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Preface

This monograph is based on the Ph.D. Thesis of the author [58]. Its goal is twofold:
First, it presents most research work that has been done during his Ph.D., or at least the
part of the work that is related with the joint spectral radius. This work was concerned
with theoretical developments (part I) as well as the study of some applications (part
II).
As a second goal, it was the author’s feeling that a survey on the state of the art on the
joint spectral radius was really missing in the literature, so that the first two chapters
of part I present such a survey. The other chapters mainly report personal research,
except Chapter 5 which presents an important application of the joint spectral radius:
the continuity of wavelet functions.

The first part of this monograph is dedicated to theoretical results. The first two
chapters present the above mentioned survey on the joint spectral radius. Its minimum-
growth counterpart, the joint spectral subradius, is also considered. The next two
chapters point out two specific theoretical topics, that are important in practical ap-
plications: the particular case of nonnegative matrices, and the Finiteness Property.

The second part considers applications involving the joint spectral radius. We first
present the continuity of wavelet. We then study the problem of the capacity of codes
submitted to forbidden difference constraints. Then we go to the notion of overlap-free
words, a problem that arises in combinatorics on words. We then end with the problem
of trackability of sensor networks, and show how the theoretical results developed in
the first part allow to solve this problem efficiently.

Brussels, March 2009 R. Jungers
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Introduction

The joint spectral radius characterizes the maximal asymptotic growth rate of a point
submitted to a switching linear system in discrete time. In the last decades it has been
the subject of intense research due to its role in the study of wavelets, switching sys-
tems, approximation algorithms, curve design, and many other topics. In parallel with
these practical engineering applications, beautiful theoretical challenges have arisen
in the effort to understand the joint spectral radius. These two facts make the study of
the joint spectral radius a dream of a subject for a Ph.D. thesis, but perhaps a not so
easy task.

Indeed by its natural essence, this notion appears in a number of very different
fields of mathematics. For instance, since its definition uses norms and eigenvalues, the
joint spectral radius is undoubtedly a linear algebra concept, but not only. It has been
defined for purposes of analysis of dynamical systems, and the boost of research on
this topic came in the middle 90’s from its use in numerical analysis: the joint spectral
radius appeared to be the concept needed to determine the continuity of wavelets, a
tool of high practical importance nowadays. But the range of applications in which
the joint spectral radius has proved useful is much wider; it goes from number theory
to network security management, from combinatorics on words to signal processing,
etc...

Also, the spectrum of theoretical problems one has to cope with when analyzing the
joint spectral radius is wide. In order to solve these problems, results from very dif-
ferent disciplines have been put together: Dynamical systems theory, numerical analy-
sis, theoretical computer science and computability theory, abstract algebra and group
theory, graph theory, convex optimization and semidefinite programming (SDP), com-
binatorics, are a few examples of fields of mathematics that have proved helpful for
improving our understanding of problems related to the joint spectral radius. A beauti-
ful example is the contribution of SDP-programming whose usefulness to approximate
a joint spectral radius has been progressively understood in the last ten years. This par-
ticular contribution is still a subject of research on itself, and seems by now not only
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to be a state-of-the-art way of approximating the joint spectral radius, but also to bring
interesting insight on the very nature of the joint spectral radius.

Undoubtedly, this profusion of different fields of mathematics that have been in-
volved in “the joint spectral radius conquest” does not make its understanding easy.
Many researchers with they own (very) personal background, conventions, motiva-
tions, notations and definitions have made progress that one who wants to properly
understand the joint spectral radius cannot honestly ignore. However, the ideas behind
the mathematical constructions are sometimes simpler than they look at first sight. In
view of this, we provide in the first part of this monograph a survey on the subject.
In the theoretical survey, which constitutes the first two chapters, we tried to be ex-
haustive, self-contained, and easily readable at the same time. In order to do that, some
proofs differ from the ones given in the literature. Also, the order of presentation of the
results does not follow their chronological apparition in the literature, because it al-
lowed sometimes to simplify the proofs. Finally, we decided to split the survey in two
chapters: the first one is intended to help the reader to understand the notion of joint
spectral radius, by describing its behavior without confusing him with long proofs and
theoretical developments, while the second chapter brings the mathematical study of
advanced results, and the rigorous demonstrations.

Outline. This monograph is separated in two parts, the first one is dedicated to
theoretical and general problems on the joint spectral radius, while the second part is
applications-oriented.

The first two chapters form the above mentioned survey: Chapter 1 presents ele-
mentary and fundamental results, while Chapter 2 is more involved, and brings the
theory necessary to prove the fundamental theorems. In Chapter 1, we compare the re-
sults available for the joint spectral radius to its minimum-growth counterpart: the joint
spectral subradius. Though very interesting and useful in practice, this latter quantity
has received far less attention in the literature, perhaps because it has been introduced
later. We had the feeling that a rigorous analysis of the basic behavior of this notion
was missing.
The remainder of the monograph presents our personal research. We start with two par-
ticular theoretical questions: In chapter 3 we analyze the case of nonnegative integer
matrices. We show that for these particular sets, it is possible to decide in polynomial
time whether the joint spectral radius is exactly equal to zero, exactly equal to one,
or larger than one. Moreover it is possible to precisely characterize the growth of the
products in the case where the joint spectral radius is exactly equal to one.
In Chapter 4, we analyze the finiteness property. We show that this property holds for
nonnegative rational matrices if and only if it holds for pairs of binary matrices. We
give a similar result for matrices with negative entries, and we show that the property
holds for pairs of 2×2 binary matrices.

The second part of this monograph presents applications of the joint spectral radius.
We first present in Chapter 5 the continuity of wavelet functions. Then, in Chapter 6
we go to the capacity of codes submitted to forbidden differences constraints, that can
be expressed in terms of a joint spectral radius. We propose two approximation algo-
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rithms for the capacity, we show how to efficiently decide whether the capacity is zero,
and exhibit a closely related problem that we prove to be NP-hard.
We then turn to a problem in combinatorics on words: estimating the asymptotic
growth of the overlap-free language (Chapter 7). We show how this problem is re-
lated with the joint spectral radius and related quantities. Thanks to this, we provide
accurate estimates for the rate of growth of the number of overlap-free words, a clas-
sical problem in combinatorics on words. We also provide algorithms to estimate the
joint spectral subradius and the Lyapunov exponent that appear to perform extremely
well in practice.
We finally analyze a problem related to graph theory and network security: we present
the trackability of sensor networks (Chapter 8) and show how this problem is effi-
ciently tractable.





Part I
Theory





Chapter 1
Basics

Abstract This chapter is the first part of the theoretical survey on the joint spectral
radius. We first present precise definitions of the main concepts. We then show that
these definitions are well posed, and we present some basic properties on the joint
spectral radius. In the last section, we show that these notions are “useful”, in the sense
that they actually characterize the maximal and minimal growth rates of a switched
dynamical system.
This chapter is meant to be a quick survey on the basic behavior of the joint spectral
radius. Some of the results presented in this chapter require rather involved proofs.
For this reason this chapter is not self-contained, and some proofs are postponed to the
next one.
In this introductory chapter, we compare all results for the joint spectral radius to its
minimum-growth counterpart: the joint spectral subradius.

A switched linear system in discrete time is characterized by the equation

xt+1 = Atxt : At ∈ Σ , (1.1)
x0 ∈ Rn,

where Σ is a set of real n×n matrices. We would like to estimate the evolution of the
vector x, and more particularly (if it exists) the asymptotic growth rate of its norm:

λ = lim
t→∞
||xt ||1/t .

Clearly, one cannot expect that this limit would exist in general. Indeed, even in di-
mension one, it is easy to design a dynamical system and a trajectory such that the
limit above does not exist. Thus a typical relevant question for such a system is the
extremal rate of growth: given a set of matrices Σ , what is the maximal value for λ ,

3



4 1 Basics

over all initial vectors x0 and all sequences of matrices At? In the case of dynamical
systems for instance, such an analysis makes a lot of sense. Indeed, by computing
the maximal growth rate one can ensure the stability of the system, provided that this
growth rate is less than one. We will see that the quantity characterizing this maximal
rate of growth of a switched linear discrete time system is the joint spectral radius,
introduced in 1960 by Rota and Strang [104]. Thanks to its interpretation in terms of
dynamical systems, and for many other reasons that we will present later on, it has
been widely studied during the last decades.

When the set of matrices consists in a single matrix A, the problem is simple: the
maximal growth rate is the largest magnitude of the eigenvalues of A. As a conse-
quence, a matrix is stable if and only if the magnitudes of its eigenvalues are less than
one. However, if the set of matrices consists in more than just one matrix, the problem
is far more complex: the matrices could well all be stable, while the system itself could
be unstable! This phenomenon, which motivates the study of the joint spectral radius,
is illustrated by the next example. Consider the set of matrices

Σ =
{

A0 =
2
3

(
cos1.5 sin1.5
−2sin1.5 2cos1.5

)
,A1 =

2
3

(
2cos1.5 2sin1.5
−sin1.5 cos1.5

)}
.

The dynamics of these matrices are illustrated in Figure 1.1(a) and (b), with the ini-
tial point x0 = (1,1). Since both matrices are stable (ρ(A0) = ρ(A1) = 0.9428, where
ρ(A), the spectral radius of A, is the largest magnitude of its eigenvalues) the trajec-
tories go to the origin. But if one combines the action of A0 and A1 alternatively, a
diverging behavior occurs (Figure 1.2). The explanation is straightforward: the spec-
tral radius of A0A1 is equal to 1.751 > 1.

(a) (b)

Fig. 1.1 Trajectories of two stable matrices

In practical applications, some other quantities can be of importance, as for instance
the minimal rate of growth. This concept corresponds to the notion of joint spectral
subradius. In this introductory chapter, we give definitions for these concepts, as well
as some basic results. For the sake of conciseness, and to save time for the reader,
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Fig. 1.2 Unstable behavior by combining two stable matrices

we decided not to recall too many basic facts or definitions from linear algebra. We
instead refer the reader to classical reference books [45, 72].

In this chapter we first present precise definitions of the main concepts (Section
1.1). In Section 1.2 we show that these definitions are well posed, and we present
some basic properties on the joint spectral radius and the joint spectral subradius. In
the last section, we show that these notions are “useful”, in the sense that they actually
characterize the maximal and minimal growth rates of a switched dynamical system
of the type (1.1). As the reader will discover, this is not so obvious.
Some of the results presented in this chapter require rather involved proofs. For this
reason this chapter is not self-contained, and some proofs are postponed to Chapter 2.
Nevertheless we had the feeling that a small chapter with all the basic results could
be useful for the reader in order to summarize the basic properties of the joint spectral
radius and the joint spectral subradius.

1.1 Definitions

The joint spectral radius characterizes the maximal asymptotic growth rate of the
norms of long products of matrices taken in a set Σ . By a norm, we mean a func-
tion that to any matrix A ∈ Rn×n associates a real number ||A|| such that

• ||A|| ≥ 0, ||A||= 0⇔ A = 0,
• ∀k ∈ R : ||kA||= |k| ||A||,
• ||A+B|| ≤ ||A||+ ||B||,
• ||AB|| ≤ ||A|| ||B||.

The latter condition, called submultiplicativity is not required in classical definitions
of a norm, but in this monograph we will restrict our attention to them, so that all
results involving norms have to be understood in terms of submultiplicative norms.
Many norms are submultiplicative, and it is for instance the case of any norm induced
by a vector norm. So, let ‖·‖ be a matrix norm, and A∈Rn×n be a real matrix. It is well
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known that the spectral radius of A, that is, the maximal modulus of its eigenvalues,
represents the asymptotic growth rate of the norm of the successive powers of A:

ρ(A) = lim
t→∞
‖At‖1/t . (1.2)

This quantity does provably not depend on the norm used, and one can see that it
characterizes the maximal rate of growth for the norm of a point xt subject to a Linear
Time Invariant dynamical system. In order to generalize this notion to a set of matrices
Σ , let us introduce the following notation:

Σ
t , {A1 . . .At : Ai ∈ Σ}.

Also, it is a common practice to denote by AT the transpose of A. It will always be
clear from the context whether AT denotes the transpose of A of the classical exponen-
tiation.
We define the two following quantities that are good candidates to quantify the “max-
imal size” of products of length t:

ρ̂t(Σ ,‖ · ‖) , sup{‖A‖1/t : A ∈ Σ
t},

ρt(Σ) , sup{ρ(A)1/t : A ∈ Σ
t}.

For a matrix A ∈ Σ t , we call ||A||1/t and ρ(A)1/t respectively the averaged norm and
the averaged spectral radius of the matrix, in the sense that it is averaged with respect
to the length of the product. We also abbreviate ρ̂t(Σ ,‖ ·‖) into ρ̂t(Σ) or even ρ̂t if this
is clear enough with the context. Rota and Strang introduced the joint spectral radius
as the limit [104]:

ρ̂(Σ) , lim
t→∞

ρ̂t(Σ ,‖ · ‖). (1.3)

This definition is independent of the norm used by the equivalence of the norms in Rn.
Daubechies and Lagarias introduced the generalized spectral radius as [33]:

ρ(Σ) , limsup
t→∞

ρt(Σ).

We will see in the next chapter that for bounded sets of matrices these two quantities
are equal. Based on this equivalence, we use the following definition:

Definition 1.1 The joint spectral radius of a bounded set of matrices Σ is defined by:

ρ(Σ) = limsup
t→∞

ρt(Σ) = lim
t→∞

ρ̂t(Σ).

Example 1.1. Let us consider the following set of matrices:



1.1 Definitions 7

Σ =
{(

1 1
0 0

)
,

(
1 0
1 0

)}
.

The spectral radius of both matrices is one. However, by multiplying them, one can
obtain the matrix

A =
(

2 0
0 0

)
,

whose spectral radius is equal to two. Hence, ρ(Σ)≥
√

2, since

lim
t→∞

ρ̂t(Σ)≥ lim ||At/2||1/t =
√

2.

Now, ρ̂2 =
√

2 (where we have chosen the maximum column-sum for the norm) and,
as we will see below, ρ̂t is an upper bound on ρ for any t. So we get ρ(Σ) =

√
2.

As the reader will see, the proof of the equivalence between the joint spectral ra-
dius and the generalized spectral radius necessitates some preliminary work so as to
be presented in a natural way. Before to reach this proof, we continue to make the
distinction between the joint spectral radius ρ̂(Σ) and the generalized spectral radius
ρ(Σ).

Let us now interest ourself to the minimal rate of growth. We can still define similar
quantities, describing the minimal rate of growth of the spectral radius and of the
norms of products in Σ t . These notions were introduced later than the joint spectral
radius ( [52], see also [17]).

ρ̌t(Σ ,‖ · ‖) , inf{‖A‖1/t : A ∈ Σ
t},

ρ
t
(Σ) , inf{ρ(A)1/t : A ∈ Σ

t}.

Then, the joint spectral subradius is defined as the limit:

ρ̌(Σ) , lim
t→∞

ρ̌t(Σ ,‖ · ‖), (1.4)

Which is still independent of the norm used by equivalence of the norms in Rn. We
define the generalized spectral subradius as

ρ(Σ) , lim
t→∞

ρ
t
.

Again, we will see that for bounded sets of matrices these two quantities are equal,
and we use the following definition:

Definition 1.2 The joint spectral subradius of a set of matrices Σ is defined by:

ρ̌(Σ) = lim
t→∞

ρ̌t = lim
t→∞

ρ
t
.
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Example 1.2. Let us consider the following set of matrices:

Σ =
{(

2 1
0 0

)
,

(
0 1
0 3

)}
.

The spectral radius of both matrices is greater than one. However, by multiplying them,
one can obtain the zero matrix, and then the joint spectral subradius is zero.

The above examples are simple but, as the reader will see, the situation is sometimes
much more complex.

1.2 Basic results

In this section, we review basic results on the joint spectral characteristics, that allow
to understand what they are and what they are not. We first present the fundamental
theorems, proving the equality for the joint and generalized spectral radii (resp. sub-
radii). We then present basic properties of the joint spectral characteristics, some of
which had to our knowledge not yet been formalized.

1.2.1 Fundamental theorems

The joint spectral radius

First, recall that we defined ρ̂ as a limit, and not as a limsup. This is due to a classical
result, known as Fekete’s Lemma:

Lemma 1.1 [43] Let {an} : n≥ 1 be a sequence of real numbers such that

am+n ≤ am +an.

Then the limit
lim
n→∞

an

n
exists and is equal to inf{ an

n }.

In the above lemma, the limit can be equal to −∞, but this is not possible in our case
since the sequence is nonnegative. We are now in position to prove the convergence:

Lemma 1.2 For any bounded set Σ ⊂ Rn×n, the function t → ρ̂t(Σ) converges when
t→ ∞. Moreover,

lim
t→∞

ρ̂t(Σ) = inf{ρ̂t(Σ)}.
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Proof. Since the norms considered are submultiplicative, the sequence

log(sup{‖A‖ : A ∈ Σ
t}) = log ρ̂

t
t

is subadditive. That is,
log ρ̂

t+t ′
t+t ′ ≤ log ρ̂

t
t + log ρ̂

t ′
t ′ .

If for all t, ρ̂t 6= 0, then by Fekete’s lemma,

1
t

log ρ̂
t
t = log ρ̂t

converges and is equal to inf log ρ̂t .
If there is an integer t such that ρ̂t = 0, then clearly, for all t ′ ≥ t, ρ̂t ′ = 0, and the proof
is done.

Unlike the maximal norm, the behavior of the maximal spectral radius, ρt is not as
simple, and in general the limsup in the definition of ρ(Σ) cannot be replaced by a
simple limit. In the following simple example, limsupρt = 1, but limρt does not exist:

Σ =
{(

0 1
0 0

)
,

(
0 0
1 0

)}
.

Indeed, for any t, ρ2t(Σ) = 1, but ρ2t+1(Σ) = 0.
The Joint Spectral Radius Theorem.

It is well known that the spectral radius of a matrix satisfies ρ(Ak) = ρ(A)k, ρ(A) =
lim‖At‖1/t . One would like to generalize these relations to “inhomogeneous” products
of matrices, that is, products where factors are not all equal to a same matrix A. This
is possible, as has been proved in 1992 by Berger and Wang [5] in the so-called Joint
Spectral Radius Theorem:

For bounded sets, the values ρ̂(Σ) and ρ(Σ) are equal.
No elementary proof is known for this theorem. Elsner [41] provides a self-

contained proof that is somewhat simpler than (though inspired by) the original one
from [5]. Since both proofs use rather involved results on the joint spectral radius, we
postpone an exposition of the proof to the next chapter. The reader can check that the
elementary facts presented in the remainder of this chapter do not make use of this
result.
Observe that the joint spectral radius theorem cannot be generalized to unbounded sets
of matrices, as can be seen on the following example:

Σ =
{(

1 1
0 1

)
,

(
1 2
0 1

)
, . . .

}
.

Indeed for this set we have ρ(Σ) = 1, while ρ̂(Σ) = ∞.
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The joint spectral subradius

Let us now consider the joint spectral subradius. It appears that now both ρ
t

and ρ̌t
converge:

Proposition 1.1 For any set Σ ⊂Rn×n, the function t→ ρ̌t(Σ) converges when t→∞,
and

lim ρ̌t(Σ) = inf
t>0

ρ̌t(Σ).

Moreover, the function t→ ρ
t
(Σ) converges when t→ ∞, and

limρ
t
(Σ) = inf

t>0
ρ

t
(Σ).

Proof. Again the sequence log(ρ̌n) is subadditive, which proves the first part. Let
us now prove the second assertion. We define ρ = liminfρ

t
and we will show that

the limit actually exists. Fix an ε > 0. For any sufficiently long t, we will construct
a product of matrices B ∈ Σ t such that ||B||1/t ≤ ρ + ε, and thus ρ(B)1/t ≤ ρ + ε.
Indeed, for any norm || · || and any matrix A, the relation

ρ(A)≤ ||A||

always holds. In order to do that, we will pick a matrix A whose spectral radius is
small enough, and we define B = AkC, where C is a short product that does not perturb
too much the norm of B.
By the definition of ρ, there exist T ∈ N,A ∈ Σ T such that ρ(A)1/T ≤ ρ + ε/4. Since
ρ(A) = lim ||Ak||1/k, one gets lim ||Ak||1/kT ≤ ρ + ε/4 and there exists an integer k0

such that for all k > k0, ||Ak||1/kT ≤ ρ + ε/2.
Let us first define a real number M such that for each length t ′ ≤ T, there is a product
C of length t ′ such that ||C|| ≤ M. Next, there is an integer T0 large enough so that
M1/T0 ≤ (ρ + ε)/(ρ + ε/2).
Now, for any length t > max{k0T,T0}, we define t ′ < T such that t = kT + t ′, and we
construct a product of length t : B = AkC, such that C ∈ Σ t ′ , and ||C|| ≤M. Finally

||B||1/t ≤ (ρ + ε/2)
ρ + ε

ρ + ε/2
≤ ρ + ε.

We also have the equality between ρ̌ and ρ; moreover in this case the set need not
be bounded;

Theorem 1.1 [111] For any set of matrices Σ ,

lim
t→∞

inf{ρ(A)1/t : A ∈ Σ
t}= lim

t→∞
inf{||A||1/t : A ∈ Σ

t}, ρ̌(Σ).

Proof. Clearly,



1.2 Basic results 11

lim
t→∞

inf{ρ(A)1/t : A ∈ Σ
t} ≤ lim

t→∞
inf{||A||1/t : A ∈ Σ

t}

because for any matrix A, ρ(A)≤ ||A||.
Now, for any matrix A ∈ Σ t with averaged spectral radius r close to ρ(Σ), the product
Ak ∈ Σ kt is such that ||Ak||1/kt → r so that

lim
k→∞

inf{||A||1/kt : A ∈ Σ
kt} ≤ r.

1.2.2 Basic properties

1.2.2.1 Scaling property

Proposition 1.2 For any set Σ ∈ Rn×n and for any real number α,

ρ̂(αΣ) = |α|ρ̂(Σ),

ρ̌(αΣ) = |α|ρ̌(Σ).

Proof. This is a simple consequence of the relation ||αA||= |α| ||A||.

1.2.2.2 Complex matrices vs. real matrices

From now on, all matrices are supposed to be real-valued. This is not a restriction as
we can consider complex matrices acting on Cn×n as real operators acting on R2n×2n.

1.2.2.3 Invariance under similarity

Proposition 1.3 For any bounded set of matrices Σ , and any invertible matrix T,

ρ(Σ) = ρ(T ΣT−1).

ρ̌(Σ) = ρ̌(T ΣT−1).

Proof. This is due to the fact that for any product A1 . . .At ∈ Σ t , the corresponding
product in T ΣT−1 is TA1 . . .AtT−1, and has equal spectral radius.
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1.2.2.4 The joint spectral radius as an infimum over all possible norms

The following result has been known for long, since it was already present in the sem-
inal paper of Rota and Strang [104]. Nevertheless, it is very interesting, as it charac-
terizes the joint spectral radius in terms of the matrices in Σ , without considering any
product of these matrices. We give here a simple self-contained proof due to Berger
and Wang [5].

Proposition 1.4 For any bounded set Σ such that ρ̂(Σ) 6= 0, the joint spectral radius
can be defined as

ρ̂(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

From now on, we denote by Σ ∗ the monoid generated by Σ :

Σ
∗ , ∪∞

t=0Σ
t ,

With Σ 0 , I. If we exclude Σ 0 from the above definition, we obtain Σ+, the semigroup
generated by Σ :

Σ
+ , ∪∞

t=1Σ
t .

Proof. Let us fix ε > 0, and consider the set Σ̃ = (1/(ρ̂ + ε))Σ . Then, all products
of matrices in Σ̃ ∗ are uniformly bounded, and one can define a norm | · | on Rn in
the following way: |x| = max{|Ax|2 : A ∈ Σ̃ ∗}, where | · |2 is the Euclidean vector
norm. Remark that in the above definition, the maximum can be used instead of the
supremum, because ρ(Σ̃) < 1. The matrix norm induced by this latter vector norm,
that is, the norm defined by

||A||= max
|x|=1
{|Ax|},

clearly satisfies supA∈Σ̃
{||A||} ≤ 1, and so supA∈Σ {||A||} ≤ ρ̂ + ε.

1.2.2.5 Common reducibility

We will say that a set of matrices is commonly reducible, or simply reducible if there
is a nontrivial linear subspace (i.e. different from {0} and Rn) that is invariant under
all matrices in Σ . This property is equivalent to the existence of an invertible matrix T
that “block-triangularizes simultaneously” all matrices in Σ :

Σ reducible ⇔ ∃T,n′ : ∀Ai ∈ Σ ,TAiT−1 =
(

Bi Ci
0 Di

)
: Di ∈ Rn′×n′ .

We will say that a set of matrices is commonly irreducible, or simply irreducible if it
is not commonly reducible.

Proposition 1.5 With the notations defined above, if Σ is bounded and reducible,
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ρ(Σ) = max{ρ({Bi}),ρ({Di})},

ρ̌(Σ)≥max{ρ̌({Bi}), ρ̌({Di})}, (1.5)

ρ̂(Σ) = max{ρ̂({Bi}), ρ̂({Di})}.

Proof. The first two relations follow from the invariance under similarity (Proposition
1.3), together with the following elementary facts:(

B1 C1
0 D1

)
.

(
B2 C2
0 D2

)
=
(

B1B2 B1C2 +C1D2
0 D1D2

)
,

ρ

((
B C
0 D

))
= max{ρ(B),ρ(D)}.

The third relation is more technical, and is proved by showing that extradiago-
nal blocks cannot increase the exponent of growth. We can suppose Ai ∈ Σ block-
triangular, still by invariance under similarity. Let us denote M the maximal joint
spectral radius among the diagonal blocks:

M = max{ρ̂({Bi}), ρ̂({Di})}.

We define the norm || · || as the sum of the absolute values of the entries. Clearly
ρ̂(Σ)≥M, and we now prove the reverse inequality.

Writing

Ai =
(

0 Ci
0 0

)
+
(

Bi 0
0 Di

)
,

we have

||At . . .A1||= ||Bt . . .B1||+ ||Dt . . .D1||+ ||
t

∑
r=1

Bt . . .BrCrDr−1 . . .D1||.

Now for any ε there is a natural T such that for all t ≥ T,

ρ̂t({Bi}), ρ̂t({Di}) < (M + ε)t .

Thus, for t large enough we can bound each term in the summation above by O((M +
ε)t) :
if T < r < t−T, then

||Bt . . .BrCrDr−1D1|| ≤ ||Cr||(M + ε)t−1,

and in the other case (say, r ≤ T, the other case is similar),

||Bt . . .BrCrDr−1D1||< ||Cr||(ρ̂1)r(M + ε)t−r−1 = O((M + ε)t).
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Recall that ρ̂1 is the supremum of the norms of the matrices in Σ . Finally, ||At . . .A1|| ≤
2(M + ε)t + tO((M + ε)t), and ρ̂(Σ)≤M + ε.

It is straightforward that the above proposition generalizes inductively to the case
where there are more than two blocks on the diagonal.

In the above proposition, Equation (1.5) enlightens a fundamental difference be-
tween the joint spectral radius and the joint spectral subradius. For this latter quantity,
the inequality cannot be replaced by an equality. This is due to the fact that the joint
spectral subradius is the minimum growth of a quantity (the spectral radius) which is
by essence a maximum (over all eigenvalues of a matrix). Consider the next example:

Σ =
{(

2 0
0 4

)
,

(
4 0
0 2

)}
.

The joint spectral subradius of the first diagonal entries is 2, and this is also the case
for the set of the second diagonal entries. However, the joint spectral subradius of Σ is
equal to

√
8 > 2.

1.2.2.6 Three members inequalities

Proposition 1.6 For any bounded set Σ ∈ Rn×n and for any natural t,

ρt(Σ)≤ ρ(Σ)≤ ρ̂t(Σ). (1.6)

Proof. The left hand side inequality is due to the fact that ρ(Ak) = ρ(A)k. The right
hand side is from Fekete’s lemma (Lemma 1.1).

Let us add that this has been generalized to unbounded sets to what is called the four
members inequality [33, 35]:

ρt(Σ)≤ ρ(Σ)≤ ρ̂(Σ)≤ ρ̂t(Σ).

For the joint spectral subradius, it appears that both quantities ρ
t

and ρ̌t are in fact
upper bounds:

Proposition 1.7 For any bounded set Σ ∈ Rn×n and for any natural t,

ρ̌(Σ)≤ ρ
t
(Σ)≤ ρ̌t(Σ).

Proof. The left hand side inequality is due to the fact that ρ(Ak) = ρ(A)k, implying
that ρ

kt
≤ ρ

t
. The right hand side is a straightforward consequence of the property

ρ(A)≤ ||A||.
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1.2.2.7 Closure and convex hull

Taking the closure or the convex hull of a set does not change its joint spectral radius.
For the closure, we also prove the result for the generalized spectral radius, since it
will be needed in further developments.

Proposition 1.8 [111] For any bounded set Σ ∈ Rn×n

ρ̂(Σ) = ρ̂(convΣ) = ρ̂(clΣ),

ρ(Σ) = ρ(clΣ).

Proof. For the convex hull, observe that for all t > 0 : ρ̂t(convΣ) = ρ̂t(Σ). Indeed, all
products in (convΣ)t are convex combinations of products in Σ t , and are thus less or
equally normed. The equalities for the closure hold because for all t, ρt(clΣ) = ρt(Σ),
and ρ̂t(clΣ) = ρ̂t(Σ), by continuity of the norm and the eigenvalues.

We now show the counterpart for the joint spectral subradius. The property still holds
for the closure, but not for the convex hull:

Proposition 1.9 For any bounded set Σ ∈ Rn×n

ρ̌(Σ) = ρ̌(clΣ),

but the equality ρ̌(Σ) = ρ̌(convΣ) does not hold in general.

Proof. The equality ρ̌t(clΣ) = ρ̌t(Σ) still holds for all t by continuity of the norm and
the matrix multiplication.
On the other hand, consider the simple example Σ = {1,−1} ⊂ R. All products have
norm one, and so ρ̌ = ρ = 1, but 0 ∈ convΣ , and so ρ̌(convΣ) = 0.

1.2.2.8 Continuity

We show here that the joint spectral radius of bounded sets of matrices is continuous
in their entries. Recall that the Hausdorff distance measures the distance between sets
of points in a metric space:

d(Σ ,Σ ′) , max{sup
A∈Σ

{ inf
A′∈Σ ′

||A−A′||}, sup
A′∈Σ ′

{ inf
A∈Σ
||A−A′||}}.

Proposition 1.10 The joint spectral radius of bounded sets of matrices is continuous
with respect to the Hausdorff distance in Rn×n.
That is, for any bounded set of matrices Σ ∈Rn×n, and for any ε > 0, there is a δ > 0
such that

d(Σ ,Σ ′) < δ ⇒ |ρ̂(Σ)− ρ̂(Σ ′)|< ε.
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Proof. Let us fix ε > 0. By Proposition 1.4, there exists a norm || · || such that

ρ̂1(Σ) = sup{||A|| : A ∈ Σ} ≤ ρ̂(Σ)+ ε/2.

Let us now pick a set Σ ′ close enough to Σ : d(Σ ,Σ ′) < ε/2. By definition of the
Hausdorff distance, we have

∀A′ ∈ Σ
′, ∃A ∈ Σ : ||A′−A||< ε/2,

and we can bound the norm of any matrix in Σ ′ :

||A′||= ||A+(A′−A)|| ≤ ρ̂(Σ)+ ε/2+ ε/2 = ρ̂(Σ)+ ε.

By applying the same argument to Σ , we obtain |ρ̂(Σ)− ρ̂(Σ ′)| ≤ ε.

Let us note that this proposition does not generalize to unbounded sets, as shown by
the next example:

Σ =
{(

0 0
ε 0

)}
∪
{(

0 n
0 0

)
: n ∈ N

}
.

Indeed for ε = 0 we have ρ̂(Σ) = 0, while for any ε > 0 we have ρ̂(Σ) = ∞.
Let us add that Wirth has proved that the joint spectral radius is even locally Lipschitz
continuous on the space of compact irreducible sets of matrices endowed with the
Hausdorff topology [115, 117].

Surprisingly, a similar continuity result for the joint spectral subradius is not possi-
ble. It appears that this quantity is only lower semicontinuous:

Proposition 1.11 The joint spectral subradius of bounded sets of matrices is lower
semicontinuous with respect to the Hausdorff distance in Rn×n.
That is, for any bounded set of matrices Σ ∈Rn×n, and for any ε > 0, there is a δ > 0
such that

d(Σ ,Σ ′) < δ ⇒ ρ̌(Σ ′) < ρ̌(Σ)+ ε.

Proof. Let us fix ε > 0. By Proposition 1.1, there exists a t and a product A ∈ Σ t such
that

ρ(A)1/t ≤ ρ̌(Σ)+ ε/2.

Let us now pick a set Σ ′ close enough to Σ . By continuity of the eigenvalues there
exists a product A′ ∈ Σ ′t with averaged spectral radius ρ(A′)1/t < ρ(A)1/t + ε/2, and
ρ̌(Σ ′) < ρ̌(Σ)+ ε.

To prove that the joint spectral subradius is not continuous, we introduce the following
example.

