Design of robotic swarms for long-term environmental monitoring

Gennaro Notomista

Department of Electrical and Computer Engineering

UC Louvain February 28, 2023

Long-duration robot autonomy

Robots deployed over long time horizons

Long-duration robot autonomy

Robots deployed over *long time horizons*

- > We need the synergistic combination of robot design and control
- Main application: Environmental monitoring for climate change ecology

Constraint-based control paradigm

Energy awareness Resilience

Scaling up robot environmental monitoring

Constraint-based control paradigm

Energy awareness Resilience

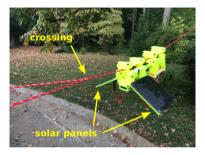
Scaling up robot environmental monitoring

Robots for long-term deployment

UAVs

UGVs

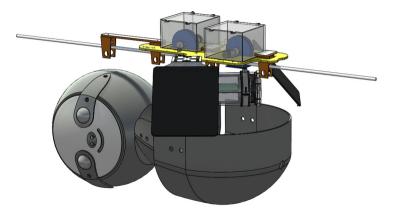
- USVs
- Wire-traversing robots


Pouliot, Montambault, Geometric design of the LineScout, a teleoperated robot for power line inspection and maintenance, ICRA 2008

Cho et al., Caterpillar-based cable climbing robot for inspection of suspension bridge hanger rope, CASE 2013

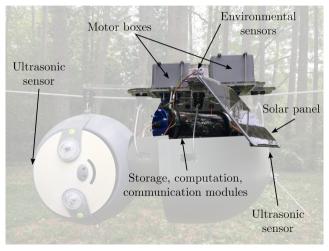
Morozovsky, Bewley, SkySweeper: A low DOF, dynamic high wire robot, IROS 2013

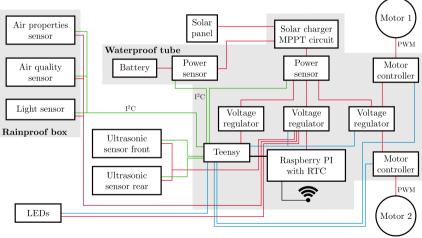
Debenest et al., Expliner - Robot for inspection of transmission lines, ICRA 2008

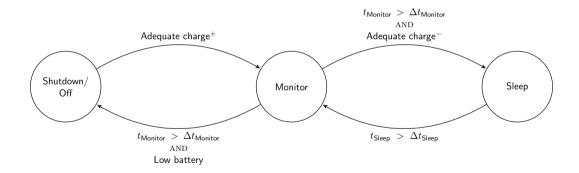

Aoshima, Tsujimura, Yabuta, A wire mobile robot with multi-unit structure, IROS 1989

	Locomotion	Wire-Switch	Fail-safe	# Actuators	Weight (Kg)
LineScout	Wheels	No	Yes	_	100
Caterpillar-like robot	Wheels	No	Yes	—	_
SkySweeper	Pulley Arms	No	Yes	3	0.466
Expliner	Wheels	Yes	No	6	60
Modular robot	Wheels	Yes	Yes	16	10
SlothBot ²²	Wheels	Yes	Yes	7	1

G. Notomista, Y. Emam, and M. Egerstedt, The SlothBot: A novel design for a wire-traversing robot, IEEE Robotics and Automation Letters, Vol. 4, No. 2, pp. 1993-1998, 2019




Components description


Components description

Hardware architecture

High-level software architecture

Constraint-based control paradigm

Energy awareness Resilience

Scaling up robot environmental monitoring

Constraint-based control paradigm

A sloth

Towards robot ecology

Ecological studies have shown that behaviors are determined by ecological constraints, not by objectives.

A slothbot

Advantage of constraints over objectives

 [‡] right way of combining objectives: Sum? Multiply?
 [⊥] way of combining constraints: Enforce them all!

