure of contractive norms 

We are stable  



Multinorms for stability 

JSR defined through sets of norms. 

• Direct generalization of the arbitrary switching case . 

 
• Stability if and only if Multiple Lyapunov Function 

46 

Theorem: 



The approximation problem 

Approx. using “contractive norms”. Approx. using “contractive  
multinorms”. 



Norms VS quadratic norms 

Constrained JSR as an infimum over multinorms. 

How bad can this be? (Approximate with quadratic norms) 



Fixed accuracy bounds 
John’s Ellipsoid Theorem 

  

Accuracy when using quadratics 



(Another cool bound!) 

[Legat, Jungers, Parillo] – 
Generating unstable trajectories for Switched Systems 
via Dual Sum-Of-Squares techniques – 
 Accepted HSCC2016 

Its better than what  
you’ll get for any n! 



Perspective 

Approximation of the L2-gain for control-systems? 
 

Can we use the framework to obtain stabilizing switching sequences? 

More general systems? Control? 
Switching affine, State-Dependent Switching , Continuous-time,…? 
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To a given observation, associate the corresponding product: 
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The number of possible trajectories is given by the sum of the entries of the  

matrix 

Trackable graphs 



Trackable graphs 

The maximal total number of possibilities is  

 

 

 
We are interested in the asymptotic worst case :  
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Trackable graphs 

The maximal total number of possibilities is  

 

 

 
We are interested in the asymptotic worst case :  

 1
( ) max : tN t A A 

 1/1/

1
lim ( ) limmax :

tt t

t t
N t A A

 
 

This is a joint spectral radius! 

  

     The network is trackable iff 

 

 

 
       [Crespi et al. 05] 

1 

Theorem It is possible to check 
trackability in polynomial time 

[J. Protasov Blondel 08] 
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Applications of Wireless Control Networks 

Industrial automation 

Environmental Monitoring, 

Disaster Recovery and 

Preventive Conservation 

Supply Chain and 

Asset Management 

Physical Security 

and Control 



Wireless control networks 

A large scale decentralized 
control network 

A green building 

impact of 

failures 

[Ramanathan Rosales-Hain 00] 
[alur D'Innocenzo Johansson 
 Pappas  Weiss 10] 
[Mazo Tabuada 10]  
[Zhu Yuan Song Han Başar 12] 
… 



Motivation 



Previous work 

[Jungers D’Innocenzo Di 
Benedetto, TAC 2015] 



Today 

[Jungers Kundu Heemels, 2016] 



Today 

[Jungers Kundu Heemels, 2016] 



V(t) u(t) 

Controllability with packet dropouts 

u(0) 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

u(0) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

U(1) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

U(1) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

U(2) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

U(2) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

u(4) u(4) 

1 or 0 



The switching signal 

We are interested in the controllability of such a system 

Of course we need an assumption on the switching signal 
 
The switching signal is constrained by an automaton 
          Example: 
Bounded number of 
  consecutive dropouts (here, 3) 

The controllability problem: For any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 



The dual observability problem 

Observability under intermittent outputs is  algebraically 
equivalent  (and perhaps more meaningful) 

V(t) u(t) 

P Y(k) Network 
O 



Controllability with Packet Dropouts 
 

We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 Theorem: Deciding controllability of switching systems is  
 undecidable in general (consequence of [Blondel Tsitsiklis, 97]) 



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 
 
 
  

 Theorem [Baabali Egerstedt 2005]: There exists some l such that : lf for all l<L, 
the pairs (A ,Bi) are controllable, then the system is controllable 

Baabali & Egerstedt’s framework (2005) 

l 

X(t+1)=Ax + Bi u(t) 
Here, the switching is on the 
input matrix Bi  

• Only a sufficient condition 
• The set of pairs to check can be huge (more than exponential) 

Controllability with Packet Dropouts 
 



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

Controllability with Packet Dropouts 

Proposition: The system is controllable iff the generalized controllability matrix  
 
 
 
is bound to become full rank at some time t   



Our algorithm 

From this, we obtain an algorithm to decide controllability: 

Semi-algorithm 1: For every cycle of the automaton, check if it leads to an 
infinite uncontrollable signal 
Semi-algorithm 2: For every finite path, check whether it leads to a 
controllable signal ( i.e. a full rank controllability matrix). 
 
 
 
  

 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
  

Thus, we have a purely algebraic problem: is it possible to find a path in the 
automaton such that the controllability matrix is never full rank? 



Proof of our theorem 

Theorem ([Skolem 34]): Given a matrix A and two vectors b,c, the set of values 
n such that 
 
is eventually periodic. 
 
 
 
  

We managed to rewrite our controllability conditions in terms of a linear 
iteration 
 
 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
 
 
 
  

Now, how to optimally chose the control signal, if one does not know the 
switching signal in advance?  
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Previous work 

[Jungers D’Innocenzo Di 
Benedetto, TAC 2015] 
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WCNs are delay systems: 
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LTIs with switched delays 
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How to model failures? 
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WCNs are delay systems: 



V(t) u(t) 

 
 

How to model failures? 
 