Example 1.1 Consider the set

Σ =
{(

1 1
0 1

)
,

(
0 0
− 1

k 1

)}
.
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Where k ∈ N. When k→ ∞, the joint spectral subradius of these sets is equal to zero
(the product (A1Ak

0)
2 is the zero matrix). However these sets tend to

Σ =
{(

1 1
0 1

)
,

(
0 0
0 1

)}
,

whose joint spectral subradius is equal to 1. Indeed any matrix in the semigroup is
nonnegative, and has the lower right entry equal to one.

1.2.2.9 Zero spectral radius

The case where the joint spectral radius (resp. joint spectral subradius) is equal to zero
is of practical importance for obvious reasons. In order to state them, following to [44],
we introduce the following definition, which holds for the rest of this monograph,
unless specified otherwise. A polynomial time algorithm is an algorithm that takes
an instance and delivers an answer “yes” or “no”, after having performed a number of
elementary operations that is bounded by a fixed polynomial in the size of the instance,
where the size of the instance is its “bit size”, that is, the number of bits necessary to
encode it.
The following two results are not trivial. Their proofs are to be found in Chapter 2:

Proposition 1.12 There is a polynomial time algorithm allowing to decide whether
the joint spectral radius of a set of matrices is zero.

Proposition 1.13 There is no algorithm allowing to decide whether the joint spectral
subradius of a set of matrices is zero, that is, this problem is undecidable.

1.3 Stability of dynamical systems

As explained in the introduction, one possible use of the joint spectral radius is to char-
acterize the maximal asymptotic behavior of a dynamical system. But is this exactly
what we are doing, when we compute a joint spectral radius? The notion of stability
of a dynamical system (like the system defined in Equation (1.1)) is somewhat fuzzy
in the literature, and many different (and not equivalent) definitions appear. According
to the natural intuition, and to the more commonly used definition, we introduce the
next definition:

Definition 1.3 A switched dynamical system

xt+1 = Atxt : At ∈ Σ , (1.7)
x0 ∈ Rn,
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is stable if for any initial condition x0 ∈ Rn, and any sequence of matrices {At},
limt→∞ xt = 0.

Clearly, if ρ(Σ) < 1, then the dynamical system is stable, because xt = Ax0, with
A ∈ Σ t , and so |xt | ≤ ||A|| |x0| → 0. But the converse statement is less obvious: could
the condition ρ < 1 be too strong for stability? Could it be that for any length, one is
able to provide a product of this length that is not too small, but yet that any actual
trajectory, defined by an infinite sequence of matrices, is bound to tend to zero? The
next example shows that such a case appears with unbounded sets:

Example 1.2 Let

Σ =
{

A =
1
2

(
1 0
0 1

)}
∪
{

Bk =
(

0 k
0 0

)
,k ∈ R

}
.

For any length t, ρ̂t = ∞, but one can check easily that every infinite product tends
to zero. To see this, observe that a left-infinite product must be of one of these three
forms, each of which tends to zero

|| . . .AA|| ≈ (1/2)t ,

|| . . .A . . .ABkA|| ≈ k(1/2)t−1,

|| . . .A . . .ABkA . . .ABk′A|| = 0.

The following theorem ensures that such a pathological situation does not appear
with bounded sets:

Theorem 1.2 [5] For any bounded set of matrices Σ , there exists a left-infinite prod-
uct . . .A2A1 that does not converge to zero if and only if ρ(Σ)≥ 1.

The proof of this theorem is not trivial, and makes use of results developed in the next
chapter. The reader will find a proof of this important result in Section 2.1.

This proves that the joint spectral radius rules the stability of dynamical systems:

Corollary 1.1 For any bounded set of matrices Σ , the corresponding switched dy-
namical system is stable if and only if ρ(Σ) < 1.

In the above theorem, the boundedness assumption cannot be removed, as shown by
Example 1.2.

The equivalent problem for the joint spectral subradius is obvious: For any bounded
set of matrices Σ , the corresponding switched dynamical system is stabilizable (i.e.
there exists an infinite product of matrices whose norm tends to zero) if and only if
ρ̌(Σ) < 1. Indeed, if ρ̌ < 1, there exists a real γ, and a finite product A ∈ Σ t such
that ||A|| ≤ γ < 1, and limk→∞ Ak = 0. On the other hand, if ρ̌ ≥ 1, then for all A ∈
Σ t : ||A|| ≥ 1, and so no long product of matrices tends to zero. There is however a
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nontrivial counterpart to Corollary 1.1. To see this, let us rephrase Theorem 1.2 in the
following corollary:

Corollary 1.2 For any bounded set of matrices Σ , there is an infinite product of these
matrices reaching the joint spectral radius. More precisely, there is a sequence of
matrices A0,A1, . . . of Σ such that

lim
t→∞
||At . . .A1||1/t = ρ(Σ).

Proof. The proof is a direct consequence of the proof of Theorem 1.2, see Section 2.1.

The idea of this corollary can be transposed to the following result on the joint spectral
subradius:

Theorem 1.3 For any (even unbounded) set of matrices Σ , there is an infinite product
of these matrices reaching the joint spectral subradius:

∃At j ∈ Σ : lim
i→∞
||Ati . . .At1 ||

1/t = ρ̌(Σ).

Proof. Let Σ be a set of matrices. Thanks to the definition and Theorem 1.1, for every
natural k there exists a product Bk ∈ Σ nk of a certain length nk such that

||Bk||1/nk < ρ̌ +
1
2k .

Now the sequence ||Bt . . .B1||1/∑1≤k≤t nk tends to ρ̌. However, this only provides a prod-
uct . . .A2A1 such that liminf ||At . . .A1||1/t = ρ̌. In order to replace the liminf by a limit,
for all k we define ck to be the maximal norm of all the suffixes of Bk, and one can
raise the matrix Bk to a sufficiently large power pk such that for any suffix C of Bk+1,

||CBpk
k ||

1/t < c1/t
k+1||B

pk
k ||

1/t < ρ̌ +
1

2k−1 ,

and finally the sequence ||Πt || converges, where Πt is the suffix of length t of the left
infinite product . . .Bp2

2 Bp1
1 .

1.4 Conclusion

The goal of this chapter was to understand properly the notions of joint spectral radius
and joint spectral subradius in a glance. As the reader has seen, even some basic facts,
such as the equivalence between the joint and generalized spectral radii, require some
advanced results. We have thus decided to postpone this proof to Chapter 2. There, the
result will naturally follow from a careful study of a particular problem related to the
joint spectral radius, namely the defectiveness of a set of matrices.
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Further elementary properties of the joint spectral radius of sets of matrices can be
found in [20, 94, 115, 116].



Chapter 2
Classical results and problems

Abstract In this chapter we review major results on the joint spectral radius. Our goal
is to remain concise, but at the same time exhaustive and self-contained. We begin
by analyzing in detail the growth of matrix products, and by presenting the concept
of extremal norms. Existence of extremal norms is an encouraging result, since it is
easier to evaluate the joint spectral radius when an extremal norm is available. We
found it natural to follow with calculability/complexity theorems, which are on the
other hand discouraging. In a subsequent section, we present methods of computation
and approximation of the joint spectral radius. In view of the negative results of the
second section, the reader shall not be surprised to find algorithms whose efficiency is
often rather poor (at least theoretically). In the last section of this chapter we present
a fascinating question: the finiteness property.

2.1 Defectivity and extremal norms

2.1.1 Defectivity

We start with a first result that sheds light on the growth of long matrix products. From
the basic results in the previous chapter, we know that ρ̂t goes to ρ̂ as t goes to infinity,
or more precisely:

lim
t→∞

max{‖A‖1/t : A ∈ Σ
t}= ρ̂.

However, in some applications, one is interested in a more precise definition of the
asymptotic growth: how does the quantity ρ̂ t

t /ρ̂ t evolve with t? Another way to ask
this question is: How does the maximal norm evolve when the joint spectral radius is
equal to one?

21
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Definition 2.1 [49, 50] A set of matrices Σ is nondefective if there exists K ∈ R such
that for all t,

sup{||A|| : A ∈ Σ
t} ≤ Kρ̂

t .

Defectivity appears to be a problem of crucial importance, as we will see all along
this section. A first result states that Σ is nondefective if it is irreducible. This has
been known for long, and several proofs are available in the literature [3, 41, 115]. We
present here a new proof that is somewhat simpler and more intuitive. In the proof
of the theorem, the notation Σ≤t represents the products of length less than t in the
semigroup Σ ∗.

Theorem 2.1 Let a bounded set Σ be irreducible, and ρ̂(Σ) 6= 0. Then Σ is nondefec-
tive; that is, there is a constant K such that for all A ∈ Σ t ,

||A|| ≤ Kρ̂
t .

Proof. We suppose without loss of generality that ρ̂(Σ) = 1 (nondefectivity is clearly
conserved under scalar multiplication). Let us define

V = {x ∈ Rn | sup
A∈Σ∗
|Ax|< ∞}.

By construction, V is a linear subspace, invariant under the matrices in Σ . Since Σ is
irreducible, we have V = Rn, or V = {0}.

If V = {0}, then for each vector x ∈ Rn, there exists a product A ∈ Σ t such that
|Ax| ≥ 2|x|.
We claim that this length t is bounded uniformly from above by a constant T over all x.
Indeed, if it is not the case, we can define an increasing sequence {tk}, and a sequence
xk of norm 1 such that for all A ∈ Σ≤tk , |Axk|< 2. A subsequence of the xk converges
thus to a vector x of norm 1 such that for all A ∈ Σ ∗, |Ax|< 2 and so V 6= {0}.
Finally if for all x there exists a matrix A∈ Σ≤T such that |Ax| ≥ 2|x|, then ρ̂ ≥ 21/T >
1, and we have a contradiction.

So, V = Rn, but this implies that Σ ∗ is bounded.

Theorem 2.1 tells us that if a set of matrices is irreducible, then the quantity ρ̂ t
t /ρ̂ t

is bounded from above by a constant. Remark that the equivalent lower bound clearly
always holds, by the three members inequality (1.6): For any set of matrices, and for
all t,

1≤ ρ̂
t
t /ρ̂

t .

2.1.2 Extremal norms

The nondefectivity of Σ allows for a powerful construction, known as extremal norm,
that we now describe.
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We know that the joint spectral radius can be defined as follows (Proposition 1.4):

ρ̂(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

So the natural question arises to know whether there is a norm that actually realizes
this infimum. This is exactly the concept of an extremal norm.

Definition 2.2 A norm || · || onRn×n is extremal for a set of matrices Σ if for all A∈ Σ ,

||A|| ≤ ρ̂(Σ).

Let us note that the above definition, together with the three members inequality (1.6)
implies that for an extremal norm we have

sup
A∈Σ

||A||= ρ̂.

Also, following Wirth [117], we introduce two similar notions for vector norms:

Definition 2.3 A vector norm | · | is extremal for Σ if for all x ∈Rn, and for all A ∈ Σ ,

|Ax| ≤ ρ̂|x|.

A vector norm | · | is a Barabanov norm for Σ if it is extremal, and if moreover for any
vector x ∈ Rn, there exists a matrix A in the closure of Σ such that

|Ax|= ρ̂|x|.

One can directly see that the matrix norm induced by an extremal vector norm would
be an extremal matrix norm for Σ . So the first question is: “Does there always exist
an extremal matrix norm?” Unfortunately, the answer to this question is negative in
general, as can be shown with the following simple example:

Example 2.1 Let us consider the following set:

Σ =
{(

1 1
0 1

)}
.

The joint spectral radius of this set is the spectral radius of the matrix, that is, one. But
there is no norm that takes the value one for such a matrix. Indeed, by submultiplica-
tivity it would imply that

||
(

1 k
0 1

)
|| ≤ 1,

for any k, which is impossible, by the equivalence between the norms in any finite
dimensional vector space.
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Note that the set Σ in the above example is defective. When it is not the case, the
construction of an extremal norm appears to be possible. The following theorem is
mainly due to Barabanov [3] for the existence of a Barabanov norm, and to Kozyakin
[70] for the existence of an extremal norm.

Theorem 2.2 [3, 70] A bounded set Σ ∈ Rn×n admits an extremal norm if and only
if it is nondefective.
If Σ is moreover compact and irreducible, then it admits a Barabanov norm.

Proof. If ρ̂(Σ) = 0 the theorem is clear, since the existence of an extremal norm, or
the nondefectivity, are both equivalent to the fact that Σ only contains the zero matrix.
We thus restrict our attention without loss of generality to sets of matrices Σ such that
ρ̂(Σ) = 1.

First if Σ admits an extremal norm then it is nondefective: indeed all the products
are bounded by the submultiplicativity property.

We now suppose that Σ is nondefective and we prove the existence of an extremal
norm in a constructive way. Let us take an arbitrary vector norm | · | in Rn. For any
x ∈ Rn, we define a new norm in the following way:

|x|∗ = sup
A∈Σ∗
|Ax|.

Recall that by convention, the identity matrix I is in Σ ∗. Taking this into account, one
can verify that | · |∗ is a norm, and, since by its definition |Ax|∗ ≤ |x|∗ holds for all
x ∈ Rn, this is an extremal vector norm. So it induces an extremal matrix norm || · ||∗
in Rn×n.

We now turn to the second part of the theorem, and suppose that Σ is compact
and irreducible. We provide a Barabanov norm in a constructive way. Let us take an
arbitrary vector norm | · | in Rn. For any x ∈ Rn, we define a new norm as follows:

|x|∗ = limsup
t→∞

sup{|Ax| : A ∈ Σ
t}. (2.1)

Again it is not difficult to prove that | · |∗ is a norm. The critical point is that it is definite:
|x|∗ = 0⇒ x = 0. Indeed, if |x|∗ = 0, x 6= 0, then the linear space generated by the set
{Ax : A ∈ Σ ∗} is a nontrivial linear subspace, invariant under all the matrices in Σ .
Moreover this subspace is not Rn, for otherwise we would have ρ̂(Σ) < 1. Indeed, by
compacity of the unit ball, if for all x : |x|= 1,

limsup
t→∞

sup{|Ax| : A ∈ Σ
t}= 0, (2.2)

then there must exist a T ∈N such that for all A∈ Σ T |Ax|< 1, and the induced matrix
norm provides

ρ̂ ≤ ρ̂T < 1.
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Finally we have a contradiction since Σ is assumed to be irreducible.
Now this is clear that for all x ∈ Rn, and A ∈ Σ , |Ax|∗ ≤ |x|∗, and that, by compacity
of Σ , for all x there exists an A ∈ Σ such that |Ax|∗ = |x|∗.

Clearly, the interest of the above theorem is rather theoretical. Indeed, the construc-
tion of the norm is not possible in general, as it requires for instance the knowledge
of the joint spectral radius itself. However, the knowledge of the existence of an ex-
tremal norm can be useful in several cases: some algorithms have for instance been
constructed that allow to approximate this extremal norm when it exists, in order to
evaluate the joint spectral radius (see Section 2.3). Also, these very concepts allow to
prove two fundamental results that we now present: the existence of an infinite product
reaching the joint spectral radius, and the joint spectral radius theorem.

2.1.3 Proofs of the fundamental theorems

We start with the existence of an ”optimal infinite product”:

Theorem 1 (Theorem 1.2) [5] For any bounded set of matrices Σ , all left-infinite
products . . .A2A1 converge to zero if and only if ρ̂(Σ) < 1.

Proof. ⇐: If ρ̂ < 1, then sup{||A||,A ∈ Σ t}→ 0 when t→ ∞, and At . . .A1→ 0.
⇒: Let us suppose that ρ̂ ≥ 1, and show that the system is not stable. The statement is
easy to prove if there exists a Barabanov norm. Indeed, for any x0 ∈ Rn, there exists a
matrix A ∈ Σ such that |Ax0|= |x0|. By iterating the construction one gets a trajectory
satisfying |xt |= |x0| and the system is not stable. So, in view of Theorem 2.2, the proof
is done if Σ is compact and irreducible.
Let us now suppose that Σ is only bounded and irreducible. The closure clΣ is
compact, and has the same joint spectral radius as Σ (Proposition 1.8). So for any
x ∈ R, there exists an A ∈ clΣ such that |Ax| = |x|. We will approximate each ma-
trix Ai closer and closer with matrices Ãi ∈ Σ so that the norm of the whole ap-
proximated product xt = Ãt . . . Ã1x0 is larger than 1/2. To do that, we define a se-
quence 0 < δi < 1 such that ∏

∞
0 δi = 1/2. Let us pick an x0 ∈ Rn

0. For all t ≥ 1,
we define At ∈ clΣ such that |Atxt−1| = |xt−1|. We approximate each At with Ãt ∈ Σ

such that ||Ãt −At || < 1− δt . By induction, one can see that |xt | ≥ ∏
t
0 δi . Indeed,

|xt |= |Ãtxt−1|= |Atxt−1− (At − Ãt)xt−1| ≥ |xt−1|(1− (1−δt)).
Finally, if Σ is commonly reducible, and ρ̂(Σ)≥ 1, we know that there exists a trans-
formation T such that the matrices TAT−1 : A ∈ Σ are block-triangular, with each
block irreducible, and the restriction of these matrices to the first block has a joint
spectral radius greater than or equal to one. We can then apply the above result to this
block.

The above proof provides as a direct corollary the existence of a left-infinite product
whose average norm converges to the joint spectral radius (Corollary 1.2).
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We are now almost in position to prove the joint spectral radius theorem. No el-
ementary proof is known for this theorem. We will present a self-contained proof
strongly inspired by the former proof of Berger and Wang [5], and by another pub-
lished proof due to Elsner [41]. Before presenting it, we begin with a small technical
lemma of linear algebra, that states that if a matrix A maps a unitary vector close to
itself, then it has an eigenvalue close to 1.

Lemma 2.1 [41] Let || · || be a matrix norm in Rn×n induced by the vector norm
| · |. There is an absolute constant C(n) > 0 such that for all z ∈ Rn, |z| = 1, and all
A ∈ Rn×n, ||A|| ≤ 1, there is an eigenvalue λ of A such that

|1−λ | ≤C|Az− z|1/n.

Theorem 2.3 ( Joint Spectral Radius Theorem)
For any bounded set of matrices Σ ,

limsup
t→∞

sup{ρ(A)1/t : A ∈ Σ
t}= lim

t→∞
sup{||A||1/t : A ∈ Σ

t}, ρ(Σ).

Proof. We suppose without loss of generality that Σ is closed (taking the closure does
not change ρ(Σ) nor ρ̂(Σ) by Proposition 1.8) and that ρ̂ = 1. Clearly, ρ(Σ)≤ 1. Let
us first suppose that Σ is irreducible. Then, by Theorem 2.2, there exists a Barabanov
norm.

Let us pick an x0 ∈Rn, |x0|= 1. By the definition of the Barabanov norm, there ex-
ists a sequence of matrices A1,A2, . . . such that for all t, |xt |= 1, where xt = At . . .A1x0.
By using the compacity of the unit ball, we know that there exists a subsequence xti
converging to a vector y of norm one. So we have two lengths ti > t j such that

|Ati . . .At j+1At j . . .A1x0−At j . . .A1x0|< ε, |At j . . .A1x0|= 1,

for any ε.
Setting z = At j . . .A1x0, we get a matrix A ∈ Σ ∗ such that

|Az− z|< ε,

and we can conclude by Lemma 2.1 that A has an eigenvalue λ such that |1−λ | =
O(ε1/n), which implies that

sup{ρ(A) : A ∈ Σ
∗} ≥ 1.

Now, if Σ is not irreducible, since the joint spectral radius is the maximum over the
joint spectral radii of each diagonal block (Proposition 1.5), one just has to apply the
result to each irreducible block separately.
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This ends the first section of this chapter. We have now a fair insight on the be-
havior of the joint spectral radius: Given a set of matrices, there is always a set of
submatrices that is irreducible, and whose joint spectral radius has the same value.
Remark that since the conditions for a set of matrices to be commonly reducible can
be expressed as quantified polynomial equalities, the problem of finding irreducible
components is computable with quantifier elimination methods (see [27]). So in some
sense we could restrict our attention to irreducible matrices, for which there exists an
extremal norm. However, even if one is able to find the irreducible component of a
set of matrices leading to the joint spectral radius, this would not be sufficient to com-
pute its value. Indeed, no constructive method is known for computing the extremal
norm of an irreducible sets of matrices. We finally mention that Guglielmi et al. pro-
vides sufficient conditions for a set of matrices to admit an extremal norm which is
a complex polytope [48]. These conditions are rather strong and are not checkable in
practice.

2.2 Complexity

In view of the results in the previous section, the joint spectral radius could seem rather
easy to compute: if the set of matrices is reducible it can be decomposed in smaller
irreducible matrices without changing the joint spectral radius. And if the matrices are
irreducible, there exists a matrix norm for which all the matrices in Σ have a norm
smaller than ρ, trivially providing a tight upper bound on ρ, via the three members
inequality (1.6). The reality is unfortunately not so easy. In this section we present not
less than three results that show that the joint spectral radius is (at least theoretically)
extremely hard to compute. These results explore three of the most discouraging argu-
ments: NP-hardness, Turing-undecidability, and non algebraicity. As usually, the proof
of these infeasibility results are somewhat artificial, and (to our opinion) the details of
the proofs are of little interest for a common reader. Nevertheless, the ideas behind
the proofs may give some insight on what is actually difficult in computing a joint
spectral radius, and where is the limit between feasibility and infeasibility. For these
reasons we limit ourselves to present the main ideas of the theorems, and we provide
bibliographic references for the interested reader.
We add that for now on and unless explicitly stated we restrict our attention to finite
sets of matrices.
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2.2.1 NP-hardness

The first theorem we present is on the NP-hardness of the joint spectral radius approx-
imation, and is valid even for binary matrices. In the following we call the size of a
number ε its bit size, that is, for instance, if ε = p/q, its size is equal to log(pq).

Theorem 2.4 [17] Unless P = NP, there is no algorithm that, given a set of matrices
Σ and a relative accuracy ε, returns an estimate ρ̃ of ρ(Σ) such that |ρ̃ −ρ| ≤ ε ρ

in a number of steps that is polynomial in the size of Σ and ε. This is true even if the
matrices in Σ have binary entries.

Proof. The proof proceeds by reduction of SAT whose NP-completeness is well-
known [44].

2.2.2 Non algebraicity

The next theorem, due to Kozyakin [70]1, states that there is no algebraic criterion
allowing to decide stability of a switched linear system. To state this theorem properly,
we consider a finite set of m n×n matrices as a point x ∈ Rmn2

. So we can talk about
the joint spectral radius of the point x as the joint spectral radius of the associated set of
matrices. We are interested in the set of all such points corresponding, for instance, to
ρ(x) < 1. For these sets to be easily recognizable, one would like them to be expressed
in terms of simple constraints, and for instance, polynomial constraints. That is the
notion of semi-algebraic sets.

Definition 2.4 A subset of Rn is semi-algebraic if it is a finite union of sets that can
be expressed by a finite list of polynomial equalities and inequalities.

Theorem 2.5 [70,111] For all m,n≥ 2, the set of points x∈Rmn2
for which ρ(x) < 1

is not semi-algebraic.
For all m,n≥ 2, the set of points x∈Rmn2

corresponding to a bounded semigroup (i.e.
Σ ∗(x) bounded) is not semi-algebraic.s

Proof. Kozyakin exhibits a set of matrices depending on the parameter t ∈]0,1[ and
shows that the set of admissible values for t (that involve stability of the corresponding
set of matrices) is not a finite number of intervals:

G(t) = (1− t4)

(
1 − t√

1−t2

0 0

)
, H(t) = (1− t4)

(√
1− t2 −t

t
√

1− t2

)
. (2.3)

1 There is actually a flaw in the first version of the proof in [70]. A corrected proof can be found
in [111].
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The set Σ(t) = {G(t),H(t)} is unstable for all t = sin(2π/(2k)), while it is stable for
all t = sin(2π/(2k + 1)) (see [111] for a proof). Since W = {Σ(t)} is an algebraic
set in R8, the intersection W ∩ E should be made of a finite number of connected
components, if E was semi-algebraic. Taking E the set of points corresponding to
stable sets, or to sets generating a bounded semigroup, we have a contradiction.

2.2.3 Undecidability

The results that we now present are in a sense even worse than the previous ones, since
they teach us that there does not exist in general any algorithm allowing to compute a
joint spectral radius in finite time:

Theorem 2.6 [9, 19] The problem of determining, given a set of matrices Σ , if the
semigroup generated by Σ is bounded is Turing-undecidable.
The problem of determining, given a set of matrices Σ , if ρ(Σ) ≤ 1 is Turing-
undecidable.
These two results remain true even if Σ contains only nonnegative rational entries.

Proof. The proof proceeds by reduction from the PFA EMPTINESS problem (Prob-
abilistic Finite state Automaton Emptiness problem), which is known to be undecid-
able [93]. In this problem, one is given a set of nonnegative rational matrices Σ and two
nonnegative rational vectors v1,v2. The entries of these matrices and vectors, between
zero and one, are interpreted as probabilities. A character is associated to each matrix
in Σ ; and to a word w (i.e. a sequence of characters) is associated the correspond-
ing product Aw ∈ Σ ∗. A word w is accepted if its corresponding probability vT

1 Awv2
is more than a certain given threshold λ . The problem to decide, given Σ ,v1,v2,λ ,
whether there exists a word that is accepted is undecidable.

We end this section with an open problem of great practical interest:

Open question 1 Is there an algorithm that, given a finite set of matrices Σ , decides
whether ρ < 1?

This question is important in practice, since it is equivalent to ask for the stability of
the dynamical system ruled by the set Σ , in the sense of definition 1.3. We show in
Section 2.4 a link between this problem and the famous finiteness property.

2.2.4 Similar results for the joint spectral subradius

For the sake of completeness, and because we have the feeling that it is worth to
have in mind the different borders between feasibility and infeasibility, we briefly cite
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the classical infeasibility results on the joint spectral subradius. They are based on a
famous old result by Paterson on the mortality problem. In this problem, one is given
a set of matrices Σ , and it is asked whether there exists a product of matrices in Σ ∗

that is equal to zero.

Theorem 2.7 [92] The mortality problem is undecidable. This is true even for sets
of 2(np +1) 3×3 matrices, where np is any number for which Post’s correspondence
problem is undecidable.

Corollary 2.1 The mortality problem is undecidable for sets of 16 3×3 matrices.

Proof. Matiyasevitch and Sénizergues have shown that Post’s correspondence prob-
lem is undecidable even for 7 pairs of words [80].

Corollary 2.2 [18] The mortality problem is undecidable for pairs of 48×48 matri-
ces.

Proof. Given a set of m n×n matrices, Blondel and Tsitsiklis show how to construct
a pair of mn×mn matrices that is mortal if and only if the former set is (see [18] for
details).

This latter corollary allows us to prove the following theorem on the approximation
of the joint spectral subradius. In order to derive a result as strong as possible, the
authors of [17] define a wide class of approximation algorithms, and show that they
do not exist for approximating the joint spectral subradius. An algorithm providing the
value ρ̃ as an approximation of the joint spectral subradius ρ̌ of a given set is said to
be a (K,L)-approximation algorithm if |ρ̃− ρ̌|< K +Lρ̌.

Theorem 2.8 [17, Theorem 2] Let np be a number of pairs of words for which Post’s
correspondence problem is undecidable. Fix any K > 0 and 0 < L < 1.

• There exists no (K,L)-approximation algorithm for computing the joint spectral
subradius of an arbitrary set Σ . This is true even for the special case where Σ

consists of one (6np +7)× (6np +7) integer matrix and one (6np +7)× (6np +7)
integer diagonal matrix.

• For the special cases where Σ consists of two integer matrices with binary entries,
there exists no polynomial time (K,L)-approximation algorithm for computing the
joint spectral subradius unless P = NP.

2.3 Methods of computation

The results in the previous section are in no way good news. However, far from dis-
couraging researchers of trying to approximate the joint spectral radius, it seems that
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it has attracted a wealth of motivation in order to cope with these theoretical limita-
tions. In the last decade, many different methods, of very different natures, have been
proposed to evaluate the joint spectral radius. Some are heuristics, others rely on brute
force methods, others are converging algorithms based on powerful theoretical results.
The consequence of this abundance is twofold:
Firstly, the joint spectral radius appears to be easier to handle than one could think in
view of the above results. Indeed, we do not have knowledge of a practical problem
that is unsolved due to the hardness of a joint spectral radius computation. We will see
in the next chapters that in some practical case where this computation is needed, the
results of approximation algorithms are of remarkable accuracy.
Secondly, this abundance of available algorithms, each with their own (dis)-advantages,
might trouble the practitioner, so that there is some need of classifying the different
methods. This part of the research on the joint spectral radius is in our opinion not
yet mature, and an exhaustive and precise classification would require a huge amount
of work, of implementation and computation, as well as of theoretical investigations.
Nevertheless, we give in this section a summary of some families of methods that
have proved useful in practical applications. We first show how to decide if the joint
spectral radius is exactly equal to zero, which is an important particular case; we then
give direct arguments that allow in some situations to compute the joint spectral radius
exactly. We next present general methods: branch-and-bound methods, the simple con-
vex combinations method, a geometric method, and Lyapunov methods. Before this
last important class of methods, we present a lifting procedure that, combined with
other algorithms, allows to reach an arbitrary accuracy.

2.3.1 Zero spectral radius

A special case, important in practice, is when joint spectral characteristics are exactly
equal to zero. There is a polynomial time algorithm to decide whether the joint spectral
radius of a set of matrices is zero. This algorithm, mentioned in [53] without proof, is
a corollary of the following proposition:

Proposition 2.1 Let Σ = {A1, . . . ,Am} ⊂ Rn×n, Then ρ(Σ) = 0 if and only if

Σ
n = {0}.

This proposition delivers a polynomial time algorithm to check whether a joint
spectral radius is zero. Indeed, by defining iteratively:

X0 = I (2.4)

Xk =
m

∑
1

AT
i Xk−1Ai, (2.5)



32 2 Classical results and problems

one has Xn = ∑A∈Σn AT A, and this matrix is computable in polynomial time. Moreover
Xn is equal to zero if and only if Σ n = {0}.

The proof of Proposition 2.1 is based on the following lemma:

Lemma 2.2 If Σ is irreducible, then ρ(Σ) > 0.

Proof. If Σ is irreducible, there exists a real number β > 0 such that for all x of norm 1,
there exists a matrix A∈ Σ such that |Ax| ≥ β . Indeed if it is not the case by compacity
of the unit ball there must exist a vector x ∈Rn, |x|= 1 such that for all A ∈ Σ , Ax = 0,
and Σ is not irreducible. Now chose x0 ∈Rn

0, and pick Ai ∈Σ such that |xi|= |Aixi−1| ≥
β |xi−1|. This implies that for any t > 0, ||At . . .A1|| ≥ β t , and ρ ≥ β > 0.

We are now in position to prove Proposition 2.1

Proof. The if part is trivial.
The proof of the only if part is by induction on the dimension n: it is true for scalar
matrices. Now suppose it is true for sets of matrices of dimension less than n. Let
Σ ∈ Rn×n,ρ(Σ) = 0. By the previous lemma, we can suppose Σ reducible, and for all
Ai ∈ Σ ,

Ai =
(

Bi Ci
0 Di

)
: Di ∈ Rn′×n′ ,

where ρ({Bi}) = ρ({Di}) = 0. Now, consider a product of length n. By applying
twice the induction hypothesis on n′ and n−n′, we have:

An . . .An′+1An′ . . .A1 =
(

0 C
0 D

)(
B′ C′

0 0

)
,

for some (potentially zero) matrices C,C′,B′,D and this latter product vanishes.

2.3.2 Direct arguments

In some cases, a direct argument allows one to compute the joint spectral radius ex-
actly. We present some of these cases here. Other cases can be found in Section 4.3.
Recall that a matrix A is said normal if AT A = AAT .

Proposition 2.2 If Σ is a set of normal matrices, the joint spectral radius is equal to
the largest spectral radius of the matrices in Σ .

Proof. The matrix norm induced by the Euclidean vector norm is given by the
largest singular value of the matrix. For normal matrices the largest singular value
is also equal to the largest magnitude of the eigenvalues. Thus, max{||A|| : A ∈ Σ} =
max{ρ(A) : A ∈ Σ} and from the three members inequality it follows that ρ(Σ) =
max{ρ(A) : A ∈ Σ}.
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Corollary 2.3 [111, Proposition 6.13] If Σ is a set of symmetric matrices, the joint
spectral radius is equal to the largest spectral radius of the matrices in Σ .

Proof. Symmetric matrices are a particular case of normal matrices.

Proposition 2.3 [111, Proposition 6.13] If Σ is a set of upper triangular matrices,
the joint spectral radius is equal to the largest spectral radius of the matrices, that is,
the largest absolute value of the diagonal entries.

The proposition obviously also holds for lower triangular matrices.

Proof. We have seen (Proposition 1.5) that if every matrix A in Σ is block-diagonal
with diagonal blocks [Ai,i], the joint spectral radius is given by

max
i

ρ({[Ai,i] : A ∈ Σ}).

Now, for triangular matrices, these blocks are just 1×1, and the joint spectral radius is
the maximum of the diagonal entries of the matrices, that is, the largest spectral radius
of the matrices.

Corollary 2.4 If the matrices in Σ are commonly upper triangularizable, that is, if
there exists an invertible matrix T such that for all A ∈ Σ , TAT−1 is upper triangular,
then ρ(Σ) = ρ1(Σ).

Recall that ρ1(Σ) denotes the maximal spectral radius of the matrices in Σ .