1 task

 $\begin{array}{l} \underset{u}{\text{minimize }} \|u\|^2\\ \text{subject to } c_{\text{task}}(x, u) \leq 0 \end{array}$

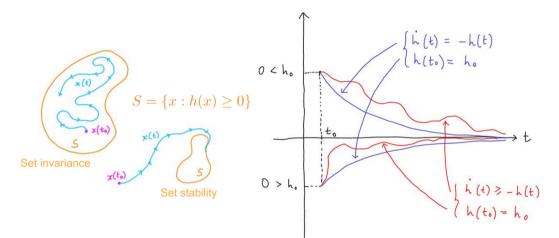
where

- $\triangleright x \in \mathbb{R}^n$ is the state of the robot
- $u \in \mathbb{R}^m$ is the control effort \propto energy spent (optimization variable)
- ▶ $c_{task}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ encodes the task e.g. multi-robot environmental monitoring

Constraint-based control paradigm

N tasks

 $\begin{array}{l} \underset{u}{\text{minimize }} \|u\|^2\\ \text{subject to } c_{\text{task},1}(x,u) \leq 0\\ \vdots\\ c_{\text{task},N}(x,u) \leq 0 \end{array}$


where, for the multi-robot environmental monitoring task,

- ▶ $c_{\text{task},1}(x,u) \leq 0$ may encode data collection
- ▶ $c_{task,2}(x, u) \leq 0$ may encode data communication
- ▶ $c_{\text{task},3}(x,u) \leq 0$ may encode data processing

How do we represent tasks as constraints?

Set invariance
$$x^{(t_0)}$$
 $S = \{x : h(x) \ge 0\}$
 $x^{(t_0)}$ $x^{($

How do we represent tasks as constraints?

How do we represent tasks as constraints?

Given a robot model $\dot{x} = f(x) + g(x)u$, we consider tasks that can be executed by rendering a set **asymptotically stable** or **forward invariant**.

From state to input constraints

This is achieved by enforcing the following constraint on u:

$$c_{\operatorname{task},i}(x,u) := -L_f h_i(x) - L_g h_i(x)u - \alpha(h_i(x)) \le 0,$$

where h_i is a *control barrier function* associated with task *i* and $\alpha \in \mathcal{K}$.

A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, Control barrier functions: Theory and applications, in 2019 18th European Control Conference (ECC). IEEE, 2019, pp. 3420–3431

Constraint-based control paradigm Energy awareness Resilience

Scaling up robot environmental monitoring

Constraint-based control paradigm

Energy control as forward invariance

Define the following control barrier function:

$$h_e(x) := e - e_{\min} - \rho(||p(x) - p_c||),$$

where

- \blacktriangleright e is the robot energy
- $\blacktriangleright e_{\min}$ is a lower bound on the robot energy (design parameter)
- ▶ p(||p(x) p_c||) is an upper bound on the energy required to reach a charging station located at p_c starting from p(x)

 $h_e(x) \ge 0$

The robot will reach the charging station before its energy goes below the lower bound

Constraint-based control paradigm

G. Notomista and M. Egerstedt, "Persistification of robotic tasks," Transactions on Control Systems Technology, 2020.

Energy control as forward invariance

$$\begin{split} & \underset{u}{\text{minimize}} \|u\|^2 \\ & \text{subject to } -L_f h_1(x) - L_g h_1(x) u - \alpha(h_1(x)) \Big) \leq 0 \quad \longleftarrow \text{ task constraint} \\ & \vdots \\ & -L_f h_N(x) - L_g h_N(x) u - \alpha(h_N(x)) \Big) \leq 0 \quad \longleftarrow \text{ task constraint} \\ & -L_f h_e(x) - L_g h_e(x) u - \alpha(h_e(x)) \leq 0 \quad \longleftarrow \text{ energy constraint} \end{split}$$

G. Notomista and M. Egerstedt, Constraint-driven coordinated control of multi-robot systems, in 2019 American Control Conference (ACC). IEEE, 2019, pp. 1990–1996

G. Notomista, A Constrained-Optimization Approach to the Execution of Prioritized Stacks of Learned Multi-Robot Tasks, in International Symposium on Distributed Autonomous Robotic Systems, 2022

Energy control as forward invariance

$$\begin{array}{ll} \underset{u}{\operatorname{minimize}} & \|u\|^2 \\ \text{subject to} & -L_f h_1(x) - L_g h_1(x) u - \alpha(h_1(x)) \big) \leq 0 & \longleftarrow \text{ task constraint} \\ & \vdots \\ & -L_f h_N(x) - L_g h_N(x) u - \alpha(h_N(x)) \big) \leq 0 & \longleftarrow \text{ task constraint} \\ & -L_f h_e(x) - L_g h_e(x) u - \alpha(h_e(x)) \leq 0 & \longleftarrow \text{ energy constraint} \end{array}$$

- Feasibility?
- Stability?
- Robustness / resilience?
- What kinds of tasks can we execute with this formulation?