 

V(t) 
V(t) 

V(t) 
V(t) 

V(t) 

d= 1 2 3 4 5 6 7 

V(t) 
V(t-7) 

V 

WCNs are time-varying delay 
systems: 



 
LTIs with switched delays 

stability analysis 
 

V(t) 
u(t+7) 

V(t) 

V(t+1
) V(t) 

V(t+
1) 

V(t) u(t+7) 

C 
V(t) 

V(t+1
) 

Delay dependent controller Delay independent controller 

[Hetel Daafouz Iung 07] 
[Weiss et al. 09] 



 
LTIs with switched delays 

stability analysis 

V(t) 
u(t+7) 

V(t) 

V(t+1
) V(t) 

V(t+
1) 

V(t) u(t+7) 

C 
V(t) 

V(t+1
) 

Delay dependent controller Delay independent controller 

 

• Corollary   

 For both models there is a PTAS for the stability question: 

 for any required accuracy, there is a polynomial-time algorithm for checking 
stability up to this accuracy 

Previous sufficient conditions for stability in [Hetel Daafouz Iung 07, Zhang Shi Basin 08] 

 

 

• However: 

 Theorem the very stability problem is NP-hard 

 Theorem the boundedness problem is even Turing-undecidable! 

 

 

 

 

[J. D’Innocenzo Di Benedetto 12] 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

 

 

• So, does a controllable system always remain controllable with delays? 

 

• No! when n>1, nastier things can happen… 

     Example: 

 

 

 

 

     

 

 The system is not stabilizable, even with infinite lookahead 

 

• Theorem for n=m=1, there is an explicit formula for a linear controller that 
achieves deadbeat stabilization, even if N=1 

(based on a generalization of the Ackermann formula for delayed LTI) 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

 

• A sufficient condition for uncontrollability (informal): if A,B can be put in 
the following form (under similarity transformation): 

 

 

 

 

        

 

 

Is it also necessary? 

Would be nice, because we can prove … 

 

• Theorem There is a polynomial time algorithm that decides whether such 
an adversary strategy is possible 

 

 

An adversary 
strategy can make 
this system 
uncontrollable: 

0 
0 0 

0 0 
0 0 

0 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

• Answer: No!  There are more intricate examples 

 



 

 

• Theorem: Controllability is decidable (in exponential time) 

 

     Proof Split the problem into a nilpotent matrix and a regular matrix 

 

 

Design of LTIs with switched delays 
The infinite look-ahead case 

 

• Lemma: The nilpotent case is completely combinatorial 
 

• Lemma: The regular case can be decided thanks to a finite dimension argument 
 
  Algo: try every delay sequence of length smaller than some  
  bound  L and look for a ‘loop’ 
L= 

 
• Corollary: controllability with infinite look-ahead = controllability with 

arbitrarily large but finite look-ahead = stabilizability! 



 

 

 

 

 

The controller design problem: a 2D system with two possible delays 

 

 

 

LTIs with switched delays 
Example 

In the delay independent case, a linear controller is not always sufficient 

• Theorem: For the above system, there exist values of the parameters 
such that no linear controller can stabilize the system, but a nonlinear 
bang-bang controller does the job. [J. D’Innocenzo Di Benedetto 2014] 
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A few words about… 

• Bisimulation 

• Link with Oliver’s talk 

• Could Koopman eigenfunctions help to mesh? 

• Could path-complete methods help? 

 

 

• Continuous time switching systems 



Conclusion: a perspective on switching systems 
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The JSR Toolbox: 
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EECI Course, 
L’Aquila, April 4-8 
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http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
mailto:raphael.jungers@uclouvain.be


References:  
 
• R. M. Jungers, A. D'Innocenzo and M. D. Di Benedetto.  Modeling, analysis, 

and design of linear systems with switching delays. IEEE TAC, 2015. 

•   R. M. Jungers, A. D'Innocenzo and M. D. Di Benedetto.  Further results on 
controllability of linear systems with switching delays. Proc. of IFAC WC 
2014.  

•   R. M. Jungers, A. D’Innocenzo and M. D. Di Benedetto. How to control linear 
systems with switching delays? Proc. of ECC 2014.. 

•   R. M. Jungers, A. D’Innocenzo and M. D. Di Benedetto. Feedback stabilization 
of dynamical systems with switched delays.  Proceedings of the IEEE 
Conference on Decision and Control 2012, Hawai, 2012. 

•    R. M. Jungers, M. Heemels. Controllability of linear systems suject to 
packet losses.  Proc. Of ADHS, Atlanta, 2015. 

•    R. M. Jungers, A. Kundu, and M. Heemels. Exact characterization of 
observability and controllability with packet losses.  Proc. of Allerton 2015. 
 
… these and more on 
http://perso.uclouvain.be/raphael.jungers/ 

Thanks! 
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