Proof. This is due to the fact that the joint spectral radius is invariant under similarity
transformations.

We now present another corollary of Proposition 2.3 that is based on a famous
result in algebra. We recall that the commutator [A,B] of two matrices A and B is equal
to AB−BA, and that the linear span of a set of vectors is span{v1, . . . ,vn}= {∑αivi :
αi ∈ R}. We also need the following definitions:

Definition 2.5 Let Σ be a set of matrices, the Lie Algebra associated to Σ , that we
denote by {Σ}LA is the linear span of the set of all the combinations of commutators
of matrices in Σ :

{Σ}LA = g = span{[A,B], [A, [B,C]], · · · : A,B,C ∈ Σ}.

The descending sequence of ideals g(k) of a Lie algebra g is defined inductively: g(1) =
g, g(k+1) = [g(k),g(k)]⊂ g(k).
If there exists a k > 0 such that g(k) = {0}, then the Lie Algebra is said to be solvable.

We have the following theorem, known as Lie’s Theorem (see [105]):

Theorem 2.9 Let Σ be a finite set of matrices. If the Lie Algebra associated to Σ is
solvable, then Σ is commonly upper triangularizable.

Corollary 2.5 Let Σ be a set of matrices. If Σ generates a solvable Lie algebra, then
ρ(Σ) = ρ1(Σ).
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2.3.3 Branch and bound methods

The first method that comes to mind when one wants to compute the joint spectral
radius is to apply the three-members inequality (1.6):

ρt(Σ)≤ ρ(Σ)≤ ρ̂t(Σ),

remembering that the successive bounds given by the left hand side as well as the
right hand side tend to ρ when t→ ∞. So an immediate algorithm would be to fix a t,
compute all products of length t, take the maximal spectral radius as a lower bound,
and the maximal norm (for a fixed norm) as an upper bound. This algorithm can be
iterated for increasing values of t, and will converge to the desired value.
The main problem in the previous algorithm is clearly the explosion of the number of
products of length t that one needs to compute: there are mt of them (m is the number
of matrices in Σ ).
Some ideas have been proposed to attenuate this exponential growth: Maesumi [77]
observes that since the spectral radius of a product is invariant under cyclic permu-
tations of the factors, one has to compute only O(mt/t) products. Gripenberg [46]
proposes a branch and bound algorithm that allows to approximate asymptotically the
joint spectral radius up to an a priori fixed absolute error. More precisely, given a set
Σ and a desired precision δ , the algorithm computes iteratively successive bounds αt
and βt such that αt ≤ ρ ≤ βt and limβt −αt < δ . The algorithm is a branch and bound
algorithm in the sense that it builds longer and longer products, based on the ones pre-
viously constructed, but removing at each step unnecessary products, that is, products
that are provably not necessary to reach the required accuracy.
Also, if the matrices in Σ have nonnegative entries, there is an obvious way of disre-
garding some products: if A,B are products of length t and A≤ B (where the inequality
has to be understood entrywise), then one does not have to keep A in order to have bet-
ter and better approximations of the joint spectral radius. Indeed, in any product of
length T > t, one can always replace the subproduct A with B, and by doing this the
approximation of the joint spectral radius will be at least as good as with the other
product.
As a matter of fact, it is clear that none of these algorithms provide approximations of
the joint spectral radius in polynomial time, since this is NP-hard, even for nonnega-
tive matrices. However, it is worth mentioning that in practice, these simple algorithms
can sometimes provide good approximations of the joint spectral radius, especially if
the number and the size of the matrices are not too large.
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2.3.4 Convex combination method

The following result provides rapidly a lower bound on the joint spectral radius. Recall
that a cone is said proper if it is closed, solid, convex and pointed.

Proposition 2.4 [13] Let Σ = {A1, . . . ,Am} ∈ Rn×n be an arbitrary set of matrices;
the following simple lower bound on the joint spectral radius holds:

ρ(A1 + · · ·+Am)/m≤ ρ(Σ).

If moreover the matrices in Σ leave a proper cone invariant, then

ρ(Σ)≤ ρ(A1 + · · ·+Am).

Proof. The first inequality comes from the fact that (A1 + · · ·+Am)/m ∈ convΣ . The
second inequality comes from the fact that associated to an invariant cone K, there
exists a norm || · ||K , depending on K, such that for all A,B ∈ Σ , ||A||K ≤ ||A + B||K .
This norm is given by

||A||K = max
v∈K,w∈K∗||v||,||w||=1

wT Av,

where K∗ denotes the dual of the cone K (see [13] for details).

2.3.5 A geometric algorithm

If the set of matrices is nondefective it is possible to apply a specific algorithm due to
Protasov [94]. The computation time of this algorithm is exponential in the dimension
of the matrices, but it has some advantages: it provides a clear geometric interpretation
in terms of the construction of an extremal norm, and in particular applications, it
has been reported to converge remarkably fast [11]. Finally, in some cases it gives a
criterion that allows stopping the algorithm and to compute exactly the joint spectral
radius. The idea of the algorithm is to compute iteratively an approximation of the unit
ball of the extremal norm, starting with an arbitrary polytope which is symmetric with
respect to the origin.
We now briefly describe this algorithm. For all technical details we refer the reader
to [94]. For the sake of simplicity we consider the case of two matrices, the case of an
arbitrary number of matrices is treated in the same way.
Suppose A0,A1 ∈ Rn possess an extremal norm; one needs to find a number ρ∗ such
that

∣∣ρ∗−ρ
∣∣/ρ < ε, where ε > 0 is a given accuracy. Consider a sequence of convex

polytopes {Pk} produced as follows. P0 =
{

(x1, . . . ,xn) ∈ Rn, ∑ |xi| ≤ 1
}

. For any
k≥ 0 the polytope Pk+1 is an arbitrary polytope possessing the following properties: it
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is symmetric with respect to the origin, has at most q(ε) = Cn ε
1−n

2 vertices, where Cn
is an effective constant depending only on n, and (1− ε)Σ̄Pk ⊂ Pk+1 ⊂ Σ̄Pk, where
Σ̄X = Conv{A0X,A1X}.

After T =
[ 3
√

n ln c2
c1

ε

]
steps the algorithm terminates. The value

ρ
∗ =

(
vT+1

)1/(T+1)

gives the desirable approximation of the joint spectral radius. Here vk is the largest
distance from the origin to the vertices of the polytope Pk, c1,c2 are such that c1 ≤
ρ−t ρ̂t ≤ c2. Each step requires to take the convex hull of two polytopes having at
most q(ε) vertices and requires the approximation of one polytope with 2q(ε) vertices
by a polytope with q(ε) vertices with accuracy ε . Both operations are known to be
polynomial w.r.t. 1

ε
[94] (the dimension n is fixed). The computational complexity of

this algorithm is C · ε− n+1
2 , where C is some constant.

In addition, suppose that by numerical observations we conjecture that ρ is attained
by some product Aw = Ai1 . . .AiT , i.e. ρ = ρ(Aw)1/T . If during the calculations we
find a polytope P such that Σ̄P ⊂ ρ(Aw)1/T P, then it occurs that ρ = ρ(Aw)1/T . For
the polytope P we take P = Pk = Conv{Σ̄ jv ,−Σ̄ jv , j = 0, . . . ,k} for some integer k,
where v is the eigenvector of Aw corresponding to the largest by modulo eigenvalue
(assuming that this is real and unique).

2.3.6 Lifting methods to improve the accuracy

As we will see in subsection 2.3.7, it can be useful, given a set of matrices Σ to “lift”
this set into another set Σ ′, that is to represent it with matrices acting in a higher
dimensional space, such that the joint spectral radius is raised to a certain power d :

ρ(Σ ′) = ρ(Σ)d .

A first method consists in using so-called Kronecker powers of matrices. This method
has been recently improved with the so-called symmetric algebras. We will focus on
this last (more efficient) method, but we give hereafter definitions of the Kronecker
powers, for sake of completeness, and because they give an interesting insight to the
symmetric algebra method.

Definition 2.6 Kronecker product. Let A,B ∈ Rn×n. The Kronecker product of A and
B is a matrix in Rn2×n2

defined as
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(A⊗B) ,

A1,1B . . . A1,nB
...

...
...

An,1B . . . An,nB

 .

The k-th Kronecker power of A, denoted A⊗k, is defined inductively as

A⊗k = A⊗A⊗(k−1) A⊗1 = A.

We now introduce symmetric algebras, which requires some definitions. Correspond-
ing to an nuple α ∈ Nn, we introduce the “α monomial” of a vector x ∈ Rn as the real
number:

xα = xα1
1 . . .xαn

n .

The degree of the monomial is d = ∑αi. We denote by α! the multinomial coefficient

α! =
d!

α1! . . .αn!
.

We denote by N the number of different monomials of degree d :

N =
(

n+d−1
d

)
.

Definition 2.7 Symmetric algebra. Let x ∈ Rn. The d-lift of x, denoted x[d], is the
vector in RN , indexed by all the possible exponents α of degree d

x[d]
α =

√
α!xα .

The d-lift of the matrix A is the matrix A[d] ∈ RN associated to the linear map

A[d] : x[d]→ (Ax)[d].

The matrix A[d] can be obtained via the following formula [90]:

A[d]
αβ

=
perA(α,β )√

µ(α)µ(β )
,

where perM denotes the permanent of the matrix M, and µ(α) is the product of the
factorials of the entries of α.

Denoting Σ⊗d = {A⊗d : A ∈ Σ} and Σ [d] = {A[d] : A ∈ Σ}, we have the following
properties for the Kronecker products and the d-lifts:

Proposition 2.5 [13, 90] Let Σ ∈ Rn×n and d ∈ N0,

ρ(Σ)d = ρ(Σ d) = ρ(Σ⊗d) = ρ(Σ [d]). (2.6)
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Proof. The first inequality is well known, while the two others come from the well
known properties:

(AB)⊗d = A⊗dB⊗d

(AB)[d] = A[d]B[d].

Together with:
||A⊗d ||= ||A||d ,

||A[d]||= ||A||d ,

that holds when || · || is the spectral norm (i.e. the matrix norm induced by the standard
Euclidean norm).

We will see in the next subsection how the above proposition is useful to obtain sharp
approximations of the joint spectral radius.

2.3.7 Lyapunov methods

Let us recall a fundamental result presented in the previous chapter:

Proposition 2.6 [104] For any bounded set Σ such that ρ(Σ) 6= 0, the joint spectral
radius can be defined as

ρ(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

This result is very strong, as it tells that in order to compute a joint spectral radius,
one is not bounded to compute long products of matrices. It is sufficient to find a good
norm to obtain an arbitrary close estimate of ρ via the formula

ρ ≤max
A∈Σ
||A||.

So an alternative way to estimate the joint spectral radius is to look over all norms (or
a sufficiently wide set of norms) the one that provides the tightest bound on ρ.
A family of norms that is well understood and classically used in engineering is the
family of ellipsoidal norms:

Definition 2.8 Let P be a symmetric positive definite matrix, the quantity

| · | : Rn→ R x→ |x|P =
√

xT Px

is called the ellipsoidal (vector) norm associated to P.
The induced matrix norm

A→ max
|x|P=1

|Ax|P

is called the ellipsoidal (matrix) norm associated to P.



2.3 Methods of computation 39

One can check that these quantities are indeed norms, and since the matrix norm
is induced by a vector norm, it is submultiplicative. The denomination “ellipsoidal”
comes from the fact that the unit ball E = {x∈Rn : |x|P≤ 1} is an ellipsoid. Ellipsoidal
norms are well understood, and easy to use in practice, thanks to the following well
known result:

Proposition 2.7 Given a symmetric positive definite matrix P, the norm ||A||P of a
matrix A is the smallest γ ∈ R+ such that the following equation has a solution:

AT PA � γ
2P. (2.7)

The computation of the minimal γ in (2.7) is easy. Indeed, it can be expressed as
follows:

γ
2 = max

xT Px=1
xT AT PAx.

This problem can be solved by computing the Choleski factorization of the matrix
P = LLT , and then by posing y = LT x,x = L−1T y. One gets the following expression:

γ
2 = max

yT y=1
(L−1T y)T AT PA(L−1T y).

This problem just amounts to compute the spectral radius of a matrix:

γ
2 = ρ(L−1AT PAL−1T ),

which can be done easily with classical methods, like the power method.
In case such a norm exists for which ||A||P < 1, we naturally speak of a quadratic

Lypunov function, where the term quadratic refers to the fact that the norm |x|P is a
quadratic function in the entries of x. A Lyapunov function for a dynamical system is
a function f such that f (xt) provably tends to zero when t tends to infinity, and such
that f (xt)→ 0 implies xt → 0. For a dynamical system ruled by the matrix A, this
norm || · ||P is thus a Lyapunov function, ensuring that xt tends to zero. Now the next
proposition is straightforward, and allows one to derive an upper bound on the joint
spectral radius of an arbitrary set of matrices.

Proposition 2.8 For any set of matrices Σ , if there is a solution P to the following
SDP program:

AT
i PAi � γ

2P ∀Ai ∈ Σ (2.8)
P � 0,

then ρ(Σ)≤ γ.

Proof. The above SDP program can be rewritten as ||A||P ≤ γ for all A ∈ Σ .

SDP programming has become a classical topic in mathematical engineering, and we
do not provide here a survey on this technique. Let us just mention that this family
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of problems are well understood and that it is possible to find a solution to these in
polynomial time. For more information on SDP programming, we refer the reader to
classical textbooks [4, 7, 8, 22, 86]. In case such a norm exists such that ||A||P < 1 for
all A ∈ Σ , we speak of a common quadratic Lyapunov function. It is not difficult in
practice to compute the minimal γ such that the SDP program (2.8) has a solution.
Indeed, even though the first line of this program is not a linear matrix inequality
because of the term γ2P, the minimum γ can be found by bisection.
How tight is such an approximation? That is, since we know (Proposition 2.6) that
there exists a norm giving arbitrarily tight upper bounds on ρ, how accurately can we
approximate this norm with an ellipsoidal norm? The answer is given by the following
classical result:

Theorem 2.10 (“John’s ellipsoid theorem” [56])
Let K ∈Rn be a compact convex set with nonempty interior. Then there is an ellipsoid
E with center c such that the inclusions E ⊂ K ⊂ n(E− c)+ c hold. If K is symmetric
about the origin (K =−K), the constant n can be changed into

√
n.

We are now able to present an important result, that provides two certifications of
accuracy for a joint spectral radius estimation:

Theorem 2.11 [2, 15] For an arbitrary set of m matrices Σ ⊂ Rn×n, the best ellip-
soidal norm approximation ρ∗ of its joint spectral radius ρ satisfies

1√
n

ρ
∗ ≤ ρ ≤ ρ

∗,

1√
m

ρ
∗ ≤ ρ ≤ ρ

∗.

Proof. The first part is a simple application of John’s ellipsoid theorem.
For the second part, consider the set Σ̃ of linear operators acting on symmetric

matrices:
Σ̃ = {Ã : S→ AT SA : A ∈ Σ}.

Clearly, ρ(Σ̃) = ρ(Σ)2. This set of linear operators leaves the cone of semidefinite
positive symmetric matrices invariant. So defining

B = ∑
Ã∈Σ̃

Ã,

we can apply Proposition 2.4:

1
m

ρ(B)≤ ρ(Σ̃)≤ ρ(B).

Observe that the spectral radius of the linear operator B can be represented as:
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inf
γ>0,P
{γ2 : ∑

Ai∈Σ

AT
i PAi � γ

2P,P� 0}.

And a feasible pair (P,γ) for the above expression provides a solution to the SDP
program (2.8). Finally,

1√
m

ρ
∗ ≤ 1√

m
ρ(B)1/2 ≤ ρ(Σ).

Theorem 2.11 provides an efficient method for estimating the joint spectral radius
within a fixed ratio (that cannot be chosen) of its actual value. This is a good step
forward, but this method seems to fail if we want to compute more accurate estimates.
Actually there is a way to do this, by using the lifting procedure defined in Subsection
2.3.6.

Putting Theorem 2.11 together with Proposition 2.5, we obtain:

Theorem 2.12 [90] Let Σ = {A1, . . . ,Am} ∈Rn×n. For any d ∈N0, denoting ρd
ell,d the

best ellipsoidal approximation of the joint spectral radius of Σ [d], obtained by applying
the SDP-program (2.8) to Σ [d], we have the following convergence properties:(

n+d−1
d

)− 1
2d

ρell,d ≤ ρ(Σ)≤ ρell,d , (2.9)

m−
1

2d ρell,d ≤ ρ(Σ)≤ ρell,d . (2.10)

It appears that this method can still be improved by the following recent theorem
due to Parrilo and Jadbabaie [89, 90].

Theorem 2.13 [90] Let p(x) be a strictly positive homogeneous multivariate polyno-
mial in the n variables x1, . . . ,xn, of degree 2d, and let Σ ⊂ Rn×n be a set of matrices.
If for all Ai ∈ Σ ,

p(Aix)≤ γ
2d p(x),

then ρ(Σ)≤ γ.

Proof. Let us fix an arbitrary norm | · |. By compactness of the unit ball, and because
p(x) is strictly positive on this ball, there exist two real numbers α,β such that for all
x ∈Rn, α|x|2d ≤ p(x)≤ β |x|2d . So, for an arbitrary product of length t : A1 . . .At ∈ Σ t

one has:
α|A1 . . .Atx|2d ≤ p(A1 . . .Atx)≤ γ

2dt p(x)≤ βγ
2dt |x|2d .

Finally,

ρ
t ≤ sup

x∈Rn,Ai∈Σ

|A1 . . .Atx|/|x| ≤ (
β

α
)1/2d

γ
t .

Unfortunately, no algorithm is known to optimize efficiently over sets of positive poly-
nomials in general. However, a subclass of positive polynomials is easy to handle:
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sums of squares. This is due to the following theorem, that has led to a by now clas-
sical way of relaxing optimization problems on positive polynomials: the Sum Of
Squares relaxation (SOS relaxation) [28, 85, 91, 106]:

Theorem 2.14 A homogeneous multivariate polynomial p(x) of degree 2d is a sum
of squares if and only if p(x) = x[d]T Qx[d], where x[d] is a vector whose entries are
(possibly scaled) monomials of degree d in the variables xi, and Q is a symmetric
positive semidefinite matrix.

Putting Theorem 2.13 and Theorem 2.14 together, one obtains an SOS relaxation
providing an upper bound on the joint spectral radius:

Theorem 2.15 [90] Let Σ ⊂ Rn×n be a finite set of matrices, and let γ > 0. If there
exist P,Qs such that the following polynomial equality holds:

x[d]T (γ2dP−A[d]T
s PA[d]

s )x[d] = x[d]T Qsx[d] ∀As ∈ Σ (2.11)
P,Qs � 0,

then ρ(Σ) < γ.
Moreover the above condition can be stated as an SDP program.

Proof. Since P � 0, the polynomial p(x) = x[d]T Px[d] is a strictly positive sum of
squares. Hence, Equation (2.11) asks for the polynomial γ2d p(x)− p(Asx) to be a sum
of squares, and this can be expressed as an SDP program, as it only consists in linear
relations between entries of the matrices P and Q. Finally, since a sum of squares is
a positive polynomial, the hypotheses of Theorem 2.13 are satisfied, and the proof is
done.

The above theorem provides an upper bound that is at least as good as the ellipsoidal
approximation of Theorem 2.8, since a solution P for the SDP program (2.8) provides
a solution to the SDP program (2.11) by defining Qs = γ2P−AT

s PAs. We have thus
the following result, where we put the SOS-approximations in comparison with the
convex combination technique:

Theorem 2.16 [90] Let Σ = {A1, . . . ,Am} ∈ Rn×n. For any d ∈ N0, let us denote
ρd

SOS,d the best SOS approximation of the joint spectral radius of Σ [d], obtained by
applying the SDP-program (2.11) to Σ [d], and

ρ
d
conv,d = ρ( ∑

Ai∈Σd

Ai),

We have the following convergence properties:

m−
1

2d ρSOS,d ≤ ρ(Σ)≤ ρSOS,d , (2.12)
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(
n+d−1

d

)− 1
2d

ρSOS,d ≤ ρ(Σ)≤ ρSOS,d , (2.13)

m−
1

2d ρconv,2d ≤ ρ(Σ)≤ ρconv,2d . (2.14)

Proof. Formulas (2.12) and (2.13) are straightforward consequences of the above the-
orems. The proof of Formula (2.14) follows the same idea as the proof of Theorem
2.11.

The computational cost of the different approximations obtained in the above theo-
rem is O(mn6d log1/ε), where ε = n

2 logd/d in the estimate (2.13), and ε = 1−m−
1

2d

in the estimate (2.12).
Is the bound of the SOS relaxation (2.11) better than the bound of the common

quadratic Lyapunov function (2.8)? That is, is it possible that

γ
2P−AT

s PAs � 0,

but yet

x[d]T (γ2dP−A[d]T
s PA[d]

s )x[d] = x[d]T Qsx[d] ∀As ∈ Σ ,

P,Qs � 0,

for some Qs � 0? Recent numerical experiments ( [90, table 2]) indicate that it is
indeed the case for some sets of matrices. The question whether it is possible to have
better bounds than (2.12) and (2.13) on the accuracy for the SOS approximation, is
still open.

Open question 2 Does the SOS approximation of the joint spectral radius guarantee
more accurate bounds than presented in Theorem 2.16?

2.3.8 Similar results for the joint spectral subradius and the
Lyapunov exponent

Compared to the interest for the joint spectral radius estimation, very few exists in the
literature on the estimation of the joint spectral subradius. In Chapter 7, we propose
algorithms for approximating the joint spectral subradius and the Lyapunov exponent.
These algorithms appear to perform very well in practice. See Chapter 7, Theorems
7.7, 7.8, and 7.9 for more information.
Recently, a more general class of methods, which have been called conic programming
methods has been proposed. These methods encapsulate the ones described in Chapter
7. It has also been shown that similar methods can be applied to the joint spectral
radius computation. See the recent preprints [14, 99] for more information.
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2.3.8.1 Conclusion and discussion

This section on approximation algorithms is not intended to be exhaustive, but tries to
present the main trends in the attempts to approximate the joint spectral radius, in such
a way that the reader could easily implement the most efficient algorithms known by
now.
An exhaustive analysis of the existing algorithms would be much longer. For instance,
it is possible to interpret the symmetric algebra lifting in (at least) two other ways:
First, it can be viewed as an application of another approximation algorithm developed
by Protasov [95]. This algorithm had appeared previously in the literature, but we have
preferred to introduce the point of view of symmetric algebras for several reasons: it
is simple to apply and is based on well known algebraic constructions, thus allowing
to focus easily on computational aspects, and it does not need additional assumptions
(such as irreducibility).
Secondly, it can be shown (see [90]) that the symmetric algebra lifting is simply a
symmetry-reduced version of the Kronecker liftings presented in [13], and that is why
we decided not to expose this Kronecker method here.

2.4 The finiteness property

As we have seen, the three members inequality (1.6) provides a straightforward way
to approximate the joint spectral radius to any desired accuracy: evaluate the upper
and lower bounds on ρ for products of increasing length t, until ρ is squeezed in
a sufficiently small interval and the desired accuracy is reached. Unfortunately, this
method, and in fact any other general method for computing or approximating the
joint spectral radius, is bound to be inefficient. Indeed, we know that, unless P = NP,
there is no algorithm that even approximates with a priori guaranteed accuracy the
joint spectral radius of a set of matrices in a time that is polynomial in the size of the
matrices and the accuracy. And this is true even if the matrices have binary entries.
For some sets Σ , the right hand side inequality in the three members inequality is strict
for all t. This is the case for example for the set consisting of just one matrix(

1 1
0 1

)
.

Thus, there is no hope to reach the exact value of the joint spectral radius by simply
evaluating the right hand side in the three members inequality. On the other hand,
since ρ(Ak) = ρ(A)k the left hand side always provides the exact value when the set
Σ consists of only one matrix and one can thus hope to reach the exact value of the
joint spectral radius by evaluating the maximal spectral radii of products of increasing
length. If for some t and A ∈ Σ t we have ρ(A)1/t = ρ(Σ), then the value of the joint
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spectral radius is reached. Sets of matrices for which such a product exists are said to
have the finiteness property.

Definition 2.9 A set Σ of matrices is said to have the finiteness property if there exists
some product A = A1 . . .At with Ai ∈ Σ for which ρ(Σ) = ρ(A)1/t .

One of the interests of the finiteness property arises from its connection with the stabil-
ity question for a set of matrices which is a problem of practical interest in a number of
contexts. Recall from Definition 1.3 that a set of matrices Σ is stable if all long prod-
ucts of matrices taken from Σ converge to zero. As mentioned in Section 2.2, there
are no known algorithms for deciding stability of a set of matrices and it is unknown
if this problem is algorithmically decidable. We have also seen that stability of the set
Σ is equivalent to the condition ρ(Σ) < 1 and we may therefore hope to decide sta-
bility as follows: for increasing values of t evaluate ρt = max{ρ(A)1/t : A ∈ Σ t} and
ρ̂t = max{||A||1/t : A ∈ Σ t}. Since we know that ρt ≤ ρ ≤ ρ̂t , as soon as a t is reached
for which ρ̂t < 1 we stop and declare the set stable, and if a t is reached for which
ρt ≥ 1 we stop and declare the set unstable. This procedure will always stop unless
ρ = 1 and ρt < 1 for all t. But this last situation never occurs for sets of matrices that
satisfy the finiteness property and so we conclude:

Proposition 2.9 Stability is algorithmically decidable for sets of matrices that have
the finiteness property.

It was first conjectured in 1995 by Lagarias and Wang that all sets of real matrices
have the finiteness property [71]. This conjecture, known as the finiteness conjecture,
has attracted intense attention and several counterproofs have been provided in recent
years [16,21,69]. So far all proofs provided are nonconstructive, and all sets of matri-
ces whose joint spectral radius is known exactly satisfy the finiteness property. In fact,
all counterproofs describe sets of matrices in which there are counterexamples, but no
such counterexamples have been exhibited yet.
The finiteness property is also known to hold in a number of particular cases including
the case where the matrices are symmetric, or if the Lie algebra associated with the
set of matrices is solvable, since in this case the joint spectral radius is simply equal
to the maximum of the spectral radii of the matrices (Corollary 2.5; see Subsection
2.3.2 or [52, 74] for more information). The finiteness property also holds if the set of
matrices admits a complex polytope extremal norm [48].

The definition of the finiteness property leads to a number of natural questions:
When does the finiteness property holds? Is it decidable to determine if a given set of
matrices satisfies the finiteness property? Do matrices with rational entries satisfy the
finiteness property? Do matrices with binary entries satisfy the finiteness property?
Some of these questions are studied in Chapter 4.
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2.5 Conclusion

This closes the survey on the joint spectral radius. We have seen that, even though
results in Section 2.1 were encouraging since they ensure the existence of an extremal
norm (at least on a set of commonly irreducible submatrices), the joint spectral radius
is hard to compute or approximate in theory. We have however presented algorithms
that enable one to compute the joint spectral radius to arbitrary accuracy, but at the
cost of an exponential time of computation. We have finally mentioned the finiteness
property, that will be the central subject of a subsequent chapter.



Chapter 3
Nonnegative integer matrices

Abstract In this chapter, for a given finite set Σ of matrices with nonnegative integer
entries we study the growth of

ρ̂
t
t = max{‖A1 . . .At‖ : Ai ∈ Σ}.

We show how to determine in polynomial time whether the growth with t is bounded,
polynomial, or exponential, and we characterize precisely all possible behaviors.

3.1 Introduction

In this chapter1, we focus on the case of nonnegative integer matrices and consider
questions related to the growth of ρ̂ t

t with t. When the matrices have nonnegative
integer entries, we will see that the following cases can possibly occur:

1. ρ(Σ) = 0. Then ρ̂ t
t (Σ) takes the value 0 for all values of t larger than some t0 and

so all products of length at least t0 are equal to zero.
2. ρ(Σ) = 1 and the products of matrices in Σ are bounded, that is, there is a constant

K such that ‖A1 . . .At‖< K for all Ai ∈ Σ .
3. ρ(Σ) = 1 and the products of matrices in Σ are unbounded. We will show that in

this case the growth of ρ̂ t
t (Σ) is polynomial.

4. ρ(Σ) > 1. In this case the growth of ρ̂ t
t (Σ) is exponential.

In the sequel we will mostly use the norm given by the sum of the magnitudes of
all matrix entries. Of course, for nonnegative matrices this norm is simply given by
the sum of all entries. Note that the situation 0 < ρ(Σ) < 1 is not possible because
the norm of a nonzero integer matrix is always larger than one. The four cases already

1 The chapter presents research work that has been published in [62, 65].
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occur when there is only one matrix in the set Σ . Particular examples for each of these
four cases are given by the matrices:(

0 1
0 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)
.

The problem of distinguishing between the different cases has a long history. The
polynomial-time decidability of the equality ρ(Σ) = 0 is shown in [53]. As mentioned
by Blondel and Canterini [9], the decidability of the boundedness of products of non-
negative integer matrices follows from results proved in the 1970′s. Indeed, the finite-
ness of a semigroup generated by a finite set of matrices has been proved to be de-
cidable independently by Jacob [55] and by Mandel and Simon [78]. It is clear that
for integer matrices, finiteness of the semigroup is equivalent to its boundedness, and
so boundedness is decidable for integer matrices. The decision algorithms proposed
in [55] and [78] are based on the fact that if the semigroup is finite, then every matrix
in the semigroup can be expressed as a product of length at most B of the genera-
tors, and the bound B only depends on the dimension of the matrices n and on the
number of generators. The proposed algorithms consist in generating all products of
length less than B; and checking whether new matrices are obtained by considering
products of length B + 1. The high value of the bound B does however lead to highly
nonpolynomial algorithms and is therefore not practical. A sufficient condition for the
unboundedness of ρ̂ t

t (Σ) has been derived recently for the case of binary matrices by
Crespi et al. [31]. We will show in this chapter that the condition given there is also
necessary. Moreover, we provide a polynomial algorithm that checks this condition,
and thus we prove that boundedness of semigroups of integer matrices is decidable
in polynomial time. Crespi et al. [31] also provide a criterion to verify the inequality
ρ(Σ) > 1 for binary matrices and an algorithm based on that criterion. However, their
algorithm is not polynomial. In this chapter, we present a polynomial algorithm for
checking ρ(Σ) > 1 for sets of nonnegative integer matrices. Observe that it is not in
contradiction with NP-hardness results of Chapter 2 since our algorithm allows only
to check if ρ is larger than the particular value one. Let us recall that the same problem
for other joint spectral characteristics (such as the joint spectral subradius) is proved
to be NP-hard even for binary matrices. Therefore, the polynomial solvability of this
question for the joint spectral radius is somewhat surprising.

The main results of this chapter can be summarized as follows. For any finite set of
nonnegative integer n×n matrices Σ there is a polynomial algorithm that decides be-
tween the four cases ρ = 0, ρ = 1 and bounded growth, ρ = 1 and polynomial growth,
ρ > 1 (see Theorem 3.1 and Theorem 3.2). Moreover, if ρ(Σ) = 1, then there exist
constants C1,C2,k, such that C1tk ≤ ρ̂ t

t (Σ) ≤ C2tk for all t; the rate of growth k is
an integer such that 0≤ k ≤ n−1, and there is a polynomial time algorithm for com-
puting k (see Theorem 3.3). This sharpens previously known results on the asymptotic
behavior of the value ρ̂ t

t (Σ) for nonnegative integer matrices. We discuss this aspect in
Section 3.6. Thus, for nonnegative integer matrices, the only case for which we cannot
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decide the exact value of the joint spectral radius is ρ > 1. Once more, it is most likely
that the joint spectral radius cannot be polynomially approximated in this case since it
was proved that its computation is NP-hard, even for binary matrices.

The chapter is organized as follows. Section 3.2 contains some notation and aux-
iliary facts from graph theory. In Section 3.3 we establish a criterion for separating
the three main cases ρ(Σ) < 1,ρ(Σ) = 1 and ρ(Σ) > 1. Applying this criterion we
derive a polynomial algorithm that decides each of these cases. In Section 3.4 we
present a criterion for deciding product boundedness and provide a polynomial time
implementation of this criterion. In Section 3.5 we find the asymptotic behavior of the
value ρ̂ t

t (Σ) as t → ∞ for the case ρ = 1. We prove that this value is asymptotically
equivalent to tk for a certain integer k with 0 ≤ k ≤ n− 1 and show how to find the
rate of growth k in polynomial time. Finally, in Section 3.6 we formulate several open
problems on possible generalizations of those results to arbitrary matrices.

3.2 Auxiliary facts and notations

For two nonnegative functions f (t),g(t) we use the standard notation f (t) = O(g(t)),
which means that there is a positive constant C such that f (t) ≤ Cg(t) for all t. The
functions f and g are said to be asymptotically equivalent, which we denote f (t)� g(t)
if f (t) = O(g(t)) and g(t) = O( f (t)).