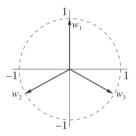
Constraint-based control paradigm

G. Notomista and M. Egerstedt, Constraint-driven coordinated control of multi-robot systems, in 2019 American Control Conference (ACC). IEEE, 2019, pp. 1990–1996

G. Notomista, A Constrained-Optimization Approach to the Execution of Prioritized Stacks of Learned Multi-Robot Tasks, in International Symposium on Distributed Autonomous Robotic Systems, 2022

Constraint-based control paradigm

Energy awareness Resilience


Scaling up robot environmental monitoring

Constraint-based control paradigm

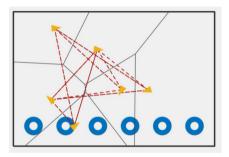
Resilience

Ability of a system to recover from failure by altering its behavior and/or its objective

Resilience for constraint-driven-controlled multi-robot systems using *frame theory*

G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687

Resilience

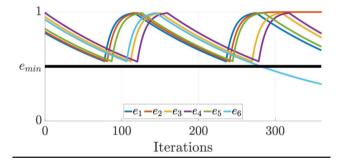

$$\begin{split} & \underset{u}{\text{minimize}} \|u\|^2 \\ & \text{subject to } -L_f h_1(x) - L_g h_1(x) u - \alpha(h_1(x)) \Big) \leq 0 & \longleftarrow \text{ task constraint} \\ & \vdots \\ & - L_f h_N(x) - L_g h_N(x) u - \alpha(h_N(x)) \Big) \leq 0 & \longleftarrow \text{ task constraint} \\ & - L_f h_e(x) - L_g h_e(x) u - \alpha(h_e(x)) \leq 0 & \longleftarrow \text{ energy constraint} \\ & - L_f h_r(x) - L_g h_r(x) u - \alpha(h_r(x)) \leq 0 & \longleftarrow \text{ resilience constraint} \end{split}$$

G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687

6 robots

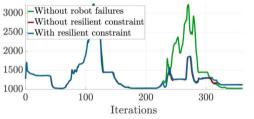
2 tasks

- Coverage control
- Formation control
- ▶ 6 charging stations
- ► Failures
 - One robot breaks at time 180s
 - Another robot breaks at time 240s

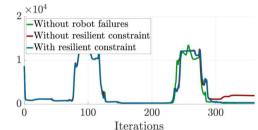


G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687

Without resilience constraint


With resilience constraint

G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687



G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687

Coverage control task CBF (absolute value)

Formation control task CBF (absolute value)

Constraint-based control paradigm

G. Nootmista, "Resilience and Energy-Awareness in Constraint-Driven-Controlled Multi-Robot Systems", in 2022 American control conference (ACC). IEEE, 2022, pp. 3682-3687

Constraint-based control paradigm

Energy awareness Resilience

Scaling up robot environmental monitoring

Scaling up robot environmental monitoring

The power of swarms

- Design simplicity
- Energy efficiency
- Resilience

Outsourcing computation, communication, sensing, and locomotion

Z. Hao, S. Mayya, G. Notomista, S. Hutchinson, M. Egerstedt, and A. Ansari, "Controlling Collision-Induced Aggregations in a Swarm of Micro Bristle-Robots", IEEE Stransactions on Robotics, 2022 Calling UP robotic environmental monitoring

Outsourcing computation, communication, sensing, and locomotion

Z. Hao, S. Mayya, G. Notomista, S. Hutchinson, M. Egerstedt, and A. Ansari, "Controlling Collision-Induced Aggregations in a Swarm of Micro Bristle-Robots", IEEE Transactions on Robotics, 2022

Ecological and Resilient Autonomous roBots Laboratory

Research themes

- Ecological robot design (biodegradable mechanics and electronics)
- Resilient robotic systems (design and control)
- Human-multi-robot interaction (intuitiveness and safety)
- Main application: Environmental monitoring for climate change ecology

Design of robotic swarms for long-term environmental monitoring

Gennaro Notomista

Department of Electrical and Computer Engineering

UC Louvain February 28, 2023