We shall consider each nonnegative n× n matrix A as the adjacency matrix of a
directed weighted graph G(A). This graph has n nodes enumerated from 1 to n. There
is an edge from node i to node j if the (i, j) entry of the matrix is positive and the
weight of this edge is then equal to the corresponding entry. This graph may have
loops, i.e., edges from a node to itself, which correspond to diagonal entries. If we
are given a family Σ of nonnegative integer matrices, then we have several weighted
graphs on the same set of nodes {1, . . . ,n}. In addition we define the graph G(Σ)
associated to our family Σ as follows: There exists an edge in G(Σ) from node i to
node j if and only if there is a matrix A ∈ Σ such that Ai, j > 0. The weight of this
edge is equal to max

A∈Σ
Ai, j. We shall also use the graph G2, whose n2 nodes represent

the ordered pairs of our initial n nodes, and whose edges are defined as follows: there
is an edge from a node (i, i′) to ( j, j′) if and only if there is a matrix A ∈ Σ such that
both Ai, j and Ai′, j′ are positive for the same matrix. The edges of G2 are not weighted.

Products of matrices from Σ can be represented by cascade graphs. We now present
this tool that will enable us to clarify many reasonings in subsequent proofs. In a
cascade graph, a matrix A ∈ Σ is represented by a bipartite graph with a left and a
right set of nodes. The sets have identical size and there is an edge between the ith left
node and the jth right node if Ai, j > 0. The weight of this edge is equal to the entry
Ai, j. For instance, the non-weighted bipartite graph on Figure 3.1 represents the matrix
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1 1 0
0 0 1
0 0 1

 .

Fig. 3.1 A bipartite graph representing a binary matrix

Fig. 3.2 A typical cascade graph

Now, for a given product of matrices Ad1 . . .Adt we construct a cascade graph as
follows: we concatenate the corresponding bipartite graphs in the order in which they
appear in the product, with the right side of each bipartite graph directly connected to
the left side of the following graph. For example, Figure 3.2 shows a cascade graph
representing the product A0A1A0A1 of length four, with

A0 =

0 0 0
1 0 1
0 0 0

 ,A1 =

0 1 0
0 0 0
0 1 0

 .

We say that the bipartite graph at the extreme left side begins at level t = 0 and the
one at the extreme right side ends at the last level. We note (i, t) to refer to the node i
at level t. We say that there is a path from node i to node j if one is able to construct
a cascade graph with a path from some node (i, t) to some node ( j, t ′) for some t < t ′

(that is, if there is a product with the (i, j)−entry larger than zero). A path is to be
understood as a succession of edges from a level to the next level, i.e. always from left
to right. One can check that the (i, j) entry of a matrix product of length t is equal to



3.3 Deciding ρ < 1, ρ = 1, and ρ > 1 51

the number of directed paths from the node (i,0) to the node ( j, t) in the corresponding
cascade graph. We thus have a way of representing ρ̂ t

t (Σ) as the maximal total number
of paths from extreme left nodes to extreme right nodes in cascade graphs of length t.

Two nodes of a graph are called connected if they are connected by a path (not
necessarily by an edge). A directed graph is strongly connected if for any pair of
nodes (i, j), i is connected to j. The following well known result states that we can
partition the set of nodes of a directed graph in a unique way in strongly connected
components, and that the links between those components form a tree [110].

Lemma 3.1 For any directed weakly connected graph G there is a partition of its
nodes in nonempty disjoint sets V1, . . . ,VI that are strongly connected and such that
no two nodes belonging to different partitions are connected by directed paths in both
directions. Such a maximal decomposition is unique up to renumbering of the nodes.
Moreover there exists a (non necessarily unique) ordering of the subsets Vs such that
any node i ∈ Vk cannot be connected to any node j ∈ Vl , whenever k > l. There is an
algorithm to obtain this partition in O(n) operations (with n the number of nodes).

In this lemma, we suppose by convention that a node that is not strongly connected
to any other node is itself a strongly connected subset, even if it does not have a
self-loop. In such a case we will say that the corresponding set is a trivial strongly
connected subset. Consider the graph G(Σ) corresponding to a family of matrices Σ ,
as defined above. After possible renumbering, it can be assumed that the set of nodes
is ordered, that is, for all nodes i ∈ Vk and j ∈ Vl , if k > l then i > j. In that case all
the matrices of Σ have block upper-triangular form with I blocks corresponding to the
sets V1, . . . ,VI (I can be equal to one).

3.3 Deciding ρ < 1 , ρ = 1, and ρ > 1

The goal of this section is to prove the following result.

Theorem 3.1 For matrices with nonnegative integer entries there is a polynomial al-
gorithm that decides the cases ρ < 1,ρ = 1 and ρ > 1.

Proof. The proof will be split into several lemmas. The inequality ρ < 1 means that
ρ̂ t

t , the maximum number of paths in a cascade graph of length t tends to zero as
t→ ∞. Now ρ̂ t

t is integer-valued, and this implies that for sufficiently large t there are
no paths of this length in the graph G(Σ) corresponding to the whole family Σ . This
means that G(Σ) has no cycle. So we get our first lemma :

Lemma 3.2 For a finite set of nonnegative integer matrices Σ , we have ρ(Σ) > 0 if
and only if the graph G(Σ) has a cycle. In this case ρ ≥ 1.
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This condition can be checked in O(n) operations : one just has to find the strongly
connected components of the graph G(Σ) (a task that can be performed in O(n) oper-
ations [110]); a cycle will be possible iff one of the subsets is nontrivial.

The problem of deciding between ρ = 1 and ρ > 1 is more difficult. Let us start
with the following lemma.

Lemma 3.3 Let Σ be an arbitrary finite set of real matrices. If ρ(Σ) > 1, then there is
a product A ∈ Σ ∗, for which Ai,i > 1 for some i. If the matrices are nonnegative, then
the converse is also true.

Proof. Necessity. Since ρ(Σ) > 1 it follows that there is a product B ∈ Σ ∗ such that
ρ(B) > 1. Let λ1 be one eigenvalue of B of largest magnitude, so |λ1| = ρ(B) > 1
and let λ2, . . . ,λn be the other eigenvalues. Since these eigenvalues rotate at different
speeds when one takes the successive powers of B, there must be large values of t
for which arg(λ )≈ 0 for all eigenvalues λ of Bt , where arg(z) is the argument of the
complex number z. More precisely, there exists a sufficiently large t such that |λ1|t >
2n and arg(λ t

k)∈ [−π

3 , π

3 ] for all k = 1, . . . ,n (for a rigorous proof, see [114]). Therefore

Re(λ t
k)≥

1
2 |λ

t
k| for all k. We have

n
∑

k=1
(Bt)k,k = trBt =

n
∑

k=1
λ t

k =
n
∑

k=1
Reλ t

k ≥
1
2 |λ

t
1|> n.

Since the sum of the n numbers (Bt)k,k exceeds n, one of them must exceed 1.
Sufficiency. Since A ∈ Σ t has nonnegative elements, it follows that ‖Ak‖ ≥ (Ak)i,i,
hence ρ(A)≥Ai,i > 1. Now, by the three members inequality (1.6) ρ(Σ)≥ [ρ(A)]1/t >
1.

Corollary 3.1 For any finite set of nonnegative integer matrices Σ , we have ρ(Σ) > 1
if and only if there is a product A ∈ Σ ∗ such that Ai,i ≥ 2 for some i.

Thus, the problem is reduced to testing if there is a product A ∈ Σ ∗ that has a diagonal
element larger or equal to 2. This is equivalent to the requirement that at least one of
the following conditions is satisfied:

1. There is a cycle in the graph G(Σ) containing at least one edge of weight greater
than 2.

2. There is a cycle in the graph G2 containing at least one node (i, i) (with equal
entries) and at least one node (p,q) with p 6= q.

Indeed, if Ai,i ≥ 2 for some A∈ Σ ∗, then either there is a path on the graph G(Σ) from i
to i that goes through an edge of weight≥ 2 (first condition), or there are two different
paths from i to i in the cascade graph corresponding to the product A, this is equivalent
to the second condition. The converse is obvious. To verify Condition 1 one needs
to look over all edges of G(Σ) of weight ≥ 2 and to check the existence of a cycle
containing this edge. This requires at most O(n3) operations. To verify Condition 2
one needs to look over all 1

2 n2(n−1) triples (i, p,q) with p > q and for each of them
check the existence in the graph G2 of paths from (i, i) to (p,q) and from (p,q) to
(i, i), which requires at most O(n2) operations. Thus, to test Condition 2 one needs to
perform at most O(n5) operations. This completes the proof of Theorem 3.1.
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Figure 3.2 shows a cascade graph with the second condition above satisfied: there
are two paths from node 2 to node 2, and for every even t, the number of paths is
multiplied by two.

The shortest cycle in the graph G2 with the required properties has at most n2 edges.
It therefore follows that whenever ρ > 1, there is a product A of length less than n2

such that Ai,i ≥ 2 for some i. From this we deduce the following corollary.

Corollary 3.2 Let Σ be a finite set of nonnegative integer matrices of dimension n. If
ρ(Σ) > 1, then ρ(Σ)≥ 21/n2

.

3.4 Deciding product boundedness

If ρ = 1, two different cases are possible: either the maximum norm of products of
length t is bounded by a constant, or it grows less than exponentially with t. Decid-
ing between these two cases is not trivial. Indeed, we have seen in Chapter 2 that this
problem is undecidable for general matrices. In this section we present a simple crite-
rion that allows us to decide whether the products are bounded, in the particular case
of nonnegative integer matrices. Our reasoning will be split into several lemmas. We
begin with a simple but crucial observation.

Lemma 3.4 Let Σ be a finite set of nonnegative integer matrices with ρ(Σ) = 1. If
there is a product A ∈ Σ ∗ that has an entry larger than 1, then the graph G(Σ) is not
strongly connected.

Proof. Let Ai, j ≥ 2, that is, counting with weights, there are two paths from i to j in
the same cascade graph. If there is another cascade graph with a path from j to i, then,
concatenating the two cascade graphs, we can find two different paths from i to itself,
and by corollary 3.1 ρ(Σ) > 1, which is a contradiction. Hence G(Σ) is not strongly
connected.

Consider the partition of the nodes of G(Σ) into strongly connected sets V1, . . . ,VI (see
Lemma 3.1). Applying Lemma 3.4 we get the following corollaries.

Corollary 3.3 Let Σ be a finite set of nonnegative integer matrices. If ρ(Σ) = 1, but
the products of these matrices are not uniformly bounded, then there exists a permu-
tation matrix P such that for all matrices A in Σ , PT AP is block upper triangular with
at least two blocks.

Proof. A graph is strongly connected if and only if no permutation puts the adjacency
matrix in block triangular form.

Corollary 3.4 Let Σ be a finite set of nonnegative integer matrices with joint spectral
radius one. Then all products of these matrices restricted to any strongly connected
set Vk are binary matrices.
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We are now able to prove the main result of this section. We first provide a result
for the case of one matrix and then consider the case of several matrices.

Proposition 3.1 Let A be a nonnegative integer matrix with ρ(A) = 1. The set {‖At‖ :
t ≥ 1} is unbounded if and only if there exists some k ≥ 1, and a pair of indices (i, j)
such that

Ak
i,i,A

k
i, j,A

k
j, j ≥ 1. (3.1)

Proof. Sufficiency is easy: One can check that (Akt)i, j ≥ t for any t, and hence ρ̂ t
t (Σ)

is unbounded. Let us prove the necessity : Consider the partition in strongly connected
subsets V1, . . . ,VI . By Corollary 3.3 we have I ≥ 2.
We claim that there are two nontrivial sets Va and Vb, a < b that are connected by a
path (there is a path from an element of Va to an element of Vb). In order to prove
this, we show that if any path in G(Σ) intersects at most one nontrivial set, then their
number must be bounded.
Let a path start from a set Va1 , then go to Va2 etc., until it terminates in Val . We associate
the sequence of indices a1 < · · · < al , l ≤ I to this path. As supposed, this sequence
contains at most one nontrivial set, say Vas . There are at most Kl paths, counting with
weights, corresponding to this sequence, where K is the largest number of edges be-
tween two given sets (still counting with weights). Indeed, each path of length t > l
begins with the only edge connecting Va1 to Va2 (since Va1 is trivial), etc. until it arrives
in Vas after s−1 steps (for each of the previous steps we had at most K variants), and
the reasoning is the same if one begins by the end of the path, while, given a starting
node in Vas , and a last node in the same set, there is at most one path between these
two nodes, by Corollary 3.4. Since there are finitely many sequences {a j}l

j=1, l ≤ I,
we see that the total number of paths of length t is bounded by a constant independent
of t, which contradicts the assumption.

Hence there are two nontrivial sets Va and Vb, a < b connected by a path. Let this
path go from a node i1 ∈Va to j1 ∈Vb and have length l. Since both graphs Va and Vb
are strongly connected, it follows that there is a cycle i1→ . . .→ ip→ i1 in Va and a
path j1→ . . .→ jq→ j1 in Vb, p,q≥ 1. Take now a number s ∈ {1, . . . , p} such that
l + s is divisible by p : l + s = vp, v ∈ N. Take a nonnegative integer x such that v+ x
is divisible by q : v+ x = uq, u ∈ N. Let us show that the matrix Aupq and the indices
i = ip−s+1, j = j1 possess property 3.2. Indeed, a path of length upq along the first
cycle, beginning at node ip−s+1 terminates in the same node, hence Aupq

ip−s+1,ip−s+1
≥ 1.

Similarly (Aupq) j1, j1 ≥ 1. On the other hand, the path going from ip−s+1→ . . .→ i1,
then going x times around the first cycle from i1 to itself, and then going from i1 to j1,
has a total length s+ xp+ l = vp+ xp = upq, therefore Aupq

ip−s+1, j1
≥ 1.

The fact that there must be two nontrivial sets connected by a path had already been
proved by Mandel and Simon [78, Lemma 2.6]. We now provide a generalization of
this result to the case of several matrices.
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Proposition 3.2 Let Σ be a finite set of integer nonnegative matrices with ρ(Σ) = 1.
The set of norms {‖A‖ : A ∈ Σ ∗} is unbounded if and only if there exists a product
A ∈ Σ ∗, and indices i and j (i 6= j) such that

Ai,i,Ai, j,A j, j ≥ 1. (3.2)

Proof. The sufficiency is obvious by the previous proposition. Let us prove the ne-
cessity. We have a set Σ of nonnegative integer matrices, and their products in Σ ∗

are unbounded. Consider again the partition of the nodes in strongly connected sets
V1, . . . ,VI for Σ . Our proof proceeds by induction on I. For I = 1 the products are
bounded by corollary 3.4, and there is nothing to prove. Let I ≥ 2 and the theorem
holds for any smaller number of sets in the partition. If the value ρ̂ t

t (Σ ,U) is un-
bounded on the set U = ∪I

s=2Vs, then the theorem follows by induction. Suppose then
that the products are bounded on this subset of nodes, by some constant M. Let us
consider a product of t matrices, and count the paths from any leftmost node to any
rightmost node. First, there are less than n2 paths beginning in V1 and ending in V1,
since the corresponding adjacency matrix must have {0,1} entries (recall that n is the
total number of nodes). Second, there are at most Mn2 paths beginning and ending in
U , since each entry is bounded by M. Let us count the paths beginning in V1 and end-
ing in U : Let i0→ ··· → it be one of these paths. The nodes i0, . . . ir−1 are in V1, the
nodes ir, . . . , it are in U and ir−1ir is an edge connecting V1 and U . The number r will
be called a switching level. For any switching level there are at most KMn2 different
paths connecting V1 with U , where K is the maximum number of edges jumping from
V1 to U at the same level, counting with weights. Indeed for one switching edge ir−1ir,
the total number of paths from ir to any node at the last level is bounded by M, and
there are less than n nodes in U . By the same way of thinking, there is maximum one
path from each node in V1 to ir−1, and there are less than n nodes in V1. The number
of switching levels is thus not bounded, because so would be the number of paths. To
a given switching level r we associate a triple (A′,A′′,d), where A′ = Ad1 . . .Adr−1 |V1

and A′′ = Adr+1 . . .Adt |U are matrices and d = dr is the index of the rth matrix. The
notation A|V1 means the square submatrix of A corresponding to the nodes in V1. Since
A′ is a binary matrix (Corollary 3.4), A′′ is an integer matrix with entries less than M,
and d can take finitely many values, it follows that there exist finitely many, say N,
different triples (A′,A′′,d). Taking t large enough, it can be assumed that the number
of switching levels r ∈ {2, . . . , t−1} exceeds N, since for any switching level there are
at most KMn2 different paths. Thus, there are two switching levels r and r + s, s ≥ 1
with the same triple. Define d = dr = dr+s and

B = A1 . . .Adr−1 , D = Adr+1 . . .Adr+s−1 , E = Adr+s+1 . . .Adt (3.3)

(if s = 1, then D is the identity matrix). Thus, Ad1 . . .Adt = BAdDAdE. Since A′ =
B|V1 = BAdD|V1 it follows that B|V1 = B(AdD)k

|V1
for any k. Similarly A′′ = E|U =

DAdE|U implies that E|U = (DAd)kE|U . Therefore for any k the cascade graph corre-



56 3 Nonnegative integer matrices

sponding to the product B(AdD)kAdE has at least k + 1 paths of length t + (k− 1)s
starting at i0. Those paths have switching levels r,r + s, . . . ,r +(k− 1)s respectively.
Indeed, for any l ∈ {0, . . . ,k} there is a path from i0 to ir−1+ls = ir−1, because
B(AdD)l

|V1
= B|V1 ; there is an edge from ir−1+ls to ir+ls = ir, because Adr+ls = Adr = Ad ;

finally there is a path from ir+ls = ir to it+(k−1)s = it , because (DAd)k−lE|U = E|U .
Therefore, ‖B(AdD)kAdE‖ ≥ k + 1 for any k, hence ‖B(AdD)kAdE‖ → ∞ as k→ ∞,
and so ‖(AdD)k‖ → ∞. Now we apply Proposition 3.1 for the matrix AdD; since the
powers of this matrix are unbounded it follows that some power A = (AdD)k, which is
(Adr . . .Adr+s−1)

k possesses the property Ai,i,A j, j,Ai, j ≥ 1 for suitable i and j.

In the last proof, we find a matrix AdD ∈ Σ ∗ such that ||(AdD)k|| → ∞. There is
a different way to prove the existence of such a matrix that is based on the generic
theorem of McNaughton and Zalcstein, which states that every torsion semigroup of
matrices over a field is locally finite [84]. We have given here a self-contained proof
that uses the combinatorics for nonnegative integer matrices.

The meaning of the condition (3.2) in terms of cascade graphs can be seen from the
following simple example. If one matrix in Σ has those three entries (and no other)
equal to one, then we have two infinite and separate paths: one is a circuit passing
through the node i, the other is a circuit passing through the node j. Those cycles are
linked in a unique direction, so that the first one is a source and the second one is a
sink, that eventually collects all these paths, as shown on Figure 3.3.

Fig. 3.3 A cascade graph with linear growth

We now prove that the criterion of Proposition 3.2 can be checked in polynomial
time.

Theorem 3.2 There is a polynomial time algorithm for verifying product boundedness
of families of nonnegative integer matrices.

Proof. Assume we are given a finite set of nonnegative integer matrices Σ . First, we
decide between the cases ρ = 0,ρ = 1 and ρ > 1 with the algorithm provided in the
previous section. In the first case ρ̂ t

t (Σ) is bounded, in the latter it is not. The main
problem is to check boundedness for the case ρ = 1. By Proposition 3.2 it suffices to
check if there exists a product A ∈ Σ ∗ possessing the property of Equation (3.2) for
some indices i, j. Consider the product graph G3 with n3 nodes defined as follows.
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The nodes of G3 are ordered triples (i, j,k), where i, j,k ∈ {1, . . . ,n}. There is an edge
from a vertex (i, j,k) to a vertex (i′, j′,k′) if and only if there is a matrix A ∈ Σ , for
which (A)i,i′ ,(A) j, j′ ,(A)k,k′ ≥ 1. (The adjacency matrix of G3 is obtained by taking
the 3-th Kronecker power of each matrix in Σ , and by taking the maximum of these
matrices componentwise.) The above condition means that there are indices i 6= j such
that there is a path in G3 from the node (i, i, j) to the node (i, j, j). The algorithm
involves checking n(n−1) pairs, and for each pair at most O(n3) operations to verify
the existence of a path from (i, i, j) to (i, j, j). In total one needs to perform O(n5)
operations to check boundedness.

3.5 The rate of polynomial growth

We have provided in the previous section a polynomial time algorithm for checking
product boundedness of sets of nonnegative integer matrices. In this section we con-
sider sets of matrices that are not product bounded and we analyze the rate of growth
of the value ρ̂ t

t (Σ) when t grows. When the set consists of only one matrix A with
spectral radius equal to one, the norm of Ak increases polynomially with k and the
degree of the polynomial is given by the size of the largest Jordan block of eigenvalue
one. A generalization of this for several matrices is given in the following theorem.

Theorem 3.3 For any finite set of nonnegative integer matrices with joint spectral
radius equal to one, there are positive constants C1 and C2 and an integer k ≥ 0 (the
rate of growth) such that

C1tk ≤ ρ̂
t
t (Σ) ≤ C2tk (3.4)

for all t. The rate of growth k is the largest integer possessing the following property:
there exist k different ordered pairs of indices (i1, j1), . . . ,(ik, jk) such that for every
pair (is, js) there is a product A ∈ Σ ∗, for which

Ais,is , Ais, js , A js, js ≥ 1, (3.5)

and for each 1≤ s≤ k−1, there exists B ∈ Σ ∗ such that B js,is+1 ≥ 1.

The idea behind this theorem is the following: if we have a polynomial growth of
degree k, we must have a combination of k linear growths that combine themselves
successively to create a growth of degree k. This can be illustrated by the cascade
graph in Figure 3.4.

Before we give a proof of Theorem 3.3 let us observe one of its corollaries. Con-
sider the ordered chain of maximal strongly connected subsets V1, . . . ,VI provided by
Lemma 3.1. By Corollary 3.4 the elements is, js of each pair (is, js) belong to different
sets and are such that

is ∈Vk, js ∈Vl ⇒ l > k.
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Fig. 3.4 A cascade graph with polynomial growth

This implies that there are fewer such couples than strongly connected subsets, and
then:

Corollary 3.5 The rate of growth k does not exceed I− 1, where I is the number of
strongly connected sets of the family Σ . In particular, k ≤ n−1.

We now provide the proof of Theorem 3.3.

Proof. We shall say that a node i is O(tk) if there is a constant C > 0 such that
max

A∈Σ t ,1≤ j≤n
Ai, j ≤Ctk for all t. Suppose that for some k we have k pairs (i1, j1), . . . ,(ik, jk)

satisfying the assumption of the theorem. We construct a cascade graph similar to the
one represented in Figure 3.4: Let As, s = 1, . . . ,k and Bs, s = 1, . . . ,k−1 be the cor-
responding products and m be their maximal length. Then for any s and any p ∈ N
one has (Ap

s )is js ≥ p, and therefore
(
Ap

1B1Ap
2B2 . . .Ap

k

)
i1, jk
≥ pk for any p. Denote this

product by Dp and its length by lp. Obviously lp ≤ (pk + k− 1)m. For an arbitrary
t > (2k− 1)m take the largest p such that lp < t. It follows that lp ≥ t − km, and
therefore p ≥ lp

km − 1 + 1
k ≥

t
km − 2 + 1

k . In order to complete the product, take for

instance At−lp
k . Then the product DpAt−lp

k has length t and its (i1 jk)-entry is bigger

than pk ≥
( t

km −2+ 1
k

)k, which is bigger than Ctk for some positive constant C. This
proves sufficiency.
It remains to establish the converse: if for some k there is a node that is not O(tk−1),
then there exist k required pairs of indices. We prove this by induction on the dimen-
sion n (number of nodes). For n = 2 and k = 1 it follows from Proposition 3.2. For
n = 2 and k > 2 this is impossible, since one node (say, node 1) is an invariant by
Corollary 3.3, then the edge (1,2) is forbidden, and there are at most t + 2 paths of
length t (if all other edges occur at each level).
Suppose the theorem holds for all n′ ≤ n− 1. Let a node i0 be not O(tk−1). Assume
first that there are two nodes i, j of the graph G(Σ) that are not connected by any path.
Therefore there are no paths containing these nodes. Hence one can remove one of
these nodes (with all corresponding edges) so that i0 is still not O(tk−1). Now by in-
duction the theorem follows. It remains to consider the case when any pair of nodes is
(weakly) connected. Take the decomposition in strongly connected subsets V1, . . . ,VI
for Σ . The nodes are ordered so that all the matrices in Σ are in block upper triangular
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form. Let p be the smallest integer such that all nodes in Gp = ∪I
s=pVs are O(1), i.e.,

Gp is the biggest invariant on which the number of paths is bounded. By Corollary
3.4 such p does exist. On the other hand, by the assumption we have p ≥ 2. Since
the products in Σ ∗ restricted to the subspace corresponding to Gp−1 = Gp ∪Vp−1 are
unbounded, it follows from Proposition 3.2 that there is a pair (ik, jk)∈Gp−1 realizing
Equation (3.2). Observe that ik ∈ Vp−1 and jk ∈ Gp. Otherwise these nodes are either
in Vp−1 (hence the restriction of Σ ∗ to Vp−1 is unbounded, which violates Corollary
3.4) or in Gp (contradicts the boundedness of Σ ∗ on Gp). Now consider the products
restricted on the set ∪p−1

s=1 Vs. We claim that at least one node is not O(tk−2) in this re-
striction: For any product in Σ ∗ of length t consider the corresponding cascade graph.
Any path of length t starting at a node i ∈ ∪p−1

s=1 Vs consists of 3 parts (some of them
may be empty): a path i→ v ∈ ∪p−1

s=1 Vs of some length l, an edge v→ u ∈ Gp, and a
path from u inside Gp of length t − l− 1. Suppose that each entry in the restriction
of the products to ∪p−1

s=1 Vs is O(tk−2), then for a given l there are at most Clk−2 paths
for the first part (C > 0 is a constant), for each of them the number of different edges
v→ u (counting with edges) is bounded by a constant K, and the number of paths from
u to the end is bounded by C0 by the assumption. Taking the sum over all l we obtain
at most ∑

t
l=0 CKC0lk−2 = O(tk−1) paths, which contradicts our assumption.

Hence there is a node in ∪p−1
s=1 Vs that is not O(tk−2). Applying now the inductive as-

sumption to this set of nodes we obtain k− 1 pairs (is, js), s = 1, . . . ,k− 1 with the
required properties. Note that they are different from (ik, jk), because jk ∈ Gp. It re-
mains to show that there is a path in G(Σ) from jk−1 to ik. Let us remember that
ik ∈ Vp−1. If jk−1 ∈ Vp−1 as well, then such a path exists, because Vp−1 is strongly
connected. Otherwise, if jk−1 ∈ Vj for some j < p− 1, then there is no path from ik
to jk−1, which yields that there is a path from jk−1 to ik, since each pair of nodes is
weakly connected.

Remark 3.1. Let us note that the products of maximal growth constructed in the proof
of Theorem 3.3 are not periodic, that is, the optimal asymptotic product is not the
power of one product. Indeed, we multiply the first matrix A0 p times, and then the
second one p times, etc. This leads to a family of products of length t that are not the
repetition of a period. In general, those aperiodic products can be the optimal ones, as
illustrated by the following simple example.

Σ =


1 1 0

0 1 0
0 0 0

 ,

0 0 0
0 1 1
0 0 1

 .

Any finite product of these matrices has spectral radius equal to one and has at most
linear growth. Indeed, every A ∈ Σ has rank at most two, therefore the condition of
Theorem 3.3 for any k ≥ 2 is not satisfied for the product A. Nevertheless, the ape-
riodic sequence of products of the type At/2

0 At/2
1 gives a quadratic growth in t. It is

interesting to compare this phenomenon with the finiteness property (see Section 2.4
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and Chapter 4): for this set of matrices, the maximal behavior is a quadratic growth,
which is possible only for aperiodic products.
On the other hand, considering the boundedness of the products, such phenomenon
is impossible: by Proposition 3.2 if ρ̂ t

t (Σ) is unbounded, this unbounded growth can
always be obtained by a periodic sequence. This fact is not true for general matrices,
since the following example gives a set of complex matrices for which the products
are unbounded while all periodic products are bounded:

Σ =
{(

eiθ2π 1
0 1

)
,

(
eiθ2π 0

0 1

)}
.

If 0 ≤ θ ≤ 1 is irrational, then the powers of any A ∈ Σ ∗ are bounded, while ρ̂ t
t (Σ)

grows linearly in t.

Proposition 3.3 The rate of growth of a set of nonnegative integer matrices with joint
spectral radius equal to one can be found in polynomial time.

Proof. For each pair (i, j) of vertices one can check in polynomial time whether
there is a product A such that Ai, j, Ai,i,A j, j ≥ 1. For each couple of those pairs
(i1, j1),(i2, j2), we can check in polynomial time whether there is a path from j1 to i2,
or from j2 to i1. Finally we are left with a directed graph whose nodes are the couples
(i, j) satisfying Equation (3.2) and with an edge between the nodes (i1, j1),(i2, j2) if
there is a path from j1 to i2. This graph is acyclic (because if there is also a path from
j2 to i1 then there are two paths from i1 to itself, and ρ > 1 by Lemma 3.3), and it is
known that the problem of finding a longest path in a directed acyclic graph can be
solved in linear time.

3.6 Polynomial growth for arbitrary matrices

Theorem 3.3 shows that for a finite family Σ of nonnegative integer matrices with
joint spectral radius equal to one the value ρ̂ t

t (Σ) is asymptotically equivalent to tk,
where k is an integer. Moreover, we have shown that the exponent k can be computed
in polynomial time. A natural question arises: do these properties hold for all sets of
matrices (without the constraint of nonnegative integer entries)?

Open question 3 Is this true that for any set of real matrices Σ with ρ(Σ) = 1 one
has ρ̂ t

t (Σ)� tk for some integer k ?

In other words, is the asymptotic behavior of the value ρ̂ t
t (Σ) really polynomial with

an integer rate of growth? This property can obviously be reformulated without the
restriction ρ(Σ) = 1 as follows: is it true that for any family of matrices Σ we have

ρ̂
t
t (Σ) � ρ

ttk, (3.6)
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where ρ = ρ(Σ) and k is an integer ? A more general problem arises if we remove
the strict requirements of asymptotic equivalence up to a positive constant:

Open question 4 Is this true that for any family of matrices Σ the following limit

lim
t→∞

ln ρ−t ρ̂ t
t (Σ)

ln t
, (3.7)

exists and is always an integer?

In particular, does property (3.6) or, more generally, property (3.7) hold for nonnega-
tive integer matrices ? If the answer is positive, can the rate of growth be computed?
We have solved these problems only for the case ρ = 1. Thus, is it possible to obtain a
sharper information on the asymptotic behavior of the value ρ̂ t

t (Σ) as t → ∞ than the
well-known relation lim

t→∞
ln ρ̂ t

t (Σ)/t = lnρ(Σ)? The question is reduced to the study

of the value r(t) = ρ−t ρ̂ t
t (Σ). For some special families of matrices this question has

appeared in the literature many times. S. Dubuc in 1986 studied it for a special pair of
2×2 matrices in connection with the rate of convergence of some approximation algo-
rithm [40]. In 1991 I. Daubechies and J. Lagarias [34] estimated the value r(t) for spe-
cial pairs of n×n matrices to get a sharp information on the continuity of wavelets and
refinable functions, and their technique was developed in many later works (see [118]
for references). In 1990 B. Reznik [102] formulated several open problems on the
asymptotics of binary partition functions (combinatorial number theory) that were
actually reduced to computing the value r(t) for special binary matrices [96]. This
value also appeared in other works, in the study of various problems [29, 39, 103].
For general families of matrices very little is known about the asymptotic behavior of
r(t), although some estimates are available. First, if the matrices in Σ do not have a
nontrivial common invariant subspace, then r(t) � 1, i.e., the set is nondefective (see
Chapter 2 Section 2.1). So, in this case the answer to Open Question 3 is positive with
k = 0. This assumption was relaxed for nonnegative matrices in [96]. It was shown
that if a family of nonnegative matrices is irreducible (has no common invariant sub-
spaces among the coordinate planes), then we still have r(t) � 1. For all other cases,
if the matrices are arbitrary and may have common invariant subspaces, we have only
rough estimates. For the lower bound we always have r(t)≥C by the three members
inequality. For the upper bound, as it is shown in [34], we have r(t) ≤ Ctn−1. This
upper bound was sharpened in the following way [29]. Let l be the maximal integer
such that there is a basis in Rn, in which all the matrices from Σ get a block upper-
triangular form with l blocks. Then r(t)≤Ct l−1. The next improvement was obtained
in [98] (see also Proposition 1.5). Let Σ = {A1, . . . ,AN} and each matrix Ad ∈ Σ are
in upper triangular form, with diagonal blocks Bd,1, . . . ,Bd,l . Let s be the total number
of indices j ∈ {1, . . . , l} such that ρ(B1, j, . . . ,BN, j) = ρ(Σ). Then r(t)≤Cts−1. Thus,
for an arbitrary family of matrices we have C1 ≤ ρ−t ρ̂ t

t (Σ) ≤ C2ts−1. To the best of
our knowledge this is the sharpest information about the asymptotic behavior of r(t)
available thus far.
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3.7 Conclusion and remarks

The results presented in this chapter completely characterize finite sets of nonnega-
tive integer matrices with bounded products and with polynomially growing products.
Without any change the results can be applied to general sets of nonnegative matri-
ces that have no entries between zero and one. Unlike the proofs, which are quite
technical, the results are easily implementable in algorithms. One question we have
not addressed here is that of the exact computation of the joint spectral radius when
ρ > 1, but we know this problem is NP-hard even for binary matrices (see Chapter
2). We also provide an example of two matrices whose joint spectral radius is equal to
one but for which the optimal asymptotic behavior (quadratic growth) is not periodic.
All periodic products have indeed a linear growth. This example may possibly help
for the analysis of the finiteness property (see Chapter 4). Finally, in the last section
we leave several open problems on possible generalizations of these results for more
general sets of matrices.



Chapter 4
On the finiteness property for rational matrices

Abstract In this chapter we analyze a recent conjecture stating that the finiteness prop-
erty holds for pairs of binary matrices. We show that the finiteness property holds for
all pairs of binary matrices if and only if it holds for all sets of nonnegative rational
matrices. We provide a similar result for matrices with positive and negative entries.
We finally prove the conjecture for 2×2 matrices.

4.1 Introduction

Let us recall from previous chapters the definition of the finiteness property1:

Definition 4.1 A set Σ of matrices is said to have the finiteness property if there exists
some product A = A1 . . .At with Ai ∈ Σ for which ρ(Σ) = ρ1/t(A).

This property is of importance in practice, because of the following proposition,
proved in Section 2.4:

Proposition 4.1 Stability is algorithmically decidable for sets of matrices that have
the finiteness property.

In that section we have shown that the finiteness property does not hold in general, but
its definition leads to a number of natural questions: When does the finiteness prop-
erty hold? Is it decidable to determine if a given set of matrices satisfies the finiteness
property? Do matrices with rational entries satisfy the finiteness property? Do matri-
ces with binary entries satisfy the finiteness property? These questions have a natural
justification. First, we are interested in rational matrices because for engineering pur-
poses, the matrices that one handles (or enters in a computer) are rational-valued. So,
in some sense, a proof of the finiteness property for rational matrices would be sat-
isfactory in practice. Moreover, the case of binary matrices appears to be important

1 The chapter presents research work that has been published in [59, 60].

63



64 4 On the finiteness property

in a number of applications. For instance, the rate of growth of the binary partition
function in combinatorial number theory is expressed in terms of the joint spectral
radius of binary matrices, that is, matrices whose entries are zeros and ones [96, 102].
Moision et al. [81–83] have shown how to compute the capacity of a code under cer-
tain constraints (caused by the noise in a channel) by using the joint spectral radius
of binary matrices. Recently the joint spectral radius of binary matrices has also been
used to express trackability of mobiles in a sensor network [30]. These applications
(some of which are presented in Part II) have led to a number of numerical computa-
tions [57, 81, 82]. The results obtained so far seem to indicate that for binary matrices
the finiteness property holds. When the matrices have binary entries they can be inter-
preted as adjacency matrices of graphs on an identical set of nodes and in this context
it seems natural to expect optimality to be obtained for periodic products. Motivated
by these observations, the following conjecture appears in [11]:

Conjecture 4.1 Pairs of binary matrices have the finiteness property.

In the first theorem in this chapter we prove a connection between rational and binary
matrices:

Theorem 4.1 The finiteness property holds for all sets of nonnegative rational matri-
ces if and only if it holds for all pairs of binary matrices.

If Conjecture 4.1 is correct then nonnegative rational matrices also satisfy the finite-
ness property and this in turn implies that stability, that is, the question ρ < 1, is de-
cidable for sets of matrices with nonnegative rational entries. From a decidability per-
spective this last result would be somewhat surprising since it is known that the closely
related question ρ ≤ 1 is not algorithmically decidable for such sets of matrices (see
Section 2.2).

Motivated by the relation between binary and rational matrices, we prove in a sub-
sequent theorem that sets of 2× 2 binary matrices satisfy the finiteness property. We
have not been able to find a unique argument for all possible pairs and we therefore
proceed by enumerating a number of cases and by providing separate proofs for each
of them. This somewhat unsatisfactory proof is nevertheless encouraging in that it
could possibly be representative of the difficulties arising for pairs of binary matrices
of arbitrary dimension. In particular, some of the techniques we use for the 2×2 case
can be applied to matrices of arbitrary dimension.

4.2 Rational vs. binary matrices

In this section, we prove that the finiteness property holds for nonnegative rational
matrices if and only if it holds for pairs of binary matrices. The proof proceeds in
three steps. First we reduce the nonnegative rational case to the nonnegative integer
case, we then reduce this case to the binary case, and finally we show how to reduce
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the number of matrices to two. In the last theorem we give an analogous result for
matrices with arbitrary rational entries: the finiteness property holds for matrices with
rational entries if and only if it holds for matrices with entries in {−1,0,1}.

Proposition 4.2 The finiteness property holds for finite sets of nonnegative rational
matrices if and only if it holds for finite sets of nonnegative integer matrices.

Proof. Recall that for any α > 0, ρ(Σ) = (1/α)ρ(αΣ). Now, for any set Σ of matrices
with nonnegative rational entries, let us pick an α 6= 0 ∈ N such that αΣ ⊆ Nn×n. If
there exists a positive integer t and a matrix A ∈ (αΣ)t such that ρ(αΣ) = ρ1/t(A),
then ρ(Σ) = (1/α)ρ1/t(A) = ρ1/t(A/α t), where A/α t ∈ Σ t .

We now turn to the reduction from the integer to the binary case. Figure 4.1 represents
the reduction for a particular example.

(a) (b)

Fig. 4.1 The cascade graph (see Chapter 3) of a nonnegative integer matrix A (a) and its binary
representation Ã (b).

Theorem 4.2 The finiteness property holds for finite sets of nonnegative integer ma-
trices if and only if it holds for finite sets of binary matrices.

Proof. Consider a finite set of nonnegative integer matrices Σ ⊂ Nn×n. We think of
the matrices in Σ as adjacency matrices of weighted graphs on a set of n nodes and
we construct auxiliary graphs such that paths of weight w in the original weighted
graphs are replaced by w paths of weight one in the auxiliary graphs. For every matrix
A∈ Σ ⊂Nn×n, we introduce a new matrix Ã∈ {0,1}nm×nm as follows (see Figure 4.1).
We define m as the largest entry of the matrices in Σ (m = 2 in Figure 4.1). Then, for
every node vi (i = 1, . . . ,n) in the original graphs, we introduce m nodes ṽi,1, . . . , ṽi,m in
the auxiliary graphs. The auxiliary graphs have nm nodes; we now define their edges.
For all A ∈ Σ and Ai, j = k 6= 0, we define km edges in Ã from nodes ṽi,s : 1≤ s≤ k to
the nodes ṽ j,t : 1≤ t ≤ m.
Now, we claim that for all t, and for all A ∈ Σ t , the corresponding product Ã ∈ Σ̃ t

is such that ||A||1 = ||Ã||1, where || · ||1 represents the maximum sum of the absolute
values of all entries of any column in a matrix. This implies that ρ(Σ̃) = ρ(Σ), and Σ̃
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has the finiteness property if and only if so does Σ . This proves the theorem, since Σ̃

has binary entries. The following reasoning leads to this claim:

1. For any product Ã ∈ Σ̃ t , and for any indices i,r, j,s,s′, Ãṽi,r ,ṽ j,s = Ãṽi,r ,ṽ j,s′ . This is
due to the fact that for every matrix in Σ̃ , the columns corresponding to ṽi,s and ṽi,s′

are equal.
2. For any product A ∈ Σ t , and any couple of indices (i, j), the corresponding product

Ã ∈ Σ̃ t has the following property: for all s, Ai, j = ∑r Ãṽi,r ,ṽ j,s . We show this by
induction on the length of the product: First, this is true by construction for every
matrix in Σ̃ . Now suppose that it is true for every product of length t, and consider a
product of length t +1 : AB ∈ Σ t+1 and its corresponding product ÃB̃ ∈ Σ̃ t+1, with
Ã ∈ Σ̃ t and B̃ ∈ Σ̃ . We have the following implications:

(AB)i, j = ∑
1≤k≤n

Ai,kBk, j

= ∑
1≤k≤n

(
∑

1≤r≤m
Ãṽi,r ,ṽk,s

)
Bk, j

= ∑
1≤r≤m

(
∑

1≤k≤n
Ãṽi,r ,ṽk,s Bk, j

)

= ∑
1≤r≤m

(
∑

1≤k≤n,1≤s≤m
Ãṽi,r ,ṽk,s B̃ṽk,s,ṽ j,s′

)
= ∑

1≤r≤m

(
ÃB̃
)

ṽi,r ,ṽ j,s′
.

In the first implication we used the induction hypothesis for products of length t, in
the second implication we reverse the order of summation, while for the third im-
plication we use both the induction hypothesis for products of length 1 to transform
Bk, j, and moreover we use the item 1 of this proof in order to let the index s of the
matrix Ãṽi,r ,ṽk,s vary. Since s′ can be chosen arbitrarily between 1 and m, the proof
is done.

3. For all t, and for all A ∈ Σ t , the corresponding product Ã ∈ Σ̃ t is such that ||A||1 =
||Ã||1, where || · ||1 represents the maximum sum of the absolute values of all entries
of any column in a matrix.

4. We have that ρ(Σ) = ρ(Σ̃), and if ρ(Σ̃) = ρ1/T (Ã) : Ã∈ Σ̃ T , then ρ(Σ) = ρ1/T (A),
where A is the product in Σ T corresponding to Ã.

We finally consider the last reduction: we are given a set of matrices and we reformu-
late the finiteness property for this set into the finiteness property for two particular
matrices constructed from the set. The construction is such that all the entries of the
two matrices have values identical to those of the original matrices, except for some
entries that are equal to zero or one.
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More specifically, assume that we are given m matrices A1, . . . ,Am of dimension n.
From these m matrices we construct two matrices Ã0, Ã1 of dimension (2m−1)n. The
matrices Ã0, Ã1 consist of (2m−1)× (2m−1) square blocks of dimension n that are
either equal to 0, I or to one of the matrices Ai. The explicit construction of these two
matrices is best illustrated with a graph.

Consider the graph G0 on a set of 2m− 1 nodes si (i = 1, . . . ,2m− 1) and whose
edges are given by (i, i+1) for i = 1, . . . ,2m−2. We also consider a graph G1 defined
on the same set of nodes and whose edges of weight ai are given by (m + i− 1, i)
for i = 1, . . . ,m. These two graphs are represented on Figure 4.2 for m = 5. In this
construction a directed path that leaves the node m returns there after m steps and
whenever it does so, the path passes exactly once through an edge of graph G1. Let
us now describe how to construct the matrices Ã0, Ã1. The matrices are obtained by
constructing the adjacency matrices of the graphs G0 and G1 and by replacing the
entries 1 and 0 by the matrices I and 0 of dimension n, and the weights ai by the
matrices Ai. For m = 5 the matrices Ã0, Ã1 are thus given by:

Ã0 =



0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0


,

Ã1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

A1 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0
0 0 0 0 A5 0 0 0 0


.

The two matrices so constructed inherit some of the properties of the graphs G0 and
G1 : loosely speaking, in a product of length m, one is forced to use m− 1 times the
matrix Ã0 and one time Ã1, and this product represents the use of one particular matrix
in Σ . The moment one uses Ã1 determines uniquely the matrix in Σ . These ideas are
formalized in the following theorem.

Theorem 4.3 Consider a set of m≥ 1 matrices

Σ = {A1, . . . ,Am : Ai ∈ Rn×n},
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Fig. 4.2 Schematic representation of the macro transitions between subspaces. The full edges repre-
sent transitions in Ã0 and the dashed edges transitions in Ã1.

and Σ̃ = {Ã0, Ã1} with the matrices Ã0 and Ã1 as defined above. Then ρ(Σ̃) =
ρ(Σ)1/m. Moreover, the finiteness property holds for Σ if and only if it holds for Σ̃ .

Proof. The crucial observation for the proof is the following. Consider a path in G0
and G1. Edges in G0 and G1 have outdegree at most equal to one. So if a sequence
of graphs among G0 and G1 is given, there is only one path leaving i that follows
that particular sequence. This fact ensures that any block in any product of matrices
in Σ̃ is a pure product of blocks of the matrices in Σ̃ , and not a sum of such products.
Moreover, any path leaving from i and of length km either returns to i after passing
through k edges of G1, or ends at node i+m after passing through k−1 edges of G1,
or ends at node i + m (mod 2m) after passing through k + 1 edges of G1. From this it
follows that in a product of length km of the matrices Ã0 and Ã1 there is exactly one
nonzero block in every line of blocks, and this block is a product of length k−1, k, or
k +1 of matrices from Σ .

We now show that ρ(Σ̃)≥ ρ(Σ)1/m by proving that for any matrix A ∈ Σ t , there is
a matrix Ã ∈ Σ̃ tm such that ||Ã|| ≥ ||A||. Define B̃i = Ãi−1

0 Ã1Ãm−i
0 ∈ Σ̃ m for i = 1, . . . ,m

so that the block in position (m,m) in B̃i is simply equal to Ai. Consider now some
product of length t, A = Ai1 · · ·Ait ∈ Σ t and construct the corresponding matrix product
Ã = B̃i1 . . . B̃it ∈ Σ̃ tm. The block in position (m,m) in Ã is equal to Ai1 . . .Ait and so
||Ã|| ≥ ||A|| and ρ(Σ̃)≥ ρ(Σ)1/m.

Let us now show that ρ(Σ̃) ≤ ρ(Σ)1/m. Consider therefore an arbitrary product
Ã ∈ Σ̃ l and decompose Ã = C̃Ã′ with C̃ a product of at most m factors and Ã′ ∈ Σ km.
By the observation above we know that there is at most one nonzero block in every
line of blocks of Ã′, and this block is a product of length k−1, k, or k +1 of matrices
from Σ . Therefore, if the norm is chosen to be the maximum line sum, we have ||Ã|| ≤
K1K2||A|| where A is some product of length k− 1 of matrices from Σ , K1 is the
maximal norm of a product of at most m matrices in Σ̃ , and K2 is the maximal norm
of a product of at most 2 matrices in Σ . Using this inequality, we arrive at

||Ã||1/(k−1) ≤ (K1K2)1/(k−1)||A||1/(k−1).
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The initial product Ã is an arbitrary product of length l = km + r and so by letting k
tend to infinity and using the definition of the joint spectral radius we conclude that
ρ(Σ̃)≤ ρ(Σ)1/m.

We have thus proved that ρ(Σ̃) = ρ(Σ)1/m. It remains to prove the equivalence of
the finiteness property. If Σ satisfies the finiteness property then ρ(Σ)= ρ(A1 . . .At)1/t ,
then ρ(Σ̃) = ρ(Σ)1/m = ρ(B̃1 . . . B̃t)1/(tm) and so Σ̃ also satisfies the finiteness prop-
erty. In the opposite direction, if the finiteness property holds for Σ̃ , then we must have
ρ(Σ̃) = ρ(B̃1 . . . B̃t)1/t because every other product of matrices in Σ̃ has its spectral ra-
dius equal to zero, and then ρ(Σ) = ρ(Σ̃)m = ρ(A1 . . .At)1/t .

Combining the results obtained so far we now state the main result of this section.

Theorem 4.4 The finiteness property holds for all sets of nonnegative rational matri-
ces if and only if it holds for all pairs of binary matrices.

The finiteness property holds for all sets of rational matrices if and only if it holds
for all pairs of matrices with entries in {0,1,−1}.
Proof. The proof for the nonnegative case is a direct consequence of Proposition 4.2,
Theorem 4.2 and Theorem 4.3.
For the case of arbitrary rational entries, the statements and proofs of Proposition 4.2
and Theorem 4.3 can easily be adapted. We now show how to modify Theorem 4.2
so as to prove that the finiteness property holds for all sets of integer matrices if and
only if it holds for matrices with entries in {0,−1,1}. The value m in the proof of
Theorem 4.2 is now given by the largest magnitude of the entries of the matrices in Σ ,
and we weight the edges of the auxiliary graphs by −1 whenever they correspond to
a negative entry. Then, the arguments for proving items 1 and 2 in the above proof do
not need any modification since they rely on equalities that are also valid for matrices
with entries in {0,1,−1}. From this we deduce that

||A||= ∑
i
|Ai, j| ≤∑

i,r
|Ãṽi,r ,ṽ j,s | ≤ ||Ã||,

and so ρ(Σ̃)≥ ρ(Σ). Now, let us decompose any product Ã = B̃C̃ : B̃ ∈ Σ̃ , C̃ ∈ Σ̃ t−1,
and consider the corresponding product A = BC ∈ Σ t . Remark that

|Ãvi,r ,v j,s |=

∣∣∣∣∣∣ ∑
k:|Bi,k|≥r

sign(Bi,k)∑
q

C̃vk,q,v j,s

∣∣∣∣∣∣≤∑
k
|Ck, j|.

So, we have ||Ã|| ≤ mn||C||.
Finally, if Σ̃ has the finiteness property, there exists Ã ∈ Σ̃ t : ρ(Σ̃) = ρ(Ã)1/t , and,
taking the same decomposition A = BC as above, we have the following relations:

ρ(Σ) ≤ ρ(Σ̃) = lim
k→∞
||(B̃C̃)k||1/(kt)

≤ lim
k→∞

(mn||C(BC)k−1||)1/(kt) ≤ ρ(A)1/t ≤ ρ(Σ),
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and ρ(Σ) = ρ(A)1/t .

Let us finally remark that for the purpose of reducing the finiteness property of rational
matrices to pairs of binary matrices, we have provided a construction that, given a set
Σ of m matrices with nonnegative rational entries, produces a pair of matrices Σ̃ with
binary entries and an integer k ≥ 0 such that ρ(Σ) = ρ(Σ̃)k. The joint spectral radius
of a set of nonnegative rational matrices can thus be captured as the power of the joint
spectral radius of two binary matrices. In the same way of thinking, the joint spectral
radius of a set of arbitrary rational matrices can be captured as the power of the joint
spectral radius of two matrices with entries in {0,1,−1}.

4.3 The finiteness property for pairs of 2×2 binary matrices

In this section, we prove that the finiteness property holds for pairs of binary matrices
of size 2×2. We will see that, even for this 2×2 case, nontrivial behaviors occur. As
an illustration, the set of matrices{(

1 1
0 1

)
,

(
0 1
1 0

)}
,

whose behavior could at first sight seem very simple, happens to have a joint spectral
radius equal to ((3+

√
13)/2)1/4, and this value is only reached by products of length

at least four. Another interest of this section is to introduce techniques that may prove
useful to establish the finiteness property for matrices of larger dimension.

There are 256 ordered pairs of binary matrices. Since we are only interested in
unordered sets we can lower this number to (24(24−1))/2 = 120. We first present or
recall a series of simple properties that allow us to handle most of these cases and we
then give a complete analysis of the few remaining cases. In the following, we note
A≤ B if the matrix B−A has nonnegative entries.

Proposition 4.3 For any set of matrices Σ = {A0,A1} ⊂ R2×2, we have

• ρ({A0,A1}) = ρ({AT
0 ,AT

1 }), where AT is the transpose of A,

• ρ({A0,A1}) = ρ({SA0S,SA1S}), where S =
(

0 1
1 0

)
.

Moreover, in both cases the finiteness property holds for one of the sets if and only if
it holds for the other.

Proposition 4.4 The finiteness property holds for sets of symmetric matrices.

Proof. See Corollary 2.3 in Chapter 2.

Proposition 4.5 Let Σ = {A0,A1} ∈Nn×n. The finiteness property holds in any of the
following situations:
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1. ρ(Σ)≤ 1,
2. A0 ≤ I (or A1 ≤ I).

Proof. 1. We know that for sets of nonnegative integer matrices, if ρ ≤ 1, then either
ρ = 0 and the finiteness property holds, or ρ = 1, and there is a product of matrices in
Σ with a diagonal entry equal to one (see Chapter 3). Such a product A ∈ Σ t satisfies
ρ(Σ) = ρ(A)1/t = 1 and so the finiteness property holds when ρ(Σ)≤ 1.

2. Suppose first ρ(A1) ≤ 1; then ρ(A) ≤ 1 for all A ∈ Σ t because A0 ≤ I and thus
ρ(Σ) ≤ 1 and the result follows from item 1. Now if ρ(A1) > 1 then ρ(Σ) = ρ(A1)
and so the finiteness property holds.

Proposition 4.6 Let Σ = {A0,A1} ∈ Nn×n. The finiteness property holds in the fol-
lowing situations:

1. A0 ≤ A1 (or A1 ≤ A0),
2. A0A1 ≤ A2

1 (or A1A0 ≤ A2
1),

3. A0A1 ≤ A1A0.

Proof. 1. Any product of length t is bounded by At
1. Hence the joint spectral radius of

Σ is given by limt→∞ ||At
1||1/t = ρ(A1).

2. and 3. Let A ∈ Σ t be some product of length t. If A0A1 ≤ A2
1 or A0A1 ≤ A1A0 we

have A≤ At1
1 At0

0 for some t0 + t1 = t. The joint spectral radius is thus given by

ρ = lim
t→∞

max
t1+t0=t

||At1
1 At0

0 ||
1/t ≤ lim

t→∞
max

t1+t0=t
||At1

1 ||
1/t ||At0

0 ||
1/t

≤ max(ρ(A0),ρ(A1)).

Hence the joint spectral radius is given by max(ρ(A0),ρ(A1)).

In order to analyze all possible sets of matrices, we consider all possible couples
(n0,n1), where ni is the number of nonzero entries in Ai. From Proposition 4.6, we can
suppose ni = 1,2, or 3 and without loss of generality we take n0 ≤ n1.

• n0 = 1 :

– If n1 = 1 or n1 = 2, the maximum row sum or the maximum column sum is
equal to one for both matrices, and since these quantities are norms it follows
from the three members inequality (1.6) that the joint spectral radius is less than
one and from Proposition 4.5 that the finiteness property holds.

– If n1 = 3, it follows from Proposition 4.6 that the only interesting cases are:

Σ =
{(

1 0
0 0

)
,

(
0 1
1 1

)}
and Σ0 =

{(
0 1
0 0

)
,

(
1 0
1 1

)}
.

In the first case the matrices are symmetric and so the finiteness property holds.
We keep Σ0 for later analysis.
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• n0 = 2 :

– n1 = 2 : The only interesting cases are:

Σ =
{(

1 1
0 0

)
,

(
0 1
0 1

)}
and Σ1 =

{(
1 1
0 0

)
,

(
1 0
1 0

)}
.

Indeed in all the other cases either the maximum row sum or the maximum
column sum is equal to one and the finiteness property follows from Proposition
4.5. The joint spectral radius of the first set is equal to one. Indeed, the matrices
are upper triangular. We keep Σ1 for further analysis.

– n1 = 3 : If the zero entry of A1 is on the diagonal (say, the second diagonal entry),
then, by Proposition 4.5 we only need to consider the following case:{(

0 1
0 1

)
,

(
1 1
1 0

)}
.

These matrices are such that A0A1 ≤ A2
1 and so the finiteness property follows

from Proposition 4.6.
If the zero entry of A1 is not a diagonal entry, we have to consider the following
cases:

Σ2 =
{(

1 0
1 0

)
,

(
1 1
0 1

)}
and Σ3 =

{(
0 1
1 0

)
,

(
1 1
0 1

)}
.

We will handle Σ2 and Σ3 later on.

• n0,n1 = 3 : It has already been noticed by several authors (see, e.g., [111, Proposi-
tion 5.17]) that

ρ

({(
1 1
0 1

)
,

(
1 0
1 1

)})
= ρ

((
1 1
0 1

)
·
(

1 0
1 1

))1/2

=

√
1+
√

5
2

.

After excluding the case of symmetric matrices and using the symmetry argument
of Proposition 4.3, the only remaining case is:{(

1 1
0 1

)
,

(
1 1
1 0

)}
,

but again these matrices are such that A0A1 ≤ A2
1 and so the finiteness property

follows from Proposition 4.6.

We now analyze the cases Σ0,Σ1,Σ2,Σ3 that we have identified above. For Σ0,
notice that A2

0 ≤ A0A1. Therefore, any product of length t is dominated (that is, is
entrywise smaller) by a product of the form At1

1 A0At2
1 A0 . . .Atl

1 for some t1, tl ≥ 0 and
ti ≥ 1 (i = 2, . . . , l−1). The norm of such a product is equal to (t1 +1)(tl +1)t2 . . . tl−1.
It is not difficult to see that the maximal rate of growth of this quantity with the product
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length is given by 5√4 and so the joint spectral radius is equal to 5√4 = ρ(A4
1A0)

1/5
,

and the finiteness property holds.
For Σ1, simply notice that maxA∈Σ2 ρ(A) = maxA∈Σ2 ||A||∞ = 2, where || · ||∞ de-

notes the maximum row sum norm. Hence by the three members inequality we have
ρ(Σ) = ρ(A0A1)1/2 =

√
2.

Consider now Σ2. These matrices are such that A2
0 ≤ A0A1 and so any product of

length t is dominated by a product of the form At1
1 A0At2

1 A0 . . .Atl
1 for some t1, tl ≥ 0 and

ti ≥ 1 (i = 2, . . . , l−1). We have

At1
1 A0 . . .Atl

1 A0 =
(

(t1 +1) . . .(tl +1) 0
(t2 +1) . . .(tl +1) 0

)
.

Again it is not difficult to show that the maximum rate of growth of the norm of such
a product is equal to

√
2. This rate is obtained for ti = 3 and ρ = ρ(A3

1A0)1/4 =
√

2.
The last case, Σ3, is more complex and we give an independent proof for it.

Proposition 4.7 The finiteness property holds for the set{(
0 1
1 0

)
,

(
1 1
0 1

)}
.

Proof. Because A2
0 = I we can assume the existence of a sequence of maximal-normed

products
Πi

of length Li, of the form Bt1 . . .Btl with Bti = Ati
1A0, ∑ tk + l = Li, and lim ||Πi||1/Li =

ρ(Σ). We show that actually any maximal-normed product only has factors B3, except
a bounded number of factors that are equal to B1,B2, or B4 and so the finiteness prop-
erty holds.
Let us analyze one of these products Π . We suppose without loss of generality that Π

begins with a factor B3 (premultiplying by B3 does not change the asymptotic growth).
First, it does not contain any factor Bt : t > 4 because for such t, Bt−3B2 ≥ Bt and we
can replace these factors without changing the length.
Now, our product Π has less than 8 factors B4, because replacing the first seven factors
B4 with B3, and the eighth one with (B3)3 we get a product of the same length but with
larger norm (this is because B3 ≥ (3/4)B4, (B3)3 ≥ (33/4)B4, and (3/4)7(33/4) > 1).
We remove these (at most) seven factors B4 and by doing this, we just divide the norm
by at most a constant K0.
We now construct a product Π ′ of larger norm by replacing the left hand sides of the
following inequalities by the respective right hand sides, which are products of the
same length:
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BiB1B1B j ≤ BiB3B j,

B2B1B2 ≤ B3B3,

B3B1B2 ≤ B2B2B2,

B2B1B3 ≤ B2B2B2.

If the factor B3B1B3 appears eight times, we replace it seven times with B3
2 ≥

(4/5)B3B1B3 and the last time with B3
2B2

3 which is greater than 7B3
2. By repeating

this we get a new product Π ′′ ≥ 7(4/5)8Π ′(1/K0) > Π ′(1/K0) that has a bounded
number of factors B1. We remove these factors from the product and by doing this we
only divide by at most a constant K1.
If there are more than four factors B2 in the product, we replace the first three ones with
B3, and remove the fourth one. It appears that for any X ∈{B2,B3},B2

3X > 1.35B3B2X ,
and on the other hand, B2

3X ≥ B2
3B2X 1

2.4349 . Then each time we replace four factors

B2 we get a new product: Π ′′′ ≥ 1.353

2.4348 Π ′′(1/K1) > Π ′′(1/K1). Finally we can remove
the (at most) last three factors B2 and by doing this, we only divide the product by
at most a constant K2. By doing these operations to every Πi, we get a sequence of
products Π ′′′i , of length at most Li. Now, introducing K = K0K1K2, we compute

ρ ≥ lim ||Π ′′′i ||1/(Li) ≥ lim ||(1/K)Πi||1/(Li) = ρ.

Hence ρ = lim ||(A3
1A0)t ||1/(4t) = ρ(A3

1A0)1/4 = ((3 +
√

13)/2)1/4, and the finiteness
property holds.

This concludes the proof of the main theorem of this section:

Theorem 4.5 The finiteness property holds for any pair of 2×2 binary matrices.

4.4 Conclusion

In this Chapter we have analyzed the finiteness property for matrices that have rational
entries. We have shown that the finiteness property holds for matrices with nonnegative
rational entries if and only if it holds for pairs of matrices with binary entries. For pairs
of binary matrices of dimension 2×2 we have shown that the property holds true. It has
been conjectured [11] that it holds for pairs of binary matrices of arbitrary dimension:

Open question 5 Does the finiteness property hold for pairs of binary matrices?

We also ask the equivalent question for matrices with negative entries:

Open question 6 Does the finiteness property hold for pairs of matrices with entries
in {0,1,−1}?
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To the author’s knowledge, in all the numerical computations that have been per-
formed on binary matrices not only the finiteness property always seemed to hold but
the period length of optimal products was always very short. The computation of the
joint spectral radius is NP-hard even for binary matrices but this does not exclude the
possibility of a bound on the period length that is linear, or polynomial, in the di-
mensions of the matrices. In the case of matrices characterizing the capacity of codes
avoiding forbidden difference patterns, the length of the period is even suspected to be
sublinear (see Conjecture 1 in [57] or Chapter 6).

A natural way to prove the conjecture for pairs of binary matrices would be to
use induction on the size of the matrices, but this does not seem to be easy. If the
conjecture is true, it follows that the stability question for matrices with nonnegative
rational entries is algorithmically decidable. If the conjecture is false, then the results
and techniques developed in this chapter could possibly help for constructing a coun-
terexample.

Another way of proving the finiteness property for a set of matrices is to prove the
existence of a complex polytope extremal norm. Preliminary results in this direction
seem promising [47, 51].

Another problem, related to the finiteness property, seems interesting: the algebraic-
ity of the joint spectral radius for rational matrices. Clearly, sets of rational matrices
for which the finiteness property holds have a joint spectral radius which is an alge-
braic number. Indeed, it is the root of the characteristic polynomial of a finite product
of rational matrices. The question is: is it always the case? Can this fact be put in rela-
tion with Kozyakin’s theorem (Theorem 2.5 in Section 2.2), which tells us about non
algebraicity of stable sets of matrices? Could it lead to a constructive counterexample
to the finiteness property?

Open question 7 Is the joint spectral radius of rational matrices always an alge-
braic number? Can the algebraicity of the joint spectral radius be put in relation with
Kozyakin’s non algebraicity result?

Finally let us add that the constructions provided in this chapter have the additional
interest that they can be used to transform the computation of the joint spectral radius
of matrices with nonnegative rational entries into the computation of the joint spectral
radius of two binary matrices.
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Chapter 5
Continuity of wavelet functions

Abstract This chapter presents a brief survey of an important application of the joint
spectral radius: the continuity of wavelet functions. Historically, this application seems
to have motivated the interest of mathematicians for the joint spectral radius. This, and
the fact that this application of the joint spectral radius is perhaps the one that has the
greatest impact on the industry, motivates the existence of this small chapter. Our goal
here is not to provide a survey of wavelet theory. We will limit ourself to present
how the joint spectral radius allows to characterize the regularity of certain wavelets
(Sections 5.1 and 5.2). In Section 5.3 we present two examples of such wavelets.

5.1 From two-scale difference equations to matrices

Wavelet transform is a tool of tremendous importance nowadays. For a survey, see
[37,54,109]. The basic idea of this concept is to decompose a scalar function in L2 in
an orthonormal base, just like with the Fourier Transform. However, Wavelets try to
avoid some problems that one encounters with the Fourier Transform. For this purpose,
we are looking here for compactly supported wavelets, that is

∃N : ∀x /∈ [0,N],ψ(x) = 0.

However, we want to keep the nice property that dilations of the wavelets creates
an orthogonal family of functions. So, just like for the fourier transform, the different
functions in the basis will be dilations of ψ(x). However, since ψ has compact support,
we will also need translates to represent arbitrary functions, so that the basic functions
will have the following form:

ψ(2 jx− k).

Remark that here we restrict ourselves to dilations with ratios that are powers of two.

79
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It is not obvious at first time whether the requirements for compact support and
orthogonality of dilations are compatible. Actually, it was doubted that a continuous
function with both of these nice properties could exist. It is the contribution of Ingrid
Daubechies to have constructed such a family of functions. She shows in [36] how
to obtain a wavelet: First, choose N + 1 coefficients ck : 0 ≤ k ≤ N. Then solve the
following two-scale difference (functional) equation:

φ(x) =
N

∑
0

ckφ(2x− k), (5.1)

where φ(x) is a function with compact support [0,N].
The following theorem, initially inspired from [36], appears under different forms

in [29, 34]:

Theorem 5.1 Let N ∈ N and c0, . . . ,cN ∈ C. Let us suppose that

• ∑k c2k = ∑k c2k+1 = 1,
• ∑k ckc̄k−2m = δ0,m,

where we suppose ck = 0 for k < 0 or k > N.
Then, there exists a nontrivial compactly supported and square-integrable solution

φ(x) that satisfies the two-scale difference equation (5.1). Moreover, the function

ψ(x) = ∑(−1)kcN−kφ(2x− k)

is a compactly supported function such that the family

ψ j,k(x) = ψ(2 jx− k)

forms an orthogonal basis for L2.

The function φ in the above theorem is called the scaling function and the function
ψ is called the mother function. The simplest example of such a function is the well
known Haar wavelet (see Figure 5.1), obtained from Theorem 5.1 with c0 = 1,c1 = 1 :

φ(x) = φ(2x)+φ(2x−1), (5.2)

and thus
ψ(x) = φ(2x)−φ(2x−1). (5.3)

This proves the existence of compactly supported wavelets, but for obvious reasons,
one would like these basis functions to be continuous, and here comes linear algebra
and the joint spectral radius. Let us have another look at Equation (5.1): since this
equation is linear, it suggests to define the vector
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Fig. 5.1 The Haar wavelet. The scaling function φ and the mother wavelet ψ .



82 5 Continuity of wavelet functions

v(x) =


φ(x)

φ(x+1)
...

φ(x+N−1)

 0≤ x≤ 1.

Thus, the vectorial function v(x) satisfies the fundamental equations

v(x) = TOv(2x) 0 ≤ x ≤ 1/2,
v(x) = T1v(2x−1) 1/2 ≤ x ≤ 1.

(5.4)

We denote Σ = {T0,T1}. The nonzero entries of T0,T1 are defined as follows:

(T0)i, j = c2i− j−1,

(T1)i, j = c2i− j.

From now on, we write real numbers x ∈ [0,1] in base 2. For instance, 3/4 writes
.1100 . . . . We say that a number is dyadic if its development in base 2 is not unique,
that is, if it can end with an infinite sequence of zeros, or an infinite sequence of ones.
These numbers are exactly the nonnegative integers divided by a power of two. Thus,
introducing the notation

τ(x) = 2x mod 1,

that is, τ(x) is the real number obtained by erasing the first bit in the binary expansion
of x, we get:

v(.b1b2 . . .) = Tb1v(.b2 . . .) = Tb1v(τ(x)). (5.5)

We can now write:

v(1/2) = v(.10 . . .),
= T1v(0),

v(.110 . . .) = T1T1v(0),
v(.010 . . .) = T0T1v(0),

and so on. Finally we are able to compute v(x) at each dyadic point.

5.2 Continuity and joint spectral radius

In the following we focus on dyadic numbers. Indeed, if φ is continuous on dyadic
numbers, then it extends to a continuous function over the real numbers. Let us take
two dyadic points that are close to each other:
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x = .b1 . . .bkbk+1 . . . , (5.6)
y = .b1 . . .bkb′k+1 . . . . (5.7)

We have |x− y| ≤ 2−k. Now,

v(x)− v(y) = Tb1 . . .Tbk(Txv(0)−Tyv(0)), (5.8)

where Tx,Ty are arbitrary products in Σ ∗. Let us still define

W = span{v(x)− v(y) : x,y dyadic}.

The following properties hold:

Lemma 5.1 [29, 33] Let T0,T1,W,v(x) be defined as above. We have the following
properties

1. v(0) = T0v(0), v(1) = T1v(1),
2. T1v(0) = T0v(1),
3. W = span{T v(0)− v(0) : T ∈ Σ ∗}.

Proof. 1. This is obvious from Equation (5.4).
2. Apply again Equation (5.4) with x = 1/2.
3. Just write v(x)− v(y) = (v(x)− v(0))− (v(y)− v(0)).

So, the value of φ(x) at integer points are actually imposed to be the entries of an
eigenvector of T0. Moreover, we will now see that the space W allows for a simple
characterization: it is the smallest linear subspace that contains the vector v(1)− v(0)
and that is invariant under T0 and T1.

Proposition 5.1 [29]

W = span{T (v(1)− v(0)) : T ∈ Σ
∗}.

Proof. The nontrivial part is to prove that W ⊂ span{T (v(1)− v(0)) : T ∈ Σ ∗}.
So let us take a vector T v(0)− v(0) and let us prove that it is equal to

∑αiTi(v(1)− v(0)),

for some αi ∈ C and some Ti ∈ Σ ∗. We show it by induction on the length t of the
product T.

It is true if T is T0 or T1. Indeed, T0v(0)− v(0) = 0, and T1v(0)− v(0) = T0v(1)−
v(0) = T0(v(1)− v(0)).

If T = Tb1T ′, then by induction

T v(0)− v(0) = Tb1(T
′v(0)− v(0))+Tb1v(0)− v(0)

= Tb1(∑αiTi(v(1)− v(0)))+∑α
′
i T
′

i (v(1)− v(0)).
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Actually, it is possible to derive a slightly stronger result, that will be useful for the
characterization of the continuity in terms of a joint spectral radius:

Corollary 5.1 Let T0|W ,T1|W be the corresponding matrices restricted to the linear
space W, and let ρ(T0|W ,T1|W ) < 1.
Then, there is a constant K such that for all dyadic x,y, |v(x)− v(y)|< K.

Proof. From the proof of Proposition 5.1, we get that if T ∈ Σ t ,

T v(0)− v(0) =
t

∑
1

αiTi(v(1)− v(0)),

where Ti ∈ Σ i, and αi is equal to zero or one. Then, using Proposition 1.4

|T v(0)− v(0)| ≤
t

∑
1

γ
i|v(1)− v(0)| ≤ K1,

for some particular norm and any γ : ρ < γ < 1. Finally, |v(x)−v(y)|= |(v(x)−v(0))−
(v(y)− v(0))| ≤ 2K1.

The above reasoning allows us to prove the two main results of this section, that
explicits the link between the joint spectral radius and the continuity of wavelets:

Theorem 5.2 If φ is continuous,

ρ(T0|W ,T1|W ) < 1.

Proof. We prove it by contraposition. If ρ ≥ 1, there is a constant K and there are
arbitrarily long products T ∈ Σ t such that |T (v(1)− v(0))| > K. From (5.8) we get
|v(.b1 . . .bt1)− v(.b1 . . .bt0)| > K, while |.b1 . . .bt1− .b1 . . .bt0| < 2−t . Since this
holds for arbitrary t, we reach a contradiction.

The converse also holds:

Theorem 5.3 If
ρ(T0|W ,T1|W ) < 1,

then φ is continuous on the dyadic numbers.

Proof. We take two dyadic numbers x and y that are close enough: |x− y| < 2−t ,
for a given t ∈ N. Thus, x = .b1 . . .btbt+1 . . . , y = .b1 . . .btb′t+1 . . . . Now, we invoke
Corollary 5.1, and we obtain some constant K2 such that

|v(x)− v(y)|= Tb1 . . .Tbt (v(τ
t(x))− v(τ t(y))) < K2||Tb1 . . .Tbt ||.

So we obtain |v(x)− v(y)|< K1ρ tK2 < Kρ t for some K. This proves that φ is contin-
uous on the dyadic numbers.
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A direct refinement of the above results is possible when looking at Equation (5.8):
the joint spectral radius characterizes the Holder exponent of continuity of the scaling
function.

Definition 5.1 A scalar function is said Holder continuous with coefficient α if there
exists a constant K such that

| f (x)− f (y)| ≤ K|x− y|α

for all x,y in the domain of f .

We have the following theorem:

Theorem 5.4 [29] If
ρ(T0|W ,T1|W ) < 1,

then φ is Holder-continuous for all coefficient α <− log2(ρ). If moreover {T0|W ,T1|W}
is nondefective, α =− log2(ρ) is a Holder exponent.

Further details on this can be found in [29]. Let us add finally that with these tech-
niques it is also possible to prove that no scaling function is in C ∞ [32].

5.3 Example

In this section we give an example of a compactly supported continuous square inte-
grable wavelet that was proposed by Daubechies [36]. For this, take the coefficients

c0 =
1
4
(1+
√

3), c1 =
1
4
(3+
√

3), c2 =
1
4
(3−
√

3), c3 =
1
4
(1−
√

3).

This example is sometimes referred to as D4 in the literature [108]. A simple applica-
tion of the formulas gives:

T0 =

c0 0 0
c2 c1 c0
0 c3 c2

=
1
4

1+
√

3 0 0
3−
√

3 3+
√

3 1+
√

3
0 1−

√
3 3−

√
3

 ,

T1 =

c1 c0 0
c3 c2 c1
0 0 c3

=
1
4

3+
√

3 1+
√

3 0
1−
√

3 3−
√

3 3+
√

3
0 0 1−

√
3

 .

Thus,

v(0) =

 0
1+
√

3
1−
√

3

 ,
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v(1) =

1+
√

3
1−
√

3
0

 .

One can show that W = {(x,y,z) : x+y+z = 0}. So, choosing (1,−1,0) and (1,1,−2)
as basis vectors, we get

T0|W =
1
8

(
1+3

√
3 3−

√
3√

3−3 5−
√

3

)
,

T1|W =
1
4

(
2 3+

√
3

0 1−
√

3

)
.

The joint spectral radius of the set {T0|W ,T1|W} is equal to 2−0.55..., so the wavelet is
Holder continuous with exponent 0.55. Figure 5.2 represents the corresponding scal-
ing function and the mother wavelet.

(a) (b)

Fig. 5.2 Scaling function (a) and mother wavelet (b) for the Daubechies wavelet D4 (the notation D4
comes from [108]).

Figure 5.3 represents the scaling function and the mother wavelet for another choice
of coefficients ck.

5.4 Conclusion

The goal of this chapter was not to give an introduction to the wavelet theory, but
rather to present how the continuity of functions satisfying the two-scale difference
Equation (5.1) is ruled by a joint spectral radius. We end with an obvious question:
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(a) (b)

Fig. 5.3 Scaling function (a) and mother wavelet (b) obtained with c0 = 3/5, c1 = 6/5, c2 = 2/5, c3 =
−1/5.

Open question 8 Is the joint spectral radius of matrices arising in the context of
wavelets easier to compute than in general?

To the author’s knowledge, no particular algorithm is known, that would be dedicated
to this specific family of sets of matrices.





Chapter 6
Capacity of codes

Abstract This chapter presents personal research on an application of the joint spectral
radius to a problem in constrained coding: the computation of the capacity of codes
submitted to forbidden differences constraints. We first present how the joint spectral
radius appears to be the good tool to compute the capacity in this particular problem.
We show how the quantity ρ̂t provides bounds on the joint spectral radius that are
tighter than in the general case. We show how the situation is even better in some
particular situations. We then provide a polynomial time algorithm that decides if the
capacity is positive. We introduce a closely related problem that we prove to be NP-
hard. We then prove the existence of extremal norms for sets of matrices arising in this
coding problem.

6.1 Introduction

In certain coding applications one is interested in binary codes whose elements avoid a
set of forbidden patterns1. This problem is rather classical and has been widely studied
in the past century [75]. In order to minimize the error probability of some particular
magnetic-recording systems (see for instance [81]), a more complicated problem arises
when it is desirable to find code words whose differences avoid forbidden patterns. We
now describe this problem formally.

Let {0,1}t denote the set of words of length t over {0,1} and let u,v ∈ {0,1}t . The
difference u− v is a word of length t over {−1,0,+1} (as a shorthand we shall use
{−,0,+} instead of {−1,0,+1}). The difference u− v is obtained from u and v by
symbol-by-symbol subtraction so that, for example, 0110−1011 =−+0−. Consider
now a finite set D of words over {−,0,+}; we think of D as a set of forbidden dif-
ference patterns. A set (or code) C ⊆ {0,1}t is said to avoid the set D if none of the

1 The chapter presents research work that has been published in [11, 12].
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differences of words in C contain a word from D as subword, that is, none of the dif-
ferences u−v with u,v∈C can be written as u−v = xdy for d ∈D and some (possibly
empty) words x and y over {−,0,+}.

We are interested in the largest cardinality, which we denote by δt(D), of sets of
words of length t whose differences avoid the forbidden patterns in D.

δt(D) = max
W⊂{0,1}t :W avoids D

|W |.

If the set D is empty, then there are no forbidden patterns and δt(D) = 2t . We will
see that when D is nonempty, δt(D) grows exponentially with the word length t and
is asymptotically equal to 2cap(D)t where the scalar 0≤ cap(D)≤ 1 is the capacity of
the set D. The capacity is thus a measure of how constraining a set D is; the smaller
the capacity, the more constraining the forbidden difference patterns are.

As an illustration consider the set of forbidden patterns D = {+−,++}. Differ-
ences between two words in C = {u10u20 · · ·0uk : ui ∈ {0,1}} will have a ”0” in any
succession of two characters and will therefore not contain any of the forbidden pat-
terns. From this it follows that δt ≥ 2dt/2e and so cap(D)≥ 1/2. One can show that in
fact cap(D) = 1/2. This follows from the next proposition combined with the simple
observation that the capacity of the set D = {+−,++} is identical to the capacity of
the set D = {+−,++,−+,−−}, that we denote D = {+,−}2 as usual.

Proposition 6.1 The capacity of the set {+,−}m is given by (m−1)/m.

Proof. Let Ckm be a code of length km avoiding D. In any given window of length m,
the set of words appearing cannot contain both u and ū (we use ū to denote the word
obtained by inverting the ones and the zeros in u). This implies that there are at most
2m−1 different words in any given window of size m. Let us now consider words in
Ckm as a concatenation of k words of length m. There are at most 2(m−1)k words in Ckm
and so cap(D)≤ (m−1)/m.
Now consider the code

Ckm = {z10z20 · · ·0zk : zi ∈ {0,1}m−1}. (6.1)

This code satisfies the constraints, and the bound (m−1)/m is reached.

The computation of the capacity is not always that easy. As an example it is proved
in [82] that the capacity of {+++} is given by log2((1 + (19 + 3

√
33)1/3 + (19−

3
√

33)1/3)/3) = .8791 . . . and the same reference provides numerical bounds for the
capacity of {0+−+} for which no explicit expression is known.

The capacity of codes that avoid forbidden difference patterns was first introduced
and studied by Moision, Orlitsky and Siegel. In [82], these authors provide explicit
values for the capacity of particular sets of forbidden patterns and they prove that, in
general, the capacity of a forbidden set D can be obtained as the logarithm of the joint
spectral radius of a set of matrices that have binary entries. The size of the matrices
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constructed in [82] for computing the capacity is not polynomial in the size of the
forbidden set D and so even the construction of the set of matrices is an operation
that cannot be performed in polynomial time. Since moreover the computation of the
joint spectral radius is NP-hard even if the matrices have binary entries, computing the
capacity of codes seems at first sight to be a challenging task. However, as pointed out
in [82], the matrices that arise in the context of capacity computation have a particular
structure and so the capacity could very well be computable in polynomial time.

In this chapter we first present this in details. We then provide several results ; all
are related to the capacity computation and its complexity.

We first provide new bounds that relate the capacity of a set of forbidden patterns
D with the values δt(D), the maximum size of a code of length t avoiding D. These
bounds depend on parameters that express the number and positions of zeros in the
patterns of D. These new bounds allow us to compute the capacity of any set to any
given degree of accuracy by numerically evaluating δt(D) for some value of t. The
approximation algorithm resulting from these bounds has exponential complexity but
provides an a-priori guaranteed precision, and so the computational effort required
to compute the capacity to a given degree of accuracy can be evaluated before the
calculations are actually performed. As an example, it follows from the bounds we
provide that the capacity of a set of forbidden patterns that does not contain any 0s can
be computed with an accuracy of 90% by evaluating δt(D) for t = 10 (see Corollary
6.3 below).

In a subsequent section, we provide explicit necessary and sufficient conditions for
a set to have positive capacity and we use this condition for producing a polynomial
time algorithm that decides whether or not the capacity of a set is positive. These
conditions are directly based on theoretical results presented in Chapter 3.

We then consider the situation where in addition to the forbidden symbols −,0 and
+ the forbidden patterns in D may also include the symbol ±, where ± stands for
both the symbols + and −. We prove that in this case the problem of computing the
capacity, or even determining if this capacity is positive, becomes NP-hard.

Finally, we show that sets of matrices constructed in order to compute the capacity
always have an extremal norm.

These results allow us to better delineate the capacity computation problems that
are polynomial time solvable from those that are not. We do however not provide an
answer to the question, which was the original motivation for the research reported
here, as to whether or not one can compute the capacity of sets of forbidden patterns
over {−,0,+} in polynomial time. This interesting question that was already raised
in [82], remains unsettled.
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6.2 Capacity and joint spectral radius

Let D be a set of forbidden patterns over the alphabet {−,0,+} and consider for any
t ≥ 1 the largest cardinality, denoted by δt(D), of sets of words of length t whose
pairwise differences avoid the forbidden patterns in D. The capacity of D is defined by

cap(D) = lim
t→∞

log2 δt(D)
t

. (6.2)

The existence of this limit is a simple consequence of Fekete’s Lemma (Lemma 1.1).
We skip the formal proof, since it will be clear after the formulation of the problem
with a joint spectral radius.
Moision et al. show in [82] how to represent codes submitted to a set of constraints D
as products of matrices taken in a finite set Σ(D). The idea of the proof is to make use
of De Bruijn graphs. De Bruijn graphs were introduced in [38]; for an introduction,
see for instance [75]. Let us construct the De Bruijn graph of binary words of length T
equal to the lengths of the forbidden patterns. Edges in these graphs represent words of
length T, and since some pairs of words cannot appear together, a subgraph of the De
Bruijn graph is said admissible if it does not contain two edges that represent words
of length T whose difference is forbidden. Figure 6.1 (a) represents a De Bruijn graph
that is admissible for the forbidden pattern D = {++−}. An efficient way of drawing
these graphs is to represent them as cascade graphs (see Chapter 3) as in Figure 6.1
(b). In order to construct longer codes, one just has to juxtapose admissible cascade
graphs, such that each path from left to right represents an admissible word.

In such a construction, the edges in the leftmost cascade graph represent words
of length T, and each subsequent edge represents the addition of one letter to the
word. A cascade graph for words of length 5 that are admissible for D = {++−} is
represented in Figure 6.2. Since we have a bijection between the paths of length t in an
admissible cascade graph and the words in an admissible code of length T + t−1, the
maximal size of a code of length T + t− 1 is given by the cascade graph of length T
that maximizes the number of paths from left to right. We have seen in Chapter 3 how
the joint spectral radius of binary matrices represents the asymptotics of the maximum
number of paths in long cascade graphs. This reasoning leads to the following theorem:

Theorem 6.1 Associated to any set D of forbidden patterns of length at most m, there
exists a finite set Σ(D) of binary matrices for which

δm−1+t = ρ̂
t
t (Σ(D)) = max{‖A1 . . .At‖ : Ai ∈ Σ(D)}. (6.3)

In this expression, the matrix norm used is the sum of the absolute values of the matrix
entries. The main result of this section is then a direct consequence of the definition of
the joint spectral radius:

Corollary 6.1 Let D be a set of forbidden patterns and Σ(D) be the set of binary
matrices constructed as described above, then
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(a)

(b)

Fig. 6.1 An admissible De Bruijn graph for D = {++−} (a), and the same graph under its cascade
graph form (b)
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Fig. 6.2 An admissible cascade graph that represents a maximal set of admissible words of length 5
for D = {++−}. For example, the path on the top represents the word 00000 and the dashed path
represents the word 01010. Such graphs are maximal in the sense that no word can be added to the
corresponding code, but perhaps another choice of elementary cascade graphs would generate more
paths.

cap(D) = log2 (ρ(Σ(D))).

Example 6.1 Let D = {++−}. The set Σ(D) contains two matrices :

A0 =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 1

 , A1 =


1 0 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .

One can check that the cascade graph in Figure 6.2 represents the product A0A0A1
(the sum of the entries equals the number of paths).

The joint spectral radius of the set Σ is ρ(Σ) = 1.75 . . . [82], and the product
that ensures this value is A0A0A1A1, that is, ρ(Σ) = ρ(A2

0A2
1)

1/4, and cap(D) =
log2 1.75 . . . = 0.8113 . . . .
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Example 6.2 Let D = {+++−}. The set Σ(D) contains two matrices :

A0 =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1


,

A1 =



1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


.

We will see that cap(D) = 0.9005 . . . and that the product that ensures this value is
A0A1 (see Example 6.5);

Let us comment here on the number and size of the matrices in Σ(D); these issues
are relevant for the questions raised hereafter: If the forbidden patterns in D have
identical length m, then the number of matrices in Σ(D) can be doubly exponential in
m and all matrices in Σ(D) have dimension 2m−1×2m−1. If the forbidden patterns in D
have different lengths, then one can construct a set D′ whose forbidden patterns have
equal length and for which cap(D) = cap(D′). Unfortunately, the number of patterns in
D′ can grow exponentially with the size of D so that the number of matrices in the set
Σ(D) is in fact even worse than in the former case. Capacity approximation algorithms
based on the direct computation of the set Σ(D) will therefore not be tractable even
for small sets D.

6.3 Upper and lower bounds

In this section, we derive bounds that relate the capacity of a set D with δt(D). Con-
sider some set D of forbidden patterns and denote by r1 (respectively r2) the maximal
k for which 0k is the prefix (respectively suffix) of some pattern in D: No pattern in
D begins with more than r1 zeros and no pattern in D ends with more than r2 zeros.
We also denote by r the maximal number of consecutive zeros in any pattern in D;
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obviously, r ≥ max(r1,r2). In the next theorem we provide upper and lower bounds
on the capacity cap(D) in terms of δt(D).

Theorem 6.2 For any t ≥ r1 + r2 we have

log2 δt(D)− (r1 + r2)
t + r +1− (r1 + r2)

≤ cap(D)≤ log2 δt(D)
t

. (6.4)

Proof. Let us first consider the upper bound. The following equation is straightfor-
ward, given any positive integers k, t, and any set of forbidden patterns D :

δkt ≤ δ
k
t .

Indeed, considering any word of length kt as the concatenation of k subwords of length
t, for each of these subwords we have at most δt possibilities. Taking the 1

kt th power
of both sides of this inequality and taking the limit k→ ∞, we obtain :

ρ(Σ) = 2cap(D) ≤ δ
1/t
t .

Now let us consider the lower bound. The optimal code of length t contains at least
d2−r1−r2δt(D)e words that coincide in the first r1 bits and in the last r2 bits (because
there are in total 2r1+r2 different words of length r1 + r2). Denote the set of strings
of all these words from (r1 + 1)st bit to (t− r2)th bit by C′. This set contains at least
d2−r1−r2δt(D)e different words of length t− r1− r2. Then for any l ≥ 1 the code

C =
{

u10r+1u20r+1 · · ·0r+1ul0r+1 , uk ∈C′, k = 1, . . . , l
}

(6.5)

avoids D. The cardinality of this code is at least d2−r1−r2δt(D)el and the length of its
words is T = l(t− r1− r2 + r +1). Therefore, for any l we have

δT (D) ≥ d2−r1−r2δt(D)el .

Taking the power 1/T of both sides of this inequality, we get[
δT (D)

]1/T
≥ d2−r1−r2δt(D)e1/(t−r1−r2+r+1),

which as T → ∞ yields

ρ ≥ d2−r1−r2δt(D)e1/(t−r1−r2+r+1).

Now after elementary simplifications we arrive at the lower bound on cap(D).

Both bounds in Theorem 6.2 are sharp in the sense that they are both attained for
particular sets D. The upper bound is attained for the set D = /0 and the lower bound
is attained, for instance, for the set D = {0m−1+}. Indeed, in this case r = r1 = m−



6.3 Upper and lower bounds 97

1,r2 = 0 and cap(D) = 0, because δt = 2m−1 for t ≥ m− 1. Here is a direct proof of
this equality, drawn from [82]: Clearly, for all t > m− 1, we can construct a code of
size δt = 2m−1. It happens that for any given length t this size is maximum. Otherwise,
there must be two different words u and v whose prefixes of length k coincide. In order
to avoid the forbidden pattern, the k+1-th symbols must also be equal, and so on. But
then both words are equal, and we have reached a contradiction.

Corollary 6.2 Let D be given and let r,r1 and r2 be defined as above. Then
log2 δt (D)

t − 1
t max(r1 + r2,r +1)≤ cap(D)≤ log2 δt (D)

t .

Proof. If r1 + r2 ≥ r +1 this follows from Theorem 6.2 and from simple calculations.
If r1 + r2 < r + 1 simply use the fact that the capacity is always less than one in
Theorem 6.2, and

log2 δt(D)
t

−(r1 +r2)≤ (t +(r+1)−(r1 +r2))cap(D)≤ tcap(D)+(r+1)−(r1 +r2).

These bounds can be used to design an approximation algorithm that computes the
capacity to any desired accuracy by evaluating δt for sufficiently large values of t. In
contrast to previously known algorithms this algorithm has guaranteed computational
cost: once the desired accuracy is given, the corresponding computational cost can
easily be computed. As an illustration, consider the case of a set D for which r1 =
r2 = 2 and r = 4. Then, by Corollary 6.2,

log2 δt(D)
t

− 5
t
≤ cap(D)≤ log2 δt(D)

t
(6.6)

and we can use log2 δt(D)/t as an estimate for cap(D) and choose a value of t for
which (6.6) provides satisfactory accuracy bounds.
The easiest way of computing δt is to apply Equation (6.3), by evaluating the maximum-
normed product of length t −m + 1 of matrices taken in the set Σ . Moision et al.
mention in [83] an improvement of this brute force method, similar to the ones pro-
posed in Chapter 2: The main idea is to compute successively some sets of matrices
Σ̄l , l = 1,2 . . . , with Σ̄1 = Σ . These are sets of products of length l, obtained by com-
puting iteratively all products of a matrix in Σ̄l−1 with a matrix in Σ , and then removing
from the set Σ̄l a matrix A if it is dominated by another matrix B in this set, that is, if
each entry of A is less or equal than the corresponding entry of B. For more informa-
tion about this algorithm, we refer the reader to [83]. We propose here an improvement
of this method: given the set Σ̄l , one can directly compute a set Σ̄2l by computing the
set Σ̄ 2

l and then removing from this set all matrices that are dominated. This small
modification of the algorithm has dramatically improved the computational time for
all the examples on which we have used it.

We may specialize the general bounds of Theorem 6.2 to sets of particular interest.

Corollary 6.3 Let D be given and let r,r1 and r2 be defined as above. Then
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1. If cap(D) = 0 the size of any code avoiding D is bounded above by the constant
2r1+r2 .

2. If the patterns in D contain no zero, then

t cap(D)≤ log2 δt(D)≤ (t +1) cap(D).

3. If none of the patterns in D starts nor ends with a zero, then

t cap(D)≤ log2 δt(D)≤ (t + r +1) cap(D).

6.4 Positive capacity can be decided in polynomial time

As previously seen by a direct argument, the capacity of the set {0m−1+} is equal
to zero. In this section we provide a systematic way of deciding when the capacity
of a set is equal to zero. We first provide a simple positivity criterion that can be
verified in finite time and then exploit this criterion for producing a positivity checking
algorithm that runs in polynomial time. In the sequel we shall use the notation −D to
denote the set of elements that are the opposites to the elements of D, for example if
D = {−+0,0−−} then −D = {+−0,0++}.

Theorem 6.3 Let D be a set of forbidden patterns of lengths at most m. Then cap(D) >
0 if and only if there exists a word on the alphabet {+,−,0} that does not contain any
word of D∪−D as subword and that has a prefix 0m and a suffix +0m−1.

Proof. Let us first suppose 0m /∈ D. The capacity is positive iff ρ(Σ(D)) > 1. We
know (see Chapter 3) that for binary matrices this is equivalent to the fact that there is
a product in Σ ∗ that has a diagonal entry larger than one. In turn, by construction of
the set Σ(D), this is equivalent to the existence of two words with the same m−1 first
characters, and the same m−1 last characters, whose difference avoids the forbidden
patterns. Now, this latter fact is possible iff there is a nontrivial sequence on {0,+,−}
of the shape 0m−1d0m−1 that avoids D∪−D.
Now in order to handle the case 0m ∈ D, which implies cap(D) = 0, we add a zero at
the beginning and by doing this, we do not change anything to the admissibility of this
word, except that we remove the possibility 0m ∈ D.

Corollary 6.4 If every word in D contains at least two nonzero symbols, then

cap(D) > 0.

Proof. For any such set the word d = 0m + 0m−1 is admissible, and by Theorem 6.3
the capacity is positive.

Corollary 6.5 If D consists of one forbidden pattern p of length m, then its capacity
is zero if and only if p has at least m−1 consecutive zeros.
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Proof. If a pattern p is 0m or +0m−1, then obviously there are no admissible strings,
and by Theorem 6.3 the capacity is zero. The same holds for −0m−1, since this is the
negation of +0m−1 and for 0m−1± because of the symmetry. In all the other cases the
admissible string exists and so cap(D) > 0. Indeed, if p has a unique nonzero character,
then the word d = 0m ++0m−1 is admissible, if it has at least two nonzero characters,
then the proof follows from Corollary 6.4.

We now prove the polynomial-time solvability of the problem of determining
whether the capacity of a set D is positive. The proof is constructive and is based
on the so-called Aho-Corasick automaton that checks whether a given text contains as
a subsequence a pattern taken from a given set [1]. Let P be a set of patterns, that do
not have to be of the same length. The transition graph of the Aho-Corasick automaton
for the set P is defined as follows (see Figure 6.3 for an example). First, construct the
retrieval tree, or trie, of the set P. The trie of P is the directed tree of which each ver-
tex has a label representing a prefix of a pattern in P, and all prefixes are represented,
including the patterns themselves. The label of the root of the tree is the empty string.
Edges have a label too, which is a symbol of the used alphabet. There is an edge la-
beled with the symbol a from a vertex s to a vertex t if t is the concatenation sa.
In order to have an automaton, we complete the trie by adding edges so that for each
vertex s, and each symbol a, there is an edge labeled a leaving s. This edge points to
the vertex of the trie of which the label is the longest suffix of the concatenation sa.
Note that this vertex can be the root (that is, the empty string) if no vertex in the trie
is a suffix of sa. Finally, the accepting states of the automaton are the vertices whose
labels are patterns of P. This automaton accepts words that contain a pattern in P and
halts whenever this pattern is a suffix of the entered text.

If 0k ∈ D or +0k ∈ D, then, by Theorem 6.3, cap(D) = 0. If this is not the case,
we construct the graph of the automaton of Aho-Corasick for the set P = D∪ (−D)∪
{+0m−1}. We then remove any vertex whose label is a complete pattern in P (i.e., a
state reached when a suffix of the text entered is in the set P) except the vertex labeled
{+0m−1}. The size of the constructed graph is polynomial in the size and the number
of the forbidden patterns. Moreover, since we have removed vertices corresponding
to forbidden patterns, any path in the remaining graph is an admissible word. Let
us now denote q0m the state reached after entering the word 0m. This state is well
defined since 0m does not contain any forbidden pattern, and hence no state reached
after entering any prefix of the string 0m was removed from the primary automaton.
We also denote q+0m−1 the state corresponding to the suffix +0m−1 for the entered
text (i.e. the accepting state corresponding to the pattern +0m−1 in the Aho-Corasick
automaton). Figure 6.3 presents the graph for D = {0 + 0} that is obtained from the
Aho-Corasick automaton of the set P = {0+0,0−0,+00}.

We have the following criterion for zero-capacity:

Theorem 6.4 The capacity of a set D is positive if and only if there is a path from q0m

to q+0m−1 in the graph constructed above.
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Fig. 6.3 The graph for D = {0 + 0}. We have constructed the Aho-Corasick automaton for P =
{0+0,0−0,+00}, and then removed the states 0+0 and 0−0 that are forbidden. The empty word
is represented by ε. The path 0→ 0−→+→+0→+00 provides the admissible word 000−+00.

Proof. If cap(D) > 0, by Theorem 6.3, there exists a word d, beginning with m zeros,
and ending with +0m−1, that avoids D∪−D. Hence, entering this word in the automa-
ton, the finite state will be (well defined and will be) the vertex labeled +0m−1, because
the vertices removed from the original automaton of Aho-Corasick do not make any
problem, since we do not reach the vertices labeled with forbidden patterns.
On the other hand, a path in the constructed graph represents an acceptable word, since
it does not pass through any removed vertex, and hence no suffix of any prefix of this
word will be in the forbidden set.
Moreover, a shortest path will give the shortest acceptable word, since the length of
the path is equal to the length of the represented word.

Corollary 6.6 The problem of determining whether or not the capacity of a given set
of forbidden patterns is positive can be solved in polynomial time.

Proof. Aho shows in [1] that the automaton is constructible in polynomial time. The
determination of the state q0m and the computation of the shortest path are obviously
polynomially feasible.



6.5 Positive capacity is NP-hard for extended sets 101

Corollary 6.7 If for a set D of forbidden patterns there are admissible words, then
the length of a shortest admissible word does not exceed 2M + 2m, where m is the
maximal length of all patterns in D and M is the sum of the lengths of each forbidden
pattern.

Proof. The number of vertices of the graph does not exceed 2M + m + 1. Indeed, for
each pattern of length l in D∪−D we add to the automaton at most l states, since there
are no more than l prefixes of this pattern. We still add the pattern {+0m−1} (maximum
m new states), and the root. If there is a path connecting two given vertices, this path
can be chosen so that its length (in terms of number of vertices) will not exceed the
total number of vertices (if it does not pass through the same vertex twice). Every
edge of this path adds one bit to the admissible string. The initial length of the string
is m (we start from 0m), therefore the total length of the admissible word is at most
2M +2m.

Proposition 6.2 If the capacity is positive, then cap(D) > 1/(2M +m), where m is the
maximal length of all patterns in D and M is the sum of the lengths of each forbidden
pattern.

Proof. If cap(D) > 0, then there is an admissible string of length t ≤ 2M +2m (Corol-
lary 6.7). Consider a code as given by Equation (6.5). Its size is 2l and the length of
its words is at most

Tl = l(2M +2m−m) = l
(
2M +m

)
.

Therefore
cap(D) = lim

l→∞

log2 δTl
Tl

≥ lim
l→∞

log2 2l

l
(

2M+m
) = 1

2M+m .

6.5 Positive capacity is NP-hard for extended sets

We now consider the situation where forbidden patterns are allowed to contain the ±
symbol. The symbol ± is to be understood in the following sense: whenever it occurs
in a forbidden pattern, both the occurrences of + and of − are forbidden at that par-
ticular location. So, for example, avoiding the forbidden set {0±+±} is equivalent to
avoiding the set {0+++,0++−,0−++,0−+−}. All results obtained for forbidden
patterns over {−,0,+} have therefore their natural counterparts in the situation where
the forbidden patterns are defined over the alphabet {−,0,+,±}. In particular, the re-
sults of Section 6.3 do transfer verbatim and the bounds derived in Theorem 6.2 are
valid exactly as stated there. However, the symbol± allows us to compress the number
of forbidden patterns so that the new instance is exponentially smaller. Thus, the poly-
nomial time algorithm described above for normal sets could well not be polynomial
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in the size of the compressed instance. We now prove that unless P = NP, there is no
polynomial time algorithm to decide zero capacity when the symbol ± is allowed.

Theorem 6.5 The problem of determining if the capacity of a set of forbidden patterns
over {0,+,−,±} is equal to zero is NP-hard.

Proof. The proof proceeds by reduction from the Not-All-Equal 3SAT problem that
is known to be NP-complete (see [44]). In the Not-All-Equal 3SAT problem, we are
given m binary variables x1, . . . ,xm and t clauses that each contain three literals (a
literal can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal and one false literal.
Suppose that we are given a set of clauses. We construct a set of forbidden patterns D
such that cap(D) > 0 if and only if the instance of Not-All-Equal 3SAT has a solution.
The first part of D is given by:

{(0±0),(0±±0), . . . ,(0±m−1 0)}. (6.7)

Words over {−,0,+} that avoid these patterns are exactly those words for which any
two consecutive zeros are either adjacent or have at least m symbols on {+,−} be-
tween them. We use these m symbols as a way of encoding possible truth assignments
for the variables (the first one is “+” if x1 = 1, etc...).

We then add to D two patterns for every clause: they will force a sequence of m
nonzero symbols to encode a satisfying assignement for the instance of Not-All-Equal
3SAT. These patterns are of length m and are entirely composed of symbols ±, except
for the positions corresponding to the three variables of the clause, which we set to +
if the clause contains the variable itself, or to − if the clause contains the negation of
the variable. We also add the opposite of this pattern; this last pattern is not necessary
for the proof but preserves the symmetry and simplifies the construction.

For example, if the instance of Not-All-Equal 3SAT consists of the two clauses
(x1, x̄3,x4) and (x̄2,x4,x5), the corresponding set D will be D = {(0±0),(0±±0),(0±
±±0),(0±±±±0),(+±−+±),(−±+−±),(±−±++),(±+±−−)}.
Such a set D has always a length polynomial in the number of clauses and the number
of variables.
We now prove that there is a solution to the instance of Not-All-Equal 3SAT if and
only if cap(D) > 0. First, suppose that there exists a satisfying truth assignment for x
and denote it by (ω1, . . . ,ωm) ∈ {0,1}m. Associated to any k ≥ 1 we construct a code
of length k(m+1) containing 2k words as follows:

Ck(m+1) = {0ω0ω0ω0 · · ·0ω0ω,0ω0ω0ω0 · · ·0ω0ω̄,

0ω0ω0ω0 · · ·0ω̄0ω, . . . ,0ω̄0ω̄0ω̄0 · · ·0ω̄0ω̄},

where ω = ω1 · · ·ωm.
Any difference between two words in this code is a word of the form

0z10z20 · · ·0zk,
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where for every 1 ≤ i ≤ k, zi is either a sequence of m 0’s or a word of length m over
{−,+}. Because ω satisfies the instance of Not-All-Equal 3SAT, these words avoid
the set D constructed above. Moreover, the cardinality of Ck(m+1) is 2k and hence

cap(D)≥ lim
k→∞

log2 2
k

k(m+1) =
1

m+1
> 0. (6.8)

For the converse implication, assume now that cap(D) > 0. The capacity is positive,
and so one can find two words whose differences contain a 0 and a +. But then since
this difference must avoid the first part of the forbidden pattern, for a code C large
enough, there must exist two words in the code whose difference contains a word over
{−,+} of length m. But this sequence avoids also the second part of D, and thus it
represents an acceptable solution to our instance of Not-All-Equal 3SAT.

Note that a similar proof can be given if we replace the symbol ”±” in the statement
of the theorem by a symbol that represents either +, −, or 0.

6.6 Extremal norms and computing the capacity

As we have seen in previous chapters, the existence of an extremal norm can simplify
many problems related to the joint spectral radius: it allows for instance to apply the
geometrical algorithm exposed in Section 2.3. Recall that an extremal norm is a norm
|| · || such that

max
A∈Σ
||A||= ρ(Σ).

It turns out that in the case of capacity computation, the matrices do in fact always
possess an extremal norm:

Theorem 6.6 For any set D of forbidden patterns the set Σ(D) possesses an extremal
norm.

Proof. Corollary 6.2 implies that Σ(D) is not defective. To see this, replace cap(D)
by log2 ρ in Corollary 6.2 and recall that δt is, by definition of the set Σ , the maximal
norm of products of length t−(m−1) of matrices taken in Σ . We have seen in Section
2.1 that the nondefectiveness implies the existence of an extremal norm.

The existence of an extremal norm for a set of matrices makes it possible to apply the
geometric algorithm described in Section 2.3 for computing the capacity with a given
relative accuracy.

The complexity of this algorithm is exponential with respect to m, as the one pro-
posed in Section 6.3 that approximates the capacity by successive estimations of δt .
The advantages of one algorithm over the other appear in numerical computation of
the capacity. Moreover, in many cases the approximation of invariant bodies by poly-
topes can lead to the exact value of the joint spectral radius, as mentioned in Section
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2.3. Let us illustrate this method by computing the exact values of the capacity for
several codes. In Examples 6.3 and 6.4 we find the values of capacities that were ap-
proximated in [82]. Example 6.5 deals with a code with m = 4.

Example 6.3 cap({0++})= log2 ρ(A0)= log2
(√5+1

2

)
= 0.69424191 . . . . The eigen-

vector is v = (2,
√

5− 1,2,
√

5− 1)T . The algorithm terminates after five steps, the
polytope P = P5 has 32 vertices.

Example 6.4 cap({0 +−}) = log2 ρ(A0) = log2
(√5+1

2

)
. The algorithm terminates

after four steps, v = (2,
√

5−1,
√

5−1,2)T , P = P4, the polytope has 40 vertices.

Example 6.5 cap({+++−}) = log2
(√3+2

√
5+1

2

)
= log2

√
ρ(A0A1) = 0.90 . . . . The

algorithm terminates after eleven steps, the polytope P = P11 has 528 vertices.

6.7 Conclusion

One way to compute the capacity of a set of forbidden patterns is to compute the joint
spectral radius of a set of matrices. In practice, this leads to a number of difficulties:
first, the size of the matrices is exponential in the size of the set of forbidden patterns.
Second, their number can also be exponential in the size of the instance. Third, the
joint spectral radius is in general NP-hard to compute.
We have shown here that, in spite of these discouraging results, the simpler problem
of checking the positivity of the capacity of a set defined on {+,−,0} is polynomi-
ally decidable. However the same problem becomes NP-hard when defined over the
alphabet {+,−,0,±}, so that we see a threshold between polynomial time and expo-
nential time feasibility. We have also provided bounds that allow faster computation
of the capacity. Finally we have proved the existence of extremal norms for the sets of
matrices arising in the capacity computation, which is the only “good news” that we
see concerning the possible feasibility of the capacity computation. To the best of our
knowledge the problem remains open for the moment:

Open question 9 Is the capacity computation/approximation NP-hard?

For instance, one has to keep in mind that the approach that consists in computing a
joint spectral radius cannot lead to a polynomial algorithm because of the exponential
size of the sets of matrices. Nevertheless, it is conjectured in [11] that the sets of
matrices with binary entries, and, in particular, those constructed in order to compute
a capacity do always possess the finiteness property:

Open question 10 Do matrices that arise in the context of capacity computation sat-
isfy the finiteness property?

Numerical results in [82], [57], and in this chapter seem to support this conjecture, and
moreover the length of the period seems to be very short: it seems to be of the order
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of the size of the forbidden patterns, which would be surprising, because this length
would be logarithmic in the size of the matrices.

We end this chapter by mentionning another question that has not been solved yet.
We have seen that if the capacity is positive, one is able to exhibit an admissible word
of the shape 0md0m−1. This word has moreover a size which is polynomial in the size
of D since it is represented by a path in the auxiliary graph constructed from the Aho-
Corasick automaton. Now if we allow the use of “±” characters, since the problem can
be translated in a classical instance D′ with characters in {0,+,−}, a positive capacity
also implies the existence of a certificate of the shape 0md0m−1. But what about the
length of this word? Since this length is only polynomial in the new instance D′, we
cannot conclude that there exists a certificate whose size is polynomial in the former
instance. If this was the case, we would have that the problem with “±” characters
would be in NP. This motivates our last open question:

Open question 11 Is the problem of determining if the capacity of a set of for-
bidden patterns D over {0,+,−,±} is equal to zero in NP? Is there, for any set
D ∈ {0,+,−,±}∗, an admissible word of the shape 0md0m−1 whose length is poly-
nomial in the size of D?





Chapter 7
Overlap-free words

Abstract In this chapter we present the notion of overlap-free words and show how
the number un of overlap-free words of length n is ruled by joint spectral character-
istics. We use these results to provide tight estimates on the asymptotic growth of un.
We provide new algorithms to estimate the joint spectral subradius and the Lyapunov
exponent, that appear to be very efficient in practice.

7.1 Introduction

Binary overlap-free words have been studied for more than a century1. These are
words over the binary alphabet A = {a,b} that do not contain factors of the form
xvxvx, where x∈ A and v∈ A∗ (A∗ is the set of all words on the alphabet A)2. Such fac-
tors are called overlaps, because the word xvx is written twice, with the two instances
of this word overlapping at the middle x.
Perhaps the simplest way to understand overlap-free words is the following: In combi-
natorics on words, a square is the repetition of twice the same word, as for instance the
french word bobo. A cube is the repetition of three times the same word, like bobobo.
Now, an overlap is any repetition that is more than a square. For instance, the word
baabaa is overlap-free (it is a square), but the word baabaab is an overlap, because
baa is repeated “more than twice” (one could say that it is repeated 7/3 times). This
word satisfies the definition of an overlap, since it can be written xuxux with x = b and
u = aa. See [6] for a recent survey.

1 The chapter presents research work that has been published in [63, 64].
2 This chapter uses classical results from combinatorics on words. For a survey on this branch of
theoretical computer science, we refer the reader to [76].

107
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Thue [112, 113] proved in 1906 that there are infinitely many overlap-free words.
Indeed, the well-known Thue-Morse sequence3 is overlap-free, and so the set of its
factors provides an infinite number of different overlap-free words. The asymptotics
of the number un of such words of a given length n was analyzed in a number of sub-
sequent contributions4. The number of factors of length n in the Thue-Morse sequence
is proved in [23] to be larger or equal to 3n− 3, thus providing a linear lower bound
on un:

un ≥ C n.

The next improvement was obtained by Restivo and Salemi [101]. By using a certain
decomposition result, they showed that the number of overlap-free words grows at
most polynomially:

un ≤ C nr,

where r = log(15) ≈ 3.906. This bound has been sharpened successively by Kfoury
[67], Kobayashi [68], and finally by Lepistö [73] to the value r = 1.37. One could then
suspect that the sequence un grows linearly. However, Kobayashi proved that this is
not the case [68]. By enumerating the subset of overlap-free words of length n that can
be infinitely extended to the right he showed that un ≥ C n1.155 and so we have

C1 n1.155 ≤ un ≤C2 n1.37.

Carpi showed that there is a finite automaton allowing to compute un (the sequence un
is 2-regular [25]). In Figure 7.1(a) we show the values of the sequence un for 1≤ n≤
200 and in Figure 7.1(b) we show the behavior of logun/ logn for larger values of n.
One can see that the sequence un is not monotonic, but is globally increasing with n.
Moreover the sequence does not appear to have a polynomial growth since the value
logun/ logn does not seem to converge. In view of this, a natural question arises: is the
sequence un asymptotically equivalent to nr for some r ? Cassaigne proved in [26] that
the answer is negative. He introduced the lower and the upper exponents of growth:

α = sup
{

r
∣∣∃C > 0,un ≥Cnr}, (7.1)

β = inf
{

r
∣∣∃C > 0,un ≤Cnr},

and showed that α < β . Cassaigne made a real breakthrough in the study of overlap-
free words by characterizing in a constructive way the whole set of overlap-free words.
By improving the decomposition theorem of Restivo and Salemi he showed that the
numbers un can be computed as sums of variables that are obtained by certain recur-
rence relations. These relations are explicitly given in the next section and all numeri-

3 The Thue-Morse sequence is the infinite word obtained as the limit of θ n(a) as n→ ∞ with θ(a) =
ab, θ(b) = ba; see [26].
4 The number of overlap-free words of length n is referenced in the On-Line Encyclopedia of Integer
Sequences under the code A007777; see [107]. The sequence starts 1, 2, 4, 6, 10, 14, 20, 24, 30, 36,
44, 48, 60, 60, 62, 72,...
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cal values can be found in Appendix A.1. As a result of this description, the number of
overlap-free words of length n can be computed in logarithmic time. For the exponents
of growth Cassaigne also obtained the following bounds: α < 1.276 and β > 1.332.
Thus, combining this with the earlier results described above, one has the following
inequalities:

1.155 < α < 1.276 and 1.332 < β < 1.37. (7.2)

(a) (b)

Fig. 7.1 The values of un for 1≤ n≤ 200 (a) and logun/ logn for 1≤ n≤ 10000 (b).

In this chapter we develop a linear algebraic approach to study the asymptotic be-
havior of the number of overlap-free words of length n. Using the results of Cassaigne
we show in Theorem 7.2 that un is asymptotically equivalent to the norm of a long
product of two particular matrices A0 and A1 of dimension 20×20. This product cor-
responds to the binary expansion of the number n− 1. Using this result we express
the values of α and β by means of certain joint spectral characteristics of these ma-
trices. We prove that α = log2 ρ̌(A0,A1) and β = log2 ρ(A0,A1). In Section 7.3, we
estimate these values and we obtain the following improved bounds for α and β :

1.2690 < α < 1.2736 and 1.3322 < β < 1.3326. (7.3)

Our estimates are, respectively, within 0.4% and 0.03% of the exact values. In addition,
we show in Theorem 7.3 that the smallest and the largest rates of growth of un are
effectively attained, and there exist positive constants C1,C2 such that C1 nα ≤ un ≤
C2 nβ for all n ∈ N.

Although the sequence un does not exhibit an asymptotic polynomial growth, we
then show in Theorem 7.5 that for “almost all” values of n the rate of growth is actually
equal to σ = log2 ρ̄(A0,A1), where ρ̄ is the Lyapunov exponent of the matrices. For
almost all values of n the number of overlap-free words does not grow as nα , nor as
nβ , but in an intermediary way, as nσ . This means in particular that the value log un

log n
converges to σ as n→ ∞ along a subset of density 1. We obtain the following bounds
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for the limit σ , which provides an estimate within 0.8% of the exact value:

1.3005 < σ < 1.3098.

These bounds clearly show that α < σ < β .
To compute the exponents α and σ we introduce new efficient algorithms for esti-

mating the joint spectral subradius ρ̌ and the Lyapunov exponent ρ̄ of matrices. These
algorithms are both of independent interest as they can be applied to arbitrary matrices.

Our linear algebraic approach not only allows us to improve the estimates of the
asymptotics of the number of overlap-free words, but also clarifies some aspects of
the nature of these words. For instance, we show that the “non purely overlap-free
words” used in [26] to compute un are asymptotically negligible when considering the
total number of overlap-free words.

The chapter is organized as follows. In the next section we formulate and prove the
main theorems (except for Theorem 7.2, whose proof is quite long and technical). Then
in Section 7.3 we present new algorithms for estimating the joint spectral subradius
and the Lyapunov exponent of a given set of matrices. Applying them to those special
matrices we obtain the estimates for α,β and σ . In the appendices we write explicit
forms of the matrices and initial vectors used to compute un and present the results of
our numerical algorithms.

7.2 The asymptotics of overlap-free words

To compute the number un of overlap-free words of length n we use several results
from [26] that we summarize in the following theorem:

Theorem 7.1 Let F0,F1 ∈ R30×30, w,y8, . . . ,y15 ∈ R30
+ be as given in Appendix A.1.

For n≥ 16, let yn be the solution of the following recurrence equations

y2n = F0yn,
y2n+1 = F1yn.

(7.4)

Then, for any n≥ 9, the number of overlap-free words of length n is equal to wT yn−1.

It follows from this result that the number un of overlap-free words of length n ≥ 16
can be obtained by first computing the binary expansion dt · · ·d1 of n−1, i.e., n−1 =
∑

t−1
j=0 d j+12 j, and then computing

un = wT Fd1 · · ·Fdt−4ym, (7.5)

where m = dt−3 + dt−22 + dt−122 + dt23 (and dt = 1). To arrive at the results sum-
marized in Theorem 7.2, Cassaigne builds a system of recurrence equations allowing
the computation of a vector Un whose entries are the number of overlap-free words
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of certain types (there are 16 different types). These recurrence equations also involve
the recursive computation of a vector Vn that counts other words of length n, the so-
called “single overlaps”. The single overlap words are not overlap-free, but have to be
computed, as they generate overlap-free words of larger lengths.

We now present the main result of this section which improves the above theorem
in two directions. First we reduce the dimension of the matrices from 30 to 20, and
second we prove that un is given asymptotically by the norm of a matrix product. The
reduction of the dimension to 20 has a straightforward interpretation: when computing
the asymptotic growth of the number of overlap-free words, one can neglect the num-
ber of “single overlaps” Vn defined by Cassaigne. We call the remaining words purely
overlap-free words, as they can be entirely decomposed in a sequence of overlap-free
words via Cassaigne’s decomposition (see [26] for more details). In the following The-
orem, the notation f (n)� g(n) means that there are two positive constants K1,K2 such
that for all n, K1 f (n) < g(n) < K2 f (n).

Theorem 7.2 Let A0,A1 ∈ R20×20
+ be the matrices defined in Appendix A.1 (Equation

(A.3)), let ‖ · ‖ be a matrix norm, and let A(n) : N→ R20×20
+ be defined as A(n) =

Ad1 · · ·Adt with dt . . .d1 the binary expansion of n−1. Then,

un � ||A(n)||. (7.6)

Observe that the matrices F0,F1 in Theorem 7.1 are both nonnegative and hence pos-
sess a common invariant cone K = R30

+ . We say that a cone K is invariant for a linear
operator B if BK ⊂ K. All cones are assumed to be solid, convex, closed, and pointed.
We start with the following simple result proved in [96].

Lemma 7.1 For any cone K ⊂ Rd , for any norm | · | in Rd and any matrix norm ‖ · ‖
there is a homogeneous continuous function γ : K→R+ positive on intK such that for
any x ∈ intK and for any matrix B that leaves K invariant one has

γ(x)‖B‖ · |x| ≤ |Bx| ≤ 1
γ(x)
‖B‖ · |x|.

Corollary 7.1 Let two matrices A0,A1 possess an invariant cone K ⊂ Rd . Then for
any x ∈ intK, with the notation A(n) of Theorem 7.2, we have

|A(n)x| � ‖A(n)‖.

In view of Corollary 7.1 and of Equation (7.5), Theorem 7.2 may seem obvious, at
least if we consider the matrices Fi instead of Ai. One can however not directly apply
Lemma 7.1 and Corollary 7.1 to the matrices A0,A1 or to the matrices F0,F1 because
the vector corresponding to x is not in the interior of the positive orthant, which is an
invariant cone of these matrices.

To prove Theorem 7.2 one has to first construct a common invariant cone K for
the matrices A0,A1. This cone has to contain all the vectors zn , n ∈ N (the restriction
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of yn to R20, see Theorem 7.1) in its interior, to enable us to apply Lemma 7.1 and
Corollary 7.1.
Then, invoking Lemma 7.1 and Corollary 7.1 it is possible to show that the products
F(n) = Fd1 · · ·Fdk are asymptotically equivalent to their corresponding product A(n) =
Ad1 · · ·Adk .
Finally one shows that ‖Ad1 · · ·Adk‖ is equivalent to ‖Ad1 · · ·Adk−4‖.
Putting all this together, one proves Theorem 7.2. Details of the proof can be found
in [63].

Theorem 7.2 allows us to express the rates of growth of the sequence un in terms of
norms of products of the matrices A0,A1 and then to use joint spectral characteristics
of these matrices to estimate the rates of growth. More explicitly, Theorem 7.2 yields
the following corollary:

Corollary 7.2 Let A0,A1 ∈ R20×20
+ be the matrices defined in Appendix A and let

A(n) : N→ R20×20
+ be defined as A(n) = Ad1 · · ·Adk with dk . . .d1 the binary expan-

sion of n−1. Then

log2 un

log2 n
− log2 ‖A(n)‖1/k → 0 as n→ ∞ . (7.7)

Proof. Observe first that
(

k
log2 n − 1

)
log2 un

k → 0 as n→ ∞. Indeed, the first factor
tends to zero, and the second one is uniformly bounded, because, as we have seen,
un ≤Cnr. Hence

lim
n→∞

(
log2 un
log2 n −

log2 ‖Ad1 ···Adk
‖

k

)
=

lim
n→∞

( log2 un−log2 ‖Ad1 ···Adk
‖

k +
( k

log2 n − 1
) log2 un

k

)
=

lim
n→∞

( log2 un−log2 ‖Ad1 ···Adk
‖

k

)
= lim

n→∞

log2

(
un·‖Ad1 ···Adk

‖−1
)

k ,

and by Theorem 7.2 the value log2
(
un · ‖Ad1 · · ·Adk‖

−1
)

is bounded uniformly over
n ∈ N.

We first analyze the smallest and the largest exponents of growth α and β defined
in Equation (7.1).

Theorem 7.3 For t ≥ 1, let αt = min
2t−1<n≤2t

logun
logn and βt = max

2t−1<n≤2t

logun
logn . Then

α = lim
t→∞

αt = log2 ρ̌(A0,A1) and β = lim
t→∞

βt = log2 ρ(A0,A1), (7.8)

where the matrices A0,A1 are defined in Appendix A.1. Moreover, there are positive
constants C1,C2 such that

C1 ≤ min
2t−1<n≤2t

unn−α and C1 ≤ max
2t−1<n≤2t

unn−β ≤ C2 (7.9)
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for all t ∈ N.

Proof. The equalities in Equation (7.8) follow immediately from Corollary 7.2 and
the definitions.
The lower bounds in Equation (7.9) are a consequence of Theorem 7.2 and the fact
that ρ̂t ≥ ρ t and ρ̌t ≥ ρ̌ t always hold (see Chapter 1).
For the upper bound in Equation (7.9) we note that the matrices A0,A1 have no com-
mon invariant subspaces among the coordinate planes (to see this observe, for instance,
that (A0 + A1)5 has no zero entry). As shown in Chapter 3, this proves that the set is
nondefective, that is,

ρ̂t ≤C2ρ
t .

Corollary 7.3 There are positive constants C1,C2 such that

C1nα ≤ un ≤C2nβ , n ∈ N.

In the next section we show that α < β . In particular, the sequence un does not
have a constant rate of growth, and the value logun

logn does not converge as n → ∞.
This was already noted by Cassaigne in [26]. Nevertheless, it appears that the value
logun
logn actually has a limit as n → ∞, not along all the natural numbers n ∈ N, but

along a subsequence of N of density 1. A subset A ⊂ N is said to have density 1 if
1
n Card

{
r ≤ n, r ∈ A

}
→ 1 as n→ ∞. In other terms, the sequence converges with

probability 1. The limit, which differs from both α and β can be expressed by the
so-called Lyapunov exponent ρ̄ of the matrices A0,A1. To show this we apply the fol-
lowing result proved by Oseledets in 1968. For the sake of simplicity we formulate it
for two matrices, although it can be easily generalized to any finite set of matrices.

Theorem 7.4 [88] Let A0,A1 be arbitrary matrices and d1,d2, . . . be a sequence of
independent random variables that take values 0 and 1 with equal probabilities 1/2.
Then the value ‖Ad1 · · ·Adt‖1/t converges to some number ρ̄ with probability 1. This
means that for any ε > 0 we have P

(∣∣‖Ad1 · · ·Adt‖1/t − ρ̄
∣∣> ε

)
→ 0 as t→ ∞.

The limit ρ̄ in Theorem 7.4 is called the Lyapunov exponent of the set {A0,A1}. This
value is given by the following formula:

ρ̄(A0,A1) = lim
t→∞

(
∏

d1,...,dt

‖Ad1 · · ·Adt‖
1/t
)1/2t

(7.10)

(for a proof see, for instance, [97]). To understand what this gives for the asymptotics
of our sequence un we introduce some further notation. Let P be some property of
natural numbers. For a given t ∈ N we denote

Pt(P) = 2−(t−1)Card
{

n ∈ {2t−1 +1, . . . ,2t} : nsatisfiesP
}
.

Thus, Pt is the probability that the integer n uniformly distributed on the set
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{2t−1 +1, . . . ,2t}

satisfies P . Combining Corollary 7.2 and Theorem 7.4 we obtain

Theorem 7.5 There is a number σ such that for any ε > 0 we have

Pt

(∣∣∣ logun

logn
−σ

∣∣∣> ε

)
→ 0 as t→ ∞.

Moreover, σ = log2 ρ̄ , where ρ̄ is the Lyapunov exponent of the matrices {A0,A1}
defined in Appendix A.1.

Thus, for almost all n ∈N the number of overlap-free words un has the same exponent
of growth σ = log2 ρ̄ . If positive a and b are large enough and a < b, then for a number
n taken randomly from the segment [a,b] the value logun/ logn is close to σ . We say
that a sequence fn converges to a number f along a set of density 1 if there is a set
A ⊂ N of density 1 such that lim

n→∞,n∈A
fn = f . Theorem 7.5 yields

Corollary 7.4 The value logun
logn converges to σ along a set of density 1.

Proof. Let us define a sequence {k j} inductively: k1 = 1, and for each j ≥ 2 let k j be
the smallest integer such that k j > k j−1 and

Pk

(∣∣∣ logun

logn
−σ

∣∣∣ >
1
j

)
≤ 1

j
for all k ≥ k j .

By Theorem 7.5 the values k j are well-defined for all j. Let a set A consist of numbers

n, for which
∣∣∣ logun

logn −σ

∣∣∣ ≤ 1
j , where j is the largest integer such that n≥ 2k j−1 . Clearly,

logun
logn → σ as n→ ∞ along A . If, as usual, 2k−1 ≤ n < 2k, then the total number of

integers r ≤ n that do not belong to A is less than

2k

j
+

2k j

j−1
+ · · · + 2k2

1
≤

j

∑
s=1

2k− j+s

s
= 2k− j

j

∑
s=1

2s

s
.

Observe that
j

∑
s=1

2s

s ≤
3·2 j

j , hence the number of integers r ≤ n that do not belong

to A is less than 3·2k

j ≤
6n
j , which tends to zero being divided by n as n→ ∞. Thus,

A has density 1.

7.3 Estimation of the exponents

Theorems 7.2 and 7.5 reduce the problem of estimating the exponents of growth of
un to computing joint spectral characteristics of the matrices A0 and A1. In order to
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estimate the joint spectral radius we use a modified version of the “ellipsoidal norm
algorithm” presented in Chapter 2. For the joint spectral subradius and for the Lya-
punov exponent we present new algorithms, which seem to be relatively efficient, at
least for nonnegative matrices. The results we obtain can be summarized in the fol-
lowing theorem:

Theorem 7.6
1.2690 < α < 1.2736,
1.3322 < β < 1.3326,
1.3005 < σ < 1.3098.

(7.11)

In this section we also make (and give arguments for) the following conjecture:

Conjecture 7.1
β = log2

√
ρ(A0A1) = 1.3322 . . . .

7.3.1 Estimation of β and the joint spectral radius

By Theorem 7.3 to estimate the exponent β one needs to estimate the joint spectral
radius of the set {A0,A1}. A lower bound for ρ can be obtained by applying the three
members inequality (1.6). Taking t = 2 and d1 = 0,d2 = 1 we get

ρ ≥
[
ρ(A0A1)

]1/2 = 2.5179 . . . , (7.12)

and so β > log2 2.5179 > 1.3322 (this lower bound was already found in [26]).
One could also try to derive an upper bound on ρ with the three members inequality,
that is:

ρ ≤ max
d1,...,dt ∈{1,...,m}

‖Ad1 · · ·Adt‖
1/t . (7.13)

This, at least theoretically, gives arbitrarily sharp estimates for ρ . However, in our
case, due to the size of the matrices A0,A1, this method leads to computations that
are too expensive even for relatively small values of t. As we have seen in Chapter
2, faster convergence can be achieved by finding an appropriate norm. The ellipsoidal
norms are good candidates, because the optimum among these norms can be found via
a simple SDP program. In Appendix A.2 we give an ellipsoidal norm such that each
matrix in Σ 14 has a norm smaller than 2.518614. This implies that ρ ≤ 2.5186, which
gives β < 1.3326. Combining this with the inequality β > 1.3322 we complete the
proof of the bounds for β in Theorem 7.6.
We have not been able to improve the lower bound of Equation (7.12). However, the
upper bound we obtain is very close to this lower bound, and the upper bounds ob-
tained with an ellipsoidal norm for Σ t get closer and closer to this value when t in-
creases. Moreover, as mentioned in Chapter 4, it has already been observed that for
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many sets of matrices for which the joint spectral radius is known exactly, and in par-
ticular matrices with nonnegative integer entries, the finiteness property holds, i.e.,
there is a product A ∈ Σ t such that ρ = ρ(A)1/t [61]. For these reasons, we conjecture
that the exponent β is actually equal to the lower bound, that is,

β =
√

ρ(A0A1).

7.3.2 Estimation of α and the joint spectral subradius

An upper bound for ρ̌(A0,A1) can be obtained using the three members inequality for
t = 1 and d1 = 0. We have

α = log2(ρ̌)≤ log2(ρ(A0)) = 1.276... (7.14)

This bound for α was first derived in [26]. It is however not optimal. Taking the prod-
uct A10

1 A0 (i.e., t = 11), we get a better estimate:

α ≤ log2
[
(ρ(A10

1 A0)1/11]= 1.2735... (7.15)

One can verify numerically that this product gives the best possible upper bound
among all the matrix products of length t ≤ 14.

We now estimate α from below. As we know, the problem of approximating the
joint spectral subradius is NP-hard [17] and to the best of our knowledge, no algo-
rithm is known to compute this quantity. Here we propose two new algorithms. We
first consider nonnegative matrices. As proved in Chapter 1, for any t and any set of
matrices Σ , we have ρ̌(Σ t) = ρ̌ t(Σ). Without loss of generality it can be assumed
that the matrices of the set Σ do not have a common zero column. Otherwise, by sup-
pressing this column and the corresponding row we obtain a set of matrices of smaller
dimension with the same joint spectral subradius. The vector of ones is denoted by 1.

Theorem 7.7 Let Σ be a set of nonnegative matrices that do not have any common
zero column. If for some r ∈R+,s≤ t ∈N, there exists x ∈Rd satisfying the following
system of linear inequalities

B(Ax− rx) ≥ 0, ∀B ∈ Σ s,A ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.16)

then ρ̌(Σ)≥ r1/t .

Proof. Let x be a solution of (7.16). Let us consider a product of matrices Ak . . .A1 ∈
Σ kt : Ai ∈ Σ t . We show by induction on k that Ak . . .A1x ≥ rk−1Akx : For k = 2, we
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have A2(A1x− rx) = CB(A1x− rx) ≥ 0, with B ∈ Σ s,C ∈ Σ t−s. For k > 2 we have
Ak . . .A1x = AkAk−1 . . .A1x ≥ rk−2AkAk−1x ≥ rk−1Akx. In the last inequality the case
for k = 2 was reused.

Hence,
||Ak . . .A1||= 1T Ak . . .A11≥ rk−11T Akx≥ Krk,

where K = (mink 1T Akx)/r > 0. The last inequality holds because Akx = 0, together
with the first inequality in (7.16), imply that −rBx = 0 for all B ∈ Σ s, which implies
that all B ∈ Σ s have a common zero column. This is in contradiction with our assump-
tion because the matrices in Σ s share a common zero column if and only if the matrices
in Σ do.

Clearly, the size of the instance of the linear program 7.16 grows exponentially with t
and s. We were able to find a solution to the linear programming problem (7.16) with
r = 2.4116, t = 16,s = 6. Hence we get the following lower bound: α ≥ log2 r/16 >
1.2690. The corresponding vector x is given in Appendix A.3. This completes the
proof of Theorem 7.6.

Theorem 7.7 handles nonnegative matrices, and we propose now a way to gener-
alize this result to arbitrary real matrices. For this purpose, we use the semidefinite
lifting presented in Chapter 2, and we consider the set of linear operators acting on the
cone of positive semidefinite symmetric matrices S as S→ AT

i SAi. We know that the
joint spectral subradius of this new set of linear operators is equal to ρ̌(Σ)2. We use
the notation A� B to denote that the matrix A−B is positive semidefinite. Recall that
A� 0⇔∀y,yT Ay≥ 0.

Theorem 7.8 Let Σ be a set of matrices in Rd×d and s ≤ t ∈ N. Suppose that there
are r > 0 and a symmetric matrix S� 0 such that

BT (AT SA− rS)B� 0 ∀A ∈ Σ t ,B ∈ Σ s,
S� 0,

(7.17)

then ρ̌(Σ)≥ r1/2t .

Proof. The proof is formally similar to the previous one. Let S be a solution of (7.17).
We denote by Mk the product A1 . . .Ak, where Ai ∈ Σ t . It is easy to show by induction
that MT

k SMk � rk−1(AT
k SAk). This is obvious for k = 2 for similar reasons as in the

previous theorem, and for k > 2, if, by induction,

∀y, yT MT
k−1SMk−1y≥ rk−2yT AT

k−1SAk−1y,

then, with y = Akx, for all x,

xT MT
k SMkx≥ rk−2xT AT

k AT
k−1SAk−1Akx≥ rk−1xT AT

k SAkx.

Thus,
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sup
{

xT MT
k SMkx

xT Sx

}
≥ rk−1 sup

{
xT AT

k SAkx
xT Sx

}
.

Finally, ||Mk||S ≥ rk/2C, where C is a constant.

For a given r > 0 the existence of a solution S can be established by solving the
semidefinite programming problem (7.17), and the optimal r can be found by bisection
in logarithmic time.

7.3.3 Estimation of σ and the Lyapunov exponent

The exponent of the average growth σ is obviously between α and β , so 1.2690 <
σ < 1.3326. To get better bounds we need to estimate the Lyapunov exponent ρ̄ of the
matrices A0,A1. The first upper bound can be given by the so-called 1-radius ρ1:

ρ1 = lim
t→∞

(
2−t

∑
d1,...,dt

‖Ad1 · · ·Adt‖
)1/t

.

For matrices with a common invariant cone we have ρ1 = 1
2 ρ(A0 +A1) [96]. Therefore,

in our case ρ1 = 1
2 ρ(A0 + A1) = 2.479.... This exponent was first computed in [26],

where it was shown that the value ∑
n−1
j=0 u j is asymptotically equivalent to nη , where

η = 1 + log2 ρ1 = 2.310.... It follows immediately from the inequality between the
arithmetic mean and the geometric mean that ρ̄ ≤ ρ1. Thus, σ ≤ η . In fact, as we show
below, σ is strictly smaller than η . We are not aware of any approximation algorithm
for the Lyapunov exponent, except by application of Definition (7.10). It follows from

submultiplicativity of the norm that for any t the value rt =
(

∏
d1,...,dt

‖Ad1 · · ·Adt‖
) 1

t2t

gives an upper bound for ρ̄ , that is ρ̄ ≤ rt for any t ∈ N. Since rt → ρ̄ as t → ∞, we
see that this estimate can be arbitrarily sharp for large t. But for the dimension 20
this leads quickly to prohibitive numerical computations. For example, for the norm
‖ · ‖1 we have r20 = 2.4865, which is even larger than ρ1. In order to obtain a better
bound for ρ̄ we state the following results. For any t and x ∈ Rd we denote pt(x) =(

∏
d1,...,dt

|Ad1 · · ·Adt x|
) 1

2t
and mt = sup

x≥0,|x|=1
pt(x). In general, this expression is hard to

evaluate, but in the following we will use a particular norm for which mt is easy to
handle.

Proposition 7.1 Let A0,A1 be nonnegative matrices in Rd . Then for any norm | · | and
for any t ≥ 1 we have ρ̄ ≤ (mt)1/t .

Proof. By Corollary 7.1, for x > 0 we have rn � [pn(x)]1/n, and consequently
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lim
t→∞

[
p tk(x)

] 1/tk→ ρ̄

as t → ∞. On the other hand, pk+n(x) ≤ mk pn(x) for any x ≥ 0 and for any n,k ∈ N,
therefore p tk(x)≤ (mk)t . Thus, ρ̄ ≤ (mk)1/k.

Proposition 7.2 Let A0,A1 be nonnegative matrices in Rd that do not have common
invariant subspaces among the coordinate planes. If ρ̌ < ρ , then ρ̄ < ρ1.

Proof. Let v∗ be the eigenvector of the matrix 1
2

(
AT

0 +AT
1
)

corresponding to its largest
eigenvalue ρ1. Since the matrices have no common invariant coordinate planes, it fol-
lows from the Perron-Frobenius theorem that v∗ > 0. Consider the norm |x| = (x,v∗)
on Rd

+. Take some t ≥ 1 and y ∈ Rd
+, |y|= (y,v∗) = 1, such that pt(y) = mt . We have

mt = pt(y)≤ 2−t
∑

d1,...,dt

|Ad1 · · ·Adt y|= 2−t
∑

d1,...,dt

(
Ad1 · · ·Adt y,v∗

)
=
(

y,2−t(AT
0 +AT

1
)tv∗

)
= ρ

t
1
(
y,v∗

)
= ρ

t
1.

Thus, mt ≤ ρ t
1, and the equality is possible only if all 2t values |Ad1 · · ·Adt y| are equal.

Since ρ̌ < ρ, there must be a t such that the inequality is strict. Thus, mt < ρ t
1 for some

t, and by Proposition 7.1 we have ρ̄ ≤ (mt)1/t < ρ1.

We are now able to estimate ρ̄ for the matrices A0,A1. For the norm |x| = (x,v∗)
used in the proof of Proposition 7.2 the value − 1

t log2 mt can be found as the solution
of the following convex minimization problem with linear constraints:

min − 1
t2t ln2 ∑

d1,...,dt∈{0,1}
ln
(

x,AT
d1
· · ·AT

dt
v∗
)

s.t. x≥ 0, (x,v∗) = 1.
(7.18)

The optimal value of this optimization problem is equal to−(1/t) log2 mt , which gives
an upper bound for σ = log2 ρ̄ (Proposition 7.1). Solving this problem for t = 12 we
obtain σ ≤ 1.3098. We finally provide a theorem that allows us to derive a lower
bound on σ . The idea is identical to the one used in Theorem 7.7, but transposed to
the Lyapunov exponent.

Theorem 7.9 Let Σ be a set of m nonnegative matrices that do not have any common
zero column. If for some s≤ t ∈N, ri ∈R+ : 0≤ i < mt , there exists x ∈Rd

+ satisfying
the following system of linear inequalities

B(Aix− rix) ≥ 0, ∀B ∈ Σ s,Ai ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.19)

then ρ̄(Σ)≥∏i ri
1/(tmt ).
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The proof is similar to the proof of Theorem 7.7 and is left to the reader. Also, a
similar theorem can be stated for general matrices (with negative entries), but involv-
ing linear matrix inequalities. Due to the number of different variables ri, one cannot
hope to find the optimal x with SDP and bisection techniques. However, by using the
vector x computed for approximating the joint spectral subradius (given in Appendix
A.3), with the values s = 8, t = 16 for the parameters, one gets a good lower bound for
σ : σ ≥ 1.3005.

7.4 Conclusion

The goal of this chapter is to precisely characterize the asymptotic rate of growth of
the number of overlap-free words. Based on Cassaigne’s description of these words
with products of matrices, we first prove that these matrices can be simplified, by
decreasing the state space dimension from 30 to 20. This improvement is not only
useful for numerical computations, but allows to characterize the overlap-free words
that “count” for the asymptotics: we call these words purely overlap-free, as they can
be expressed iteratively as the image of shorter purely overlap free words.
We have then proved that the lower and upper exponents α and β defined by Cassaigne
are effectively reached for an infinite number of lengths, and we have characterized
them respectively as the logarithms of the joint spectral subradius and the joint spec-
tral radius of the simplified matrices that we constructed. This characterization, com-
bined with new algorithms that we propose to approximate the joint spectral subradius,
allow us to compute them within 0.4%. The algorithms we propose can of course be
used to reach any degree of accuracy for β (this seems also to be the case for α and
σ , but no theoretical result is known for the approximation of these quantities). The
computational results we report in this chapter have all been obtained in a few minutes
of computation time on a standard PC desktop and can therefore easily be improved.
Finally we have shown that for almost all values of n, the number of overlap-free
words of length n does not grow as nα , nor as nβ , but in an intermediary way as nσ ,
and we have provided sharp bounds for this value of σ .
This work opens obvious questions: Can joint spectral characteristics be used to de-
scribe the rate of growth of other languages, such as for instance the more general
repetition-free languages ? The generalization does not seem to be straightforward for
several reasons: first, the somewhat technical proofs of the links between un and the
norm of a corresponding matrix product take into account the very structure of these
particular matrices, and second, it is known that a bifurcation occurs for the growth
of repetition-free words: for some members of this class of languages the growth is
polynomial, as for overlap-free words, but for some others the growth is exponential,
as shown by Karhumaki and Shallit [66]. See [10] for more on repetition-free words
and joint spectral characteristics.



Chapter 8
Trackable graphs

Abstract In this chapter we present the notion of trackable graph. We show how results
presented in this monograph allow to efficiently recognize trackable graphs.

Imagine you are responsible for a network on which an agent is moving. The net-
work can be modeled as a (directed) graph, and at each step the agent choses a node
among all neighbors of its current node, and jumps to it. A number of recent contribu-
tions deal with the problem of “tracking” such an agent, that is, in some sense localize
the agent on the network [24, 30, 87, 119, 120]. This network is endowed with sensors
that give you information about the node in which the agent is. In practical applica-
tions however, the information is rarely sufficient to determine uniquely the current
node of the agent: for instance, the network can be subject to noise, or two nodes that
are too close can be activated together. Also, the sensors data can be transmitted in
real time through a channel that only allows you to receive at each step a limited in-
formation about the sensors activations. Clearly, in general, the longer the experience
lasts, the more trajectories will be possible. How to compute the set of all possible
trajectories, given a sequence of observations? What are the possible growths of the
number of trajectories when the observation length increases? How to determine the
worst growth for a particular network? In Section 8.1 we formalize this problem and
present the notion of trackable graphs recently introduced by Crespi et al. [30], and
we give practical motivations for it. In Section 8.2 we answer to the above questions.
We then conclude and raise some possible future work.
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8.1 What is a trackable graph?

Initially motivated by tracking vehicles in noisy sensor networks, the concept of track-
able network has recently been introduced [30] in the framework of Hidden Markov
Models (HMM) (see [42, 100] for a survey on HMM’s). We introduce here trackable
graphs1 in a self-contained and general framework, in terms of an underlying directed
graph with colors on edges, but the mathematical reality behind these two definitions
is exactly the same.
Let G = (V,E) be a graph and C a set of colors. To every edge e ∈ E we associate
one (or more) color from C. A word w on C is the concatenation w0 . . .wT of sym-
bols taken from C; the length |w| of w is the number of its symbols. A subword
w[i, j] : 1 ≤ i ≤ j ≤ |w| of w = w1 . . .wT is the concatenation of the symbols wi . . .w j.
We say that a path is allowed by a word w if for all i the ith edge of the path has color
wi. Finally, for a word w and a set S⊂V , we denote by Tw(S) the set of paths allowed
by w beginning in a node in S; Tw(V ) is the set of paths in G with the color sequence
w. Since we are interested in the worst case, we introduce the complexity function
N(t) that counts the maximal number of trajectories compatible with an observation
of length t:

N(t) : N→ N, max{|Tw(V )| : |w|= t}.

We will say that a graph is trackable if its complexity function grows at most polyno-
mially:

Definition 8.1 A graph is trackable if there exists a polynomial p(t) such that for any
color sequence of length T, the number of possible trajectories compatible with this
observation is bounded by p(T ).

Figure 8.1 presents two similar graphs. The first one (a) is trackable, because the
worst possible observation is DDD . . . for which the number of compatible paths is
Na(t) ≈ t. The second graph (b) is not trackable, because a possible observation is
w = DSDSDS . . . for which the number of possible trajectories is asymptotically equal
to 2b

t
2 c.

In the seminal article [30], the colors are put on the nodes, rather than on the edges.
This latter situation is a particular case of the one considered here, since this is equiv-
alent to attribute the same color to each edge pointing to a same node. This fact is
illustrated in Figure 8.2: the first graph (a) has its colors on the nodes, but one could
analyze dynamics on this graph by constructing the edge-colored graph (b). For any
path on the “actual” graph (a) leading to the color sequence w, the same path on the
graph (b) leads to the color sequence w[1,|w|]. So for all t > 0 the complexity functions
Na(t), Nb(t) of the graphs (a) and (b) satisfy Na(t +1)≤ Nb(t)≤ mNa(t +1), with m

1 The property of being trackable is a property of directed graphs that have their edges colored.
For simplicity, we will talk in the sequel about trackable graphs rather than trackable edge-colored
directed graphs.
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Fig. 8.1 Two node-colored graphs. The “colors” are dashed (D) or solid (S). The graph (a) is trackable
but (b) is not.

the number of colors in the graph. So (a) is trackable if and only if (b) is, and all anal-
ysis results presented here are valid for node-colored graphs. Note however that this is
only valid for analysis purposes. In Section 8.3 we will briefly address the design ques-
tion. For this sort of questions, the node-colored case and the edge-colored case are not
equivalent, since the set of feasible solutions is not the same. Indeed, when designing
a node-colored graph, if one puts colors on edges in the corresponding edge-colored
graph, he is restricted in that all edges going to a same node must have the same color.

(a) (b)

Fig. 8.2 A node-colored graphs (a) and the equivalent edge-colored graph (b).
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8.2 How to recognize a trackable graph?

In this section, we consider two algorithmic problems. The first problem is that of
counting the possible paths in a graph for a given sequence of color observations. That
problem is easy and we describe a simple solution to it. The second problem is that of
deciding trackability.

Let us consider the first problem: we are given a color sequence and we would like
to count the paths that are compatible with the observed sequence of colors. A simple
algebraic solution is as follows. For every color c, there is an associated graph Gc for
which we can construct the corresponding adjacency matrix Ac. This graph is simply
the graph on the initial set of vertices, but keeping only the edges colored in c. To a
color sequence w = w1, . . . ,w|w| we then associate Aw, the corresponding product of
matrices Aw = Aw1 . . .Aw|w| . It is easy to verify that the (i, j)th entry of Aw is equal to
the number of paths from i to j allowed by w. The total number of compatible paths
|Tw| is therefore obtained by taking the sum of all entries of the matrix Aw.

We now turn to the problem of recognizing trackable graphs. We have the following
theorem:

Theorem 8.1 [30] Let G be a colored graph and Σ = {Ac} be the set of adjacency
matrices corresponding to each color. G is trackable if and only if ρ(Σ)≤ 1.

Proof. The proof essentially uses the fact that the number of paths compatible with the
color sequence w is the sum of the entries of Aw. Moreover, since Aw is nonnegative,
the sum of its entries is actually a norm:

||Aw||1 = ∑
i, j

(Aw)(i, j).

Now, applying the definition of the joint spectral radius:

ρ(Σ) = lim
t→∞

max{||A||1/t
1 : A ∈ Σ

t}, (8.1)

= lim
t→∞

max{∑
i, j

(Aw)(i, j) : |w|= t}(1/t), (8.2)

= lim
t→∞

N(t)1/t , (8.3)

and this latter quantity is less or equal to one if and only if N(t) grows less than
exponentially.

We can now apply all the machinery of Chapter 3 to the adjacency matrices of a
colored graph:

Theorem 8.2 There is a polynomial time algorithm that recognizes trackable graphs.
This algorithm uses at most O(n5) operations, where n is the number of nodes in the
graph. Moreover, only the following cases are possible:
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• the length of the paths is bounded, i.e., there exists a T such that for all t ≥ T,
N(t) = 0,

• the function N(t) is bounded,
• the function N(t) grows polynomially with a degree k between 1 and n−1,
• the function N(t) grows exponentially,

and the algorithm recognizes these cases (and in case of polynomial growth can decide
the degree of the polynomial).

Proof. This follows from Theorems 3.1 and 3.2 together with Theorem 8.1.

This theorem answers questions raised in the seminal paper on trackability [31].
We end this section by providing an example inspired from practical applications pre-
sented in [30].

(a) (b)

(c) (d)

Fig. 8.3 Four sensor networks on which a ground vehicle is moving. Which ones are trackable?

Example 8.1 Figure 8.3 shows a series of abstracted sensor networks. There is a
ground vehicle moving from cell to cell according to a specified kinematics. There is a
sensor which is activated if and only if the vehicle is in one of the grey cells. The white
cells are not equipped with a sensor (but this is equivalent to consider that they are all
equipped with a sensor that sends the signal NULL).
The network (a) is trackable because in any (long) observation, a grey flash means
that the vehicle has turned left, and two consecutive flashes mean that the vehicle
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has turned right. Now if the vehicle turns right, the number of NULL flashes before
the next grey flash tells how long it stayed in the right loop. Note however that the
function N(t) is not asymptotically equal to one, because a long sequence of NULL
signals at the end of an observation does not determine exactly the final node (it could
be any node lying after the loop and before the grey flash).
The network (b) is actually also trackable, even though a right turn is not indicated by
a series of two grey flashes. Indeed, it is indicated by a sequence of more than seven
consecutive NULL signals.
The network (c) is also trackable: the loop which is added is advertised by a sequence
GREY −NULL−GREY.
The network (d) is not trackable, because even the subgraph at the upper right corner
is not (it is a by-product of this chapter that if a subgraph is not trackable, the whole
graph is not trackable either).

8.3 Conclusion and future work

In this chapter we have studied the concept of trackable graphs. We have shown how
it relates to the joint spectral radius of a set of nonnegative integer matrices, and how
to recognize them in polynomial time. We have briefly described some applications
of this concept, in tracking vehicles in a noisy (or not fully observed) environment, or
in remote control of a network via a size-constrained bandwith. An interesting related
question is the design question:

Open question 12 Given a directed graph G, how many colors are necessary in order
to have a trackable graph? Is this minimal number computable in polynomial time? If
one is given a number of colors, how to arrange these colors in the best way, so as to
minimize the asymptotics of the maximal number of compatible trajectories N(t)?

Another way of asking this question is the following: given a binary matrix A, what
is the minimal number c of binary matrices Ai : 1 ≤ i ≤ c such that A = ∑Ai and
ρ({Ai})≤ 1. We have a straightforward upper bound on this problem: c≤ ||Ai1||∞≤ n.
Indeed, one can decompose a matrix A in at most n matrices such that each line has at
most one nonzero entry, and we have ρ({Ai})≤max ||Ai||∞.
One could also derive a lower bound on the minimal number of colors c by using
techniques from symbolic dynamics: the entropy of the edge-shift of the graph must
be smaller than the entropy of the free shift on the set of colors (for comprehensive
surveys on symbolic dynamics, see [75,79]). Let us present this idea in a self-contained
way: the number of paths of length t on the graph G is Tt(G) ≥ ρ(AG)t , with ρ(AG)
the spectral radius of the adjacency matrix of G. If there exists a coloration of G with
c colors such that the obtained graph is trackable, then the number of words of length
t on C has to be large enough so that at most a polynomial number of paths share the
same word, and we have the simple lower bound ρ ≤ c.
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This kind of techniques, though allowing one to quickly derive simple bounds, can
sometimes be relatively inefficient (see [60]).

Open question 13 Are there other (tighter) simple bounds for the minimal number of
colors?

These questions, though interesting, have not been investigated yet, to the best of the
author’s knowledge.





Conclusion

At the time of writing these lines, Linear Algebra and its Applications was editing
a special issue devoted to the joint spectral radius. This is another indication of the
growing interest and the increasing number of applications of the joint spectral radius.
The goal of this work was twofold: to present a survey on the joint spectral radius,
and to report the research that had been done during our Ph.D. on this topic. In this
conclusion, we quickly recall some points developed in this thesis. We then try to put
this work in perspective. We end with a personal conclusion.

Brief summary

Chapters 1 and 2 constitute a survey on the joint spectral radius.
In Chapter 1 we present elementary or fundamental results. Since it was possible to
derive their counterpart concerning the joint spectral subradius, we have decided to
present them.
In Chapter 2 we present more advanced results and try to understand the very nature
of the joint spectral radius. In a first section, we have seen that the whole behavior
is simple at first sight: The joint spectral radius is simply reached by commonly irre-
ducible components, and for these components there exists an extremal norm, that is,
a common norm that bounds individually the norm of each matrix with the exact value
of the joint spectral radius. Moreover, these irreducible components can effectively
be computed by quantifier elimination. In Section 2.2 we have seen that the reality is
more complex: It is impossible to compute exactly the joint spectral radius. In Sec-
tion 2.3 we show that despite these infeasibility results, it is possible to approximate
the joint spectral radius up to an arbitrary accuracy, and that several algorithms exist,
which often appear to be complementary. We end by saying a word on the finiteness
property.
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Concerning our own research work, two theoretical points were more deeply an-
alyzed: First, the case of nonnegative integer matrices, for which we have delineated
the polynomial time feasible questions, versus the infeasible ones. Second, the fasci-
nating finiteness property: in the course of trying to prove that it holds for nonnegative
rational (resp. rational) matrices, we have shown that it suffices to prove it for pairs
of binary (resp. signed binary) matrices. In addition, we have shown that the property
holds for 2×2 binary matrices.

We have also studied a number of applications of the joint spectral radius: We start
with a classical one: the continuity of wavelet functions. We then turn to the capacity
of codes, for which we have proved some convergence results that are more accurate
than for general matrices. We have shown that the question of zero capacity is solvable
in polynomial time, but that this is at the border of polynomial time feasibility, since
adding don’t care characters makes the problem NP-hard. We have then presented a
new application of the joint spectral radius to the computation of the asymptotics of
overlap-free words, a longstanding question that arises in combinatorics on words. It
has been shown recently that our results can be generalized to wider applications in
this area, but this still needs further investigations. We finally studied trackable sensor
networks, and showed that they are recognizable in polynomial time.

What is next?

To our knowledge, the theoretical questions analyzed in Chapter 2 have not been stud-
ied for the joint spectral subradius. Some of them are perhaps not as deep as for the
joint spectral radius. Indeed for instance, it is not difficult to show that the finiteness
property does not hold for the joint spectral subradius: simple counterexamples exist
for which the joint spectral subradius is not reached by a finite product. Nevertheless,
we have the feeling that the joint spectral subradius has not been studied as much as it
deserves, for instance for what concerns approximation algorithms. Perhaps the nega-
tive results mentioned in Chapter 1 are responsible for this situation, but they should
not put an end to the analysis of this quantity. In this way of thinking, we present in
Chapter 7 new algorithms for estimating the joint spectral subradius, that exhibit good
performance in practice, at least on the particular matrices that we studied. We think
that future research should analyze these algorithms and their convergence properties.

Research on the joint spectral radius is certainly not an ended story, and we have
tried all along this book to emphasize questions that remain unsolved today. Some of
them have been studied by several researchers from different communities, like for
instance the finiteness conjecture for binary matrices (see Chapter 4). Some others
have (to our knowledge) been less studied, like for instance the maximal growth of the
products when the joint spectral radius is equal to one. In both cases, we felt it was
worth to enlighten them, because they would have important implications in practice.
These questions are summarized at the end of each chapter.
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An important work that remains to be done, according to us, is a deeper understanding
of the algorithms existing to approximate the joint spectral radius. One should most
probably try to classify these algorithms, looking closely at their differences and simi-
larities. The presentation of several approximation algorithms in Chapter 2 is intended
to be a first step in this direction, but is definitely not a completed work. As mentioned
in that chapter, it seems that a fair amount of both theoretical and numerical work is
still needed in order to properly understand the different ways of approximating the
joint spectral radius.
Finally, from the point of view of applications, we are wondering whether or not the
joint spectral radius could be useful for more applied fields of mathematics. Indeed, as
soon as a linear dynamical system is involved, and if the generalization to a switched
dynamical system makes sense, the use of a joint spectral radius (and related quanti-
ties) is very natural. We have the feeling that some applications could benefit from the
theoretical advances that researchers have done these last decades on such complex
systems.

Personal conclusion

Before ending this book, and to summarize this work, we would like to stress one
point: At first sight, and in view of the profusion of negative results on the joint spectral
characteristics (undecidability, NP-hardness, non algebraicity,... see Chapter 2), one
could have the impression that studying the joint spectral radius is useless. He or she
could think that hoping to get an information on a system via a joint spectral radius
computation is an utopia.

This is not the case at all.
On the one hand, despite all the infeasibility results, recent contributions have pro-

vided several approximation algorithms that appear to be very efficient in practice.
Clearly, they require a certain amount of time in order to reach a high precision, but
their flexibility often allows one to reach the precision needed. Indeed, a number of
facts are of great help in practice and allow computations up to a reasonable accu-
racy. For instance, some algorithms allow to compute a priori the time needed to reach
a given accuracy; also, algorithms of very different nature exist; finally, some algo-
rithms can be tuned depending on algebraic properties of the particular set of matrices
under study (non-negative matrices, cone-preserving matrices, commonly irreducible
matrices,...). Let us mention for example the case of overlap-free words: even though
the size of the matrices was relatively large (twenty by twenty), we have been able
to reach a very satisfactory accuracy for the bounds on the joint spectral radius and
the other related quantities. What is more, the bounds we have derived significantly
outperform preexisting bounds in the literature, that had been derived with other tools.

On the other hand, the theoretical study of joint spectral characteristics is indis-
pensable to understand the intrinsic behavior of complex systems such as switching
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linear systems. In this more theoretical point of view, the joint spectral radius can be
seen as a first step in the understanding of these complex dynamical systems, leading
to a number of questions that remain a source of beautiful results nowadays.
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Appendix A
Numerical values for overlap-free words

A.1 Numerical values of Chapter 7

We introduce the following auxiliary matrices. For the sake of simplicity our notations
do not follow exactly those of [26].

D1 =



0 0 0 0 0 0 0 1 2 1
0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
1 2 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

B1 =



0 0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0


,
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C1 =



0 0 0 0 0 0 0 2 4 2
0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

B2 =



0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0


,C2 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 1 0 0 0
0 0 0 0 0


,

C4 =


0 1 1 1 1
0 0 0 1 1
0 1 1 0 0
1 0 0 0 0
1 0 0 0 0

 .

Now, defining

F0 =


C1 010×10 C2 010×5
D1 B1 010×5 B2

05×10 05×10 C4 05×5
05×10 05×10 05×5 05×5

 ,

F1 =


D1 B1 010×5 B2

010×10 C1 010×5 C2
05×10 05×10 05×5 05×5
05×10 05×10 05×5 C4

 , (A.1)

w = (1,2,2,2,1,2,2,1,2,1,01×20)T ,

y8 = (4,4,4,2,0,2,2,0,2,0,0,0,0,0,2,6,4,4,2,4,2,0,4,2,2,0,0,0,0,0)T ,

y9 = (6,4,4,2,4,2,0,4,2,2,0,0,0,0,0,8,4,4,2,0,4,4,4,0,0,0,0,0,0,0)T ,

y10 = (8,4,4,2,0,4,4,4,0,0,0,0,0,0,0,8,4,6,4,8,2,0,4,2,4,0,0,0,0,0)T ,
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y11 = (8,4,6,4,8,2,0,4,2,4,0,0,0,0,0,8,6,6,2,0,2,6,4,2,0,2,0,2,2,0)T ,

y12 = (8,6,6,2,0,2,6,4,2,0,2,0,2,2,0,10,6,4,4,8,2,0,4,2,4,0,0,0,0,0)T ,

y13 = (10,6,4,4,8,2,0,4,2,4,0,0,0,0,0,12,6,4,4,0,6,6,4,2,0,0,0,0,0,0)T ,

y14 = (12,6,4,4,0,6,6,4,2,0,0,0,0,0,0,10,6,8,6,12,4,0,0,4,4,0,0,0,0,0)T ,

y15 = (10,6,8,6,12,4,0,0,4,4,0,0,0,0,0,8,10,6,6,0,4,8,4,4,0,2,2,0,0,0)T ,

and introducing the recurrence relation

y2n = F0yn, y2n+1 = F1yn, n≥ 8,

one has the relation [26]:
un+1 = wT yn. (A.2)

We finally introduce two new matrices in R20×20 that rule the asymptotics of un :

A0 =
(

C1 010×10
D1 B1

)
,A1 =

(
D1 B1

010×10 C1

)
. (A.3)
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A.2 The ellipsoidal norm

Define

P1 =



313 75 23 33 −4 −3 3 4 37 03
75 577 100 63 184 350 163 −58 138 50
23 100 599 113 4 292 42 101 82 08
33 63 113 485 46 135 108 20 69 10
−4 184 4 46 364 235 226 44 89 −12
−3 350 292 135 235 1059 384 95 337 61
3 163 42 108 226 384 590 27 174 92
4 −58 101 20 44 95 27 386 148 −17

37 138 82 69 89 337 174 148 575 86
3 50 8 10 −12 61 92 −17 86 423


,

P2 =



−104 −17 −181 −4 −58 −51 −49 −8 −27 −9
−111 −224 −82 −147 −99 −303 −167 −113 −169 −66
−22 −164 −158 −50 −85 −72 −54 −185 −35 −34
−2 −136 −52 −90 −107 −146 −92 −16 −113 −11
−46 −170 −130 −91 −6 −112 −239 −70 −121 3
−59 −264 −274 −174 −310 −376 −280 −44 −273 −74
−14 −193 −116 −108 −223 −179 −117 −113 −120 −98
−63 21 17 −34 32 −76 2 −52 −31 −14
−74 −159 −47 −67 −122 −173 −116 −53 −68 −16
13 −57 −36 −32 −4 −61 −90 −14 −69 4


,

P4 =



291 83 −16 48 −13 −44 6 17 75 11
83 473 136 28 117 198 174 6 100 37
−16 136 466 104 65 249 118 65 125 14
48 28 104 476 51 80 76 51 37 18
−13 117 65 51 328 195 194 76 67 −2
−44 198 249 80 195 648 162 114 138 68

6 174 118 76 194 162 567 76 122 65
17 6 65 51 76 114 76 387 112 −10
75 100 125 37 67 138 122 112 556 42
11 37 14 18 −2 68 65 −10 42 438


,

P =
(

P1 P2
PT

2 P4

)
.

Then one has the relations:

AtPA− (2.5186)28P≺ 0, ∀A ∈ Σ
14.

As explained in Chapter 2 Section 2.3, this suffices to prove that ρ(Σ)≤ 2.5186.
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A.3 The vector x

Define

x = (153,0,60,0,50,56,99,0,58,1,157,81,0,113,0,72,0,99,0,0)T .

Then, for all B ∈ Σ 6 and A ∈ Σ 16, one has the relation

B(Ax− rx) ≥ 0,
x ≥ 0,

(A.4)

with r = 2.4116. This proves that ρ̌(Σ)≥ 2.41.
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Mathématique, II(5):29–43, 1959.



References 149

40. S. Dubuc. Interpolation through an iterative scheme. Journal of Mathematical Analysis and
Applications, 114(1):185–204, 1986.

41. L. Elsner. The generalized spectral-radius theorem: An analytic-geometric proof. Linear Alge-
bra and its Applications, 220:151–159, 1995.

42. Y. Ephraim and N. Merhav. Hidden Markov processes. IEEE Transactions on Information
Theory, 48(6):1518–1569, 2002.

43. M. Fekete. Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit.
ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17:228–249, 1923.

44. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, 1990.

45. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, second edition, 1989.

46. G. Gripenberg. Computing the joint spectral radius. Linear Algebra and its Applications,
234:43–60, 1996.

47. N. Guglielmi, A. Cicone, S. Serra Capizzano, and M. Zennaro. Finiteness properties of pairs of
22 sign-matrices via polytope norms. in preparation.

48. N. Guglielmi, F. Wirth, and M. Zennaro. Complex polytope extremality results for families of
matrices. SIAM Journal on Matrix Analysis and Applications, 27(3):721–743, 2005.

49. N. Guglielmi and M. Zennaro. On the asymptotic properties of a family of matrices. Linear
Algebra and its Applications, 322:169–192, 2001.

50. N. Guglielmi and M. Zennaro. On the limit products of a family of matrices. Linear Algebra
and its Applications, 362:11–27, 2003.

51. N. Guglielmi and M. Zennaro. Finding extremal complex polytope norms for families of real
matrices. Submitted to the SIAM Journal of Matrix Analysis and Applications, 2008.

52. L. Gurvits. Stability of discrete linear inclusions. Linear Algebra and its Applications, 231:47–
85, 1995.

53. L. Gurvits. Stability of linear inclusions - part 2. NECI technical report TR, pages 96–173,
1996.

54. C. Heil. Some stability properties of wavelets and scaling functions. In Wavelets and Their
Applications, pages 19–38, Dordrecht, 1994. Kluwer.

55. G. Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices.
Theoretical Computer Science, 5:183–204, 1977.

56. F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays,
in Honor of R. Courant, pages 187–204. Interscience, New York, NY, 1948.

57. R. Jungers. On the growth of codes whose differences avoid forbidden patterns. Master’s thesis,
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